WorldWideScience

Sample records for multiple motor tasks

  1. Transcranial direct current stimulation over multiple days enhances motor performance of a grip task.

    Science.gov (United States)

    Fan, Julie; Voisin, Julien; Milot, Marie-Hélène; Higgins, Johanne; Boudrias, Marie-Hélène

    2017-09-01

    Recovery of handgrip is critical after stroke since it is positively related to upper limb function. To boost motor recovery, transcranial direct current stimulation (tDCS) is a promising, non-invasive brain stimulation technique for the rehabilitation of persons with stroke. When applied over the primary motor cortex (M1), tDCS has been shown to modulate neural processes involved in motor learning. However, no studies have looked at the impact of tDCS on the learning of a grip task in both stroke and healthy individuals. To assess the use of tDCS over multiple days to promote motor learning of a grip task using a learning paradigm involving a speed-accuracy tradeoff in healthy individuals. In a double-blinded experiment, 30 right-handed subjects (mean age: 22.1±3.3 years) participated in the study and were randomly assigned to an anodal (n=15) or sham (n=15) stimulation group. First, subjects performed the grip task with their dominant hand while following the pace of a metronome. Afterwards, subjects trained on the task, at their own pace, over 5 consecutive days while receiving sham or anodal tDCS over M1. After training, subjects performed de novo the metronome-assisted task. The change in performance between the pre and post metronome-assisted task was used to assess the impact of the grip task and tDCS on learning. Anodal tDCS over M1 had a significant effect on the speed-accuracy tradeoff function. The anodal tDCS group showed significantly greater improvement in performance (39.28±15.92%) than the sham tDCS group (24.06±16.35%) on the metronome-assisted task, t(28)=2.583, P=0.015 (effect size d=0.94). Anodal tDCS is effective in promoting grip motor learning in healthy individuals. Further studies are warranted to test its potential use for the rehabilitation of fine motor skills in stroke patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis.

    Science.gov (United States)

    Hamilton, F; Rochester, L; Paul, L; Rafferty, D; O'Leary, C P; Evans, J J

    2009-10-01

    Deficits in motor functioning, including walking, and in cognitive functions, including attention, are known to be prevalent in multiple sclerosis (MS), though little attention has been paid to how impairments in these areas of functioning interact. This study investigated the effects of performing a concurrent cognitive task when walking in people with MS. Level of task demand was manipulated to investigate whether this affected level of dual-task decrement. Eighteen participants with MS and 18 healthy controls took part. Participants completed walking and cognitive tasks under single- and dual-task conditions. Compared to healthy controls, MS participants showed greater decrements in performance under dual-task conditions in cognitive task performance, walking speed and swing time variability. In the MS group, the degree of decrement under dual-task conditions was related to levels of fatigue, a measure of general cognitive functioning and self-reported everyday cognitive errors, but not to measures of disease severity or duration. Difficulty with walking and talking in MS may be a result of a divided attention deficit or of overloading of the working memory system, and further investigation is needed. We suggest that difficulty with walking and talking in MS may lead to practical problems in everyday life, including potentially increasing the risk of falls. Clinical tools to assess cognitive-motor dual-tasking ability are needed.

  3. Dual Task of Fine Motor Skill and Problem Solving in Individuals With Multiple Sclerosis: A Pilot Study.

    Science.gov (United States)

    Goverover, Y; Sandroff, B M; DeLuca, J

    2018-04-01

    To (1) examine and compare dual-task performance in patients with multiple sclerosis (MS) and healthy controls (HCs) using mathematical problem-solving questions that included an everyday competence component while performing an upper extremity fine motor task; and (2) examine whether difficulties in dual-task performance are associated with problems in performing an everyday internet task. Pilot study, mixed-design with both a within and between subjects' factor. A nonprofit rehabilitation research institution and the community. Participants (N=38) included persons with MS (n=19) and HCs (n=19) who were recruited from a nonprofit rehabilitation research institution and from the community. Not applicable. Participant were presented with 2 testing conditions: (1) solving mathematical everyday problems or placing bolts into divots (single-task condition); and (2) solving problems while putting bolts into divots (dual-task condition). Additionally, participants were required to perform a test of everyday internet competence. As expected, dual-task performance was significantly worse than either of the single-task tasks (ie, number of bolts into divots or correct answers, and time to answer the questions). Cognitive but not motor dual-task cost was associated with worse performance in activities of everyday internet tasks. Cognitive dual-task cost is significantly associated with worse performance of everyday technology. This was not observed in the motor dual-task cost. The implications of dual-task costs on everyday activity are discussed. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    Science.gov (United States)

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  5. Functional Brain Connectivity during Multiple Motor Imagery Tasks in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Alkinoos Athanasiou

    2018-01-01

    Full Text Available Reciprocal communication of the central and peripheral nervous systems is compromised during spinal cord injury due to neurotrauma of ascending and descending pathways. Changes in brain organization after spinal cord injury have been associated with differences in prognosis. Changes in functional connectivity may also serve as injury biomarkers. Most studies on functional connectivity have focused on chronic complete injury or resting-state condition. In our study, ten right-handed patients with incomplete spinal cord injury and ten age- and gender-matched healthy controls performed multiple visual motor imagery tasks of upper extremities and walking under high-resolution electroencephalography recording. Directed transfer function was used to study connectivity at the cortical source space between sensorimotor nodes. Chronic disruption of reciprocal communication in incomplete injury could result in permanent significant decrease of connectivity in a subset of the sensorimotor network, regardless of positive or negative neurological outcome. Cingulate motor areas consistently contributed the larger outflow (right and received the higher inflow (left among all nodes, across all motor imagery categories, in both groups. Injured subjects had higher outflow from left cingulate than healthy subjects and higher inflow in right cingulate than healthy subjects. Alpha networks were less dense, showing less integration and more segregation than beta networks. Spinal cord injury patients showed signs of increased local processing as adaptive mechanism. This trial is registered with NCT02443558.

  6. Working Memory Training Improves Dual-Task Performance on Motor Tasks.

    Science.gov (United States)

    Kimura, Takehide; Kaneko, Fuminari; Nagahata, Keita; Shibata, Eriko; Aoki, Nobuhiro

    2017-01-01

    The authors investigated whether working memory training improves motor-motor dual-task performance consisted of upper and lower limb tasks. The upper limb task was a simple reaction task and the lower limb task was an isometric knee extension task. 45 participants (age = 21.8 ± 1.6 years) were classified into a working memory training group (WM-TRG), dual-task training group, or control group. The training duration was 2 weeks (15 min, 4 times/week). Our results indicated that working memory capacity increased significantly only in the WM-TRG. Dual-task performance improved in the WM-TRG and dual-task training group. Our study provides the novel insight that working memory training improves dual-task performance without specific training on the target motor task.

  7. Error Sonification of a Complex Motor Task

    Directory of Open Access Journals (Sweden)

    Riener Robert

    2011-12-01

    Full Text Available Visual information is mainly used to master complex motor tasks. Thus, additional information providing augmented feedback should be displayed in other modalities than vision, e.g. hearing. The present work evaluated the potential of error sonification to enhance learning of a rowing-type motor task. In contrast to a control group receiving self-controlled terminal feedback, the experimental group could not significantly reduce spatial errors. Thus, motor learning was not enhanced by error sonification, although during the training the participant could benefit from it. It seems that the motor task was too slow, resulting in immediate corrections of the movement rather than in an internal representation of the general characteristics of the motor task. Therefore, further studies should elaborate the impact of error sonification when general characteristics of the motor tasks are already known.

  8. The Applicability of Rhythm-Motor Tasks to a New Dual Task Paradigm for Older Adults

    Directory of Open Access Journals (Sweden)

    Soo Ji Kim

    2017-12-01

    Full Text Available Given the interplay between cognitive and motor functions during walking, cognitive demands required during gait have been investigated with regard to dual task performance. Along with the needs to understand how the type of concurrent task while walking affects gait performance, there are calls for diversified dual tasks that can be applied to older adults with varying levels of cognitive decline. Therefore, this study aimed to examine how rhythm-motor tasks affect dual task performance and gait control, compared to a traditional cognitive-motor task. Also, it examined whether rhythm-motor tasks are correlated with traditional cognitive-motor task performance and cognitive measures. Eighteen older adults without cognitive impairment participated in this study. Each participant was instructed to walk at self-paced tempo without performing a concurrent task (single walking task and walk while separately performing two types of concurrent tasks: rhythm-motor and cognitive-motor tasks. Rhythm-motor tasks included instrument playing (WalkIP, matching to rhythmic cueing (WalkRC, and instrument playing while matching to rhythmic cueing (WalkIP+RC. The cognitive-motor task involved counting forward by 3s (WalkCount.f3. In each condition, dual task costs (DTC, a measure for how dual tasks affect gait parameters, were measured in terms of walking speed and stride length. The ratio of stride length to walking speed, a measure for dynamic control of gait, was also examined. The results of this study demonstrated that the task type was found to significantly influence these measures. Rhythm-motor tasks were found to interfere with gait parameters to a lesser extent than the cognitive-motor task (WalkCount.f3. In terms of ratio measures, stride length remained at a similar level, walking speed greatly decreased in the WalkCount.f3 condition. Significant correlations between dual task-related measures during rhythm-motor and cognitive-motor tasks support the

  9. Structural Correlates of Skilled Performance on a Motor Sequence Task

    Directory of Open Access Journals (Sweden)

    Christopher J Steele

    2012-10-01

    Full Text Available The brain regions functionally engaged in motor sequence performance are well established, but the structural characteristics of these regions and the fibre pathways involved have been less well studied. In addition, relatively few studies have combined multiple magnetic resonance imaging (MRI and behavioural performance measures in the same sample. Therefore, the current study used diffusion tensor imaging, probabilistic tractography, and voxel-based morphometry to determine the structural correlates of skilled motor performance. Further, we compared these findings with fMRI results in the same sample. We correlated final performance and rate of improvement measures on a temporal motor sequence task with skeletonised fractional anisotropy (FA and whole brain grey matter (GM volume. Final synchronisation performance was negatively correlated with FA in white matter underlying bilateral sensorimotor cortex – an effect that was mediated by a positive correlation with radial diffusivity. Multi-fibre tractography indicated that this region contained crossing fibres from the corticospinal tract and superior longitudinal fasciculus (SLF. The identified SLF pathway linked parietal and auditory cortical regions that have been shown to be functionally engaged in this task. Thus, we hypothesise that enhanced synchronisation performance on this task may be related to greater fibre integrity of the SLF. Rate of improvement on synchronisation was positively correlated with GM volume in cerebellar lobules HVI and V – regions that showed training-related decreases in activity in the same sample. Taken together, our results link individual differences in brain structure and function to motor sequence performance on the same task. Further, our study illustrates the utility of using multiple MR measures and analysis techniques to specify the interpretation of structural findings.

  10. Performance in complex motor tasks deteriorates in hyperthermic humans

    DEFF Research Database (Denmark)

    Piil, Jacob Feder; Lundbye-Jensen, Jesper; Trangmar, Steven J

    2017-01-01

    -motor tracking performance was reduced by 10.7 ± 6.5% following exercise-induced hyperthermia when integrated in the multipart protocol and 4.4 ± 5.7% when tested separately (bothP 1.3% (P math tasks...... of information or decision-making prior to responding. We hypothesized that divergences could relate to task complexity and developed a protocol consisting of 1) simple motor task [TARGET_pinch], 2) complex motor task [Visuo-motor tracking], 3) simple math task [MATH_type], 4) combined motor-math task [MATH...

  11. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity.

    Science.gov (United States)

    Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P

    2018-01-01

    Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.

  12. Multiple systems for motor skill learning.

    Science.gov (United States)

    Clark, Dav; Ivry, Richard B

    2010-07-01

    Motor learning is a ubiquitous feature of human competence. This review focuses on two particular classes of model tasks for studying skill acquisition. The serial reaction time (SRT) task is used to probe how people learn sequences of actions, while adaptation in the context of visuomotor or force field perturbations serves to illustrate how preexisting movements are recalibrated in novel environments. These tasks highlight important issues regarding the representational changes that occur during the course of motor learning. One important theme is that distinct mechanisms vary in their information processing costs during learning and performance. Fast learning processes may require few trials to produce large changes in performance but impose demands on cognitive resources. Slower processes are limited in their ability to integrate complex information but minimally demanding in terms of attention or processing resources. The representations derived from fast systems may be accessible to conscious processing and provide a relatively greater measure of flexibility, while the representations derived from slower systems are more inflexible and automatic in their behavior. In exploring these issues, we focus on how multiple neural systems may interact and compete during the acquisition and consolidation of new behaviors. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: Psychology > Motor Skill and Performance. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Multiple Language Use Influences Oculomotor Task Performance: Neurophysiological Evidence of a Shared Substrate between Language and Motor Control.

    Directory of Open Access Journals (Sweden)

    Karin Heidlmayr

    Full Text Available In the present electroencephalographical study, we asked to which extent executive control processes are shared by both the language and motor domain. The rationale was to examine whether executive control processes whose efficiency is reinforced by the frequent use of a second language can lead to a benefit in the control of eye movements, i.e. a non-linguistic activity. For this purpose, we administrated to 19 highly proficient late French-German bilingual participants and to a control group of 20 French monolingual participants an antisaccade task, i.e. a specific motor task involving control. In this task, an automatic saccade has to be suppressed while a voluntary eye movement in the opposite direction has to be carried out. Here, our main hypothesis is that an advantage in the antisaccade task should be observed in the bilinguals if some properties of the control processes are shared between linguistic and motor domains. ERP data revealed clear differences between bilinguals and monolinguals. Critically, we showed an increased N2 effect size in bilinguals, thought to reflect better efficiency to monitor conflict, combined with reduced effect sizes on markers reflecting inhibitory control, i.e. cue-locked positivity, the target-locked P3 and the saccade-locked presaccadic positivity (PSP. Moreover, effective connectivity analyses (dynamic causal modelling; DCM on the neuronal source level indicated that bilinguals rely more strongly on ACC-driven control while monolinguals rely on PFC-driven control. Taken together, our combined ERP and effective connectivity findings may reflect a dynamic interplay between strengthened conflict monitoring, associated with subsequently more efficient inhibition in bilinguals. Finally, L2 proficiency and immersion experience constitute relevant factors of the language background that predict efficiency of inhibition. To conclude, the present study provided ERP and effective connectivity evidence for domain

  14. Economic decision-making compared with an equivalent motor task.

    Science.gov (United States)

    Wu, Shih-Wei; Delgado, Mauricio R; Maloney, Laurence T

    2009-04-14

    There is considerable evidence that human economic decision-making deviates from the predictions of expected utility theory (EUT) and that human performance conforms to EUT in many perceptual and motor decision tasks. It is possible that these results reflect a real difference in decision-making in the 2 domains but it is also possible that the observed discrepancy simply reflects typical differences in experimental design. We developed a motor task that is mathematically equivalent to choosing between lotteries and used it to compare how the same subject chose between classical economic lotteries and the same lotteries presented in equivalent motor form. In experiment 1, we found that subjects are more risk seeking in deciding between motor lotteries. In experiment 2, we used cumulative prospect theory to model choice and separately estimated the probability weighting functions and the value functions for each subject carrying out each task. We found no patterned differences in how subjects represented outcome value in the motor and the classical tasks. However, the probability weighting functions for motor and classical tasks were markedly and significantly different. Those for the classical task showed a typical tendency to overweight small probabilities and underweight large probabilities, and those for the motor task showed the opposite pattern of probability distortion. This outcome also accounts for the increased risk-seeking observed in the motor tasks of experiment 1. We conclude that the same subject distorts probability, but not value, differently in making identical decisions in motor and classical form.

  15. A comparative study of single and multiple hand tasks using functional MRI

    International Nuclear Information System (INIS)

    Shin, Byung Suck; Lee, Ho Kyu; Park, Sung Tae; Kim, Dong Eun; Lee, Myung Jun; Choi, Choong Gon; Kim, Jae Kyun; Suh, Dae Chul; Lim, Tae Hwan

    1998-01-01

    The purpose of this study is to assess, using functional MRI and by comparing activated motor sensory areas, the independence of brain activation during single and alternative multiple hand tasks. The subjects were six healthy volunteers. Using at 1.5T Siemens system and single shot FID-EPI sequencing (T2 weighted image; TR/TE 0.96 msec/ 61msec, flip angle 90 deg, matrix size 96 x 128, slice thickness/gap 5 mm/0.8 mm, FOV 200 mm) and T1-weighted anatomic images, functional MRI was performed. The paradigm of motor tasks consisted of appositional finger movements; the first involved the separate use of the right, left, and both hands in sequence. Using cross-correlation method (threshold : 0.6) and fMRI analysis software (stimulate 5.0), functional images were obtained. The activated area of brain cortex, the number of pixel, the average percentage change in signal intensity, and correlation of the time-signal intensity curve in the activated motor area were analysed and compared between the two task groups. Statistical analysis involved the use of Wilcoxon signed-rank test. Brain activation did not differ according to whether the motor task was single or alternative. We therefore suggest that during multiple stimuli, the relevant functional area and neuronal column are activated independently. (author). 19 refs., 2 tabs., 3 figs

  16. Association Between Gross-Motor and Executive Function Depends on Age and Motor Task Complexity

    DEFF Research Database (Denmark)

    Spedden, Meaghan E; Malling, Anne Sofie B; Andersen, Ken K

    2017-01-01

    The objective was to examine associations between motor and executive function across the adult lifespan and to investigate the role of motor complexity in these associations. Young, middle-aged and older adults (n = 82; 19-83y) performed two gross-motor tasks with different levels of complexity...... and a Stroop-like computer task. Performance was decreased in older adults. The association between motor and cognitive performance was significant for older adults in the complex motor task (p = 0.03, rs = -0.41), whereas no significant associations were found for young or middle-aged groups, suggesting...... that the link between gross-motor and executive function emerges with age and depends on motor complexity....

  17. Dual-Task Walking in Challenging Environments in People with Stroke: Cognitive-Motor Interference and Task Prioritization

    Directory of Open Access Journals (Sweden)

    Celine Timmermans

    2018-01-01

    Full Text Available Cognitive-motor interference may contribute to the risk of falling in people with stroke, as may be the associated phenomenon of inappropriate task prioritization. Examining dual-task walking could provide valuable insights as to how to best evaluate and treat walking in people with stroke. This study aimed to examine the effect of different walking environments on cognitive-motor interference and task prioritization in dual-task walking in people with stroke. Using a repeated-measures design, cognitive-motor interference and task prioritization were assessed in 30 stroke survivors, while walking in a plain environment and in two challenging environments that were enriched with either stationary physical context or suddenly appearing projector-augmented context. All three walking environment conditions were performed with and without a concurrent serial-3 subtraction task. We found stronger cognitive-motor interference for the two challenging environments than for the plain walking environment. Cognitive-motor interference did not differ between challenging walking environments, but task prioritization did: motor performance was prioritized more in the environment with physical context than in the environment with projector-augmented context and vice versa for cognitive-task performance. In conclusion, walking environment strongly influenced cognitive-motor interference and task prioritization during dual-task walking in people with stroke.

  18. Cognitive-motor interference during fine and gross motor tasks in children with Developmental Coordination Disorder (DCD).

