WorldWideScience

Sample records for multiple nuclear receptors

  1. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric (Michigan-Med); (Van Andel)

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  2. Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes

    International Nuclear Information System (INIS)

    Bjork, J.A.; Butenhoff, J.L.; Wallace, K.B.

    2011-01-01

    Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are surface active fluorochemicals that, due to their exceptional stability to degradation, are persistent in the environment. Both PFOA and PFOS are eliminated slowly in humans, with geometric mean serum elimination half-lives estimated at 3.5 and 4.8 years, respectively. The biological activity of PFOA and PFOS in rodents is attributed primarily to transactivation of the nuclear receptor peroxisome proliferator activated receptor alpha (PPARA), which is an important regulator of lipid and carbohydrate metabolism. However, there are significant species-specific differences in the response to PFOA and PFOS exposure; non-rodent species, including humans, are refractory to several but not all of these effects. Many of the metabolic effects have been attributed to the activation of PPARA; however, recent studies using PPARα knockout mice demonstrate residual PPARA-independent effects, some of which may involve the activation of alternate nuclear receptors, including NR1I2 (PXR), NR1I3 (CAR), NR1H3 (LXRA), and NR1H4 (FXR). The objective of this investigation was to characterize the activation of multiple nuclear receptors and modulation of metabolic pathways associated with exposure to PFOA and PFOS, and to compare and contrast the effects between rat and human primary liver cells using quantitative reverse transcription PCR (RT-qPCR). Our results demonstrate that multiple nuclear receptors participate in the metabolic response to PFOA and PFOS exposure resulting in a substantial shift from carbohydrate metabolism to fatty acid oxidation and hepatic triglyceride accumulation in rat liver cells. This shift in intermediary metabolism was more pronounced for PFOA than PFOS. Furthermore, while there is some similarity in the activation of metabolic pathways between rat and humans, particularly in PPARA regulated responses; the changes in primary human cells were more subtle and possibly reflect an adaptive

  3. Brain nuclear receptors and body weight regulation

    Science.gov (United States)

    Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essent...

  4. Pan-Cancer Analyses of the Nuclear Receptor Superfamily

    Directory of Open Access Journals (Sweden)

    Mark D. Long

    2015-12-01

    Full Text Available Nuclear receptors (NR act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate. Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g., NR3C2/MR and NR5A2/LRH-1 whereas others were uniquely down-regulated in one tumor (e.g., NR1B3/RARG. The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression.

  5. Mediator-dependent Nuclear Receptor Functions

    Science.gov (United States)

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  6. The carboxyl-terminus directs TAF(I)48 to the nucleus and nucleolus and associates with multiple nuclear import receptors.

    Science.gov (United States)

    Dynes, Joseph L; Xu, Shuping; Bothner, Sarah; Lahti, Jill M; Hori, Roderick T

    2004-03-01

    The protein complex Selectivity Factor 1, composed of TBP, TAF(I)48, TAF(I)63 and TAF(I)110, is required for rRNA transcription by RNA polymerase I in the nucleolus. The steps involved in targeting Selectivity Factor 1 will be dependent on the transport pathways that are used and the localization signals that direct this trafficking. In order to investigate these issues, we characterized human TAF(I)48, a subunit of Selectivity Factor 1. By domain analysis of TAF(I)48, the carboxyl-terminal 51 residues were found to be required for the localization of TAF(I)48, as well as sufficient to direct Green Fluorescent Protein to the nucleus and nucleolus. The carboxyl-terminus of TAF(I)48 also has the ability to associate with multiple members of the beta-karyopherin family of nuclear import receptors, including importin beta (karyopherin beta1), transportin (karyopherin beta2) and RanBP5 (karyopherin beta3), in a Ran-dependent manner. This property of interacting with multiple beta-karyopherins has been previously reported for the nuclear localization signals of some ribosomal proteins that are likewise directed to the nucleolus. This study identifies the first nuclear import sequence identified within the TBP-Associated Factor subunits of Selectivity Factor 1.

  7. Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family.

    Science.gov (United States)

    Pecenova, L; Farkas, Robert

    2016-07-01

    Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numerous metabolic pathways, and can be misregulated in many types of cancers. Their enormous functional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and highlight some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways.

  8. Nuclear Receptors, RXR, and the Big Bang.

    Science.gov (United States)

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Nuclear receptors and nonalcoholic fatty liver disease1

    Science.gov (United States)

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  10. Molecular pathways: the role of NR4A orphan nuclear receptors in cancer.

    LENUS (Irish Health Repository)

    Mohan, Helen M

    2012-06-15

    Nuclear receptors are of integral importance in carcinogenesis. Manipulation of classic ligand-activated nuclear receptors, such as estrogen receptor blockade in breast cancer, is an important established cancer therapy. Orphan nuclear receptors, such as nuclear family 4 subgroup A (NR4A) receptors, have no known natural ligand(s). These elusive receptors are increasingly recognized as molecular switches in cell survival and a molecular link between inflammation and cancer. NR4A receptors act as transcription factors, altering expression of downstream genes in apoptosis (Fas-ligand, TRAIL), proliferation, DNA repair, metabolism, cell migration, inflammation (interleukin-8), and angiogenesis (VEGF). NR4A receptors are modulated by multiple cell-signaling pathways, including protein kinase A\\/CREB, NF-κB, phosphoinositide 3-kinase\\/AKT, c-jun-NH(2)-kinase, Wnt, and mitogen-activated protein kinase pathways. NR4A receptor effects are context and tissue specific, influenced by their levels of expression, posttranslational modification, and interaction with other transcription factors (RXR, PPAR-Υ). The subcellular location of NR4A "nuclear receptors" is also important functionally; novel roles have been described in the cytoplasm where NR4A proteins act both indirectly and directly on the mitochondria to promote apoptosis via Bcl-2. NR4A receptors are implicated in a wide variety of malignancies, including breast, lung, colon, bladder, and prostate cancer; glioblastoma multiforme; sarcoma; and acute and\\/or chronic myeloid leukemia. NR4A receptors modulate response to conventional chemotherapy and represent an exciting frontier for chemotherapeutic intervention, as novel agents targeting NR4A receptors have now been developed. This review provides a concise clinical overview of current knowledge of NR4A signaling in cancer and the potential for therapeutic manipulation.

  11. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways.

    OpenAIRE

    Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K

    1993-01-01

    The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene d...

  12. Nuclear receptor 4A (NR4A) family - orphans no more.

    Science.gov (United States)

    Safe, Stephen; Jin, Un-Ho; Morpurgo, Benjamin; Abudayyeh, Ala; Singh, Mandip; Tjalkens, Ronald B

    2016-03-01

    The orphan nuclear receptors NR4A1, NR4A2 and NR4A3 are immediate early genes induced by multiple stressors, and the NR4A receptors play an important role in maintaining cellular homeostasis and disease. There is increasing evidence for the role of these receptors in metabolic, cardiovascular and neurological functions and also in inflammation and inflammatory diseases and in immune functions and cancer. Despite the similarities of NR4A1, NR4A2 and NR4A3 and their interactions with common cis-genomic elements, they exhibit unique activities and cell-/tissue-specific functions. Although endogenous ligands for NR4A receptors have not been identified, there is increasing evidence that structurally-diverse synthetic molecules can directly interact with the ligand binding domain of NR4A1 and act as agonists or antagonists, and ligands for NR4A2 and NR4A3 have also been identified. Since NR4A receptors are key factors in multiple diseases, there are opportunities for the future development of NR4A ligands for clinical applications in treating multiple health problems including metabolic, neurologic and cardiovascular diseases, other inflammatory conditions, and cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. NRSAS: Nuclear Receptor Structure Analysis Servers.

    NARCIS (Netherlands)

    Bettler, E.J.M.; Krause, R.; Horn, F.; Vriend, G.

    2003-01-01

    We present a coherent series of servers that can perform a large number of structure analyses on nuclear hormone receptors. These servers are part of the NucleaRDB project, which provides a powerful information system for nuclear hormone receptors. The computations performed by the servers include

  14. Phenobarbital Meets Phosphorylation of Nuclear Receptors.

    Science.gov (United States)

    Negishi, Masahiko

    2017-05-01

    Phenobarbital was the first therapeutic drug to be characterized for its induction of hepatic drug metabolism. Essentially at the same time, cytochrome P450, an enzyme that metabolizes drugs, was discovered. After nearly 50 years of investigation, the molecular target of phenobarbital induction has now been delineated to phosphorylation at threonine 38 of the constitutive androstane receptor (NR1I3), a member of the nuclear receptor superfamily. Determining this mechanism has provided us with the molecular basis to understand drug induction of drug metabolism and disposition. Threonine 38 is conserved as a phosphorylation motif in the majority of both mouse and human nuclear receptors, providing us with an opportunity to integrate diverse functions of nuclear receptors. Here, I review the works and accomplishments of my laboratory at the National Institutes of Health National Institute of Environmental Health Sciences and the future research directions of where our study of the constitutive androstane receptor might take us. U.S. Government work not protected by U.S. copyright.

  15. Nicotinic Acid-Mediated Activation of Both Membrane and Nuclear Receptors towards Therapeutic Glucocorticoid Mimetics for Treating Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    W. Todd Penberthy

    2009-01-01

    Full Text Available Acute attacks of multiple sclerosis (MS are most commonly treated with glucocorticoids, which can provide life-saving albeit only temporary symptomatic relief. The mechanism of action (MOA is now known to involve induction of indoleamine 2,3-dioxygenase (IDO and interleukin-10 (IL-10, where IL-10 requires subsequent heme oxygenase-1 (HMOX-1 induction. Ectopic expression studies reveal that even small changes in expression of IDO, HMOX-1, or mitochondrial superoxide dismutase (SOD2 can prevent demyelination in experimental autoimmune encephalomyelitis (EAE animal models of MS. An alternative to glucocorticoids is needed for a long-term treatment of MS. A distinctly short list of endogenous activators of both membrane G-protein-coupled receptors and nuclear peroxisome proliferating antigen receptors (PPARs demonstrably ameliorate EAE pathogenesis by MOAs resembling that of glucocorticoids. These dual activators and potential MS therapeutics include endocannabinoids and the prostaglandin 15-deoxy-Δ12,14-PGJ2. Nicotinamide profoundly ameliorates and prevents autoimmune-mediated demyelination in EAE via maintaining levels of nicotinamide adenine dinucleotide (NAD, without activating PPAR nor any G-protein-coupled receptor. By comparison, nicotinic acid provides even greater levels of NAD than nicotinamide in many tissues, while additionally activating the PPAR-dependent pathway already shown to provide relief in animal models of MS after activation of GPR109a/HM74a. Thus nicotinic acid is uniquely suited for providing therapeutic relief in MS. However nicotinic acid is unexamined in MS research. Nicotinic acid penetrates the blood brain barrier, cures pellagric dementia, has been used for over 50 years clinically without toxicity, and raises HDL concentrations to a greater degree than any pharmaceutical, thus providing unparalleled benefits against lipodystrophy. Summary analysis reveals that the expected therapeutic benefits of high-dose nicotinic

  16. Nuclear Import and Export of the Thyroid Hormone Receptor.

    Science.gov (United States)

    Zhang, Jibo; Roggero, Vincent R; Allison, Lizabeth A

    2018-01-01

    The thyroid hormone receptors, TRα1 and TRβ1, are members of the nuclear receptor superfamily that forms one of the most abundant classes of transcription factors in multicellular organisms. Although primarily localized to the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. The fine balance between nuclear import and export of TRs has emerged as a critical control point for modulating thyroid hormone-responsive gene expression. Mutagenesis studies have defined two nuclear localization signal (NLS) motifs that direct nuclear import of TRα1: NLS-1 in the hinge domain and NLS-2 in the N-terminal A/B domain. Three nuclear export signal (NES) motifs reside in the ligand-binding domain. A combined approach of shRNA-mediated knockdown and coimmunoprecipitation assays revealed that nuclear entry of TRα1 is facilitated by importin 7, likely through interactions with NLS-2, and importin β1 and the adapter importin α1 interacting with both NLS-1 and NLS-2. Interestingly, TRβ1 lacks NLS-2 and nuclear import depends solely on the importin α1/β1 heterodimer. Heterokaryon and fluorescence recovery after photobleaching shuttling assays identified multiple exportins that play a role in nuclear export of TRα1, including CRM1 (exportin 1), and exportins 4, 5, and 7. Even single amino acid changes in TRs dramatically alter their intracellular distribution patterns. We conclude that mutations within NLS and NES motifs affect nuclear shuttling activity, and propose that TR mislocalization contributes to the development of some types of cancer and Resistance to Thyroid Hormone syndrome. © 2018 Elsevier Inc. All rights reserved.

  17. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.

    Science.gov (United States)

    Preidis, Geoffrey A; Kim, Kang Ho; Moore, David D

    2017-04-03

    The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

  18. Dynamic regulation of Drosophila nuclear receptor activity in vivo.

    Science.gov (United States)

    Palanker, Laura; Necakov, Aleksandar S; Sampson, Heidi M; Ni, Ruoyu; Hu, Chun; Thummel, Carl S; Krause, Henry M

    2006-09-01

    Nuclear receptors are a large family of transcription factors that play major roles in development, metamorphosis, metabolism and disease. To determine how, where and when nuclear receptors are regulated by small chemical ligands and/or protein partners, we have used a 'ligand sensor' system to visualize spatial activity patterns for each of the 18 Drosophila nuclear receptors in live developing animals. Transgenic lines were established that express the ligand binding domain of each nuclear receptor fused to the DNA-binding domain of yeast GAL4. When combined with a GAL4-responsive reporter gene, the fusion proteins show tissue- and stage-specific patterns of activation. We show that these responses accurately reflect the presence of endogenous and exogenously added hormone, and that they can be modulated by nuclear receptor partner proteins. The amnioserosa, yolk, midgut and fat body, which play major roles in lipid storage, metabolism and developmental timing, were identified as frequent sites of nuclear receptor activity. We also see dynamic changes in activation that are indicative of sweeping changes in ligand and/or co-factor production. The screening of a small compound library using this system identified the angular psoralen angelicin and the insect growth regulator fenoxycarb as activators of the Ultraspiracle (USP) ligand-binding domain. These results demonstrate the utility of this system for the functional dissection of nuclear receptor pathways and for the development of new receptor agonists and antagonists that can be used to modulate metabolism and disease and to develop more effective means of insect control.

  19. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Energy Technology Data Exchange (ETDEWEB)

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  20. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  1. Bisphenol A affects androgen receptor function via multiple mechanisms.

    Science.gov (United States)

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. Published by Elsevier Ireland Ltd.

  2. Nuclear Receptors in atherosclerosis: a superfamily with many 'Goodfellas'

    NARCIS (Netherlands)

    Kurakula, Kondababu; Hamers, Anouk A. J.; de Waard, Vivian; de Vries, Carlie J. M.

    2013-01-01

    Nuclear Receptors form a superfamily of 48 transcription factors that exhibit a plethora of functions in steroid hormone signaling, regulation of metabolism, circadian rhythm and cellular differentiation. In this review, we describe our current knowledge on the role of Nuclear Receptors in

  3. Nuclear Receptor Signaling Atlas (NURSA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  4. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, T B; Wittenhagen, P

    2007-01-01

    To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta).......To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta)....

  5. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Science.gov (United States)

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  6. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  7. Multiple Receptor Subtypes for the CGRP Super-Family

    Directory of Open Access Journals (Sweden)

    R. Quirion

    2001-01-01

    Full Text Available Molecular evidence for the existence of multiple receptors for CGRP has been rather difficult to obtain. Over 10 years after suggesting the existence of at least two classes (CGRP1 and CGRP2 of CGRP receptors on the basis of pharmacological data[1], molecular data on the CGRP2 receptor subtype are still lacking as well as potent and selective antagonists. The situation is somewhat different for the functional CGRP1 subtype which is likely composed of diverse subunits CRLR, RAMP1 and possibly RCP[2]. Moreover, BIBN 4096BS was recently reported as the first nonpeptide highly potent CGRP1 receptor antagonist[3]. However, in situ hybridization and receptor autoradiographic data have clearly shown the existence of major mismatches (e.g., cerebellum between the discrete localization of CRLR, RAMP1, and specific CGRP binding sites supporting the existence of CGRP receptor subtypes. Functional studies have also provided evidence in that regard (for a recent review: [4]. Accordingly, additional studies aiming at cloning additional CGRP receptors are certainly warranted. Similarly, recent evidence from various laboratories including ours suggests the existence of more than one class (CRLR and RAMP2 of adrenomedullin receptors at least in the rat brain. In contrast, most evidence suggests the existence of a single class of amylin receptors. In brief, it appears that multiple receptors or receptor complexes do exist for CGRP and related peptides but their composition is apparently unique among the GPCR super-family and additional data are needed to fully establish the molecular organization of each subtype. Supported by CIHR of Canada.

  8. Nuclear triiodothyronine receptor binding characteristics and occupancy in obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Hillgartner, F.B.; Romsos, D.R.

    1987-01-01

    Obese (ob/ob) mice exhibit reduced adaptive thermogenesis associated with an impairment of thyroid hormone action. The mechanism underlying the latter defect was investigated by comparing the binding characteristics and occupancy of solubilized nuclear 3,5,3'-triiodothyronine (T 3 ) receptors from livers of lean and obese mice. T 3 concentration was measured by radioimmunoassay. Scatchard analysis showed minimal differences in B/sub max/ and K/sub d/ between phenotypes at both 4 and 8-10 wk of age, indicating that reduced hepatic thyroid hormone expression in obese mice is not caused by alterations in nuclear receptor concentration or affinity. In contrast, nuclear T 3 receptor occupancy (endogenous T 3 associated with the specific receptor divided by B/sub max/) was 14 and 23% lower in 4- and 8- to 10-wk old obese mice, respectively. Together with reported changes in hepatic thyroid hormone-sensitive enzymes, these data are consistent with a diminished nuclear T 3 signal initiating thyroid hormone action in obese mice. Decreased nuclear T 3 receptor occupancy may be secondary to a low transport of plasma T 3 to the nuclear pool. In conclusion, impaired hepatic thyroid hormone action in obese mice is mediated in part at least by a reduction in nuclear T 3 receptor occupancy

  9. Nuclear receptors and metabolism: from feast to famine.

    Science.gov (United States)

    Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M

    2014-05-01

    The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs.

  10. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors

    International Nuclear Information System (INIS)

    Wong, K.Y.; Hawley, D.; Vigneri, R.; Goldfine, I.D.

    1988-01-01

    Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor α subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[γ- 32 P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor β subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins

  11. NR4A nuclear receptors are orphans but not lonesome.

    Science.gov (United States)

    Kurakula, Kondababu; Koenis, Duco S; van Tiel, Claudia M; de Vries, Carlie J M

    2014-11-01

    The NR4A subfamily of nuclear receptors consists of three mammalian members: Nur77, Nurr1, and NOR-1. The NR4A receptors are involved in essential physiological processes such as adaptive and innate immune cell differentiation, metabolism and brain function. They act as transcription factors that directly modulate gene expression, but can also form trans-repressive complexes with other transcription factors. In contrast to steroid hormone nuclear receptors such as the estrogen receptor or the glucocorticoid receptor, no ligands have been described for the NR4A receptors. This lack of known ligands might be explained by the structure of the ligand-binding domain of NR4A receptors, which shows an active conformation and a ligand-binding pocket that is filled with bulky amino acid side-chains. Other mechanisms, such as transcriptional control, post-translational modifications and protein-protein interactions therefore seem to be more important in regulating the activity of the NR4A receptors. For Nur77, over 80 interacting proteins (the interactome) have been identified so far, and roughly half of these interactions has been studied in more detail. Although the NR4As show some overlap in interacting proteins, less information is available on the interactome of Nurr1 and NOR-1. Therefore, the present review will describe the current knowledge on the interactomes of all three NR4A nuclear receptors with emphasis on Nur77. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The Orphan Nuclear Receptor TLX/NR2E1 in Neural Stem Cells and Diseases

    OpenAIRE

    Wang, Tao; Xiong, Jian-Qiong

    2016-01-01

    The human TLX gene encodes an orphan nuclear receptor predominantly expressed in the central nervous system. Tailess and Tlx, the TLX homologues in Drosophila and mouse, play essential roles in body-pattern formation and neurogenesis during early embryogenesis and perform crucial functions in maintaining stemness and controlling the differentiation of adult neural stem cells in the central nervous system, especially the visual system. Multiple target genes and signaling pathways are regulated...

  13. Nuclear Receptor Cofactors in PPARγ-Mediated Adipogenesis and Adipocyte Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Emily Powell

    2007-01-01

    Full Text Available Transcriptional cofactors are integral to the proper function and regulation of nuclear receptors. Members of the peroxisome proliferator-activated receptor (PPAR family of nuclear receptors are involved in the regulation of lipid and carbohydrate metabolism. They modulate gene transcription in response to a wide variety of ligands, a process that is mediated by transcriptional coactivators and corepressors. The mechanisms by which these cofactors mediate transcriptional regulation of nuclear receptor function are still being elucidated. The rapidly increasing array of cofactors has brought into focus the need for a clear understanding of how these cofactors interact in ligand- and cell-specific manners. This review highlights the differential effects of the assorted cofactors regulating the transcriptional action of PPARγ and summarizes the recent advances in understanding the physiological functions of corepressors and coactivators.

  14. Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1.

    Science.gov (United States)

    Zhang, Chun-Li; Zou, Yuhua; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2006-05-15

    During mammalian embryogenesis, precise coordination of progenitor cell proliferation and differentiation is essential for proper organ size and function. The involvement of TLX (NR2E1), an orphan nuclear receptor, has been implicated in ocular development, as Tlx-/- mice exhibit visual impairment. Using genetic and biochemical approaches, we show that TLX modulates retinal progenitor cell proliferation and cell cycle re-entry by directly regulating the expression of Pten and its target cyclin D1. Additionally, TLX finely tunes the progenitor differentiation program by modulating the phospholipase C and mitogen-activated protein kinase (MAPK) pathways and the expression of an array of cell type-specific transcriptional regulators. Consequently, Tlx-/- mice have a dramatic reduction in retina thickness and enhanced generation of S-cones, and develop severe early onset retinal dystrophy. Furthermore, TLX interacts with atrophin1 (Atn1), a corepressor that is involved in human neurodegenerative dentatorubral-pallidoluysian atrophy (DRPLA) and that is essential for development of multiple tissues. Together, these results reveal a molecular strategy by which an orphan nuclear receptor can precisely orchestrate tissue-specific proliferation and differentiation programs to prevent retinal malformation and degeneration.

  15. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    Science.gov (United States)

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  16. Meeting report: nuclear receptors

    DEFF Research Database (Denmark)

    Tuckermann, Jan; Bourguet, William; Mandrup, Susanne

    2010-01-01

    The biannual European Molecular Biology Organization (EMBO) conference on nuclear receptors was organized by Beatrice Desvergne and Laszlo Nagy and took place in Cavtat near Dubrovnik on the Adriatic coast of Croatia September 25-29, 2009. The meeting brought together researchers from all over...... the world covering a wide spectrum from fundamental mechanistic studies to metabolism, clinical studies, and drug development. In this report, we summarize the recent and exciting findings presented by the speakers at the meeting....

  17. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.

    Science.gov (United States)

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A

    2015-10-22

    The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Nuclear receptors and endocrine disruptors in fetal and neonatal testes: a gapped landscape.

    Directory of Open Access Journals (Sweden)

    Virginie eRouiller-Fabre

    2015-05-01

    Full Text Available During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food and many consumer products, several can act as endocrine disrupting compounds (EDCs, thus interfering with the endocrine system. Phthalates, bisphenol A (BPA and diethylstilbestrol (DES have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review we discuss the role of classical nuclear receptors (genomic pathway in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA and DES. Among the nuclear receptors we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR, androgen receptor (AR, estrogen receptors (ERα and β, liver X receptors (LXR and small heterodimer partner (SHP. First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s. We also point-out the involvement of other receptors and nuclear receptor-independent pathways.

  19. Nuclear receptor 4a3 (nr4a3 regulates murine mast cell responses and granule content.

    Directory of Open Access Journals (Sweden)

    Gianni Garcia-Faroldi

    Full Text Available Nuclear receptor 4a3 (Nr4a3 is a transcription factor implicated in various settings such as vascular biology and inflammation. We have recently shown that mast cells dramatically upregulate Nuclear receptor 4a3 upon activation, and here we investigated the functional impact of Nuclear receptor 4a3 on mast cell responses. We show that Nuclear receptor 4a3 is involved in the regulation of cytokine/chemokine secretion in mast cells following activation via the high affinity IgE receptor. Moreover, Nuclear receptor 4a3 negatively affects the transcript and protein levels of mast cell tryptase as well as the mast cell's responsiveness to allergen. Together, these findings identify Nuclear receptor 4a3 as a novel regulator of mast cell function.

  20. Exclusive nuclear location of estrogen receptors in Squalus testis.

    Science.gov (United States)

    Callard, G V; Mak, P

    1985-01-01

    An estrogen (E)-binding molecule having both occupied and unoccupied sites is restricted to nuclear subfractions in the testis of the spiny dogfish (Squalus acanthias). We investigated the hypothesis that a species characterized by high body-fluid osmolarity (1010 mosM) has an estrogen receptor (ER) that binds to chromatin with high affinity and consequently resists redistribution during tissue processing. Although the steroid binding and sedimentation properties of the Squalus nuclear ER conformed to those of classical ER, its elution maximum from DNA-cellulose was unusually high (0.55 M NaCl). A tendency to adhere tightly to cell nuclei was reflected in the high salt concentration (0.43 M KCl) required to extract 50% of the receptors from the nuclear compartment during homogenization and in the stability of the nuclear ER population in the presence of high concentrations of a nonionic solute (urea) or increased buffer volume. Mixing and redistribution experiments showed that nuclear ER could be quantitatively and qualitatively measured in cytosolic extracts, ruling out the possibility that soluble receptors were being masked. Although Squalus oviduct ER was similar to that of testis, ER in the testis and liver of a related elasmobranch (Potamotrygon) that maintains osmotic equilibrium at 300 mosM more closely resembled mammalian ER in its elution maximum from DNA-cellulose (0.22 M NaCl) and cytosolic/nuclear ratios in low-salt buffers. We conclude that Squalus testis has a single ER pool located exclusively in the nuclear compartment. These observations support a revised concept of steroid action and further indicate that the chromatin affinity of the hormone-ER complex is an important factor in determining subfractional distribution during tissue processing. PMID:3856265

  1. Immunohistochemical Expression of Vitamin-D Receptor in Oral and ...

    African Journals Online (AJOL)

    user

    Receptor in Oral and Skin Squamous Cell Carcinoma of a Black African Subpopulation. *Corresponding Author ... Objective:The nuclear vitamin D receptor (VDR) is involved in multiple pathways that have a role to .... Figure1: Sections A (++) and B (+++) of OSCC showing nuclear positivity (red arrows) for malignant nests of ...

  2. rigor mortis encodes a novel nuclear receptor interacting protein required for ecdysone signaling during Drosophila larval development.

    Science.gov (United States)

    Gates, Julie; Lam, Geanette; Ortiz, José A; Losson, Régine; Thummel, Carl S

    2004-01-01

    Pulses of the steroid hormone ecdysone trigger the major developmental transitions in Drosophila, including molting and puparium formation. The ecdysone signal is transduced by the EcR/USP nuclear receptor heterodimer that binds to specific response elements in the genome and directly regulates target gene transcription. We describe a novel nuclear receptor interacting protein encoded by rigor mortis (rig) that is required for ecdysone responses during larval development. rig mutants display defects in molting, delayed larval development, larval lethality, duplicated mouth parts, and defects in puparium formation--phenotypes that resemble those seen in EcR, usp, E75A and betaFTZ-F1 mutants. Although the expression of these nuclear receptor genes is essentially normal in rig mutant larvae, the ecdysone-triggered switch in E74 isoform expression is defective. rig encodes a protein with multiple WD-40 repeats and an LXXLL motif, sequences that act as specific protein-protein interaction domains. Consistent with the presence of these elements and the lethal phenotypes of rig mutants, Rig protein interacts with several Drosophila nuclear receptors in GST pull-down experiments, including EcR, USP, DHR3, SVP and betaFTZ-F1. The ligand binding domain of betaFTZ-F1 is sufficient for this interaction, which can occur in an AF-2-independent manner. Antibody stains reveal that Rig protein is present in the brain and imaginal discs of second and third instar larvae, where it is restricted to the cytoplasm. In larval salivary gland and midgut cells, however, Rig shuttles between the cytoplasm and nucleus in a spatially and temporally regulated manner, at times that correlate with the major lethal phase of rig mutants and major switches in ecdysone-regulated gene expression. Taken together, these data indicate that rig exerts essential functions during larval development through gene-specific effects on ecdysone-regulated transcription, most likely as a cofactor for one or more

  3. Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development

    Science.gov (United States)

    Nissim, Sahar; Weeks, Olivia; Talbot, Jared C.; Hedgepeth, John W.; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E.; Amacher, Sharon L.; Goessling, Wolfram

    2016-01-01

    The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic versus pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. PMID:27474396

  4. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group.

    Science.gov (United States)

    Vogeler, Susanne; Galloway, Tamara S; Lyons, Brett P; Bean, Tim P

    2014-05-15

    Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.

  5. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways.

    Science.gov (United States)

    Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K

    1993-04-01

    The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.

  6. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    Science.gov (United States)

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  7. Proline primed helix length as a modulator of the nuclear receptor-coactivator interaction

    NARCIS (Netherlands)

    Fuchs, S.; Nguyen, H.D.; Phan, T.T.T.; Burton, M.F.; Nieto, L.; Vries-van Leeuwen, I.J. de; Schmidt, A.; Goodarzifard, M.; Agten, S.M.; Rose, R.; Ottmann, C.; Milroy, L.G.; Brunsveld, L.

    2013-01-01

    Nuclear receptor binding to coactivator proteins is an obligate first step in the regulation of gene transcription. Nuclear receptors preferentially bind to an LXXLL peptide motif which is highly conserved throughout the 300 or so natural coactivator proteins. This knowledge has shaped current

  8. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Science.gov (United States)

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  9. Circadian Rhythm of Hepatic Cytosolic and Nuclear Estrogen and Androgen Receptors

    Science.gov (United States)

    FRANCAVILLA, ANTONIO; EAGON, PATRICIA K.; DiLEO, ALFREDO; VAN THIEL, DAVID H.; PANELLA, CARMINE; POLIMENO, LORENZO; AMORUSO, CINZIA; INGROSSO, MARCELLO; AQUILINO, A. MARIA; STARZL, THOMAS E.

    2010-01-01

    Mammalian liver is a sex steroid-responsive tissue. The effects of these hormones presumably are mediated by hepatic estrogen receptors (ER) and androgen receptors (AR). Serum levels of sex hormones display circadian rhythms. Further, estrogens and androgens are commonly administered; administration of these agents is associated frequently with liver disease. Therefore, we investigated whether the cytosolic and nuclear sex steroid receptors also display a similar circadian rhythm, and whether variations occurred in the distribution of receptors between cytosolic and nuclear compartments. Animals were killed every 4 h from midnight till the following midnight; cytosolic and nuclear levels of both ER and AR were measured. Cytosolic ER reached a maximum level at 4 AM, and a minimum at 8 PM and midnight of both days. Nuclear ER was highest at 8 AM and lowest at 4 PM and 8 PM, a pattern which parallels variations in serum estradiol levels. Cytosolic AR was highest at 8 PM and lowest at midnight and 4 AM. Nuclear AR was highest at 4 AM and lowest at 4 PM and 8 PM. The highest level of nuclear AR does not correspond to the maximum serum testosterone level, which occurred at 4 PM. The total hepatic content of both ER and AR was not constant over the 24-h period, but varied considerably with time of day. These studies suggest that both ER and AR show a distinct circadian rhythm in subcellular compartmentalization, and that total hepatic content of ER and AR varies significantly during a 24-h period. PMID:3710067

  10. Two Differential Binding Mechanisms of FG-Nucleoporins and Nuclear Transport Receptors

    Directory of Open Access Journals (Sweden)

    Piau Siong Tan

    2018-03-01

    Full Text Available Summary: Phenylalanine-glycine-rich nucleoporins (FG-Nups are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC. Previous studies showed that nuclear transport receptors (NTRs were found to interact with FG-Nups by forming an “archetypal-fuzzy” complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lower than in the archetypal-fuzzy complex between FG-Nup153 and NTRs. Unexpectedly, this behavior appears not to be encoded selectively into CRM1 but rather into the FG-Nup214 sequence. The same distinct binding mechanisms are unperturbed in O-linked β-N-acetylglucosamine-modified FG-Nups. Our results have implications for differential roles of distinctly spatially distributed FG-Nup⋅NTR interactions in the cell. : Archetypal-fuzzy complexes found in most FG-Nucleoporin⋅nuclear transport receptor complexes allow fast yet specific nuclear transport. Tan et al. show that FG-Nup214, located at the periphery of the nuclear pore complex, binds to CRM1⋅RanGTP via a coupled reconfiguration-binding mechanism, which can enable different functionalities e.g., cargo release. Keywords: intrinsically disordered protein, glycosylation, FG-Nup, nuclear transport receptors, binding mechanism, single-molecule FRET, molecular dynamics simulations

  11. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    International Nuclear Information System (INIS)

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  12. Dietary modification of metabolic pathways via nuclear hormone receptors.

    Science.gov (United States)

    Caiozzi, Gianella; Wong, Brian S; Ricketts, Marie-Louise

    2012-10-01

    Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor

    International Nuclear Information System (INIS)

    Karimullina, Elina; Li Yangchun; Ginjupalli, Gautam K.; Baldwin, William S.

    2012-01-01

    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.

  15. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor

    Energy Technology Data Exchange (ETDEWEB)

    Karimullina, Elina [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch, Yekaterinburg 620144 (Russian Federation); Li Yangchun; Ginjupalli, Gautam K. [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Baldwin, William S., E-mail: baldwin@clemson.edu [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Biological Sciences, Clemson University, Clemson, SC (United States)

    2012-07-15

    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.

  16. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    International Nuclear Information System (INIS)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-01-01

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH) 2 D 3 , a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion

  17. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J. [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); Bridges, Lance C., E-mail: bridgesl@ecu.edu [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); East Carolina Diabetes and Obesity Institute, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States)

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  18. NR4A nuclear receptors are orphans but not lonesome

    NARCIS (Netherlands)

    Kurakula, Kondababu; Koenis, Duco S.; van Tiel, Claudia M.; de Vries, Carlie J. M.

    2014-01-01

    The NR4A subfamily of nuclear receptors consists of three mammalian members: Nur77, Nurr1, and NOR-1. The NR4A receptors are involved in essential physiological processes such as adaptive and innate immune cell differentiation, metabolism and brain function. They act as transcription factors that

  19. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    Science.gov (United States)

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  20. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    Science.gov (United States)

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.

  1. Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition.

  2. Chemokines and Chemokine Receptors in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Wenjing Cheng

    2014-01-01

    Full Text Available Multiple sclerosis is an autoimmune disease with classical traits of demyelination, axonal damage, and neurodegeneration. The migration of autoimmune T cells and macrophages from blood to central nervous system as well as the destruction of blood brain barrier are thought to be the major processes in the development of this disease. Chemokines, which are small peptide mediators, can attract pathogenic cells to the sites of inflammation. Each helper T cell subset expresses different chemokine receptors so as to exert their different functions in the pathogenesis of MS. Recently published results have shown that the levels of some chemokines and chemokine receptors are increased in blood and cerebrospinal fluid of MS patients. This review describes the advanced researches on the role of chemokines and chemokine receptors in the development of MS and discusses the potential therapy of this disease targeting the chemokine network.

  3. Nuclear hormone receptors in parasitic helminths

    OpenAIRE

    Wu, Wenjie; LoVerde, Philip T

    2010-01-01

    Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in p...

  4. Genome-wide identification of nuclear receptor (NR) superfamily genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Hwang, Dae-Sik; Lee, Bo-Young; Kim, Hui-Su; Lee, Min Chul; Kyung, Do-Hyun; Om, Ae-Son; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-11-18

    Nuclear receptors (NRs) are a large superfamily of proteins defined by a DNA-binding domain (DBD) and a ligand-binding domain (LBD). They function as transcriptional regulators to control expression of genes involved in development, homeostasis, and metabolism. The number of NRs differs from species to species, because of gene duplications and/or lineage-specific gene losses during metazoan evolution. Many NRs in arthropods interact with the ecdysteroid hormone and are involved in ecdysone-mediated signaling in arthropods. The nuclear receptor superfamily complement has been reported in several arthropods, including crustaceans, but not in copepods. We identified the entire NR repertoire of the copepod Tigriopus japonicus, which is an important marine model species for ecotoxicology and environmental genomics. Using whole genome and transcriptome sequences, we identified a total of 31 nuclear receptors in the genome of T. japonicus. Nomenclature of the nuclear receptors was determined based on the sequence similarities of the DNA-binding domain (DBD) and ligand-binding domain (LBD). The 7 subfamilies of NRs separate into five major clades (subfamilies NR1, NR2, NR3, NR4, and NR5/6). Although the repertoire of NR members in, T. japonicus was similar to that reported for other arthropods, there was an expansion of the NR1 subfamily in Tigriopus japonicus. The twelve unique nuclear receptors identified in T. japonicus are members of NR1L. This expansion may be a unique lineage-specific feature of crustaceans. Interestingly, E78 and HR83, which are present in other arthropods, were absent from the genomes of T. japonicus and two congeneric copepod species (T. japonicus and Tigriopus californicus), suggesting copepod lineage-specific gene loss. We identified all NR receptors present in the copepod, T. japonicus. Knowledge of the copepod nuclear receptor repertoire will contribute to a better understanding of copepod- and crustacean-specific NR evolution.

  5. Genome inventory and analysis of nuclear hormone receptors in ...

    Indian Academy of Sciences (India)

    Prakash

    2006-12-20

    Dec 20, 2006 ... progestins, as well as lipids, cholesterol metabolites, and. Genome ... Gene structure analysis shows strong conservation of exon structures among orthologoues. ..... earlier subfamily classification of NRs (Nuclear Receptors.

  6. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    Science.gov (United States)

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  7. SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis

    NARCIS (Netherlands)

    Nofsinger, Russell R.; Li, Pingping; Hong, Suk-Hyun; Jonker, Johan W.; Barish, Grant D.; Ying, Hao; Cheng, Sheue-Yann; LeBlanc, Mathias; Xu, Wei; Pei, Liming; Kang, Yeon-Joo; Nelson, Michael; Downes, Michael; Yu, Ruth T.; Olefsky, Jerrold M.; Lee, Chih-Hao; Evans, Ronald M.

    2008-01-01

    The nuclear receptor corepressor, silencing mediator of retinoid and thyroid hormone receptors (SMRT), is recruited by a plethora of transcription factors to mediate lineage and signal-dependent transcriptional repression. We generated a knockin mutation in the receptor interaction domain (RID) of

  8. Thyroid hormone and retinoic acid nuclear receptors: specific ligand-activated transcription factors

    International Nuclear Information System (INIS)

    Brtko, J.

    1998-01-01

    Transcriptional regulation by both the thyroid hormone and the vitamin A-derived 'retinoid hormones' is a critical component in controlling many aspects of higher vertebrate development and metabolism. Their functions are mediated by nuclear receptors, which comprise a large super-family of ligand-inducible transcription factors. Both the thyroid hormone and the retinoids are involved in a complex arrangement of physiological and development responses in many tissues of higher vertebrates. The functions of 3,5,3'-triiodothyronine (T 3 ), the thyromimetically active metabolite of thyroxine as well as all-trans retinoic acid, the biologically active vitamin A metabolite are mediated by nuclear receptor proteins that are members of the steroid/thyroid/retinoid hormone receptor family. The functions of all members of the receptor super family are discussed. (authors)

  9. Panning for SNuRMs: using cofactor profiling for the rational discovery of selective nuclear receptor modulators.

    Science.gov (United States)

    Kremoser, Claus; Albers, Michael; Burris, Thomas P; Deuschle, Ulrich; Koegl, Manfred

    2007-10-01

    Drugs that target nuclear receptors are clinically, as well as commercially, successful. Their widespread use, however, is limited by an inherent propensity of nuclear receptors to trigger beneficial, as well as adverse, pharmacological effects upon drug activation. Hence, selective drugs that display reduced adverse effects, such as the selective estrogen receptor modulator (SERM) Raloxifene, have been developed by guidance through classical cell culture assays and animal trials. Full agonist and selective modulator nuclear receptor drugs, in general, differ by their ability to recruit certain cofactors to the receptor protein. Hence, systematic cofactor profiling is advancing into an approach for the rationally guided identification of selective NR modulators (SNuRMs) with improved therapeutic ratio.

  10. SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells

    OpenAIRE

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.

    2012-01-01

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively r...

  11. Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis

    NARCIS (Netherlands)

    Geurts, J. J. G.; Wolswijk, G.; Bö, L.; van der Valk, P.; Polman, C. H.; Troost, D.; Aronica, E.

    2003-01-01

    Recent evidence supports a role for glutamate receptors in the pathophysiology of multiple sclerosis. In the present study, we have focused specifically on the expression of metabotropic glutamate receptors (mGluRs) in multiple sclerosis brain tissue. The expression of group I (mGluR1alpha and

  12. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors

    Directory of Open Access Journals (Sweden)

    Wang Cheng-Li

    2012-08-01

    Full Text Available Abstract Background The fungus of Ganoderma is a traditional medicine in Asia with a variety of pharmacological functions including anti-cancer activities. We have purified an extracellular heteropolysaccharide fraction, PS-F2, from the submerged mycelia culture of G. formosanum and shown that PS-F2 exhibits immunostimulatory activities. In this study, we investigated the molecular mechanisms of immunostimulation by PS-F2. Results PS-F2-stimulated TNF-α production in macrophages was significantly reduced in the presence of blocking antibodies for Dectin-1 and complement receptor 3 (CR3, laminarin, or piceatannol (a spleen tyrosine kinase inhibitor, suggesting that PS-F2 recognition by macrophages is mediated by Dectin-1 and CR3 receptors. In addition, the stimulatory effect of PS-F2 was attenuated in the bone marrow-derived macrophages from C3H/HeJ mice which lack functional Toll-like receptor 4 (TLR4. PS-F2 stimulation triggered the phosphorylation of mitogen-activated protein kinases JNK, p38, and ERK, as well as the nuclear translocation of NF-κB, which all played essential roles in activating TNF-α expression. Conclusions Our results indicate that the extracellular polysaccharides produced by G. formosanum stimulate macrophages via the engagement of multiple pattern-recognition receptors including Dectin-1, CR3 and TLR4, resulting in the activation of Syk, JNK, p38, ERK, and NK-κB and the production of TNF-α.

  13. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

    International Nuclear Information System (INIS)

    Molina-Molina, José-Manuel; Amaya, Esperanza; Grimaldi, Marina; Sáenz, José-María; Real, Macarena; Fernández, Mariana F.; Balaguer, Patrick; Olea, Nicolás

    2013-01-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed

  14. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Molina, José-Manuel, E-mail: molinajm@ugr.es [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Amaya, Esperanza [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Grimaldi, Marina [INSERM, U896, Montpellier F-34298 (France); Université de Montpellier I, Montpellier F-34298 (France); Sáenz, José-María; Real, Macarena; Fernández, Mariana F. [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Balaguer, Patrick [INSERM, U896, Montpellier F-34298 (France); Université de Montpellier I, Montpellier F-34298 (France); Olea, Nicolás [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain)

    2013-10-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed.

  15. DMPD: Nuclear receptors in macrophages: a link between metabolism and inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18022390 Nuclear receptors in macrophages: a link between metabolism and inflammati...on. Szanto A, Roszer T. FEBS Lett. 2008 Jan 9;582(1):106-16. Epub 2007 Nov 20. (.png) (.svg) (.html) (.csml) Show Nuclear... receptors in macrophages: a link between metabolism and inflammation. PubmedID 18022390 Title Nuclear

  16. Expression and Functional Pathway Analysis of Nuclear Receptor NR2F2 in Ovarian Cancer

    Science.gov (United States)

    Hawkins, Shannon M.; Loomans, Holli A.; Wan, Ying-Wooi; Ghosh-Choudhury, Triparna; Coffey, Donna; Xiao, Weimin; Liu, Zhandong; Sangi-Haghpeykar, Haleh

    2013-01-01

    Context: Recent evidence implicates the orphan nuclear receptor, nuclear receptor subfamily 2, group F, member 2 (NR2F2; chicken ovalbumin upstream promoter-transcription factor II) as both a master regulator of angiogenesis and an oncogene in prostate and other human cancers. Objective: The objective of the study was to determine whether NR2F2 plays a role in ovarian cancer and dissect its potential mechanisms of action. Design, Setting, and Patients: We examined NR2F2 expression in healthy ovary and ovarian cancers using quantitative PCR and immunohistochemistry. NR2F2 expression was targeted in established ovarian cancer cell lines to assess the impact of dysregulated NR2F2 expression in the epithelial compartment of ovarian cancers. Results: Our results indicate that NR2F2 is robustly expressed in the stroma of healthy ovary with little or no expression in epithelia lining the ovarian surface, clefts, or crypts. This pattern of NR2F2 expression was markedly disrupted in ovarian cancers, in which decreased levels of stromal expression and ectopic epithelial expression were frequently observed. Ovarian cancers with the most disrupted patterns of NR2F2 were associated with significantly shorter disease-free interval by Kaplan-Meier analysis. Targeting NR2F2 expression in established ovarian cancer cell lines enhanced apoptosis and increased proliferation. In addition, we found that NR2F2 regulates the expression of NEK2, RAI14, and multiple other genes involved in the cell cycle, suggesting potential pathways by which dysregulated expression of NR2F2 impacts ovarian cancer. Conclusions: These results uncover novel roles for NR2F2 in ovarian cancer and point to a unique scenario in which a single nuclear receptor plays potentially distinct roles in the stromal and epithelial compartments of the same tissue. PMID:23690307

  17. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    International Nuclear Information System (INIS)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-jun; Yoshida, Takeshi; Funa, Keiko

    2016-01-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  18. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Erik; Zhai, Qiwei [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Zeng, Zhao-jun [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078 (China); Yoshida, Takeshi [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Funa, Keiko, E-mail: keiko.funa@gu.se [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden)

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  19. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects.

    Science.gov (United States)

    Lee, Jae Man; Lee, Yoon Kwang; Mamrosh, Jennifer L; Busby, Scott A; Griffin, Patrick R; Pathak, Manish C; Ortlund, Eric A; Moore, David D

    2011-05-25

    Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine (DLPC)) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver-specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signalling pathway that regulates bile acid metabolism and glucose homeostasis.

  20. [H-3]dihydroalprenolol binding to beta adrenergic receptors in multiple sclerosis brain

    NARCIS (Netherlands)

    Zeinstra, E; Wilczak, N; De Keyser, J

    2000-01-01

    By using immunocytochemistry we previously reported the absence of beta(2) adrenergic receptors on astrocytes in multiple sclerosis (MS) white matter. Here, we measured beta(1) and beta(2) adrenergic receptor concentrations in postmortem brain sections of six MS patients and six controls by using

  1. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  2. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes.

    Science.gov (United States)

    Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X

    2017-10-01

    The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Maturing of the nuclear receptor family.

    Science.gov (United States)

    Lazar, Mitchell A

    2017-04-03

    Members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors play important roles in reproduction, development, and physiology. In humans, genetic mutations in NRs are causes of rare diseases, while hormones and drugs that target NRs are in widespread therapeutic use. The present issue of the JCI includes a series of Review articles focused on specific NRs and their wide range of biological functions. Here I reflect on the past, present, and potential future highlights of research on the NR superfamily.