    Science.gov (United States)

    Schott, Nadja; El-Rajab, Inaam; Klotzbier, Thomas

    2016-10-01

    While typically developing children produce relatively automatized postural control processes, children with DCD seem to exhibit an automatization deficit. Dual tasks with various cognitive loads seem to be an effective way to assess the automatic deficit hypothesis. The aims of the study were: (1) to examine the effect of a concurrent cognitive task on fine and gross motor tasks in children with DCD, and (2) to determine whether the effect varied with different difficulty levels of the concurrent task. We examined dual-task performance (Trail-Making-Test, Trail-Walking-Test) in 20 children with DCD and 39 typically developing children. Based on the idea of the Trail-Making-Test, participants walked along a fixed pathway, following a prescribed path, delineated by target markers of (1) increasing sequential numbers, and (2) increasing sequential numbers and letters. The motor and cognitive dual-task effects (DTE) were calculated for each task. Regardless of the cognitive task, children with DCD performed equally well in fine and gross motor tasks, and were slower in the dual task conditions than under single task-conditions, compared with children without DCD. Increased cognitive task complexity resulted in slow trail walking as well as slower trail tracing. The motor interference for the gross motor tasks was least for the simplest conditions and greatest for the complex conditions and was more pronounced in children with DCD. Cognitive interference was low irrespective of the motor task. Children with DCD show a different approach to allocation of cognitive resources, and have difficulties making motor skills automatic. The latter notion is consistent with impaired cerebellar function and the "automatization deficit hypothesis", suggesting that any deficit in the automatization process will appear if conscious monitoring of the motor skill is made more difficult by integrating another task requiring attentional resources. Copyright © 2016 Elsevier Ltd. All

  19. Self-Controlled Feedback for a Complex Motor Task

    Directory of Open Access Journals (Sweden)

    Wolf Peter

    2011-12-01

    Full Text Available Self-controlled augmented feedback enhances learning of simple motor tasks. Thereby, learners tend to request feedback after trials that were rated as good by themselves. Feedback after good trials promotes positive reinforcement, which enhances motor learning. The goal of this study was to investigate when naïve learners request terminal visual feedback in a complex motor task, as conclusions drawn on simple tasks can hardly be transferred to complex tasks. Indeed, seven of nine learners stated to have intended to request feedback predominantly after good trials, but in contrast to their intention, kinematic analysis showed that feedback was rather requested randomly (23% after good, 44% after intermediate, 33% after bad trials. Moreover, requesting feedback after good trials did not correlate with learning success. It seems that self-estimation of performance in complex tasks is challenging. As a consequence, learners might have focused on certain movement aspects rather than on the overall movement. Further studies should assess the current focus of the learner in detail to gain more insight in self-estimation capabilities during complex motor task learning.

  20. When Affordances Climb into Your Mind: Advantages of Motor Simulation in a Memory Task Performed by Novice and Expert Rock Climbers

    Science.gov (United States)

    Pezzulo, Giovanni; Barca, Laura; Bocconi, Alessandro Lamberti; Borghi, Anna M.

    2010-01-01

    Does the sight of multiple climbing holds laid along a path activate a motor simulation of climbing that path? One way of testing whether multiple affordances and their displacement influence the formation of a motor simulation is to study acquired motor skills. We used a behavioral task in which expert and novice rock climbers were shown three…

  1. Dual-Tasking in Multiple Sclerosis - Implications for a Cognitive Screening Instrument.

    Science.gov (United States)

    Beste, Christian; Mückschel, Moritz; Paucke, Madlen; Ziemssen, Tjalf

    2018-01-01

    The monitoring of cognitive functions is central to the assessment and consecutive management of multiple sclerosis (MS). Though, especially cognitive processes that are central to everyday behavior like dual-tasking are often neglected. We examined dual-task performance using a psychological-refractory period (PRP) task in N = 21 patients and healthy controls and conducted standard neuropsychological tests. In dual-tasking, MS patients committed more erroneous responses when dual-tasking was difficult. In easier conditions, performance of MS patients did not differ to controls. Interestingly, the response times were generally not affected by the difficulty of the dual task, showing that the deficits observed do not reflect simple motor deficits or deficits in information processing speed but point out deficits in executive control functions and response selection in particular. Effect sizes were considerably large with d ∼0.80 in mild affected patients and the achieved power was above 99%. There are cognitive control and dual tasking deficits in MS that are not attributable to simple motor speed deficits. Scaling of the difficulty of dual-tasking makes the test applied suitable for a wide variety of MS-patients and may complement neuropsychological assessments in clinical care and research setting.

  2. Compromised Motor Dexterity Confounds Processing Speed Task Outcomes in Stroke Patients

    Directory of Open Access Journals (Sweden)

    Essie Low

    2017-09-01

    Full Text Available Most conventional measures of information processing speed require motor responses to facilitate performance. However, although not often addressed clinically, motor impairment, whether due to age or acquired brain injury, would be expected to confound the outcome measure of such tasks. The current study recruited 29 patients (20 stroke and 9 transient ischemic attack with documented reduction in dexterity of the dominant hand, and 29 controls, to investigate the extent to which 3 commonly used processing speed measures with varying motor demands (a Visuo-Motor Reaction Time task, and the Wechsler Adult Intelligence Scale-IV Symbol Search and Coding subtests may be measuring motor-related speed more so than cognitive speed. Analyses include correlations between indices of cognitive and motor speed obtained from two other tasks (Inspection Time and Pegboard task, respectively with the three speed measures, followed by hierarchical regressions to determine the relative contribution of cognitive and motor speed indices toward task performance. Results revealed that speed outcomes on tasks with relatively high motor demands, such as Coding, were largely reflecting motor speed in individuals with reduced dominant hand dexterity. Thus, findings indicate the importance of employing measures with minimal motor requirements, especially when the assessment of speed is aimed at understanding cognitive rather than physical function.

  3. Task-irrelevant auditory feedback facilitates motor performance in musicians

    Directory of Open Access Journals (Sweden)

    Virginia eConde

    2012-05-01

    Full Text Available An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT. Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have a superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Here we provide novel evidence that task-irrelevant auditory feedback is capable to reinforce SRTT performance but not learning, a finding that might provide further insight into auditory-motor integration in musicians on a behavioral level.

  4. Cognitive and motor dual task gait training improve dual task gait performance after stroke - A randomized controlled pilot trial.

    Science.gov (United States)

    Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau

    2017-06-22

    This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.

  5. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    Science.gov (United States)

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. The change in perceived motor competence and motor task values during elementary school : Gender and motor performance differences

    NARCIS (Netherlands)

    Noordstar, J.J.; van der Net, J.; Jak, S.; Helders, P.J.M.; Jongmans, M.J.

    2016-01-01

    Participation in motor activities is essential for social interaction and life satisfaction in children. Self-perceptions and task values have a central position in why children do or do not participate in (motor) activities. Investigating developmental changes in motor self-perceptions and motor

  7. Cognitive-motor dual-task ability of athletes with and without intellectual impairment.

    Science.gov (United States)

    Van Biesen, Debbie; Jacobs, Lore; McCulloch, Katina; Janssens, Luc; Vanlandewijck, Yves C

    2018-03-01

    Cognition is important in many sports, for example, making split-second-decisions under pressure, or memorising complex movement sequences. The dual-task (DT) paradigm is an ecologically valid approach for the assessment of cognitive function in conjunction with motor demands. This study aimed to determine the impact of impaired intelligence on DT performance. The motor task required balancing on one leg on a beam, and the cognitive task was a multiple-object-tracking (MOT) task assessing dynamic visual-search capacity. The sample included 206 well-trained athletes with and without intellectual impairment (II), matched for sport, age and training volume (140 males, 66 females, M age = 23.2 ± 4.1 years, M training experience = 12.3 ± 5.7 years). In the single-task condition, II-athletes showed reduced balance control (F = 55.9, P balance and the MOT task between both groups. The DT costs were significantly larger for the II-athletes (-8.28% versus -1.34% for MOT and -33.13% versus -12.89% for balance). The assessment of MOT in a DT paradigm provided insight in how impaired intelligence constrains the ability of II-athletes to successfully perform at the highest levels in the complex and dynamical sport-environment.

  8. Profiles of Cognitive-Motor Interference During Walking in Children: Does the Motor or the Cognitive Task Matter?

    Directory of Open Access Journals (Sweden)

    Nadja Schott

    2018-06-01

    Full Text Available The evidence supporting the effects of age on the ability to coordinate a motor and a cognitive task show inconsistent results in children and adolescents, where the Dual-Task Effects (DTE – if computed at all – range from either being lower or comparable or higher in younger children than in older children, adolescents and adults. A feasible reason for the variability in such findings is the wide range of cognitive tasks (and to some extend of motor tasks used to study Cognitive-Motor Interference (CMI. Our study aims at determining the differences in CMI when performing cognitive tasks targeting different cognitive functions at varying walking pathways. 69 children and adolescents (boys, n = 45; girls, n = 24; mean age, 11.5 ± 1.50 years completed higher-level executive function tasks (2-Back, Serial Subtraction, Auditory Stroop, Clock Task, TMT-B in comparison to non-executive distracter tasks [Motor Response Task (MRT, TMT-A] to assess relative effects on gait during straight vs. repeated Change of Direction (COD walking. DT during COD walking was assessed using the Trail-Walking-Test (TWT. The motor and cognitive DTE were calculated for each task. There were significant differences between 5th and 8th graders on single gait speed on the straight (p = 0.016 and the COD pathway (p = 0.023, but not on any of the DT conditions. The calculation of DTEs revealed that motor DTEs were lowest for the MRT and highest for the TWT in the numbers/letters condition (p < 0.05 for all comparisons. In contrast, there were cognitive benefits for the higher-order cognitive tasks on the straight pathways, but cognitive costs for both DT conditions on the COD pathway (p < 0.01 for all comparisons. Our findings demonstrate that DT changes in walking when completing a secondary task that involve higher-level cognition are attributable to more than low-level divided attention or motor response processes. These results specifically show the direct competition

  9. Enhanced motor learning following task-concurrent dual transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Sophia Karok

    Full Text Available OBJECTIVE: Transcranial direct current stimulation (tDCS of the primary motor cortex (M1 has beneficial effects on motor performance and motor learning in healthy subjects and is emerging as a promising tool for motor neurorehabilitation. Applying tDCS concurrently with a motor task has recently been found to be more effective than applying stimulation before the motor task. This study extends this finding to examine whether such task-concurrent stimulation further enhances motor learning on a dual M1 montage. METHOD: Twenty healthy, right-handed subjects received anodal tDCS to the right M1, dual tDCS (anodal current over right M1 and cathodal over left M1 and sham tDCS in a repeated-measures design. Stimulation was applied for 10 mins at 1.5 mA during an explicit motor learning task. Response times (RT and accuracy were measured at baseline, during, directly after and 15 mins after stimulation. Motor cortical excitability was recorded from both hemispheres before and after stimulation using single-pulse transcranial magnetic stimulation. RESULTS: Task-concurrent stimulation with a dual M1 montage significantly reduced RTs by 23% as early as with the onset of stimulation (p<0.01 with this effect increasing to 30% at the final measurement. Polarity-specific changes in cortical excitability were observed with MEPs significantly reduced by 12% in the left M1 and increased by 69% in the right M1. CONCLUSION: Performance improvement occurred earliest in the dual M1 condition with a stable and lasting effect. Unilateral anodal stimulation resulted only in trendwise improvement when compared to sham. Therefore, task-concurrent dual M1 stimulation is most suited for obtaining the desired neuromodulatory effects of tDCS in explicit motor learning.

  10. Motor unit recruitment for dynamic tasks: current understanding and future directions.

    Science.gov (United States)

    Hodson-Tole, Emma F; Wakeling, James M

    2009-01-01

    Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the 'size principle', governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.

  11. Structural integrity of callosal midbody influences intermanual transfer in a motor reaction-time task.

    Science.gov (United States)

    Bonzano, Laura; Tacchino, Andrea; Roccatagliata, Luca; Mancardi, Giovanni Luigi; Abbruzzese, Giovanni; Bove, Marco

    2011-02-01

    Training one hand on a motor task results in performance improvements in the other hand, also when stimuli are randomly presented (nonspecific transfer). Corpus callosum (CC) is the main structure involved in interhemispheric information transfer; CC pathology occurs in patients with multiple sclerosis (PwMS) and is related to altered performance of tasks requiring interhemispheric transfer of sensorimotor information. To investigate the role of CC in nonspecific transfer during a pure motor reaction-time task, we combined motor behavior with diffusion tensor imaging analysis in PwMS. Twenty-two PwMS and 10 controls, all right-handed, were asked to respond to random stimuli with appropriate finger opposition movements with the right (learning) and then the left (transfer) hand. PwMS were able to improve motor performance reducing response times with practice with a trend similar to controls and preserved the ability to transfer the acquired motor information from the learning to the transfer hand. A higher variability in the transfer process, indicated by a significantly larger standard deviation of mean nonspecific transfer, was found in the PwMS group with respect to the control group, suggesting the presence of subtle impairments in interhemispheric communication in some patients. Then, we correlated the amount of nonspecific transfer with mean fractional anisotropy (FA) values, indicative of microstructural damage, obtained in five CC subregions identified on PwMS's FA maps. A significant correlation was found only in the subregion including posterior midbody (Pearson's r = 0.74, P = 0.003), which thus seems to be essential for the interhemispheric transfer of information related to pure sensorimotor tasks. Copyright © 2010 Wiley-Liss, Inc.

  12. The effectiveness of robotic training depends on motor task characteristics.

    Science.gov (United States)

    Marchal-Crespo, Laura; Rappo, Nicole; Riener, Robert

    2017-12-01

    Previous research suggests that the effectiveness of robotic training depends on the motor task to be learned. However, it is still an open question which specific task's characteristics influence the efficacy of error-modulating training strategies. Motor tasks can be classified based on the time characteristics of the task, in particular the task's duration (discrete vs. continuous). Continuous tasks require movements without distinct beginning or end. Discrete tasks require fast movements that include well-defined postures at the beginning and the end. We developed two games, one that requires a continuous movement-a tracking task-and one that requires discrete movements-a fast reaching task. We conducted an experiment with thirty healthy subjects to evaluate the effectiveness of three error-modulating training strategies-no guidance, error amplification (i.e., repulsive forces proportional to errors) and haptic guidance-on self-reported motivation and learning of the continuous and discrete games. Training with error amplification resulted in better motor learning than haptic guidance, besides the fact that error amplification reduced subjects' interest/enjoyment and perceived competence during training. Only subjects trained with error amplification improved their performance after training the discrete game. In fact, subjects trained without guidance improved the performance in the continuous game significantly more than in the discrete game, probably because the continuous task required greater attentional levels. Error-amplifying training strategies have a great potential to provoke better motor learning in continuous and discrete tasks. However, their long-lasting negative effects on motivation might limit their applicability in intense neurorehabilitation programs.

  13. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity

    OpenAIRE

    Künstler, E. C. S.; Finke, K.; Günther, A.; Klingner, C.; Witte, O.; Bublak, P.

    2017-01-01

    Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the ‘theory of visual attention’ (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual sh...

  14. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks

    Directory of Open Access Journals (Sweden)

    Claudia eCasellato

    2015-02-01

    Full Text Available The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.

  15. Task-specific effect of transcranial direct current stimulation on motor learning

    Directory of Open Access Journals (Sweden)

    Cinthia Maria Saucedo Marquez

    2013-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a relatively new non-invasive brain stimulation technique that modulates neural processes. When applied to the human primary motor cortex (M1, tDCS has beneficial effects on motor skill learning and consolidation in healthy controls and in patients. However, it remains unclear whether tDCS improves motor learning in a general manner or whether these effects depend on which motor task is acquired. Here we compare whether the effect of tDCS differs when the same individual acquires (1 a Sequential Finger Tapping Task (SEQTAP and (2 a Visual Isometric Pinch Force Task (FORCE. Both tasks have been shown to be sensitive to tDCS applied over M1, however, the underlying processes mediating learning and memory formation might benefit differently from anodal-tDCS. Thirty healthy subjects were randomly assigned to an anodal-tDCS group or sham-group. Using a double-blind, sham-controlled cross-over design, tDCS was applied over M1 while subjects acquired each of the motor tasks over 3 consecutive days, with the order being randomized across subjects. We found that anodal-tDCS affected each task differently: The SEQTAP task benefited from anodal-tDCS during learning, whereas the FORCE task showed improvements only at retention. These findings suggest that anodal tDCS applied over M1 appears to have a task-dependent effect on learning and memory formation.

  16. Motor cortical encoding of serial order in a context-recall task.

    Science.gov (United States)

    Carpenter, A F; Georgopoulos, A P; Pellizzer, G

    1999-03-12

    The neural encoding of serial order was studied in the motor cortex of monkeys performing a context-recall memory scanning task. Up to five visual stimuli were presented successively on a circle (list presentation phase), and then one of them (test stimulus) changed color; the monkeys had to make a single motor response toward the stimulus that immediately followed the test stimulus in the list. Correct performance in this task depends on memorization of the serial order of the stimuli during their presentation. It was found that changes in neural activity during the list presentation phase reflected the serial order of the stimuli; the effect on cell activity of the serial order of stimuli during their presentation was at least as strong as the effect of motor direction on cell activity during the execution of the motor response. This establishes the serial order of stimuli in a motor task as an important determinant of motor cortical activity during stimulus presentation and in the absence of changes in peripheral motor events, in contrast to the commonly held view of the motor cortex as just an "upper motor neuron."

  17. Balancing the Demands of Two Tasks: An Investigation of Cognitive-Motor Dual-Tasking in Relapsing Remitting Multiple Sclerosis.

    Science.gov (United States)

    Butchard-MacDonald, Emma; Paul, Lorna; Evans, Jonathan J

    2018-03-01

    People with relapsing remitting multiple sclerosis (PwRRMS) suffer disproportionate decrements in gait under dual-task conditions, when walking and a cognitive task are combined. There has been much less investigation of the impact of cognitive demands on balance. This study investigated whether: (1) PwRRMS show disproportionate decrements in postural stability under dual-task conditions compared to healthy controls, and (2) dual-task decrements are associated with everyday dual-tasking difficulties. The impact of mood, fatigue, and disease severity on dual-tasking was also examined. A total of 34 PwRRMS and 34 matched controls completed cognitive (digit span) and balance (movement of center of pressure on Biosway on stable and unstable surfaces) tasks under single- and dual-task conditions. Everyday dual-tasking was measured using the Dual-Tasking Questionnaire. Mood was measured by the Hospital Anxiety & Depression Scale. Fatigue was measured via the Modified Fatigue Index Scale. No differences in age, gender, years of education, estimated pre-morbid IQ, or baseline digit span between groups. Compared with controls, PwRRMS showed significantly greater decrement in postural stability under dual-task conditions on an unstable surface (p=.007), but not a stable surface (p=.679). Balance decrement scores were not correlated with everyday dual-tasking difficulties or fatigue. Stable surface balance decrement scores were significantly associated with levels of anxiety (rho=0.527; p=.001) and depression (rho=0.451; p=.007). RRMS causes dual-tasking difficulties, impacting balance under challenging conditions, which may contribute to increased risk of gait difficulties and falls. The relationship between anxiety/depression and dual-task decrement suggests that emotional factors may be contributing to dual-task difficulties. (JINS, 2018, 24, 247-258).

  18. Task Complexity Modulates Sleep-Related Offline Learning in Sequential Motor Skills

    Directory of Open Access Journals (Sweden)

    Klaus Blischke

    2017-07-01

    Full Text Available Recently, a number of authors have advocated the introduction of gross motor tasks into research on sleep-related motor offline learning. Such tasks are often designed to be more complex than traditional key-pressing tasks. However, until now, little effort has been undertaken to scrutinize the role of task complexity in any systematic way. Therefore, the effect of task complexity on the consolidation of gross motor sequence memory was examined by our group in a series of three experiments. Criterion tasks always required participants to produce unrestrained arm movement sequences by successively fitting a small peg into target holes on a pegboard. The sequences always followed a certain spatial pattern in the horizontal plane. The targets were visualized prior to each transport movement on a computer screen. The tasks differed with respect to sequence length and structural complexity. In each experiment, half of the participants initially learned the task in the morning and were retested 12 h later following a wake retention interval. The other half of the subjects underwent practice in the evening and was retested 12 h later following a night of sleep. The dependent variables were the error rate and total sequence execution time (inverse to the sequence execution speed. Performance generally improved during acquisition. The error rate was always low and remained stable during retention. The sequence execution time significantly decreased again following sleep but not after waking when the sequence length was long and structural complexity was high. However, sleep-related offline improvements were absent when the sequence length was short or when subjects performed a highly regular movement pattern. It is assumed that the occurrence of sleep-related offline performance improvements in sequential motor tasks is associated with a sufficient amount of motor task complexity.

  19. The change in perceived motor competence and motor task values during elementary school : A longitudinal cohort study

    NARCIS (Netherlands)

    Noordstar, Johannes J; van der Net, Janjaap; Jak, Suzanne; Helders, Paul J M; Jongmans, Marian J

    Participation in motor activities is essential for social interaction and life satisfaction in children. Self-perceptions and task values have a central position in why children do or do not participate in (motor) activities. Investigating developmental changes in motor self-perceptions and motor

  20. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses

    Science.gov (United States)

    Hwang, Ing-Shiou; Huang, Cheng-Ya

    2016-01-01

    With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634

  1. Functional MR study of a motor task and the Tower of London task at 1.0 T

    International Nuclear Information System (INIS)

    Boghi, A.; Rampado, O.; Ropolo, R.; Bergui, M.; Coriasco, M.; Bradac, G.B.; Avidano, F.; Manzone, C.; Mortara, P.; Orsi, L.