  4. A compound chimeric antigen receptor strategy for targeting multiple myeloma.

    Science.gov (United States)

    Chen, K H; Wada, M; Pinz, K G; Liu, H; Shuai, X; Chen, X; Yan, L E; Petrov, J C; Salman, H; Senzel, L; Leung, E L H; Jiang, X; Ma, Y

    2018-02-01

    Current clinical outcomes using chimeric-antigen receptors (CARs) against multiple myeloma show promise in the eradication of bulk disease. However, these anti-BCMA (CD269) CARs observe relapse as a common phenomenon after treatment due to the reemergence of either antigen-positive or -negative cells. Hence, the development of improvements in CAR design to target antigen loss and increase effector cell persistency represents a critical need. Here, we report on the anti-tumor activity of a CAR T-cell possessing two complete and independent CAR receptors against the multiple myeloma antigens BCMA and CS1. We determined that the resulting compound CAR (cCAR) T-cell possesses consistent, potent and directed cytotoxicity against each target antigen population. Using multiple mouse models of myeloma and mixed cell populations, we are further able to show superior in vivo survival by directed cytotoxicity against multiple populations compared to a single-expressing CAR T-cell. These findings indicate that compound targeting of BCMA and CS1 on myeloma cells can potentially be an effective strategy for augmenting the response against myeloma bulk disease and for initiation of broader coverage CAR therapy.

  5. Localización extra nuclear de receptores esteroides y activación de mecanismos no genómicos Extra nuclear localization of steroid receptors and non genomic activation mechanisms

    Directory of Open Access Journals (Sweden)

    María Cecilia Bottino

    2010-04-01

    Full Text Available Los receptores de hormonas esteroides han sido considerados históricamente como factores de transcripción nucleares. Sin embargo, en los últimos años surgieron evidencias que indican que su activación desencadena eventos rápidos, independientes de la transcripción y que involucran a diferentes segundos mensajeros; muchos de estos receptores han sido localizados en la membrana celular. Por otra parte, se han caracterizado varios receptores de hormonas esteroides noveles, de estructura molecular diferente al receptor clásico, localizados principalmente en la membrana celular. Esta revisión enfoca los diferentes efectos iniciados por los glucocorticoides, mineralocorticoides, andrógenos, estrógenos y progesterona, y los posibles receptores involucrados en los mismos.Steroid hormone receptors have been historically considered as nuclear transcription factors. Nevertheless, in the last years, many of them have been detected in the cellular membrane. It has been postulated that their activation can induce transcription independent rapid events involving different second messengers. In addition, several novel steroid hormone receptors, showing a different molecular structure than the classical ones, have also been characterized and most of them are also located in the plasmatic membrane. This review focuses on the variety of effects initiated by glucocorticoids, mineralocorticoids, androgens, estrogens and progesterone, and the possible receptors involved mediating these effects.

  6. Nuclear hormone receptor expression in mouse kidney and renal cell lines.

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    Full Text Available Nuclear hormone receptors (NHRs are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN, the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m, and cell lines of mesangial (MES13, podocyte (MPC, proximal tubular epithelial (mProx24 and collecting duct (mIMCD3 origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77, nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.

  7. Nuclear androgen receptors in human prostatic tissue. Extraction with heparin and estimation of the number of binding sites with different methods

    International Nuclear Information System (INIS)

    Foekens, J.A.; Bolt-de Vries, J.; Mulder, E.; Blankenstein, M.A.; Schroeder, F.H.; Molen, H.J. van der

    1981-01-01

    A procedure for the estimation of nuclear androgen receptors in benign prostatic hyperplastic tissue is described, which employs extraction of receptors from nuclei with buffers containing heparin. Extraction of a nuclear pellet with a heparin-containing (1 g/l) buffer appeared to have definite advantages over 0.4 mol/l KCl extraction. Heparin appeared to be twice as efficient in extracting androgen receptors. In addition aggregated receptor proteins, formed after storage at -80 0 C, were partly deaggregated by heparin. Specific isolation of the androgen receptor was performed using either agar gel electrophoresis, protamine sulphate precipitation or LH-20 gel filtration. A comparison was made between the amounts of estimated receptors with these different techniques. Protamine sulphate precipitation resulted in the highest estimates of receptor-bound 5α-[ 3 H]dihydrotestosterone ( 3 H-DHT). Treatment of the labelled nuclear extracts with a charcoal suspension prior to the receptor assay resulted in lower amounts of estimated androgen receptors. A method for routine evaluation of nuclear androgen receptors in prostatic tissue has been evaluated, which involves extraction of nuclear pellets with a heparin-containing (1 g/l) buffer, exchange labelling of the nuclear extracts for 20 h at 10 0 C and quantification of the receptors with protamine sulphate precipitation. (Auth.)

  8. The Orphan Nuclear Receptor TLX/NR2E1 in Neural Stem Cells and Diseases.

    Science.gov (United States)

    Wang, Tao; Xiong, Jian-Qiong

    2016-02-01

    The human TLX gene encodes an orphan nuclear receptor predominantly expressed in the central nervous system. Tailess and Tlx, the TLX homologues in Drosophila and mouse, play essential roles in body-pattern formation and neurogenesis during early embryogenesis and perform crucial functions in maintaining stemness and controlling the differentiation of adult neural stem cells in the central nervous system, especially the visual system. Multiple target genes and signaling pathways are regulated by TLX and its homologues in specific tissues during various developmental stages. This review aims to summarize previous studies including many recent updates from different aspects concerning TLX and its homologues in Drosophila and mouse.

  9. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, Thomas Birk; Wittenhagen, P

    2007-01-01

    OBJECTIVE: To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta). METHODS: The CCR5 Delta32 allele and a CCR5 promoter polymorphism associated with cell surface expression of CCR5 were...

  10. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    International Nuclear Information System (INIS)

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-01-01

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs

  11. Role of nuclear receptors in breast cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Alessio; Papi; Marina; Orlandi

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells,capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells(CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs(BCSCs) are likely to sustain the growth of the primary tumour mass, as wellas to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and proinflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the antiinflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.

  12. FTZ-Factor1 and Fushi tarazu interact via conserved nuclear receptor and coactivator motifs

    Science.gov (United States)

    Schwartz, Carol J.E.; Sampson, Heidi M.; Hlousek, Daniela; Percival-Smith, Anthony; Copeland, John W.R.; Simmonds, Andrew J.; Krause, Henry M.

    2001-01-01

    To activate transcription, most nuclear receptor proteins require coactivators that bind to their ligand-binding domains (LBDs). The Drosophila FTZ-Factor1 (FTZ-F1) protein is a conserved member of the nuclear receptor superfamily, but was previously thought to lack an AF2 motif, a motif that is required for ligand and coactivator binding. Here we show that FTZ-F1 does have an AF2 motif and that it is required to bind a coactivator, the homeodomain-containing protein Fushi tarazu (FTZ). We also show that FTZ contains an AF2-interacting nuclear receptor box, the first to be found in a homeodomain protein. Both interaction motifs are shown to be necessary for physical interactions in vitro and for functional interactions in developing embryos. These unexpected findings have important implications for the conserved homologs of the two proteins. PMID:11157757

  13. The molecular mechanism of bisphenol A (BPA as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD simulations.

    Directory of Open Access Journals (Sweden)

    Lanlan Li

    Full Text Available Bisphenol A (BPA can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA.

  14. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    Science.gov (United States)

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  15. Nuclear medicine imaging of multiple myeloma, particularly in the relapsed setting

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Esther G.M. de; Vellenga, Edo [University of Groningen, University Medical Center Groningen, Department of Hematology, PO Box 30001, Groningen (Netherlands); Glaudemans, Andor W.J.M. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Schroeder, Carolien P. [University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen (Netherlands); Slart, Riemer H.J.A. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Twente, Department of Biomedical Photonic Imaging, Enschede (Netherlands)

    2017-02-15

    Multiple myeloma (MM) is characterized by a monoclonal plasma cell population in the bone marrow. Lytic lesions occur in up to 90 % of patients. For many years, whole-body X-ray (WBX) was the method of choice for detecting skeleton abnormalities. However, the value of WBX in relapsing disease is limited because lesions persist post-treatment, which restricts the capacity to distinguish between old, inactive skeletal lesions and new, active ones. Therefore, alternative techniques are necessary to visualize disease activity. Modern imaging techniques such as magnetic resonance imaging, positron emission tomography and computed tomography offer superior detection of myeloma bone disease and extramedullary manifestations. In particular, the properties of nuclear imaging enable the identification of disease activity by directly targeting the specific cellular properties of malignant plasma cells. In this review, an overview is provided of the effectiveness of radiopharmaceuticals that target metabolism, surface receptors and angiogenesis. The available literature data for commonly used nuclear imaging tracers, the promising first results of new tracers, and our pilot work indicate that a number of these radiopharmaceutical applications can be used effectively for staging and response monitoring of relapsing MM patients. Moreover, some tracers can potentially be used for radio immunotherapy. (orig.)

  16. Multiple sclerosis following treatment with a cannabinoid receptor-1 antagonist

    NARCIS (Netherlands)

    van Oosten, B. W.; Killestein, J.; Mathus-Vliegen, E. M. H.; Polman, C. H.

    2004-01-01

    Laboratory research including animal models of human disease suggests that cannabinoids might have therapeutic potential in multiple sclerosis (MS). We have recently seen a 46-year-old woman who developed MS after starting treatment with a cannabinoid receptor antagonist for obesity. The occurrence

  17. Morbillivirus receptors and tropism: multiple pathways for infection

    Directory of Open Access Journals (Sweden)

    Hiroki eSato

    2012-03-01

    Full Text Available Morbilliviruses, which include measles virus (MeV, canine distemper virus, and rinderpest virus, are among the most important pathogens in their respective hosts and cause severe syndromes. Morbilliviruses are enveloped viruses with 2 envelope proteins, one of which is hemagglutinin (H protein, which plays a role in binding to cellular receptors. During morbillivirus infection, the virus initially targets lymphoid cells and replicates efficiently in the lymph nodes. The principal cellular receptor for morbillivirus is signaling lymphocyte activation molecule (SLAM, also called CD150, which is exclusively expressed on immune cells. This feature reflects the strong lymphoid cell tropism and viral spread in the infected body. Morbillivirus infection, however, affects various tissues in the body, including the lung, kidney, gastrointestinal tract, vascular endothelium, and brain. Thus, other receptors for morbilliviruses in addition to SLAM might exist. Recently, nectin-4 has been identified as a novel epithelial cell receptor for MeV. The expression of nectin-4 is localized to polarized epithelial cells, and this localization supports the notion of cell tropism since MeV also grows well in the epithelial cells of the respiratory tract. Although 2 major receptors for lymphoid and epithelial cells in natural infection have been identified, morbillivirus can still infect many other types of cells with low infectivity, suggesting the existence of inefficient but ubiquitously expressed receptors. We have identified other molecules that are implicated in morbillivirus infection of SLAM-negative cells by alternative mechanisms. These findings indicate that morbillivirus utilizes multiple pathways for establishment of infection. These studies will advance our understanding of morbillivirus tropism and pathogenesis.

  18. Three nuclear and two membrane estrogen receptors in basal teleosts, Anguilla sp.: Identification, evolutionary history and differential expression regulation

    DEFF Research Database (Denmark)

    Lafont, Anne Gaëlle; Rousseau, Karine; Tomkiewicz, Jonna

    2016-01-01

    Estrogens interact with classical intracellular nuclear receptors (ESR), and with G-coupled membrane receptors (GPER). In the eel, we identified three nuclear (ESR1, ESR2a, ESR2b) and two membrane (GPERa, GPERb) estrogen receptors. Duplicated ESR2 and GPER were also retrieved in most extant teleo...

  19. Ligands specify estrogen receptor alpha nuclear localization and degradation

    Directory of Open Access Journals (Sweden)

    Caze-Subra Stéphanie

    2010-12-01

    Full Text Available Abstract Background The estrogen receptor alpha (ERα is found predominately in the nucleus, both in hormone stimulated and untreated cells. Intracellular distribution of the ERα changes in the presence of agonists but the impact of different antiestrogens on the fate of ERα is a matter of debate. Results A MCF-7 cell line stably expressing GFP-tagged human ERα (SK19 cell line was created to examine the localization of ligand-bound GFP-ERα. We combined digitonin-based cell fractionation analyses with fluorescence and immuno-electron microscopy to determine the intracellular distribution of ligand-bound ERα and/or GFP-ERα. Using fluorescence- and electron microscopy we demonstrate that both endogenous ERα and GFP-ERα form numerous nuclear focal accumulations upon addition of agonist, 17β-estradiol (E2, and pure antagonists (selective estrogen regulator disruptor; SERD, ICI 182,780 or RU58,668, while in the presence of partial antagonists (selective estrogen regulator modulator; SERM, 4-hydroxytamoxifen (OHT or RU39,411, diffuse nuclear staining persisted. Digitonin based cell fractionation analyses confirmed that endogenous ERα and GFP-ERα predominantly reside in the nuclear fraction. Overall ERα protein levels were reduced after estradiol treatment. In the presence of SERMs ERα was stabilized in the nuclear soluble fraction, while in the presence of SERDs protein levels decreased drastically and the remaining ERα was largely found in a nuclear insoluble fraction. mRNA levels of ESR1 were reduced compared to untreated cells in the presence of all ligands tested, including E2. E2 and SERDs induced ERα degradation occurred in distinct nuclear foci composed of ERα and the proteasome providing a simple explanation for ERα sequestration in the nucleus. Conclusions Our results indicate that chemical structure of ligands directly affect the nuclear fate and protein turnover of the estrogen receptor alpha independently of their impact on

  20. The nuclear receptor gene nhr-25 plays multiple roles in the Caenorhabditis elegans heterochronic gene network to control the larva-to-adult transition

    Czech Academy of Sciences Publication Activity Database

    Hada, K.; Asahina, Masako; Hasegawa, H.; Kanaho, Y.; Slack, F. J.; Niwa, R.

    2010-01-01

    Roč. 344, č. 2 (2010), s. 1100-1109 ISSN 0012-1606 R&D Projects: GA ČR(CZ) GA204/07/0948; GA ČR(CZ) GD204/09/H058 Institutional research plan: CEZ:AV0Z60220518 Keywords : apl-1 * Caenorhabditis elegans * heterochronic gene * heterochronic gene * let-7 * nuclear receptor * nhr-25 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.094, year: 2010

  1. Research on neutron source multiplication method in nuclear critical safety

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Hu Dingsheng

    2005-01-01

    The paper concerns in the neutron source multiplication method research in nuclear critical safety. Based on the neutron diffusion equation with external neutron source the effective sub-critical multiplication factor k s is deduced, and k s is different to the effective neutron multiplication factor k eff in the case of sub-critical system with external neutron source. The verification experiment on the sub-critical system indicates that the parameter measured with neutron source multiplication method is k s , and k s is related to the external neutron source position in sub-critical system and external neutron source spectrum. The relation between k s and k eff and the effect of them on nuclear critical safety is discussed. (author)

  2. The cause multiplicity and the multiple cause style of adverse events in Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Miyazaki, Takamasa

    2008-01-01

    An adverse event in a nuclear power plant occurs due to either one cause or multiple causes. To consider ways of preventing adverse events, it is useful to clarify whether events are caused by single or multiple causes. In this study, the multiple causes is expressed using the cause multiplicity and the multiple cause style. Classified causes of adverse events in Japanese nuclear power plants were analyzed, with the following results: the cause multiplicity of serious adverse events is higher than that of minor adverse events, and the multiple cause style can be expressed by combining two styles: series type and parallel type. Also, for a multiple cause event, a new method of displaying the event is presented as a cause-chain chart where the cause items are arranged in a sequential way and are connected considering the mutual relations among the causes. This new display method shows the whole flow of issues concerning the event more simply than the conventional display method of the chain of phenomena, and would be useful for considering the terminating point of the chain of causes. (author)

  3. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

    Science.gov (United States)

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G

    2010-06-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  4. Spatial profiling of nuclear receptor transcription patterns over the course of Drosophila development.

    Science.gov (United States)

    Wilk, Ronit; Hu, Jack; Krause, Henry M

    2013-07-08

    Previous work has shown that many of the 18 family members of Drosophila nuclear receptor transcription factors function in a temporal hierarchy to coordinate developmental progression and growth with the rate limiting process of metabolism. To gain further insight into these interactions and processes, we have undertaken a whole-family analysis of nuclear receptor mRNA spatial expression patterns over the entire process of embryogenesis, as well as the 3rd instar wandering larva stage, by using high-resolution fluorescence in situ hybridization. Overall, the patterns of expression are remarkably consistent with previously mapped spatial activity profiles documented during the same time points, with similar hot spots and temporal profiles in endocrine and metabolically important tissues. Among the more remarkable of the findings is that the majority of mRNA expression patterns observed show striking subcellular distributions, indicating potentially critical roles in the control of protein synthesis and subsequent subcellular distributions. These patterns will serve as a useful reference for future studies on the tissue-specific roles and interactions of nuclear receptor proteins, partners, cofactors and ligands.

  5. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Science.gov (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. Copyright © 2016. Published by Elsevier Inc.

  6. Nuclear triiodothyronine receptors in rabbit heart

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Ulrich, J.M.; Kaldor, G.J.

    1986-01-01

    Nuclear triiodothyronine receptors from rat liver have been characterized in detail by several investigators. However, little work has been done in this area using heart tissue. In this study they examined and characterized the triiodothyronine binding in rabbit hearts. Nuclei have been prepared from ventricular muscle cells of normal and thyrotoxic rabbits as well as from atrial muscle cells of normal rabbit. Hearts were perfused with a minimum essential medium containing collagenase and bovine serum albumin. Myocardial cells were isolated and then disrupted by sonication and washing with a Triton X-100 buffer solution. A discontinuous sucrose density gradient was then used to isolate the mycoardial nuclei. Radiolabelled triiodothyronine (T 3 ) binding to nuclei was examined using conditions described by established procedures. Scatchard analysis of the binding data yields maximum binding capacity (B/sub max/) of 0.17 +/- 0.2 pmol/mg DNA and apparent dissociation constant (K/sub d/) of 400 +/- 50 pM for normal heart T 3 -receptors. The apparent capacity for T 3 binding is approximately 40% greater in myocardial nuclei prepared from hearts of hyperthyroid rabbits. The binding capacity of atrial muscle nuclei is about fourfold lower than ventricular cell nuclei. The results suggest that binding capacity for T 3 -receptor in the atrium is considerably lower than that found in the ventricle

  7. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hua; Lin, Yingbo; Badin, Margherita; Vasilcanu, Daiana; Stroemberg, Thomas [Department of Oncology and Pathology, The Karolinska Institute, Cancer Center Karolinska, SE-17176 Stockholm (Sweden); Jernberg-Wiklund, Helena [Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala (Sweden); Sehat, Bita [Department of Oncology and Pathology, The Karolinska Institute, Cancer Center Karolinska, SE-17176 Stockholm (Sweden); Larsson, Olle, E-mail: olle.larsson@ki.se [Department of Oncology and Pathology, The Karolinska Institute, Cancer Center Karolinska, SE-17176 Stockholm (Sweden)

    2011-01-14

    Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclear IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over

  8. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    International Nuclear Information System (INIS)

    Deng, Hua; Lin, Yingbo; Badin, Margherita; Vasilcanu, Daiana; Stroemberg, Thomas; Jernberg-Wiklund, Helena; Sehat, Bita; Larsson, Olle

    2011-01-01

    Research highlights: → SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. → Here we show that nuclear IGF-1R over-accumulates in tumor cells. → This requires overexpression of the receptor that is a common feature in tumor cells. → An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclear IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the β-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over-accumulation of nIGF-1R

  9. RECEPTORES NUCLEARES: DEL NÚCLEO AL CITOPLASMA

    Directory of Open Access Journals (Sweden)

    Bibiana Ortega-Domínguez

    2015-01-01

    Full Text Available Los receptores nucleares (RNs constituyen una familia de factores transcripcionales activados por ligando que regulan la expresión de un gran número de genes de forma dependiente del tipo y contexto celular. La localización subcelular de los RNs es altamente dinámica y repercute sobre sus funciones como factores transcripcionales. En presencia de su ligando específico, los RNs se acumulan en el núcleo para modular la expresión de sus genes blanco. Por ende, la salida desde el núcleo a citoplasma de los RNs disminuye su acumulación nuclear y abate su actividad transcripcional. Por lo tanto, la exportación nuclear constituye un importante mecanismo de regulación de la actividad de los RNs. A pesar de su importancia, el proceso de exportación nuclear de los RNs no ha sido completamente explorado, sin embargo, los estudios que se tienen hasta ahora sugieren la participación de las proteínas CRM–1 y la Calreticulina (CRT como mediadoras de este proceso. En esta revisión se destaca la exportación nuclear como un mecanismo regulador de las funciones de los RNs y se discuten las características estructurales y funcionales de las exportinas CRM–1 y CRT.

  10. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    Directory of Open Access Journals (Sweden)

    Alessandro Silvani

    Full Text Available Cannabinoid type 1 (CB1 receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD. We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD and HFD. CB1 cannabinoid receptor knock-out (KO and wild-type (WT mice were fed SD or HFD for 4 months (n = 9-10 per group. Mice were instrumented with electroencephalographic (EEG and electromyographic electrodes. Recordings were performed during baseline (48 hours, sleep deprivation (gentle handling, 6 hours, sleep recovery (18 hours, and after cage switch (insomnia model paradigm, 6 hours. We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS and rapid-eye-movement sleep (REMS than WT during the dark (active period but not during the light (rest period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  11. The chemokine receptor CCR5 Δ32 allele in natalizumab-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Møller, M; Søndergaard, Helle B; Koch-Henriksen, N

    2014-01-01

    OBJECTIVE: The chemokine receptor CCR5 may be important for the recruitment of pathogenic T cells to the CNS in multiple sclerosis (MS). We hypothesized that this chemokine receptor might still be important for T-cell migration during treatment with anti-very late antigen (VLA)-4 antibody. We...... impact on the frequency of relapses 1 year prior to natalizumab treatment or during the first 48 weeks of treatment. The multiple sclerosis severity score (MSSS) was significantly lower at baseline in patients carrying CCR5 Δ32 (P = 0.031). CONCLUSIONS: CCR5 Δ32 is not associated with lower disease...

  12. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    Science.gov (United States)

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  13. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity.

    Science.gov (United States)

    Kidani, Yoko; Bensinger, Steven J

    2012-09-01

    Lipid metabolism has emerged as an important modulator of innate and adaptive immune cell fate and function. The lipid-activated transcription factors peroxisome proliferator-activated receptor (PPAR) α, β/δ, γ and liver X receptor (LXR) are members of the nuclear receptor superfamily that have a well-defined role in regulating lipid homeostasis and metabolic diseases. Accumulated evidence over the last decade indicates that PPAR and LXR signaling also influence multiple facets of inflammation and immunity, thereby providing important crosstalk between metabolism and immune system. Herein, we provide a brief introduction to LXR and PPAR biology and review recent discoveries highlighting the importance of PPAR and LXR signaling in the modulation of normal and pathologic states of immunity. We also examine advances in our mechanistic understanding of how nuclear receptors impact immune system function and homeostasis. Finally, we discuss whether LXRs and PPARs could be pharmacologically manipulated to provide novel therapeutic approaches for modulation of the immune system under pathologic inflammation or in the context of allergic and autoimmune disease. © 2012 John Wiley & Sons A/S.

  14. Nuclear thyroid hormone receptors in rabbit heart: reduced triiodothyronine binding in atrium compared with ventricle

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Ulrich, J.M.; Kaldor, G.J.

    1988-01-01

    Radiolabeled triiodothyronine (T3) binding to isolated nuclei was measured to compare the binding characteristics of the nuclear receptors in rabbit ventricular and atrial muscle cells. Scatchard analysis of the binding data yielded a maximum binding capacity of 170 +/- 20 fmol per mg DNA and apparent dissociation constant of 525 +/- 100 pM for ventricular nuclei. The binding capacity and the dissociation constant for the atrial muscle cell nuclei were 55 +/- 10 fmol per mg DNA and 500 +/- 75 pM, respectively. The results suggest that the binding capacity for T3 receptor in the atrium is considerably lower than that found in the ventricle. The reduced binding capacity of the T3 receptor in the atrium might reflect differences in the nuclear T3 receptors between ventricle and atrium

  15. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors

    International Nuclear Information System (INIS)

    Bianco, A.C.; Silva, J.E.

    1988-01-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3'-triiodothyronine (T 3 ), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T 4 ) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T 3 levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5'-deiodinase resulted in high levels of nuclear T 3 receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T 3 or T 4 in rats exposed to 4 degree C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear [ 125 I]T 3 derived from the tracer [ 125 I]T 4 injections (T 3 [T 4 ]) and a significant reduction in the nuclear [ 125 I]T 3 derived from [ 125 I]T 3 injections (T 3 [T 3 ]). The number of BAT nuclear T 3 receptors did not increase for up to 3 wk of observation at 4 degree C. The mass of nuclear-bound T 3 was calculated from the nuclear tracer [ 125 I]T 3 [T 3 ] and [ 125 I]T 3 [T 4 ] at equilibrium and the specific activity of serum T 3 and T 4 , respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T 3 receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism

  16. The role of nuclear hormone receptors in cutaneous wound repair.

    Science.gov (United States)

    Rieger, Sandra; Zhao, Hengguang; Martin, Paige; Abe, Koichiro; Lisse, Thomas S

    2015-01-01

    The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Coexpression of nuclear receptors and histone methylation modifying genes in the testis: implications for endocrine disruptor modes of action.

    Directory of Open Access Journals (Sweden)

    Alison M Anderson

    Full Text Available BACKGROUND: Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. METHODOLOGY/PRINCIPAL FINDINGS: The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. CONCLUSIONS/SIGNIFICANCE: This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods.

  18. Components of the CCR4-NOT complex function as nuclear hormone receptor coactivators via association with the NRC-interacting Factor NIF-1.

    Science.gov (United States)

    Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H

    2008-03-14

    CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.

  19. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    Science.gov (United States)

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and

  20. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    Science.gov (United States)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  1. Cross-talk between the NR3B and NR4A families of orphan nuclear receptors

    International Nuclear Information System (INIS)

    Lammi, Johanna; Rajalin, Ann-Marie; Huppunen, Johanna; Aarnisalo, Piia

    2007-01-01

    Estrogen-related receptors (NR3B family) and Nurr1, NGFI-B, and Nor1 (NR4A family) are orphan nuclear receptors lacking identified natural ligands. The mechanisms regulating their transcriptional activities have remained elusive. We have previously observed that the members of NR3B and NR4A families are coexpressed in certain cell types such as osteoblasts and that the ability of Nurr1 to transactivate the osteopontin promoter is repressed by ERRs. We have now studied the cross-talk between NR3B and NR4A receptors. We show that NR3B and NR4A receptors mutually repress each others' transcriptional activity. The repression involves intact DNA-binding domains and dimerization interfaces but does not result from competition for DNA binding or from heterodimerization. The activation functions of NR3B and NR4A receptors are dispensable for the cross-talk. In conclusion, we report that cross-talk between NR3B and NR4A receptors is a mechanism modulating the transcriptional activities of these orphan nuclear receptors

  2. A Comprehensive Nuclear Receptor Network for Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ralf Kittler

    2013-02-01

    Full Text Available In breast cancer, nuclear receptors (NRs play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer.

  3. Multiple external hazards compound level 3 PSA methods research of nuclear power plant

    Science.gov (United States)

    Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina

    2017-01-01

    2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.

  4. Differential transcription of the orphan receptor RORbeta in nuclear extracts derived from Neuro2A and HeLa cells.

    NARCIS (Netherlands)

    Gawlas, K.; Stunnenberg, H.G.

    2001-01-01

    An important model system for studying the process leading to productive transcription is provided by the superfamily of nuclear receptors, which are for the most part ligand-controlled transcription factors. Over the past years several 'orphan' nuclear receptors have been isolated for which no

  5. Antidiabetic actions of a phosphatidylcholine ligand for nuclear receptor LRH-1

    Science.gov (United States)

    Lee, Jae Man; Lee, Yoon Kwang; Mamrosh, Jennifer L.; Busby, Scott A.; Griffin, Patrick R.; Pathak, Manish C.; Ortlund, Eric A.; Moore, David D.

    2011-01-01

    Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (NR5A2) regulates bile acid biosynthesis1,2. Structural studies have identified phospholipids as potential LRH-1 ligands3–5, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine, DLPC) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signaling pathway that regulates bile acid metabolism and glucose homeostasis. PMID:21614002

  6. In vitro nuclear receptor inhibition and cytotoxicity of hydraulic fracturing chemicals and their binary mixtures.

    Science.gov (United States)

    Bain, Peter A; Kumar, Anu

    2018-05-01

    The widespread use of hydraulic fracturing (HF) in oil and gas extraction operations has led to concern over environmental risks posed by chemicals used in HF fluids. Here we employed a suite of stable luciferase reporter gene assays to investigate the potential for selected HF chemicals or geogenics to activate or antagonise nuclear receptor signalling. We screened three biocides (bronopol [BP], glutaraldehyde [GA], and tetrakis(hydroxymethyl)phosphonium sulfate [THPS]), a surfactant (2-butoxyethanol), a friction reducer (polyacrylamide), and a coal seam geogenic (o-cresol) for their potential to act as agonists or antagonists of the estrogen receptor, androgen receptor, progesterone receptor (PR), glucocorticoid receptor or peroxisome proliferator-activated receptor gamma (PPARγ). None of the chemicals induced luciferase activity in any of assays used in the study. In antagonistic mode, BP, GA and THPS caused reductions in luciferase activity in the reporter assays at higher concentrations (50-100 μM), while at low concentrations (2-10 μM) GA and THPS enhanced luciferase activity in some assays relative to controls. None of the other tested chemicals exhibited antagonism in the selected assays. In most cases, altered receptor signalling only occurred at concentrations exhibiting cytotoxicity. However, PPARγ activity, and to a lesser extent PR activity, were inhibited by THPS at sub-cytotoxic concentrations. The majority of binary combinations tested exhibited significantly less-than-additive cytotoxicity, and none of the combinations exhibited synergistic cytotoxicity. In summary, the results of the present study indicate that the selected chemicals are not likely to function as direct agonists of the nuclear receptors tested, and only one chemical, THPS was an apparent partial antagonist of two nuclear receptors. Copyright © 2017. Published by Elsevier Ltd.

  7. Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals.

    Directory of Open Access Journals (Sweden)

    Susanne Vogeler

    Full Text Available Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor's functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor's ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT. Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l, all-trans retinoic acid (ATRA (0.06 mg/L and perfluorooctanoic acid (20 mg/L showed high effects on development (>74% abnormal developed D-shelled larvae, while rosiglitazone (40 mg/L showed no effect. The results are discussed in relation to a putative direct (TBT disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests

  8. Structural basis for corepressor assembly by the orphan nuclear receptor TLX.

    Science.gov (United States)

    Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H Eric

    2015-02-15

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX-Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. © 2015 Zhi et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  10. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  11. Diverse coactivator recruitment through differential PPARγ nuclear receptor agonism

    Directory of Open Access Journals (Sweden)

    Fernando Lizcano

    2013-01-01

    Full Text Available The PPARγ nuclear receptor regulates the expression of genes involved in lipid and carbohydrate metabolism, and it has protective effects in some patients with type 2 diabetes. Nevertheless, the therapeutic value of the PPARγ nuclear receptor protein is limited due to the secondary effects of some PPARγ ligands. Because the downstream effects of PPARγ are determined by the binding of specific cofactors that are mediated by ligand-induced conformational changes, we evaluated the differential effects of various ligands on the binding of certain cofactors associated with PPARγ. The ligands used were rosiglitazone for treating type 2 diabetes and telmisartan for treating arterial hypertension. Functional, phenotypic, and molecular studies were conducted on pre-adipocyte 3T3-L1 and functional studies in U2OS cells. The moderating influence of various cofactor families was evaluated using transient transfection assays. Our findings confirm that telmisartan has a partial modulating effect on PPARγ activity compared to rosiglitazone. The cofactors SRC1 and GRIP1 mediate the activity of telmisartan and rosiglitazone and partially determine the difference in their effects. Studying the modulating activity of these cofactors can provide interesting insights for developing new therapeutic approaches for certain metabolic diseases.

  12. Nuclear Receptors and Multiple Endocrine Neoplasia type 1 (MEN1)

    NARCIS (Netherlands)

    Dreijerink, K.M.A.

    2009-01-01

    Multiple Endocrine Neoplasia type 1 (MEN1) is an inherited syndrome that is characterized by the occurrence of tumours of the parathyroid glands, gastroenteropancreatic tumours, pitui-tary gland adenomas, as well as adrenal adenomas and neuro-endocrine tumours, often at a young age. MEN1 tumours can

  13. Characterization of germ cell-specific expression of the orphan nuclear receptor, germ cell nuclear factor.

    Science.gov (United States)

    Katz, D; Niederberger, C; Slaughter, G R; Cooney, A J

    1997-10-01

    Nuclear receptors, such as those for androgens, estrogens, and progesterones, control many reproductive processes. Proteins with structures similar to these receptors, but for which ligands have not yet been identified, have been termed orphan nuclear receptors. One of these orphans, germ cell nuclear factor (GCNF), has been shown to be germ cell specific in the adult and, therefore, may also participate in the regulation of reproductive functions. In this paper, we examine more closely the expression patterns of GCNF in germ cells to begin to define spatio-temporal domains of its activity. In situ hybridization showed that GCNF messenger RNA (mRNA) is lacking in the testis of hypogonadal mutant mice, which lack developed spermatids, but is present in the wild-type testis. Thus, GCNF is, indeed, germ cell specific in the adult male. Quantitation of the specific in situ hybridization signal in wild-type testis reveals that GCNF mRNA is most abundant in stage VII round spermatids. Similarly, Northern analysis and specific in situ hybridization show that GCNF expression first occurs in testis of 20-day-old mice, when round spermatids first emerge. Therefore, in the male, GCNF expression occurs postmeiotically and may participate in the morphological changes of the maturing spermatids. In contrast, female expression of GCNF is shown in growing oocytes that have not completed the first meiotic division. Thus, GCNF in the female is expressed before the completion of meiosis. Finally, the nature of the two different mRNAs that hybridize to the GCNF complementary DNA was studied. Although both messages contain the DNA binding domain, only the larger message is recognized by a probe from the extreme 3' untranslated region. In situ hybridization with these differential probes demonstrates that both messages are present in growing oocytes. In addition, the coding region and portions of the 3' untranslated region of the GCNF complementary DNA are conserved in the rat.

  14. Orphan nuclear receptor TR4 and fibroblast growth factor 1 in metabolism

    NARCIS (Netherlands)

    Liu, Weilin

    2016-01-01

    Metabolic homeostasis is achieved, in part, through the coordinated activities of members of the Nuclear Receptor (NR) family, a superfamily of ligand-modulated transcription factors (TFs) that mediate responses to a wide range of lipophilic signaling molecules including lipids, steroids, retinoids,

  15. Multiple estrogen receptor subtypes influence ingestive behavior in female rodents.

    Science.gov (United States)

    Santollo, Jessica; Daniels, Derek

    2015-12-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles that specific estrogen receptor subtypes play in mediating estradiol's anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Involvement of apoptosis and autophagy in the death of RPMI 8226 multiple myeloma cells by two enantiomeric sigma receptor ligands.

    Science.gov (United States)

    Korpis, Katharina; Weber, Frauke; Brune, Stefanie; Wünsch, Bernhard; Bednarski, Patrick J

    2014-01-01

    Over-expression of σ receptors by many tumor cell lines makes ligands for these receptors attractive as potential chemotherapeutic drugs. Enantiomeric piperazines (S)-4 and (R)-4 were prepared as potential σ-receptor ligands in a chiral pool synthesis starting from (S)- and (R)-aspartate. Both compounds showed high affinities for the σ₁ and σ₂ receptors. In the human multiple myeloma cell line RPMI 8226, a line expressing high levels of σ receptors, both compounds inhibited cell proliferation with IC₅₀ values in the low μM range. No chiral differentiation between either the σ receptor binding affinity or the cytotoxicity of the two enantiomers was observed. Both compounds induced apoptosis, which was evidenced by nuclear condensation, binding of annexin-V to phosphatidylserine in the outer leaf of the cell membrane, cleavage products of poly(ADP-ribose) polymerase-1 (PARP-1) and caspase-8 as well as the expression of bcl₂ family members bax, bad and bid. However, apoptosis appeared to be caspase independent. Increased levels of the phosphorylated form of the microtubule associated protein light chain 3-II (LC3-II), an autophagosome marker, gave evidence that both compounds induced autophagy. However, further data (e.g., treatment with wortmannin) indicate that autophagy is incomplete and not cytoprotective. Lipid peroxidation (LPO) was observed in RPMI 8226 cells treated with the two compounds, and the lipid antioxidant α-tocopherol attenuated LPO. Interestingly, α-tocopherol reduced significantly both apoptosis and autophagy induced by the compounds. These results provide evidence that, by initiating LPO and changes in mitochondrial membrane potential, both compounds induce apoptosis and autophagy in RPMI 8226 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Inhibition of Androgen Receptor Nuclear Localization and Castration-Resistant Prostate Tumor Growth by Pyrroloimidazole-based Small Molecules.

    Science.gov (United States)

    Masoodi, Khalid Z; Xu, Yadong; Dar, Javid A; Eisermann, Kurtis; Pascal, Laura E; Parrinello, Erica; Ai, Junkui; Johnston, Paul A; Nelson, Joel B; Wipf, Peter; Wang, Zhou

    2017-10-01

    The androgen receptor (AR) is a ligand-dependent transcription factor that controls the expression of androgen-responsive genes. A key step in androgen action, which is amplified in castration-resistant prostate cancer (CRPC), is AR nuclear translocation. Small molecules capable of inhibiting AR nuclear localization could be developed as novel therapeutics for CRPC. We developed a high-throughput screen and identified two structurally-related pyrroloimidazoles that could block AR nuclear localization in CRPC cells. We show that these two small molecules, 3-(4-ethoxyphenyl)-6,7-dihydro-5 H -pyrrolo[1,2- a ]imidazole (EPPI) and 3-(4-chlorophenyl)-6,7-dihydro-5 H -pyrrolo[1,2- a ]imidazole (CPPI) can inhibit the nuclear localization and transcriptional activity of AR and reduce the proliferation of AR-positive but not AR-negative prostate cancer cell lines. EPPI and CPPI did not inhibit nuclear localization of the glucocorticoid receptor or the estrogen receptor, suggesting they selectively target AR. In LNCaP tumor xenografts, CPPI inhibited the proliferation of relapsed LNCaP tumors. These findings suggest that EPPI and CPPI could serve as lead structures for the development of therapeutic agents for CRPC. Mol Cancer Ther; 16(10); 2120-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Nuclear receptors HR96 and ultraspiracle from the fall armyworm (Spodoptera frugiperda), developmental expression and induction by xenobiotics.

    Science.gov (United States)

    Giraudo, Maeva; Audant, Pascaline; Feyereisen, René; Le Goff, Gaëlle

    2013-05-01

    The fall armyworm Spodoptera frugiperda is a major polyphagous pest in agriculture and little is known on how this insect can adapt to the diverse and potentially toxic plant allelochemicals that they ingest or to insecticides. To investigate the involvement of nuclear receptors in the response of S. frugiperda to its chemical environment, we cloned SfHR96, a nuclear receptor orthologous to the mammalian xenobiotic receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR). We also cloned ultraspiracle (USP), the ortholog of retinoid X receptor (RXR) that serves as partner of dimerization of PXR and CAR. Cloning of SfUSP revealed the presence of two isoforms, SfUSP-1 and SfUSP-2 in this species, that differ in their N-terminal region. The expression of these receptors as well as the ecdysone receptor was studied during specific steps of development in different tissues. SfHR96 was constitutively expressed in larval midgut, fat body and Malpighian tubules throughout the last two instars and pupal stage, as well as in Sf9 cells. EcR and SfUSP-2 showed peaks of expression before larval moults and during metamorphosis, whereas SfUSP-1 was mainly expressed in the pre-pupal stage. Receptor induction was followed after exposure of larvae or cells to 11 chemical compounds. SfHR96 was not inducible by the tested compounds. EcR was significantly induced by the 20-hydroxyecdysone agonist, methoxyfenozide, and SfUSP showed an increase expression when exposed to the juvenile hormone analog, methoprene. The cloning of these nuclear receptors is a first step in understanding the important capacities of adaptation of this insect pest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma

    DEFF Research Database (Denmark)

    Drent, Esther; Groen, Richard W. J.; Noort, Willy A. Noort

    2016-01-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody...... sequences to generate second-generation retroviral CD38- chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence......, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite...

  20. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion

    International Nuclear Information System (INIS)

    Karvonen, Ulla; Jaenne, Olli A.; Palvimo, Jorma J.

    2006-01-01

    In addition to chromosomal proteins, histone deacetylases (HDACs) target transcription factors in transcriptional repression. Here, we show that the class II HDAC family member HDAC7 is an efficient corepressor of the androgen receptor (AR). HDAC7 resided in the cytoplasm in the absence of AR or a cognate ligand, but hormone-occupancy of AR induced nuclear transfer of HDAC7. Nuclear colocalization pattern of AR and HDAC7 was dependent on the nature of the ligand. In the presence of testosterone, a portion of HDAC7 localized to pearl-like nuclear domains, whereas AR occupied with antagonistic ligands cyproterone acetate- or casodex (bicalutamide) recruited HDAC7 from these domains to colocalize with the receptor in speckles and nucleoplasm in a more complete fashion. Ectopic expression of PML-3 relieved the repressive effect of HDAC7 on AR function by sequestering HDAC7 to PML-3 domains. AR acetylation at Lys630/632/633 was not the target of HDAC7 repression, since repression of AR function was independent of these acetylation sites. Moreover, the deacetylase activity of HDAC7 was in part dispensable in the repression of AR function. In sum, our results identify HDAC7 as a novel AR corepressor whose subcellular and subnuclear compartmentalization can be regulated in an androgen-selective manner

  1. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    Science.gov (United States)

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  2. Cell-Type-Specific Regulation of the Retinoic Acid Receptor Mediated by the Orphan Nuclear Receptor TLX†

    Science.gov (United States)

    Kobayashi, Mime; Yu, Ruth T.; Yasuda, Kunio; Umesono, Kazuhiko

    2000-01-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor β (RARβ). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARβ2 promoter. The region surrounding the transcription start site of the avian RARβ2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARβ2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARβ gene in the eye. PMID:11073974

  3. Cell-type-specific regulation of the retinoic acid receptor mediated by the orphan nuclear receptor TLX.

    Science.gov (United States)

    Kobayashi, M; Yu, R T; Yasuda, K; Umesono, K

    2000-12-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor beta (RARbeta). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARbeta2 promoter. The region surrounding the transcription start site of the avian RARbeta2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARbeta2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARbeta gene in the eye.

  4. Technology, safety and costs of decommissioning nuclear reactors at multiple-reactor stations

    International Nuclear Information System (INIS)

    Wittenbrock, N.G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWR) and large (1155-MWe) boiling water reactors (BWR) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services

  5. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, Monica A., E-mail: monicai@scripps.edu [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Nussler, Andreas K., E-mail: nuessler@uchir.me.tum.de [Department of Traumatology, Technical University Munich, Ismaningerstr. 22, 81675 Munich (Germany); Eichelbaum, Michel, E-mail: michel.eichelbaum@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Burk, Oliver, E-mail: oliver.burk@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany)

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  6. Selectivity in multiple quantum nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible

  7. Selectivity in multiple quantum nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Warren Sloan [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  8. The nuclear localization of low risk HPV11 E7 protein mediated by its zinc binding domain is independent of nuclear import receptors

    International Nuclear Information System (INIS)

    Piccioli, Zachary; McKee, Courtney H.; Leszczynski, Anna; Onder, Zeynep; Hannah, Erin C.; Mamoor, Shahan; Crosby, Lauren; Moroianu, Junona

    2010-01-01

    We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE7 39-98 localized mostly to the nucleus. The GST-11E7 and GST-11cE7 39-98 were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated by a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc binding domain is essential for nuclear localization of 11E7.

  9. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Science.gov (United States)

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  10. A protein interaction atlas for the nuclear receptors: properties and quality of a hub-based dimerisation network

    Directory of Open Access Journals (Sweden)

    De Graaf David

    2007-07-01

    Full Text Available Abstract Background The nuclear receptors are a large family of eukaryotic transcription factors that constitute major pharmacological targets. They exert their combinatorial control through homotypic heterodimerisation. Elucidation of this dimerisation network is vital in order to understand the complex dynamics and potential cross-talk involved. Results Phylogeny, protein-protein interactions, protein-DNA interactions and gene expression data have been integrated to provide a comprehensive and up-to-date description of the topology and properties of the nuclear receptor interaction network in humans. We discriminate between DNA-binding and non-DNA-binding dimers, and provide a comprehensive interaction map, that identifies potential cross-talk between the various pathways of nuclear receptors. Conclusion We infer that the topology of this network is hub-based, and much more connected than previously thought. The hub-based topology of the network and the wide tissue expression pattern of NRs create a highly competitive environment for the common heterodimerising partners. Furthermore, a significant number of negative feedback loops is present, with the hub protein SHP [NR0B2] playing a major role. We also compare the evolution, topology and properties of the nuclear receptor network with the hub-based dimerisation network of the bHLH transcription factors in order to identify both unique themes and ubiquitous properties in gene regulation. In terms of methodology, we conclude that such a comprehensive picture can only be assembled by semi-automated text-mining, manual curation and integration of data from various sources.

  11. Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening

    Directory of Open Access Journals (Sweden)

    Kelly Teske

    2014-04-01

    Full Text Available Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR antagonists among nuclear receptor (NR ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2D3 and 25(OH2D3. The first virtual screen identified 32 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 μM. The second screen identified 162 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%, TRα/β ligands (7%, and LxRα/β ligands (7%. The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

  12. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Directory of Open Access Journals (Sweden)

    Marc R Van Gilst

    2005-02-01

    Full Text Available Mammalian nuclear hormone receptors (NHRs, such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs, precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  13. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Science.gov (United States)

    Van Gilst, Marc R; Hadjivassiliou, Haralambos; Jolly, Amber; Yamamoto, Keith R

    2005-02-01

    Mammalian nuclear hormone receptors (NHRs), such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs), precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  14. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1

    International Nuclear Information System (INIS)

    Oiwa, Ako; Kakizawa, Tomoko; Miyamoto, Takahide; Yamashita, Koh; Jiang, Wei; Takeda, Teiji; Suzuki, Satoru; Hashizume, Kiyoshi

    2007-01-01

    Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions

  15. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading.

    Science.gov (United States)

    Tarallo, Roberta; Giurato, Giorgio; Bruno, Giuseppina; Ravo, Maria; Rizzo, Francesca; Salvati, Annamaria; Ricciardi, Luca; Marchese, Giovanna; Cordella, Angela; Rocco, Teresa; Gigantino, Valerio; Pierri, Biancamaria; Cimmino, Giovanni; Milanesi, Luciano; Ambrosino, Concetta; Nyman, Tuula A; Nassa, Giovanni; Weisz, Alessandro

    2017-10-06

    The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.

  16. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2015-03-01

    Full Text Available The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs are ligands of farnesoid X receptor (FXR, a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.

  17. Annotation of the Nuclear Receptors in an Estuarine Fish species, Fundulus heteroclitus

    Directory of Open Access Journals (Sweden)

    William S. Baldwin

    2017-06-01

    Full Text Available The nuclear receptors (NRs are ligand-dependent transcription factors that respond to various internal as well as external cues such as nutrients, pheromones, and steroid hormones that play crucial roles in regulation and maintenance of homeostasis and orchestrating the physiological and stress responses of an organism. We annotated the Fundulus heteroclitus (mummichog; Atlantic killifish nuclear receptors. Mummichog are a non-migratory, estuarine fish with a limited home range often used in environmental research as a field model for studying ecological and evolutionary responses to variable environmental conditions such as salinity, oxygen, temperature, pH, and toxic compounds because of their hardiness. F. heteroclitus have at least 74 NRs spanning all seven gene subfamilies. F. heteroclitus is unique in that no RXRα member was found within the genome. Interestingly, some of the NRs are highly conserved between species, while others show a higher degree of divergence such as PXR, SF1, and ARα. Fundulus like other fish species show expansion of the RAR (NR1B, Rev-erb (NR1D, ROR (NR1F, COUPTF (NR2F, ERR (NR3B, RXR (NR2B, and to a lesser extent the NGF (NR4A, and NR3C steroid receptors (GR/AR. Of particular interest is the co-expansion of opposing NRs, Reverb-ROR, and RAR/RXR-COUPTF.

  18. Multiple roles for nuclear localization signal (NLS, aa 442-472) of receptor interacting protein 3 (RIP3)

    International Nuclear Information System (INIS)

    Li Mei; Feng Shanshan; Wu Mian

    2008-01-01

    RIP3, a Ser/Thr kinase of RIP (Receptor Interacting Protein) family, is recruited to the TNFR1 signaling complex through RIP and has been shown to mediate apoptosis induction and NF-κB activation. RIP3 is a nucleocytoplasmic shuttling protein and its unconventional nuclear localization signal (NLS, 442-472 aa) is sufficient to trigger apoptosis in the nucleus. In this study, we demonstrate that this NLS exhibits several other roles besides apoptotic function. Firstly, this NLS was found to be required for both RIP3-induced apoptosis and RIP3-mediated NF-κB activation. Next, similar to RHIM motif (RIP homotypic interaction motif), NLS of RIP3 was found to be involved in RIP3-RIP interaction. Furthermore, this NLS was found to be both sufficient and necessary for RIP3 self-association. Our primary data also showed that RIP3 might form a homodimer within cells, and its apoptotic activity may not be required for this dimerization, rather the intactness of NLS determines RIP3-induced apoptosis, since a point mutation at amino acid residue 452 (Ile to Ala) within NLS greatly reduced its apoptotic ability, despite that RIP3 point mutant RIP3/I452A is able to dimerize with wild type RIP3 or itself

  19. Some problems of neutron source multiplication method for site measurement technology in nuclear critical safety

    International Nuclear Information System (INIS)

    Shi Yongqian; Zhu Qingfu; Hu Dingsheng; He Tao; Yao Shigui; Lin Shenghuo

    2004-01-01

    The paper gives experiment theory and experiment method of neutron source multiplication method for site measurement technology in the nuclear critical safety. The measured parameter by source multiplication method actually is a sub-critical with source neutron effective multiplication factor k s , but not the neutron effective multiplication factor k eff . The experiment research has been done on the uranium solution nuclear critical safety experiment assembly. The k s of different sub-criticality is measured by neutron source multiplication experiment method, and k eff of different sub-criticality, the reactivity coefficient of unit solution level, is first measured by period method, and then multiplied by difference of critical solution level and sub-critical solution level and obtained the reactivity of sub-critical solution level. The k eff finally can be extracted from reactivity formula. The effect on the nuclear critical safety and different between k eff and k s are discussed

  20. Atropisomers of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro.

    Science.gov (United States)

    Pěnčíková, Kateřina; Brenerová, Petra; Svržková, Lucie; Hrubá, Eva; Pálková, Lenka; Vondráček, Jan; Lehmler, Hans-Joachim; Machala, Miroslav

    2017-11-09

    PCB 136 is an environmentally relevant chiral PCB congener, which has been found in vivo to be present in form of rotational isomers (atropisomers). Its atropselective biotransformation or neurotoxic effects linked with sensitization of ryanodine receptor suggest that it might interact also with other intracellular receptors in a stereospecific manner. However, possible atropselective effects of PCB 136 on nuclear receptor transactivation remain unknown. Therefore, in this study, atropselective effects of PCB 136 on nuclear receptors controlling endocrine signaling and/or expression of xenobiotic and steroid hormone catabolism were investigated. PCB136 atropisomers were found to exert differential effects on estrogen receptor (ER) activation; (+)-PCB 136 was estrogenic, while (-)-PCB 136 was antiestrogenic. In contrast, inhibition of androgen receptor (AR) activity was not stereospecific. Both PCB136 stereoisomers induced the constitutive androgen receptor (CAR)-dependent gene expression; however, no significant stereospecificity of PCB 136 atropisomers was observed. PCB136 was a partial inducer of the pregnane X receptor (PXR)-dependent gene expression. Here, (-)-PCB 136 was a significantly more potent inducer of PXR activity than (+)-PCB 136. Taken together, the present results indicate that at least two nuclear receptors participating in endocrine regulation or metabolism, ER and PXR, could be regulated in an atropselective manner by chiral PCB 136. The enantioselective enrichment of PCB atropisomers in animal and human tissues may thus have significant consequences for endocrine-disrupting effects of chiral ortho-substituted PCB congeners.

  1. A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors.

    Science.gov (United States)

    Wang, Luqiao; Nanayakkara, Gayani; Yang, Qian; Tan, Hongmei; Drummer, Charles; Sun, Yu; Shao, Ying; Fu, Hangfei; Cueto, Ramon; Shan, Huimin; Bottiglieri, Teodoro; Li, Ya-Feng; Johnson, Candice; Yang, William Y; Yang, Fan; Xu, Yanjie; Xi, Hang; Liu, Weiqing; Yu, Jun; Choi, Eric T; Cheng, Xiaoshu; Wang, Hong; Yang, Xiaofeng

    2017-10-24

    Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies.

  2. Xenobiotics and the Glucocorticoid Receptor

    International Nuclear Information System (INIS)

    Gulliver, Linda S M

    2017-01-01

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  3. Xenobiotics and the Glucocorticoid Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.ac.nz

    2017-03-15

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  4. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators.

    Science.gov (United States)

    Redfern, Andrew D; Colley, Shane M; Beveridge, Dianne J; Ikeda, Naoya; Epis, Michael R; Li, Xia; Foulds, Charles E; Stuart, Lisa M; Barker, Andrew; Russell, Victoria J; Ramsay, Kerry; Kobelke, Simon J; Li, Xiaotao; Hatchell, Esme C; Payne, Christine; Giles, Keith M; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B; O'Malley, Bert W; Leedman, Peter J

    2013-04-16

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.

  5. Nuclear Receptor TLX in Development and Diseases.

    Science.gov (United States)

    Sun, Guoqiang; Cui, Qi; Shi, Yanhong

    2017-01-01

    The nuclear receptor TLX (NR2E1) is a transcription factor that is critical for neural development and adult neurogenesis through its actions in regulating neural stem cell proliferation, self-renewal, and fate determination. These roles are primarily executed by regulating TLX downstream target genes involved in myriad pathways such as cell cycle progression, RNA processing, angiogenesis, and senescence. Recent studies suggest that dysregulation of TLX pathways plays an important role in the pathogenesis of human neurological disorders and brain tumors. Here, we will highlight recent progress in the roles of TLX in brain development and adult neurogenesis, and the relevance of TLX to neurological diseases and brain tumors. We will also discuss the potential of TLX as a therapeutic target for these disorders. © 2017 Elsevier Inc. All rights reserved.

  6. Development of an image analysis screen for estrogen receptor alpha (ERα) ligands through measurement of nuclear translocation dynamics.

    Science.gov (United States)

    Dull, Angie; Goncharova, Ekaterina; Hager, Gordon; McMahon, James B

    2010-11-01

    We have developed a robust high-content assay to screen for novel estrogen receptor alpha (ERα) agonists and antagonists by quantitation of cytoplasmic to nuclear translocation of an estrogen receptor chimera in 384-well plates. The screen utilizes a green fluorescent protein tagged-glucocorticoid/estrogen receptor (GFP-GRER) chimera which consisted of the N-terminus of the glucocorticoid receptor fused to the human ER ligand binding domain. The GFP-GRER exhibited cytoplasmic localization in the absence of ERα ligands, and translocated to the nucleus in response to stimulation with ERα agonists or antagonists. The BD Pathway 435 imaging system was used for image acquisition, analysis of translocation dynamics, and cytotoxicity measurements. The assay was validated with known ERα agonists and antagonists, and the Library of Pharmacologically Active Compounds (LOPAC 1280). Additionally, screening of crude natural product extracts demonstrated the robustness of the assay, and the ability to quantitate the effects of toxicity on nuclear translocation dynamics. The GFP-GRER nuclear translocation assay was very robust, with z' values >0.7, CVs screening of natural product extracts. This assay has been developed for future primary screening of synthetic, pure natural products, and natural product extracts libraries available at the National Cancer Institute at Frederick. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish.

    Science.gov (United States)

    Zhang, Li; Jin, Yaru; Han, Zhihua; Liu, Hongling; Shi, Laihao; Hua, Xiaoxue; Doering, Jon A; Tang, Song; Giesy, John P; Yu, Hongxia

    2018-03-01

    One of the most abundant polybrominated diphenyl ethers (PBDEs) is 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), which persists and potentially bioaccumulates in aquatic wildlife. Previous studies in mammals have shown that BDE-99 affects development and disrupts certain endocrine functions through signaling pathways mediated by nuclear receptors. However, fewer studies have investigated the potential of BDE-99 to interact with nuclear receptors in aquatic vertebrates such as fish. In the present study, interactions between BDE-99 and nuclear receptors were investigated by in silico and in vivo approaches. This PBDE was able to dock into the ligand-binding domain of zebrafish aryl hydrocarbon receptor 2 (AhR2) and pregnane X receptor (PXR). It had a significant effect on the transcriptional profiles of genes associated with AhR or PXR. Based on the developed cytoscape of all zebrafish genes, it was also inferred that AhR and PXR could interact via cross-talk. In addition, both the in silico and in vivo approaches found that BDE-99 affected peroxisome proliferator-activated receptor alpha (PPARα), glucocorticoid receptor, and thyroid receptor. Collectively, our results demonstrate for the first time detailed in silico evidence that BDE-99 can bind to and interact with zebrafish AhR and PXR. These findings can be used to elaborate the molecular mechanism of BDE-99 and guide more objective environmental risk assessments. Environ Toxicol Chem 2018;37:780-787. © 2017 SETAC. © 2017 SETAC.

  8. Seismic PSA method for multiple nuclear power plants in a site

    Energy Technology Data Exchange (ETDEWEB)

    Hakata, Tadakuni [Nuclear Safety Commission, Tokyo (Japan)

    2007-07-15

    The maximum number of nuclear power plants in a site is eight and about 50% of power plants are built in sites with three or more plants in the world. Such nuclear sites have potential risks of simultaneous multiple plant damages especially at external events. Seismic probabilistic safety assessment method (Level-1 PSA) for multi-unit sites with up to 9 units has been developed. The models include Fault-tree linked Monte Carlo computation, taking into consideration multivariate correlations of components and systems from partial to complete, inside and across units. The models were programmed as a computer program CORAL reef. Sample analysis and sensitivity studies were performed to verify the models and algorithms and to understand some of risk insights and risk metrics, such as site core damage frequency (CDF per site-year) for multiple reactor plants. This study will contribute to realistic state of art seismic PSA, taking consideration of multiple reactor power plants, and to enhancement of seismic safety. (author)

  9. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    International Nuclear Information System (INIS)

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-01-01

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism

  10. MTA family of coregulators in nuclear receptor biology and pathology

    Science.gov (United States)

    Manavathi, Bramanandam; Singh, Kamini; Kumar, Rakesh

    2007-01-01

    Nuclear receptors (NRs) rely on coregulators (coactivators and corepressors) to modulate the transcription of target genes. By interacting with nucleosome remodeling complexes, NR coactivators potentiate transcription, whereas corepressors inhibit transcription of the target genes. Metastasis-associated proteins (MTA) represent an emerging family of novel NR coregulators. In general, MTA family members form independent nucleosome remodeling and deacetylation (NuRD) complexes and repress the transcription of different genes by recruiting histone deacetylases onto their target genes. However, MTA1 also acts as a coactivator in a promoter-context dependent manner. Recent findings that repression of estrogen receptor transactivation functions by MTA1, MTA1s, and MTA2 and regulation of MTA3 by estrogen signaling have indicated the significance of these proteins in NR signaling. Here, we highlight the action of MTA proteins on NR signaling and their roles in pathophysiological conditions. PMID:18174918

  11. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Catarina, E-mail: catarinarcruzeiro@hotmail.com [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Lopes-Marques, Mónica, E-mail: monicaslm@hotmail.com [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Ruivo, Raquel, E-mail: ruivo.raquel@gmail.com [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Rodrigues-Oliveira, Nádia, E-mail: nadia.oliveira@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Santos, Miguel M., E-mail: santos@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); FCUP - Faculty of Sciences, Department of Biology, U. Porto (Portugal); Rocha, Maria João, E-mail: mjsrocha@netcabo.pt [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Rocha, Eduardo, E-mail: erocha@icbas.up.pt [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Castro, L. Filipe C., E-mail: filipe.castro@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); FCUP - Faculty of Sciences, Department of Biology, U. Porto (Portugal)

    2016-05-15

    Highlights: • A nuclear receptor orthologue of the NR1J group is isolated from a mollusc. • The molluscan NR1J transactivates gene expression upon exposure to okadaic acid but not a pesticide, esfenvarelate and triclosan. • Lineage specific gene duplications and gene loss have occurred in the NR1J of protostomes with likely impacts on detoxification mechanisms. - Abstract: The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.

  12. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms

    International Nuclear Information System (INIS)

    Cruzeiro, Catarina; Lopes-Marques, Mónica; Ruivo, Raquel; Rodrigues-Oliveira, Nádia; Santos, Miguel M.; Rocha, Maria João; Rocha, Eduardo; Castro, L. Filipe C.

    2016-01-01

    Highlights: • A nuclear receptor orthologue of the NR1J group is isolated from a mollusc. • The molluscan NR1J transactivates gene expression upon exposure to okadaic acid but not a pesticide, esfenvarelate and triclosan. • Lineage specific gene duplications and gene loss have occurred in the NR1J of protostomes with likely impacts on detoxification mechanisms. - Abstract: The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.

  13. NR4A nuclear receptors mediate carnitine palmitoyltransferase 1A gene expression by the rexinoid HX600

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, Michiyasu [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan); Kagechika, Hiroyuki [Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Makishima, Makoto, E-mail: makishima.makoto@nihon-u.ac.jp [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer The function of RXR heterodimers with NR4 receptors remains unknown. Black-Right-Pointing-Pointer The RXR ligand HX600 induces expression of carnitine palmitoyltransferase 1A (CPT1A). Black-Right-Pointing-Pointer HX600-induced CPT1A expression is mediated by the NR4 receptors, Nur77 and NURR1. Black-Right-Pointing-Pointer CPT1A induction by HX600 is not mediated by de novo protein synthesis. Black-Right-Pointing-Pointer CPT1A could be a target of the Nur77-RXR and NURR1-RXR heterodimers. -- Abstract: Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and can be activated by 9-cis retinoic acid (9CRA). RXRs form homodimers and heterodimers with other nuclear receptors such as the retinoic acid receptor and NR4 subfamily nuclear receptors, Nur77 and NURR1. Potential physiological roles of the Nur77-RXR and NURR1-RXR heterodimers have not been elucidated. In this study, we identified a gene regulated by these heterodimers utilizing HX600, a selective RXR agonist for Nur77-RXR and NURR1-RXR. While 9CRA induced many genes, including RAR-target genes, HX600 effectively induced only carnitine palmitoyltransferase 1A (CPT1A) in human teratocarcinoma NT2/D1 cells, which express RXR{alpha}, Nur77 and NURR1. HX600 also increased CPT1A expression in human embryonic kidney (HEK) 293 cells and hepatocyte-derived HepG2 cells. Although HX600 induced CPT1A less effectively than 9CRA, overexpression of Nur77 or NURR1 increased the HX600 response to levels similar to 9CRA in NT2/D1 and HEK293 cells. A dominant-negative form of Nur77 or NURR1 repressed the induction of CPT1A by HX600. A protein synthesis inhibitor did not alter HX600-dependent CPT1A induction. Thus, the rexinoid HX600 directly induces expression of CPT1A through a Nur77 or NURR1-mediated mechanism. CPT1A, a gene involved in fatty acid {beta}-oxidation, could be a target of RXR-NR4 receptor heterodimers.

  14. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  15. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    Energy Technology Data Exchange (ETDEWEB)

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A [Emory-MED; (Scripps)

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  16. Abnormal XPD-induced nuclear receptor transactivation in DNA repair disorders: trichothiodystrophy and xeroderma pigmentosum.

    Science.gov (United States)

    Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H

    2013-08-01

    XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD.

  17. Cloning of a protein arginine methyltransferase PRMT1 homologue from Schistosoma mansoni: Evidence for roles in nuclear receptor signaling and RNA metabolism

    International Nuclear Information System (INIS)

    Mansure, Jose Joao; Furtado, Daniel Rodrigues; Bastos de Oliveira, Francisco Meirelles; Rumjanek, Franklin David; Franco, Gloria Regina; Fantappie, Marcelo Rosado

    2005-01-01

    The most studied arginine methyltransferase is the type I enzyme, which catalyzes the transfer of an S-adenosyl-L-methionine to a broad spectrum of substrates, including histones, RNA-transporting proteins, and nuclear hormone receptor coactivators. We cloned a cDNA encoding a protein arginine methyltransferase in Schistosoma mansoni (SmPRMT1). SmPRMT1 is highly homologous to the vertebrate PRMT1 enzyme. In vitro methylation assays showed that SmPRMT1 recombinant protein was able to specifically methylate histone H4. Two schistosome proteins likely to be involved in RNA metabolism, SMYB1 and SmSmD3, that display a number of RGG motifs, were strongly methylated by SmPRMT1. In vitro GST pull-down assays showed that SMYB1 and SmSmD3 physically interacted with SmPRMT1. Additional GST pull-down assay suggested the occurrence of a ternary complex including SmPRMT1, SmRXR1 nuclear receptor, and the p160 (SRC-1) nuclear receptor coactivator. Together, these data suggest a mechanism by which SmPRMT1 plays a role in nuclear receptor-mediated chromatin remodeling and RNA transactions

  18. Transcription control and neuronal differentiation by agents that activate the LXR nuclear receptor family.

    Science.gov (United States)

    Schmidt, A; Vogel, R; Holloway, M K; Rutledge, S J; Friedman, O; Yang, Z; Rodan, G A; Friedman, E

    1999-09-10

    LXR and PPAR receptors belong to the nuclear receptor superfamily of transcriptional activating factors. Using ligand-dependent transcription assays, we found that 5-tetradecyloxy-2-furancarboxylic acid (TOFA) transactivates chimeric receptors composed of the glucocorticoid receptor DNA binding domain and the ligand binding regions of PPARalpha, PPARbeta (NUC-1) and LXRbeta (NER) receptors. In the same assays, ligands for PPARs (oleic acid, WY-14643 and L-631,033) and LXRs (hydroxycholesterols) maintain their respective receptor selectivity. TOFA and hydroxycholesterols also stimulate transcription from a minimal fibrinogen promoter that is under the control of AP-1 or NF-kappaB transcription factor binding sites. In addition to their effects on transcription, these LXRbeta activators induce neuronal differentiation in rat pheochromocytoma cells. TOFA and the natural LXR agonist, 22 (R)-hydroxycholesterol, stimulate neurite outgrowth in 55 and 28% of cells, respectively. No neurite outgrowth was induced by the related 22(S)-hydroxycholesterol, which does not activate the LXR family. These results suggest that the hydroxycholesterol signaling pathway has a complex effect on transcription that mediates the activity of TOFA and hydroxycholesterol on neuronal differentiation in pheochromocytoma cells.

  19. Melatonin membrane receptors in peripheral tissues: Distribution and functions

    Science.gov (United States)

    Slominski, Radomir M.; Reiter, Russel J.; Schlabritz-Loutsevitch, Natalia; Ostrom, Rennolds S.; Slominski, Andrzej T.

    2012-01-01

    Many of melatonin’s actions are mediated through interaction with the G-protein coupled membrane bound melatonin receptors type 1 and type 2 (MT1 and MT2, respectively) or, indirectly with nuclear orphan receptors from the RORα/RZR family. Melatonin also binds to the quinone reductase II enzyme, previously defined the MT3 receptor. Melatonin receptors are widely distributed in the body; herein we summarize their expression and actions in non-neural tissues. Several controversies still exist regarding, for example, whether melatonin binds the RORα/RZR family. Studies of the peripheral distribution of melatonin receptors are important since they are attractive targets for immunomodulation, regulation of endocrine, reproductive and cardiovascular functions, modulation of skin pigmentation, hair growth, cancerogenesis, and aging. Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes. PMID:22245784

  20. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    Science.gov (United States)

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death.

  1. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75.

    Science.gov (United States)

    Cáceres, Lucía; Necakov, Aleksandar S; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J H; Krause, Henry M

    2011-07-15

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer partner, Drosophila hormone receptor 3 (DHR3). Manipulation of these interactions leads to gross alterations in feeding behavior, fat deposition, and developmental timing. These neuroendocrine interactions and consequences appear to be conserved in vertebrates.

  2. Structural basis for corepressor assembly by the orphan nuclear receptor TLX

    OpenAIRE

    Zhi, Xiaoyong; Zhou, X. Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H. Eric

    2015-01-01

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Zhi et al. report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX. In addition, mutations...

  3. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups

    OpenAIRE

    Collins, Ann L.; Ma, Deqiong; Whitehead, Patrice L.; Martin, Eden R.; Wright, Harry H.; Abramson, Ruth K.; Hussman, John P.; Haines, Jonathan L.; Cuccaro, Michael L.; Gilbert, John R.; Pericak-Vance, Margaret A.

    2006-01-01

    Autism is a neurodevelopmental disorder of complex genetics, characterized by impairment in social interaction and communication, as well as repetitive behavior. Multiple lines of evidence, including alterations in levels of GABA and GABA receptors in autistic patients, indicate that the GABAergic system, which is responsible for synaptic inhibition in the adult brain, may be involved in autism. Previous studies in our lab indicated association of noncoding single nucleotide polymorphisms (SN...

  4. Tumour nuclear oestrogen receptor beta 1 correlates inversely with parathyroid tumour weight.

    Science.gov (United States)

    Haglund, Felix; Rosin, Gustaf; Nilsson, Inga-Lena; Juhlin, C Christofer; Pernow, Ylva; Norenstedt, Sophie; Dinets, Andrii; Larsson, Catharina; Hartman, Johan; Höög, Anders

    2015-03-01

    Primary hyperparathyroidism (PHPT) is a common endocrinopathy, frequently caused by a parathyroid adenoma, rarely by a parathyroid carcinoma that lacks effective oncological treatment. As the majority of cases are present in postmenopausal women, oestrogen signalling has been implicated in the tumourigenesis. Oestrogen receptor beta 1 (ERB1) and ERB2 have been recently identified in parathyroid adenomas, the former inducing genes coupled to tumour apoptosis. We applied immunohistochemistry and slide digitalisation to quantify nuclear ERB1 and ERB2 in 172 parathyroid adenomas, atypical adenomas and carcinomas, and ten normal parathyroid glands. All the normal parathyroid glands expressed ERB1 and ERB2. The majority of tumours expressed ERB1 (70.6%) at varying intensities, and ERB2 (96.5%) at strong intensities. Parathyroid carcinomas expressed ERB1 in three out of six cases and ERB2 in five out of six cases. The intensity of tumour nuclear ERB1 staining significantly correlated inversely with tumour weight (P=0.011), and patients whose tumours were classified as ERB1-negative had significantly greater tumour weight as well as higher serum calcium (P=0.002) and parathyroid hormone levels (P=0.003). Additionally, tumour nuclear ERB1 was not expressed differentially with respect to sex or age of the patient. Levels of tumour nuclear ERB2 did not correlate with clinical characteristics. In conclusion, decreased ERB1 immunoreactivity is associated with increased tumour weight in parathyroid adenomas. Given the previously reported correlation with tumour-suppressive signalling, selective oestrogen receptor modulation (SERMs) may play a role in the treatment of parathyroid carcinomas. Future studies of SERMs and oestrogen treatment in PHPT should consider tumour weight as a potential factor in pharmacological responsiveness. © 2015 The authors.

  5. Nuclear thyroid hormone receptor binding in human mononuclear blood cells after goitre resection

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E; Blichert-Toft, M

    1989-01-01

    Nuclear thyroxine and triiodothyronine receptor-binding in human mononuclear blood cells were examined in 14 euthyroid persons prior to and 1, 6, 24 and 53 weeks after goitre resection. One week after resection decreased serum T3 from 1.47 nmol/l to 1.14 nmol/l (P less than 0.05), FT4I from 103 a...

  6. Multiple scattering in the nuclear rearrangement reactions at medium energy

    International Nuclear Information System (INIS)

    Tekou, A.

    1980-09-01

    It is shown that the multiple scattering mechanism is very important in the transfer of the large momenta involved in the nuclear rearrangement reactions at medium energy. In contrast to the usual belief, the reaction cross-section is not very sensitive to the high momenta components of the nuclear wave function. The multiple scattering mechanism is especially important in 4 He(p,d) 3 He reaction around 800 MeV. Here the collisions involving two nucleons of the target nucleus are dominant. The triple collisions contribution is also important. The four collision contribution is negligible in the forward direction and sizeable at large angles. Thus, using the K.M.T. approach in DWBA calculations, the second order term of the optical potential must be included. So, is it not well established that the second term of the K.M.T. optical potential is important for the proton elastic scattering on light nuclei. (author)

  7. Differential expression of estrogen receptor α and β isoforms in multiple and solitary leiomyomas

    International Nuclear Information System (INIS)

    Shao, Ruyue; Fang, Liaoqiong; Xing, Ruoxi; Xiong, Yu; Fang, Liaoqiong; Wang, Zhibiao

    2015-01-01

    Uterine leiomyomas are benign myometrial neoplasms that function as one of the common indications for hysterectomy. Clinical and biological evidences indicate that uterine leiomyomas are estrogen-dependent. Estrogen stimulates cell proliferation through binding to the estrogen receptor (ER), of which both subtypes α and β are present in leiomyomas. Clinically, leiomyomas may be singular or multiple, where the first one is rarely recurring if removed and the latter associated to a relatively young age or genetic predisposition. These markedly different clinical phenotypes indicate that there may different mechanism causing a similar smooth muscle response. To investigate the relative expression of ERα and ERβ in multiple and solitary uterine leiomyomas, we collected samples from 35 Chinese women (multiple leiomyomas n = 20, solitary leiomyoma n = 15) undergoing surgery to remove uterine leiomyomas. ELISA assay was performed to detect estrogen(E_2) concentration. Quantitative real-time PCR analysis was performed to detect ERα and ERβ mRNA expression. Western blot and immunohistochemical analysis were performed to detect ERα and ERβ protein expression. We found that ERα mRNA and protein levels of in multiple leiomyomas were significantly lower than those of solitary leiomyomas, whereas ERβ mRNA and protein levels in multiple leiomyomas were significantly higher than those in solitary leiomyomas, irrespectively of the menstrual cycle stage. In both multiple and solitary leiomyomas, ERα expression was higher than that of ERβ. E_2 concentration in multiple and solitary leiomyomas correlated with that of ERα expression. ERα was present in nuclus and cytoplasma while estrogen receptor β localized only in nuclei in both multiple and solitary leiomyomas. Our findings suggest that the difference of ERα and ERβ expression between multiple and solitary leiomyomas may be responsible for the course of the disease subtypes. - Highlights: • In both multiple

  8. Differential expression of estrogen receptor α and β isoforms in multiple and solitary leiomyomas

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Ruyue; Fang, Liaoqiong [State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Xing, Ruoxi [Institute of Life Science, Chongqing Medical University, Chongqing 400016 (China); Xiong, Yu [Department of Obstetrics and Gynecology, Chongqing Hifu Hospital, Chongqing 401121 (China); Fang, Liaoqiong, E-mail: lqfang06@163.com [State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Wang, Zhibiao, E-mail: wangzb@cqmu.edu.cn [State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China)

    2015-12-04

    Uterine leiomyomas are benign myometrial neoplasms that function as one of the common indications for hysterectomy. Clinical and biological evidences indicate that uterine leiomyomas are estrogen-dependent. Estrogen stimulates cell proliferation through binding to the estrogen receptor (ER), of which both subtypes α and β are present in leiomyomas. Clinically, leiomyomas may be singular or multiple, where the first one is rarely recurring if removed and the latter associated to a relatively young age or genetic predisposition. These markedly different clinical phenotypes indicate that there may different mechanism causing a similar smooth muscle response. To investigate the relative expression of ERα and ERβ in multiple and solitary uterine leiomyomas, we collected samples from 35 Chinese women (multiple leiomyomas n = 20, solitary leiomyoma n = 15) undergoing surgery to remove uterine leiomyomas. ELISA assay was performed to detect estrogen(E{sub 2}) concentration. Quantitative real-time PCR analysis was performed to detect ERα and ERβ mRNA expression. Western blot and immunohistochemical analysis were performed to detect ERα and ERβ protein expression. We found that ERα mRNA and protein levels of in multiple leiomyomas were significantly lower than those of solitary leiomyomas, whereas ERβ mRNA and protein levels in multiple leiomyomas were significantly higher than those in solitary leiomyomas, irrespectively of the menstrual cycle stage. In both multiple and solitary leiomyomas, ERα expression was higher than that of ERβ. E{sub 2} concentration in multiple and solitary leiomyomas correlated with that of ERα expression. ERα was present in nuclus and cytoplasma while estrogen receptor β localized only in nuclei in both multiple and solitary leiomyomas. Our findings suggest that the difference of ERα and ERβ expression between multiple and solitary leiomyomas may be responsible for the course of the disease subtypes. - Highlights: • In both

  9. The monomeric orphan nuclear receptor Schistosoma mansoni Ftz-F1 dimerizes specifically and functionally with the schistosome RXR homologue, SmRXR1

    International Nuclear Information System (INIS)

    Bertin, Benjamin; Caby, Stephanie; Oger, Frederik; Sasorith, Souphatta; Wurtz, Jean-Marie; Pierce, Raymond J.

    2005-01-01

    In an attempt to understand development and differentiation processes of the parasitic blood fluke Schistosoma mansoni, several members of the nuclear receptor superfamily were cloned, including SmFtz-F1 (S. mansoni Fushi Tarazu-factor 1). The Ftz-F1 nuclear receptor subfamily only contains orphan receptors that bind to their response element as monomers. Whereas SmFtz-F1 displays these basic functional properties, we have identified an original and specific interaction between SmFtz-F1 and the schistosome RXR homologue, SmRXR1. The mammalian two-hybrid assay showed that the D, E, and F domains of SmFtz-F1 were capable of interacting specifically with the E domain of SmRXR1 but not with that of mouse RXRα. Using three-dimensional LBD homology modelling and structure-guided mutagenesis, we were able to demonstrate the essential role of exposed residues located in the dimerization interfaces of both receptors in the maintenance of the interaction. Cotransfection experiments with constructions encoding full-length nuclear receptors show that SmRXR1 potentiates the transcriptional activity of SmFtz-F1 from various promoters. Nevertheless, the lack of identification of a dimeric response element for this SmFtz-F1/SmRXR1 heterodimer seems to indicate a 'tethering' mechanism. Thus, our results suggest for the first time that a member of the Ftz-F1 family could heterodimerize functionally with a homologue of the universal heterodimerization partner of nuclear receptors. This unique property confirms that SmFtz-F1 may be involved in the development and differentiation of schistosome-specific structures

  10. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  11. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    International Nuclear Information System (INIS)

    Beildeck, Marcy E.; Gelmann, Edward P.; Byers, Stephen W.

    2010-01-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  12. Measurement of the nuclear multiplicity ratio for Ks0 hadronization at CLAS

    Science.gov (United States)

    Daniel, A.; Hicks, K.; Brooks, W. K.; Hakobyan, H.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amarian, M.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Casey, L.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Egiyan, H.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hanretty, C.; Heddle, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Joo, K.; Kalantarians, N.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Mayer, M.; McAndrew, J.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zana, L.; Zachariou, N.; Zhao, B.; Zhao, Z. W.

    2011-11-01

    The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the Ks0 multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy z transferred to the Ks0 and the transverse momentum squared pT2 of the Ks0. We find that the multiplicity ratios for Ks0 are reduced in the nuclear medium at high z and low pT2, with a trend for the Ks0 transverse momentum to be broadened in the nucleus for large pT2.

  13. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    International Nuclear Information System (INIS)

    Kewley, Robyn J.; Whitelaw, Murray L.

    2005-01-01

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  14. Multiple receptor conformers based molecular docking study of fluorine enhanced ethionamide with mycobacterium enoyl ACP reductase (InhA).

    Science.gov (United States)

    Khan, Akib Mahmud; Shawon, Jakaria; Halim, Mohammad A

    2017-10-01

    A major limitation in current molecular docking method is that of failure to account for receptor flexibility. Herein we report multiple receptor conformers based molecular docking as a practical alternative to account for the receptor flexibility. Multiple (forty) conformers of Mycobacterium Enoyl ACP Reductase (InhA) are generated from Molecular Dynamics simulation and twenty crystallographic structures of InhA bound to different inhibitors are obtained from the Protein Data Bank. Fluorine directed modifications are performed to currently available anti-tuberculosis drug ethionamide. The modified drugs are optimized using B3LYP 6-31G (d,p) level of theory. Dipole moment, frontier orbital gap and thermodynamical properties such as electronic energy, enthalpy and Gibbs free energy of these optimized drugs are investigated. These drugs are subsequently docked against the conformers of InhA. Molecular docking against multiple InhA conformations show variation in ligand binding affinity and suggest that Ser94, Gly96, Lys165 and Ile194 amino acids play critical role on strong drug-InhA interaction. Modified drug N1 showed greater binding affinity compared to EN in most conformations. Structure of PDB ID: 2NSD and snapshot conformer at 5.5ns show most favorable binding with N1 compared to other conformers. Fluorine participates in forming fluorine bonds and contributes significantly in increasing binding affinity. Our study reveal that addition of trifluoromethyl group explicitly shows promise in improving thermodynamic properties and in enhancing hydrogen bonding and non-bonded interactions. Molecular dynamics (MD) simulation show that EN and N1 remained in the binding pocket similar to the docked pose of EN-InhA and E1-InhA complexes and also suggested that InhA binds to its inhibitor in inhibitor-induced folding manner. ADMET calculations predict modified drugs to have improved pharmacokinetic properties. Our study concludes that multiple receptor conformers based

  15. Nuclear progesterone receptors are up-regulated by estrogens in neurons and radial glial progenitors in the brain of zebrafish.

    Directory of Open Access Journals (Sweden)

    Nicolas Diotel

    Full Text Available In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation.

  16. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis

    OpenAIRE

    Horner, Michael A.; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M.; Thummel, Carl S.

    2009-01-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-choleste...

  17. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    International Nuclear Information System (INIS)

    Song, Kwang-Hoon

    2010-01-01

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  18. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kwang-Hoon, E-mail: ksong@kiom.re.kr [Korea Institute of Oriental Medicine, Daejeon 305-811 (Korea, Republic of)

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  19. Multiple Primary Tumors

    African Journals Online (AJOL)

    2017-12-05

    Dec 5, 2017 ... Multiple primary tumors occur in clinical practice causing diagnostic dilemma. It is not very .... was estrogen receptor negative, progesterone receptor negative, and ... cervical, ovarian, and urinary bladder cancers. Multiple.

  20. The Nuclear Receptor, Nor-1, Markedly Increases Type II Oxidative Muscle Fibers and Resistance to Fatigue

    OpenAIRE

    Pearen, Michael A.; Eriksson, Natalie A.; Fitzsimmons, Rebecca L.; Goode, Joel M.; Martel, Nick; Andrikopoulos, Sofianos; Muscat, George E. O.

    2012-01-01

    Nuclear hormone receptors (NR) have been implicated as regulators of lipid and carbohydrate metabolism. The orphan NR4A subgroup has emerged as regulators of metabolic function. Targeted silencing of neuron-derived orphan receptor 1 (Nor-1)/NR4A3 in skeletal muscle cells suggested that this NR was necessary for oxidative metabolism in vitro. To investigate the in vivo role of Nor-1, we have developed a mouse model with preferential expression of activated Nor-1 in skeletal muscle. In skeletal...

  1. Minireview: nuclear receptor coregulators of the p160 family: insights into inflammation and metabolism.

    Science.gov (United States)

    Rollins, David A; Coppo, Maddalena; Rogatsky, Inez

    2015-04-01

    Nuclear receptor coactivators (NCOAs) are multifunctional transcriptional coregulators for a growing number of signal-activated transcription factors. The members of the p160 family (NCOA1/2/3) are increasingly recognized as essential and nonredundant players in a number of physiological processes. In particular, accumulating evidence points to the pivotal roles that these coregulators play in inflammatory and metabolic pathways, both under homeostasis and in disease. Given that chronic inflammation of metabolic tissues ("metainflammation") is a driving force for the widespread epidemic of obesity, insulin resistance, cardiovascular disease, and associated comorbidities, deciphering the role of NCOAs in "normal" vs "pathological" inflammation and in metabolic processes is indeed a subject of extreme biomedical importance. Here, we review the evolving and, at times, contradictory, literature on the pleiotropic functions of NCOA1/2/3 in inflammation and metabolism as related to nuclear receptor actions and beyond. We then briefly discuss the potential utility of NCOAs as predictive markers for disease and/or possible therapeutic targets once a better understanding of their molecular and physiological actions is achieved.

  2. Induction of the nuclear IκB protein IκB-ζ upon stimulation of B cell antigen receptor

    International Nuclear Information System (INIS)

    Hijioka, Kuniaki; Matsuo, Susumu; Eto-Kimura, Akiko; Takeshige, Koichiro; Muta, Tatsushi

    2007-01-01

    The nuclear IκB protein IκB-ζ is barely detectable in resting cells and is induced in macrophages and fibroblasts following stimulation of innate immunity via Toll-like receptors. The induced IκB-ζ associates with nuclear factor (NF)-κB in the nucleus and plays crucial roles in its transcriptional regulation. Here, we examined the induction of IκB-ζ in B lymphocytes, one of the major players in adaptive immunity. Upon crosslinking of the surface immunoglobulin complex, IκB-ζ mRNA was robustly induced in murine B-lymphoma cell line A20 cells. While the crosslinking activated NF-κB and induced its target gene, IκB-α, co-crosslinking of Fcγ receptor IIB to the surface immunoglobulin complex inhibited NF-κB activation and the induction of IκB-ζ and IκB-α, suggesting critical roles for NF-κB in the induction. These results indicate that IκB-ζ is also induced by stimulation of B cell antigen receptor, suggesting that IκB-ζ is involved in the regulation of adaptive immune responses

  3. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan, E-mail: zhiyuan_nju@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Yu, Yijun, E-mail: yjun.yu@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Tang, Song [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Liu, Hongling, E-mail: hlliu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Su, Guanyong; Xie, Yuwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Giesy, John P. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hecker, Markus [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Yu, Hongxia [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China)

    2015-12-15

    Highlights: • Effects of TBOEP on expression of genes of several nuclear hormone receptors and their relationship with adverse effect pathways in zebrafish. • TBOEP was neither an agonist nor antagonist of AR or AhR as determined by use of in vitro mammalian cell-based receptor transactivation assays. • Modulation of ER- and MR-dependent pathways allowed for development of feasible receptor-mediated, critical mechanisms of toxic action. - Abstract: As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5 μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane × receptor (P × R)) pathways at 120 hpf. Exposure to 0.5 μM TBOEP significantly (p < 0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were

  4. Selective ligand activity at Nur/retinoid X receptor complexes revealed by dimer-specific bioluminescence resonance energy transfer-based sensors

    Science.gov (United States)

    Giner, Xavier C; Cotnoir-White, David; Mader, Sylvie; Lévesque, Daniel

    2017-01-01

    Retinoid X receptors (RXR) play a role as master regulators due to their capacity to form heterodimers with other nuclear receptors. Accordingly, retinoid signaling is involved in multiple biological processes, including development, cell differentiation, metabolism and cell death. However, the role and functions of RXR in different heterodimer complexes remain unsolved, mainly because most RXR drugs (called rexinoids) are not selective to specific heterodimer complexes. This also strongly limits the use of rexinoids for specific therapeutic approaches. In order to better characterize rexinoids at specific nuclear receptor complexes, we have developed and optimized luciferase protein complementation-based Bioluminescence Resonance Energy Transfer (BRET) assays, which can directly measure recruitment of a co-activator motif fused to yellow fluorescent protein (YFP) by specific nuclear receptor dimers. To validate the assays, we compared rexinoid modulation of co-activator recruitment by RXR homodimer, and heterodimers Nur77/RXR and Nurr1/RXR. Results reveal that some rexinoids display selective co-activator recruitment activities with homo- or hetero-dimer complexes. In particular, SR11237 (BMS649) has increased potency for recruitment of co-activator motif and transcriptional activity with the Nur77/RXR heterodimer compared to other complexes. This technology should prove useful to identify new compounds with specificity for individual dimeric species formed by nuclear receptors. PMID:26148973

  5. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    International Nuclear Information System (INIS)

    Chan, Yea-Kuang; Tsai, Yu-Ching

    2017-01-01

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  6. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yea-Kuang; Tsai, Yu-Ching [Institute of Nuclear Energy Research, Taoyuan City, Taiwan (China). Nuclear Engineering Division

    2017-03-15

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  7. Simulation of neutron multiplicity measurements using Geant4. Open source software for nuclear arms control

    Energy Technology Data Exchange (ETDEWEB)

    Kuett, Moritz

    2016-07-07

    Nuclear arms control, including nuclear safeguards and verification technologies for nuclear disarmament typically use software as part of many different technological applications. This thesis proposes to use three open source criteria for such software, allowing users and developers to have free access to a program, have access to the full source code and be able to publish modifications for the program. This proposition is presented and analyzed in detail, together with the description of the development of ''Open Neutron Multiplicity Simulation'', an open source software tool to simulate neutron multiplicity measurements. The description includes physical background of the method, details of the developed program and a comprehensive set of validation calculations.

  8. Multiple sclerosis test or the 4 humors: cerebrospinal fluid serum, tears and saliva; Esclerosis multiple test de los 4 humores: liquido cefalorraquideo, suero, lagrimas y saliva

    Energy Technology Data Exchange (ETDEWEB)

    Oehninger Gatti, C; Buzo Del Puerto, R; Chouza Antelo, C; Scotti Bianchi, C; Cibils, D; Alcantara Pelaez, J; Gomez, A; Heuguerot Oliveira, C

    1994-12-15

    4 were studied biological fluids easily accessible to the immune exploration (cerebrospinal fluid, serum, tears and saliva) in 25 patients with Multiple Sclerosis (MS) during a push clinical disease. The level of interleukin-2 receptor soluble (RsIL-2) was significantly increased by at least 3 of these 4 fluids, compared with normal controls. The sensitivity and specificity of its determination for the diagnosis of the condition was higher than other immunochemical parameters, oligoclonal distribution (OD) of immunoglobulin (Ig) light chain imbalance-and-evoked electrophysiological studies. This method is used to establish a more accurate diagnosis of Multiple Sclerosis as well as to monitor its biological activity with nuclear magnetic resonance (NMR) (Author) [Spanish] Se estudiaron 4 fluidos biologicos de facil acceso a la exploracion inmune (liquido cefalorraquideo, suero, lagrimas y saliva) en 25 pacientes con Esclerosis Multiple (EM) obtenidos durante un empuje clinico de la enfermedad. El nivel del receptor de Interleukina-2 soluble (RsIL-2) se encontro significativamente aumentado en por lo menos 3 de estos 4 fluidos, en comparacion con el de los controles normales. La sensibilidad y especificidad de su determinacion para el diagnostico de la afeccion, fue mayor que la de otros parametros inmunoquimicos - distribucion oligoclonal (DO) de inmunoglobulinas (Ig), disbalance de cadenas livianas - y estudios electrofisiologicos -potenciales evocados-. Este metodo es utilizado para establecer un diagnostico mas certero de la Esclerosis Multiple asi como tambien para monitorizar su actividad biologica junto con la resonancia magnetica nuclear (RMN)(Author)

  9. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors

    Science.gov (United States)

    Pal Choudhuri, Shreoshi; Delay, Rona J.; Delay, Eugene R.

    2015-01-01

    Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex. PMID:26110622

  10. Potential role of nuclear receptor ligand all-trans retinoic acids in the treatment of fungal keratitis

    Directory of Open Access Journals (Sweden)

    Hong-Yan Zhou

    2015-08-01

    Full Text Available Fungal keratitis (FK is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids (ATRA have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors. Retinoic acid receptor α (RAR α, retinoic acid receptor γ (RAR γ, and retinoid X receptor α (RXR α are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK.

  11. Integration of Nuclear- and Extranuclear-Initiated Estrogen Receptor Signaling in Breast Cancer Cells

    Science.gov (United States)

    Madak Erdogan, Zeynep

    2009-01-01

    Estrogenic hormones exert their effects through binding to Estrogen Receptors (ERs), which work in concert with coregulators and extranuclear signaling pathways to control gene expression in normal as well as cancerous states, including breast tumors. In this thesis, we have used multiple genome-wide analysis tools to elucidate various ways that…

  12. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways.

    Science.gov (United States)

    Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G

    2014-10-01

    Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.

  13. Optimizing antiemetic therapy in multiple-day and multiple cycles of chemotherapy

    DEFF Research Database (Denmark)

    Ellebaek, E.; Herrstedt, J.

    2008-01-01

    PURPOSE OF REVIEW: Only a few studies have investigated the effect of antiemetic therapy in patients treated with multiple-day or multiple cycles of chemotherapy. The present review will assess the available data, highlight the current recommendations and draw attention towards the remaining...... of chemotherapy the addition of a NK1-receptor antagonist aprepitant to standard antiemetic therapy has increased the antiemetic effect, and multiple cycle extension studies have demonstrated that this increment in effect is sustained during multiple cycles of chemotherapy. A recent study indicated...... that the dopamine D2-receptor antagonist metopimazine has some additive effect on delayed symptoms induced by multiple-day chemotherapy. SUMMARY: The development of the NK1-receptor antagonist aprepitant has significantly improved the antiemetic control in patients treated with multiple cycles of chemotherapy. Far...

  14. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA.

    Science.gov (United States)

    Booth, David S; Cheng, Yifan; Frankel, Alan D

    2014-12-08

    The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-Ran(GTP) nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.