    2006-01-01

    The use of functional magnetic resonance imaging (fMRI) for clinical applications and basic neuroscience is constantly increasing. The discussion about minimum performance requirement for a correct implementation of fMRI is still open, and one of the critical points is the magnetic field strength. We tested the feasibility of fMRI at 1.0 T during motor and cognitive tasks. Fourteen healthy subjects were scanned during a motor task and 12 while performing the Tower of London task. In the activated areas, the percentage signal change due to BOLD (blood oxygenation level dependent) contrast was analysed. To check basic image quality of the acquisition system we measured quality indices in a temporal series of images of a phantom. Motor and cognitive brain activations matched previous results obtained at higher field strengths. The mean percentage change over subjects in the motor task was in the range 1.3-2.6% for the primary motor area and 0.8-6.7% for the cerebellum. In the cognitive task, the mean percentage change over subjects was 0.7-1.2% for a frontal area and 0.6-2.8% for a parietal area. The percentage noise of the phantom temporal series was less than 0.4%. Percentage changes and signal to noise ratio, although lower than that obtained with high-field systems, allowed activation maps to be obtained in all subjects. (orig.)

  2. Correlations between Motor Symptoms across Different Motor Tasks, Quantified via Random Forest Feature Classification in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Andreas Kuhner

    2017-11-01

    Full Text Available BackgroundObjective assessments of Parkinson’s disease (PD patients’ motor state using motion capture techniques are still rarely used in clinical practice, even though they may improve clinical management. One major obstacle relates to the large dimensionality of motor abnormalities in PD. We aimed to extract global motor performance measures covering different everyday motor tasks, as a function of a clinical intervention, i.e., deep brain stimulation (DBS of the subthalamic nucleus.MethodsWe followed a data-driven, machine-learning approach and propose performance measures that employ Random Forests with probability distributions. We applied this method to 14 PD patients with DBS switched-off or -on, and 26 healthy control subjects performing the Timed Up and Go Test (TUG, the Functional Reach Test (FRT, a hand coordination task, walking 10-m straight, and a 90° curve.ResultsFor each motor task, a Random Forest identified a specific set of metrics that optimally separated PD off DBS from healthy subjects. We noted the highest accuracy (94.6% for standing up. This corresponded to a sensitivity of 91.5% to detect a PD patient off DBS, and a specificity of 97.2% representing the rate of correctly identified healthy subjects. We then calculated performance measures based on these sets of metrics and applied those results to characterize symptom severity in different motor tasks. Task-specific symptom severity measures correlated significantly with each other and with the Unified Parkinson’s Disease Rating Scale (UPDRS, part III, correlation of r2 = 0.79. Agreement rates between different measures ranged from 79.8 to 89.3%.ConclusionThe close correlation of PD patients’ various motor abnormalities quantified by different, task-specific severity measures suggests that these abnormalities are only facets of the underlying one-dimensional severity of motor deficits. The identification and characterization of this underlying motor deficit

  3. Detection of reduced interhemispheric cortical communication during task execution in multiple sclerosis patients using functional near-infrared spectroscopy

    Science.gov (United States)

    Jimenez, Jon J.; Yang, Runze; Nathoo, Nabeela; Varshney, Vishal P.; Golestani, Ali-Mohammad; Goodyear, Bradley G.; Metz, Luanne M.; Dunn, Jeff F.

    2014-07-01

    Multiple sclerosis (MS) impairs brain activity through demyelination and loss of axons. Increased brain activity is accompanied by increases in microvascular hemoglobin oxygen saturation (oxygenation) and total hemoglobin, which can be measured using functional near-infrared spectroscopy (fNIRS). Due to the potentially reduced size and integrity of the white matter tracts within the corpus callosum, it may be expected that MS patients have reduced functional communication between the left and right sides of the brain; this could potentially be an indicator of disease progression. To assess interhemispheric communication in MS, we used fNIRS during a unilateral motor task and the resting state. The magnitude of the change in hemoglobin parameters in the motor cortex was significantly reduced in MS patients during the motor task relative to healthy control subjects. There was also a significant decrease in interhemispheric communication between the motor cortices (expressed as coherence) in MS patients compared to controls during the motor task, but not during the resting state. fNIRS assessment of interhemispheric coherence during task execution may be a useful marker in disorders with white matter damage or axonal loss, including MS.

  4. Motor-cognitive dual-task deficits in individuals with early-mid stage Huntington disease.

    Science.gov (United States)

    Fritz, Nora E; Hamana, Katy; Kelson, Mark; Rosser, Anne; Busse, Monica; Quinn, Lori

    2016-09-01

    Huntington disease (HD) results in a range of cognitive and motor impairments that progress throughout the disease stages; however, little research has evaluated specific dual-task abilities in this population, and the degree to which they may be related to functional ability. The purpose of this study was to a) examine simple and complex motor-cognitive dual-task performance in individuals with HD, b) determine relationships between dual-task walking ability and disease-specific measures of motor, cognitive and functional ability, and c) examine the relationship of dual-task measures to falls in individuals with HD. Thirty-two individuals with HD were evaluated for simple and complex dual-task ability using the Walking While Talking Test. Demographics and disease-specific measures of motor, cognitive and functional ability were also obtained. Individuals with HD had impairments in simple and complex dual-task ability. Simple dual-task walking was correlated to disease-specific motor scores as well as cognitive performance, but complex dual-task walking was correlated with total functional capacity, as well as a range of cognitive measures. Number of prospective falls was moderately-strongly correlated to dual-task measures. Our results suggest that individuals with HD have impairments in cognitive-motor dual-task ability that are related to disease progression and specifically functional ability. Dual-task measures appear to evaluate a unique construct in individuals with early to mid-stage HD, and may have value in improving the prediction of falls risk in this population. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Multiple systems for motor skill learning

    OpenAIRE

    Clark, Dav; Ivry, Richard B.

    2010-01-01

    Motor learning is a ubiquitous feature of human competence. This review focuses on two particular classes of model tasks for studying skill acquisition. The serial reaction time (SRT) task is used to probe how people learn sequences of actions, while adaptation in the context of visuomotor or force field perturbations serves to illustrate how preexisting movements are recalibrated in novel environments. These tasks highlight important issues regarding the representational changes that occur d...

  6. Fine and gross motor skills: The effects on skill-focused dual-tasks.

    Science.gov (United States)

    Raisbeck, Louisa D; Diekfuss, Jed A

    2015-10-01

    Dual-task methodology often directs participants' attention towards a gross motor skill involved in the execution of a skill, but researchers have not investigated the comparative effects of attention on fine motor skill tasks. Furthermore, there is limited information about participants' subjective perception of workload with respect to task performance. To examine this, the current study administered the NASA-Task Load Index following a simulated shooting dual-task. The task required participants to stand 15 feet from a projector screen which depicted virtual targets and fire a modified Glock 17 handgun equipped with an infrared laser. Participants performed the primary shooting task alone (control), or were also instructed to focus their attention on a gross motor skill relevant to task execution (gross skill-focused) and a fine motor skill relevant to task execution (fine skill-focused). Results revealed that workload was significantly greater during the fine skill-focused task for both skill levels, but performance was only affected for the lesser-skilled participants. Shooting performance for the lesser-skilled participants was greater during the gross skill-focused condition compared to the fine skill-focused condition. Correlational analyses also demonstrated a significant negative relationship between shooting performance and workload during the gross skill-focused task for the higher-skilled participants. A discussion of the relationship between skill type, workload, skill level, and performance in dual-task paradigms is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Fine and Gross Motor Task Performance When Using Computer-Based Video Models by Students with Autism and Moderate Intellectual Disability

    Science.gov (United States)

    Mechling, Linda C.; Swindle, Catherine O.

    2013-01-01

    This investigation examined the effects of video modeling on the fine and gross motor task performance by three students with a diagnosis of moderate intellectual disability (Group 1) and by three students with a diagnosis of autism spectrum disorder (Group 2). Using a multiple probe design across three sets of tasks, the study examined the…

  8. Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks.

    Science.gov (United States)

    Hupfeld, K E; Ketcham, C J; Schneider, H D

    2017-03-01

    The supplementary motor area (SMA) is believed to be highly involved in the planning and execution of both simple and complex motor tasks. This study aimed to examine the role of the SMA in planning the movements required to complete reaction time, balance, and pegboard tasks using anodal transcranial direct current stimulation (tDCS), which passes a weak electrical current between two electrodes, in order to modulate neuronal activity. Twenty healthy adults were counterbalanced to receive either tDCS (experimental condition) or no tDCS (control condition) for 3 days. During administration of tDCS, participants performed a balance task significantly faster than controls. After tDCS, subjects significantly improved their simple and choice reaction time. These results demonstrate that the SMA is highly involved in planning and executing fine and gross motor skill tasks and that tDCS is an effective modality for increasing SMA-related performance on these tasks. The findings may be generalizable and therefore indicate implications for future interventions using tDCS as a therapeutic tool.

  9. High variability impairs motor learning regardless of whether it affects task performance.

    Science.gov (United States)

    Cardis, Marco; Casadio, Maura; Ranganathan, Rajiv

    2018-01-01

    Motor variability plays an important role in motor learning, although the exact mechanisms of how variability affects learning are not well understood. Recent evidence suggests that motor variability may have different effects on learning in redundant tasks, depending on whether it is present in the task space (where it affects task performance) or in the null space (where it has no effect on task performance). We examined the effect of directly introducing null and task space variability using a manipulandum during the learning of a motor task. Participants learned a bimanual shuffleboard task for 2 days, where their goal was to slide a virtual puck as close as possible toward a target. Critically, the distance traveled by the puck was determined by the sum of the left- and right-hand velocities, which meant that there was redundancy in the task. Participants were divided into five groups, based on both the dimension in which the variability was introduced and the amount of variability that was introduced during training. Results showed that although all groups were able to reduce error with practice, learning was affected more by the amount of variability introduced rather than the dimension in which variability was introduced. Specifically, groups with higher movement variability during practice showed larger errors at the end of practice compared with groups that had low variability during learning. These results suggest that although introducing variability can increase exploration of new solutions, this may adversely affect the ability to retain the learned solution. NEW & NOTEWORTHY We examined the role of introducing variability during motor learning in a redundant task. The presence of redundancy allows variability to be introduced in different dimensions: the task space (where it affects task performance) or the null space (where it does not affect task performance). We found that introducing variability affected learning adversely, but the amount of

  10. Motor dual-tasking deficits predict falls in Parkinson's disease: A prospective study.

    Science.gov (United States)

    Heinzel, Sebastian; Maechtel, Mirjam; Hasmann, Sandra E; Hobert, Markus A; Heger, Tanja; Berg, Daniela; Maetzler, Walter

    2016-05-01

    Falls severely affect lives of Parkinson's disease (PD) patients. Cognitive impairment including dual-tasking deficits contribute to fall risk in PD. However, types of dual-tasking deficits preceding falls in PD are still unclear. Walking velocities during box-checking and subtracting serial 7s were assessed twice a year in 40 PD patients over 2.8 ± 1.0 years. Fourteen patients reported a fall within this period (4 excluded fallers already reported falls at baseline). Their dual-task costs (DTC; mean ± standard deviation) 4.2 ± 2.2 months before the first fall were compared with 22 patients never reporting falls. ROC analyses and logistic regressions accounting for DTC, UPDRS-III and disease duration were used for faller classification and prediction. Only walking/box-checking predicted fallers. Fallers showed higher DTC for walking while box-checking, p = 0.029, but not for box-checking while walking, p = 0.178 (combined motor DTC, p = 0.022), than non-fallers. Combined motor DTC classified fallers and non-fallers (area under curve: 0.75; 95% confidence interval, CI: 0.60-0.91) with 71.4% sensitivity (95%CI: 41.9%-91.6%) and 77.3% specificity (54.6%-92.2%), and significantly predicted future fallers (p = 0.023). Here, 20.4%-points higher combined motor DTC (i.e. the mean difference between fallers and non-fallers) was associated with a 2.6 (1.1-6.0) times higher odds to be a future faller. Motor dual-tasking is a potentially valuable predictor of falls in PD, suggesting that avoiding dual task situations as well as specific motor dual-task training might help to prevent falls in PD. These findings and their therapeutic relevance need to be further validated in PD patients without fall history, in early PD stages, and with various motor-motor dual-task challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Classification of EEG signals to identify variations in attention during motor task execution.

    Science.gov (United States)

    Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie

    2017-06-01

    Brain-computer interface (BCI) systems in neuro-rehabilitation use brain signals to control external devices. User status such as attention affects BCI performance; thus detecting the user's attention drift due to internal or external factors is essential for high detection accuracy. An auditory oddball task was applied to divert the users' attention during a simple ankle dorsiflexion movement. Electroencephalogram signals were recorded from eighteen channels. Temporal and time-frequency features were projected to a lower dimension space and used to analyze the effect of two attention levels on motor tasks in each participant. Then, a global feature distribution was constructed with the projected time-frequency features of all participants from all channels and applied for attention classification during motor movement execution. Time-frequency features led to significantly better classification results with respect to the temporal features, particularly for electrodes located over the motor cortex. Motor cortex channels had a higher accuracy in comparison to other channels in the global discrimination of attention level. Previous methods have used the attention to a task to drive external devices, such as the P300 speller. However, here we focus for the first time on the effect of attention drift while performing a motor task. It is possible to explore user's attention variation when performing motor tasks in synchronous BCI systems with time-frequency features. This is the first step towards an adaptive real-time BCI with an integrated function to reveal attention shifts from the motor task. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Task and task-free fMRI reproducibility comparison for motor network identification

    NARCIS (Netherlands)

    Kristo, G.; Rutten, G.J.; Raemaekers, M.; de Gelder, B.; Rombouts, S.A.R.B.; Ramsey, N.F.

    2014-01-01

    Test-retest reliability of individual functional magnetic resonance imaging (fMRI) results is of importance in clinical practice and longitudinal experiments. While several studies have investigated reliability of task-induced motor network activation, less is known about the reliability of the

  13. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.

    Science.gov (United States)

    Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R

    2013-10-10

    Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (pmotor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study.

    Science.gov (United States)

    Gatti, R; Tettamanti, A; Gough, P M; Riboldi, E; Marinoni, L; Buccino, G

    2013-04-12

    Both motor imagery and action observation have been shown to play a role in learning or re-learning complex motor tasks. According to a well accepted view they share a common neurophysiological basis in the mirror neuron system. Neurons within this system discharge when individuals perform a specific action and when they look at another individual performing the same or a motorically related action. In the present paper, after a short review of literature on the role of action observation and motor imagery in motor learning, we report the results of a kinematics study where we directly compared motor imagery and action observation in learning a novel complex motor task. This involved movement of the right hand and foot in the same angular direction (in-phase movement), while at the same time moving the left hand and foot in an opposite angular direction (anti-phase movement), all at a frequency of 1Hz. Motor learning was assessed through kinematics recording of wrists and ankles. The results showed that action observation is better than motor imagery as a strategy for learning a novel complex motor task, at least in the fast early phase of motor learning. We forward that these results may have important implications in educational activities, sport training and neurorehabilitation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Visual Motor and Perceptual Task Performance in Astigmatic Students

    Directory of Open Access Journals (Sweden)

    Erin M. Harvey

    2017-01-01

    Full Text Available Purpose. To determine if spectacle corrected and uncorrected astigmats show reduced performance on visual motor and perceptual tasks. Methods. Third through 8th grade students were assigned to the low refractive error control group (astigmatism < 1.00 D, myopia < 0.75 D, hyperopia < 2.50 D, and anisometropia < 1.50 D or bilateral astigmatism group (right and left eye ≥ 1.00 D based on cycloplegic refraction. Students completed the Beery-Buktenica Developmental Test of Visual Motor Integration (VMI and Visual Perception (VMIp. Astigmats were randomly assigned to testing with/without correction and control group was tested uncorrected. Analyses compared VMI and VMIp scores for corrected and uncorrected astigmats to the control group. Results. The sample included 333 students (control group 170, astigmats tested with correction 75, and astigmats tested uncorrected 88. Mean VMI score in corrected astigmats did not differ from the control group (p=0.829. Uncorrected astigmats had lower VMI scores than the control group (p=0.038 and corrected astigmats (p=0.007. Mean VMIp scores for uncorrected (p=0.209 and corrected astigmats (p=0.124 did not differ from the control group. Uncorrected astigmats had lower mean scores than the corrected astigmats (p=0.003. Conclusions. Uncorrected astigmatism influences visual motor and perceptual task performance. Previously spectacle treated astigmats do not show developmental deficits on visual motor or perceptual tasks when tested with correction.

  16. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    Science.gov (United States)

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  17. Differences in visuo-motor control in skilled vs. novice martial arts athletes during sustained and transient attention tasks: a motor-related cortical potential study.

    Science.gov (United States)

    Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A; Di Russo, Francesco

    2014-01-01

    Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and "automatic" or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise

  18. Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning.

    Science.gov (United States)

    Karok, Sophia; Fletcher, David; Witney, Alice G

    2017-01-08

    Task-specific effects of transcranial direct current stimulation (tDCS) on motor learning were investigated in 30 healthy participants. In a sham-controlled, mixed design, participants trained on 3 different motor tasks (Purdue Pegboard Test, Visuomotor Grip Force Tracking Task and Visuomotor Wrist Rotation Speed Control Task) over 3 consecutive days while receiving either unilateral anodal over the right primary motor cortex (M1), dual-M1 or sham stimulation. Retention sessions were administered 7 and 28 days after the end of training. In the Purdue Pegboard Test, both anodal and dual-M1 stimulation reduced average completion time approximately equally, an improvement driven by online learning effects and maintained for about 1 week. The Visuomotor Grip Force Tracking Task and the Visuomotor Wrist Rotation Speed Control Task were associated with an advantage of dual-M1 tDCS in consolidation processes both between training sessions and when testing at long-term retention; both were maintained for at least 1 month. This study demonstrates that M1-tDCS enhances and sustains motor learning with different electrode montages. Stimulation-induced effects emerged at different learning phases across the tasks, which strongly suggests that the influence of tDCS on motor learning is dynamic with respect to the functional recruitment of the distributed motor system at the time of stimulation. Divergent findings regarding M1-tDCS effects on motor learning may partially be ascribed to task-specific consequences and the effects of offline consolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.

    Directory of Open Access Journals (Sweden)

    Alessio Paolo Buccino

    Full Text Available Non-invasive Brain-Computer Interfaces (BCI have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG and functional Near-Infrared Spectroscopy (fNIRS in an asynchronous Sensory Motor rhythm (SMR-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.

  20. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    Science.gov (United States)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  1. Task-specific compensation and recovery following focal motor cortex lesion in stressed rats.

    Science.gov (United States)

    Kirkland, Scott W; Smith, Lori K; Metz, Gerlinde A

    2012-03-01

    One reason for the difficulty to develop effective therapies for stroke is that intrinsic factors, such as stress, may critically influence pathological mechanisms and recovery. In cognitive tasks, stress can both exaggerate and alleviate functional loss after focal ischemia in rodents. Using a comprehensive motor assessment in rats, this study examined if chronic stress and corticosterone treatment affect skill recovery and compensation in a task-specific manner. Groups of rats received daily restraint stress or oral corticosterone supplementation for two weeks prior to a focal motor cortex lesion. After lesion, stress and corticosterone treatments continued for three weeks. Motor performance was assessed in two skilled reaching tasks, skilled walking, forelimb inhibition, forelimb asymmetry and open field behavior. The results revealed that persistent stress and elevated corticosterone levels mainly limit motor recovery. Treated animals dropped larger amounts of food in successful reaches and showed exaggerated loss of forelimb inhibition early after lesion. Stress also caused a moderate, but non-significant increase in infarct size. By contrast, stress and corticosterone treatments promoted reaching success and other quantitative measures in the tray reaching task. Comparative analysis revealed that improvements are due to task-specific development of compensatory strategies. These findings suggest that stress and stress hormones may partially facilitate task-specific and adaptive compensatory movement strategies. The observations support the notion that hypothalamic-pituitary-adrenal axis activation may be a key determinant of recovery and motor system plasticity after ischemic stroke.