  15. Nuclear import of Nkx2-2 is mediated by multiple pathways

    International Nuclear Information System (INIS)

    Lin, Wenbo; Xu, PengPeng; Guo, YingYing; Jia, Qingjie; Tao, Tao

    2017-01-01

    Nkx2-2 homeoprotein is essential for the development of the central nervous system and pancreas. Although the nuclear localization signals of Nkx2-2 have been identified, the responsible transport receptor is still unknown. Here, we demonstrate that imp α1 not only interacts with Nkx2-2 but also transports it into the nucleus in vitro by acting together with imp β1. However, the nuclear import of Nkx2-2 in cells was not inhibited in response to knockdown expression of endogenous imp β1 or over-expression of Bimax2. Furthermore, imp β1 and imp 13, but not imp 4, directly interact with Nkx2-2 and are capable of transporting Nkx2-2 in an in vitro import assay. By GST pull-down assay, we demonstrate that mutation of NLS1 or NLS2 has no effect on interaction with imp α1 or imp 13, but significantly reduced binding to imp β1. Thus, the nuclear import of Nkx2-2 is mediated not only by the classical import pathway but also directly by imp β1 or imp 13.

  16. Somatostatin and opioid receptors do not regulate proliferation or apoptosis of the human multiple myeloma U266 cells

    Directory of Open Access Journals (Sweden)

    Allouche Stéphane

    2009-06-01

    Full Text Available Abstract Background opioid and somatostatin receptors (SSTRs that can assemble as heterodimer were individually reported to modulate malignant cell proliferation and to favour apoptosis. Materials and methods: SSTRs and opioid receptors expression were examined by RT-PCR, western-blot and binding assays, cell proliferation was studied by XTT assay and propidium iodide (PI staining and apoptosis by annexin V-PI labelling. Results almost all human malignant haematological cell lines studied here expressed the five SSTRs. Further experiments were conducted on the human U266 multiple myeloma cells, which express also μ-opioid receptors (MOP-R. XTT assays and cell cycle studies provide no evidence for a significant effect upon opioid or somatostatin receptors stimulation. Furthermore, neither direct effect nor potentiation of the Fas-receptor pathway was detected on apoptosis after these treatments. Conclusion these data suggest that SSTRs or opioid receptors expression is not a guaranty for an anti-tumoral action in U266 cell line.

  17. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  18. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  19. [GPCRs heterodimerization: a new way towards the discovery of function for the orphan receptors?].

    Science.gov (United States)

    Levoye, Angélique; Jockers, Ralf

    2007-01-01

    G protein-coupled receptors (GPCRs), also called seven transmembrane domain (7TM) proteins, represent the largest family of cell surface receptors. GPCRs control a variety of physiological processes, are involved in multiple diseases and are major drug targets. Despite a vast effort of academic and industrial research, more than one hundred receptors remain orphans. These orphan GPCRs offer a great potential for drug discovery, as almost 60% of currently prescribed drugs target GPCRs. Deorphenization strategies have concentrated mainly on the identification of the natural ligands of these proteins. Recent advances have shown that orphan GPCRs, similar to orphan nuclear receptors, can regulate the function of non-orphan receptors by heterodimerization. These findings not only help to better understand the extraordinary diversity of GPCRs, but also open new perspectives for the identification of the function of these orphan receptors that hold great therapeutic potential.

  20. Mass estimation of loose parts in nuclear power plant based on multiple regression

    International Nuclear Information System (INIS)

    He, Yuanfeng; Cao, Yanlong; Yang, Jiangxin; Gan, Chunbiao

    2012-01-01

    According to the application of the Hilbert–Huang transform to the non-stationary signal and the relation between the mass of loose parts in nuclear power plant and corresponding frequency content, a new method for loose part mass estimation based on the marginal Hilbert–Huang spectrum (MHS) and multiple regression is proposed in this paper. The frequency spectrum of a loose part in a nuclear power plant can be expressed by the MHS. The multiple regression model that is constructed by the MHS feature of the impact signals for mass estimation is used to predict the unknown masses of a loose part. A simulated experiment verified that the method is feasible and the errors of the results are acceptable. (paper)

  1. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    Science.gov (United States)

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  2. Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Ze-Min Huang1,#, Jun Wu2,#, Zheng-Cai Jia1, Yi Tian1, Jun Tang3, Yan Tang1, Ying Wang2, Yu-Zhang Wu1,* & Bing Ni1,*

    2012-06-01

    Full Text Available The retinoid-related orphan nuclear receptor gamma (RORγplays critical roles in regulation of development, immunity andmetabolism. As transcription factor usually forms a proteincomplex to function, thus capturing and dissecting of theRORγ protein complex will be helpful for exploring themechanisms underlying those functions. After construction ofthe recombinant tandem affinity purification (TAP plasmid,pMSCVpuro RORγ-CTAP(SG, the nuclear localization ofRORγ-CTAP(SG fusion protein was verified. Followingisolation of RORγ protein complex by TAP strategy, sevencandidate interacting proteins were identified. Finally, the heatshock protein 90 (HSP90 and receptor-interacting protein 140(RIP140 were confirmed to interplay with RORγ byco-immunoprecipitation. Interference of HSP90 or/and RIP140genes resulted in dramatically decreased expression ofCYP2C8 gene, the RORγ target gene. Data from this studydemonstrate that HSP90 and RIP140 proteins interact withRORγ protein in a complex format and function asco-activators in the RORγ-mediated regulatory processes ofHepG2 cells.

  3. Nuclear winter: Global consequences of multiple nuclear explosions

    International Nuclear Information System (INIS)

    Turco, R.P.; Toon, O.B.; Ackerman, T.P.; Pollack, J.B.; Sagan, C.

    1984-01-01

    Concern has been raised over the short- and long-term consequences of the dust, smoke, radioactivity, and toxic vapors that would be generated by a nuclear war. The discovery that dense clouds of soil particles may have played a major role in past mass extinctions of life on Earth has encouraged the reconsideration of nuclear war effects. These developments have led the authors to calculate, using new data and improved models, the potential global environmental effects of dust and smoke clouds (henceforth referred to as nuclear dust and smoke) generated in a nuclear war. They neglect the short-term effects of blast, fire, and radiation. Most of the world's population could probably survive the initial nuclear exchange and would inherit the postwar environment. Accordingly, the longer-term and global-scale aftereffects of nuclear war might prove to be as important as the immediate consequences of the war

  4. Activation of multiple G-proteins by muscarinic M1 and M2 receptors

    Czech Academy of Sciences Publication Activity Database

    Michal, Pavel; El-Fakahany, E. E.; Doležal, Vladimír

    2006-01-01

    Roč. 27, č. S1 (2006), s. 404-404 ISSN 1671-4083. [World Congress of Pharmacology /15./. 02.07.2006-07.07.2006, Beijing] R&D Projects: GA ČR(CZ) GP305/05/P209; GA ČR(CZ) GA305/05/0452; GA MŠk(CZ) LC554 Grant - others:NIH(US) NS25743 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic receptors * multiple G-protein coupling Subject RIV: ED - Physiology

  5. Equivalent molecular mass of cytosolic and nuclear forms of Ah receptor from Hepa-1 cells determined by photoaffinity labeling with 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin

    International Nuclear Information System (INIS)

    Prokipcak, R.D.; Okey, A.B.

    1990-01-01

    The structure of the Ah receptor previously has been extensively characterized by reversible binding of the high affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin. We report the use of [ 3 H]2,3,7,8-tetrachlorodibenzo-p-dioxin as a photoaffinity ligand for Ah receptor from the mouse hepatoma cell line Hepa-1c1c9. Both cytosolic and nuclear forms of Ah receptor could be specifically photoaffinity-labeled, which allowed determination of molecular mass for the two forms under denaturing conditions. After analysis by fluorography of polyacrylamide gels run in the presence of sodium dodecyl sulfate, molecular mass for the cytosolic form of Ah receptor was estimated at 92,000 +/- 4,300 and that for the nuclear form was estimated at 93,500 +/- 3,400. Receptor in mixture of cytosol and nuclear extract (each labeled separately with [ 3 H]2,3,7,8-tetrachlorodibenzo-p-dioxin) migrated as a single band. These results are consistent with the presence of a common ligand-binding subunit of identical molecular mass in both cytosolic and nuclear complexes

  6. A unique nuclear receptor direct repeat 17 (DR17) is present within the upstream region of Schistosoma mansoni female-specific p14 gene

    International Nuclear Information System (INIS)

    Fantappie, Marcelo Rosado; Furtado, Daniel Rodrigues; Rumjanek, Franklin David; LoVerde, Philip T.

    2008-01-01

    The eggs produced by sexually mature female Schistosma mansoni are responsible for the pathogenesis of the disease. The eggshell precursor gene p14 is expressed only in the vitelline cells of sexually mature female worms in response to a yet unidentified male stimulus. Herein, we report the identification of a novel nuclear receptor response element in the upstream region of the p14 gene. This element contains the canonical hexameric DNA core motif, 5'-PuGGTCA, composed of an atypically spaced direct repeat (DR17). Schistosome nuclear receptors SmRXR1 and SmNR1 specifically bound to the p14-DR17 element as a heterodimer. SmRXR1, but not SmNR1, bound to the motif as a monomer. Introduction of mutations in the TCA core sequence completely abolished the binding by SmRXR1/SmNR1 heterodimer. This finding supports our hypothesis that the expression of Schistosoma mansonip14 gene is regulated through the nuclear receptor signaling pathway

  7. Brazilian nuclear power plants decommissioning plan for a multiple reactor site

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Deiglys B.; Moreira, Joao M.L.; Maiorino, Jose R., E-mail: deiglys.monteiro@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas. Programa de Pos-Graduacao em Energia e Engenharia da Energia

    2015-07-01

    Actually, Brazil has two operating Nuclear Power Plants and a third one under construction, all at Central Nuclear Almirante Alvaro Alberto - CNAAA. To comply with regulatory aspects the power plants operator, Eletronuclear, must present to Brazilian Nuclear Regulatory Agency, CNEN, a decommissioning plan. Brazilian experience with decommissioning is limited because none of any nuclear reactor at the country was decommissioned. In literature, decommissioning process is well described despite few nuclear power reactors have been decommissioned around the world. Some different approach is desirable for multiple reactors sites, case of CNAAA site. During the decommissioning, a great amount of wastes will be produced and have to be properly managed. Particularly, the construction of Auxiliary Services on the site could be a good choice due to the possibility of reducing costs. The present work intends to present to the Eletronuclear some aspects of the decommissioning concept and decommissioning management, storage and disposal de wastes, based on the available literature, regulatory standards of CNEN and international experience as well as to suggest some solutions to be implemented at CNAAA site before starts the decommissioning project in order to maximize the benefits. (author)

  8. Brazilian nuclear power plants decommissioning plan for a multiple reactor site

    International Nuclear Information System (INIS)

    Monteiro, Deiglys B.; Moreira, Joao M.L.; Maiorino, Jose R.

    2015-01-01

    Actually, Brazil has two operating Nuclear Power Plants and a third one under construction, all at Central Nuclear Almirante Alvaro Alberto - CNAAA. To comply with regulatory aspects the power plants operator, Eletronuclear, must present to Brazilian Nuclear Regulatory Agency, CNEN, a decommissioning plan. Brazilian experience with decommissioning is limited because none of any nuclear reactor at the country was decommissioned. In literature, decommissioning process is well described despite few nuclear power reactors have been decommissioned around the world. Some different approach is desirable for multiple reactors sites, case of CNAAA site. During the decommissioning, a great amount of wastes will be produced and have to be properly managed. Particularly, the construction of Auxiliary Services on the site could be a good choice due to the possibility of reducing costs. The present work intends to present to the Eletronuclear some aspects of the decommissioning concept and decommissioning management, storage and disposal de wastes, based on the available literature, regulatory standards of CNEN and international experience as well as to suggest some solutions to be implemented at CNAAA site before starts the decommissioning project in order to maximize the benefits. (author)

  9. Immunohistochemical features of progesterone receptors expression of placental barrier in women with multiple pregnancies resulting from assisted reproduction

    Directory of Open Access Journals (Sweden)

    T. D. Zadorozhna

    2016-01-01

    Full Text Available Hormonal disorders are one of the main known causes of miscarriage and preterm birth in multiple pregnancies resulting from assisted reproductive technology (ART. Progesterone and the number of its receptors play an important role in the preservation and prolongation of pregnancy and it is the pressing issue of our time. The study of placentas, as the main site of synthesis of progesterone, has high informative potential and it is the most important diagnostic object, and information received by its research is essential for the full conclusion on the causes, mechanisms, close and long-term effects of multiple pregnancy pathology. Aim. The aim of our study was to investigate immunohistochemical features of placentas from women with dichorionic diamniotic twin pregnancies in spontaneous fertilization and after use of assisted reproductive technology (ART. Methods and results. According to this goal we examined 94 women, 44 of whom had multiple pregnancies due to ART, 42 with separate multiple pregnancy and 38 women with a singleton pregnancy. We carried out clinical and statistical analysis of the course of pregnancy and childbirth in the studied groups. During the study it was found that multiple pregnancies due to assisted reproduction belong to the high risk of gestation, at which premature births occur much more frequently than in singleton pregnancies. We were the first to carry out the immunohistochemical study of placentas in which the highest expression of progesterone receptors in the nuclei of cells of decidua (45% related to the parent structure of the placenta from women with multiple pregnancies caused by ART is found. It is also found that with increasing gestational age, there has been a significant decrease in the expression of the activity of progesterone receptors (from 45 to 2.5%, regardless of the method of conception and the number of fetuses. Conclusions. The results of the study point to the definitive link of structures of

  10. Nuclear exportin receptor CAS regulates the NPI-1-mediated nuclear import of HIV-1 Vpr.

    Directory of Open Access Journals (Sweden)

    Eri Takeda

    Full Text Available Vpr, an accessory protein of human immunodeficiency virus type 1, is a multifunctional protein that plays an important role in viral replication. We have previously shown that the region between residues 17 and 74 of Vpr (Vpr(N17C74 contained a bona fide nuclear localization signal and it is targeted Vpr(N17C74 to the nuclear envelope and then imported into the nucleus by importin α (Impα alone. The interaction between Impα and Vpr is important not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages; however, it was unclear whether full-length Vpr enters the nucleus in a manner similar to Vpr(N17C74. This study investigated the nuclear import of full-length Vpr using the three typical Impα isoforms, Rch1, Qip1 and NPI-1, and revealed that full-length Vpr is selectively imported by NPI-1, but not Rch1 and Qip1, after it makes contact with the perinuclear region in digitonin-permeabilized cells. A binding assay using the three Impα isoforms showed that Vpr bound preferentially to the ninth armadillo repeat (ARM region (which is also essential for the binding of CAS, the export receptor for Impα in all three isoforms. Comparison of biochemical binding affinities between Vpr and the Impα isoforms using surface plasmon resonance analysis demonstrated almost identical values for the binding of Vpr to the full-length isoforms and to their C-terminal domains. By contrast, the data showed that, in the presence of CAS, Vpr was released from the Vpr/NPI-1 complex but was not released from Rch1 or Qip1. Finally, the NPI-1-mediated nuclear import of Vpr was greatly reduced in semi-intact CAS knocked-down cells and was recovered by the addition of exogenous CAS. This report is the first to show the requirement for and the regulation of CAS in the functioning of the Vpr-Impα complex.

  11. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75

    OpenAIRE

    Cáceres, Lucía; Necakov, Aleksandar S.; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J.H.; Krause, Henry M.

    2011-01-01

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer part...

  12. Action mechanisms of Liver X Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Gabbi, Chiara; Warner, Margaret [Center for Nuclear Receptors and Cell Signaling, University of Houston, 3056 Cullen Blv, 77204 Houston, Texas (United States); Gustafsson, Jan-Åke, E-mail: jgustafs@central.uh.edu [Center for Nuclear Receptors and Cell Signaling, University of Houston, 3056 Cullen Blv, 77204 Houston, Texas (United States); Department of Biosciences and Nutrition, Karolinska Institutet, Novum S-141 86 (Sweden)

    2014-04-11

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors.

  13. Action mechanisms of Liver X Receptors

    International Nuclear Information System (INIS)

    Gabbi, Chiara; Warner, Margaret; Gustafsson, Jan-Åke

    2014-01-01

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors

  14. Identification of the functional domains of ANT-1, a novel coactivator of the androgen receptor

    International Nuclear Information System (INIS)

    Fan Shuli; Goto, Kiminobu; Chen Guangchun; Morinaga, Hidetaka; Nomura, Masatoshi; Okabe, Taijiro; Nawata, Hajime; Yanase, Toshihiko

    2006-01-01

    Previously, we identified a transcriptional coactivator for the activation function-1 (AF-1) domain of the human androgen receptor (AR) and designated it androgen receptor N-terminal domain transactivating protein-1 (ANT-1). This coactivator, which contains multiple tetratricopeptide repeat (TPR) motifs from amino acid (aa) 294, is identical to a component of U5 small nuclear ribonucleoprotein particles and binds specifically to the AR or glucocorticoid receptor. Here, we identified four distinct functional domains. The AR-AF-1-binding domain, which bound to either aa 180-360 or 360-532 in AR-AF-1, clearly overlapped with TAU-1 and TAU-5. This domain and the subnuclear speckle formation domain in ANT-1 were assigned within the TPR motifs, while the transactivating and nuclear localization signal domains resided within the N-terminal sequence. The existence of these functional domains may further support the idea that ANT-1 can function as an AR-AF-1-specific coactivator while mediating a transcription-splicing coupling

  15. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells.

    Science.gov (United States)

    Chen, Liming; Bao, Yifan; Piekos, Stephanie C; Zhu, Kexin; Zhang, Lirong; Zhong, Xiao-Bo

    2018-07-01

    Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1 α (HNF1 α ), hepatocyte nuclear factor 4 α (HNF4 α ), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1 α antisense RNA 1 (HNF1 α -AS1) and HNF4 α antisense RNA 1 (HNF4 α -AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1 α and HNF4 α affected expression of a wide range of P450s as well as other transcription factors. HNF1 α and HNF4 α controlled the expression of their neighborhood lncRNAs, HNF1 α -AS1 and HNF4 α -AS1, respectively. HNF1 α -AS1 and HNF4 α -AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  16. GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates gonad development and neuronal functions in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Pavol Mikoláš

    Full Text Available NCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA class. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.

  17. Molecular Interactions between NR4A Orphan Nuclear Receptors and NF-κB Are Required for Appropriate Inflammatory Responses and Immune Cell Homeostasis.

    Science.gov (United States)

    Murphy, Evelyn P; Crean, Daniel

    2015-06-29

    Appropriate innate and adaptive immune responses are essential for protection and resolution against chemical, physical or biological insults. Immune cell polarization is fundamental in orchestrating distinct phases of inflammation, specifically acute phase responses followed by resolution and tissue repair. Dysregulation of immune cell and inflammatory responses is a hallmark of multiple diseases encompassing atherosclerosis, rheumatoid arthritis, psoriasis and metabolic syndromes. A master transcriptional mediator of diverse inflammatory signaling and immune cell function is NF-κB, and altered control of this key regulator can lead to an effective switch from acute to chronic inflammatory responses. Members of the nuclear receptor (NR) superfamily of ligand-dependent transcription factors crosstalk with NF-κB to regulate immune cell function(s). Within the NR superfamily the NR4A1-3 orphan receptors have emerged as important regulators of immune cell polarization and NF-κB signaling. NR4A receptors modulate NF-κB activity in a dynamic fashion, either repressing or enhancing target gene expression leading to altered inflammatory outcome. Here we will discuss the pivotal role NR4A's receptors play in orchestrating immune cell homeostasis through molecular crosstalk with NF-κB. Specifically, we will examine such NR4A/NF-κB interactions within the context of distinct cell phenotypes, including monocyte, macrophage, T cells, endothelial, and mesenchymal cells, which play a role in inflammation-associated disease. Finally, we review the therapeutic potential of altering NR4A/NF-κB interactions to limit hyper-inflammatory responses in vivo.

  18. Determining of the nuclear composition of primary cosmic rays from the experimental distributions of multiple muons in atmospheric showers

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    1993-01-01

    Various approaches are discussed for determining the nuclear composition of the primary cosmic radiation from the distributions of multiple muons. Results are presented of calculations of the distributions of multiple muons for A 1 , A 4 , A 14 , A 26 , A 56 nuclei for an infinite plane and for the underground scintillation telescope of the Institute for Nuclear Research of the Academy of Sciences of Russia.The most suitable technique for determination of the primary nuclear composition of cosmic rays from the distribution of multiple muons is shown to be the approximate solution of a set of N equations, in which the respective coefficients of the contributions of various nuclei A i (i=1-N) to the primary composition serve as variables, while the remaining parts of these equations are the distributions of multiple muons obtained experimentally. 7 refs.; 2 tabs

  19. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients.

    Directory of Open Access Journals (Sweden)

    Anne Waschbisch

    Full Text Available Immunoglobulin-like transcript (ILT 3 and 4 are inhibitory receptors that modulate immune responses. Their expression has been reported to be affected by interferon, offering a possible mechanism by which this cytokine exerts its therapeutic effect in multiple sclerosis, a condition thought to involve excessive immune activity. To investigate this possibility, we measured expression of ILT3 and ILT4 on immune cells from multiple sclerosis patients, and in post-mortem brain tissue. We also studied the ability of interferon beta, alone or in combination with vitamin D, to induce upregulation of these receptors in vitro, and compared expression levels between interferon-treated and untreated multiple sclerosis patients. In vitro interferon beta treatment led to a robust upregulation of ILT3 and ILT4 on monocytes, and dihydroxyvitamin D3 increased expression of ILT3 but not ILT4. ILT3 was abundant in demyelinating lesions in postmortem brain, and expression on monocytes in the cerebrospinal fluid was higher than in peripheral blood, suggesting that the central nervous system milieu induces ILT3, or that ILT3 positive monocytes preferentially enter the brain. Our data are consistent with involvement of ILT3 and ILT4 in the modulation of immune responsiveness in multiple sclerosis by both interferon and vitamin D.

  20. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    Science.gov (United States)

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  1. A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery.

    Science.gov (United States)

    Tiefenbach, Jens; Moll, Pamela R; Nelson, Meryl R; Hu, Chun; Baev, Lilia; Kislinger, Thomas; Krause, Henry M

    2010-03-22

    Nuclear receptors (NRs) belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio). The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1) respond as expected to endogenous zebrafish hormones and cofactors, 2) facilitate efficient receptor and cofactor purification, 3) respond robustly to NR hormones and drugs and 4) yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors.

  2. A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery.

    Directory of Open Access Journals (Sweden)

    Jens Tiefenbach

    2010-03-01

    Full Text Available Nuclear receptors (NRs belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio. The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1 respond as expected to endogenous zebrafish hormones and cofactors, 2 facilitate efficient receptor and cofactor purification, 3 respond robustly to NR hormones and drugs and 4 yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors.

  3. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France); Boublik, Yvan [CNRS, UMR5237, Centre de Recherche de Biochimie Macromoléculaire (CRBM), 34293 Montpellier (France); Pérez, Efrèn [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Germain, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), BP 10142, 67404 Illkirch CEDEX (France); Lera, Angel R. de [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Bourguet, William, E-mail: bourguet@cbs.cnrs.fr [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France)

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  4. Two-dimensional multiplicity fluctuation analysis of target residues in nuclear collisions

    International Nuclear Information System (INIS)

    Dong-Hai, Zhang; Yao-Jie, Niu; Li-Chun, Wang; Wen-Jun, Yan; Li-Juan, Gao; Ming-Xing, Li; Li-Ping, Wu; Hui-Ling, Li; Jun-Sheng, Li

    2010-01-01

    Multiplicity fluctuation of the target residues emitted in the interactions in a wide range of projectile energies from 500 A MeV to 60 A GeV is investigated in the framework of two-dimensional scaled factorial moment methodology. The evidence of non-statistical multiplicity fluctuation is found in 16 O–AgBr collisions at 60 A GeV, but not in 56 Fe–AgBr collisions at 500 A MeV, 84 Kr–AgBr collisions at 1.7 A GeV, 16 O–AgBr collisions at 3.7 A GeV and 197 Au–AgBr collisions at 10.7 A GeV. (nuclear physics)

  5. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  6. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine.

    Science.gov (United States)

    Li, Ling; Bonneton, François; Chen, Xiao Yong; Laudet, Vincent

    2015-02-05

    Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Molecular mechanism for the involvement of nuclear receptor FXR in HBV-associated hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Yong-dong Niu

    2011-08-01

    Full Text Available Farnesoid X receptor (FXR, also termed nuclear receptor NR1H4 is critically involved in the regulation of nascent bile formation and bile acid enterohepatic circulation. FXR and bile acids have been shown to play roles in liver regeneration and inflammatory responses. There is increasing evidence suggesting that FXR and the FXR signaling pathway are involved in the pathophysiology of a wide range of liver diseases, such as viral hepatitis, cirrhosis, and hepatocellular carcinoma (HCC. Here we discuss the latest discoveries of FXR functions with relevance to bile acid metabolism and HBV-associated HCC. More specifically, the goal of this review is to discuss the roles of FXR and bile acids in regulating HBV replication and how disregulation of the FXR-bile acid signaling pathway is involved in HBV-associated hepatocarcinogenesis.

  8. Reliability Analysis Multiple Redundancy Controller for Nuclear Safety Systems

    International Nuclear Information System (INIS)

    Son, Gwangseop; Kim, Donghoon; Son, Choulwoong

    2013-01-01

    This controller is configured for multiple modular redundancy (MMR) composed of dual modular redundancy (DMR) and triple modular redundancy (TMR). The architecture of MRC is briefly described, and the Markov model is developed. Based on the model, the reliability and Mean Time To Failure (MTTF) are analyzed. In this paper, the architecture of MRC for nuclear safety systems is described. The MRC is configured for multiple modular redundancy (MMR) composed of dual modular redundancy (DMR) and triple modular redundancy (TMR). Markov models for MRC architecture was developed, and then the reliability was analyzed by using the model. From the reliability analyses for the MRC, it is obtained that the failure rate of each module in the MRC should be less than 2 Χ 10 -4 /hour and the MTTF average increase rate depending on FCF increment, i. e. ΔMTTF/ΔFCF, is 4 months/0.1

  9. Multiple microprocessor based nuclear reactor power monitor

    International Nuclear Information System (INIS)

    Lewis, P.S.; Ethridge, C.D.

    1979-01-01

    The reactor power monitor is a portable multiple-microprocessor controlled data acquisition device being built for the International Atomic Energy Association. Its function is to measure and record the hourly integrated operating thermal power level of a nuclear reactor for the purpose of detecting unannounced plutonium production. The monitor consists of a 3 He proportional neutron detector, a write-only cassette tape drive and control electronics based on two INTEL 8748 microprocessors. The reactor power monitor operates from house power supplied by the plant operator, but has eight hours of battery backup to cover power interruptions. Both the hourly power levels and any line power interruptions are recorded on tape and in memory. Intermediate dumps from the memory to a data terminal or strip chart recorder can be performed without interrupting data collection

  10. Structure and expression of two nuclear receptor genes in marsupials: insights into the evolution of the antisense overlap between the α-thyroid hormone receptor and Rev-erbα

    Directory of Open Access Journals (Sweden)

    Brown M Scott

    2010-12-01

    Full Text Available Abstract Background Alternative processing of α-thyroid hormone receptor (TRα, NR1A1 mRNAs gives rise to two functionally antagonistic nuclear receptors: TRα1, the α-type receptor, and TRα2, a non-hormone binding variant that is found only in mammals. TRα2 shares an unusual antisense coding overlap with mRNA for Rev-erbα (NR1D1, another nuclear receptor protein. In this study we examine the structure and expression of these genes in the gray short-tailed opossum, Monodelphis domestica, in comparison with that of eutherian mammals and three other marsupial species, Didelphis virginiana, Potorous tridactylus and Macropus eugenii, in order to understand the evolution and regulatory role of this antisense overlap. Results The sequence, expression and genomic organization of mRNAs encoding TRα1 and Rev-erbα are very similar in the opossum and eutherian mammals. However, the sequence corresponding to the TRα2 coding region appears truncated by almost 100 amino acids. While expression of TRα1 and Rev-erbα was readily detected in all tissues of M. domestica ages 0 days to 18 weeks, TRα2 mRNA was not detected in any tissue or stage examined. These results contrast with the widespread and abundant expression of TRα2 in rodents and other eutherian mammals. To examine requirements for alternative splicing of TRα mRNAs, a series of chimeric minigenes was constructed. Results show that the opossum TRα2-specific 5' splice site sequence is fully competent for splicing but the sequence homologous to the TRα2 3' splice site is not, even though the marsupial sequences are remarkably similar to core splice site elements in rat. Conclusions Our results strongly suggest that the variant nuclear receptor isoform, TRα2, is not expressed in marsupials and that the antisense overlap between TRα and Rev-erbα thus is unique to eutherian mammals. Further investigation of the TRα and Rev-erbα genes in marsupial and eutherian species promises to yield

  11. Structure and expression of two nuclear receptor genes in marsupials: insights into the evolution of the antisense overlap between the α-thyroid hormone receptor and Rev-erbα

    Science.gov (United States)

    2010-01-01

    Background Alternative processing of α-thyroid hormone receptor (TRα, NR1A1) mRNAs gives rise to two functionally antagonistic nuclear receptors: TRα1, the α-type receptor, and TRα2, a non-hormone binding variant that is found only in mammals. TRα2 shares an unusual antisense coding overlap with mRNA for Rev-erbα (NR1D1), another nuclear receptor protein. In this study we examine the structure and expression of these genes in the gray short-tailed opossum, Monodelphis domestica, in comparison with that of eutherian mammals and three other marsupial species, Didelphis virginiana, Potorous tridactylus and Macropus eugenii, in order to understand the evolution and regulatory role of this antisense overlap. Results The sequence, expression and genomic organization of mRNAs encoding TRα1 and Rev-erbα are very similar in the opossum and eutherian mammals. However, the sequence corresponding to the TRα2 coding region appears truncated by almost 100 amino acids. While expression of TRα1 and Rev-erbα was readily detected in all tissues of M. domestica ages 0 days to 18 weeks, TRα2 mRNA was not detected in any tissue or stage examined. These results contrast with the widespread and abundant expression of TRα2 in rodents and other eutherian mammals. To examine requirements for alternative splicing of TRα mRNAs, a series of chimeric minigenes was constructed. Results show that the opossum TRα2-specific 5' splice site sequence is fully competent for splicing but the sequence homologous to the TRα2 3' splice site is not, even though the marsupial sequences are remarkably similar to core splice site elements in rat. Conclusions Our results strongly suggest that the variant nuclear receptor isoform, TRα2, is not expressed in marsupials and that the antisense overlap between TRα and Rev-erbα thus is unique to eutherian mammals. Further investigation of the TRα and Rev-erbα genes in marsupial and eutherian species promises to yield additional insight into the

  12. Nuclear receptor NHR-25 is required for cell-shape dynamics during epidermal differentiation in Caenorhabditis elegans

    Czech Academy of Sciences Publication Activity Database

    Šilhánková, Marie; Jindra, Marek; Asahina, Masako

    2005-01-01

    Roč. 118, č. 1 (2005), s. 223-232 ISSN 0021-9533 R&D Projects: GA AV ČR KJB5022303; GA ČR GD524/03/H133 Institutional research plan: CEZ:AV0Z60220518 Keywords : Caenorhabditis elegans * nuclear receptor * epidermal stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.543, year: 2005

  13. The enactment of the Nuclear Waste Policy Act of 1982: A multiple perspectives explanation

    International Nuclear Information System (INIS)

    Clary, B.B.

    1991-01-01

    The Nuclear Waste Policy Act (NWPA) is generally analyzed from the distinct perspective of any given actor involved in the nuclear waste policymaking process. Yet, these perspectives often rest on totally different models of decisionmaking. This article applies a multiple perspective explanation as developed by Allison (1971) and Linstone (1984) to the NWPA and explains policy outcomes by reference to three models of decisionmaking: rational actor, organizational processes and governmental politics. Commonalities and points of disjointure in the three models are highlighted and prospects for future nuclear waste disposal policy development are assessed using an integrated decisionmaking framework

  14. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    Science.gov (United States)

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  15. Optimizing Sparse Matrix-Multiple Vectors Multiplication for Nuclear Configuration Interaction Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aktulga, Hasan Metin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-14

    Obtaining highly accurate predictions on the properties of light atomic nuclei using the configuration interaction (CI) approach requires computing a few extremal Eigen pairs of the many-body nuclear Hamiltonian matrix. In the Many-body Fermion Dynamics for nuclei (MFDn) code, a block Eigen solver is used for this purpose. Due to the large size of the sparse matrices involved, a significant fraction of the time spent on the Eigen value computations is associated with the multiplication of a sparse matrix (and the transpose of that matrix) with multiple vectors (SpMM and SpMM-T). Existing implementations of SpMM and SpMM-T significantly underperform expectations. Thus, in this paper, we present and analyze optimized implementations of SpMM and SpMM-T. We base our implementation on the compressed sparse blocks (CSB) matrix format and target systems with multi-core architectures. We develop a performance model that allows us to understand and estimate the performance characteristics of our SpMM kernel implementations, and demonstrate the efficiency of our implementation on a series of real-world matrices extracted from MFDn. In particular, we obtain 3-4 speedup on the requisite operations over good implementations based on the commonly used compressed sparse row (CSR) matrix format. The improvements in the SpMM kernel suggest we may attain roughly a 40% speed up in the overall execution time of the block Eigen solver used in MFDn.

  16. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells

    Science.gov (United States)

    Lombardi, Maria; Castoria, Gabriella; Migliaccio, Antimo; Barone, Maria Vittoria; Di Stasio, Rosina; Ciociola, Alessandra; Bottero, Daniela; Yamaguchi, Hiroshi; Appella, Ettore; Auricchio, Ferdinando

    2008-01-01

    In breast cancer cells, cytoplasmic localization of the estradiol receptor α (ERα) regulates estradiol-dependent S phase entry. We identified a nuclear export sequence (NES) in ERα and show that its export is dependent on both estradiol-mediated phosphatidylinositol-3-kinase (PI3K)/AKT activation and chromosome region maintenance 1 (CRM1). A Tat peptide containing the ERα NES disrupts ERα–CRM1 interaction and prevents nuclear export of ERα- and estradiol-induced DNA synthesis. NES-ERα mutants do not exit the nucleus and inhibit estradiol-induced S phase entry; ERα-dependent transcription is normal. ERα is associated with Forkhead proteins in the nucleus, and estradiol stimulates nuclear exit of both proteins. ERα knockdown or ERα NES mutations prevent ERα and Forkhead nuclear export. A mutant of forkhead in rhabdomyosarcoma (FKHR), which cannot be phosphorylated by estradiol-activated AKT, does not associate with ERα and is trapped in the nucleus, blocking S phase entry. In conclusion, estradiol-induced AKT-dependent phosphorylation of FKHR drives its association with ERα, thereby triggering complex export from the nucleus necessary for initiation of DNA synthesis and S phase entry. PMID:18644889

  17. Antinuclear antibodies giving the 'multiple nuclear dots' or the 'rim-like/membranous' patterns: diagnostic accuracy for primary biliary cirrhosis.

    Science.gov (United States)

    Granito, A; Muratori, P; Muratori, L; Pappas, G; Cassani, F; Worthington, J; Guidi, M; Ferri, S; DE Molo, C; Lenzi, M; Chapman, R W; Bianchi, F B

    2006-12-01

    Serum antinuclear antibodies giving the 'multiple nuclear dots' or the 'rim-like/membranous' patterns are frequently detected by indirect immunofluorescence on HEp-2 cells in patients with primary biliary cirrhosis. To assess the accuracy of multiple nuclear dot and rim-like/membranous antinuclear antibodies for the diagnosis of primary biliary cirrhosis. Sera from 4371 consecutive patients referred to our laboratory were analysed under code for antinuclear antibodies testing by indirect immunofluorescence on HEp-2 cells. Review of the clinical records of the 4371 patients allowed identification of 101 patients with antimitochondrial antibody-positive primary biliary cirrhosis and 22 with antimitochondrial antibody-negative variant. Multiple nuclear dot and/or rim-like/membranous patterns were found in 59 (1.3%) of the 4371 patients: 31 antimitochondrial antibody-positive primary biliary cirrhosis, 17 antimitochondrial antibody-negative primary biliary cirrhosis and 11 non-primary biliary cirrhosis. The specificity for primary biliary cirrhosis of both the antinuclear antibodies pattern was 99%. Positive predictive value and likelihood ratio for a positive test were 86% (95% CI: 72.7-94) and 221 (95% CI: 91.7-544) for multiple nuclear dot, 79% (95% CI: 62.2-90.1) and 132 (95% CI: 56.8-312.7) for rim-like/membranous, respectively. Multiple nuclear dot and rim-like/membranous antinuclear antibodies are rare findings. Their positivity strongly suggests the diagnosis of primary biliary cirrhosis, irrespective of antimitochondrial antibody status. The high specificity for primary biliary cirrhosis makes them a useful diagnostic tool especially in antimitochondrial antibody-negative patients.

  18. Liver X receptor α and farnesoid X receptor are major transcriptional regulators of OATP1B1.

    Science.gov (United States)

    Meyer Zu Schwabedissen, Henriette E; Böttcher, Kerstin; Chaudhry, Amarjit; Kroemer, Heyo K; Schuetz, Erin G; Kim, Richard B

    2010-11-01

    Organic anion transporting polypeptide 1B1 (OATP1B1) is a liver-enriched transporter involved in the hepatocellular uptake of many endogenous molecules and several structurally divergent drugs in clinical use. Although OATP1B1 coding region polymorphisms are known to make an impact on substrate drug disposition in humans, little is known regarding the mechanisms underlying the transcriptional regulation of this transporter. In this study, we note that messenger RNA (mRNA) expression of OATP1B1 in a large human liver bank exhibited marked interindividual variability that was not associated with coding region polymorphisms. Accordingly, we hypothesized that such variability in expression is reflective of nuclear receptor-mediated transcriptional regulation of this transporter. We tested prototypical ligands for the nuclear receptors pregnane X receptor (PXR), constitutive androstane receptor (CAR), liver X receptor (LXR) α, and farnesoid X receptor (FXR) in a human hepatoma-derived cell line and noted induction of OATP1B1 mRNA when the cells were treated with LXRα or FXR ligands. To confirm a direct role for LXRα and FXR to OATP1B1 expression, we performed detailed promoter analysis and cell-based reporter gene assays resulting in the identification of two functional FXR response elements and one LXRα response element. The direct interaction between nuclear receptors with the identified response elements was assessed using chromatin immunoprecipitation assays. Using isolated primary human hepatocytes, we show that LXRα or FXR agonists, but not PXR or CAR agonists, are capable of OATP1B1 induction. We note that OATP1B1 transcriptional regulation is under dual nuclear receptor control through the oxysterol sensing LXRα and the bile acid sensor FXR. Accordingly, the interplay between OATP1B1 and nuclear receptors may play an important and heretofore unrecognized role during cholestasis, drug-induced liver injury, and OATP1B1 induction-related drug interactions.

  19. Inhibition of the Nuclear Export Receptor XPO1 as a Therapeutic Target for Platinum-Resistant Ovarian Cancer

    DEFF Research Database (Denmark)

    Chen, Ying; Camacho, Sandra Catalina; Silvers, Thomas R

    2017-01-01

    Purpose: The high fatality-to-case ratio of ovarian cancer is directly related to platinum resistance. Exportin-1 (XPO1) is a nuclear exporter that mediates nuclear export of multiple tumor suppressors. We investigated possible clinicopathologic correlations of XPO1 expression levels and evaluate...

  20. Distinct signaling mechanisms in multiple developmental pathways by the SCRAMBLED receptor of Arabidopsis.

    Science.gov (United States)

    Kwak, Su-Hwan; Woo, Sooah; Lee, Myeong Min; Schiefelbein, John

    2014-10-01

    SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase in Arabidopsis (Arabidopsis thaliana), is required for positional signaling in the root epidermis and for tissue/organ development in the shoot. To further understand SCM action, we generated a series of kinase domain variants and analyzed their ability to complement scm mutant defects. We found that the SCM kinase domain, but not kinase activity, is required for its role in root epidermal patterning, supporting the view that SCM is an atypical receptor kinase. We also describe a previously uncharacterized role for SCM in fruit dehiscence, because mature siliques from scm mutants fail to open properly. Interestingly, the kinase domain of SCM appears to be dispensable for this developmental process. Furthermore, we found that most of the SCM kinase domain mutations dramatically inhibit inflorescence development. Because this process is not affected in scm null mutants, it is likely that SCM acts redundantly to regulate inflorescence size. The importance of distinct kinase residues for these three developmental processes provides an explanation for the maintenance of the conserved kinase domain in the SCM protein, and it may generally explain its conservation in other atypical kinases. Furthermore, these results indicate that individual leucine-rich repeat receptor-like kinases may participate in multiple pathways using distinct signaling mechanisms to mediate diverse cellular communication events. © 2014 American Society of Plant Biologists. All Rights Reserved.

  1. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Daniel P Beiting

    2015-07-01

    Full Text Available The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ-induced signal transducer and activator of transcription 1 (STAT1 activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  2. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Science.gov (United States)

    Beiting, Daniel P; Hidano, Shinya; Baggs, Julie E; Geskes, Jeanne M; Fang, Qun; Wherry, E John; Hunter, Christopher A; Roos, David S; Cherry, Sara

    2015-07-01

    The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ)-induced signal transducer and activator of transcription 1 (STAT1) activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  3. Deficiency of the NR4A Orphan Nuclear Receptor NOR1 attenuates Neointima Formation Following Vascular Injury

    Science.gov (United States)

    Nomiyama, Takashi; Zhao, Yue; Gizard, Florence; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Conneely, Orla M.; Bruemmer, Dennis

    2009-01-01

    Background The neuron-derived orphan receptor-1 (NOR1) belongs to the evolutionary highly conserved and most ancient NR4A subfamily of the nuclear hormone receptor superfamily. Members of this subfamily function as early response genes regulating key cellular processes including proliferation, differentiation, and survival. Although NOR1 has previously been demonstrated to be required for smooth muscle cell (SMC) proliferation in vitro, the role of this nuclear receptor for the proliferative response underlying neointima formation and target genes trans-activated by NOR1 remain to be defined. Methods and Results Using a model of guide wire-induced arterial injury, we demonstrate decreased neointima formation in NOR1-/- mice compared to wildtype mice. In vitro, NOR1-deficient SMC exhibit decreased proliferation due to a G1→S phase arrest of the cell cycle and increased apoptosis in response to serum deprivation. NOR1-deficiency alters phosphorylation of the retinoblastoma protein by preventing mitogen-induced cyclin D1 and D2 expression. Conversely, overexpression of NOR1 induces cyclin D1 expression and the transcriptional activity of the cyclin D1 promoter in transient reporter assays. Gel shift and chromatin immunoprecipitation assays identified a putative response element for NR4A receptors in the cyclin D1 promoter, to which NOR1 is recruited in response to mitogenic stimulation. Finally, we provide evidence that these observations are applicable in vivo by demonstrating decreased cyclin D1 expression during neointima formation in NOR1-deficient mice. Conclusions These experiments characterize cyclin D1 as a NOR1-regulated target gene in SMC and demonstrate that NOR1 deficiency decreases neointima formation in response to vascular injury. PMID:19153266

  4. Orphan nuclear receptor NR4A1 is a negative regulator of DHT-induced rat preantral follicular growth.

    Science.gov (United States)

    Xue, Kai; Liu, Jia-yin; Murphy, Bruce D; Tsang, Benjamin K

    2012-12-01

    Nuclear receptor subfamily 4 group A member1 (NR4A1), an orphan nuclear receptor, is involved in the transcriptional regulation of thecal cell androgen biosynthesis and paracrine factor insulin-like 3 (INSL3) expression. Androgens are known to play an important regulatory role in ovarian follicle growth. Using a chronically androgenized rat model, a preantral follicle culture model and virus-mediated gene delivery, we examined the role and regulation of NR4A1 in the androgenic control of preantral follicular growth. In the present study, Ki67 staining was increased in preantral follicles on ovarian sections from 5α-dihydrotestosterone (DHT)-treated rats. Preantral follicles from DHT-treated rats cultured for 4 d exhibited increased growth and up-regulation of mRNA abundance of G(1)/S-specific cyclin-D2 (Ccnd2) and FSH receptor (Fshr). Similarly, DHT (1 μm) increased preantral follicular growth and Ccnd2 and Fshr mRNA abundance in vitro. The NR4A1 expression was high in theca cells and was down-regulated by DHT in vivo and in vitro. Forced expression of NR4A1 augmented preantral follicular growth, androstenedione production, and Insl3 expression in vitro. Inhibiting the action of androgen (with androgen receptor antagonist flutamide) or INSL3 (with INSL3 receptor antagonist INSL3 B-chain) reduced NR4A1-induced preantral follicular growth. Furthermore, NR4A1 overexpression enhanced DHT-induced preantral follicular growth, a response attenuated by inhibiting INSL3. In conclusion, DHT promotes preantral follicular growth and attenuates thecal NR4A1 expression in vivo and in vitro. Our findings are consistent with the notion that NR4A1 serves as an important point of negative feedback to minimize the excessive preantral follicle growth in hyperandrogenism.

  5. SRY-box-containing gene 2 regulation of nuclear receptor tailless (Tlx) transcription in adult neural stem cells.

    Science.gov (United States)

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M; Evans, Ronald M; Gage, Fred H

    2012-02-17

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs.

  6. SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells*

    Science.gov (United States)

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.

    2012-01-01

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs. PMID:22194602

  7. The LIM domain protein FHL2 interacts with the NR5A family of nuclear receptors and CREB to activate the inhibin-α subunit gene in ovarian granulosa cells.

    Science.gov (United States)

    Matulis, Christina K; Mayo, Kelly E

    2012-08-01

    Nuclear receptor transcriptional activity is enhanced by interaction with coactivators. The highly related nuclear receptor 5A (NR5A) subfamily members liver receptor homolog 1 and steroidogenic factor 1 bind to and activate several of the same genes, many of which are important for reproductive function. To better understand transcriptional activation by these nuclear receptors, we sought to identify interacting proteins that might function as coactivators. The LIM domain protein four and a half LIM domain 2 (FHL2) was identified as interacting with the NR5A receptors in a yeast two-hybrid screen of a human ovary cDNA library. FHL2, and the closely related FHL1, are both expressed in the rodent ovary and in granulosa cells. Small interfering RNA-mediated knockdown of FHL1 and FHL2 in primary mouse granulosa cells reduced expression of the NR5A target genes encoding inhibin-α and P450scc. In vitro assays confirmed the interaction between the FHL and NR5A proteins and revealed that a single LIM domain of FHL2 is sufficient for this interaction, whereas determinants in both the ligand binding domain and DNA binding domain of NR5A proteins are important. FHL2 enhances the ability of both liver receptor homolog 1 and steroidogenic factor 1 to activate the inhibin-α subunit gene promoter in granulosa cells and thus functions as a transcriptional coactivator. FHL2 also interacts with cAMP response element-binding protein and substantially augments activation of inhibin gene expression by the combination of NR5A receptors and forskolin, suggesting that FHL2 may facilitate integration of these two signals. Collectively these results identify FHL2 as a novel coactivator of NR5A nuclear receptors in ovarian granulosa cells and suggest its involvement in regulating target genes important for mammalian reproduction.

  8. Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer.

    Science.gov (United States)

    Lin, Meng-Lay; Patel, Hetal; Remenyi, Judit; Banerji, Christopher R S; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R; Purdie, Colin A; Jordan, Lee B; Thompson, Alastair M; Finn, Richard S; Rueda, Oscar M; Caldas, Carlos; Gil, Jesus; Coombes, R Charles; Fuller-Pace, Frances V; Teschendorff, Andrew E; Buluwela, Laki; Ali, Simak

    2015-08-28

    The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells.

  9. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Mohammad eKhanfar

    2016-05-01

    Full Text Available With the very recent market approval of pitolisant (Wakix®, the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  10. Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain

    OpenAIRE

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2007-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal ...

  11. Nuclear renaissance or premature try?; Renacimiento nuclearo o aborto prematuro? Los multiples interrogantes de la opcion nuclear presagian su incierto futuro

    Energy Technology Data Exchange (ETDEWEB)

    Coderch, M

    2008-07-01

    After the economic failure of the 70's and not having been able to solve for decades its multiple problems, the nuclear industry was suffering a slow but inescapable agony. However, the need to reduce CO{sub 2} emissions and the likely arrival of the worldwide peak of oil production have infused new life to the nuclear option, and it has again become one of the main topics of discussion in the worldwide energy debate. But in this debate we tend to forget that the causes of the abrupt end of the first nuclear era have not disappeared, and that for this reason it may well be that we are lead to a repetition of the events that induced its first demise. The much talked nuclear renaissance is thus likely to end up as a premature miscarriage. (Author)

  12. Nuclear renaissance or premature try?; Renacimiento nuclearo o aborto prematuro? Los multiples interrogantes de la opcion nuclear presagian su incierto futuro

    Energy Technology Data Exchange (ETDEWEB)

    Coderch, M.

    2008-07-01

    After the economic failure of the 70's and not having been able to solve for decades its multiple problems, the nuclear industry was suffering a slow but inescapable agony. However, the need to reduce CO{sub 2} emissions and the likely arrival of the worldwide peak of oil production have infused new life to the nuclear option, and it has again become one of the main topics of discussion in the worldwide energy debate. But in this debate we tend to forget that the causes of the abrupt end of the first nuclear era have not disappeared, and that for this reason it may well be that we are lead to a repetition of the events that induced its first demise. The much talked nuclear renaissance is thus likely to end up as a premature miscarriage. (Author)

  13. Reporter cell lines for the characterization of the interactions between nuclear receptors and endocrine disruptors

    Directory of Open Access Journals (Sweden)

    marina egrimaldi

    2015-05-01

    Full Text Available Endocrine-disrupting chemicals (EDCs are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs which are primary targets of numerous environmental contaminants.The main NRs targeted by environmental contaminants are the estrogen (ER α, β and the androgen (AR receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ, the thyroid hormone (TRα, β, the retinoid X receptors (RXRα, β, γ and peroxisome proliferator-activated (PPAR α, γ receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife.In this review we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants and cosmetics.

  14. A Review About Lycopene-Induced Nuclear Hormone Receptor Signalling in Inflammation and Lipid Metabolism via still Unknown Endogenous Apo-10´-Lycopenoids.

    Science.gov (United States)

    Caris-Veyrat, Catherine; Garcia, Ada L; Reynaud, Eric; Lucas, Renata; Aydemir, Gamze; Rühl, Ralph

    2017-10-20

    Lycopene is the red pigment in tomatoes and tomato products and is an important dietary carotenoid found in the human organism. Lycopene-isomers, oxidative lycopene metabolites and apo-lycopenoids are found in the food matrix. Lycopene intake derived from tomato consumption is associated with alteration of lipid metabolism and a lower incidence of cardiovascular diseases (CVD). Lycopene is mainly described as a potent antioxidant but novel studies are shifting towards its metabolites and their capacity to mediate nuclear receptor signalling. Di-/tetra-hydro-derivatives of apo-10´-lycopenoic acid and apo-15´-lycopenoic acids are potential novel endogenous mammalian lycopene metabolites which may act as ligands for nuclear hormone mediated activation and signalling. In this review, we postulate that complex lycopene metabolism results in various lycopene metabolites which have the ability to mediate transactivation of various nuclear hormone receptors like RARs, RXRs and PPARs. A new mechanistic explanation of how tomato consumption could positively modulate inflammation and lipid metabolism is discussed.

  15. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Directory of Open Access Journals (Sweden)

    Brown Stuart

    2006-08-01

    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  16. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems.

    Science.gov (United States)

    Su, Tsung-Ping; Su, Tzu-Chieh; Nakamura, Yoki; Tsai, Shang-Yi

    2016-04-01

    The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein that resides specifically in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), an interface between ER and mitochondria. In addition to being able to translocate to the plasma membrane (PM) to interact with ion channels and other receptors, Sig-1R also occurs at the nuclear envelope, where it recruits chromatin-remodeling factors to affect the transcription of genes. Sig-1Rs have also been reported to interact with other membranous or soluble proteins at other loci, including the cytosol, and to be involved in several central nervous system (CNS) diseases. Here, we propose that Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in living systems. Published by Elsevier Ltd.

  17. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  18. Does bilirubin prevent hepatic steatosis through activation of the PPARα nuclear receptor?

    Science.gov (United States)

    Hinds, Terry D; Adeosun, Samuel O; Alamodi, Abdulhadi A; Stec, David E

    2016-10-01

    Several large population studies have demonstrated a negative correlation between serum bilirubin levels and the development of obesity, hepatic steatosis, and cardiovascular disease. Despite the strong correlative data demonstrating the protective role of bilirubin, the mechanism by which bilirubin can protect against these pathologies remains unknown. Bilirubin has long been known as a powerful antioxidant and also has anti-inflammatory actions, each of which may contribute to the protection afforded by increased levels. We have recently described a novel function of bilirubin as a ligand for the peroxisome proliferator-activated receptor-alpha (PPARα), which we show specifically binds to the nuclear receptor. Bilirubin may function as a selective PPAR modulator (SPPARM) to control lipid accumulation and blood glucose. However, it is not known to what degree bilirubin activation of PPARα is responsible for the protection afforded to reduce hepatic steatosis. We hypothesize that bilirubin, acting as a novel SPPARM, increases hepatic fatty acid metabolism through a PPARα-dependent mechanism which reduces hepatic lipid accumulation and protects against hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Novel Drosophila receptor that binds multiple growth factors

    International Nuclear Information System (INIS)

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-01-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10 -6 to 10 -8 M. The 100 kDa protein can be affinity-labeled with these 125 I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by 125 I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors

  20. Glucocorticoid receptor haplotypes conferring increased sensitivity (BclI and N363S) are associated with faster progression of multiple sclerosis

    DEFF Research Database (Denmark)

    Melief, Jeroen; Koper, Jan W; Endert, Erik

    2016-01-01

    As high cortisol levels are implicated in suppressed disease activity of multiple sclerosis (MS), glucocorticoid receptor (GR) polymorphisms that affect glucocorticoid (GC) sensitivity may impact on this by changing local immunomodulation or regulation of the hypothalamus-pituitary-adrenal (HPA...

  1. Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation

    Science.gov (United States)

    de la Fuente, Alerie Guzman; Errea, Oihana; van Wijngaarden, Peter; Gonzalez, Ginez A.; Kerninon, Christophe; Jarjour, Andrew A.; Lewis, Hilary J.; Jones, Clare A.; Nait-Oumesmar, Brahim; Zhao, Chao; Huang, Jeffrey K.; ffrench-Constant, Charles

    2015-01-01

    The mechanisms regulating differentiation of oligodendrocyte (OLG) progenitor cells (OPCs) into mature OLGs are key to understanding myelination and remyelination. Signaling via the retinoid X receptor γ (RXR-γ) has been shown to be a positive regulator of OPC differentiation. However, the nuclear receptor (NR) binding partner of RXR-γ has not been established. In this study we show that RXR-γ binds to several NRs in OPCs and OLGs, one of which is vitamin D receptor (VDR). Using pharmacological and knockdown approaches we show that RXR–VDR signaling induces OPC differentiation and that VDR agonist vitamin D enhances OPC differentiation. We also show expression of VDR in OLG lineage cells in multiple sclerosis. Our data reveal a role for vitamin D in the regenerative component of demyelinating disease and identify a new target for remyelination medicines. PMID:26644513

  2. Regulation of behaviour by the nuclear receptor TLX.

    Science.gov (United States)

    O'Leary, J D; O'Leary, O F; Cryan, J F; Nolan, Y M

    2018-03-01

    The orphan nuclear receptor Tlx (Nr2e1) is a key regulator of both embryonic and adult hippocampal neurogenesis. Several different mouse models have been developed which target Tlx in vivo including spontaneous deletion models (from birth) and targeted and conditional knockouts. Although some conflicting findings have been reported, for the most part studies have demonstrated that Tlx is important in regulating processes that underlie neurogenesis, spatial learning, anxiety-like behaviour and interestingly, aggression. More recent data have demonstrated that disrupting Tlx during early life induces hyperactivity and that Tlx plays a role in emotional regulation. Moreover, there are sex- and age-related differences in some behaviours in Tlx knockout mice during adolescence and adulthood. Here, we discuss the role of Tlx in motor-, cognitive-, aggressive- and anxiety-related behaviours during adolescence and adulthood. We examine current evidence which provides insight into Tlx during neurodevelopment, and offer our thoughts on the function of Tlx in brain and behaviour. We further hypothesize that Tlx is a key target in understanding the emergence of neurobiological disorders during adolescence and early adulthood. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  3. Nuclear translocation and retention of growth hormone

    DEFF Research Database (Denmark)

    Mertani, Hichem C; Raccurt, Mireille; Abbate, Aude

    2003-01-01

    We have previously demonstrated that GH is subject to rapid receptor-dependent nuclear translocation. Here, we examine the importance of ligand activation of the GH-receptor (GHR)-associated Janus kinase (JAK) 2 and receptor dimerization for hormone internalization and nuclear translocation by use...... of cells stably transfected with cDNA for the GHR. Staurosporine and herbimycin A treatment of cells did not affect the ability of GH to internalize but resulted in increased nuclear accumulation of hormone. Similarly, receptor mutations, which prevent the association and activation of JAK2, did not affect...... the ability of the hormone to internalize or translocate to the nucleus but resulted in increased nuclear accumulation of GH. These results were observed both by nuclear isolation and confocal laser scanning microscopy. Staurosporine treatment of cells in which human GH (hGH) was targeted to the cytoplasm...

  4. Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa Histone Deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Compagnucci, Claudia; Barresi, Sabina [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Petrini, Stefania [Research Laboratories, Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Zanni, Ginevra, E-mail: ginevra.zanni@opbg.net [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy)

    2015-04-03

    Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin–myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK. - Highlights: • ROCK regulates nucleocytoplasmic shuttling of HDAC7 via phosphorylation of MYPT1. • Nuclear export of HDAC7 and upregulation of NR4A1 occurs with low ROCK activity. • High levels of ROCK activity due to OPHN1 loss of function downregulate NR4A1.

  5. Changes in nuclear receptor corepressor RIP140 do not influence mitochondrial content in the cortex.

    Science.gov (United States)

    Herbst, Eric A F; Bonen, Arend; Holloway, Graham P

    2015-10-01

    Changes in nuclear receptor interacting protein 140 (RIP140) influences mitochondrial content in skeletal muscle; however, the translation of these findings to the brain has not been investigated. The present study examined the impact of overexpressing and ablating RIP140 on mitochondrial content in muscle and the cortex through examining mRNA, mtDNA, and mitochondrial protein content. Our results show that changes in RIP140 expression significantly alters markers of mitochondrial content in skeletal muscle but not the brain.

  6. Multiple nucleon transfer in damped nuclear collisions. [Lectures, mass charge, and linear and angular momentum transport

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J.

    1979-07-01

    This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.

  7. Nuclear receptor 5A (NR5A) family regulates 5-aminolevulinic acid synthase 1 (ALAS1) gene expression in steroidogenic cells.

    Science.gov (United States)

    Ju, Yunfeng; Mizutani, Tetsuya; Imamichi, Yoshitaka; Yazawa, Takashi; Matsumura, Takehiro; Kawabe, Shinya; Kanno, Masafumi; Umezawa, Akihiro; Kangawa, Kenji; Miyamoto, Kaoru

    2012-11-01

    5-Aminolevulinic acid synthase 1 (ALAS1) is a rate-limiting enzyme for heme biosynthesis in mammals. Heme is essential for the catalytic activities of P450 enzymes including steroid metabolic enzymes. Nuclear receptor 5A (NR5A) family proteins, steroidogenic factor-1 (SF-1), and liver receptor homolog-1 (LRH-1) play pivotal roles in regulation of steroidogenic enzymes. Recently, we showed that expression of SF-1/LRH-1 induces differentiation of mesenchymal stem cells into steroidogenic cells. In this study, genome-wide analysis revealed that ALAS1 was a novel SF-1-target gene in differentiated mesenchymal stem cells. Chromatin immunoprecipitation and reporter assays revealed that SF-1/LRH-1 up-regulated ALAS1 gene transcription in steroidogenic cells via binding to a 3.5-kb upstream region of ALAS1. The ALAS1 gene was up-regulated by overexpression of SF-1/LRH-1 in steroidogenic cells and down-regulated by knockdown of SF-1 in these cells. Peroxisome proliferator-activated receptor-γ coactivator-1α, a coactivator of nuclear receptors, also strongly coactivated expression of NR5A-target genes. Reporter analysis revealed that peroxisome proliferator-activated receptor-γ coactivator-1α strongly augmented ALAS1 gene transcription caused by SF-1 binding to the 3.5-kb upstream region. Finally knockdown of ALAS1 resulted in reduced progesterone production by steroidogenic cells. These results indicate that ALAS1 is a novel NR5A-target gene and participates in steroid hormone production.

  8. A full scope nuclear power plant simulator for multiple reactor types with virtual control panels

    International Nuclear Information System (INIS)

    Yonezawa, Hisanori; Ueda, Hiroki; Kato, Takahisa

    2017-01-01

    This paper summarizes a full scope nuclear power plant simulator for multiple reactor types with virtual control panels which Toshiba developed and delivered. After the Fukushima DAIICHI nuclear power plants accident, it is required that all the people who are engaged in the design, manufacturing, operation, maintenance, management and regulation for the nuclear power plant should learn the wide and deep knowledge about the nuclear power plant design including the severe accident. For this purpose, the training with a full scope simulator is one of the most suitable ways. However the existing full scope simulators which are consist of the control panels replica of the referenced plants are costly and they are hard to remodel to fit to the real plant of the latest condition. That's why Toshiba developed and delivered the new concept simulator system which covers multiple referenced plants even though they have different design like BWR and PWR. The control panels of the simulator are made by combining 69 large Liquid Crystal Display (LCD) panels with touch screen instead of a control panel replica of referenced plant. The screen size of the each panel is 42 inches and 3 displays are arranged in tandem for one unit and 23 units are connected together. Each panel displays switches, indicators, recorders and lamps with the Computer Graphics (CG) and trainees operate them with touch operations. The simulator includes a BWR and a PWR simulator model, which enable trainees to learn the wide and deep knowledge about the nuclear power plant of BWR and PWR reactor types. (author)

  9. Food Components Modulate Obesity and Energy Metabolism via the Transcriptional Regulation of Lipid-Sensing Nuclear Receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Obesity is a major risk factor for chronic diseases such as diabetes, cardiovascular diseases, and hypertension. Many modern people have a tendency to overeat owing to stress and loosening of self-control. Moreover, energy expenditure varies greatly among individuals. Scientific reduction of obesity is important under these circumstances. Furthermore, recent research on molecular levels has clarified the differentiation of adipocytes, the level of subsequent fat accumulation, and the secretion of the biologically active adipokines by adipocytes. Adipose tissues and obesity have become the most important target for the prevention and treatment of many chronic diseases. We have identified various food-derived compounds modulating nuclear receptors, especially peroxisome proliferators-activated receptor(PPAR), in the regulation of energy metabolism and obesity. In this review, we discuss the PPARs that are most important in obesity and energy metabolism.

  10. The multiplicity of the D-1 dopamine receptor

    International Nuclear Information System (INIS)

    Mailman, R.B.; Klits, C.D.; Lewis, M.H.; Rollema, H.; Schulz, D.W.; Wyrick, S.

    1986-01-01

    The authors have sought to address two questions of some neuropharmacological importance in this chapter. First, they examine the nature of mechanisms by which dopamine initiates many psychopharmacological effects and, second, they study the possibility of designing highly specific drugs targeted only at a selected subpopulation of dopamine receptors. Effects of SCH23390 and haloperidol on concentrations of dopamine, DOPAC, and HVA in various rat brain regions are shown. In addition, the effects of SCH23390 on the in vivo binding of dipropyl-5, 6-ADTN are shown. Differential distribution of a dopamine sensitive adenylate cyclase and ( 3 H)-SCH23390 binding sites are examined. A model is presented of D 1 dopamine receptors in membrane, illustrating the lack of identity of some of the ( 3 H)-SCH23390 binding sites with the dopamine receptor linked to stimulation of cAMP synthesis

  11. Dynamic analysis of multiple nuclear-coupled boiling channels based on a multi-point reactor model

    International Nuclear Information System (INIS)

    Lee, J.D.; Pan Chin

    2005-01-01

    This work investigates the non-linear dynamics and stabilities of a multiple nuclear-coupled boiling channel system based on a multi-point reactor model using the Galerkin nodal approximation method. The nodal approximation method for the multiple boiling channels developed by Lee and Pan [Lee, J.D., Pan, C., 1999. Dynamics of multiple parallel boiling channel systems with forced flows. Nucl. Eng. Des. 192, 31-44] is extended to address the two-phase flow dynamics in the present study. The multi-point reactor model, modified from Uehiro et al. [Uehiro, M., Rao, Y.F., Fukuda, K., 1996. Linear stability analysis on instabilities of in-phase and out-of-phase modes in boiling water reactors. J. Nucl. Sci. Technol. 33, 628-635], is employed to study a multiple-channel system with unequal steady-state neutron density distribution. Stability maps, non-linear dynamics and effects of major parameters on the multiple nuclear-coupled boiling channel system subject to a constant total flow rate are examined. This study finds that the void-reactivity feedback and neutron interactions among subcores are coupled and their competing effects may influence the system stability under different operating conditions. For those cases with strong neutron interaction conditions, by strengthening the void-reactivity feedback, the nuclear-coupled effect on the non-linear dynamics may induce two unstable oscillation modes, the supercritical Hopf bifurcation and the subcritical Hopf bifurcation. Moreover, for those cases with weak neutron interactions, by quadrupling the void-reactivity feedback coefficient, period-doubling and complex chaotic oscillations may appear in a three-channel system under some specific operating conditions. A unique type of complex chaotic attractor may evolve from the Rossler attractor because of the coupled channel-to-channel thermal-hydraulic and subcore-to-subcore neutron interactions. Such a complex chaotic attractor has the imbedding dimension of 5 and the

  12. Nuclear targeting of IGF-1 receptor in orbital fibroblasts from Graves' disease: apparent role of ADAM17.

    Directory of Open Access Journals (Sweden)

    Neil Hoa

    Full Text Available Insulin-like growth factor-1 receptor (IGF-1R comprises two subunits, including a ligand binding domain on extra- cellular IGF-1Rα and a tyrosine phosphorylation site located on IGF-1Rβ. IGF-1R is over-expressed by orbital fibroblasts in the autoimmune syndrome, Graves' disease (GD. When activated by IGF-1 or GD-derived IgG (GD-IgG, these fibroblasts produce RANTES and IL-16, while those from healthy donors do not. We now report that IGF-1 and GD-IgG provoke IGF-1R accumulation in the cell nucleus of GD fibroblasts where it co-localizes with chromatin. Nuclear IGF-1R is detected with anti-IGF-1Rα-specific mAb and migrates to approximately 110 kDa, consistent with its identity as an IGF-1R fragment. Nuclear IGF-1R migrating as a 200 kDa protein and consistent with an intact receptor was undetectable when probed with either anti-IGF-1Rα or anti-IGF-1Rβ mAbs. Nuclear redistribution of IGF-1R is absent in control orbital fibroblasts. In GD fibroblasts, it can be abolished by an IGF-1R-blocking mAb, 1H7 and by physiological concentrations of glucocorticoids. When cell-surface IGF-1R is cross-linked with (125I IGF-1, (125I-IGF-1/IGF-1R complexes accumulate in the nuclei of GD fibroblasts. This requires active ADAM17, a membrane associated metalloproteinase, and the phosphorylation of IGF-1R. In contrast, virally encoded IGF-1Rα/GFP fusion protein localizes equivalently in nuclei in both control and GD fibroblasts. This result suggests that generation of IGF-1R fragments may limit the accumulation of nuclear IGF-1R. We thus identify a heretofore-unrecognized behavior of IGF-1R that appears limited to GD-derived fibroblasts. Nuclear IGF-1R may play a role in disease pathogenesis.

  13. Dichotomous roles for the orphan nuclear receptor NURR1 in breast cancer

    International Nuclear Information System (INIS)

    Llopis, Shawn; Singleton, Brittany; Duplessis, Tamika; Carrier, Latonya; Rowan, Brian; Williams, Christopher

    2013-01-01

    NR4A orphan nuclear receptors are involved in multiple biological processes which are important in tumorigenesis such as cell proliferation, apoptosis, differentiation, and glucose utilization. The significance of NR4A family member NURR1 (NR4A2) in breast cancer etiology has not been elucidated. The purpose of this study was to ascertain the impact of NURR1 expression on breast transformation, tumor growth, and breast cancer patient survival. We determined the expression of NURR1 in normal breast versus breast carcinoma in tissue microarrays (immunohistochemistry), tissue lysates (immunoblot), and at the mRNA level (publically available breast microarrays). In addition NURR1 expression was compared among breast cancer patients in cohorts based on p53 expression, estrogen receptor α expression, tumor grade, and lymph node metastases. Kaplan-Meier survival plots were used to determine the correlation between NURR1 expression and relapse free survival (RFS). Using shRNA-mediated silencing, we determined the effect of NURR1 expression on tumor growth in mouse xenografts. Results from breast cancer tissue arrays demonstrate a higher NURR1 expression in the normal breast epithelium compared to breast carcinoma cells (p ≤ 0.05). Among cases of breast cancer, NURR1 expression in the primary tumors was inversely correlated with lymph node metastases (p ≤ 0.05) and p53 expression (p ≤ 0.05). Clinical stage and histological grade were not associated with variation in NURR1 expression. In gene microarrays, 4 of 5 datasets showed stronger mean expression of NURR1 in normal breast as compared to transformed breast. Additionally, NURR1 expression was strongly correlated with increase relapse free survival (HR = 0.7) in a cohort of all breast cancer patients, but showed no significant difference in survival when compared among patients whom have not been treated systemically (HR = 0.91). Paradoxically, NURR1 silenced breast xenografts showed significantly decreased growth

  14. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX.

    Science.gov (United States)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD(+)-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  15. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    International Nuclear Information System (INIS)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-01-01

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD + -dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  16. Loss of function of the retinoid-related nuclear receptor (RORB) gene and epilepsy

    DEFF Research Database (Denmark)

    Rudolf, Gabrielle; Lesca, Gaetan; Mehrjouy, Mana M

    2016-01-01

    nuclear receptor (RORβ), in four affected family members. In addition, two de novo variants (c.218T>C/p.(Leu73Pro); c.1249_1251delACG/p.(Thr417del)) were identified in sporadic patients by trio-based exome sequencing. We also found two de novo deletions in patients with behavioral and cognitive impairment...... in various types of epilepsies in the past few years. In the present study, we performed whole-exome sequencing in a family with GGE consistent with the diagnosis of eyelid myoclonia with absences. We found a nonsense variant (c.196C>T/p.(Arg66*)) in RORB, which encodes the beta retinoid-related orphan...

  17. Structure of the EGF receptor transactivation circuit integrates multiple signals with cell context

    Energy Technology Data Exchange (ETDEWEB)

    Joslin, Elizabeth J.; Shankaran, Harish; Opresko, Lee K.; Bollinger, Nikki; Lauffenburger, Douglas A.; Wiley, H. S.

    2010-05-10

    Transactivation of the epidermal growth factor receptor (EGFR) has been proposed to be a mechanism by which a variety of cellular inputs can be integrated into a single signaling pathway, but the regulatory topology of this important system is unclear. To understand the transactivation circuit, we first created a “non-binding” reporter for ligand shedding. We then quantitatively defined how signals from multiple agonists were integrated both upstream and downstream of the EGFR into the extracellular signal regulated kinase (ERK) cascade in human mammary epithelial cells. We found that transactivation is mediated by a recursive autocrine circuit where ligand shedding drives EGFR-stimulated ERK that in turn drives further ligand shedding. The time from shedding to ERK activation is fast (<5 min) whereas the recursive feedback is slow (>15 min). Simulations showed that this delay in positive feedback greatly enhanced system stability and robustness. Our results indicate that the transactivation circuit is constructed so that the magnitude of ERK signaling is governed by the sum of multiple direct inputs, while recursive, autocrine ligand shedding controls signal duration.

  18. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their

  19. Disappearance of beta(2)-adrenergic receptors on astrocytes in canine distemper encephalitis : possible implications for the pathogenesis of multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Wilczak, N; Zurbriggen, A

    2001-01-01

    It has been reported that astrocytes in the white matter of patients with multiple sclerosis (MS) lack beta (2)-adrenergic receptors. This abnormality might explain why astrocytes in active MS plaques aberrantly express major histocompatibility (MHC) class II molecules, which play an important role

  20. Multiple sclerosis and polymorphisms of innate pattern recognition receptors TLR1-10, NOD1-2, DDX58, and IFIH1

    DEFF Research Database (Denmark)

    Enevold, Christian; Oturai, Annette Bang; Sørensen, Per Soelberg

    2009-01-01

    Genetic factors are critical in multiple sclerosis (MS), and it is conceivable that the pattern recognition receptors of the innate immune system are of pathogenic importance. We therefore developed two novel assays capable of analyzing 42 single-nucleotide polymorphisms in the human genes encoding...

  1. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds.

    Science.gov (United States)

    Zhang, Wei; Zhang, Jing; Fang, Leiping; Zhou, Ling; Wang, Shuai; Xiang, Zhijun; Li, Yuan; Wisely, Bruce; Zhang, Guifeng; An, Gang; Wang, Yonghui; Leung, Stewart; Zhong, Zhong

    2012-10-01

    In a screen for small-molecule inhibitors of retinoid acid-related orphan receptor γ (RORγ), we fortuitously discovered that a class of aryl amide compounds behaved as functional activators of the interleukin 17 (IL-17) reporter in Jurkat cells. Three of these compounds were selected for further analysis and found to activate the IL-17 reporter with potencies of ∼0.1 μM measured by EC₅₀. These compounds were shown to directly bind to RORγ by circular dichroism-based thermal stability experiments. Furthermore, they can enhance an in vitro Th17 differentiation process in human primary T cells. As RORγ remains an orphan nuclear receptor, discovery of these aryl amide compounds as functional agonists will now provide pharmacological tools for us to dissect functions of RORγ and facilitate drug discovery efforts for immune-modulating therapies.

  2. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors.

    Directory of Open Access Journals (Sweden)

    Ana Boulanger

    Full Text Available Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment and received by the motor neuron (presynaptic compartment resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.

  3. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors.

    Science.gov (United States)

    Boulanger, Ana; Farge, Morgane; Ramanoudjame, Christophe; Wharton, Kristi; Dura, Jean-Maurice

    2012-01-01

    Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor) triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment) and received by the motor neuron (presynaptic compartment) resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.

  4. Sigma-1 Receptor as a Pluripotent Modulator in the Living System

    Science.gov (United States)

    Su, Tsung-Ping; Su, Tzu-Chieh; Nakamura, Yoki; Tsai, Shang-Yi

    2016-01-01

    The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein resides specifically at the interface between ER and mitochondria, called the MAM, where the Sig-1R is recently reported to be involved in certain CNS diseases. In addition to being able to translocate to the plasma membrane to interact with ion channels and other receptors, the Sig-1R is found to exist at the nuclear envelope where it recruits chromatin-remodeling factors to affect the transcription of genes. As well, thorough experimental and bioinformatic means, Sig-1Rs are reported to interact with other membranous or soluble proteins at other loci, including the cytosol. We propose that the Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in the living system. PMID:26869505

  5. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2013-10-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  6. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  7. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    International Nuclear Information System (INIS)

    Matsuda, Satoru; Kitagishi, Yasuko

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  8. Nuclear receptors of the NR4a family are not required for the development and function of follicular T helper cells.

    Science.gov (United States)

    Ma, Weiwei; Zhao, Ruozhu; Yang, Runqing; Liu, Bo; Chen, Xin; Wu, Longyan; Qi, Hai

    2015-10-01

    Follicular T helper (Tfh) cells promote germinal center (GC) reaction and high-affinity antibody production. The molecular mechanisms that regulate development and function of Tfh cells are not fully understood. Here we report that ligand-independent nuclear receptors of the Nr4a family are highly expressed in Tfh cells. In a well-established adoptive transfer model, enforced expression of Nr4a receptors reduces helper T cell expansion but apparently increased the T cell capacity to promote the GC response. On the other hand, deletion of all Nr4a receptors in T cells did not significantly affect expansion or differentiation of Tfh cells or the development of GC reaction. These findings suggest that Nr4a receptors may promote but are not necessary for Tfh development or function in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Screening of Toll-like receptors expression in multiple system atrophy brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Agander, Tina Klitmøller

    2013-01-01

    The family of Toll-like receptors (TLRs) plays a key role in controlling innate immune responses to a wide variety of pathogen-associated molecules. It was recently suggested that TLRs have an important role in the crosstalk between neurons and glial cells in the central nervous system, thus...... inclusions in oligodendrocytes. α-Synuclein can act as a danger-associated molecular pattern and alter TLR expression thereby activating inflammatory responses in the brain. In this study, using real-time PCR, we assessed the expression of TLRs (TLR1-10) in selected areas of MSA brains (substantia nigra......TLR-1 mRNA were elevated in substantia nigra and striatum whereas levels of hTLR-8 and hTLR-9 mRNAs were significantly higher in cerebella from MSA patients. The concerted alteration of expression of multiple TLRs in MSA brains can be of relevance for understanding the pathogenesis of the disease....

  10. Chemokine CCL2 and chemokine receptor CCR2 in early active multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Ransohoff, R M; Strieter, R M

    2004-01-01

    The chemokine monocyte chemoattractant protein (MCP)-1/CCL2 and its receptor CCR2 have been strongly implicated in disease pathogenesis in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS), whereas data on the CCL2-CCR2 axis are scarce in MS. We studied...... the expression of CCR2 on leukocytes in blood and cerebrospinal fluid (CSF) from patients with monosymptomatic optic neuritis and MS, and the concentration of CCL2 in the CSF from these patients. Results were compared with the results in non-inflammatory neurological controls and were correlated with other...... parameters (magnetic resonance imaging and CSF data). Our findings suggest a limited role for CCL2/CCR2 in early active MS....

  11. Comparative analysis of the pituitary and ovarian GnRH systems in the leopard gecko: signaling crosstalk between multiple receptor subtypes in ovarian follicles.

    Science.gov (United States)

    Ikemoto, Tadahiro; Park, Min Kyun

    2007-02-01

    GnRH regulates reproductive functions through interaction with its pituitary receptor in vertebrates. The present study demonstrated that the leopard gecko possessed two and three genes for GnRH ligands and receptors, respectively, though one of the three receptor subtypes had long been thought not to exist in reptiles. Each receptor subtype showed a distinct pharmacology. All types of ligands and receptors showed different expression patterns, and were widely expressed both inside and outside the brain. This report also shows a comparison of the pituitary and ovarian GnRH systems in the leopard gecko during and after the egg-laying season. All three receptor subtypes were expressed in both the whole pituitary and ovary; however, only one receptor subtype could be detected in the anterior pituitary gland. In situ hybridization showed spatial expression patterns of ovarian receptors, and suggested co-expression of multiple receptor subtypes in granulosa cells of larger follicles. Co-transfection of receptor subtypes showed a distinct pharmacology in COS-7 cells compared with those of single transfections. These results suggest that distinct signaling mechanisms are involved in the pituitary and ovarian GnRH systems. Seasonal and developmental variations in receptor expression in the anterior pituitary gland and ovarian follicles may contribute to the seasonal breeding of this animal.

  12. TAM receptors regulate multiple features of microglial physiology.

    Science.gov (United States)

    Fourgeaud, Lawrence; Través, Paqui G; Tufail, Yusuf; Leal-Bailey, Humberto; Lew, Erin D; Burrola, Patrick G; Callaway, Perri; Zagórska, Anna; Rothlin, Carla V; Nimmerjahn, Axel; Lemke, Greg

    2016-04-14

    Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease.

  13. Sphingosine 1-Phosphate Receptor 1 as a Useful Target for Treatment of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Kunitomo Adachi

    2012-05-01

    Full Text Available Sphingosine 1-phosphate (S1P, a lysophospholipid mediator, is generated from sphingosine by sphingosine kinases and binds five known cell surface receptors. S1P receptor 1 (S1P1 plays an essential role in lymphocyte egress from secondary lymphoid organs (SLO, as evinced by the inability of lymphocytes to exit from the SLO in mice lacking lymphocytic S1P1. Fingolimod hydrochloride (FTY720 is a first-in-class, orally active, S1P receptor modulator with a structure closely related to sphingosine. FTY720 was first synthesized by chemical modification of a natural product, myriocin. FTY720 is effectively converted to an active metabolite, FTY720 phosphate (FTY720-P by sphingosine kinases. FTY720-P shows high affinity to 4 of the S1P receptors (S1P1, S1P3, S1P4, and S1P5. In particular, FTY720-P strongly induces internalization and degradation of S1P1, inhibits S1P responsiveness of lymphocytes in the SLO, and acts as a functional antagonist at lymphocytic S1P1. Consequently, FTY720 inhibits S1P1-dependent lymphocyte egress from the SLO to decrease circulation of lymphocytes including autoreactive Th17 cells and is highly effective in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Because FTY720 shows a superior efficacy in relapsing remitting MS patients compared to intramuscular interferon-β-1a (Avonex®, S1P1 is presumed to be a useful target for the therapy of MS.

  14. Identification and characterization of multiple conserved nuclear localization signals within adenovirus E1A

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Kris S.; Cohen, Michael J.; Fonseca, Greg J.; Todorovic, Biljana; King, Cason R. [Department of Microbiology and Immunology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada); Yousef, Ahmed F. [Department of Chemical and Environmental Engineering, Masdar Institute, Abu Dhabi (United Arab Emirates); Zhang, Zhiying [College of Animal Science and Technologies, Northwest A and F University, Yangling, Shaanxi 712100 (China); Mymryk, Joe S., E-mail: jmymryk@uwo.ca [Department of Microbiology and Immunology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada); Department of Oncology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada)

    2014-04-15

    The human adenovirus 5 (HAdV-5) E1A protein has a well defined canonical nuclear localization signal (NLS) located at its C-terminus. We used a genetic assay in the yeast Saccharomyces cerevisiae to demonstrate that the canonical NLS is present and functional in the E1A proteins of each of the six HAdV species. This assay also detects a previously described non-canonical NLS within conserved region 3 and a novel active NLS within the N-terminal/conserved region 1 portion of HAdV-5 E1A. These activities were also present in the E1A proteins of each of the other five HAdV species. These results demonstrate that, despite substantial differences in primary sequence, HAdV E1A proteins are remarkably consistent in that they contain one canonical and two non-canonical NLSs. By utilizing independent mechanisms, these multiple NLSs ensure nuclear localization of E1A in the infected cell. - Highlights: • HAdV E1A uses multiple mechanisms for nuclear import. • We identified an additional non-canonical NLS in the N-terminal/CR1 portion of E1A. • The new NLS does not contact importin-alpha directly. • All NLSs are functionally conserved in the E1A proteins of all 6 HAdV species.

  15. Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis.

    Science.gov (United States)

    Guillaume, Maeva; Montagner, Alexandra; Fontaine, Coralie; Lenfant, Françoise; Arnal, Jean-François; Gourdy, Pierre

    2017-01-01

    Estrogen receptor alpha (ERα) has been demonstrated to play a key role in reproduction but also to exert numerous functions in nonreproductive tissues. Accordingly, ERα is now recognized as a key regulator of energy homeostasis and glucose metabolism and mediates the protective effects of estrogens against obesity and type 2 diabetes. This chapter attempts to summarize our current understanding of the mechanisms of ERα activation and their involvement in the modulation of energy balance and glucose metabolism. We first focus on the experimental studies that constitute the basis of the understanding of ERα as a nuclear receptor and more specifically on the key roles played by its two activation functions (AFs). We depict the consequences of the selective inactivation of these AFs in mouse models, which further underline the prominent role of nuclear ERα in the prevention of obesity and diabetes, as on the reproductive tract and the vascular system. Besides these nuclear actions, a fraction of ERα is associated with the plasma membrane and activates nonnuclear signaling from this site. Such rapid effects, called membrane-initiated steroid signals (MISS), have been characterized in a variety of cell lines and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS as well as the generation of mice expressing an ERα protein impeded for membrane localization has just begun to unravel the physiological role of MISS in vivo and their contribution to ERα-mediated metabolic protection. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators.

  16. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin levels in gingival crevicular fluid

    Science.gov (United States)

    Sarlati, Fatemeh; Sattari, Mandana; Razzaghi, Shilan; Nasiri, Malihe

    2012-01-01

    Background: Osteoclastogenesis is coordinated by the interaction of three members of the tumor necrosis factor (TNF) superfamily: Osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL)/receptor activator of nuclear factor kappa B (RANK). The aim of this study was to investigate RANKL and OPG levels, and their relative ratio in gingival crevicular fluid (GCF) of patients with chronic and aggressive periodontitis, as well as healthy controls. Materials and Methods: In this analytical study, GCF was obtained from healthy (n = 10), mild chronic periodontitis (n = 18), moderate chronic periodontitis (n = 18), severe chronic periodontitis (n = 20), and generalized aggressive periodontitis (n = 20) subjects. RANKL and OPG concentrations were measured by enzyme-linked immunosorbent assay. Statistical tests used were Kruskal–Wallis test, Mann–Whitney U rank sum test, and Spearman's rank correlation analysis. The level of statistical significance was set at P chronic periodontitis (mild, moderate, severe), and aggressive periodontitis (P = 0.41). There was statistically significant correlation between the concentration of sRANKL and Clinical Attachment Level (CAL) in moderate chronic periodontitis patients (R = 0.48, P = 0.04). There was also negative correlation between OPG concentration and CAL in moderate chronic periodontitis patients, although not significant (R = −0.13). Conclusion: RANKL was prominent in periodontitis sites, especially in moderate periodontitis patients, whereas OPG was not detectable in some diseased sites with bleeding on probing, supporting the role of these two molecules in the bone loss developed in this disease. PMID:23559954

  17. The oncoprotein BCL11A binds to orphan nuclear receptor TLX and potentiates its transrepressive function.

    Directory of Open Access Journals (Sweden)

    Sara B Estruch

    Full Text Available Nuclear orphan receptor TLX (NR2E1 functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1, a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9, a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain.

  18. The oncoprotein BCL11A binds to orphan nuclear receptor TLX and potentiates its transrepressive function.

    Science.gov (United States)

    Estruch, Sara B; Buzón, Víctor; Carbó, Laia R; Schorova, Lenka; Lüders, Jens; Estébanez-Perpiñá, Eva

    2012-01-01

    Nuclear orphan receptor TLX (NR2E1) functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs) of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H) screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1), a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9), a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain.

  19. Computer program for Scatchard analysis of protein: Ligand interaction - use for determination of soluble and nuclear steroid receptor concentrations

    International Nuclear Information System (INIS)

    Leake, R.; Cowan, S.; Eason, R.

    1998-01-01

    Steroid receptor concentration may be determined routinely in biopsy samples of breast and endometrial cancer by the competition method. This method yields data for both the soluble and nuclear fractions of the tissue. The data are usually subject to Scatchard analysis. This Appendix describes a computer program written initially for a PDP-11. It has been modified for use with IBM, Apple Macintosh and BBC microcomputers. The nature of the correction for competition is described and examples of the printout are given. The program is flexible and its use for different receptors is explained. The program can be readily adapted to other assays in which Scatchard analysis is appropriate

  20. Mediator and p300/CBP-Steroid Receptor Coactivator Complexes Have Distinct Roles, but Function Synergistically, during Estrogen Receptor α-Dependent Transcription with Chromatin Templates

    OpenAIRE

    Acevedo, Mari Luz; Kraus, W. Lee

    2003-01-01

    Ligand-dependent transcriptional activation by nuclear receptors involves the recruitment of various coactivators to the promoters of hormone-regulated genes assembled into chromatin. Nuclear receptor coactivators include histone acetyltransferase complexes, such as p300/CBP-steroid receptor coactivator (SRC), as well as the multisubunit mediator complexes (“Mediator”), which may help recruit RNA polymerase II to the promoter. We have used a biochemical approach, including an in vitro chromat...

  1. Combinatorial roles for zebrafish retinoic acid receptors in the hindbrain, limbs and pharyngeal arches

    Science.gov (United States)

    Linville, Angela; Radtke, Kelly; Waxman, Joshua S.; Yelon, Deborah; Schilling, Thomas F.

    2011-01-01

    Retinoic acid (RA) signaling regulates multiple aspects of vertebrate embryonic development and tissue patterning, in part through the local availability of nuclear hormone receptors called retinoic acid receptors (RARs) and retinoid receptors (RXRs). RAR/RXR heterodimers transduce the RA signal, and loss-of-function studies in mice have demonstrated requirements for distinct receptor combinations at different stages of embryogenesis. However, the tissue-specific functions of each receptor and their individual contributions to RA signaling in vivo are only partially understood. Here we use morpholino oligonucleotides to deplete the four known zebra fish RARs (raraa, rarab, rarga, and rargb). We show that while all four are required for anterior–posterior patterning of rhombomeres in the hindbrain, there are unique requirements for rarga in the cranial mesoderm for hindbrain patterning, and rarab in lateral plate mesoderm for specification of the pectoral fins. In addition, the alpha subclass (raraa, rarab) is RA inducible, and of these only raraa expression is RA-dependent, suggesting that these receptors establish a region of particularly high RA signaling through positive-feedback. These studies reveal novel tissue-specific roles for RARs in controlling the competence and sensitivity of cells to respond to RA. PMID:18929555

  2. A 'Swinging Cradle' model for in vitro classification of different types of response elements of a nuclear receptor

    International Nuclear Information System (INIS)

    Malo, Madhu S.; Pushpakaran, Premraj; Hodin, Richard A.

    2005-01-01

    Nuclear receptors are hormone-activated transcription factors that bind to specific target sequences termed hormone-response element (HRE). A HRE usually consists of two half-sites (5'-AGGTCA-3' consensus sequence) arranged as a direct, everted or inverted repeat with variable spacer region. Assignment of a HRE as a direct, everted or inverted repeat is based on its homology to the consensus half-site, but minor variations can make such an assignment confusing. We hypothesize a 'Swinging Cradle' model for HRE classification, whereby the core HRE functions as the 'sitting platform' for the NR, and the extra nucleotides at either end act as the 'sling' of the Cradle. We show that in vitro binding of the thyroid hormone receptor and 9-cis retinoic acid receptor heterodimer to an everted repeat TRE follows the 'Swinging Cradle' model, whereas the other TREs do not. We also show that among these TREs, the everted repeat mediates the highest biological activity

  3. Functional Analysis of Nuclear Estrogen Receptors in Zebrafish Reproduction by Genome Editing Approach.

    Science.gov (United States)

    Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei

    2017-07-01

    Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.

  4. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation

    DEFF Research Database (Denmark)

    Dagil, Robert; Knudsen, Maiken J.; Olsen, Johan Gotthardt

    2012-01-01

    The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane...

  5. Cow's milk increases the activities of human nuclear receptors peroxisome proliferator-activated receptors alpha and delta and retinoid X receptor alpha involved in the regulation of energy homeostasis, obesity, and inflammation.

    Science.gov (United States)

    Suhara, W; Koide, H; Okuzawa, T; Hayashi, D; Hashimoto, T; Kojo, H

    2009-09-01

    The nuclear peroxisome proliferator-activated receptors (PPAR) have been shown to play crucial roles in regulating energy homeostasis including lipid and carbohydrate metabolism, inflammatory responses, and cell proliferation, differentiation, and survival. Because PPAR agonists have the potential to prevent or ameliorate diseases such as hyperlipidemia, diabetes, atherosclerosis, and obesity, we have explored new natural agonists for PPAR. For this purpose, cow's milk was tested for agonistic activity toward human PPAR subtypes using a reporter gene assay. Milk increased human PPARalpha activity in a dose-dependent manner with a 3.2-fold increase at 0.5% (vol/vol). It also enhanced human PPARdelta activity in a dose-dependent manner with an 11.5-fold increase at 0.5%. However, it only slightly affected human PPARgamma activity. Ice cream, butter, and yogurt also increased the activities of PPARalpha and PPARdelta, whereas vegetable cream affected activity of PPARdelta but not PPARalpha. Skim milk enhanced the activity of PPAR to a lesser degree than regular milk. Milk and fresh cream increased the activity of human retinoid X receptor (RXR)alpha as well as PPARalpha and PPARdelta, whereas neither affected vitamin D3 receptor, estrogen receptors alpha and beta, or thyroid receptors alpha and beta. Both milk and fresh cream were shown by quantitative real-time PCR to increase the quantity of mRNA for uncoupling protein 2 (UCP2), an energy expenditure gene, in a dose-dependent manner. The increase in UCP2 mRNA was found to be reduced by treatment with PPARdelta-short interfering (si)RNA. This study unambiguously clarified at the cellular level that cow's milk increased the activities of human PPARalpha, PPARdelta, and RXRalpha. The possible role in enhancing the activities of PPARalpha, PPARdelta, and RXRalpha, and the health benefits of cow's milk were discussed.

  6. Distinct Signaling Mechanisms in Multiple Developmental Pathways by the SCRAMBLED Receptor of Arabidopsis1[OPEN

    Science.gov (United States)

    Kwak, Su-Hwan; Woo, Sooah; Lee, Myeong Min; Schiefelbein, John

    2014-01-01

    SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase in Arabidopsis (Arabidopsis thaliana), is required for positional signaling in the root epidermis and for tissue/organ development in the shoot. To further understand SCM action, we generated a series of kinase domain variants and analyzed their ability to complement scm mutant defects. We found that the SCM kinase domain, but not kinase activity, is required for its role in root epidermal patterning, supporting the view that SCM is an atypical receptor kinase. We also describe a previously uncharacterized role for SCM in fruit dehiscence, because mature siliques from scm mutants fail to open properly. Interestingly, the kinase domain of SCM appears to be dispensable for this developmental process. Furthermore, we found that most of the SCM kinase domain mutations dramatically inhibit inflorescence development. Because this process is not affected in scm null mutants, it is likely that SCM acts redundantly to regulate inflorescence size. The importance of distinct kinase residues for these three developmental processes provides an explanation for the maintenance of the conserved kinase domain in the SCM protein, and it may generally explain its conservation in other atypical kinases. Furthermore, these results indicate that individual leucine-rich repeat receptor-like kinases may participate in multiple pathways using distinct signaling mechanisms to mediate diverse cellular communication events. PMID:25136062

  7. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies.

    Science.gov (United States)

    Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P

    2016-04-08

    The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior - a key element for the transport selectivity of the NPC - was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface.

  8. Multiple sclerosis test or the 4 humors: cerebrospinal fluid serum, tears and saliva

    International Nuclear Information System (INIS)

    Oehninger Gatti, C.; Buzo Del Puerto, R.; Chouza Antelo, C.; Scotti Bianchi, C.; Cibils, D.; Alcantara Pelaez, J.; Gomez, A.; Heuguerot Oliveira, C.