  2. Task-dependent output of human parasternal intercostal motor units across spinal levels.

    Science.gov (United States)

    Hudson, Anna L; Gandevia, Simon C; Butler, Jane E

    2017-12-01

    During breathing, there is differential activity in the human parasternal intercostal muscles and the activity is tightly coupled to the known mechanical advantages for inspiration of the same regions of muscles. It is not known whether differential activity is preserved for the non-respiratory task of ipsilateral trunk rotation. In the present study, we compared single motor units during resting breathing and axial rotation of the trunk during apnoea. We not only confirmed non-uniform recruitment of motor units across parasternal intercostal muscles in breathing, but also demonstrated that the same motor units show an altered pattern of recruitment in the non-respiratory task of trunk rotation. The output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task and these results help us understand the mechanisms that may govern task-dependent differences in motoneurone output. During inspiration, there is differential activity in the human parasternal intercostal muscles across interspaces. We investigated whether the earlier recruitment of motor units in the rostral interspaces compared to more caudal spaces during inspiration is preserved for the non-respiratory task of ipsilateral trunk rotation. Single motor unit activity (SMU) was recorded from the first, second and fourth parasternal interspaces on the right side in five participants in two tasks: resting breathing and 'isometric' axial rotation of the trunk during apnoea. Recruitment of the same SMUs was compared between tasks (n = 123). During resting breathing, differential activity was indicated by earlier recruitment of SMUs in the first and second interspaces compared to the fourth space in inspiration (P motor units showed an altered pattern of recruitment because SMUs in the first interspace were recruited later and at a higher rotation torque than those in the second and fourth interspaces (P recruitment measures, was good-excellent [intraclass

  3. Cognitive-motor dual-task interference: A systematic review of neural correlates.

    Science.gov (United States)

    Leone, Carmela; Feys, Peter; Moumdjian, Lousin; D'Amico, Emanuele; Zappia, Mario; Patti, Francesco

    2017-04-01

    Cognitive-motor interference refers to dual-tasking (DT) interference (DTi) occurring when the simultaneous performance of a cognitive and a motor task leads to a percentage change in one or both tasks. Several theories exist to explain DTi in humans: the capacity-sharing, the bottleneck and the cross-talk theories. Numerous studies investigating whether a specific brain locus is associated with cognitive-motor DTi have been conducted, but not systematically reviewed. We aimed to review the evidences on brain activity associated with the cognitive-motor DT, in order to better understand the neurological basis of the CMi. Results were reported according to the technique used to assess brain activity. Twenty-three articles met the inclusion criteria. Out of them, nine studies used functional magnetic resonance imaging to show an additive, under-additive, over- additive, or a mixed activation pattern of the brain. Seven studies used near-infrared spectroscopy, and seven neurophysiological instruments. Yet a specific DT locus in the brain cannot be concluded from the overall current literature. Future studies are warranted to overcome the shortcomings identified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks.

    Science.gov (United States)

    Mouthon, A; Ruffieux, J; Wälchli, M; Keller, M; Taube, W

    2015-09-10

    Non-physical balance training has demonstrated to be efficient to improve postural control in young people. However, little is known about the potential to increase corticospinal excitability by mental simulation in lower leg muscles. Mental simulation of isolated, voluntary contractions of limb muscles increase corticospinal excitability but more automated tasks like walking seem to have no or only minor effects on motor-evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS). This may be related to the way of performing the mental simulation or the task itself. Therefore, the present study aimed to clarify how corticospinal excitability is modulated during AO+MI, MI and action observation (AO) of balance tasks. For this purpose, MEPs and H-reflexes were elicited during three different mental simulations (a) AO+MI, (b) MI and (c) passive AO. For each condition, two balance tasks were evaluated: (1) quiet upright stance (static) and (2) compensating a medio-lateral perturbation while standing on a free-swinging platform (dynamic). AO+MI resulted in the largest facilitation of MEPs followed by MI and passive AO. MEP facilitation was significantly larger in the dynamic perturbation than in the static standing task. Interestingly, passive observation resulted in hardly any facilitation independent of the task. H-reflex amplitudes were not modulated. The current results demonstrate that corticospinal excitability during mental simulation of balance tasks is influenced by both the type of mental simulation and the task difficulty. As H-reflexes and background EMG were not modulated, it may be argued that changes in excitability of the primary motor cortex were responsible for the MEP modulation. From a functional point of view, our findings suggest best training/rehabilitation effects when combining MI with AO during challenging postural tasks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Age-Related Differences in Multiple Task Monitoring

    OpenAIRE

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men excee...

  6. Over-focused? The relation between patients' inclination for conscious control and single- and dual-task motor performance after stroke.

    Science.gov (United States)

    Denneman, R P M; Kal, E C; Houdijk, H; Kamp, J van der

    2018-05-01

    Many stroke patients are inclined to consciously control their movements. This is thought to negatively affect patients' motor performance, as it disrupts movement automaticity. However, it has also been argued that conscious control may sometimes benefit motor performance, depending on the task or patientś motor or cognitive capacity. To assess whether stroke patients' inclination for conscious control is associated with motor performance, and explore whether the putative association differs as a function of task (single- vs dual) or patientś motor and cognitive capacity. Univariate and multivariate linear regression analysis were used to assess associations between patients' disposition to conscious control (i.e., Conscious Motor Processing subscale of Movement-Specific Reinvestment Scale; MSRS-CMP) and single-task (Timed-up-and-go test; TuG) and motor dual-task costs (TuG while tone counting; motor DTC%). We determined whether these associations were influenced by patients' walking speed (i.e., 10-m-walk test) and cognitive capacity (i.e., working memory, attention, executive function). Seventy-eight clinical stroke patients (task TuG performance. However, patients with a strong inclination for conscious control showed higher motor DTC%. These associations were irrespective of patients' motor and cognitive abilities. Patients' disposition for conscious control was not associated with single task motor performance, but was associated with higher motor dual task costs, regardless of patients' motor or cognitive abilities. Therapists should be aware that patients' conscious control inclination can influence their dual-task performance while moving. Longitudinal studies are required to test whether reducing patients' disposition for conscious control would improve dual-tasking post-stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Recovery from an acute relapse is associated with changes in motor resting-state connectivity in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Blinkenberg, Morten; Paulson, Olaf B.

    2016-01-01

    Resting-state functional MRI (rs-fMRI) of the brain has been successfully used to identify altered functional connectivity in the motor network in multiple sclerosis (MS).1 In clinically stable patients with MS, we recently demonstrated increased coupling between the basal ganglia and the motor...... network.1 Accordingly, rs-fMRI in MS is particularly suited to investigate functional reorganisation of the motor network in the remission phase after a relapse because the resting-state connectivity pattern is not influenced by interindividual differences in motor ability and task performance....... In this prospective rs-fMRI study, we mapped acute changes in resting-state motor connectivity in 12 patients with relapsing forms of MS presenting with an acute relapse involving an upper limb paresis. Previous functional MRI (fMRI) studies have shown that the activation of sensorimotor areas was stronger and more...

  8. Trial-to-trial reoptimization of motor behavior due to changes in task demands is limited.

    Directory of Open Access Journals (Sweden)

    Orban de Xivry J-J

    Full Text Available Each task requires a specific motor behavior that is tuned to task demands. For instance, writing requires a lot of accuracy while clapping does not. It is known that the brain adjusts the motor behavior to different task demands as predicted by optimal control theory. In this study, the mechanism of this reoptimization process is investigated by varying the accuracy demands of a reaching task. In this task, the width of the reaching target (0.5 or 8 cm was varied either on a trial-to-trial basis (random schedule or in blocks (blocked schedule. On some trials, the hand of the subjects was clamped to a rectilinear trajectory that ended 2 cm on the left or right of the target center. The rejection of this perturbation largely varied with target width in the blocked schedule but not in the random schedule. That is, subjects exhibited different motor behavior in the different schedules despite identical accuracy demands. Therefore, while reoptimization has been considered immediate and automatic, the differences in motor behavior observed across schedules suggest that the reoptimization of the motor behavior is neither happening on a trial-by-trial basis nor obligatory. The absence of trial-to-trial mechanisms, the inability of the brain to adapt to two conflicting task demands and the existence of a switching cost are discussed as possible sources of the non-optimality of motor behavior during the random schedule.

  9. The effect of caffeine on cognitive task performance and motor fatigue

    NARCIS (Netherlands)

    van Duinen, Hiske; Lorist, Monicque M.; Zijdewind, Inge

    Rationale: In everyday life, people are usually capable of performing two tasks simultaneously. However, in a previous study we showed that during a fatiguing motor task, cognitive performance declined progressively. There is extensive literature on the ( positive) effects of caffeine on cognitive

  10. Neuronal Substrates Underlying Performance Variability in Well-Trained Skillful Motor Task in Humans.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Uehara, Shintaro; Hirose, Satoshi; Yamamoto, Shinji; Naito, Eiichi

    2016-01-01

    Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s) and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC), anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS) experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance.

  11. Classification of EEG signals to identify variations in attention during motor task execution

    DEFF Research Database (Denmark)

    Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning

    2017-01-01

    attentionlevels onmotor tasks ineachparticipant. Then, a globalfeature distribution was constructed with the projected time-frequency features of all participants from all channels and applied for attention classification during motor movement execution. Results: Time-frequency features led to significantly...... BCI systems with time-frequency features. This is the first step towards an adaptive real-time BCI with an integrated function to reveal attention shifts from the motor task....

  12. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance.

    Science.gov (United States)

    Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N

    2018-02-01

    Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.

  13. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Science.gov (United States)

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.

  14. Relationship between reaction time, fine motor control, and visual-spatial perception on vigilance and visual-motor tasks in 22q11.2 Deletion Syndrome.

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  15. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning.

    Science.gov (United States)

    Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B

    2017-01-01

    In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the

  16. Effects of Gait and Cognitive Task Difficulty on Cognitive-Motor Interference in Aging

    Directory of Open Access Journals (Sweden)

    Prudence Plummer-D'Amato

    2012-01-01

    Full Text Available Although gait-related dual-task interference in aging is well established, the effect of gait and cognitive task difficulty on dual-task interference is poorly understood. The purpose of this study was to examine the effect of gait and cognitive task difficulty on cognitive-motor interference in aging. Fifteen older adults (72.1 years, SD 5.2 and 20 young adults (21.7 years, SD 1.6 performed three walking tasks of varying difficulty (self-selected speed, fast speed, and fast speed with obstacle crossing under single- and dual-task conditions. The cognitive tasks were the auditory Stroop task and the clock task. There was a significant Group × Gait Task × Cognitive Task interaction for the dual-task effect on gait speed. After adjusting for education, there were no significant effects of gait or cognitive task difficulty on the dual-task effects on cognitive task performance. The results of this study provide evidence that gait task difficulty influences dual-task effects on gait speed, especially in older adults. Moreover, the effects of gait task difficulty on dual-task interference appear to be influenced by the difficulty of the cognitive task. Education is an important factor influencing cognitive-motor interference effects on cognition, but not gait.

  17. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    Science.gov (United States)

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  18. Directionality analysis on functional magnetic resonance imaging during motor task using Granger causality.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2012-01-01

    Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.

  19. Age-related differences in multiple task monitoring.

    Science.gov (United States)

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  20. Age-related differences in multiple task monitoring.

    Directory of Open Access Journals (Sweden)

    Ivo Todorov

    Full Text Available Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  1. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    Directory of Open Access Journals (Sweden)

    Anastasia Krasheninnikova

    Full Text Available String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla and the cockatiel (Nymphicus hollandicus, forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  2. Not all choices are created equal: Task-relevant choices enhance motor learning compared to task-irrelevant choices.

    Science.gov (United States)

    Carter, Michael J; Ste-Marie, Diane M

    2017-12-01

    Lewthwaite et al. (2015) reported that the learning benefits of exercising choice (i.e., their self-controlled condition) are not restricted to task-relevant features (e.g., feedback). They found that choosing one's golf ball color (Exp. 1) or choosing which of two tasks to perform at a later time plus which of two artworks to hang (Exp. 2) resulted in better retention than did being denied these same choices (i.e., yoked condition). The researchers concluded that the learning benefits derived from choice, whether irrelevant or relevant to the to-be-learned task, are predominantly motivational because choice is intrinsically rewarding and satisfies basic psychological needs. However, the absence of a group that made task-relevant choices and the lack of psychological measures significantly weakened their conclusions. Here, we investigated how task-relevant and task-irrelevant choices affect motor-skill learning. Participants practiced a spatiotemporal motor task in either a task-relevant group (choice over feedback schedule), a task-irrelevant group (choice over the color of an arm-wrap plus game selection), or a no-choice group. The results showed significantly greater learning in the task-relevant group than in both the task-irrelevant and no-choice groups, who did not differ significantly. Critically, these learning differences were not attributed to differences in perceptions of competence or autonomy, but instead to superior error-estimation abilities. These results challenge the perspective that motivational influences are the root cause of self-controlled learning advantages. Instead, the findings add to the growing evidence highlighting that the informational value gained from task-relevant choices makes a greater relative contribution to these advantages than motivational influences do.

  3. Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Luca Prosperini

    2015-01-01

    Full Text Available Rehabilitation is recognized to be important in ameliorating motor and cognitive functions, reducing disease burden, and improving quality of life in patients with multiple sclerosis (MS. In this systematic review, we summarize the existing evidences that motor and cognitive rehabilitation may enhance functional and structural brain plasticity in patients with MS, as assessed by means of the most advanced neuroimaging techniques, including diffusion tensor imaging and task-related and resting-state functional magnetic resonance imaging (MRI. In most cases, the rehabilitation program was based on computer-assisted/video game exercises performed in either an outpatient or home setting. Despite their heterogeneity, all the included studies describe changes in white matter microarchitecture, in task-related activation, and/or in functional connectivity following both task-oriented and selective training. When explored, relevant correlation between improved function and MRI-detected brain changes was often found, supporting the hypothesis that training-induced brain plasticity is specifically linked to the trained domain. Small sample sizes, lack of randomization and/or an active control group, as well as missed relationship between MRI-detected changes and clinical performance, are the major drawbacks of the selected studies. Knowledge gaps in this field of research are also discussed to provide a framework for future investigations.

  4. Real-time changes in corticospinal excitability related to motor imagery of a force control task

    DEFF Research Database (Denmark)

    Tatemoto, Tsuyoshi; Tsuchiya, Junko; Numata, Atsuki

    2017-01-01

    Objective To investigate real-time excitability changes in corticospinal pathways related to motor imagery in a changing force control task, using transcranial magnetic stimulation (TMS). Methods Ten healthy volunteers learnt to control the contractile force of isometric right wrist dorsiflexion...... in order to track an on-screen sine wave form. Participants performed the trained task 40 times with actual muscle contraction in order to construct the motor image. They were then instructed to execute the task without actual muscle contraction, but by imagining contraction of the right wrist...... in dorsiflexion. Motor evoked potentials (MEPs), induced by TMS in the right extensor carpi radialis muscle (ECR) and flexor carpi radialis muscle (FCR), were measured during motor imagery. MEPs were induced at five time points: prior to imagery, during the gradual generation of the imaged wrist dorsiflexion...

  5. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Directory of Open Access Journals (Sweden)

    Maurice Mohr

    Full Text Available Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM and Lateralis (VL. Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role.Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum.For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat.There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement

  6. Time of Day Does Not Modulate Improvements in Motor Performance following a Repetitive Ballistic Motor Training Task

    Science.gov (United States)

    Sale, Martin V.; Ridding, Michael C.; Nordstrom, Michael A.

    2013-01-01

    Repetitive performance of a task can result in learning. The neural mechanisms underpinning such use-dependent plasticity are influenced by several neuromodulators. Variations in neuromodulator levels may contribute to the variability in performance outcomes following training. Circulating levels of the neuromodulator cortisol change throughout the day. High cortisol levels inhibit neuroplasticity induced with a transcranial magnetic stimulation (TMS) paradigm that has similarities to use-dependent plasticity. The present study investigated whether performance changes following a motor training task are modulated by time of day and/or changes in endogenous cortisol levels. Motor training involving 30 minutes of repeated maximum left thumb abduction was undertaken by twenty-two participants twice, once in the morning (8 AM) and once in the evening (8 PM) on separate occasions. Saliva was assayed for cortisol concentration. Motor performance, quantified by measuring maximum left thumb abduction acceleration, significantly increased by 28% following training. Neuroplastic changes in corticomotor excitability of abductor pollicis brevis, quantified with TMS, increased significantly by 23% following training. Training-related motor performance improvements and neuroplasticity were unaffected by time of day and salivary cortisol concentration. Although similar neural elements and processes contribute to motor learning, training-induced neuroplasticity, and TMS-induced neuroplasticity, our findings suggest that the influence of time of day and cortisol differs for these three interventions. PMID:23577271

  7. Time of Day Does Not Modulate Improvements in Motor Performance following a Repetitive Ballistic Motor Training Task

    Directory of Open Access Journals (Sweden)

    Martin V. Sale

    2013-01-01

    Full Text Available Repetitive performance of a task can result in learning. The neural mechanisms underpinning such use-dependent plasticity are influenced by several neuromodulators. Variations in neuromodulator levels may contribute to the variability in performance outcomes following training. Circulating levels of the neuromodulator cortisol change throughout the day. High cortisol levels inhibit neuroplasticity induced with a transcranial magnetic stimulation (TMS paradigm that has similarities to use-dependent plasticity. The present study investigated whether performance changes following a motor training task are modulated by time of day and/or changes in endogenous cortisol levels. Motor training involving 30 minutes of repeated maximum left thumb abduction was undertaken by twenty-two participants twice, once in the morning (8 AM and once in the evening (8 PM on separate occasions. Saliva was assayed for cortisol concentration. Motor performance, quantified by measuring maximum left thumb abduction acceleration, significantly increased by 28% following training. Neuroplastic changes in corticomotor excitability of abductor pollicis brevis, quantified with TMS, increased significantly by 23% following training. Training-related motor performance improvements and neuroplasticity were unaffected by time of day and salivary cortisol concentration. Although similar neural elements and processes contribute to motor learning, training-induced neuroplasticity, and TMS-induced neuroplasticity, our findings suggest that the influence of time of day and cortisol differs for these three interventions.

  8. Walking execution is not affected by divided attention in patients with multiple sclerosis with no disability, but there is a motor planning impairment.

    Science.gov (United States)

    Nogueira, Leandro Alberto Calazans; Santos, Luciano Teixeira Dos; Sabino, Pollyane Galinari; Alvarenga, Regina Maria Papais; Thuler, Luiz Claudio Santos

    2013-08-01

    We analysed the cognitive influence on walking in multiple sclerosis (MS) patients, in the absence of clinical disability. A case-control study was conducted with 12 MS patients with no disability and 12 matched healthy controls. Subjects were referred for completion a timed walk test of 10 m and a 3D-kinematic analysis. Participants were instructed to walk at a comfortable speed in a dual-task (arithmetic task) condition, and motor planning was measured by mental chronometry. Scores of walking speed and cadence showed no statistically significant differences between the groups in the three conditions. The dual-task condition showed an increase in the double support duration in both groups. Motor imagery analysis showed statistically significant differences between real and imagined walking in patients. MS patients with no disability did not show any influence of divided attention on walking execution. However, motor planning was overestimated as compared with real walking.

  9. Response inhibition in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A; Hallett, Mark

    2013-05-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.

  10. Second-order motor planning in children: insights from a cup-manipulation-task.

    Science.gov (United States)

    Wunsch, Kathrin; Weiss, Daniel J; Schack, Thomas; Weigelt, Matthias

    2015-07-01

    The present study examined the development of anticipatory motor planning in an object manipulation task that has been used to successfully demonstrate motor planning in non-human primates (Weiss et al. in Psychol Sci 18:1063-1068, 2007). Seventy-five participants from four different age groups participated in a cup-manipulation task. One group was preschool children (average age of 5.1 years), two groups were primary school children (7.7 and 9.8 years old respectively) and the final group was comprised of adults. The experimental task entailed reaching for a plastic cup that was vertically suspended in an apparatus in either upright or inverted orientation, removing the cup by its stem and then retrieving a small toy from the inside of the cup. When the cup was inverted in the apparatus, evidence for anticipatory motor planning could be achieved by initially gripping the stem using an inverted (thumb-down) grip posture. We found that when the cup was in upright orientation, all participants reached for the cup using an upright grip (i.e., thumb-up posture). However, when the cup was inverted in the apparatus, only adults consistently used an inverted grasping posture, though the percentage of inverted grips among participants did increase with age. These results suggest a protracted development for anticipatory motor planning abilities in children. Surprisingly, the performance of adults on this task more closely resembles the performance of several nonhuman primate species as opposed to children even at approximately 10 years of age. We discuss how morphological constraints on flexibility may help account for these findings.

  11. Emergence of motor synergy in vertical reaching task via tacit learning.

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2013-01-01

    The dynamics of multijoint limbs often causes complex dynamic interaction torques which are the inertial effect of other joints motion. It is known that Cerebellum takes important role in a motor learning by developing the internal model. In this paper, we propose a novel computational control paradigm in vertical reaching task which involves the management of interaction torques and gravitational effect. The obtained results demonstrate that the proposed method is valid for acquiring motor synergy in the system with actuation redundancy and resulted in the energy efficient solutions. It is highlighted that the tacit learning in vertical reaching task can bring computational adaptability and optimality with model-free and cost-function-free approach differently from previous studies.

  12. Posture-Motor and Posture-Ideomotor Dual-Tasking: A Putative Marker of Psychomotor Retardation and Depressive Rumination in Patients With Major Depressive Disorder.

    Science.gov (United States)

    Aftanas, Lyubomir I; Bazanova, Olga M; Novozhilova, Nataliya V

    2018-01-01

    Background: Recent studies have demonstrated that the assessment of postural performance may be a potentially reliable and objective marker of the psychomotor retardation (PMR) in the major depressive disorder (MDD). One of the important facets of MDD-related PMR is reflected in disrupted central mechanisms of psychomotor control, heavily influenced by compelling maladaptive depressive rumination. In view of this we designed a research paradigm that included sequential execution of simple single-posture task followed by more challenging divided attention posture tasks, involving concurring motor and ideomotor workloads. Another difficulty dimension assumed executing of all the tasks with eyes open (EO) (easy) and closed (EC) (difficult) conditions. We aimed at investigating the interplay between the severity of MDD, depressive rumination, and efficiency of postural performance. Methods: Compared with 24 age- and body mass index-matched healthy controls (HCs), 26 patients with MDD sequentially executed three experimental tasks: (1) single-posture task of maintaining a quiet stance (ST), (2) actual posture-motor dual task (AMT); and (3) mental/imaginary posture-motor dual task (MMT). All the tasks were performed in the EO and the EC conditions. The primary dependent variable was the amount of kinetic energy ( E ) expended for the center of pressure deviations (CoPDs), whereas the absolute divided attention cost index showed energy cost to the dual-tasking vs. the single-posture task according to the formula: Δ E = ( E Dual-task - E Single-task ). Results: The signs of PMR in the MDD group were objectively indexed by deficient posture control in the EC condition along with overall slowness of fine motor and ideomotor activity. Another important and probably more challenging feature of the findings was that the posture deficit manifested in the ST condition was substantially and significantly attenuated in the MMT and AMT performance dual-tasking activity. A multiple

  13. Robust transport by multiple motors with nonlinear force–velocity relations and stochastic load sharing

    International Nuclear Information System (INIS)

    Kunwar, Ambarish; Mogilner, Alexander

    2010-01-01

    Transport by processive molecular motors plays an important role in many cell biological phenomena. In many cases, motors work together to transport cargos in the cell, so it is important to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we study effects of nonlinear force–velocity relations and stochastic load sharing on multiple motor transport. We find that when two or three motors transport the cargo, then the nonlinear and stochastic effects compensate so that the mechanical properties of the transport are robust. Similarly, the transport is insensitive to compliance of the cargo-motor links. Furthermore, the rate of movement against moderate loads is not improved by increasing the small number of motors. When the motor number is greater than 4, correlations between the motors become negligible, and the earlier analytical mean-field theory of the multiple motor transport holds. We predict that the effective diffusion of the cargo driven by the multiple motors under load increases by an order of magnitude compared to that for the single motor. Finally, our simulations predict that the stochastic effects are responsible for a significant dispersion of velocities generated by the 'tug-of-war' of the multiple opposing motors

  14. Working Memory Capacity Limits Motor Learning When Implementing Multiple Instructions

    Directory of Open Access Journals (Sweden)

    Tim Buszard

    2017-08-01

    Full Text Available Although it is generally accepted that certain practice conditions can place large demands on working memory (WM when performing and learning a motor skill, the influence that WM capacity has on the acquisition of motor skills remains unsubstantiated. This study examined the role of WM capacity in a motor skill practice context that promoted WM involvement through the provision of explicit instructions. A cohort of 90 children aged 8 to 10 years were assessed on measures of WM capacity and attention. Children who scored in the lowest and highest thirds on the WM tasks were allocated to lower WM capacity (n = 24 and higher WM capacity (n = 24 groups, respectively. The remaining 42 participants did not participate in the motor task. The motor task required children to practice basketball shooting for 240 trials in blocks of 20 shots, with pre- and post-tests occurring before and after the intervention. A retention test was administered 1 week after the post-test. Prior to every practice block, children were provided with five explicit instructions that were specific to the technique of shooting a basketball. Results revealed that the higher WM capacity group displayed consistent improvements from pre- to post-test and through to the retention test, while the opposite effect occurred in the lower WM capacity group. This implies that the explicit instructions had a negative influence on learning by the lower WM capacity children. Results are discussed in relation to strategy selection for dealing with instructions and the role of attention control.

  15. Eye Gaze Correlates of Motor Impairment in VR Observation of Motor Actions.

    Science.gov (United States)

    Alves, J; Vourvopoulos, A; Bernardino, A; Bermúdez I Badia, S

    2016-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". Identify eye gaze correlates of motor impairment in a virtual reality motor observation task in a study with healthy participants and stroke patients. Participants consisted of a group of healthy subjects (N = 20) and a group of stroke survivors (N = 10). Both groups were required to observe a simple reach-and-grab and place-and-release task in a virtual environment. Additionally, healthy subjects were required to observe the task in a normal condition and a constrained movement condition. Eye movements were recorded during the observation task for later analysis. For healthy participants, results showed differences in gaze metrics when comparing the normal and arm-constrained conditions. Differences in gaze metrics were also found when comparing dominant and non-dominant arm for saccades and smooth pursuit events. For stroke patients, results showed longer smooth pursuit segments in action observation when observing the paretic arm, thus providing evidence that the affected circuitry may be activated for eye gaze control during observation of the simulated motor action. This study suggests that neural motor circuits are involved, at multiple levels, in observation of motor actions displayed in a virtual reality environment. Thus, eye tracking combined with action observation tasks in a virtual reality display can be used to monitor motor deficits derived from stroke, and consequently can also be used for rehabilitation of stroke patients.

  16. Effect of cognitive and motor tasks on postural stability in Parkinson's disease: a posturographic study.

    Science.gov (United States)

    Marchese, Roberta; Bove, Marco; Abbruzzese, Giovanni

    2003-06-01

    To analyse the effect of concomitant cognitive or motor task performance on balance control in Parkinson's disease (PD), we performed a posturographic study in 24 PD patients and in 20 sex- and age-matched control subjects. Postural sway was measured with eyes open (EO) and eyes closed (EC) during quiet stance and during performance of calculation or motor sequence of thumb opposition to the other fingers. No difference of centre of foot pressure (COP) parameters was observed during quiet standing (either EO or EC) between patients and controls, but visual deprivation induced in both groups a worsening of postural stability. COP area was significantly increased in PD patients during dual task performance, whereas no difference of COP path and x-y axes was observed. The effects induced by the performance of cognitive or motor task were significantly more evident in PD patients with clinical evidence of postural instability (presence of prior falls in the history). This study demonstrates that dual task interference on postural control can be observed in PD patients during performance of cognitive as well as motor tasks. The balance deterioration during dual task performance was significantly enhanced in patients with history of prior falls. These findings have some implications for the strategies to be used in reducing the risk of fall in PD. Copyright 2003 Movement Disorder Society

  17. Core stability exercise is as effective as task-oriented motor training in improving motor proficiency in children with developmental coordination disorder: a randomized controlled pilot study.

    Science.gov (United States)

    Au, Mei K; Chan, Wai M; Lee, Lin; Chen, Tracy Mk; Chau, Rosanna Mw; Pang, Marco Yc

    2014-10-01

    To compare the effectiveness of a core stability program with a task-oriented motor training program in improving motor proficiency in children with developmental coordination disorder (DCD). Randomized controlled pilot trial. Outpatient unit in a hospital. Twenty-two children diagnosed with DCD aged 6-9 years were randomly allocated to the core stability program or the task-oriented motor program. Both groups underwent their respective face-to-face training session once per week for eight consecutive weeks. They were also instructed to carry out home exercises on a daily basis during the intervention period. Short Form of the Bruininks-Oseretsky Test of Motor Proficiency (Second Edition) and Sensory Organization Test at pre- and post-intervention. Intention-to-treat analysis revealed no significant between-group difference in the change of motor proficiency standard score (P=0.717), and composite equilibrium score derived from the Sensory Organization Test (P=0.100). Further analysis showed significant improvement in motor proficiency in both the core stability (mean change (SD)=6.3(5.4); p=0.008) and task-oriented training groups (mean change(SD)=5.1(4.0); P=0.007). The composite equilibrium score was significantly increased in the task-oriented training group (mean change (SD)=6.0(5.5); P=0.009), but not in the core stability group (mean change(SD) =0.0(9.6); P=0.812). In the task-oriented training group, compliance with the home program was positively correlated with change in motor proficiency (ρ=0.680, P=0.030) and composite equilibrium score (ρ=0.638, P=0.047). The core stability exercise program is as effective as task-oriented training in improving motor proficiency among children with DCD. © The Author(s) 2014.

  18. Discordant tasks and motor adjustments affect interactions between adaptations to altered kinematics and dynamics

    Directory of Open Access Journals (Sweden)

    Fritzie Arce

    2010-01-01

    Full Text Available Motor control and adaptation are multi-determinate processes with complex interactions. This is reflected for example in the ambiguous nature of interactions during sequential adaptation of reaching under kinematics and dynamics perturbations. It has been suggested that perturbations based on the same kinematic parameter interfere. Others posited that opposing motor adjustments underlie interference. Here, we examined the influence of discordances in task and in motor adjustments on sequential adaptations to visuomotor rotation and viscous force field perturbations. These two factors – perturbation direction and task discordance – have been examined separately by previous studies, thus the inherent difficulty to identify the roots of interference. Forty-eight human subjects adapted sequentially to one or two types of perturbations, of matched or conflicting directions. We found a gradient of interaction effects based on perturbation direction and task discordance. Perturbations of matched directions showed facilitation while perturbations of opposite directions, which required opposing motor adjustments, interfered with each other. Further, interaction effects increased with greater task discordance. We also found that force field and visuomotor rotation had mutual anterograde and retrograde effects. However, we found independence between anterograde and retrograde interferences between similar tasks. The results suggest that the newly acquired internal models of kinematic and dynamic perturbations are not independent but they share common neuronal resources and interact between them. Such overlap does not necessarily imply competition of resources. Rather, our results point to an additional principle of sensorimotor adaptation allowing the system to tap or harness common features across diverse sensory inputs and task contexts whenever available.

  19. Isl1 is required for multiple aspects of motor neuron development.

    Science.gov (United States)

    Liang, Xingqun; Song, Mi-Ryoung; Xu, ZengGuang; Lanuza, Guillermo M; Liu, Yali; Zhuang, Tao; Chen, Yihan; Pfaff, Samuel L; Evans, Sylvia M; Sun, Yunfu

    2011-07-01

    The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    Science.gov (United States)

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  1. Adaptation and Retention of a Perceptual-Motor Task in Children: Effects of a Single Bout of Intense Endurance Exercise.

    Science.gov (United States)

    Ferrer-Uris, Blai; Busquets, Albert; Angulo-Barroso, Rosa

    2018-02-01

    We assessed the effect of an acute intense exercise bout on the adaptation and consolidation of a visuomotor adaptation task in children. We also sought to assess if exercise and learning task presentation order could affect task consolidation. Thirty-three children were randomly assigned to one of three groups: (a) exercise before the learning task, (b) exercise after the learning task, and (c) only learning task. Baseline performance was assessed by practicing the learning task in a 0° rotation condition. Afterward, a 60° rotation-adaptation set was applied followed by three rotated retention sets after 1 hr, 24 hr, and 7 days. For the exercise groups, exercise was presented before or after the motor adaptation. Results showed no group differences during the motor adaptation while exercise seemed to enhance motor consolidation. Greater consolidation enhancement was found in participants who exercised before the learning task. Our data support the importance of exercise to improve motor-memory consolidation in children.

  2. Mental workload and motor performance dynamics during practice of reaching movements under various levels of task difficulty.

    Science.gov (United States)

    Shuggi, Isabelle M; Oh, Hyuk; Shewokis, Patricia A; Gentili, Rodolphe J

    2017-09-30

    The assessment of mental workload can inform attentional resource allocation during task performance that is essential for understanding the underlying principles of human cognitive-motor behavior. While many studies have focused on mental workload in relation to human performance, a modest body of work has examined it in a motor practice/learning context without considering individual variability. Thus, this work aimed to examine mental workload by employing the NASA TLX as well as the changes in motor performance resulting from the practice of a novel reaching task. Two groups of participants practiced a reaching task at a high and low nominal difficulty during which a group-level analysis assessed the mental workload, motor performance and motor improvement dynamics. A secondary cluster analysis was also conducted to identify specific individual patterns of cognitive-motor responses. Overall, both group- and cluster-level analyses revealed that: (i) all participants improved their performance throughout motor practice, and (ii) an increase in mental workload was associated with a reduction of the quality of motor performance along with a slower rate of motor improvement. The results are discussed in the context of the optimal challenge point framework and in particular it is proposed that under the experimental conditions employed here, functional task difficulty: (i) would possibly depend on an individuals' information processing capabilities, and (ii) could be indexed by the level of mental workload which, when excessively heightened can decrease the quality of performance and more generally result in delayed motor improvements. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.

    Science.gov (United States)

    Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim

    2018-01-01

    Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.

  4. Functional near infrared spectroscopy of the sensory and motor brain regions with simultaneous kinematic and EMG monitoring during motor tasks.

    Science.gov (United States)

    Sukal-Moulton, Theresa; de Campos, Ana Carolina; Stanley, Christopher J; Damiano, Diane L

    2014-12-05

    There are several advantages that functional near-infrared spectroscopy (fNIRS) presents in the study of the neural control of human movement. It is relatively flexible with respect to participant positioning and allows for some head movements during tasks. Additionally, it is inexpensive, light weight, and portable, with very few contraindications to its use. This presents a unique opportunity to study functional brain activity during motor tasks in individuals who are typically developing, as well as those with movement disorders, such as cerebral palsy. An additional consideration when studying movement disorders, however, is the quality of actual movements performed and the potential for additional, unintended movements. Therefore, concurrent monitoring of both blood flow changes in the brain and actual movements of the body during testing is required for appropriate interpretation of fNIRS results. Here, we show a protocol for the combination of fNIRS with muscle and kinematic monitoring during motor tasks. We explore gait, a unilateral multi-joint movement (cycling), and two unilateral single-joint movements (isolated ankle dorsiflexion, and isolated hand squeezing). The techniques presented can be useful in studying both typical and atypical motor control, and can be modified to investigate a broad range of tasks and scientific questions.

  5. The Multiple Tasks Test: development and normal strategies.

    NARCIS (Netherlands)

    Bloem, B.R.; Valkenburg, V.V.; Slabbekoorn, M.; Willemsen, M.D.

    2001-01-01

    Simultaneous challenge of posture and cognition ("dual tasks") may predict falls better than tests of isolated components of postural control. We describe a new balance test (the Multiple Tasks Test, MTT) which (1) is based upon simultaneous assessment of multiple (>2) postural components; (2)

  6. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    Science.gov (United States)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few

  7. Real-time changes in corticospinal excitability related to motor imagery of a force control task.

    Science.gov (United States)

    Tatemoto, Tsuyoshi; Tsuchiya, Junko; Numata, Atsuki; Osawa, Ryuji; Yamaguchi, Tomofumi; Tanabe, Shigeo; Kondo, Kunitsugu; Otaka, Yohei; Sugawara, Kenichi

    2017-09-29

    To investigate real-time excitability changes in corticospinal pathways related to motor imagery in a changing force control task, using transcranial magnetic stimulation (TMS). Ten healthy volunteers learnt to control the contractile force of isometric right wrist dorsiflexion in order to track an on-screen sine wave form. Participants performed the trained task 40 times with actual muscle contraction in order to construct the motor image. They were then instructed to execute the task without actual muscle contraction, but by imagining contraction of the right wrist in dorsiflexion. Motor evoked potentials (MEPs), induced by TMS in the right extensor carpi radialis muscle (ECR) and flexor carpi radialis muscle (FCR), were measured during motor imagery. MEPs were induced at five time points: prior to imagery, during the gradual generation of the imaged wrist dorsiflexion (Increasing phase), the peak value of the sine wave, during the gradual reduction (Decreasing phase), and after completion of the task. The MEP ratio, as the ratio of imaged MEPs to resting-state, was compared between pre- and post-training at each time point. In the ECR muscle, the MEP ratio significantly increased during the Increasing phase and at the peak force of dorsiflexion imagery after training. Moreover, the MEP ratio was significantly greater in the Increasing phase than in the Decreasing phase. In the FCR, there were no significant consistent changes. Corticospinal excitability during motor imagery in an isometric contraction task was modulated in relation to the phase of force control after image construction. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Motor planning flexibly optimizes performance under uncertainty about task goals.

    Science.gov (United States)

    Wong, Aaron L; Haith, Adrian M

    2017-03-03

    In an environment full of potential goals, how does the brain determine which movement to execute? Existing theories posit that the motor system prepares for all potential goals by generating several motor plans in parallel. One major line of evidence for such theories is that presenting two competing goals often results in a movement intermediate between them. These intermediate movements are thought to reflect an unintentional averaging of the competing plans. However, normative theories suggest instead that intermediate movements might actually be deliberate, generated because they improve task performance over a random guessing strategy. To test this hypothesis, we vary the benefit of making an intermediate movement by changing movement speed. We find that participants generate intermediate movements only at (slower) speeds where they measurably improve performance. Our findings support the normative view that the motor system selects only a single, flexible motor plan, optimized for uncertain goals.

  9. Upper Extremity Motor Learning among Individuals with Parkinson's Disease: A Meta-Analysis Evaluating Movement Time in Simple Tasks

    Directory of Open Access Journals (Sweden)

    K. Felix

    2012-01-01

    Full Text Available Motor learning has been found to occur in the rehabilitation of individuals with Parkinson's disease (PD. Through repetitive structured practice of motor tasks, individuals show improved performance, confirming that motor learning has probably taken place. Although a number of studies have been completed evaluating motor learning in people with PD, the sample sizes were small and the improvements were variable. The purpose of this meta-analysis was to determine the ability of people with PD to learn motor tasks. Studies which measured movement time in upper extremity reaching tasks and met the inclusion criteria were included in the analysis. Results of the meta-analysis indicated that people with PD and neurologically healthy controls both demonstrated motor learning, characterized by a decrease in movement time during upper extremity movements. Movement time improvements were greater in the control group than in individuals with PD. These results support the findings that the practice of upper extremity reaching tasks is beneficial in reducing movement time in persons with PD and has important implications for rehabilitation.

  10. Task-dependent modulation of oscillatory neural activity during movements

    DEFF Research Database (Denmark)

    Herz, D. M.; Christensen, M. S.; Reck, C.

    2011-01-01

    connectivity was strongest between central and cerebellar regions. Our results show that neural coupling within motor networks is modulated in distinct frequency bands depending on the motor task. They provide evidence that dynamic causal modeling in combination with EEG source analysis is a valuable tool......Neural oscillations in different frequency bands have been observed in a range of sensorimotor tasks and have been linked to coupling of spatially distinct neurons. The goal of this study was to detect a general motor network that is activated during phasic and tonic movements and to study the task......-dependent modulation of frequency coupling within this network. To this end we recorded 122-multichannel EEG in 13 healthy subjects while they performed three simple motor tasks. EEG data source modeling using individual MR images was carried out with a multiple source beamformer approach. A bilateral motor network...