    1994-01-01

    4 were studied biological fluids easily accessible to the immune exploration (cerebrospinal fluid, serum, tears and saliva) in 25 patients with Multiple Sclerosis (MS) during a push clinical disease. The level of interleukin-2 receptor soluble (RsIL-2) was significantly increased by at least 3 of these 4 fluids, compared with normal controls. The sensitivity and specificity of its determination for the diagnosis of the condition was higher than other immunochemical parameters, oligoclonal distribution (OD) of immunoglobulin (Ig) light chain imbalance-and-evoked electrophysiological studies. This method is used to establish a more accurate diagnosis of Multiple Sclerosis as well as to monitor its biological activity with nuclear magnetic resonance (NMR) (Author) [es

  9. The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis

    Science.gov (United States)

    Han, Sang Jun; O'Malley, Bert W.

    2014-01-01

    BACKGROUND Endometriosis is defined as the colonization and growth of endometrial tissue at anatomic sites outside the uterine cavity. Up to 15% of reproductive-aged women in the USA suffer from painful symptoms of endometriosis, such as infertility, pelvic pain, menstrual cycle abnormalities and increased risk of certain cancers. However, many of the current clinical treatments for endometriosis are not sufficiently effective and yield unacceptable side effects. There is clearly an urgent need to identify new molecular mechanisms that critically underpin the initiation and progression of endometriosis in order to develop more specific and effective therapeutics which lack the side effects of current therapies. The aim of this review is to discuss how nuclear receptors (NRs) and their coregulators promote the progression of endometriosis. Understanding the pathogenic molecular mechanisms for the genesis and maintenance of endometriosis as modulated by NRs and coregulators can reveal new therapeutic targets for alternative endometriosis treatments. METHODS This review was prepared using published gene expression microarray data sets obtained from patients with endometriosis and published literature on NRs and their coregulators that deal with endometriosis progression. Using the above observations, our current understanding of how NRs and NR coregulators are involved in the progression of endometriosis is summarized. RESULTS Aberrant levels of NRs and NR coregulators in ectopic endometriosis lesions are associated with the progression of endometriosis. As an example, endometriotic cell-specific alterations in gene expression are correlated with a differential methylation status of the genome compared with the normal endometrium. These differential epigenetic regulations can generate favorable cell-specific NR and coregulator milieus for endometriosis progression. Genetic alterations, such as single nucleotide polymorphisms and insertion/deletion polymorphisms of NR

  10. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Science.gov (United States)

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  11. Operation of a nuclear test gage at low multiplications

    International Nuclear Information System (INIS)

    Baumann, N.P.

    1977-01-01

    The Nuclear Test Gage (NTG) at the Savannah River Plant is a subcritical multiplying facility (low k) with H 2 O moderator and 2.54-cm-diameter fuel slugs of 5 wt percent 235 U in aluminum alloy at a 4.285-cm triangular pitch. The core of the facility is 61-cm long with a normal diameter of 27 cm. The NTG is used for quality control of reactor components, such as 235 U-Al fuel tubes, Li--Al target tubes, control and safety rods, and miscellaneous special irradiation elements. A component is tested by passing it through an axial test port 11.63 cm in diameter. The ion chamber response from the resultant change in neutron source multiplication is then compared with corresponding responses from known standards

  12. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    International Nuclear Information System (INIS)

    Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar; Mani, Sridhar

    2011-01-01

    Research highlights: → Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. → PXR undergoes dynamic deacetylation upon ligand-mediated activation. → SIRT1 partially mediates PXR deacetylation. → PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  13. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.

    Science.gov (United States)

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2014-10-27

    The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.

  14. Regulation of porcine skeletal muscle nuclear 3,5,3'-tri-iodothyronine receptor binding capacity by thyroid hormones: modification by energy balance.

    Science.gov (United States)

    Morovat, A; Dauncey, M J

    1995-02-01

    Thyroid hormones have been implicated in the regulation of nuclear 3,5,3'-tri-iodothyronine (T3) receptor binding capacity (Bmax) but, despite numerous in vivo and in vitro studies, there is considerable controversy regarding their exact role. Since changes in thyroid status alter energy balance and hence may influence T3 receptor numbers, the effects of chronic hypothyroidism and T4 treatment have been studied in young pigs under conditions of controlled energy intake. Four groups of animals comprising a hypothyroid, a euthyroid and a hyperthyroid group, all on the same level of food intake, and a hyperthyroid group on twice the amount of food were used. After 3 weeks on the treatment regimes, both the hypothyroid animals on the same level of food intake and the hyperthyroid animals on twice the amount of food had significantly increased Bmax values (97% and 137% higher respectively) compared with euthyroid controls. However, there was no difference between controls and the hyperthyroid animals on the same level of food intake. In a second study, the effects of short-term treatment of euthyroid animals with T3 was investigated. Results showed that in two groups of controls that received intravenous saline, those on a higher food intake had higher Bmax values (76% increase). Intravenous T3 administration to animals on a low food intake did not change the receptor numbers. In none of the studies was there any change in the dissociation constant of the receptors as a result of different treatments. It is suggested that, at least in postnatal life, thyroid hormones per se have no significant effect on nuclear T3 receptor numbers in skeletal muscle.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Toll-like receptors in neonatal sepsis.

    LENUS (Irish Health Repository)

    O'Hare, Fiona M

    2013-06-01

    Toll-like receptors are vital transmembrane receptors that initiate the innate immune response to many micro-organisms. The discovery of these receptors has improved our understanding of host-pathogen interactions, and these receptors play an important role in the pathogenesis of multiple neonatal conditions such as sepsis and brain injury. Toll-like receptors, especially TLRs 2 and 4, are associated with necrotizing enterocolitis, periventricular leukomalacia and sepsis.

  16. Neutron-multiplication measurement instrument

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results.

  17. Neutron multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1983-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  18. Neutron-multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  19. TLX: An elusive receptor.

    Science.gov (United States)

    Benod, Cindy; Villagomez, Rosa; Webb, Paul

    2016-03-01

    TLX (tailless receptor) is a member of the nuclear receptor superfamily and belongs to a class of nuclear receptors for which no endogenous or synthetic ligands have yet been identified. TLX is a promising therapeutic target in neurological disorders and brain tumors. Thus, regulatory ligands for TLX need to be identified to complete the validation of TLX as a useful target and would serve as chemical probes to pursue the study of this receptor in disease models. It has recently been proved that TLX is druggable. However, to identify potent and specific TLX ligands with desirable biological activity, a deeper understanding of where ligands bind, how they alter TLX conformation and of the mechanism by which TLX mediates the transcription of its target genes is needed. While TLX is in the process of escaping from orphanhood, future ligand design needs to progress in parallel with improved understanding of (i) the binding cavity or surfaces to target with small molecules on the TLX ligand binding domain and (ii) the nature of the TLX coregulators in particular cell and disease contexts. Both of these topics are discussed in this review. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A critical examination of the numerology of antigen-binding cells: evidence for multiple receptor specificities on single cells.

    Science.gov (United States)

    Miller, A

    1977-01-01

    The data available from other laboratories as well as our own on the frequency of cells recognizing major histocompatibility antigens or conventional protein and hapten antigens is critically evaluated. The frequency of specific binding for a large number of antigens is sufficiently high to support the idea that at least part of the antigen-binding cell population must have multiple specificities. Our results suggest that these multiple specific cells result from single cells synthesizing and displaying as many as 50-100 species of receptor, each at a frequency of 10(4) per cell. A model involving gene expansion of constant-region genes is suggested and some auxilliary evidence consistent with such C-gene expansion is presented.

  1. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    Science.gov (United States)

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.

  2. Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?

    Directory of Open Access Journals (Sweden)

    Judith Toneatto

    2014-11-01

    Full Text Available It is well known that glucocorticoids and mineralocorticoids are part of the list of hormones that control adipogenesis as well as different aspects of the physiology of the adipose tissue. Their actions are mediated through their binding to the glucocorticoid and the mineralocorticoid receptors (GR and MR, respectively, in complex with heat shock proteins (Hsps and high molecular weight immunophilins (IMMs. Albeit many aspects of the molecular mechanism of the corticosteroid receptors are not fully elucidated yet, it was not until recently that the first evidences of the functional importance of Hsps and IMMs in the process of adipocyte differentiation have been described. Hsp90 and the high molecular weight IMM FKBP51 modulate GR and MR activity at multiple levels, that is, hormone binding affinity, their subcellular distribution, and the transcriptional status, among other aspects of the NR function. Interestingly, it has recently been described that Hsp90 and FKBP51 also participate in the control of PPARγ, a key transcription factor in the control of adipogenesis and the maintenance of the adipocyte phenotype. In addition, novel roles have been uncovered for FKBP51 in the organization of the nuclear architecture through its participation in the reorganization of the nuclear lamina and the control of the subnuclear distribution of GR. Thus, the aim of this review is to integrate and discuss the actual understanding of the role of corticosteroid receptors, their chaperones and cochaperones, in the process of adipocyte differentiation.

  3. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling

    Directory of Open Access Journals (Sweden)

    Song eQin

    2014-04-01

    Full Text Available Neural stem cells (NSCs are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates BMP-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  4. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling.

    Science.gov (United States)

    Qin, Song; Niu, Wenze; Iqbal, Nida; Smith, Derek K; Zhang, Chun-Li

    2014-01-01

    Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  5. Effector stage CC chemokine receptor-1 selective antagonism reduces multiple sclerosis-like rat disease.

    Science.gov (United States)

    Eltayeb, Sana; Sunnemark, Dan; Berg, Anna-Lena; Nordvall, Gunnar; Malmberg, Asa; Lassmann, Hans; Wallström, Erik; Olsson, Tomas; Ericsson-Dahlstrand, Anders

    2003-09-01

    We have studied the role of the chemokine receptor CCR1 during the effector stage of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in DA rats. In situ hybridization histochemistry revealed local production of the CCR1 ligands CCL3 (MIP-1 alpha) and CCL5 (RANTES), as well as large numbers of CCR1 and CCR5 expressing cells within inflammatory brain lesions. A low-molecular weight CCR1 selective antagonist potently abrogated both clinical and histopathological disease signs during a 5-day treatment period, without signs of peripheral immune compromise. Thus, we demonstrate therapeutic targeting of CCR1-dependent leukocyte recruitment to the central nervous system in a multiple sclerosis (MS)-like rat model.

  6. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55*

    Science.gov (United States)

    Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria

    2012-01-01

    The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546

  7. Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation.

    Science.gov (United States)

    Yuk, Jae-Min; Kim, Tae Sung; Kim, Soo Yeon; Lee, Hye-Mi; Han, Jeongsu; Dufour, Catherine Rosa; Kim, Jin Kyung; Jin, Hyo Sun; Yang, Chul-Su; Park, Ki-Sun; Lee, Chul-Ho; Kim, Jin-Man; Kweon, Gi Ryang; Choi, Hueng-Sik; Vanacker, Jean-Marc; Moore, David D; Giguère, Vincent; Jo, Eun-Kyeong

    2015-07-21

    The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The nuclear receptor PPARγ as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Nektaria Nicolakakis

    2010-05-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are ligand-activated nuclear transcription factors that regulate peripheral lipid and glucose metabolism. Three subtypes make up the PPAR family (α, γ, β/δ, and synthetic ligands for PPARα (fibrates and PPARγ (Thiazolidinediones, TZDs are currently prescribed for the respective management of dyslipidemia and type 2 diabetes. In contrast to the well characterized action of PPARs in the periphery, little was known about the presence or function of these receptors in the brain and cerebral vasculature, until fairly recently. Indeed, research in the last decade has uncovered these receptors in most brain cell types, and has shown that their activation, particularly that of PPARγ, is implicated in normal brain and cerebrovascular physiology, and confers protection under pathological conditions. Notably, accumulating evidence has highlighted the therapeutic potential of PPARγ ligands in the treatment of brain disorders such as Alzheimer’s disease (AD, leading to the testing of the TZDs pioglitazone and rosiglitazone in AD clinical trials. This review will focus on the benefits of PPARγ agonists for vascular, neuronal and glial networks, and assess the value of these compounds as future AD therapeutics in light of evidence from transgenic mouse models and recent clinical trials.

  9. Multiple kisspeptin receptors in early Osteichthyans provide new insights into the evolution of this receptor family

    DEFF Research Database (Denmark)

    Pasquier, J.; Lafont, A._G.; Jeng, S.-R.

    2012-01-01

    Deorphanization of GPR54 receptor a decade ago led to the characterization of the kisspeptin receptor (Kissr) in mammals and the discovery of its major role in the brain control of reproduction. While a single gene encodes for Kissr in eutherian mammals including human, other vertebrates present ...

  10. Hepatic Aryl hydrocarbon Receptor Nuclear Translocator (ARNT regulates metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Christopher H Scott

    Full Text Available Aryl hydrocarbon Receptor Nuclear Translocator (ARNT and its partners hypoxia-inducible factors (HIF-1α and HIF-2α are candidate factors for the well-known link between the liver, metabolic dysfunction and elevation in circulating lipids and glucose. Methods: Hepatocyte-specific ARNT-null (LARNT, HIF-1α-null (LHIF1α and HIF-2α-null (LHIF2α mice were created.LARNT mice had increased fasting glucose, impaired glucose tolerance, increased glucose production, raised post-prandial serum triglycerides (TG and markedly lower hepatic ATP versus littermate controls. There was increased expression of G6Pase, Chrebp, Fas and Scd-1 mRNAs in LARNT animals. Surprisingly, LHIF1α and LHIF2α mice exhibited no alterations in any metabolic parameter assessed.These results provide convincing evidence that reduced hepatic ARNT can contribute to inappropriate hepatic glucose production and post-prandial dyslipidaemia. Hepatic ARNT may be a novel therapeutic target for improving post-prandial hypertriglyceridemia and glucose homeostasis.

  11. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Myeung Su [Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Oh, Jaemin, E-mail: jmoh@wku.ac.kr [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Ju-Young, E-mail: kimjy1014@gmail.com [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  12. Kar5p is required for multiple functions in both inner and outer nuclear envelope fusion in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rogers, Jason V; Rose, Mark D

    2014-12-02

    During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p's functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. Copyright © 2015 Rogers and Rose.

  13. Crosstalk between a nuclear receptor and beta-catenin signaling decides cell fates in the C. elegans somatic gonad

    Czech Academy of Sciences Publication Activity Database

    Asahina, Masako; Valenta, Tomáš; Šilhánková, M.; Kořínek, Vladimír; Jindra, Marek

    2006-01-01

    Roč. 11, č. 2 (2006), s. 203-211 ISSN 1534-5807 R&D Projects: GA AV ČR KJB5022303; GA ČR GD524/03/H133; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50070508; CEZ:AV0Z50520514 Keywords : nuclear receptor * beta-catenin signaling * Caenorhabditis elegans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 13.523, year: 2006

  14. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  15. The multiple applications of the nuclear techniques in Argentina; Las multiples aplicaciones de la tecnologia nuclear en Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Alberto C [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Programa de Radioisotopos y Aplicaciones

    2001-07-01

    A review is given of the use of nuclear technology in Argentina, especially in the field of the production of radioisotopes and radiopharmaceuticals, nuclear medicine, and industrial applications. The applications of ionizing radiation are also reviewed.

  16. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    DEFF Research Database (Denmark)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A

    2010-01-01

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3...... mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine...... program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans....

  17. Multiple nuclear ADC controller

    Energy Technology Data Exchange (ETDEWEB)

    Lovett, A; Rapaport, M S [Center for Nuclear Research, Soreq (Israel)

    1980-12-01

    A controller for an on-line three parameter coincidence and multispectra scaling system has been developed. It has been designed to control, event-by-event, the outputs of three nuclear analog-to-digital converters used at the SOLIS facility. The system utilizes an HP minicomputer with a 32k-word core memory, a disc drive and magnetic tape units.

  18. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  19. The effect of S1P receptor signaling pathway on the survival and drug resistance in multiple myeloma cells.

    Science.gov (United States)

    Fu, Di; Li, Yingchun; Li, Jia; Shi, Xiaoyan; Yang, Ronghui; Zhong, Yuan; Wang, Huihan; Liao, Aijun

    2017-01-01

    Multiple myeloma (MM) remains incurable by conventional chemotherapy. Sphingosine-1-phosphate (S1P) receptor-mediated signaling has been recently demonstrated to have critical roles in cell survival and drug resistance in a number of hematological malignancies. To dissect the roles of S1P receptor pathway in MM, we systematically examined cell viability and protein expression associated with cell survival and drug resistance in MM cell lines upon treatment with either pathway activator (S1P) or inhibitor (FTY720). Our results reveal that FTY720 inhibits cell proliferation by downregulating expression of target genes, while S1P has an opposite effect. Knocking down of S1P receptor S1P5R results in a reduction of cell survival-related gene expression; however, it does not have impacts on expression of drug resistance genes. These results suggest that S1P signaling plays a role in cell proliferation and drug resistance in MM, and targeting this pathway will provide a new therapeutic direction for MM management.

  20. Novel VEGF decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo.

    Directory of Open Access Journals (Sweden)

    Qin Wang

    Full Text Available VEGF family factors are known to be the principal stimulators of abnormal angiogenesis, which play a fundamental role in tumor and various ocular diseases. Inhibition of VEGF is widely applied in antiangiogenic therapy. Conbercept is a novel decoy receptor protein constructed by fusing VEGF receptor 1 and VEGF receptor 2 extracellular domains with the Fc region of human immunoglobulin. In this study, we systematically evaluated the binding affinity of conbercept with VEGF isoforms and PlGF by using anti-VEGF antibody (Avastin as reference. BIACORE and ELISA assay results indicated that conbercept could bind different VEGF-A isoforms with higher affinity than reference. Furthermore, conbercept could also bind VEGF-B and PlGF, whereas Avastin showed no binding. Oxygen-induced retinopathy model showed that conbercept could inhibit the formation of neovasularizations. In tumor-bearing nude mice, conbercept could also suppress tumor growth very effectively in vivo. Overall, our study have demonstrated that conbercept could bind with high affinity to multiple VEGF isoforms and consequently provide remarkable anti-angiogenic effect, suggesting the possibility to treat angiogenesis-related diseases such as cancer and wet AMD etc.

  1. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.

    Science.gov (United States)

    Göttlicher, M; Widmark, E; Li, Q; Gustafsson, J A

    1992-01-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. Testing of compounds related to lipid metabolism or peroxisomal proliferation revealed that 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activate the receptor chimera. In addition, saturated fatty acids induce the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. In conclusion, the present results indicate that fatty acids can regulate gene expression mediated by a member of the steroid nuclear receptor superfamily. Images PMID:1316614

  2. Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin

    Science.gov (United States)

    Lin, Changsheng; Ear, Jason; Midde, Krishna; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Garcia-Marcos, Mikel; Kufareva, Irina; Abagyan, Ruben; Ghosh, Pradipta

    2014-01-01

    A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein–protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein–protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV—Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs. PMID:25187647

  3. Biochemical study of multiple drug recognition sites on central benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Trifiletti, R.R.

    1986-01-01

    The benzodiazepine receptor complex of mammalian brain possesses recognition sites which mediate (at least in part) the pharmacologic actions of the 1,4-benzodiazepines and barbiturates. Evidence is provided suggesting the existence of least seven distinct drug recognition sites on this complex. Interactions between the various recognition sites have been explored using radioligand binding techniques. This information is utilized to provide a comprehensive scheme for characterizing receptor-active drugs on an anxiolytic-anticonvulsant/proconvulsant continuum using radioligand binding techniques, as well as a comprehensive program for identifying potential endogenous receptor-active substances. Further evidence is provided here supporting the notion of benzodiazepine recognition site heterogeneity. Classical 1,4-benzodiazepines do not appear to differentiate two populations of benzodiazepine receptors in an equilibrium sense, but appear to do so in a kinetic sense. An apparent physical separation of the two receptor subtypes can be achieved by differential solubilization. The benzodiazepine binding subunit can be identified by photoaffinity labeling with the benzodiazepine agonist (/sup 3/H)flunitrazepan. Conditions for reproducible partial proteolytic mapping of (/sup 3/H)flunitrazepam photoaffinity labeled receptors are established. From these maps, it is concluded that there are probably no major differences in the primary sequence of the benzodiazepine binding subunit in various regions of the rat central nervous system.

  4. Nuclear Orphan Receptor TLX Induces Oct-3/4 for the Survival and Maintenance of Adult Hippocampal Progenitors upon Hypoxia*

    OpenAIRE

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2010-01-01

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with c...

  5. Clinical validation of nuclear factor kappa B expression in invasive breast cancer.

    Science.gov (United States)

    Agrawal, Anil Kumar; Pielka, Ewa; Lipinski, Artur; Jelen, Michal; Kielan, Wojciech; Agrawal, Siddarth

    2018-01-01

    Breast cancer is the most commonly diagnosed cancer in Polish women. The expression of transcription nuclear factor kappa B, a key inducer of inflammatory response promoting carcinogenesis and cancer progression in breast cancer, is not well-established. We assessed the nuclear factor kappa B expression in a total of 119 invasive breast carcinomas and 25 healthy control samples and correlated this expression pattern with several clinical and pathologic parameters including histologic type and grade, tumor size, lymph node status, estrogen receptor status, and progesterone receptor status. The data used for the analysis were derived from medical records. An immunohistochemical analysis of nuclear factor kappa B, estrogen receptor, and progesterone receptor was carried out and evaluation of stainings was performed. The expression of nuclear factor kappa B was significantly higher than that in the corresponding healthy control samples. No statistical difference was demonstrated in nuclear factor kappa B expression in relation to age, menopausal status, lymph node status, tumor size and location, grade and histologic type of tumor, and hormonal status (estrogen receptor and progesterone receptor). Nuclear factor kappa B is significantly overexpressed in invasive breast cancer tissues. Although nuclear factor kappa B status does not correlate with clinicopathological findings, it might provide important additional information on prognosis and become a promising object for targeted therapy.

  6. Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts

    Science.gov (United States)

    Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...

  7. Orphan Nuclear Receptor Nur77 Is a Novel Negative Regulator of Endothelin-1 Expression In Vascular Endothelial Cells

    OpenAIRE

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-01-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and Enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activati...

  8. Nuclear compression effects on pion production in nuclear collisions

    International Nuclear Information System (INIS)

    Sano, M.; Gyulassy, M.; Wakai, M.; Kitazoe, Y.

    1984-11-01

    The pion multiplicity produced in nuclear collisions between 0.2 and 2 AGeV is calculated assuming shock formation. We also correct the procedure of extracting the nuclear equation of state as proposed by Stock et al. The nuclear equation of state would have to be extremely stiff for this model to reproduce the observed multiplicities. The assumptions of this model are critically analyzed. (author)

  9. Absence of the neurogenesis-dependent nuclear receptor TLX induces inflammation in the hippocampus.

    Science.gov (United States)

    Kozareva, Danka A; Hueston, Cara M; Ó'Léime, Ciarán S; Crotty, Suzanne; Dockery, Peter; Cryan, John F; Nolan, Yvonne M

    2017-08-20

    The orphan nuclear receptor TLX (Nr2e1) is a key regulator of hippocampal neurogenesis. Impaired adult hippocampal neurogenesis has been reported in neurodegenerative and psychiatric conditions including dementia and stress-related depression. Neuroinflammation is also implicated in the neuropathology of these disorders, and has been shown to negatively affect hippocampal neurogenesis. To investigate a role for TLX in hippocampal neuroinflammation, we assessed microglial activation in the hippocampus of mice with a spontaneous deletion of TLX. Results from our study suggest that a lack of TLX is implicated in deregulation of microglial phenotype and that consequently, the survival and function of newborn cells in the hippocampus is impaired. TLX may be an important target in understanding inflammatory-associated impairments in neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Decommissioning strategy and schedule for a multiple reactor nuclear power plant site

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Deiglys Borges; Moreira, Joao M.L.; Maiorino, Jose Rubens, E-mail: deiglys.monteiro@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    The decommissioning is an important part of every Nuclear Power Plant life cycle gaining importance when there are more than one plant at the same site due to interactions that can arise from the operational ones and a decommissioning plant. In order to prevent undesirable problems, a suitable strategy and a very rigorous schedule should implemented and carried. In this way, decommissioning tasks such as fully decontamination and dismantling of activated and contaminated systems, rooms and structures could be delayed, posing as an interesting option to multiple reactor sites. The present work aims to purpose a strategy and a schedule for the decommissioning of a multiple reactor site highlighting the benefits of delay operational tasks and constructs some auxiliary services in the site during the stand by period of the shutdown plants. As a case study, will be presented a three-reactor site which the decommissioning process actually is in planning stage and that should start in the next decade. (author)

  11. Decommissioning strategy and schedule for a multiple reactor nuclear power plant site

    International Nuclear Information System (INIS)

    Monteiro, Deiglys Borges; Moreira, Joao M.L.; Maiorino, Jose Rubens

    2015-01-01

    The decommissioning is an important part of every Nuclear Power Plant life cycle gaining importance when there are more than one plant at the same site due to interactions that can arise from the operational ones and a decommissioning plant. In order to prevent undesirable problems, a suitable strategy and a very rigorous schedule should implemented and carried. In this way, decommissioning tasks such as fully decontamination and dismantling of activated and contaminated systems, rooms and structures could be delayed, posing as an interesting option to multiple reactor sites. The present work aims to purpose a strategy and a schedule for the decommissioning of a multiple reactor site highlighting the benefits of delay operational tasks and constructs some auxiliary services in the site during the stand by period of the shutdown plants. As a case study, will be presented a three-reactor site which the decommissioning process actually is in planning stage and that should start in the next decade. (author)

  12. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    Science.gov (United States)

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-05-15

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fundamental study on nuclear medicine imaging of cholinergic innervation in the brain; Changes of neurotransmitter and receptor in animal model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Kinuya, Keiko; Sumiya, Hisashi; Hisada, Kinichi [Kanazawa Univ. (Japan). School of Medicine; Tsuji, Shiro; Terada, Hitoshi; Shiba, Kazuhiro; Mori, Hirofumi

    1990-10-01

    A fundamental study was performed on the nuclear medicine imaging of cholinergic innervation in the brain. In a cholinergic denervation model prepared by producing an unilateral basal forebrain lesion in the rat, which is reported to be one of animal models of Alzheimer' disease, quantitative determination of acetylcholine in parietal cortices revealed statistically significant 31% decrease on an average in the ipsilateral side relative to the contralateral side to the lesion. In vitro receptor autoradiography showed no significant differences in total, M{sub 1}, and M{sub 2} muscarinic acetylcholine receptors between the ipsilateral and contralateral cortices to the lesion. Simultaneous mapping of presynaptic cholinergic innervation using {sup 3}H-2-(4-phenylpiperidino) cyclohexanol (AH5183) demonstrated significant 14% decrease of AH5183 binding on an average in the ipsilateral relative to the contralateral fronto-parieto-temporal cortices to the lesion. These results suggest that AH5183 is a promising ligand for mapping cholinergic innervation in nuclear medicine imaging. (author).

  14. Peroxisome Proliferator-activated Receptor gamma Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81)

    NARCIS (Netherlands)

    Jeninga, E.H.; Bugge, A.; Nielsen, R.; Kersten, A.H.; Hamers, N.; Dani, C.; Wabitsch, M.; Berger, R.; Stunnenberg, H.G.; Mandrup, S.; Kalkhoven, E.

    2009-01-01

    The ligand-inducible nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) plays a key role in the differentiation, maintenance, and function of adipocytes and is the molecular target for the insulin-sensitizing thiazoledinediones (TZDs). Although a number of PPAR gamma

  15. Platelet-derived growth factor receptors in the human central nervous system : autoradiographic distribution and receptor densities in multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Wilczak, N

    1997-01-01

    Platelet derived growth factor (PDGF) receptors were studied in postmortem adult human brain and cervical spinal cord using autoradiography with human recombinant I-125-PDGF-BB. PDGF-BB binds to the three different dimers of PDGF receptors (alpha alpha, alpha beta and beta beta) PDGF receptors were

  16. Determination of spent nuclear fuel assembly multiplication with the differential die-away self-interrogation instrument

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexis C. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, Marek; Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-09-01

    We present a novel method for determining the multiplication of a spent nuclear fuel assembly with a Differential Die-Away Self-Interrogation (DDSI) instrument. The signal, which is primarily created by thermal neutrons, is measured with four {sup 3}He detector banks surrounding a spent fuel assembly. The Rossi-alpha distribution (RAD) at early times reflects coincident events from single fissions as well as fission chains. Because of this fact, the early time domain contains information about both the fissile material and spontaneous fission material in the assembly being measured. A single exponential function fit to the early time domain of the RAD has a die-away time proportional to the spent fuel assembly (SFA) multiplication. This correlation was tested by simulating assay of 44 different SFAs with the DDSI instrument. The SFA multiplication was determined with a variance of 0.7%.

  17. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver

    International Nuclear Information System (INIS)

    Guo Dongsheng; Sarkar, Joy; Ahmed, Mohamed R.; Viswakarma, Navin; Jia Yuzhi; Yu Songtao; Sambasiva Rao, M.; Reddy, Janardan K.

    2006-01-01

    The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function

  18. Membrane estrogen receptors - is it an alternative way of estrogen action?

    Science.gov (United States)

    Soltysik, K; Czekaj, P

    2013-04-01

    The functions of estrogens are relatively well known, however the molecular mechanism of their action is not clear. The classical pathway of estrogen action is dependent on ERα and ERβ which act as transcription factors. The effects of this pathway occur within hours or days. In addition, so-called, non-classical mechanism of steroid action dependent on membrane estrogen receptors (mER) was described. In this mechanism the effects of estrogen action are observed in a much shorter time. Here we review the structure and cellular localization of mER, molecular basis of non-classical mER action, physiological role of mER as well as implications of mER action for cancer biology. Finally, some concerns about the new estrogen receptor - GPER and candidates for estrogen receptors - ER-X and ERx, are briefly discussed. It seems that mER is a complex containing signal proteins (signalosome), as IGF receptor, EGF receptor, Ras protein, adaptor protein Shc, non-receptor kinase c-Src and PI-3K, what rationalizes production of second messengers. Some features of membrane receptors are almost identical if compared to nuclear receptors. Probably, membrane and nuclear estrogen receptors are not separate units, but rather the components of a complex mechanism in which they both cooperate with each other. We conclude that the image of the estrogen receptor as a simple transcription factor is a far-reaching simplification. A better understanding of the mechanisms of estrogen action will help us to design more effective drugs affecting signal pathways depending on both membrane and nuclear receptors.

  19. Effect of propofol on androgen receptor activity in prostate cancer cells.

    Science.gov (United States)

    Tatsumi, Kenichiro; Hirotsu, Akiko; Daijo, Hiroki; Matsuyama, Tomonori; Terada, Naoki; Tanaka, Tomoharu

    2017-08-15

    Androgen receptor is a nuclear receptor and transcription factor activated by androgenic hormones. Androgen receptor activity plays a pivotal role in the development and progression of prostate cancer. Although accumulating evidence suggests that general anesthetics, including opioids, affect cancer cell growth and impact patient prognosis, the effect of those drugs on androgen receptor in prostate cancer is not clear. The purpose of this study was to investigate the effect of the general anesthetic propofol on androgen receptor activity in prostate cancer cells. An androgen-dependent human prostate cancer cell line (LNCaP) was stimulated with dihydrotestosterone (DHT) and exposed to propofol. The induction of androgen receptor target genes was investigated using real-time reverse transcription polymerase chain reaction, and androgen receptor protein levels and localization patterns were analyzed using immunoblotting and immunofluorescence assays. The effect of propofol on the proliferation of LNCaP cells was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Propofol significantly inhibited DHT-induced expression of androgen receptor target genes in a dose- and time-dependent manner, and immunoblotting and immunofluorescence assays indicated that propofol suppressed nuclear levels of androgen receptor proteins. Exposure to propofol for 24h suppressed the proliferation of LNCaP cells, whereas 4h of exposure did not exert significant effects. Together, our results indicate that propofol suppresses nuclear androgen receptor protein levels, and inhibits androgen receptor transcriptional activity and proliferation in LNCaP cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1

    International Nuclear Information System (INIS)

    Tao Yongguang; Song Xing; Deng Xiyun; Xie Daxin; Lee, Leo M.; Liu Yiping; Li Wei; Li Lili; Deng Lin; Wu Qiao; Gong Jianping; Cao Ya

    2005-01-01

    Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV-encoded proteins and has always been the core of the oncogenic mechanism of EBV. Advanced studies on nuclear translocation of the epidermal growth factor receptor (EGFR) family have greatly improved our knowledge of the biological function of cell surface receptors. In this study, we used the Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1-integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 which could be regulated by the Tet system. We found that LMP1 could regulate the nuclear accumulation of EGFR in a dose-dependent manner quantitatively and qualitatively. We also demonstrated that the nuclear localization sequence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation and EGFR in the nucleus could bind to the promoters of cyclinD1 and cyclinE, respectively. We further demonstrated that EGFR is involved in the acceleration of the G1/S phase transition by LMP1 through binding to cyclinD1 and cyclinE directly. These findings provided a novel view that the acceleration of LMP1 on the G1/S transition via the nuclear accumulation of EGFR was critical in the process of nasopharyngeal carcinoma

  1. Biological variation and reference intervals for circulating osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor kappa B ligand and high-sensitivity C-reactive protein

    DEFF Research Database (Denmark)

    Sennels, H P; Jacobsen, Søren; Jensen, T

    2007-01-01

    Objective. Monitoring inflammatory diseases and osteoclastogenesis with osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor kappa B ligand (total sRANKL) and high-sensitivity C-reactive protein (hsCRP) has recently attracted increased interest. The purpose...

  2. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara

    2012-01-01

    and correlate with an LXR-dependent hepatic induction of lipogenic genes. To further investigate the roles of RXR and LXR in the regulation of hepatic gene expression, we have mapped the ligand-regulated genome-wide binding of these factors in mouse liver. We find that the RXR agonist bexarotene primarily......The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs...

  3. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  4. Receptor activity modifying proteins (RAMPs) interact with the VPAC1 receptor: evidence for differential RAMP modulation of multiple signalling pathways

    International Nuclear Information System (INIS)

    Christopoulos, G.; Morfis, M.; Sexton, P.M.; Christopoulos, A.; Laburthe, M.; Couvineau, A.

    2001-01-01

    Full text: Receptor activity modifying proteins (RAMP) constitute a family of three accessory proteins that affect the expression and/or phenotype of the calcitonin receptor (CTR) or CTR-like receptor (CRLR). In this study we screened a range of class II G protein-coupled receptors (PTH1, PTH2, GHRH, VPAC1, VPAC2 receptors) for possible RAMP interactions by measurement of receptor-induced translocation of c-myc tagged RAMP1 or HA tagged RAMP3. Of these, only the VPAC1 receptor caused significant translocation of c-myc-RAMP1 or HA-RAMP3 to the cell surface. Co-transfection of VPAC1 and RAMPs did not alter 125 I-VIP binding and specificity. VPAC1 receptor function was subsequently analyzed through parallel determinations of cAMP accumulation and phosphoinositide (PI) hydrolysis in the presence and absence of each of the three RAMPs. In contrast to CTR-RAMP interaction, where there was an increase in cAMP Pharmacologisand a decrease in PI hydrolysis, VPAC1-RAMP interaction was characterized by a specific increase in agonist-mediated PI hydrolysis when co-transfected with RAMP2. This change was due to an enhancement of Emax with no change in EC 50 value for VIP. No significant change in cAMP accumulation was observed. This is the first demonstration of an interaction of RAMPs with a G protein-coupled receptor outside the CTR family and may suggest a more generalized role for RAMPs in modulating G protein-coupled receptor signaling. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  5. Initial results from a multiple monoenergetic gamma radiography system for nuclear security

    Science.gov (United States)

    O'Day, Buckley E.; Hartwig, Zachary S.; Lanza, Richard C.; Danagoulian, Areg

    2016-10-01

    The detection of assembled nuclear devices and concealed special nuclear materials (SNM) such as plutonium or uranium in commercial cargo traffic is a major challenge in mitigating the threat of nuclear terrorism. Currently available radiographic and active interrogation systems use ∼1-10 MeV bremsstrahlung photon beams. Although simple to build and operate, bremsstrahlung-based systems deliver high radiation doses to the cargo and to potential stowaways. To eliminate problematic issues of high dose, we are developing a novel technique known as multiple monoenergetic gamma radiography (MMGR). MMGR uses ion-induced nuclear reactions to produce two monoenergetic gammas for dual-energy radiography. This allows us to image the areal density and effective atomic number (Zeff) of scanned cargo. We present initial results from the proof-of-concept experiment, which was conducted at the MIT Bates Research and Engineering Center. The purpose of the experiment was to assess the capabilities of MMGR to measure areal density and Zeff of container cargo mockups. The experiment used a 3.0 MeV radiofrequency quadrupole accelerator to create sources of 4.44 MeV and 15.11 MeV gammas from the 11B(d,nγ)12C reaction in a thick natural boron target; the gammas are detected by an array of NaI(Tl) detectors after transmission through cargo mockups . The measured fluxes of transmitted 4.44 MeV and 15.11 MeV gammas were used to assess the areal density and Zeff. Initial results show that MMGR is capable of discriminating the presence of high-Z materials concealed in up to 30 cm of iron shielding from low- and mid-Z materials present in the cargo mockup.

  6. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Dongmin [Section of Vascular Biology, National Heart and Lung Institute, Imperial College London, London (United Kingdom); Perros, Frédéric [Faculté de Médecine, Université Paris-Sud, Paris, Clamart (France); Caramori, Gaetano [Dipartimento di Scienze Mediche, Sezione di Medicina Interna e Cardiorespiratoria, Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate, University of Ferrara, Ferrara (Italy); Meng, Chao [Section of Vascular Biology, National Heart and Lung Institute, Imperial College London, London (United Kingdom); Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Dormuller, Peter [Faculté de Médecine, Université Paris-Sud, Paris, Clamart (France); Chou, Pai-Chien [Airways Disease, National Heart and Lung Institute (United Kingdom); Church, Colin [Scottish Pulmonary Vascular Unit, University of Glasgow (United Kingdom); Papi, Alberto; Casolari, Paolo [Dipartimento di Scienze Mediche, Sezione di Medicina Interna e Cardiorespiratoria, Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate, University of Ferrara, Ferrara (Italy); Welsh, David; Peacock, Andrew [Scottish Pulmonary Vascular Unit, University of Glasgow (United Kingdom); Humbert, Marc [Faculté de Médecine, Université Paris-Sud, Paris, Clamart (France); Adcock, Ian M. [Airways Disease, National Heart and Lung Institute (United Kingdom); Wort, Stephen J., E-mail: s.wort@imperial.ac.uk [Section of Vascular Biology, National Heart and Lung Institute, Imperial College London, London (United Kingdom)

    2014-08-15

    Highlights: • Nuclear IL-33 expression is reduced in vascular endothelial cells from PAH patients. • Knockdown of IL-33 leads to increased IL-6 and sST2 mRNA expression. • IL-33 binds homeobox motifs in target gene promoters and recruits repressor proteins. - Abstract: Idiopathic pulmonary arterial hypertension (IPAH) is an incurable condition leading to right ventricular failure and death and inflammation is postulated to be associated with vascular remodelling. Interleukin (IL)-33, a member of the “alarmin” family can either act on the membrane ST2 receptor or as a nuclear repressor, to regulate inflammation. We show, using immunohistochemistry, that IL-33 expression is nuclear in the vessels of healthy subjects whereas nuclear IL-33 is markedly diminished in the vessels of IPAH patients. This correlates with reduced IL-33 mRNA expression in their lung. In contrast, serum levels of IL-33 are unchanged in IPAH. However, the expression of the soluble form of ST2, sST2, is enhanced in the serum of IPAH patients. Knock-down of IL-33 in human endothelial cells (ECs) using siRNA is associated with selective modulation of inflammatory genes involved in vascular remodelling including IL-6. Additionally, IL-33 knock-down significantly increased sST2 release from ECs. Chromatin immunoprecipitation demonstrated that IL-33 bound multiple putative homeodomain protein binding motifs in the proximal and distal promoters of ST2 genes. IL-33 formed a complex with the histone methyltransferase SUV39H1, a transcriptional repressor. In conclusion, IL-33 regulates the expression of IL-6 and sST2, an endogenous IL-33 inhibitor, in primary human ECs and may play an important role in the pathogenesis of PAH through recruitment of transcriptional repressor proteins.

  7. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage.

    Science.gov (United States)

    Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle

    2017-11-03

    We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases ( e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G 1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Interim guidelines for protecting fire-fighting personnel from multiple hazards at nuclear plant sites

    International Nuclear Information System (INIS)

    Klein, A.R.; Bloom, C.W.

    1989-07-01

    This report provides interim guidelines for reducing the impact to fire fighting and other supporting emergency response personnel from the multiple hazards of radiation, heat stress, and trauma when fighting a fire in a United States commercial nuclear power plant. Interim guidelines are provided for fire brigade composition, training, equipment, procedures, strategies, heat stress and trauma. In addition, task definitions are provided to evaluate and further enhance the interim guidelines over the long term. 19 refs

  9. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  10. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Jeong, Kwang Won

    2014-01-01

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators

  11. Dynamic determination of kinetic parameters for the interaction between polypeptide hormones and cell-surface receptors in the perfused rat liver by the multiple-indicator dilution method

    International Nuclear Information System (INIS)

    Sato, H.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Sakamoto, S.; Fuwa, T.; Hanano, M.

    1988-01-01

    Hepatic elimination of epidermal growth factor (EGF) via receptor-mediated endocytosis was studied by a multiple-indicator dilution method in the isolated perfused rat liver, in which cell polarity and spatial organization are maintained. In this method EGF was given with inulin, an extracellular reference, as a bolus into the portal vein, and dilution curves of both compounds in the hepatic vein effluent were analyzed. Analysis of the dilution curve for EGF, compared with that for somatostatin, which showed no specific binding to isolated liver plasma membranes, resulted as follows: (i) both extraction ratio and distribution volume of 125 I-labeled EGF decreased as the injected amount of unlabeled EGF increased; (ii) the ratio plot of the dilution curve for EGF exhibited an upward straight line initially for a short period of time, whereas the ratio plot of somatostatin gradually decreased. The multiple-indicator dilution method was used for other peptides also. Insulin and glucagon, known to have hepatocyte receptors, behaved similarly to EGF in shape of their ratio plots. The kinetic parameters calculated by this analysis were comparable with reported values obtained by in vitro direct binding measurements at equilibrium using liver homogenates. They conclude that the multiple-indicator dilution method is a good tool for analyzing the dynamics of peptide hormones-cell-surface receptor interaction under a condition in which spatial architecture of the liver is maintained

  12. Nucleocytoplasmic trafficking of Nipah virus W protein involves multiple discrete interactions with the nuclear import and export machinery

    International Nuclear Information System (INIS)

    Audsley, Michelle D.; Jans, David A.; Moseley, Gregory W.

    2016-01-01

    Paramyxoviruses replicate in the cytoplasm with no obvious requirement to interact with the nucleus. Nevertheless, the W protein of the highly lethal bat-borne paramyxovirus Nipah virus (NiV) is known to undergo specific targeting to the nucleus, mediated by a single nuclear localisation signal (NLS) within the C-terminal domain. Here, we report for the first time that additional sites modulate nucleocytoplasmic localisation of W. We show that the N-terminal domain interacts with importin α1 and contributes to nuclear accumulation of W, indicative of a novel N-terminal NLS. We also find that W undergoes exportin-1 mediated nuclear export, dependent on a leucine at position 174. Together, these data enable significant revision of the generally accepted model of W trafficking, with implications for understanding of the mechanisms of NiV immune evasion. - Highlights: • A new model for Nipah virus W protein nucleocytoplasmic trafficking is proposed. • Nipah W protein is shown to undergo active nuclear export via exportin-1. • Nipah W nuclear import is mediated by multiple nuclear localisation signals.

  13. The Arabidopsis Nuclear Pore and Nuclear Envelope

    OpenAIRE

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities...

  14. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    Science.gov (United States)

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  15. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  16. Nuclear Winter: Global Consequences of Multiple Nuclear Explosions

    Science.gov (United States)

    Turco, R. P.; Toon, O. B.; Ackerman, T. P.; Pollack, J. B.; Sagan, Carl

    1983-12-01

    The potential global atmospheric and climatic consequences of nuclear war are investigated using models previously developed to study the effects of volcanic eruptions. Although the results are necessarily imprecise, due to a wide range of possible scenarios and uncertainty in physical parameters, the most probable first-order effects are serious. Significant hemispherical attenuation of the solar radiation flux and subfreezing land temperatures may be caused by fine dust raised in high-yield nuclear surface bursts and by smoke from city and forest fires ignited by airbursts of all yields. For many simulated exchanges of several thousand megatons, in which dust and smoke are generated and encircle the earth within 1 to 2 weeks, average light levels can be reduced to a few percent of ambient and land temperatures can reach -15 degrees to -25 degrees C. The yield threshold for major optical and climatic consequences may be very low: only about 100 megatons detonated over major urban centers can create average hemispheric smoke optical depths greater than 2 for weeks and, even in summer, subfreezing land temperatures for months. In a 5000-megaton war, at northern mid-latitude sites remote from targets, radioactive fallout on time scales of days to weeks can lead to chronic mean doses of up to 50 rads from external whole-body gamma-ray exposure, with a likely equal or greater internal dose from biologically active radionuclides. Large horizontal and vertical temperature gradients caused by absorption of sunlight in smoke and dust clouds may greatly accelerate transport of particles and radioactivity from the Northern Hemisphere to the Southern Hemisphere. When combined with the prompt destruction from nuclear blast, fires, and fallout and the later enhancement of solar ultraviolet radiation due to ozone depletion, long-term exposure to cold, dark, and radioactivity could pose a serious threat to human survivors and to other species.

  17. Inhibition of Estrogen Receptor Action by the Orphan Receptors, SHP and DAX-1

    National Research Council Canada - National Science Library

    DiRenzo, James

    2003-01-01

    .... In support of DoD grant # DAMD17-99-1-9163, we present our findings regarding the mechanisms by which two orphan nuclear receptors, SHP and DAX-1 inhibit the actions of ER-alpha and ER-beta action...

  18. Small Molecule Antagonists of the Nuclear Androgen Receptor for the Treatment of Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Johnson, James K; Skoda, Erin M; Zhou, Jianhua; Parrinello, Erica; Wang, Dan; O'Malley, Katherine; Eyer, Benjamin R; Kazancioglu, Mustafa; Eisermann, Kurtis; Johnston, Paul A; Nelson, Joel B; Wang, Zhou; Wipf, Peter

    2016-08-11

    After a high-throughput screening campaign identified thioether 1 as an antagonist of the nuclear androgen receptor, a zone model was developed for structure-activity relationship (SAR) purposes and analogues were synthesized and evaluated in a cell-based luciferase assay. A novel thioether isostere, cyclopropane (1S,2R)-27, showed the desired increased potency and structural properties (stereospecific SAR response, absence of a readily oxidized sulfur atom, low molecular weight, reduced number of flexible bonds and polar surface area, and drug-likeness score) in the prostate-specific antigen luciferase assay in C4-2-PSA-rl cells to qualify as a new lead structure for prostate cancer drug development.

  19. The nuclear receptor corepressor has organizational effects within the developing amygdala on juvenile social play and anxiety-like behavior.