  11. Knowledge discovery in databases of biomechanical variables: application to the sit to stand motor task

    Directory of Open Access Journals (Sweden)

    Benvenuti Francesco

    2004-10-01

    Full Text Available Abstract Background The interpretation of data obtained in a movement analysis laboratory is a crucial issue in clinical contexts. Collection of such data in large databases might encourage the use of modern techniques of data mining to discover additional knowledge with automated methods. In order to maximise the size of the database, simple and low-cost experimental set-ups are preferable. The aim of this study was to extract knowledge inherent in the sit-to-stand task as performed by healthy adults, by searching relationships among measured and estimated biomechanical quantities. An automated method was applied to a large amount of data stored in a database. The sit-to-stand motor task was already shown to be adequate for determining the level of individual motor ability. Methods The technique of search for association rules was chosen to discover patterns as part of a Knowledge Discovery in Databases (KDD process applied to a sit-to-stand motor task observed with a simple experimental set-up and analysed by means of a minimum measured input model. Selected parameters and variables of a database containing data from 110 healthy adults, of both genders and of a large range of age, performing the task were considered in the analysis. Results A set of rules and definitions were found characterising the patterns shared by the investigated subjects. Time events of the task turned out to be highly interdependent at least in their average values, showing a high level of repeatability of the timing of the performance of the task. Conclusions The distinctive patterns of the sit-to-stand task found in this study, associated to those that could be found in similar studies focusing on subjects with pathologies, could be used as a reference for the functional evaluation of specific subjects performing the sit-to-stand motor task.

  12. Task-specific modulation of effective connectivity during two simple unimanual motor tasks: A 122-channel EEG study

    DEFF Research Database (Denmark)

    Herz, Damian M.; Christensen, Mark S.; Reck, Christiane

    2012-01-01

    Neural oscillations are thought to underlie coupling of spatially remote neurons and gating of information within the human sensorimotor system. Here we tested the hypothesis that different unimanual motor tasks are specifically associated with distinct patterns of oscillatory coupling in human...

  13. Positron computed tomography studies of cerebral metabolic responses to complex motor tasks

    International Nuclear Information System (INIS)

    Phelps, M.E.; Mazziotta, J.C.

    1984-01-01

    Human motor system organization was explored in 8 right-handed male subjects using /sup 18/F-fluorodeoxyglucose and positron computed tomography to measure cerebral glucose metabolism. Five subjects had triple studies (eyes closed) including: control (hold pen in right hand without moving), normal size writing (subject repeatedly writes name) and large (10-15 X normal) name writing. In these studies normal and large size writing had a similar distribution of metabolic responses when compared to control studies. Activations (percent change from control) were in the range of 12-20% and occurred in the striatum bilaterally > contralateral Rolandic cortex > contralateral thalamus. No significant activations were observed in the ipsilateral thalamus, Rolandic cortex or cerebellum (supplementary motor cortex was not examined). The magnitude of the metabolic response in the striatum was greater with the large versus normal sized writing. This differential response may be due to an increased number and topographic distribution of neurons responding with the same average activity between tasks or an increase in the functional activity of the same neuronal population between the two tasks (present spatial resolution inadequate to differentiate). When subjects (N=3) performed novel sequential finger movements, the maximal metabolic response was in the contralateral Rolandic cortex > striatum. Such studies provide a means of exploring human motor system organization, motor learning and provide a basis for examining patients with motor system disorders

  14. Efficient multitasking: parallel versus serial processing of multiple tasks.

    Science.gov (United States)

    Fischer, Rico; Plessow, Franziska

    2015-01-01

    In the context of performance optimizations in multitasking, a central debate has unfolded in multitasking research around whether cognitive processes related to different tasks proceed only sequentially (one at a time), or can operate in parallel (simultaneously). This review features a discussion of theoretical considerations and empirical evidence regarding parallel versus serial task processing in multitasking. In addition, we highlight how methodological differences and theoretical conceptions determine the extent to which parallel processing in multitasking can be detected, to guide their employment in future research. Parallel and serial processing of multiple tasks are not mutually exclusive. Therefore, questions focusing exclusively on either task-processing mode are too simplified. We review empirical evidence and demonstrate that shifting between more parallel and more serial task processing critically depends on the conditions under which multiple tasks are performed. We conclude that efficient multitasking is reflected by the ability of individuals to adjust multitasking performance to environmental demands by flexibly shifting between different processing strategies of multiple task-component scheduling.

  15. The Effects of Divided Attention on Speech Motor, Verbal Fluency, and Manual Task Performance

    Science.gov (United States)

    Dromey, Christopher; Shim, Erin

    2008-01-01

    Purpose: The goal of this study was to evaluate aspects of the "functional distance hypothesis," which predicts that tasks regulated by brain networks in closer anatomic proximity will interfere more with each other than tasks controlled by spatially distant regions. Speech, verbal fluency, and manual motor tasks were examined to ascertain whether…

  16. Age-Related Differences in Corticospinal Excitability during Observation and Motor Imagery of Balance Tasks.

    Science.gov (United States)

    Mouthon, Audrey A; Ruffieux, Jan; Keller, Martin; Taube, Wolfgang

    2016-01-01

    Postural control declines across adult lifespan. Non-physical balance training has been suggested as an alternative to improve postural control in frail/immobilized elderly people. Previous studies showed that this kind of training can improve balance control in young and older adults. However, it is unclear whether the brain of young and older adults is activated differently during mental simulations of balance tasks. For this purpose, soleus (SOL) and tibialis motor evoked potentials (MEPs) and SOL H-reflexes were elicited while 15 elderly (mean ± SD = 71 ± 4.6 years) and 15 young participants (mean ± SD = 27 ± 4.6 years) mentally simulated static and dynamic balance tasks using motor imagery (MI), action observation (AO) or the combination of AO and MI (AO + MI). Young subjects displayed significant modulations of MEPs that depended on the kind of mental simulation and the postural task. Elderly adults also revealed differences between tasks, but not between mental simulation conditions. Furthermore, the elderly displayed larger MEP facilitation during mental simulation (AGE-GROUP; F (1,28) = 5.9; p = 0.02) in the SOL muscle compared to the young and a task-dependent modulation of the tibialis background electromyography (bEMG) activity. H-reflex amplitudes and bEMG in the SOL showed neither task- nor age-dependent modulation. As neither mental simulation nor balance tasks modulated H-reflexes and bEMG in the SOL muscle, despite large variations in the MEP-amplitudes, there seems to be an age-related change in the internal cortical representation of balance tasks. Moreover, the modulation of the tibialis bEMG in the elderly suggests that aging partially affects the ability to inhibit motor output.

  17. Functional MRI of tongue motor tasks in patients with tongue cancer: observations before and after partial glossectomy

    International Nuclear Information System (INIS)

    Haupage, Samantha; Branski, Ryan C.; Kraus, Dennis; Peck, Kyung K.; Hsu, Meier; Holodny, Andrei

    2010-01-01

    The current study seeks to provide preliminary data regarding this central, adaptive response during tongue motor tasks utilizing functional magnetic resonance imaging (fMRI) before and after glossectomy. Six patients, with confirmed histological diagnoses of oral tongue cancer, underwent fMRI before and 6 months after partial glossectomy. These data were compared to nine healthy controls. All subjects performed three tongue motor tasks during fMRI: tongue tapping (TT), dry swallow (Dry), and wet swallow (Wet). Following surgery, increased activation was subjectively observed in the superior parietal lobule, supplementary motor area, and anterior cingulate. Region of interest (ROI) analysis of the precentral gyrus confirmed increased cortical activity following surgery. In addition, comparisons between pre-surgical scans and controls suggested the dry swallow task was sensitive to elicit tongue-related activation in the precentral gyrus (p ≤ 0.05). The adaptive changes in the cortex following partial glossectomy reflect recruitment of the parietal, frontal, and cingulate cortex during tongue motor tasks. In addition, post-operative activation patterns more closely approximated control levels than the pre-operative scans. Furthermore, the dry swallow task appears most specific to elicit tongue-related cortical activity. (orig.)

  18. Functional MRI of tongue motor tasks in patients with tongue cancer: observations before and after partial glossectomy

    Energy Technology Data Exchange (ETDEWEB)

    Haupage, Samantha; Branski, Ryan C.; Kraus, Dennis [Memorial Sloan-Kettering Cancer Center, Head and Neck Surgery, New York, NY (United States); Peck, Kyung K. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Medical Physics, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Medical Physics and Radiology, New York, NY (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Holodny, Andrei [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2010-12-15

    The current study seeks to provide preliminary data regarding this central, adaptive response during tongue motor tasks utilizing functional magnetic resonance imaging (fMRI) before and after glossectomy. Six patients, with confirmed histological diagnoses of oral tongue cancer, underwent fMRI before and 6 months after partial glossectomy. These data were compared to nine healthy controls. All subjects performed three tongue motor tasks during fMRI: tongue tapping (TT), dry swallow (Dry), and wet swallow (Wet). Following surgery, increased activation was subjectively observed in the superior parietal lobule, supplementary motor area, and anterior cingulate. Region of interest (ROI) analysis of the precentral gyrus confirmed increased cortical activity following surgery. In addition, comparisons between pre-surgical scans and controls suggested the dry swallow task was sensitive to elicit tongue-related activation in the precentral gyrus (p {<=} 0.05). The adaptive changes in the cortex following partial glossectomy reflect recruitment of the parietal, frontal, and cingulate cortex during tongue motor tasks. In addition, post-operative activation patterns more closely approximated control levels than the pre-operative scans. Furthermore, the dry swallow task appears most specific to elicit tongue-related cortical activity. (orig.)

  19. The cognitive complexity of concurrent cognitive-motor tasks reveals age-related deficits in motor performance

    DEFF Research Database (Denmark)

    Oliveira, Anderson Souza; Reiche, Mikkel Staall; Vinescu, Cristina Ioana

    2018-01-01

    Aging reduces cognitive functions, and such impairments have implications in mental and motor performance. Cognitive function has been recently linked to the risk of falls in older adults. Physical activities have been used to attenuate the declines in cognitive functions and reduce fall incidence......, but little is known whether a physically active lifestyle can maintain physical performance under cognitively demanding conditions. The aim of this study was to verify whether physically active older adults present similar performance deficits during upper limb response time and precision stepping walking...... tasks when compared to younger adults. Both upper limb and walking tasks involved simple and complex cognitive demands through decision-making. For both tasks, decision-making was assessed by including a distracting factor to the execution. The results showed that older adults were substantially slower...

  20. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    Directory of Open Access Journals (Sweden)

    Laura Marchal-Crespo

    2017-09-01

    Full Text Available Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL, i.e., precuneus, and temporal cortex. These neuroimaging findings

  1. Event-related near-infrared spectroscopy detects conflict in the motor cortex in a Stroop task.

    Science.gov (United States)

    Szűcs, Dénes; Killikelly, Clare; Cutini, Simone

    2012-10-05

    The Stroop effect is one of the most popular models of conflict processing in neuroscience and psychology. The response conflict theory of the Stroop effect explains decreased performance in the incongruent condition of Stroop tasks by assuming that the task-relevant and the task-irrelevant stimulus features elicit conflicting response tendencies. However, to date, there is not much explicit neural evidence supporting this theory. Here we used functional near-infrared imaging (fNIRS) to examine whether conflict at the level of the motor cortex can be detected in the incongruent relative to the congruent condition of a Stroop task. Response conflict was determined by comparing the activity of the hemisphere ipsilateral to the response hand in the congruent and incongruent conditions. First, results provided explicit hemodynamic evidence supporting the response conflict theory of the Stroop effect: there was greater motor cortex activation in the hemisphere ipsilateral to the response hand in the incongruent than in the congruent condition during the initial stage of the hemodynamic response. Second, as fNIRS is still a relatively novel technology, it is methodologically significant that our data shows that fNIRS is able to detect a brief and transient increase in hemodynamic activity localized to the motor cortex, which in this study is related to subthreshold motor response activation. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task.

    Science.gov (United States)

    Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W

    2015-01-01

    Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Simultaneity, Sequentiality, and Speed: Organizational Messages about Multiple-Task Completion

    Science.gov (United States)

    Stephens, Keri K.; Cho, Jaehee K.; Ballard, Dawna I.

    2012-01-01

    Workplace norms for task completion increasingly value speed and the ability to accomplish multiple tasks at once. This study situates this popularized issue of multitasking within the context of chronemics scholarship by addressing related issues of simultaneity, sequentiality, and speed. Ultimately, we consider 2 multiple-task completion…

  4. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    Science.gov (United States)

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  5. Predictive performance models and multiple task performance

    Science.gov (United States)

    Wickens, Christopher D.; Larish, Inge; Contorer, Aaron

    1989-01-01

    Five models that predict how performance of multiple tasks will interact in complex task scenarios are discussed. The models are shown in terms of the assumptions they make about human operator divided attention. The different assumptions about attention are then empirically validated in a multitask helicopter flight simulation. It is concluded from this simulation that the most important assumption relates to the coding of demand level of different component tasks.

  6. The Possible Role of TASK Channels in Rank-Ordered Recruitment of Motoneurons in the Dorsolateral Part of the Trigeminal Motor Nucleus.

    Science.gov (United States)

    Okamoto, Keiko; Emura, Norihito; Sato, Hajime; Fukatsu, Yuki; Saito, Mitsuru; Tanaka, Chie; Morita, Yukako; Nishimura, Kayo; Kuramoto, Eriko; Xu Yin, Dong; Furutani, Kazuharu; Okazawa, Makoto; Kurachi, Yoshihisa; Kaneko, Takeshi; Maeda, Yoshinobu; Yamashiro, Takashi; Takada, Kenji; Toyoda, Hiroki; Kang, Youngnam

    2016-01-01

    Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K(+) channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 μm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15-20 μm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN.

  7. Solving Multiple Isolated, Interleaved, and Blended Tasks through Modular Neuroevolution.

    Science.gov (United States)

    Schrum, Jacob; Miikkulainen, Risto

    2016-01-01

    Many challenging sequential decision-making problems require agents to master multiple tasks. For instance, game agents may need to gather resources, attack opponents, and defend against attacks. Learning algorithms can thus benefit from having separate policies for these tasks, and from knowing when each one is appropriate. How well this approach works depends on how tightly coupled the tasks are. Three cases are identified: Isolated tasks have distinct semantics and do not interact, interleaved tasks have distinct semantics but do interact, and blended tasks have regions where semantics from multiple tasks overlap. Learning across multiple tasks is studied in this article with Modular Multiobjective NEAT, a neuroevolution framework applied to three variants of the challenging Ms. Pac-Man video game. In the standard blended version of the game, a surprising, highly effective machine-discovered task division surpasses human-specified divisions, achieving the best scores to date in this game. In isolated and interleaved versions of the game, human-specified task divisions are also successful, though the best scores are surprisingly still achieved by machine discovery. Modular neuroevolution is thus shown to be capable of finding useful, unexpected task divisions better than those apparent to a human designer.

  8. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task.

    Science.gov (United States)

    Papadelis, Christos; Arfeller, Carola; Erla, Silvia; Nollo, Giandomenico; Cattaneo, Luigi; Braun, Christoph

    2016-11-01

    Coordination between vision and action relies on a fronto-parietal network that receives visual and proprioceptive sensory input in order to compute motor control signals. Here, we investigated with magnetoencephalography (MEG) which cortical areas are functionally coupled on the basis of synchronization during visuomotor integration. MEG signals were recorded from twelve healthy adults while performing a unimanual visuomotor (VM) task and control conditions. The VM task required the integration of pinch motor commands with visual sensory feedback. By using a beamformer, we localized the neural activity in the frequency range of 1-30Hz during the VM compared to rest. Virtual sensors were estimated at the active locations. A multivariate autoregressive model was used to estimate the power and coherence of estimated activity at the virtual sensors. Event-related desynchronisation (ERD) during VM was observed in early visual areas, the rostral part of the left inferior frontal gyrus (IFG), the right IFG, the superior parietal lobules, and the left hand motor cortex (M1). Functional coupling in the alpha frequency band bridged the regional activities observed in motor and visual cortices (the start and the end points in the visuomotor loop) through the left or right IFG. Coherence between the left IFG and left M1 correlated inversely with the task performance. Our results indicate that an occipital-prefrontal-motor functional network facilitates the modulation of instructed motor responses to visual cues. This network may supplement the mechanism for guiding actions that is fully incorporated into the dorsal visual stream. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.

    Science.gov (United States)

    Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A

    2015-08-01

    In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal. © 2015 Federation of European Neuroscience Societies and John

  10. Automatic motor task selection via a bandit algorithm for a brain-controlled button

    Science.gov (United States)

    Fruitet, Joan; Carpentier, Alexandra; Munos, Rémi; Clerc, Maureen

    2013-02-01

    Objective. Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance, specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a new adaptive procedure to automatically select (online) the most promising motor task for an asynchronous brain-controlled button. Approach. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory and design an EEG experiment to test our method. We compare (offline) the adaptive algorithm to a naïve selection strategy which uses uniformly distributed samples from each task. We also run the adaptive algorithm online to fully validate the approach. Main results. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. More precisely, the offline analysis reveals that the use of this algorithm can reduce the time needed to select the most appropriate task by almost half without loss in precision, or alternatively, allow us to investigate twice the number of tasks within a similar time span. Online tests confirm that the method leads to an optimal task selection. Significance. This study is the first one to optimize the task selection phase by an adaptive procedure. By increasing the number of tasks that can be tested in a given time span, the proposed method could contribute to reducing ‘BCI illiteracy’.

  11. Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.

    Science.gov (United States)

    Cai, X; Shimansky, Y; He, Jiping

    2005-01-01

    A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.

  12. Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Nakamura, Maiko; Kanosue, Kazuyuki

    2017-01-01

    Motor imagery can be divided into kinesthetic and visual aspects. In the present study, we investigated excitability in the corticospinal tract and primary visual cortex (V1) during kinesthetic and visual motor imagery. To accomplish this, we measured motor evoked potentials (MEPs) and probability of phosphene occurrence during the two types of motor imageries of finger tapping. The MEPs and phosphenes were induced by transcranial magnetic stimulation to the primary motor cortex and V1, respectively. The amplitudes of MEPs and probability of phosphene occurrence during motor imagery were normalized based on the values obtained at rest. Corticospinal excitability increased during both kinesthetic and visual motor imagery, while excitability in V1 was increased only during visual motor imagery. These results imply that modulation of cortical excitability during kinesthetic and visual motor imagery is task dependent. The present finding aids in the understanding of the neural mechanisms underlying motor imagery and provides useful information for the use of motor imagery in rehabilitation or motor imagery training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Resting‐state connectivity of pre‐motor cortex reflects disability in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Siebner, Hartwig Roman; Soelberg Sørensen, P.

    2013-01-01

    Objective To characterize the relationship between motor resting-state connectivity of the dorsal pre-motor cortex (PMd) and clinical disability in patients with multiple sclerosis (MS). Materials and methods A total of 27 patients with relapsing–remitting MS (RR-MS) and 15 patients with secondary...... progressive MS (SP-MS) underwent functional resting-state magnetic resonance imaging. Clinical disability was assessed using the Expanded Disability Status Scale (EDSS). Independent component analysis was used to characterize motor resting-state connectivity. Multiple regression analysis was performed in SPM8...... between the individual expression of motor resting-state connectivity in PMd and EDSS scores including age as covariate. Separate post hoc analyses were performed for patients with RR-MS and SP-MS. Results The EDSS scores ranged from 0 to 7 with a median score of 4.3. Motor resting-state connectivity...