    Science.gov (United States)

    Jessen, Heather M; Kolodkin, Mira H; Bychowski, Meaghan E; Auger, Catherine J; Auger, Anthony P

    2010-03-01

    Nuclear receptor function on DNA is regulated by the balanced recruitment of coregulatory complexes. Recruited proteins that increase gene expression are called coactivators, and those that decrease gene expression are called corepressors. Little is known about the role of corepressors, such as nuclear receptor corepressor (NCoR), on the organization of behavior. We used real-time PCR to show that NCoR mRNA levels are sexually dimorphic, that females express higher levels of NCoR mRNA within the developing amygdala and hypothalamus, and that NCoR mRNA levels are reduced by estradiol treatment. To investigate the functional role of NCoR on juvenile social behavior, we infused small interfering RNA targeted against NCoR within the developing rat amygdala and assessed the enduring impact on juvenile social play behavior, sociability, and anxiety-like behavior. As expected, control males exhibited higher levels of juvenile social play than control females. Reducing NCoR expression during development further increased juvenile play in males only. Interestingly, decreased NCoR expression within the developing amygdala had lasting effects on increasing juvenile anxiety-like behavior in males and females. These data suggest that the corepressor NCoR functions to blunt sex differences in juvenile play behavior, a sexually dimorphic and hormone-dependent behavior, and appears critical for appropriate anxiety-like behavior in juvenile males and females.

  20. Ror receptor tyrosine kinases: orphans no more

    OpenAIRE

    Green, Jennifer L.; Kuntz, Steven G.; Sternberg, Paul W.

    2008-01-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either act...

  1. Challenges predicting ligand-receptor interactions of promiscuous proteins: the nuclear receptor PXR.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2009-12-01

    Full Text Available Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses. The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5alpha-androstan-3beta-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches.

  2. Modulation of BCR Signaling by the Induced Dimerization of Receptor-Associated SYK

    Directory of Open Access Journals (Sweden)

    Mark L. Westbroek

    2017-12-01

    Full Text Available Clustering of the B cell antigen receptor (BCR by polyvalent antigens is transmitted through the SYK tyrosine kinase to the activation of multiple intracellular pathways that determine the physiological consequences of receptor engagement. To explore factors that modulate the quantity and quality of signals sent by the crosslinked BCR, we developed a novel chemical mediator of dimerization to induce clustering of receptor-associated SYK. To accomplish this, we fused SYK with E. coli dihydrofolate reductase (eDHFR, which binds the small molecule trimethoprim (TMP with high affinity and selectivity and synthesized a dimer of TMP with a flexible linker. The TMP dimer is able to induce the aggregation of eDHFR-linked SYK in live cells. The induced dimerization of SYK bound to the BCR differentially regulates the activation of downstream transcription factors, promoting the activation of Nuclear Factor of Activated T cells (NFAT without affecting the activation of NFκB. The dimerization of SYK enhances the duration but not the amplitude of calcium mobilization by enhancing the extent and duration of its interaction with the crosslinked BCR at the plasma membrane.

  3. Inhibition of Estrogen Receptor Action by the Orphan Receptors, SHP and DAX-1

    National Research Council Canada - National Science Library

    DiRenzo, James

    2002-01-01

    In support of DoD grant # DAMD17-99-1-9163, we present our progress towards understanding the function of mechanisms of action of two orphan nuclear receptors, SHP and DAX-I as inhibitors of ER alpha and ER beta action...

  4. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    International Nuclear Information System (INIS)

    Mistafa, Oras; Hoegberg, Johan; Stenius, Ulla

    2008-01-01

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells

  5. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mistafa, Oras; Hoegberg, Johan [Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm (Sweden); Stenius, Ulla [Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm (Sweden)

    2008-01-04

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells.

  6. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor regulating C. elegans development and lifespan

    Science.gov (United States)

    Mahanti, Parag; Bose, Neelanjan; Bethke, Axel; Judkins, Joshua C.; Wollam, Joshua; Dumas, Kathleen J.; Zimmerman, Anna M.; Campbell, Sydney L.; Hu, Patrick J.; Antebi, Adam; Schroeder, Frank C.

    2014-01-01

    SUMMARY Small-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C. elegans NHR, DAF-12, a vitamin-D and liver-X receptor homolog regulating larval development, fat metabolism, and lifespan. The identified molecules feature unexpected chemical modifications and include only one of two DAF-12 ligands reported earlier, necessitating a revision of previously proposed ligand biosynthetic pathways. We further show that ligand profiles are regulated by a complex enzymatic network including the Rieske oxygenase DAF-36, the short-chain dehydrogenase DHS-16, and the hydroxysteroid dehydrogenase, HSD-1. Our results demonstrate the advantages of comparative metabolomics over traditional candidate-based approaches and provide a blueprint for the identification of ligands for other C. elegans and mammalian NHRs. PMID:24411940

  7. Novel tumor suppressor function of glucocorticoid-induced TNF receptor GITR in multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Glucocorticoid-induced TNF receptor (GITR plays a crucial role in modulating immune response and inflammation, however the role of GITR in human cancers is poorly understood. In this study, we demonstrated that GITR is inactivated during tumor progression in Multiple Myeloma (MM through promoter CpG island methylation, mediating gene silencing in primary MM plasma cells and MM cell lines. Restoration of GITR expression in GITR deficient MM cells led to inhibition of MM proliferation in vitro and in vivo and induction of apoptosis. These findings were supported by the presence of induction of p21 and PUMA, two direct downstream targets of p53, together with modulation of NF-κB in GITR-overexpressing MM cells. Moreover, the unbalanced expression of GITR in clonal plasma cells correlated with MM disease progression, poor prognosis and survival. These findings provide novel insights into the pivotal role of GITR in MM pathogenesis and disease progression.

  8. Activation of postnatal neural stem cells requires nuclear receptor TLX.

    Science.gov (United States)

    Niu, Wenze; Zou, Yuhua; Shen, Chengcheng; Zhang, Chun-Li

    2011-09-28

    Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mispositioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroduction of ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner, and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways.

  9. Deflation-activated receptors, not classical inflation-activated receptors, mediate the Hering-Breuer deflation reflex.

    Science.gov (United States)

    Yu, Jerry

    2016-11-01

    Many airway sensory units respond to both lung inflation and deflation. Whether those responses to opposite stimuli come from one sensor (one-sensor theory) or more than one sensor (multiple-sensor theory) is debatable. One-sensor theory is commonly presumed in the literature. This article proposes a multiple-sensor theory in which a sensory unit contains different sensors for sensing different forces. Two major types of mechanical sensors operate in the lung: inflation- and deflation-activated receptors (DARs). Inflation-activated sensors can be further divided into slowly adapting receptors (SARs) and rapidly adapting receptors (RARs). Many SAR and RAR units also respond to lung deflation because they contain DARs. Pure DARs, which respond to lung deflation only, are rare in large animals but are easily identified in small animals. Lung deflation-induced reflex effects previously attributed to RARs should be assigned to DARs (including pure DARs and DARs associated with SARs and RARs) if the multiple-sensor theory is accepted. Thus, based on the information, it is proposed that activation of DARs can attenuate lung deflation, shorten expiratory time, increase respiratory rate, evoke inspiration, and cause airway secretion and dyspnea.

  10. Mouse hippocampal GABAB1 but not GABAB2 subunit-containing receptor complex levels are paralleling retrieval in the multiple-T-maze

    Directory of Open Access Journals (Sweden)

    Soheil eKeihan Falsafi

    2015-10-01

    Full Text Available GABAB receptors are heterodimeric G-protein coupled receptors known to be involved in learning and memory. Although a role for GABAB receptors in cognitive processes is evident, there is no information on hippocampal GABAB receptor complexes in a multiple T maze (MTM task, a robust paradigm for evaluation of spatial learning.Trained or untrained (yoked control C57BL/6J male mice (n=10/group were subjected to the MTM task and sacrificed 6 hours following their performance. Hippocampi were taken, membrane proteins extracted and run on blue native PAGE followed by immunoblotting with specific antibodies against GABAB1, GABAB1a and GABAB2. Immunoprecipitation with subsequent mass spectrometric identification of co-precipitates was carried out to show if GABAB1 and GABAB2 as well as other interacting proteins co-precipitate. An antibody shift assay (ASA and a proximity ligation assay (PLA were also used to see if the two GABAB subunits are present in the receptor complex.Single bands were observed on Western blots, each representing GABAB1, GABAB1a or GABAB2 at an apparent molecular weight of approximately 100 kDa. Subsequently, densitometric analysis revealed that levels of GABAB1 and GABAB1a but not GABAB2- containing receptor complexes were significantly higher in trained than untrained groups. Immunoprecipitation followed by mass spectrometric studies confirmed the presence of GABAB1, GABAB2, calcium calmodulin kinases I and II, GluA1 and GluA2 as constituents of the complex. ASA and PLA also showed the presence of the two subunits of GABAB receptor within the complex. It is shown that increased levels of GABAB1 subunit-containing complexes are paralleling performance in a land maze.

  11. Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex.

    Science.gov (United States)

    Onischenko, Evgeny; Tang, Jeffrey H; Andersen, Kasper R; Knockenhauer, Kevin E; Vallotton, Pascal; Derrer, Carina P; Kralt, Annemarie; Mugler, Christopher F; Chan, Leon Y; Schwartz, Thomas U; Weis, Karsten

    2017-11-02

    Nuclear pore complexes (NPCs) are ∼100 MDa transport channels assembled from multiple copies of ∼30 nucleoporins (Nups). One-third of these Nups contain phenylalanine-glycine (FG)-rich repeats, forming a diffusion barrier, which is selectively permeable for nuclear transport receptors that interact with these repeats. Here, we identify an additional function of FG repeats in the structure and biogenesis of the yeast NPC. We demonstrate that GLFG-containing FG repeats directly bind to multiple scaffold Nups in vitro and act as NPC-targeting determinants in vivo. Furthermore, we show that the GLFG repeats of Nup116 function in a redundant manner with Nup188, a nonessential scaffold Nup, to stabilize critical interactions within the NPC scaffold needed for late steps of NPC assembly. Our results reveal a previously unanticipated structural role for natively unfolded GLFG repeats as Velcro to link NPC subcomplexes and thus add a new layer of connections to current models of the NPC architecture. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. 5-Hydroxytryptamine 4 Receptor in the Endothelial Cells

    DEFF Research Database (Denmark)

    Profirovic, Jasmina; Vardya, Irina; Voyno-Yasenetskaya, Tatyana

    2006-01-01

    39 5-HYDROXYTRYPTAMINE 4 RECEPTOR IN THE ENDOTHELIAL CELLS. J. Profirovic, I. Vardya, T. Voyno-Yasenetskaya, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL. Serotonin (5-hydroxytryptamine [5-HT]) is an important neurotransmitter that regulates multiple events in the ce......39 5-HYDROXYTRYPTAMINE 4 RECEPTOR IN THE ENDOTHELIAL CELLS. J. Profirovic, I. Vardya, T. Voyno-Yasenetskaya, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL. Serotonin (5-hydroxytryptamine [5-HT]) is an important neurotransmitter that regulates multiple events...... gap formation in HUVECs. We are currently investigating the mechanism underlying 5-HT4 receptor-induced actin cytoskeleton changes in the endothelial cells. These data suggest that by activating 5-HT4 receptor, serotonin could be involved in regulation of actin cytoskeleton dynamics in the endothelial...

  13. iNR-PhysChem: a sequence-based predictor for identifying nuclear receptors and their subfamilies via physical-chemical property matrix.

    Directory of Open Access Journals (Sweden)

    Xuan Xiao

    Full Text Available Nuclear receptors (NRs form a family of ligand-activated transcription factors that regulate a wide variety of biological processes, such as homeostasis, reproduction, development, and metabolism. Human genome contains 48 genes encoding NRs. These receptors have become one of the most important targets for therapeutic drug development. According to their different action mechanisms or functions, NRs have been classified into seven subfamilies. With the avalanche of protein sequences generated in the postgenomic age, we are facing the following challenging problems. Given an uncharacterized protein sequence, how can we identify whether it is a nuclear receptor? If it is, what subfamily it belongs to? To address these problems, we developed a predictor called iNR-PhysChem in which the protein samples were expressed by a novel mode of pseudo amino acid composition (PseAAC whose components were derived from a physical-chemical matrix via a series of auto-covariance and cross-covariance transformations. It was observed that the overall success rate achieved by iNR-PhysChem was over 98% in identifying NRs or non-NRs, and over 92% in identifying NRs among the following seven subfamilies: NR1--thyroid hormone like, NR2--HNF4-like, NR3--estrogen like, NR4--nerve growth factor IB-like, NR5--fushi tarazu-F1 like, NR6--germ cell nuclear factor like, and NR0--knirps like. These rates were derived by the jackknife tests on a stringent benchmark dataset in which none of protein sequences included has ≥60% pairwise sequence identity to any other in a same subset. As a user-friendly web-server, iNR-PhysChem is freely accessible to the public at either http://www.jci-bioinfo.cn/iNR-PhysChem or http://icpr.jci.edu.cn/bioinfo/iNR-PhysChem. Also a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics involved in developing the predictor. It is anticipated that iNR-PhysChem may

  14. Immunoautoradiographic analysis of epidermal growth factor receptors: a sensitive method for the in situ identification of receptor proteins and for studying receptor specificity

    International Nuclear Information System (INIS)

    Fernandez-Pol, J.A.

    1982-01-01

    The use of an immunoautoradiographic system for the detection and analysis of epidermal growth factor (EGF) receptors in human epidermoid carcinoma A-431 cells is reported. By utilizing this technique, the interaction between EGF and its membrane receptor in A-431 cells can be rapidly visualized. The procedure is simple, rapid, and very sensitive, and it provides conclusive evidence that the 150K dalton protein is the receptor fo EGF in A-431 cells. In summary, the immunoautoradiographic procedure brings to the analysis of hormone rceptor proteins the power that the radioimmunoassay technique has brought to the analysis of hormones. Thus, this assay system is potentially applicable in a wide spectrum in many fields of nuclear medicine and biology

  15. A hotspot in the glucocorticoid receptor DNA-binding domain susceptible to loss of function mutation

    Science.gov (United States)

    Banuelos, Jesus; Shin, Soon Cheon; Lu, Nick Z.

    2015-01-01

    Glucocorticoids (GCs) are used to treat a variety of inflammatory disorders and certain cancers. However, GC resistance occurs in subsets of patients. We found that EL4 cells, a GC-resistant mouse thymoma cell line, harbored a point mutation in their GC receptor (GR) gene, resulting in the substitution of arginine 493 by a cysteine in the second zinc finger of the DNA-binding domain. Allelic discrimination analyses revealed that the R493C mutation occurred on both alleles. In the absence of GCs, the GR in EL4 cells localized predominantly in the cytoplasm and upon dexamethasone treatment underwent nuclear translocation, suggesting the ligand binding ability of the GR in EL4 cells was intact. In transient transfection assays, the R493C mutant could not transactivate the MMTV-luciferase reporter. Site-directed mutagenesis to revert the R493C mutation restored the transactivation activity. Cotransfection experiments showed that the R493C mutant did not inhibit the transcriptional activities of the wild-type GR. In addition, the R493C mutant did not repress either the AP-1 or NF-κB reporters as effectively as WT GR. Furthermore, stable expression of the WT GR in the EL4 cells enabled GC-mediated gene regulation, specifically upregulation of IκBα and downregulation of interferon γ and interleukin 17A. Arginine 493 is conserved among multiple species and all human nuclear receptors and its mutation has also been found in the human GR, androgen receptor, and mineralocorticoid receptor. Thus, R493 is necessary for the transcriptional activity of the GR and a hotspot for mutations that result in GC resistance. PMID:25676786

  16. Development of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Tang Ganghua

    2002-01-01

    The basic theory of molecular nuclear medicine is briefly introduced. The hot areas of molecular nuclear medicine including metabolic imaging and blood flow imaging, radioimmunoimaging and radioimmunotherapy, radioreceptor imaging and receptor-radioligand therapy, and imaging gene expression and gene radiation therapy are emphatically described

  17. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    International Nuclear Information System (INIS)

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-01-01

    Highlights: ► Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. ► Activation of ERK mediates the toxicity of hydrogen sulfide. ► Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H 2 S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H 2 S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H 2 S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  18. Enhanced Androgen Signaling with Androgen Receptor Overexpression in the Osteoblast Lineage Controls Skeletal Turnover, Matrix Quality and Bone Architecture

    Science.gov (United States)

    2009-12-01

    Fu , M. , and Pestell , R. ( 2006 ). Epigenetic regulation of nuclear steroid receptors . Biochem. Pharmacol. 72 , 1589 – 1596...2006;38:1289–1297. 21. Leader J, Wang C, Fu M, Pestell R. Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol 2006;72:1589–1596. 22...Nat Genet 2006;38:1289-97. 21. Leader J, Wang C, Fu M, Pestell R. Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol 2006;72

  19. Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor.

    Directory of Open Access Journals (Sweden)

    Milos B Rokic

    Full Text Available The binding of ATP to trimeric P2X receptors (P2XR causes an enlargement of the receptor extracellular vestibule, leading to opening of the cation-selective transmembrane pore, but specific roles of vestibule amino acid residues in receptor activation have not been evaluated systematically. In this study, alanine or cysteine scanning mutagenesis of V47-V61 and F324-N338 sequences of rat P2X4R revealed that V49, Y54, Q55, F324, and G325 mutants were poorly responsive to ATP and trafficking was only affected by the V49 mutation. The Y54F and Y54W mutations, but not the Y54L mutation, rescued receptor function, suggesting that an aromatic residue is important at this position. Furthermore, the Y54A and Y54C receptor function was partially rescued by ivermectin, a positive allosteric modulator of P2X4R, suggesting a rightward shift in the potency of ATP to activate P2X4R. The Q55T, Q55N, Q55E, and Q55K mutations resulted in non-responsive receptors and only the Q55E mutant was ivermectin-sensitive. The F324L, F324Y, and F324W mutations also rescued receptor function partially or completely, ivermectin action on channel gating was preserved in all mutants, and changes in ATP responsiveness correlated with the hydrophobicity and side chain volume of the substituent. The G325P mutant had a normal response to ATP, suggesting that G325 is a flexible hinge. A topological analysis revealed that the G325 and F324 residues disrupt a β-sheet upon ATP binding. These results indicate multiple roles of the extracellular vestibule amino acid residues in the P2X4R function: the V49 residue is important for receptor trafficking to plasma membrane, the Y54 and Q55 residues play a critical role in channel gating and the F324 and G325 residues are critical for vestibule widening.

  20. Some theoretical aspects of hormone receptor determination

    International Nuclear Information System (INIS)

    Sluiter, W.J.

    1981-01-01

    Suitable antisera for determination of hormone receptors are not available for the majority of hormone receptors. Therefore, the determination of hormone receptors is mostly performed in terms of binding capacity for the appropriate hormone, using radioactive hormone labels. Some theoretical aspects of such a receptor determination are discussed including the length of incubation (total or unoccupied receptor concentration), single point or multiple point (Scatchard) analysis (regarding the influence of other specific binders), the correction procedure for non-specific binding and the influence of the circulating hormone level. (Auth.)

  1. Nuclear Medicine Imaging of Neuroendocrine Tumors

    NARCIS (Netherlands)

    Brabander, Tessa; Kwekkeboom, Dik J.; Feelders, Richard A.; Brouwers, Adrienne H.; Teunissen, Jaap J. M.; Papotti, M; DeHerder, WW

    2015-01-01

    An important role is reserved for nuclear imaging techniques in the imaging of neuroendocrine tumors (NETs). Somatostatin receptor scintigraphy (SRS) with In-111-DTPA-octreotide is currently the most important tracer in the diagnosis, staging and selection for peptide receptor radionuclide therapy

  2. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital

    International Nuclear Information System (INIS)

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P.

    2015-01-01

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR

  3. The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism.

    Directory of Open Access Journals (Sweden)

    Maria Takacs

    Full Text Available PGC-1α is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERRα and ERRγ in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1α and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al that PGC-1α binds in a strikingly different manner to ERRγ ligand-binding domains (LBDs compared to its mode of binding to ERRα and other nuclear receptors (NRs, where it interacts directly with the two ERRγ homodimer subunits.Here, we show that PGC-1α receptor interacting domain (RID binds in an almost identical manner to ERRα and ERRγ homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1α RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1α RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1α/ERRα LBDs and PGC-1α/ERRγ LBDs complexes share an identical architecture with an asymmetric binding of PGC-1α to homodimeric ERR.These studies provide the molecular determinants for the specificity of interactions between PGC-1α and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.

  4. A high-fat diet generates alterations in nuclear receptor expression: prevention by vitamin A and links with cyclooxygenase-2 and beta-catenin.

    Science.gov (United States)

    Delage, Barbara; Bairras, Céline; Buaud, Benjamin; Pallet, Véronique; Cassand, Pierrette

    2005-10-10

    Epidemiologic studies suggest that intake of high energy from fat, inducing overweight, increases the risk of cancer development and promotes colon carcinogenesis. It is therefore important to understand which parameters are affected early on by a high-fat diet in order to devise and improve protective nutritional strategies. We investigated the effect of high energy/fat intake on colon mucosa of male Wistar rats induced by a single 1,2-dimethylhydrazine (DMH) injection. Aberrant crypt foci (ACF) were numbered and modifications in cyclooxygenase-2 (COX-2) and beta-catenin levels assessed. Peroxisome proliferator- and retinoic acid-activated receptors (PPAR and RAR, RXR) are key transcription factors regulating gene expression in response to nutrient-activated signals. A short-term study was designed to evaluate whether alterations in mRNA expression of nuclear receptors can be detected at the beginning of the weight gain phase induced by an appetizing hyperlipidic diet (HLD). HLD consumption induced early downregulation of PPARgamma (-33.1%) and RARbeta (-53.1%) mRNA expression concomitant with an increase in levels of COX-2 (+45.5%) and beta-catenin (+84.56%) and in the number of ACF (191.56 +/- 88.60 vs. 21.14 +/- 11.64, p nuclear receptors. Moreover, the use HLD rich in retinyl esters or supplemented with all-trans retinoic acid led to a reduction in the number of ACF. Vitamin A also prevented HLD-induced alterations and the increase in levels of COX-2 and beta-catenin. The present observations show a protective role for vitamin A against disturbances associated with HLD exposure in induced colon carcinogenesis.

  5. Specificity of DNA-binding by the FAX-1 and NHR-67 nuclear receptors of Caenorhabditis elegans is partially mediated via a subclass-specific P-box residue

    Directory of Open Access Journals (Sweden)

    Smith Eric L

    2008-01-01

    Full Text Available Abstract Background The nuclear receptors of the NR2E class play important roles in pattern formation and nervous system development. Based on a phylogenetic analysis of DNA-binding domains, we define two conserved groups of orthologous NR2E genes: the NR2E1 subclass, which includes C. elegans nhr-67, Drosophila tailless and dissatisfaction, and vertebrate Tlx (NR2E2, NR2E4, NR2E1, and the NR2E3 subclass, which includes C. elegans fax-1 and vertebrate PNR (NR2E5, NR2E3. PNR and Tll nuclear receptors have been shown to bind the hexamer half-site AAGTCA, instead of the hexamer AGGTCA recognized by most other nuclear receptors, suggesting unique DNA-binding properties for NR2E class members. Results We show that NR2E3 subclass member FAX-1, unlike NHR-67 and other NR2E1 subclass members, binds to hexamer half-sites with relaxed specificity: it will bind hexamers with the sequence ANGTCA, although it prefers a purine to a pyrimidine at the second position. We use site-directed mutagenesis to demonstrate that the difference between FAX-1 and NHR-67 binding preference is partially mediated by a conserved subclass-specific asparagine or aspartate residue at position 19 of the DNA-binding domain. This amino acid position is part of the "P box" that plays a critical role in defining binding site specificity and has been shown to make hydrogen-bond contacts to the second position of the hexamer in co-crystal structures for other nuclear receptors. The relaxed specificity allows FAX-1 to bind a much larger repertoire of half-sites than NHR-67. While NR2E1 class proteins bind both monomeric and dimeric sites, the NR2E3 class proteins bind only dimeric sites. The presence of a single strong site adjacent to a very weak site allows dimeric FAX-1 binding, further increasing the number of dimeric binding sites to which FAX-1 may bind in vivo. Conclusion These findings identify subclass-specific DNA-binding specificities and dimerization properties for the NR2E1

  6. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Gregory, Adam P; Dendrou, Calliope A; Attfield, Kathrine E

    2012-01-01

    ), but not with other autoimmune conditions such as rheumatoid arthritis, psoriasis and Crohn’s disease. By analysing MS GWAS data in conjunction with the 1000 Genomes Project data we provide genetic evidence that strongly implicates this SNP, rs1800693, as the causal variant in the TNFRSF1A region. We further...... make to disease risk has raised questions regarding their medical relevance. Here we have investigated a single nucleotide polymorphism (SNP) in the TNFRSF1A gene, that encodes tumour necrosis factor receptor 1 (TNFR1), which was discovered through GWAS to be associated with multiple sclerosis (MS...... substantiate this through functional studies showing that the MS risk allele directs expression of a novel, soluble form of TNFR1 that can block TNF. Importantly, TNF-blocking drugs can promote onset or exacerbation of MS, but they have proven highly efficacious in the treatment of autoimmune diseases...

  7. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology.

    Science.gov (United States)

    Fuxe, K; Marcellino, D; Rivera, A; Diaz-Cabiale, Z; Filip, M; Gago, B; Roberts, D C S; Langel, U; Genedani, S; Ferraro, L; de la Calle, A; Narvaez, J; Tanganelli, S; Woods, A; Agnati, L F

    2008-08-01

    Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson's disease, schizophrenia and drug addiction or drug dependence may substantially build on the existence of intramembrane receptor-receptor interactions within dopamine receptor containing receptor mosaics (RM; dimeric or high-order receptor oligomers) where it is believed that the dopamine D(2) receptor may operate as the 'hub receptor' within these complexes. The constitutive adenosine A(2A)/dopamine D(2) RM, located in the dorsal striato-pallidal GABA neurons, are of particular interest in view of the demonstrated antagonistic A(2A)/D(2) interaction within these heteromers; an interaction that led to the suggestion and later demonstration that A(2A) antagonists could be used as novel anti-Parkinsonian drugs. Based on the likely existence of A(2A)/D(2)/mGluR5 RM located both extrasynaptically on striato-pallidal GABA neurons and on cortico-striatal glutamate terminals, multiple receptor-receptor interactions within this RM involving synergism between A(2A)/mGluR5 to counteract D(2) signaling, has led to the proposal of using combined mGluR5 and A(2A) antagonists as a future anti-Parkinsonian treatment. Based on the same RM in the ventral striato-pallidal GABA pathways, novel strategies for the treatment of schizophrenia, building on the idea that A(2A) agonists and/or mGluR5 agonists will help reduce the increased dopaminergic signaling associated with this disease, have been suggested. Such treatment may ensure the proper glutamatergic drive from the mediodorsal thalamic nucleus to the prefrontal cortex, one which is believed to be reduced in schizophrenia due to a dominance of D(2)-like signaling in the ventral striatum. Recently, A(2A) receptors also have been shown to counteract the locomotor and sensitizing actions of cocaine and increases in A(2A) receptors have also been observed in the nucleus accumbens after extended cocaine self-administration, probably

  8. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    International Nuclear Information System (INIS)

    Adegbola, Onikepe; Pasternack, Gary R.

    2005-01-01

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing

  9. Charged particles multiplicity in interactions of 3.7 A GeV 28Si with light and heavy target nuclei in nuclear emulsions

    International Nuclear Information System (INIS)

    Singh, B.K.; Tuli, S.K.

    1998-01-01

    Results from measurement of multiplicity of different charged particles emitted from the interactions of 3.7 A GeV 28 Si with different target groups in nuclear emulsion and correlations among them are presented. The nature of the dependence of multiplicities of charged particles on the impact parameter is examined. Analysis of data in terms of specific multiplicity for different target groups is performed and the results are discussed in the light of superposition model. (author)

  10. Neutron Multiplicity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine Chiyoko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    Neutron multiplicity measurements are widely used for nondestructive assay (NDA) of special nuclear material (SNM). When combined with isotopic composition information, neutron multiplicity analysis can be used to estimate the spontaneous fission rate and leakage multiplication of SNM. When combined with isotopic information, the total mass of fissile material can also be determined. This presentation provides an overview of this technique.

  11. Switch in the expression of mGlu1 and mGlu5 metabotropic glutamate receptors in the cerebellum of mice developing experimental autoimmune encephalomyelitis and in autoptic cerebellar samples from patients with multiple sclerosis

    NARCIS (Netherlands)

    Fazio, F.; Notartomaso, S.; Aronica, E.; Storto, M.; Battaglia, G.; Vieira, E.; Gatti, S.; Bruno, V.; Biagioni, F.; Gradini, R.; Nicoletti, F.; Di Marco, R.

    2008-01-01

    Recent evidence suggests that changes in the expression of membrane receptors/ion channels in cerebellar Purkinje cells contribute to the onset of cerebellar motor symptoms in patients with multiple sclerosis (MS). We examined the expression of group-I metabotropic glutamate receptors (mGlu1 and

  12. Multivariate Receptor Models for Spatially Correlated Multipollutant Data

    KAUST Repository

    Jun, Mikyoung; Park, Eun Sug

    2013-01-01

    The goal of multivariate receptor modeling is to estimate the profiles of major pollution sources and quantify their impacts based on ambient measurements of pollutants. Traditionally, multivariate receptor modeling has been applied to multiple air

  13. Signal Diversity of Receptor for Advanced Glycation End Products.

    Science.gov (United States)

    Sakaguchi, Masakiyo; Kinoshita, Rie; Putranto, Endy Widya; Ruma, I Made Winarsa; Sumardika, I Wayan; Youyi, Chen; Tomonobu, Naoko; Yamamoto, Ken-Ichi; Murata, Hitoshi

    2017-12-01

    The receptor for advanced glycation end products (RAGE) is involved in inflammatory pathogenesis. It functions as a receptor to multiple ligands such as AGEs, HMGB1 and S100 proteins, activating multiple intracellular signaling pathways with each ligand binding. The molecular events by which ligand-activated RAGE controls diverse signaling are not well understood, but some progress was made recently. Accumulating evidence revealed that RAGE has multiple binding partners within the cytoplasm and on the plasma membrane. It was first pointed out in 2008 that RAGE's cytoplasmic tail is able to recruit Diaphanous-1 (Dia-1), resulting in the acquisition of increased cellular motility through Rac1/Cdc42 activation. We also observed that within the cytosol, RAGE's cytoplasmic tail behaves similarly to a Toll-like receptor (TLR4)-TIR domain, interacting with TIRAP and MyD88 adaptor molecules that in turn activate multiple downstream signals. Subsequent studies demonstrated the presence of an alternative adaptor molecule, DAP10, on the plasma membrane. The coupling of RAGE with DAP10 is critical for enhancing the RAGE-mediated survival signal. Interestingly, RAGE interaction on the membrane was not restricted to DAP10 alone. The chemotactic G-protein-coupled receptors (GPCRs) formyl peptide receptors1 and 2 (FPR1 and FPR2) also interacted with RAGE on the plasma membrane. Binding interaction between leukotriene B4 receptor 1 (BLT1) and RAGE was also demonstrated. All of the interactions affected the RAGE signal polarity. These findings indicate that functional interactions between RAGE and various molecules within the cytoplasmic area or on the membrane area coordinately regulate multiple ligand-mediated RAGE responses, leading to typical cellular phenotypes in several pathological settings. Here we review RAGE's signaling diversity, to contribute to the understanding of the elaborate functions of RAGE in physiological and pathological contexts.

  14. Multicriteria choice of a nuclear reactor and nuclear power project application in Tunisian

    International Nuclear Information System (INIS)

    Rihane, Mehdi

    2009-01-01

    qualitative choice of a nuclear reactor affects multiple domain, technological, industrial, economic and even political. The evaluation criteria for nuclear reactor are multiple, in this study we will cite the most important : technicoeconomique competitiveness, security at large, intrinsic and extrinsic impact on the environment, sustainable development, the impact on domestic industry and resistance nuclear proliferation. from each of these criteria, a classification has been proposed.

  15. Summary report of the IAEA advisory group meeting on nuclear data for neutron multiplication in fusion-reactor first-wall and blanket materials

    International Nuclear Information System (INIS)

    Muir, D.W.; Pashchenko, A.B.

    1992-09-01

    The present Report contains the Summary of the IAEA Advisory Group Meeting on Nuclear Data for Neutron Multiplication in Fusion-Reactor First-Wall and Blanket Materials, which was hosted by the Southwest Institute of Nuclear physics and Chemistry (SWINPC) at Chengdu, China and held from 19-21 November 1990. This AGM was organized by the IAEA Nuclear Data Section (NDS), with the cooperation and assistance of local organizers at the SWINPC. The papers which the participants prepared for and presented at the meeting will be published as an INDC report. (author)

  16. Role of aryl hydrocarbon receptor nuclear translocator in KATP channel-mediated insulin secretion in INS-1 insulinoma cells

    International Nuclear Information System (INIS)

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Park, Jong-Wan; Park, Kyong Soo; Ho, Won-Kyung; Chun, Yang-Sook

    2009-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K ATP channel activity and expression were reduced. Of two K ATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K ATP channel and by so doing regulates glucose-dependent insulin secretion.

  17. High-energy expansion for nuclear multiple scattering

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1975-01-01

    The Watson multiple scattering series is expanded to develop the Glauber approximation plus systematic corrections arising from three (1) deviations from eikonal propagation between scatterings, (2) Fermi motion of struck nucleons, and (3) the kinematic transformation which relates the many-body scattering operators of the Watson series to the physical two-body scattering amplitude. Operators which express effects ignored at the outset to obtain the Glauber approximation are subsequently reintroduced via perturbation expansions. Hence a particular set of approximations is developed which renders the sum of the Watson series to the Glauber form in the center of mass system, and an expansion is carried out to find leading order corrections to that summation. Although their physical origins are quite distinct, the eikonal, Fermi motion, and kinematic corrections produce strikingly similar contributions to the scattering amplitude. It is shown that there is substantial cancellation between their effects and hence the Glauber approximation is more accurate than the individual approximations used in its derivation. It is shown that the leading corrections produce effects of order (2kR/subc/) -1 relative to the double scattering term in the uncorrected Glauber amplitude, hk being momentum and R/subc/ the nuclear char []e radius. The leading order corrections are found to be small enough to validate quatitative analyses of experimental data for many intermediate to high energy cases and for scattering angles not limited to the very forward region. In a Gaussian model, the leading corrections to the Glauber amplitude are given as convenient analytic expressions

  18. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats.

    Science.gov (United States)

    Cadirci, Elif; Halici, Zekai; Bayir, Yasin; Albayrak, Abdulmecit; Karakus, Emre; Polat, Beyzagul; Unal, Deniz; Atamanalp, Sabri S; Aksak, Selina; Gundogdu, Cemal

    2013-10-01

    Sepsis is a complex pathophysiological event involving metabolic acidosis, systemic inflammatory response syndrome, tissue damage and multiple organ dysfunction syndrome. Although many new mechanisms are being investigated to enlighten the pathophysiology of sepsis, there is no effective treatment protocol yet. Presence of 5-HT7 receptors in immune tissues prompted us to hypothesize that these receptors have roles in inflammation and sepsis. We investigated the effects of 5-HT7 receptor agonists and antagonists on serum cytokine levels, lung oxidative stress, lung histopathology, nuclear factor κB (NF-κB) positivity and lung 5-HT7 receptor density in cecal ligation and puncture (CLP) induced sepsis model of rats. Agonist administration to septic rats increased survival time; decreased serum cytokine response against CLP; decreased oxidative stress and increased antioxidant system in lungs; decreased the tissue NF-κB immunopositivity, which is high in septic rats; and decreased the sepsis-induced lung injury. In septic rats, as a result of high inflammatory response, 5-HT7 receptor expression in lungs increased significantly and agonist administration, which decreased inflammatory response and related mortality, decreased the 5-HT7 receptor expression. In conclusion, all these data suggest that stimulation of 5-HT7 receptors may be a new therapeutic target for prevention of impaired inflammatory response related lung injury and mortality. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Multiple pathways of sigma(1) receptor ligand uptakes into primary cultured neuronal cells.

    Science.gov (United States)

    Yamamoto, H; Karasawa, J; Sagi, N; Takahashi, S; Horikomi, K; Okuyama, S; Nukada, T; Sora, I; Yamamoto, T

    2001-08-03

    Although many antipsychotics have affinities for sigma receptors, the transportation pathway of exogenous sigma(1) receptor ligands to intracellular type-1 sigma receptors are not fully understood. In this study, sigma(1) receptor ligand uptakes were studied using primary cultured neuronal cells. [(3)H](+)-pentazocine and [(3)H](R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), used as a selective sigma(1) receptor ligands, were taken up in a time-, energy- and temperature-dependent manner, suggesting that active transport mechanisms were involved in their uptakes. sigma(1) receptor ligands taken up into primary cultured neuronal cells were not restricted to agonists, but also concerned antagonists. The uptakes of these ligands were mainly Na(+)-independent. Kinetic analysis of [(3)H](+)-pentazocine and [(3)H]MS-377 uptake showed K(m) values (microM) of 0.27 and 0.32, and V(max) values (pmol/mg protein/min) of 17.4 and 9.4, respectively. Although both ligands were incorporated, the pharmacological properties of these two ligands were different. Uptake of [(3)H](+)-pentazocine was inhibited in the range 0.4-7.1 microM by all the sigma(1) receptor ligands used, including N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine monohydrochloride (NE-100), a selective sigma(1) receptor ligand. In contrast, the inhibition of [(3)H]MS-377 uptake was potently inhibited by haloperidol, characterized by supersensitivity (IC(50), approximately 2 nM) and was inhibited by NE-100 with low sensitivity (IC(50), 4.5 microM). Moreover, kinetic analysis revealed that NE-100 inhibited [(3)H]MS-377 uptake in a noncompetitive manner, suggesting that NE-100 acted at a site different from the uptake sites of [(3)H]MS-377. These findings suggest that there are at least two uptake pathways for sigma(1) receptor ligands in primary cultured neuronal cells (i.e. a haloperidol-sensitive pathway and another, unclear, pathway). In

  20. Detection and characterization of Ah receptor in tissue and cells from human tonsils

    International Nuclear Information System (INIS)

    Lorenzen, A.; Okey, A.B.

    1991-01-01

    Ah receptor was identified and characterized in cytosol and nuclear extracts from human tonsils obtained at surgery from children 2 to 6 years of age. Ah receptor was found in cytosol prepared from whole-tonsil homogenates as well as in cytosol and nuclear fractions prepared from tonsil lymphocytes or tonsil fibroblasts grown in primary culture. Cytosolic Ah receptor was detectable in tonsillar tissue with either halogenated (2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (TCDD)) or nonhalogenated (3-[3H]methylcholanthrene and [3H]benzo[a]pyrene) aromatic hydrocarbons and sedimented at approximately 9 S after velocity sedimentation on sucrose gradients. The apparent binding affinity (Kd) of [3H]TCDD for Ah receptor ranged from 3 to 12 nM in cytosols from seven different donors. The same analyses indicated a concentration of Ah receptor in human tonsils of approximately 100-300 fmol/mg cytosolic protein. Incubation of either tonsil lymphocytes or tonsil fibroblasts with [3H]TCDD resulted in transformation of cytosolic Ah receptor to a nuclear binding form which could be detected as a specifically labeled peak sedimenting at approximately 6 S on sucrose gradients. These data demonstrate the existence of Ah receptor in human tonsils and suggest that this immune organ may be an appropriate model for further studies on the mechanism and manifestation of aromatic hydrocarbon-induced immunotoxicity in man

  1. TIF1alpha: a possible link between KRAB zinc finger proteins and nuclear receptors

    DEFF Research Database (Denmark)

    Le Douarin, B; You, J; Nielsen, Anders Lade

    1998-01-01

    Ligand-induced gene activation by nuclear receptors (NRs) is thought to be mediated by transcriptional intermediary factors (TIFs), that interact with their ligand-dependent AF-2 activating domain. Included in the group of the putative AF-2 TIFs identified so far is TIF1alpha, a member of a new...... family of proteins which contains an N-terminal RBCC (RING finger-B boxes-coiled coil) motif and a C-terminal bromodomain preceded by a PHD finger. In addition to these conserved domains present in a number of transcriptional regulatory proteins, TIF1alpha was found to contain several protein......-protein interaction sites. Of these, one specifically interacts with NRs bound to their agonistic ligand and not with NR mutants that are defective in the AF-2 activity. Immediately adjacent to this 'NR box', TIF1alpha contains an interaction site for members of the chromatin organization modifier (chromo) family, HP...

  2. Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2

    Directory of Open Access Journals (Sweden)

    Lennick Michael

    2003-01-01

    Full Text Available Abstract Background Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. Results Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75 into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists. Using this approach, we generated peptides which were specific for human TNFR2, could be competed by the natural ligands, TNFα and TNFβ and induced an unexpected biological response in a TNFR2-specific manner. Conclusions To our knowledge, this is the first report describing the dissection of the TNFR2 into biologically active hotspots with the concomitant identification of a novel and unexpected biological activity.

  3. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital.

    Science.gov (United States)

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P

    2015-02-03

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. Copyright © 2014. Published by Elsevier Ireland Ltd.

  4. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of ...

  5. Dehydroepiandrosterone: an ancestral ligand of neurotrophin receptors.

    Science.gov (United States)

    Pediaditakis, Iosif; Iliopoulos, Ioannis; Theologidis, Ioannis; Delivanoglou, Nickoleta; Margioris, Andrew N; Charalampopoulos, Ioannis; Gravanis, Achille

    2015-01-01

    Dehydroepiandosterone (DHEA), the most abundant steroid in humans, affects multiple cellular functions of the endocrine, immune, and nervous systems. However, up to quite recently, no receptor has been described specifically for it, whereas most of its physiological actions have been attributed to its conversion to either androgens or estrogens. DHEA interacts and modulate a variety of membrane and intracellular neurotransmitter and steroid receptors. We have recently reported that DHEA protects neuronal cells against apoptosis, interacting with TrkA, the high-affinity prosurvival receptor of the neurotrophin, nerve growth factor. Intrigued by its pleiotropic effects in the nervous system of a variety of species, we have investigated the ability of DHEA to interact with the other two mammalian neurotrophin receptors, ie, the TrkB and TrkC, as well as their invertebrate counterparts (orthologs) in mollusks Lymnaea and Aplysia and in cephalochordate fish Amphioxus. Amazingly, DHEA binds to all Trk receptors, although with lower affinity by 2 orders of magnitude compared with that of the polypeptidic neurotrophins. DHEA effectively induced the first step of the TrkA and TrkC receptors activation (phosphorylation at tyrosine residues), including the vertebrate neurotrophin nonresponding invertebrate Lymnaea and Aplysia receptors. Based on our data, we hypothesize that early in evolution, DHEA may have acted as a nonspecific neurotrophic factor promoting neuronal survival. The interaction of DHEA with all types of neurotrophin receptors offers new insights into the largely unidentified mechanisms of its actions on multiple tissues and organs known to express neurotrophin receptors.

  6. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.

    Science.gov (United States)

    Jia, Lin; Wu, Dinglan; Wang, Yuliang; You, Wenxing; Wang, Zhu; Xiao, Lijia; Cai, Ganhui; Xu, Zhenyu; Zou, Chang; Wang, Fei; Teoh, Jeremy Yuen-Chun; Ng, Chi-Fai; Yu, Shan; Chan, Franky L

    2018-03-20

    The metastatic castration-resistant prostate cancer (CRPC) is a lethal form of prostate cancer, in which the expression of androgen receptor (AR) is highly heterogeneous. Indeed, lower AR expression and attenuated AR signature activity is shown in CRPC tissues, especially in the subset of neuroendocrine prostate cancer (NEPC) and prostate cancer stem-like cells (PCSCs). However, the significance of AR downregulation in androgen insensitivity and de-differentiation of tumor cells in CRPC is poorly understood and much neglected. Our previous study shows that the orphan nuclear receptor TLX (NR2E1), which is upregulated in prostate cancer, plays an oncogenic role in prostate carcinogenesis by suppressing oncogene-induced senescence. In the present study, we further established that TLX exhibited an increased expression in metastatic CRPC. Further analyses showed that overexpression of TLX could confer resistance to androgen deprivation and anti-androgen in androgen-dependent prostate cancer cells in vitro and in vivo, whereas knockdown of endogenous TLX could potentiate the sensitivity to androgen deprivation and anti-androgen in prostate cancer cells. Our study revealed that the TLX-induced resistance to androgen deprivation and anti-androgen was mediated through its direct suppression of AR gene transcription and signaling in both androgen-stimulated and -unstimulated prostate cancer cells. We also characterized that TLX could bind directly to AR promoter and repress AR transcription by recruitment of histone modifiers, including HDAC1, HDAC3, and LSD1. Together, our present study shows, for the first time, that TLX can contribute to androgen insensitivity in CRPC via repression of AR gene transcription and signaling, and also implicates that targeting the druggable TLX may have a potential therapeutic significance in CRPC management, particularly in NEPC and PCSCs.

  7. Corepressive function of nuclear receptor coactivator 2 in androgen receptor of prostate cancer cells treated with antiandrogen

    International Nuclear Information System (INIS)

    Takeda, Keisuke; Hara, Noboru; Nishiyama, Tsutomu; Tasaki, Masayuki; Ishizaki, Fumio; Tomita, Yoshihiko

    2016-01-01

    Recruitment of cofactors in the interaction of the androgen receptor (AR) and AR ligands plays a critical role in determining androgenic/antiandrogenic effects of the AR ligand on signaling, but the functions of key cofactors, including nuclear receptor coactivator (NCOA), remain poorly understood in prostate cancer cells treated with AR ligands. We examined prostate cancer cell lines LNCaP and VCaP expressing mutated and wild-type ARs, respectively, to clarify the significance of NCOAs in the effect of antiandrogens. Hydroxyflutamide showed antagonistic activity against VCaP and an agonistic effect on LNCaP. Bicalutamide served as an antagonist for both. We analyzed mRNA transcription and protein expression of NCOAs in these cells pretreated with dihydrotestosterone and thereafter treated with the mentioned antiandrogens. Transcriptional silencing of candidate NCOAs and AR was performed using small interfering RNA (siRNA). Cell proliferation was evaluated with MTT assay. LNCaP treated with bicalutamide showed an about four-fold increase in the expression of NCOA2 mRNA compared to those pretreated with dihydrotestosterone alone (P <0.01). In VCaP pretreated with dihydrotestosterone, transcriptions of NCOA2 and NCOA7 were slightly increased with bicalutamide (1.96- and 2.42-fold, respectively) and hydroxyflutamide (1.33-fold in both). With Western blotting, the expression of NCOA2 protein also increased in LNCaP cells treated with bicalutamide compared with that in control cells pretreated with dihydrotestosterone alone. Following silencing with siRNA for NCOA2, PSA levels in media with LNCaP receiving bicalutamide were elevated compared with those in non-silencing controls (101.6 ± 4.2 vs. 87.8 ± 1.4 ng/mL, respectively, P =0.0495). In LNCaP cells treated with dihydrotestosterone and bicalutamide, NCOA2-silencing was associated with a higher proliferation activity compared with non-silencing control and AR-silencing. NCOA2, which has been thought to be recruited

  8. Relevance of the NR4A sub-family of nuclear orphan receptors in trophoblastic BeWo cell differentiation.

    Science.gov (United States)

    Malhotra, Sudha Saryu; Gupta, Satish Kumar

    2017-01-01

    Nur-77, a member of the NR4A sub-family of nuclear orphan receptors, is downregulated in the placentae of pre-eclamptic women. Here, we investigate the relevance of Nor-1, Nurr-1 and Nur-77 in trophoblastic cell differentiation. Their transcript levels were found to be significantly upregulated in BeWo cells treated with forskolin. The maximum increase was observed after 2 h, with a second peak in the expression levels after 48 h. The expression of NR4A sub-family members was also found to be upregulated in BeWo cells after treatment with hCG and GnRH. A similar significant increase was observed at the respective protein levels after 2 and 48 h of treatment with forskolin, hCG or GnRH. Silencing Nor-1, Nurr-1 or Nur-77 individually did not show any effect on forskolin-, hCG- and/or GnRH-mediated BeWo cell fusion and/or hCG secretion. After silencing any one member of the NR4A sub-family, an increase in the transcript levels of the other sub-family members was observed, indicating a compensatory effect due to their functional redundancy. Simultaneously silencing all three NR4A sub-family members significantly downregulated forskolin- and hCG-mediated BeWo cell fusion and/or hCG secretion. However, a considerable amount of cell death occurred after forskolin or hCG treatment as compared to the control siRNA-transfected cells. These results suggest that the NR4A sub-family of nuclear orphan receptors has a role in trophoblastic cell differentiation.

  9. Low multiple electrode aggregometry platelet responses are not associated with non-synonymous variants in G-protein coupled receptor genes.

    Science.gov (United States)

    Norman, Jane E; Lee, Kurtis R; Walker, Mary E; Murden, Sherina L; Harris, Jessica; Mundell, Stuart; J Murphy, Gavin; Mumford, Andrew D

    2015-10-01

    Multiple electrode aggregometry (MEA) improves prediction of thrombosis and bleeding in cardiac patients. However, the causes of inter-individual variation in MEA results are incompletely understood. We explore whether low MEA results are associated with platelet G-protein coupled receptor (GPCR) gene variants. The effects of P2Y12 receptor (P2Y12), thromboxane A2 receptor (TPα) and protease-activated receptor 1 (PAR1) dysfunction on the MEA ADP-test, ASPI-test and TRAP-test were determined using receptor antagonists. Cardiac surgery patients with pre-operative MEA results suggesting GPCR dysfunction were selected for P2Y12 (P2RY12), TPα (TBXA2R) and PAR1 (F2R) sequencing. In control blood samples, P2Y12, TPα or PAR1 antagonists markedly reduced ADP-test, ASPI-test and TRAP-test results respectively. In the 636 patients from a cohort of 2388 cardiac surgery patients who were not receiving aspirin or a P2Y12 blocker, the median ADP-test result was 75.1 U (range 4.8-153.2), ASPI-test 83.7 U (1.4-157.3) and TRAP-test 117.7 U (2.4-194.1), indicating a broad range of results unexplained by anti-platelet drugs. In 238 consenting patients with unexplained low MEA results, three P2RY12 variants occurred in 70/107 (65%) with suspected P2Y12 dysfunction and four TBXA2R variants occurred in 19/22 (86%) with suspected TPα dysfunction although the later group was too small to draw meaningful conclusions about variant frequency. All the variants were synonymous and unlikely to cause GPCR dysfunction. There were no F2R variants in the 109 cases with suspected PAR1 dysfunction. MEA results suggesting isolated platelet GPCR dysfunction were common in cardiac surgery patients, but were not associated with non-synonymous variants in P2RY12 or F2R. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Peroxisome proliferators-activated receptor (PPAR) regulation in cardiac metabolism and disease

    NARCIS (Netherlands)

    el Azzouzi, H.

    2009-01-01

    Peroxisome proliferators-activated receptors (PPARs) are members of the nuclear receptor family of ligand activated transcription factors and consist of the three isoforms, PPAR, PPAR/ and PPAR. Considerable evidence has established the importance of PPARs in myocardial lipid homeostasis and

  11. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    Science.gov (United States)

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  12. Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

    Science.gov (United States)

    Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang; Huo, Peng

    2016-12-01

    Forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions can be quantified by two-particle pseudo-rapidity correlation function and its expansion into Legendre polynomials. The corresponding coefficients represent different fluctuation modes in longitudinal direction. The leading term corresponds to the asymmetry of numbers of the participants from the two colliding nuclei. This method is tested in events generated from AMPT and HIJING model. The an signal are found to be strongly dampened in AMPT than in HIJIGN, due to weaker short-range correlaitons and final-state effects in AMPT. Two-particle correlation also reveals an intresting shallow minimum around Δη ≈ 0 in AMPT events, which is absent in HIJING results. The method opens a new avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions.

  13. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts*

    Science.gov (United States)

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-01-01

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. PMID:26670608

  14. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  15. Immunolocalisation of oestrogen receptor beta in human tissues.

    Science.gov (United States)

    Taylor, A H; Al-Azzawi, F

    2000-02-01

    Oestrogens exert their actions via specific nuclear protein receptors that are members of the steroid/thyroid receptor superfamily of transcription factors. Recently, a second oestrogen receptor (ERbeta) has been cloned, and using reverse transcription-PCR and immunohistochemistry it has been shown to have a wide tissue distribution in the rat that is distinct from the classical oestrogen receptor, ERalpha. Using commercial polyclonal antisera against peptides specific to human ERbeta, we have determined the sites of ERbeta expression in archival and formalin-fixed human tissue and compared its expression with that of ERalpha. ERbeta was localised to the cell nuclei of a wide range of normal adult human tissues including ovary, Fallopian tube, uterus, lung, kidney, brain, heart, prostate and testis. In the ovary, ERbeta was present in multiple cell types including granulosa cells in small, medium and large follicles, theca and corpora lutea, whereas ERalpha was weakly expressed in the nuclei of granulosa cells, but not in the theca nor in the copora lutea. In the endometrium, both ERalpha and ERbeta were observed in luminal epithelial cells and in the nuclei of stromal cells but, significantly, ERbeta was weak or absent from endometrial glandular epithelia. Epithelial cells in most male tissues including the prostate, the urothelium and muscle layers of the bladder, and Sertoli cells in the testis, were also immunopositive for ERbeta. Significant ERbeta immunoreactivity was detected in most areas of the brain, with the exception of the hippocampus - a tissue that stained positively for ERalpha. In conclusion, the almost ubiquitous immunohistochemical localisation of ERbeta indicates that ERbeta may play a major role in the mediation of oestrogen action. The differential expression of ERalpha and ERbeta in some of these tissues suggests a more complex control mechanism in oestrogenic potential than originally envisioned.

  16. Novel isoforms of the TFIID subunit TAF4 modulate nuclear receptor-mediated transcriptional activity

    International Nuclear Information System (INIS)

    Brunkhorst, Adrian; Neuman, Toomas; Hall, Anita; Arenas, Ernest; Bartfai, Tamas; Hermanson, Ola; Metsis, Madis

    2004-01-01

    The transcription factor TFIID consists of TATA-binding protein (TBP) and TBP-associated factors (TAFs). TAFs are essential for modulation of transcriptional activity but the regulation of TAFs is complex and many important aspects remain unclear. In this study, we have identified and characterized five novel truncated forms of the TFIID subunit TAF4 (TAF II 135). Analysis of the mouse gene structure revealed that all truncations were the results of alternative splicing and resulted in the loss of domains or parts of domains implicated in TAF4 functional interactions. Results from transcriptional assays showed that several of the TAF4 isoforms exerted dominant negative effects on TAF4 activity in nuclear receptor-mediated transcriptional activation. In addition, alternative TAF4 isoforms could be detected in specific cell types. Our results indicate an additional level of complexity in TAF4-mediated regulation of transcription and suggest context-specific roles for these new TAF4 isoforms in transcriptional regulation in vivo

  17. The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer.

    Science.gov (United States)

    Bennett, Richard L; Swaroop, Alok; Troche, Catalina; Licht, Jonathan D

    2017-06-01

    The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells.

    Science.gov (United States)

    Tassone, Pierfrancesco; Galea, Eulalia; Forciniti, Samantha; Tagliaferri, Pierosandro; Venuta, Salvatore

    2002-10-01

    Interleukin-6 (IL-6) is the major growth and survival factor for multiple myeloma (MM), and has been shown to protect MM cells from apoptosis induced by a variety of agents. IL-6 receptor antagonists, which prevent the assembly of functional IL-6 receptor complexes, inhibit cell proliferation and induce apoptosis in MM cells. We have investigated whether the IL-6 receptor super-antagonist Sant7 might enhance the antiproliferative and apoptotic effects induced by the combination of dexamethasone (Dex) and zoledronic acid (Zln) on human MM cell lines and primary cells from MM patients. Here we show that each of these compounds individually induced detectable antiproliferative effects on MM cells. Sant7 significantly enhanced growth inhibition and apoptosis induced by Dex and Zln on both MM cell lines and primary MM cells. These results indicate that overcoming IL-6 mediated cell resistance by Sant7 potentiates the effect of glucocorticoides and bisphosphonates on MM cell growth and survival, providing a rationale for therapies including IL-6 antagonists in MM.

  19. Nuclear magnetic resonance relaxation in multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Barker, G J; MacKay, A

    1998-01-01

    OBJECTIVES: The theory of relaxation processes and their measurements are described. An overview is presented of the literature on relaxation time measurements in the normal and the developing brain, in experimental diseases in animals, and in patients with multiple sclerosis. RESULTS...... AND CONCLUSION: Relaxation time measurements provide insight into development of multiple sclerosis plaques, especially the occurrence of oedema, demyelination, and gliosis. There is also evidence that normal appearing white matter in patients with multiple sclerosis is affected. What is now needed are fast...

  20. 5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology

    DEFF Research Database (Denmark)

    Peng, Yao; Mccorvy, John D.; Harpsøe, Kasper

    2018-01-01

    Drugs frequently require interactions with multiple targets—via a process known as polypharmacology—to achieve their therapeutic actions. Currently, drugs targeting several serotonin receptors, including the 5-HT2C receptor, are useful for treating obesity, drug abuse, and schizophrenia. The comp...... the structural basis of polypharmacology at canonical GPCRs and illustrates how understanding characteristic patterns of ligand-receptor interaction and activation may ultimately facilitate drug design at multiple GPCRs....

  1. The orphan nuclear receptor Tlx regulates Pax2 and is essential for vision.

    Science.gov (United States)

    Yu, R T; Chiang, M Y; Tanabe, T; Kobayashi, M; Yasuda, K; Evans, R M; Umesono, K

    2000-03-14

    Although the development of the vertebrate eye is well described, the number of transcription factors known to be key to this process is still limited. The localized expression of the orphan nuclear receptor Tlx in the optic cup and discrete parts of the central nervous system suggested the possible role of Tlx in the formation or function of these structures. Analyses of Tlx targeted mice revealed that, in addition to the central nervous system cortical defects, lack of Tlx function results in progressive retinal and optic nerve degeneration with associated blindness. An extensive screen of Tlx-positive and Tlx-negative P19 neural precursors identified Pax2 as a candidate target gene. This identification is significant, because Pax2 is known to be involved in retinal development in both the human and the mouse eye. We find that Pax2 is a direct target and that the Tlx binding site in its promoter is conserved between mouse and human. These studies show that Tlx is a key component of retinal development and vision and an upstream regulator of the Pax2 signaling cascade.

  2. Multiple serotonin receptors: regional distribution and effect of raphe lesions

    International Nuclear Information System (INIS)

    Blackshear, M.A.; Sanders-Bush, E.; Steranka, L.R.

    1981-01-01

    These studies confirm and extend the recent work suggesting that [ 3 H]lysergic acid diethylamide (LSD) labels two distinct binding sites in rat brain resembling serotonin (5HT) receptors. Although Scatchard analyses of [ 3 H]LSD binding to membranes prepared from cortex/hippocampus were linear, the heterogeneity of the [ 3 H]LSD binding sites was clearly demonstrated in displacement studies. The displacement curves for both 5HT and spiperone were bisigmoidal with the concentration required to saturate the high affinity components nearly 3 orders of magnitude lower than the concentrations necessary to saturate the low affinity components. Additivity studies suggested that the sites with high affinity for 5HT and spiperone are different, independent sites. These sites are referred to as 5HT 1 and 5HT 2 respectively. Regional analyses showed, that in the frontal cortex, the density of the 5HT 2 site was slightly greater than the 5HT 1 site whereas the 5HT 1 site was predominant in all other brain areas, including the spinal cord. The pharmacological properties of the two sites have features in common with 5HT receptors; however, electrolytic lesions of the midbrain raphe nuclei did not change the densities or binding constants of the two apparent 5HT receptor subtypes, even though the number of high affinity 5HT uptake sites was markedly reduced. (Auth.)

  3. Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor

    Directory of Open Access Journals (Sweden)

    Vasyl Eisenberg

    2017-09-01

    Full Text Available Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK cells can demonstrate potent antitumor function—nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs. In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.

  4. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    Coulam, C.B.; Graham, M.L.; Spelsberg, T.C.

    1984-01-01

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  5. A multiple sampling time projection ionization chamber for nuclear fragment tracking and charge measurement

    International Nuclear Information System (INIS)

    Bauer, G.; Bieser, F.; Brady, F.P.; Chance, J.C.; Christie, W.F.; Gilkes, M.; Lindenstruth, V.; Lynen, U.; Mueller, W.F.J.; Romero, J.L.; Sann, H.; Tull, C.E.; Warren, P.

    1997-01-01

    A detector has been developed for the tracking and charge measurement of the projectile fragment nuclei produced in relativistic nuclear collisions. This device, MUSIC II, is a second generation Multiple Sampling Ionization Chamber (MUSIC), and employs the principles of ionization and time projection chambers. It provides unique charge determination for charges Z≥6, and excellent track position measurement. MUSIC II has been used most recently with the EOS (equation of state) TPC and other EOS collaboration detectors. Earlier it was used with other systems in experiments at the Heavy Ion Superconducting Spectrometer (HISS) facility at Lawrence Berkeley Laboratory and the ALADIN spectrometer at GSI. (orig.)

  6. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  7. Historical civilian nuclear accident based Nuclear Reactor Condition Analyzer

    Science.gov (United States)

    McCoy, Kaylyn Marie

    There are significant challenges to successfully monitoring multiple processes within a nuclear reactor facility. The evidence for this observation can be seen in the historical civilian nuclear incidents that have occurred with similar initiating conditions and sequences of events. Because there is a current lack within the nuclear industry, with regards to the monitoring of internal sensors across multiple processes for patterns of failure, this study has developed a program that is directed at accomplishing that charge through an innovation that monitors these systems simultaneously. The inclusion of digital sensor technology within the nuclear industry has appreciably increased computer systems' capabilities to manipulate sensor signals, thus making the satisfaction of these monitoring challenges possible. One such manipulation to signal data has been explored in this study. The Nuclear Reactor Condition Analyzer (NRCA) program that has been developed for this research, with the assistance of the Nuclear Regulatory Commission's Graduate Fellowship, utilizes one-norm distance and kernel weighting equations to normalize all nuclear reactor parameters under the program's analysis. This normalization allows the program to set more consistent parameter value thresholds for a more simplified approach to analyzing the condition of the nuclear reactor under its scrutiny. The product of this research provides a means for the nuclear industry to implement a safety and monitoring program that can oversee the system parameters of a nuclear power reactor facility, like that of a nuclear power plant.

  8. Nuclear respiratory factor 2 regulates the expression of the same NMDA receptor subunit genes as NRF-1: both factors act by a concurrent and parallel mechanism to couple energy metabolism and synaptic transmission.

    Science.gov (United States)

    Priya, Anusha; Johar, Kaid; Wong-Riley, Margaret T T

    2013-01-01

    Neuronal activity and energy metabolism are tightly coupled processes. Previously, we found that nuclear respiratory factor 1 (NRF-1) transcriptionally co-regulates energy metabolism and neuronal activity by regulating all 13 subunits of the critical energy generating enzyme, cytochrome c oxidase (COX), as well as N-methyl-d-aspartate (NMDA) receptor subunits 1 and 2B, GluN1 (Grin1) and GluN2B (Grin2b). We also found that another transcription factor, nuclear respiratory factor 2 (NRF-2 or GA-binding protein) regulates all subunits of COX as well. The goal of the present study was to test our hypothesis that NRF-2 also regulates specific subunits of NMDA receptors, and that it functions with NRF-1 via one of three mechanisms: complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation of mouse neuroblastoma cells and rat visual cortical tissue, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate Grin1 and Grin2b genes, but not any other NMDA subunit genes. Grin1 and Grin2b transcripts were up-regulated by depolarizing KCl, but silencing of NRF-2 prevented this up-regulation. On the other hand, over-expression of NRF-2 rescued the down-regulation of these subunits by the impulse blocker TTX. NRF-2 binding sites on Grin1 and Grin2b are conserved among species. Our data indicate that NRF-2 and NRF-1 operate in a concurrent and parallel manner in mediating the tight coupling between energy metabolism and neuronal activity at the molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Time-domain multiple-quantum NMR

    International Nuclear Information System (INIS)

    Weitekamp, D.P.

    1982-11-01

    The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species

  10. Polychlorinated Biphenyl-Xenobiotic Nuclear Receptor Interactions Regulate Energy Metabolism, Behavior, and Inflammation in Non-alcoholic-Steatohepatitis.

    Science.gov (United States)

    Wahlang, Banrida; Prough, Russell A; Falkner, K Cameron; Hardesty, Josiah E; Song, Ming; Clair, Heather B; Clark, Barbara J; States, J Christopher; Arteel, Gavin E; Cave, Matthew C

    2016-02-01

    Polychlorinated biphenyls (PCBs) are environmental pollutants associated with non-alcoholic-steatohepatitis (NASH), diabetes, and obesity. We previously demonstrated that the PCB mixture, Aroclor 1260, induced steatohepatitis and activated nuclear receptors in a diet-induced obesity mouse model. This study aims to evaluate PCB interactions with the pregnane-xenobiotic receptor (Pxr: Nr1i2) and constitutive androstane receptor (Car: Nr1i3) in NASH. Wild type C57Bl/6 (WT), Pxr(-/-) and Car(-/-) mice were fed the high fat diet (42% milk fat) and exposed to a single dose of Aroclor 1260 (20 mg/kg) in this 12-week study. Metabolic phenotyping and analysis of serum, liver, and adipose was performed. Steatohepatitis was pathologically similar in all Aroclor-exposed groups, while Pxr(-/-) mice displayed higher basal pro-inflammatory cytokine levels. Pxr repressed Car expression as evident by increased basal Car/Cyp2b10 expression in Pxr(-/-) mice. Both Pxr(-/-) and Car(-/-) mice showed decreased basal respiratory exchange rate (RER) consistent with preferential lipid metabolism. Aroclor increased RER and carbohydrate metabolism, associated with increased light cycle activity in both knockouts, and decreased food consumption in the Car(-/-) mice. Aroclor exposure improved insulin sensitivity in WT mice but not glucose tolerance. The Aroclor-exposed, Pxr(-/-) mice displayed increased gluconeogenic gene expression. Lipid-oxidative gene expression was higher in WT and Pxr(-/-) mice although RER was not changed, suggesting PCB-mediated mitochondrial dysfunction. Therefore, Pxr and Car regulated inflammation, behavior, and energy metabolism in PCB-mediated NASH. Future studies should address the 'off-target' effects of PCBs in steatohepatitis. Published by Oxford University Press on behalf of the Society of Toxicology 2015. This work is written by US Government employees and is in the public domain in the US.

  11. Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Mei-Fei Yueh

    Full Text Available Triclocarban (3,4,4'-trichlorocarbanilide, TCC is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs. To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR and estrogen receptor alpha (ERα activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR because no induction occurred in hUGT1Car(-/- mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for

  12. Relationship between circulating serum osteoprotegerin and total receptor activator of nuclear κ-B ligand levels, triglycerides, and coronary calcification in postmenopausal women.

    Science.gov (United States)

    Poornima, Indu G; Mackey, Rachel H; Buhari, Alhaji M; Cauley, Jane A; Matthews, Karen A; Kuller, Lewis H

    2014-07-01

    This study evaluates the relationship of blood osteoprotegerin (OPG) and receptor activator of nuclear κ-B ligand (RANKL) levels with coronary artery calcium (CAC) and cardiovascular risk factors in two studies of postmenopausal women. OPG, a marker of bone turnover, and its ligand, RANKL, may contribute to cardiovascular disease risk. We tested the hypothesis that serum OPG and RANKL levels were associated with CAC and cardiovascular disease risk factors among postmenopausal women in the Women On the Move through Activity and Nutrition Study (WOMAN Study; n = 86; mean [SD], age 58 [2.9] y) and replicated our findings in the Healthy Women Study (HWS; n = 205; mean [SD] age, 61 [2.3] y). Serum OPG, total RANKL, and CAC were measured at baseline and 48 months in the WOMAN Study and on the eighth postmenopausal visit in the HWS. In the WOMAN Study, higher OPG was associated with higher CAC, and higher total RANKL was associated with lower CAC and triglycerides. In the HWS, higher total RANKL was also associated with lower CAC and triglycerides. In logistic regression models adjusted for body mass index and triglycerides, the odds ratios (95% CIs) for CAC per unit increase in OPG were 1.78 (1.17-2.73) for the WOMAN Study and 1.02 (0.84-1.24) for the HWS, and the odds ratios (95% CIs) for CAC per unit increase in log total RANKL were 0.86 (0.64-1.17) for the WOMAN Study and 0.83 (0.72-0.96) for the HWS. The inverse association of total RANKL with CAC and triglycerides is a new finding and may have important implications given the increasing use of drugs that modify total RANKL and its receptor, receptor activator of nuclear κ-B.

  13. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response.

    Directory of Open Access Journals (Sweden)

    Ana V García

    2010-07-01

    Full Text Available An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1. In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.

  14. Multivariate Receptor Models for Spatially Correlated Multipollutant Data

    KAUST Repository

    Jun, Mikyoung

    2013-08-01

    The goal of multivariate receptor modeling is to estimate the profiles of major pollution sources and quantify their impacts based on ambient measurements of pollutants. Traditionally, multivariate receptor modeling has been applied to multiple air pollutant data measured at a single monitoring site or measurements of a single pollutant collected at multiple monitoring sites. Despite the growing availability of multipollutant data collected from multiple monitoring sites, there has not yet been any attempt to incorporate spatial dependence that may exist in such data into multivariate receptor modeling. We propose a spatial statistics extension of multivariate receptor models that enables us to incorporate spatial dependence into estimation of source composition profiles and contributions given the prespecified number of sources and the model identification conditions. The proposed method yields more precise estimates of source profiles by accounting for spatial dependence in the estimation. More importantly, it enables predictions of source contributions at unmonitored sites as well as when there are missing values at monitoring sites. The method is illustrated with simulated data and real multipollutant data collected from eight monitoring sites in Harris County, Texas. Supplementary materials for this article, including data and R code for implementing the methods, are available online on the journal web site. © 2013 Copyright Taylor and Francis Group, LLC.

  15. Adenosine receptor desensitization and trafficking.

    Science.gov (United States)

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity

    NARCIS (Netherlands)

    Prawitt, Janne; Abdelkarim, Mouaadh; Stroeve, Johanna H. M.; Popescu, Iuliana; Duez, Helene; Velagapudi, Vidya R.; Dumont, Julie; Bouchaert, Emmanuel; van Dijk, Theo H.; Lucas, Anthony; Dorchies, Emilie; Daoudi, Mehdi; Lestavel, Sophie; Gonzalez, Frank J.; Oresic, Matej; Cariou, Bertrand; Kuipers, Folkert; Caron, Sandrine; Staels, Bart

    OBJECTIVE-Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role

  17. Signaling through three chemokine receptors triggers the migration of transplanted neural precursor cells in a model of multiple sclerosis.

    Science.gov (United States)

    Cohen, Mikhal E; Fainstein, Nina; Lavon, Iris; Ben-Hur, Tamir

    2014-09-01

    Multiple sclerosis (MS) is a multifocal disease, and precursor cells need to migrate into the multiple lesions in order to exert their therapeutic effects. Therefore, cell migration is a crucial element in regenerative processes in MS, dictating the route of delivery, when cell transplantation is considered. We have previously shown that inflammation triggers migration of multi-potential neural precursor cells (NPCs) into the white matter of experimental autoimmune encephalomyelitis (EAE) rodents, a widely used model of MS. Here we investigated the molecular basis of this attraction. NPCs were grown from E13 embryonic mouse brains and transplanted into the lateral cerebral ventricles of EAE mice. Transplanted NPC migration was directed by three tissue-derived chemokines. Stromal cell-derived factor-1α, monocyte chemo-attractant protein-1 and hepatocyte growth factor were expressed in the EAE brain and specifically in microglia and astrocytes. Their cognate receptors, CXCR4, CCR2 or c-Met were constitutively expressed on NPCs. Selective blockage of CXCR4, CCR2 or c-Met partially inhibited NPC migration in EAE brains. Blocking all three receptors had an additive effect and resulted in profound inhibition of NPC migration, as compared to extensive migration of control NPCs. The inflammation-triggered NPC migration into white matter tracts was dependent on a motile NPC phenotype. Specifically, depriving NPCs from epidermal growth factor (EGF) prevented the induction of glial commitment and a motile phenotype (as indicated by an in vitro motility assay), hampering their response to neuroinflammation. In conclusion, signaling via three chemokine systems accounts for most of the inflammation-induced, tissue-derived attraction of transplanted NPCs into white matter tracts during EAE. Copyright © 2014. Published by Elsevier B.V.

  18. Epigenetic regulation of the NR4A orphan nuclear receptor NOR1 by histone acetylation.

    Science.gov (United States)

    Zhao, Yue; Nomiyama, Takashi; Findeisen, Hannes M; Qing, Hua; Aono, Jun; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2014-12-20

    The nuclear receptor NOR1 is an immediate-early response gene implicated in the transcriptional control of proliferation. Since the expression level of NOR1 is rapidly induced through cAMP response element binding (CREB) protein-dependent promoter activation, we investigated the contribution of histone acetylation to this transient induction. We demonstrate that NOR1 transcription is induced by histone deacetylase (HDAC) inhibition and by depletion of HDAC1 and HDAC3. HDAC inhibition activated the NOR1 promoter, increased histone acetylation and augmented the recruitment of phosphorylated CREB to the promoter. Furthermore, HDAC inhibition increased Ser133 phosphorylation of CREB and augmented NOR1 protein stability. These data outline previously unrecognized mechanisms of NOR1 regulation and illustrate a key role for histone acetylation in the rapid induction of NOR1. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    International Nuclear Information System (INIS)

    Martinovic-Weigelt, Dalma; Wang Ronglin; Villeneuve, Daniel L.; Bencic, David C.; Lazorchak, Jim; Ankley, Gerald T.

    2011-01-01

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  20. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    Energy Technology Data Exchange (ETDEWEB)

    Martinovic-Weigelt, Dalma, E-mail: dalma@stthomas.edu [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105 (United States); Wang Ronglin [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Villeneuve, Daniel L. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); Bencic, David C.; Lazorchak, Jim [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Ankley, Gerald T. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States)

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  1. Multiplicity Fluctuations in Central Nuclear Reaction of Pb + AgBr Events at 158A GeV

    Directory of Open Access Journals (Sweden)

    Mohammad Ayaz Ahmad

    2017-12-01

    Full Text Available In the present articles an attempt has been made for the study of multiplicity fluctuations of the secondary charged particles produced in central relativistic nuclear collisions of (Pb+AgBr at an energy 158A GeV, to find the first-order phase transition (QGP to hadron phase state. This study has been carried out for the experimental data along with the theoretical prediction of FRITIOF simulation program and Monte-Carlo (RanMC simulation. The theoretical model predictions were found in good agreements.

  2. T-cell receptor Vα and Cα alleles associated with multiple sclerosis and myasthenia gravis

    International Nuclear Information System (INIS)

    Oksenberg, J.R.; Cavalli-Sforza, L.L.; Steinman, L.; Sherritt, M.; Bernard, C.C.; Begovich, A.B.; Erlich, H.A.

    1989-01-01

    Polymorphic markers in genes encoding the α chain of the human T-cell receptor (TcR) have been detected by Southern blot analysis in Pss I digests. Polymorphic bands were observed at 6.3 and 2.0 kilobases (kb) with frequencies of 0.30 and 0.44, respectively, in the general population. Using the polymerase chain reaction (PCR) method, the authors amplified selected sequences derived from the full-length TcR α cDNA probe. These PcR products were used as specific probes to demonstrate that the 6.3-kb polymorphic fragment hybridizes to the variable (V)-region probe and the 2.0-kb fragment hybridizes to the constant (C)-region probe. Segregation of the polymorphic bands was analyzed in family studies. To look for associations between these markers and autoimmune diseases, the authors have studied the restriction fragment length polymorphism distribution of the Pss I markers in patients with multiple sclerosis, myasthenia gravis, and Graves disease. Significant differences in the frequency of the polymorphic V α and C α markers were identified between patients and healthy individuals

  3. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor β

    International Nuclear Information System (INIS)

    Sakurai, A.; Takeda, K.; Ain, K.; Ceccarelli, P.; Nakai, A.; Seino, S.; Bell, G.I.; Refetoff, S.; DeGroot, L.J.

    1989-01-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. The authors have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine → cytosine replacement in the codon for amino acid 340 resulted in a glycine → arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor β gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor β gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule

  4. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo.

    Science.gov (United States)

    Wu, Melissa P; Doyle, Jamie R; Barry, Brenda; Beauvais, Ariane; Rozkalne, Anete; Piao, Xianhua; Lawlor, Michael W; Kopin, Alan S; Walsh, Christopher A; Gussoni, Emanuela

    2013-12-01

    Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities. © 2013 FEBS.

  5. A FAIR-Based Approach to Enhancing the Discovery and Re-Use of Transcriptomic Data Assets for Nuclear Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Scott A. Ochsner

    2017-03-01

    Full Text Available Public transcriptomic assets in the nuclear receptor (NR signaling field hold considerable collective potential for exposing underappreciated aspects of NR regulation of gene expression. This potential is undermined however by a series of enduring informatic pain points that retard the routine re-use of these datasets. Here we describe a coordinated biocuration and web development approach to redress this situation that is closely aligned with ideals articulated in the FAIR (findable, accessible, interoperable, re-usable principles on data stewardship. To improve findability, biocurators engage authors of studies in collaborating journals to secure datasets for deposition in public archives. Annotated derivatives of the archived datasets are assigned digital object identifiers and regulatory molecule identifiers that support persistent linkages between datasets and their associated research articles, integration in relevant records in gene and small molecule knowledgebases, and indexing by dataset search engines. To enhance their accessibility and interoperability, datasets are visualizable in responsively designed web pages, retrievable in machine-readable spreadsheets, or through an application programming interface. Re-use of the datasets is supported by their interrogation as a universe of data points through the Transcriptomine search engine, highlighting transcriptional intersections between NR signaling pathways, physiological processes and disease states. We illustrate the value of our approach in connecting disparate research communities using a use case of persistent interoperability between the Nuclear Receptor Signaling Atlas and the Pharmacogenomics Knowledgebase. Our FAIR-aligned model demonstrates the enduring value of discovery-scale datasets that accrues from their systematic compilation, biocuration and distribution across the digital biomedical research enterprise.

  6. Steroid receptors and their ligands: Effects on male gamete functions

    International Nuclear Information System (INIS)

    Aquila, Saveria; De Amicis, Francesca

    2014-01-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  7. Steroid receptors and their ligands: Effects on male gamete functions

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  8. The multiple applications of the nuclear techniques in Argentina

    International Nuclear Information System (INIS)

    Manzini, Alberto C.

    2001-01-01

    A review is given of the use of nuclear technology in Argentina, especially in the field of the production of radioisotopes and radiopharmaceuticals, nuclear medicine, and industrial applications. The applications of ionizing radiation are also reviewed

  9. Liver X receptors interfere with the deleterious effect of diethylstilbestrol on testicular physiology

    Energy Technology Data Exchange (ETDEWEB)

    Oumeddour, Abdelkader [Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6293, GReD, F-63171 Aubiere (France); INSERM, UMR 1103, GReD, F-63171 Aubiere (France); Centre de Recherche en Nutrition Humaine d’Auvergne, F-63000 Clermont-Ferrand (France); Laboratoire de Neuroendocrinologie Appliquée, Université Badji Mokhtar Annaba, BP12, 23000 Annaba (Algeria); Viennois, Emilie; Caira, Françoise; Decourbey, Clélia [Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6293, GReD, F-63171 Aubiere (France); INSERM, UMR 1103, GReD, F-63171 Aubiere (France); Centre de Recherche en Nutrition Humaine d’Auvergne, F-63000 Clermont-Ferrand (France); Maqdasy, Salwan [Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6293, GReD, F-63171 Aubiere (France); INSERM, UMR 1103, GReD, F-63171 Aubiere (France); Centre de Recherche en Nutrition Humaine d’Auvergne, F-63000 Clermont-Ferrand (France); Service d’endocrinologie, diabétologie et maladies métaboliques, CHU Clermont-Ferrand, F-63003 Clermont-Ferrand (France); and others

    2014-04-11

    Highlights: • Part of the neonatal effect of DES on testis needs the presence of Lxrα/β. • Some DES-induced pathways are blocked in Lxr-deficient mice. • Lxr-deficient mice analysis defines DES-target genes protected by Lxr. - Abstract: Liver X receptors LXRα (NR1H3) and LXRβ (NR1H2) are transcription factors belonging to the nuclear receptor superfamily, activated by specific oxysterols, oxidized derivatives of cholesterol. These receptors are involved in the regulation of testis physiology. Lxr-deficient mice pointed to the physiological roles of these nuclear receptors in steroid synthesis, lipid homeostasis and germ cell apoptosis and proliferation. Diethylstilbestrol (DES) is a synthetic estrogen considered as an endocrine disruptor that affects the functions of the testis. Various lines of evidences have made a clear link between estrogens, their nuclear receptors ERα (NR3A1) and ERβ (NR3A2), and Lxrα/β. As LXR activity could also be regulated by the nuclear receptor small heterodimer partner (SHP, NR0A2) and DES could act through SHP, we wondered whether LXR could be targeted by estrogen-like endocrine disruptors such as DES. For that purpose, wild-type and Lxr-deficient mice were daily treated with 0.75 μg DES from days 1 to 5 after birth. The effects of DES were investigated at 10 or 45 days of age. We demonstrated that DES induced a decrease of the body mass at 10 days only in the Lxr-deficient mice suggesting a protective effect of Lxr. We defined three categories of DES-target genes in testis: those whose accumulation is independent of Lxr; those whose accumulation is enhanced by the lack of both Lxrα/β; those whose accumulation is repressed by the absence of Lxrα/β. Lipid accumulation is also modified by neonatal DES injection. Lxr-deficient mice present different lipid profiles, demonstrating that DES could have its effects in part due to Lxrα/β. Altogether, our study shows that both nuclear receptors Lxrα and Lxrβ are not only

  10. Determination of nuclear friction in strongly damped reactions from prescission neutron multiplicities

    International Nuclear Information System (INIS)

    Wilczynski, J.; Siwek-Wilczynska, K.; Wilschut, H.W.

    1996-01-01

    Nonfusion, fissionlike reactions in collisions of four heavy systems (well below the fusion extra-push energy threshold), for which Hinde and co-workers had measured the prescission neutron multiplicities, have been analyzed in terms of the deterministic dynamic model of Feldmeier coupled to a time-dependent statistical cascade calculation. In order to reproduce the measured prescission multiplicities and the observed (nearly symmetric) mass divisions, the energy dissipation must be dramatically changed with regard to the standard one-body dissipation: In the entrance channel, in the process of forming a composite system, the energy dissipation has to be reduced to at least half of the one-body dissipation strength (k s in ≤0.5), and in the exit channel (from a mononucleus shape to scission) it must be increased by a factor ranging for the studied reactions from k s out =4 to k s out =12. These results are compared with the temperature dependence of the friction coefficient, recently deduced by Hofman, Back, and Paul from data on the prescission giant dipole resonance emission in fusion-fission reactions. The combined picture of the temperature dependence of the friction coefficient, for both fusion-fission and nonfusion reactions, may indicate the onset of strong two-body dissipation already at a nuclear temperature of about 2 MeV. copyright 1996 The American Physical Society

  11. Expression and function of the human estrogen receptor in yeast

    International Nuclear Information System (INIS)

    White, J.H.; Metzger, D.; Chambon, P.

    1988-01-01

    Gene expression in eukaryotes is regulated at many levels. Moreover, there is increasing evidence that the basic control mechanisms of transcription initiation have been conserved across the range of eukaryotes from yeast to man. In vertebrates, the nuclear receptors, whose activity is dependent on the binding of specific ligands, stimulate transcription by interacting with specific cis-acting sequences and display all of the hallmarks of inducible enhancer factors. Alignment of their amino acid sequences indicates that they are composed of a series of conserved domains. The domain structure of the human estrogen receptor (hER) is typical of receptor proteins. Region C, containing two putative zinc fingers, comprises the DNA-binding domain responsible for specific recognition of estrogen response elements (ERE). Region E contains the hormone-binding domain and domain(s) responsible for transcription activation. A mutant of the hER, called HE15, which lacks the hormone-binding domain, binds DNA in vivo and in vitro but activates transcription only poorly in a constitutive manner in vivo in HeLa cells. A series of studies have demonstrated that the hormone- and DNA-binding domains of the nuclear receptors function independently. Chimeric proteins consisting of the DNA-binding domain of yeast GAL4 coupled to the hormone-binding domains of either the hER or glucocorticoid receptor element (GRE) will stimulate transcription in HeLa cells when bound to a UAS. Taken together, these results demonstrate that the hER and other nuclear receptors, as well as GAL4 and GCN4 proteins of yeast, consist of discrete and separable DNA-binding and transcription-activation functions. To investigate these striking parallels further, the authors have expressed the hER in the yeast Saccharomyces cerevisiae and have analyzed its hormone- and DNA-binding properties in vitro and its ability to stimulate transcription in vivo

  12. G-Protein-Coupled Receptor Gpr17 Expression in Two Multiple Sclerosis Remyelination Models.

    Science.gov (United States)

    Nyamoya, Stella; Leopold, Patrizia; Becker, Birte; Beyer, Cordian; Hustadt, Fabian; Schmitz, Christoph; Michel, Anne; Kipp, Markus

    2018-06-05

    In multiple sclerosis patients, demyelination is prominent in both the white and gray matter. Chronic clinical deficits are known to result from acute or chronic injury to the myelin sheath and inadequate remyelination. The underlying molecular mechanisms of remyelination and its failure remain currently unclear. Recent studies have recognized G protein-coupled receptor 17 (GPR17) as an important regulator of oligodendrocyte development and remyelination. So far, the relevance of GPR17 for myelin repair was mainly tested in remyelinating white matter lesions. The relevance of GPR17 for gray matter remyelination as well as remyelination of chronic white matter lesions was not addressed so far. Here, we provide a detailed characterization of GPR17 expression during experimental de- and remyelination. Experimental lesions with robust and limited endogenous remyelination capacity were established by either acute or chronic cuprizone-induced demyelination. Furthermore, remyelinating lesions were induced by the focal injection of lysophosphatidylcholine (LPC) into the corpus callosum. GPR17 expression was analyzed by complementary techniques including immunohistochemistry, in situ hybridization, and real-time PCR. In control animals, GPR17 + cells were evenly distributed in the corpus callosum and cortex and displayed a highly ramified morphology. Virtually all GPR17 + cells also expressed the oligodendrocyte-specific transcription factor OLIG2. After acute cuprizone-induced demyelination, robust endogenous remyelination was evident in the white matter corpus callosum but not in the gray matter cortex. Endogenous callosal remyelination was paralleled by a robust induction of GPR17 expression which was absent in the gray matter cortex. Higher numbers of GPR17 + cells were as well observed after LPC-induced focal white matter demyelination. In contrast, densities of GPR17 + cells were comparable to control animals after chronic cuprizone-induced demyelination indicating

  13. B-cell activating factor in the pathophysiology of multiple myeloma: a target for therapy?

    International Nuclear Information System (INIS)

    Hengeveld, P J; Kersten, M J

    2015-01-01

    Multiple myeloma (MM) is a currently incurable malignancy of plasma cells. Malignant myeloma cells (MMCs) are heavily dependent upon the bone marrow (BM) microenvironment for their survival. One component of this tumor microenvironment, B-Cell Activating Factor (BAFF), has been implicated as a key player in this interaction. This review discusses the role of BAFF in the pathophysiology of MM, and the potential of BAFF-inhibitory therapy for the treatment of MM. Multiple studies have shown that BAFF functions as a survival factor for MMCs. Furthermore, MMCs express several BAFF-binding receptors. Of these, only Transmembrane Activator and CAML Interactor (TACI) correlates with the MMC's capability to ligate BAFF. Additionally, the level of expression of TACI correlates with the level of the MMC's BM dependency. Ligation of BAFF receptors on MMCs causes activation of the Nuclear Factor of κ-B (NF-κB) pathway, a crucial pathway for the pathogenesis of many B-cell malignancies. Serum BAFF levels are significantly elevated in MM patients when compared to healthy controls, and correlate inversely with overall survival. BAFF signaling is thus an interesting target for the treatment of MM. Several BAFF-inhibitory drugs are currently under evaluation for the treatment of MM. These include BAFF-monoclonal antibodies (tabalumab) and antibody-drug conjugates (GSK2857916)

  14. Cannabis as a Possible Treatment for Spasticity in Multiple Sclerosis / Kanabis Kao Moguci Tretman U Lecenju Spasticnosti Kod Multiple Skleroze

    Directory of Open Access Journals (Sweden)

    Vesic Katarina

    2016-03-01

    Full Text Available The therapeutic potential of cannabis has been known for centuries. Cannabinoids express their effects through two types of receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2. Present studies indicate that cannabis-based drugs can make a positive impact in the treatment of different diseases. For many years, multiple sclerosis patients have self-medicated with illegal street cannabis to alleviate spasticity, a common and debilitating symptom that impairs quality of life.

  15. Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function

    International Nuclear Information System (INIS)

    Nagayama, Yuji; Wadsworth, H.L.; Chazenbalk, G.D.; Russo, D.; Seto, Pui; Rapoport, B.

    1991-01-01

    To define the sites in the extracellular domain of the human thyrotropin (TSH) receptor that are involved in TSH binding and signal transduction the authors constructed chimeric thyrotropin-luteinizing hormone/chorionic gonadotropin (TSH-LH/CG) receptors. The extracellular domain of the human TSH receptor was divided into five regions that were replaced, either singly or in various combinations, with homologous regions of the rat LH/CG receptor. The chimeric receptors were stably expressed in Chinese hamster ovary cells. The data obtained suggest that the carboxyl region of the extracellular domain (amino acid residues 261-418) and particularly the middle region (residues 171-260) play a role in signal transduction. The possibility is also raised of an interaction between the amino and carboxyl regions of the extracellular domain in the process of signal transduction. In summary, these studies suggest that the middle region and carboxyl half of the extracellular domain of the TSH receptor are involved in signal transduction and that the TSH-binding region is likely to span the entire extracellular domain, with multiple discontinuous contact sites

  16. A cannabigerol quinone alleviates neuroinflammation in a chronic model of multiple sclerosis.

    Science.gov (United States)

    Granja, Aitor G; Carrillo-Salinas, Francisco; Pagani, Alberto; Gómez-Cañas, María; Negri, Roberto; Navarrete, Carmen; Mecha, Miriam; Mestre, Leyre; Fiebich, Bend L; Cantarero, Irene; Calzado, Marco A; Bellido, Maria L; Fernandez-Ruiz, Javier; Appendino, Giovanni; Guaza, Carmen; Muñoz, Eduardo

    2012-12-01

    Phytocannabinoids like ∆(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) show a beneficial effect on neuroinflammatory and neurodegenerative processes through cell membrane cannabinoid receptor (CBr)-dependent and -independent mechanisms. Natural and synthetic cannabinoids also target the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ), an attractive molecular target for the treatment of neuroinflammation. As part of a study on the SAR of phytocannabinoids, we have investigated the effect of the oxidation modification in the resorcinol moiety of cannabigerol (CBG) on CB(1), CB(2) and PPARγ binding affinities, identifying cannabigerol quinone (VCE-003) as a potent anti-inflammatory agent. VCE-003 protected neuronal cells from excitotoxicity, activated PPARγ transcriptional activity and inhibited the release of pro-inflammatory mediators in LPS-stimulated microglial cells. Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis (MS) was used to investigate the anti-inflammatory activity of this compound in vivo. Motor function performance was evaluated and the neuroinflammatory response and gene expression pattern in brain and spinal cord were studied by immunostaining and qRT-PCR. We found that VCE-003 ameliorated the symptoms associated to TMEV infection, decreased microglia reactivity and modulated the expression of genes involved in MS pathophysiology. These data lead us to consider VCE-003 to have high potential for drug development against MS and perhaps other neuroinflammatory diseases.

  17. Ror receptor tyrosine kinases: orphans no more.

    Science.gov (United States)

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  18. A new unextracted-sample radioimmunoassay method for hepatic endogenous nuclear L-tri-iodothyronine content

    International Nuclear Information System (INIS)

    Yagura, T.; Walfish, P.G.

    1982-01-01

    Endogenous L-tri-iodothyronine content in an hepatic nuclear extract was measured by a new unextracted-sample radioimmunoassay method using 8-anilinonaphthalene-1-sulphonic acid to inhibit the L-[ 125 I]tri-iodothyronine binding to the nuclear L-tri-iodothyronine receptor within the extract. The amount of endogenous L-tri-iodothyronine was 10-40 pg/0.2 ml of hepatic nuclear extract from euthyroid rats, compared with less than 3.125 pg/0.2ml from thyroidectomized rats. The results obtained were compared with a Sephadex G-25 column extracted-sample radioimmunoassay method and showed a good agreement. The values for the endogenous L-tri-iodothyronine content were utilized to correct for the L-tri-iodothyronine concentration within the binding assay mixture in order to accurately determine by Scatchard analysis the binding characteristics of the nuclear L-tri-iodothyronine receptor. The validity of the correction for endogenous L-tri-iodothyronine was demonstrated by using a nuclear extract from a thyroidectomized rat which was preincubated with a small known amount of L-tri-iodothyronine before determining the nuclear L-tri-iodothyronine receptor binding characteristics. It is concluded that the necessity and validity of using endogenous L-tri-iodothyronine corrections in the Scatchard analytical computations of the nuclear L-tri-iodothyronine receptor binding characteristics has been demonstrated, being particularly more important for affinity constant than maximum binding capacity. (author)

  19. Regulation of RNA-binding proteins affinity to export receptors enables the nuclear basket proteins to distinguish and retain aberrant mRNAs.

    Science.gov (United States)

    Soheilypour, M; Mofrad, M R K

    2016-11-02

    Export of messenger ribonucleic acids (mRNAs) into the cytoplasm is a fundamental step in gene regulation processes, which is meticulously quality controlled by highly efficient mechanisms in eukaryotic cells. Yet, it remains unclear how the aberrant mRNAs are recognized and retained inside the nucleus. Using a new modelling approach for complex systems, namely the agent-based modelling (ABM) approach, we develop a minimal model of the mRNA quality control (QC) mechanism. Our results demonstrate that regulation of the affinity of RNA-binding proteins (RBPs) to export receptors along with the weak interaction between the nuclear basket protein (Mlp1 or Tpr) and RBPs are the minimum requirements to distinguish and retain aberrant mRNAs. Our results show that the affinity between Tpr and RBPs is optimized to maximize the retention of aberrant mRNAs. In addition, we demonstrate how the length of mRNA affects the QC process. Since longer mRNAs spend more time in the nuclear basket to form a compact conformation and initiate their export, nuclear basket proteins could more easily capture and retain them inside the nucleus.

  20. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts.

    Science.gov (United States)

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-02-12

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.