  14. Motor Unit Action Potential Clustering—Theoretical Consideration for Muscle Activation during a Motor Task

    Directory of Open Access Journals (Sweden)

    Michael J. Asmussen

    2018-01-01

    Full Text Available During dynamic or sustained isometric contractions, bursts of muscle activity appear in the electromyography (EMG signal. Theoretically, these bursts of activity likely occur because motor units are constrained to fire temporally close to one another and thus the impulses are “clustered” with short delays to elicit bursts of muscle activity. The purpose of this study was to investigate whether a sequence comprised of “clustered” motor unit action potentials (MUAP can explain spectral and amplitude changes of the EMG during a simulated motor task. This question would be difficult to answer experimentally and thus, required a model to study this type of muscle activation pattern. To this end, we modeled two EMG signals, whereby a single MUAP was either convolved with a randomly distributed impulse train (EMG-rand or a “clustered” sequence of impulses (EMG-clust. The clustering occurred in windows lasting 5–100 ms. A final mixed signal of EMG-clust and EMG-rand, with ratios (1:1–1:10, was also modeled. A ratio of 1:1 would indicate that 50% of MUAP were randomly distributed, while 50% of “clustered” MUAP occurred in a given time window (5–100 ms. The results of the model showed that clustering MUAP caused a downshift in the mean power frequency (i.e., ~30 Hz with the largest shift occurring with a cluster window of 10 ms. The mean frequency shift was largest when the ratio of EMG-clust to EMG-rand was high. Further, the clustering of MUAP also caused a substantial increase in the amplitude of the EMG signal. This model potentially explains an activation pattern that changes the EMG spectra during a motor task and thus, a potential activation pattern of muscles observed experimentally. Changes in EMG measurements during fatiguing conditions are typically attributed to slowing of conduction velocity but could, per this model, also result from changes of the clustering of MUAP. From a clinical standpoint, this type of muscle

  15. Excitability decreasing central motor plasticity is retained in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Zeller Daniel

    2012-09-01

    Full Text Available Abstract Background Compensation of brain injury in multiple sclerosis (MS may in part work through mechanisms involving neuronal plasticity on local and interregional scales. Mechanisms limiting excessive neuronal activity may have special significance for retention and (re-acquisition of lost motor skills in brain injury. However, previous neurophysiological studies of plasticity in MS have investigated only excitability enhancing plasticity and results from neuroimaging are ambiguous. Thus, the aim of this study was to probe long-term depression-like central motor plasticity utilizing continuous theta-burst stimulation (cTBS, a non-invasive brain stimulation protocol. Because cTBS also may trigger behavioral effects through local interference with neuronal circuits, this approach also permitted investigating the functional role of the primary motor cortex (M1 in force control in patients with MS. Methods We used cTBS and force recordings to examine long-term depression-like central motor plasticity and behavioral consequences of a M1 lesion in 14 patients with stable mild-to-moderate MS (median EDSS 1.5, range 0 to 3.5 and 14 age-matched healthy controls. cTBS consisted of bursts (50 Hz of three subthreshold biphasic magnetic stimuli repeated at 5 Hz for 40 s over the hand area of the left M1. Corticospinal excitability was probed via motor-evoked potentials (MEP in the abductor pollicis brevis muscle over M1 before and after cTBS. Force production performance was assessed in an isometric right thumb abduction task by recording the number of hits into a predefined force window. Results cTBS reduced MEP amplitudes in the contralateral abductor pollicis brevis muscle to a comparable extent in control subjects (69 ± 22% of baseline amplitude, p  Conclusions Long-term depression-like plasticity remains largely intact in mild-to-moderate MS. Increasing brain injury may render the neuronal networks less responsive toward lesion

  16. Brain-computer interface analysis of a dynamic visuo-motor task.

    Science.gov (United States)

    Logar, Vito; Belič, Aleš

    2011-01-01

    The area of brain-computer interfaces (BCIs) represents one of the more interesting fields in neurophysiological research, since it investigates the development of the machines that perform different transformations of the brain's "thoughts" to certain pre-defined actions. Experimental studies have reported some successful implementations of BCIs; however, much of the field still remains unexplored. According to some recent reports the phase coding of informational content is an important mechanism in the brain's function and cognition, and has the potential to explain various mechanisms of the brain's data transfer, but it has yet to be scrutinized in the context of brain-computer interface. Therefore, if the mechanism of phase coding is plausible, one should be able to extract the phase-coded content, carried by brain signals, using appropriate signal-processing methods. In our previous studies we have shown that by using a phase-demodulation-based signal-processing approach it is possible to decode some relevant information on the current motor action in the brain from electroencephalographic (EEG) data. In this paper the authors would like to present a continuation of their previous work on the brain-information-decoding analysis of visuo-motor (VM) tasks. The present study shows that EEG data measured during more complex, dynamic visuo-motor (dVM) tasks carries enough information about the currently performed motor action to be successfully extracted by using the appropriate signal-processing and identification methods. The aim of this paper is therefore to present a mathematical model, which by means of the EEG measurements as its inputs predicts the course of the wrist movements as applied by each subject during the task in simulated or real time (BCI analysis). However, several modifications to the existing methodology are needed to achieve optimal decoding results and a real-time, data-processing ability. The information extracted from the EEG could

  17. Motor imagery in Asperger syndrome: testing action simulation by the hand laterality task.

    Directory of Open Access Journals (Sweden)

    Massimiliano Conson

    Full Text Available Asperger syndrome (AS is a neurodevelopmental condition within the Autism Spectrum Disorders (ASD characterized by specific difficulties in social interaction, communication and behavioural control. In recent years, it has been suggested that ASD is related to a dysfunction of action simulation processes, but studies employing imitation or action observation tasks provided mixed results. Here, we addressed action simulation processes in adolescents with AS by means of a motor imagery task, the classical hand laterality task (to decide whether a rotated hand image is left or right; mental rotation of letters was also evaluated. As a specific marker of action simulation in hand rotation, we assessed the so-called biomechanical effect, that is the advantage for judging hand pictures showing physically comfortable versus physically awkward positions. We found the biomechanical effect in typically-developing participants but not in participants with AS. Overall performance on both hand laterality and letter rotation tasks, instead, did not differ in the two groups. These findings demonstrated a specific alteration of motor imagery skills in AS. We suggest that impaired mental simulation and imitation of goal-less movements in ASD could be related to shared cognitive mechanisms.

  18. Task-specific recruitment of motor units for vibration damping.

    Science.gov (United States)

    Wakeling, James M; Liphardt, Anna-Maria

    2006-01-01

    Vibrations occur within the soft tissues of the lower extremities due to the heel-strike impact during walking. Increases in muscle activity in the lower extremities result in increased damping to reduce this vibration. The myoelectric intensity spectra were compared using principal component analysis from the tibialis anterior and lateral gastrocnemius of 40 subjects walking with different shoe conditions. The soft insert condition resulted in a significant, simultaneous increase in muscle activity with a shift to higher myoelectric frequencies in the period 0-60 ms after heel-strike which is the period when the greater vibration damping occurred. These increases in myoelectric frequency match the spectral patterns which indicate increases in recruitment of faster motor units. It is concluded that fast motor units are recruited during the task of damping the soft-tissue resonance that occurs following heel-strike.

  19. Motor impulsivity differentiates between psychiatric inpatients with multiple versus single lifetime suicide attempts.

    Science.gov (United States)

    Colborn, Victoria A; LaCroix, Jessica M; Neely, Laura L; Tucker, Jennifer; Perera, Kanchana; Daruwala, Samantha E; Grammer, Geoffrey; Weaver, Jennifer; Ghahramanlou-Holloway, Marjan

    2017-07-01

    A history of multiple suicide attempts conveys greater risk for suicide than a single attempt. Impulsivity may partially explain the association between multiple attempts and increased risk. We examined trait impulsivity, ability to engage in goal-directed behaviors, and impulse control among psychiatrically hospitalized United States military personnel and their dependents. Individuals with a history of multiple versus single attempts had significantly higher motor impulsivity, indicating spur of the moment action. Providers are encouraged to directly assess and treat motor impulsivity among suicidal individuals. Further research should explore whether motor impulsivity is a mechanism of change in psychosocial suicide prevention interventions. Copyright © 2017. Published by Elsevier B.V.

  20. Motor network efficiency and disability in multiple sclerosis

    Science.gov (United States)

    Yaldizli, Özgür; Sethi, Varun; Muhlert, Nils; Liu, Zheng; Samson, Rebecca S.; Altmann, Daniel R.; Ron, Maria A.; Wheeler-Kingshott, Claudia A.M.; Miller, David H.; Chard, Declan T.

    2015-01-01

    Objective: To develop a composite MRI-based measure of motor network integrity, and determine if it explains disability better than conventional MRI measures in patients with multiple sclerosis (MS). Methods: Tract density imaging and constrained spherical deconvolution tractography were used to identify motor network connections in 22 controls. Fractional anisotropy (FA), magnetization transfer ratio (MTR), and normalized volume were computed in each tract in 71 people with relapse onset MS. Principal component analysis was used to distill the FA, MTR, and tract volume data into a single metric for each tract, which in turn was used to compute a composite measure of motor network efficiency (composite NE) using graph theory. Associations were investigated between the Expanded Disability Status Scale (EDSS) and the following MRI measures: composite motor NE, NE calculated using FA alone, FA averaged in the combined motor network tracts, brain T2 lesion volume, brain parenchymal fraction, normal-appearing white matter MTR, and cervical cord cross-sectional area. Results: In univariable analysis, composite motor NE explained 58% of the variation in EDSS in the whole MS group, more than twice that of the other MRI measures investigated. In a multivariable regression model, only composite NE and disease duration were independently associated with EDSS. Conclusions: A composite MRI measure of motor NE was able to predict disability substantially better than conventional non-network-based MRI measures. PMID:26320199

  1. Effects of practice schedule and task specificity on the adaptive process of motor learning.

    Science.gov (United States)

    Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar

    2017-10-01

    This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Measurement of functional task difficulty during motor learning: What level of difficulty corresponds to the optimal challenge point?

    Science.gov (United States)

    Akizuki, Kazunori; Ohashi, Yukari

    2015-10-01

    The relationship between task difficulty and learning benefit was examined, as was the measurability of task difficulty. Participants were required to learn a postural control task on an unstable surface at one of four different task difficulty levels. Results from the retention test showed an inverted-U relationship between task difficulty during acquisition and motor learning. The second-highest level of task difficulty was the most effective for motor learning, while learning was delayed at the most and least difficult levels. Additionally, the results indicate that salivary α-amylase and the performance dimension of the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) are useful indices of task difficulty. Our findings suggested that instructors may be able to adjust task difficulty based on salivary α-amylase and the performance dimension of the NASA-TLX to enhance learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Cognitive-motor dual-task interference modulates mediolateral dynamic stability during gait in post-stroke individuals.

    Science.gov (United States)

    Tisserand, R; Armand, S; Allali, G; Schnider, A; Baillieul, S

    2018-04-01

    Gait asymmetry and dynamic balance impairments observed in post-stroke individuals increase their risk of fall. Moreover, walking while performing a cognitive task (i.e. dual-task) disturbs the control of balance in post-stroke individuals. Here we investigated the mediolateral dynamic stability in twenty-two community-dwelling participants (12 post-strokes and 10 healthy controls) while walking in single-task (normal gait) and four different dual-tasks (cognitive-motor interference). Positions of the extrapolated center of mass and mediolateral widths of both margin of stability and base of support were extracted from 35 marker trajectories. Post-stroke participants presented larger margin of stability and base of support than controls during single-task (both p dual-task was found between groups. In post-stroke participants, dual-task induced slight modification of the mediolateral stability strategy, as the margin of stability was not different between the two limbs at foot-strike, and significantly reduced the performance in every cognitive task. Post-stroke participants increased their dynamic stability in the frontal plane in single-task by extending their base of support and mainly relying on their non-paretic limb. Under cognitive-motor interference (dual-task), post-stroke participants prioritized dynamic stability over cognitive performance to ensure a safe locomotion. Thus, rehabilitation programs should consider both dynamic balance and dual-task training, even at a chronic delay following stroke, to reduce the risk of fall in post-stroke individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Influence of Parkinson’s Disease Motor Symptom Asymmetry on Hand Performance: An Examination of the Grooved Pegboard Task

    Directory of Open Access Journals (Sweden)

    Sara M. Scharoun

    2015-01-01

    Full Text Available This study examined the influence of motor symptom asymmetry in Parkinson’s disease (PD on Grooved Pegboard (GP performance in right-handed participants. The Unified Parkinson’s Disease Rating Scale was used to assess motor symptoms and separate participants with PD into two groups (right-arm affected, left-arm affected for comparison with a group of healthy older adults. Participants completed the place and replace GP tasks two times with both hands. Laterality quotients were computed to quantify performance differences between the two hands. Comparisons among the three groups indicated that when the nonpreferred hand is affected by PD motor symptoms, superior preferred hand performance (as seen in healthy older adults is further exaggerated in tasks that require precision (i.e., place task. Regardless of the task, when the preferred hand is affected, there is an evident shift to superior left-hand performance, which may inevitably manifest as a switch in hand preference. Results add to the discussion of the relationship between handedness and motor symptom asymmetry in PD.

  5. Location versus task relevance: The impact of differing internal focus of attention instructions on motor performance.

    Science.gov (United States)

    Pelleck, Valerie; Passmore, Steven R

    2017-05-01

    Impaired performance while executing a motor task is attributed to a disruption of normal automatic processes when an internal focus of attention is used. What remains unclear is whether the specificity of internally focused task instructions may impact task performance. The present study assessed the implications of changing the attentional focus of novice and skilled golfers by measuring behavioural, neurophysiological and kinematic changes during a golf putting task. Over six blocks of ten putting trials each, attention was directed either externally (towards the target) or internally in one of two ways: 1) proximal (keeping the elbows extended and the hands gripping the putter); or 2) distal (keeping the weight evenly distributed between both legs) to the critical elements of the task. Results provided evidence that when novice participants use an internal focus of attention more closely associated with task performance that their: 1) execution; 2) accuracy; 3) variability of surface electromyography (sEMG) activity; and 4) kinematics of the putter movement are all adversely affected. Skilled golfers are much more resilient to changes in attentional focus, while all participants interpret a distal internal focus of attention similar to an external focus. All participants produced decreased activity in the muscle (tibialis anterior) associated with the distal (less task relevant) focus of attention even when the "internal" focus was on the lower extremity. Our results provide evidence that the skill level of the participant and the distance of the internal focus of attention from the key elements of a motor skill directly impact the execution, muscle activity, and movement kinematics associated with skilled motor task performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Functional BOLD MRI: comparison of different field strengths in a motor task

    International Nuclear Information System (INIS)

    Meindl, T.; Born, C.; Britsch, S.; Reiser, M.; Schoenberg, S.

    2008-01-01

    The purpose was to evaluate the benefit of an increased field strength for functional magnetic resonance imaging in a motor task. Six right-handed volunteers were scanned at 1.5 T and 3.0 T using a motor task. Each experiment consisted of two runs with four activation blocks, each with right- and left-hand tapping. Analysis was done using BrainVoyagerQX registered . Differences between both field strengths concerning signal to noise (SNR), blood oxygen level-dependent (BOLD) signal change, functional sensitivity and BOLD contrast to noise (CNR) were tested using a paired t test. Delineation of activations and artifacts were graded by two independent readers. Results were further validated by means of a phantom study. The sensorimotor and premotor cortex, the supplementary motor area, subcortical and cerebellar structures were activated at each field strength. Additional activations of the right premotor cortex and right superior temporal gyrus were found at 3.0 T. Signal-to-noise, percentage of BOLD signal change, BOLD CNR and functional sensitivity improved at 3.0 T by a factor of up to 2.4. Functional imaging at 3.0 T results in detection of additional activated areas, increased SNR, BOLD signal change, functional sensitivity and BOLD CNR. (orig.)

  7. Functional near infrared spectroscopy of the sensory and motor brain regions with simultaneous kinematic and EMG monitoring during motor tasks

    OpenAIRE

    Sukal-Moulton, Theresa; de Campos, Ana Carolina; Stanley, Christopher J; Damiano, Diane L

    2014-01-01

    There are several advantages that functional near-infrared spectroscopy (fNIRS) presents in the study of the neural control of human movement. It is relatively flexible with respect to participant positioning and allows for some head movements during tasks. Additionally, it is inexpensive, light weight, and portable, with very few contraindications to its use. This presents a unique opportunity to study functional brain activity during motor tasks in individuals who are typically developing, ...

  8. The effects of bromazepam over the central and frontal areas during a motor task: an EEG study

    Directory of Open Access Journals (Sweden)

    Suzete Fortunato

    2015-04-01

    Full Text Available The present study investigates the influence of bromazepam while executing a motor task. Specifically, we intend to analyze the changes in alpha absolute power under two experimental conditions, bromazepam and placebo. We also included analyses of theta and beta frequencies. We collected electroencephalographic data before, during, and after motor task execution. We used a Two Way ANOVA to investigate the condition (PL × Br6 mg and moment (pre and post variables for the following electrodes: Fp1, Fp2, F7, F3, Fz, F4, F8, C3, CZ and C4. We found a main effect for condition on the electrodes FP1, F7, F3, Fz, F4, C3 and CZ, for alpha and beta bands. For beta band we also found a main effect for condition on the electrodes Fp2, F8 and C4; for theta band we identified a main effect for condition on C3, Cz and C4 electrodes. This finding suggests that the motor task did not have any influence on the electrocortical activity in alpha, and that the existing modifications were a consequence due merely to the drug use. Despite its anxiolytic and sedative action, bromazepam did not show any significant changes when the individuals executed a finger extension motor task.

  9. Childhood apraxia of speech and multiple phonological disorders in Cairo-Egyptian Arabic speaking children: language, speech, and oro-motor differences.

    Science.gov (United States)

    Aziz, Azza Adel; Shohdi, Sahar; Osman, Dalia Mostafa; Habib, Emad Iskander

    2010-06-01

    Childhood apraxia of speech is a neurological childhood speech-sound disorder in which the precision and consistency of movements underlying speech are impaired in the absence of neuromuscular deficits. Children with childhood apraxia of speech and those with multiple phonological disorder share some common phonological errors that can be misleading in diagnosis. This study posed a question about a possible significant difference in language, speech and non-speech oral performances between children with childhood apraxia of speech, multiple phonological disorder and normal children that can be used for a differential diagnostic purpose. 30 pre-school children between the ages of 4 and 6 years served as participants. Each of these children represented one of 3 possible subject-groups: Group 1: multiple phonological disorder; Group 2: suspected cases of childhood apraxia of speech; Group 3: control group with no communication disorder. Assessment procedures included: parent interviews; testing of non-speech oral motor skills and testing of speech skills. Data showed that children with suspected childhood apraxia of speech showed significantly lower language score only in their expressive abilities. Non-speech tasks did not identify significant differences between childhood apraxia of speech and multiple phonological disorder groups except for those which required two sequential motor performances. In speech tasks, both consonant and vowel accuracy were significantly lower and inconsistent in childhood apraxia of speech group than in the multiple phonological disorder group. Syllable number, shape and sequence accuracy differed significantly in the childhood apraxia of speech group than the other two groups. In addition, children with childhood apraxia of speech showed greater difficulty in processing prosodic features indicating a clear need to address these variables for differential diagnosis and treatment of children with childhood apraxia of speech. Copyright (c

  10. Mild cognitive impairment: loss of linguistic task-induced changes in motor cortex excitability.

    Science.gov (United States)

    Bracco, L; Giovannelli, F; Bessi, V; Borgheresi, A; Di Tullio, A; Sorbi, S; Zaccara, G; Cincotta, M

    2009-03-10

    In amnestic mild cognitive impairment (aMCI), functional neuronal connectivity may be altered, as suggested by quantitative EEG and neuroimaging data. In young healthy humans, the execution of linguistic tasks modifies the excitability of the hand area of the dominant primary motor cortex (M1(hand)), as tested by transcranial magnetic stimulation (TMS). We used TMS to investigate functional connectivity between language-related cortical areas and M1(hand) in aMCI. Ten elderly women with aMCI and 10 age-matched women were recruited. All participants were right handed and underwent a neuropsychological evaluation. In the first TMS experiment, participants performed three different tasks: reading aloud, viewing of non-letter strings (baseline), and nonverbal oral movements. The second experiment included the baseline condition and three visual searching/matching tasks using letters, geometric shapes, or digits as target stimuli. In controls, motor evoked potentials (MEP) elicited by suprathreshold TMS of the left M1(hand) were significantly larger during reading aloud (170% baseline) than during nonverbal oral movements, whereas no difference was seen for right M1(hand) stimulation. Similarly, MEP elicited by left M1(hand) stimulation during letter and shape searching/matching tasks were significantly larger compared to digit task. In contrast, linguistic task performance did not produce any significant MEP modulation in patients with aMCI, although neuropsychological evaluation showed normal language abilities. Findings suggest that functional connectivity between the language-related brain regions and the dominant M1(hand) may be altered in amnestic mild cognitive impairment. Follow-up studies will reveal whether transcranial magnetic stimulation application during linguistic tasks may contribute to characterize the risk of conversion to Alzheimer disease.

  11. Motor Preparation Disrupts Proactive Control in the Stop Signal Task

    Directory of Open Access Journals (Sweden)

    Wuyi Wang

    2018-05-01

    Full Text Available In a study of the stop signal task (SST we employed Bayesian modeling to compute the estimated likelihood of stop signal or P(Stop trial by trial and identified regional processes of conflict anticipation and response slowing. A higher P(Stop is associated with prolonged go trial reaction time (goRT—a form of sequential effect—and reflects proactive control of motor response. However, some individuals do not demonstrate a sequential effect despite similar go and stop success (SS rates. We posited that motor preparation may disrupt proactive control more in certain individuals than others. Specifically, the time interval between trial and go signal onset—the fore-period (FP—varies across trials and a longer FP is associated with a higher level of motor preparation and shorter goRT. Greater motor preparatory activities may disrupt proactive control. To test this hypothesis, we compared brain activations and Granger causal connectivities of 81 adults who demonstrated a sequential effect (SEQ and 35 who did not (nSEQ. SEQ and nSEQ did not differ in regional activations to conflict anticipation, motor preparation, goRT slowing or goRT speeding. In contrast, SEQ and nSEQ demonstrated different patterns of Granger causal connectivities. P(Stop and FP activations shared reciprocal influence in SEQ but FP activities Granger caused P(Stop activities unidirectionally in nSEQ, and FP activities Granger caused goRT speeding activities in nSEQ but not SEQ. These findings support the hypothesis that motor preparation disrupts proactive control in nSEQ and provide direct neural evidence for interactive go and stop processes.

  12. Self-Control of Task Difficulty During Early Practice Promotes Motor Skill Learning.

    Science.gov (United States)

    Andrieux, Mathieu; Boutin, Arnaud; Thon, Bernard

    2016-01-01

    This study was designed to determine whether the effect of self-control of task difficulty on motor learning is a function of the period of self-control administration. In a complex anticipation-coincidence task that required participants to intercept 3 targets with a virtual racquet, the task difficulty was either self-controlled or imposed to the participants in the two phases of the acquisition session. First, the results confirmed the beneficial effects of self-control over fully prescribed conditions. Second, the authors also demonstrated that a partial self-control of task difficulty better promotes learning than does a complete self-controlled procedure. Overall, the results revealed that these benefits are increased when this choice is allowed during early practice. The findings are discussed in terms of theoretical and applied perspectives.

  13. Resting-state connectivity of pre-motor cortex reflects disability in multiple sclerosis.

    Science.gov (United States)

    Dogonowski, A-M; Siebner, H R; Soelberg Sørensen, P; Paulson, O B; Dyrby, T B; Blinkenberg, M; Madsen, K H

    2013-11-01

    To characterize the relationship between motor resting-state connectivity of the dorsal pre-motor cortex (PMd) and clinical disability in patients with multiple sclerosis (MS). A total of 27 patients with relapsing-remitting MS (RR-MS) and 15 patients with secondary progressive MS (SP-MS) underwent functional resting-state magnetic resonance imaging. Clinical disability was assessed using the Expanded Disability Status Scale (EDSS). Independent component analysis was used to characterize motor resting-state connectivity. Multiple regression analysis was performed in SPM8 between the individual expression of motor resting-state connectivity in PMd and EDSS scores including age as covariate. Separate post hoc analyses were performed for patients with RR-MS and SP-MS. The EDSS scores ranged from 0 to 7 with a median score of 4.3. Motor resting-state connectivity of left PMd showed a positive linear relation with clinical disability in patients with MS. This effect was stronger when considering the group of patients with RR-MS alone, whereas patients with SP-MS showed no increase in coupling strength between left PMd and the motor resting-state network with increasing clinical disability. No significant relation between motor resting-state connectivity of the right PMd and clinical disability was detected in MS. The increase in functional coupling between left PMd and the motor resting-state network with increasing clinical disability can be interpreted as adaptive reorganization of the motor system to maintain motor function, which appears to be limited to the relapsing-remitting stage of the disease. © 2013 John Wiley & Sons A/S.

  14. Temporary Nerve Block at Selected Digits Revealed Hand Motor Deficits in Grasping Tasks

    Directory of Open Access Journals (Sweden)

    Aude Carteron

    2016-11-01

    Full Text Available Peripheral sensory feedback plays a crucial role in ensuring correct motor execution throughout hand grasp control. Previous studies utilized local anesthesia to deprive somatosensory feedback in the digits or hand, observations included sensorimotor deficits at both corticospinal and peripheral levels. However, the questions of how the disturbed and intact sensory input integrate and interact with each other to assist the motor program execution, and whether the motor coordination based on motor output variability between affected and non-affected elements (e.g., digits becomes interfered by the local sensory deficiency, have not been answered. The current study aims to investigate the effect of peripheral deafferentation through digital nerve blocks at selective digits on motor performance and motor coordination in grasp control. Our results suggested that the absence of somatosensory information induced motor deficits in hand grasp control, as evidenced by reduced maximal force production ability in both local and non-local digits, impairment of force and moment control during object lift and hold, and attenuated motor synergies in stabilizing task performance variables, namely the tangential force and moment of force. These findings implied that individual sensory input is shared across all the digits and the disturbed signal from local sensory channel(s has a more comprehensive impact on the process of the motor output execution in the sensorimotor integration process. Additionally, a feedback control mechanism with a sensation-based component resides in the formation process for the motor covariation structure.

  15. [Neuronal activity of monkey dorso-lateral premotor cortex during tasks of figure recognition guided motor sequence vs memorized spatial motor sequence].

    Science.gov (United States)

    Chen, Y C; Huang, F D; Chen, N H; Shou, J Y; Wu, L

    1998-04-01

    In the last 2-3 decades the role of the premotor cortex (PM) of monkey in memorized spatial sequential (MSS) movements has been amply investigated. However, it is as yet not known whether PM participates in the movement sequence behaviour guided by recognition of visual figures (i.e. the figure-recognition sequence, FRS). In the present work three monkeys were trained to perform both FRS and MSS tasks. Postmortem examination showed that 202 cells were in the dorso-lateral premotor cortex. Among 111 cells recorded during the two tasks, more than 50% changed their activity during the cue periods in either task. During the response period, the ratios of cells with changes of firing rate in both FRS and MSS were high and roughly equal to each other, while during the image period, the proportion in the FRS (83.7%) was significantly higher than that in the MSS (66.7%). Comparison of neuronal activities during same motor sequence of two different tasks showed that during the image periods PM neuronal activities were more closely related to the FRS task, while during the cue periods no difference could be found. Analysis of cell responses showed that the neurons with longer latency were much more in MSS than in FRS in either cue or image period. The present results indicate that the premotor cortex participates in FRS motor sequence as well as in MSS and suggest that the dorso-lateral PM represents another subarea in function shared by both FRS and MSS tasks. However, in view of the differences of PM neuronal responses in cue or image periods of FRS and MSS tasks, it seems likely that neural networks involved in FRS and MSS tasks are different.

  16. Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots.

    Science.gov (United States)

    Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M; Ichimura, Taro

    2016-07-01

    Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery.

  17. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    by subconscious (subliminal) augmented visual feedback on motor performance. To test this, 45 subjects participated in the experiment, which involved learning of a ballistic task. The task was to execute simple ankle plantar flexion movements as quickly as possible within 200 ms and to continuously improve...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance.......). It is a well- described phenomenon that we may respond to features of our surroundings without being aware of them. It is also a well-known principle, that learning is reinforced by augmented feedback on motor performance. In the present experiment we hypothesized that motor learning may be facilitated...

  18. Concurrent word generation and motor performance: further evidence for language-motor interaction.

    Directory of Open Access Journals (Sweden)

    Amy D Rodriguez

    Full Text Available Embodied/modality-specific theories of semantic memory propose that sensorimotor representations play an important role in perception and action. A large body of evidence supports the notion that concepts involving human motor action (i.e., semantic-motor representations are processed in both language and motor regions of the brain. However, most studies have focused on perceptual tasks, leaving unanswered questions about language-motor interaction during production tasks. Thus, we investigated the effects of shared semantic-motor representations on concurrent language and motor production tasks in healthy young adults, manipulating the semantic task (motor-related vs. nonmotor-related words and the motor task (i.e., standing still and finger-tapping. In Experiment 1 (n = 20, we demonstrated that motor-related word generation was sufficient to affect postural control. In Experiment 2 (n = 40, we demonstrated that motor-related word generation was sufficient to facilitate word generation and finger tapping. We conclude that engaging semantic-motor representations can have a reciprocal influence on motor and language production. Our study provides additional support for functional language-motor interaction, as well as embodied/modality-specific theories.

  19. Multiple Concurrent Visual-Motor Mappings: Implications for Models of Adaptation

    Science.gov (United States)

    Cunningham, H. A.; Welch, Robert B.

    1994-01-01

    Previous research on adaptation to visual-motor rearrangement suggests that the central nervous system represents accurately only 1 visual-motor mapping at a time. This idea was examined in 3 experiments where subjects tracked a moving target under repeated alternations between 2 initially interfering mappings (the 'normal' mapping characteristic of computer input devices and a 108' rotation of the normal mapping). Alternation between the 2 mappings led to significant reduction in error under the rotated mapping and significant reduction in the adaptation aftereffect ordinarily caused by switching between mappings. Color as a discriminative cue, interference versus decay in adaptation aftereffect, and intermanual transfer were also examined. The results reveal a capacity for multiple concurrent visual-motor mappings, possibly controlled by a parametric process near the motor output stage of processing.

  20. Motor Learning of a Bimanual Task in Children with Unilateral Cerebral Palsy

    Science.gov (United States)

    Hung, Ya-Ching; Gordon, Andrew M.

    2013-01-01

    Children with unilateral cerebral palsy (CP) have been shown to improve their motor performance with sufficient practice. However, little is known about how they learn goal-oriented tasks. In the current study, 21 children with unilateral CP (age 4-10 years old) and 21 age-matched typically developed children (TDC) practiced a simple bimanual…

  1. Object-directed imitation in autism spectrum disorder is differentially influenced by motoric task complexity, but not social contextual cues.

    Science.gov (United States)

    Chetcuti, Lacey; Hudry, Kristelle; Grant, Megan; Vivanti, Giacomo

    2017-11-01

    We examined the role of social motivation and motor execution factors in object-directed imitation difficulties in autism spectrum disorder. A series of to-be-imitated actions was presented to 35 children with autism spectrum disorder and 20 typically developing children on an Apple ® iPad ® by a socially responsive or aloof model, under conditions of low and high motor demand. There were no differences in imitation performance (i.e. the number of actions reproduced within a fixed sequence), for either group, in response to a model who acted socially responsive or aloof. Children with autism spectrum disorder imitated the high motor demand task more poorly than the low motor demand task, while imitation performance for typically developing children was equivalent across the low and high motor demand conditions. Furthermore, imitative performance in the autism spectrum disorder group was unrelated to social reciprocity, though positively associated with fine motor coordination. These results suggest that difficulties in object-directed imitation in autism spectrum disorder are the result of motor execution difficulties, not reduced social motivation.

  2. Neuroplasticity & Motor Learning

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye

    Practice of a new motor task is usually associated with an improvement in performance. Indeed, if we stop practicing and return the next day to the same task, we find that our performance has been maintained and may even be better than it was at the start of the first day. This improvement...... is a measure of our ability to form and store a motor memory of the task. However, the initial memory of the task is labile and may be subject to interference. During and following motor learning plastic changes occur within the central nervous system. On one hand these changes are driven by motor practice......, on the other hand the changes underlie the formation of motor memory and the retention of improved motor performance. During motor learning changes may occur at many different levels within the central nervous system dependent on the type of task and training. Here, we demonstrate different studies from our...

  3. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task

    DEFF Research Database (Denmark)

    Kumar, Abhishek; Grigoriadis, Joannis; Trulsson, Mats

    2015-01-01

    Sensory information from the orofacial mechanoreceptors are used by the nervous system to optimize the positioning of food, determine the force levels, and force vectors involved in biting of food morsels. Moreover, practice resulting from repetition could be a key to learning and acquiring a motor...... movements. Thirty healthy volunteers were asked to intraorally manipulate and split a chocolate candy, into two equal halves. The participants performed three series (with ten 10 trials) of the task before and after a short-term (approximately 30min) training. The accuracy of the split and vertical jaw...... task induces behavior learning, skill acquisition and optimization of jaw movements in terms of better performance and reduction in the duration of jaw movements, during the task. The finding of the present study provides insights on into how humans learn oral motor behaviors or the kind of adaptation...

  4. Evaluation of Functional Correlation of Task-Specific Muscle Synergies with Motor Performance in Patients Poststroke

    Directory of Open Access Journals (Sweden)

    Si Li

    2017-07-01

    Full Text Available The central nervous system produces movements by activating specifically programmed muscle synergies that are also altered with injuries in the brain, such as stroke. In this study, we hypothesize that there exists a positive correlation between task-specific muscle synergy and motor functions at joint and task levels in patients following stroke. The purpose here is to define and evaluate neurophysiological metrics based on task-specific muscle synergy for assessing motor functions in patients. A patient group of 10 subjects suffering from stroke and a control group of nine age-matched healthy subjects were recruited to participate in this study. Electromyography (EMG signals and movement kinematics were recorded in patients and control subjects while performing arm reaching tasks. Muscle synergies of individual patients were extracted off-line from EMG records of each patient, and a baseline pattern of muscle synergy was obtained from the pooled EMG data of all nine control subjects. Peak velocities and movement durations of each reaching movement were computed from measured kinematics. Similarity indices of matching components to those of the baseline synergy were defined by synergy vectors and time profiles, respectively, as well as by a combined similarity of vector and time profile. Results showed that pathological synergies of patients were altered from the characteristics of baseline synergy with missing components, or varied vector patterns and time profiles. The kinematic performance measured by peak velocities and movement durations was significantly poorer for the patient group than the control group. In patients, all three similarity indices were found to correlate significantly to the kinematics of movements for the reaching tasks. The correlation to the Fugl-Meyer score of arm was the highest with the vector index, the lowest with the time profile index, and in between with the combined index. These findings illustrate that the

  5. Brief periods of NREM sleep do not promote early offline gains but subsequent on-task performance in motor skill learning.

    Science.gov (United States)

    Maier, Jonathan G; Piosczyk, Hannah; Holz, Johannes; Landmann, Nina; Deschler, Christoph; Frase, Lukas; Kuhn, Marion; Klöppel, Stefan; Spiegelhalder, Kai; Sterr, Annette; Riemann, Dieter; Feige, Bernd; Voderholzer, Ulrich; Nissen, Christoph

    2017-11-01

    Sleep modulates motor learning, but its detailed impact on performance curves remains to be fully characterized. This study aimed to further determine the impact of brief daytime periods of NREM sleep on 'offline' (task discontinuation after initial training) and 'on-task' (performance within the test session) changes in motor skill performance (finger tapping task). In a mixed design (combined parallel group and repeated measures) sleep laboratory study (n=17 'active' wake vs. sleep, n=19 'passive' wake vs. sleep), performance curves were assessed prior to and after a 90min period containing either sleep, active or passive wakefulness. We observed a highly significant, but state- (that is, sleep/wake)-independent early offline gain and improved on-task performance after sleep in comparison to wakefulness. Exploratory curve fitting suggested that the observed sleep effect most likely emerged from an interaction of training-induced improvement and detrimental 'time-on-task' processes, such as fatigue. Our results indicate that brief periods of NREM sleep do not promote early offline gains but subsequent on-task performance in motor skill learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Using the Hand Laterality Judgement Task to assess motor imagery : a study of practice effects in repeated measurements

    NARCIS (Netherlands)

    Boonstra, Anne M.; de Vries, Sjoerd J.; Veenstra, Evelien; Tepper, Marga; Feenstra, Wya; Otten, Egbert

    The aim of this study was to determine whether there is a practice effect on the Hand Laterality Judgement Task (HLJT). The HLJT task is a mental rotation task that can be used to assess motor imagery ability in stroke patients. Thirty-three healthy individuals performed the HLJT and two control

  7. Using the Hand Laterality Judgement Task to Assess Motor Imagery: A Study of Practice Effects in Repeated Measurements

    Science.gov (United States)

    Boonstra, Anne M.; de Vries, Sjoerd J.; Veenstra, Evelien; Tepper, Marga; Feenstra, Wya; Otten, Egbert

    2012-01-01

    The aim of this study was to determine whether there is a practice effect on the Hand Laterality Judgement Task (HLJT). The HLJT task is a mental rotation task that can be used to assess motor imagery ability in stroke patients. Thirty-three healthy individuals performed the HLJT and two control tasks twice at a 3-week interval. Differences in the…

  8. A Rich Assessment Task as a Window into Students' Multiplicative Reasoning

    Science.gov (United States)

    Downton, Ann; Wright, Vince

    2016-01-01

    This study explored the potential of a rich assessment task to reveal students' multiplicative thinking in respect to a hypothetical learning trajectory. Thirty pairs of students in grades 5 and 6 attempted the task. Twenty-two pairs applied multiplicative structure to find the number of items in arrays. However counting and computational errors…

  9. Can stereotype threat affect motor performance in the absence of explicit monitoring processes? Evidence using a strength task.

    Science.gov (United States)

    Chalabaev, Aïna; Brisswalter, Jeanick; Radel, Rémi; Coombes, Stephen A; Easthope, Christopher; Clément-Guillotin, Corentin

    2013-04-01

    Previous evidence shows that stereotype threat impairs complex motor skills through increased conscious monitoring of task performance. Given that one-step motor skills may not be susceptible to these processes, we examined whether performance on a simple strength task may be reduced under stereotype threat. Forty females and males performed maximum voluntary contractions under stereotypical or nullified-stereotype conditions. Results showed that the velocity of force production within the first milliseconds of the contraction decreased in females when the negative stereotype was induced, whereas maximal force did not change. In males, the stereotype induction only increased maximal force. These findings suggest that stereotype threat may impair motor skills in the absence of explicit monitoring processes, by influencing the planning stage of force production.

  10. Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.

    Science.gov (United States)

    Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja

    2016-08-10

    The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published

  11. Localised task-dependent motor-unit recruitment in the masseter.

    Science.gov (United States)

    Schindler, H J; Hellmann, D; Giannakopoulos, N N; Eiglsperger, U; van Dijk, J P; Lapatki, B G

    2014-07-01

    Localised motor-unit (MU) recruitment in the masseter was analysed in this study. We investigated whether differential activation behaviour, which has already been reported for distant masseter regions, can also be detected in small muscle subvolumes at the level of single MUs. Two bipolar fine-wire electrodes and an intra-oral 3D bite-force transmitter were used to record intra-muscular electromyograms (EMG) resulting from controlled bite-forces of 10 healthy human subjects (mean age 24.1 ± 1.2 years). Two-hundred and seventeen decomposed MUs were organised into localised MU task groups with different (P < 0.001) force-direction-specific behaviour. Proportions of MUs involved in one, two, three or four examined tasks were 46%, 31%, 18% and 5%, respectively. This study provides evidence of the ability of the neuromuscular system to modify the mechanical output of small masseter subvolumes by differential control of adjacent MUs belonging to distinct task groups. Localised differential activation behaviour of the masseter may be the crucial factor enabling highly flexible and efficient adjustment of the muscle activity in response to complex local biomechanical needs, for example, continually varying bite-forces during the demanding masticatory process. © 2014 John Wiley & Sons Ltd.

  12. Modelling and simulation of multiple single - phase induction motor in parallel connection

    Directory of Open Access Journals (Sweden)

    Sujitjorn, S.

    2006-11-01

    Full Text Available A mathematical model for parallel connected n-multiple single-phase induction motors in generalized state-space form is proposed in this paper. The motor group draws electric power from one inverter. The model is developed by the dq-frame theory and was tested against four loading scenarios in which satisfactory results were obtained.

  13. Testing multiple coordination constraints with a novel bimanual visuomotor task.

    Directory of Open Access Journals (Sweden)

    Helene M Sisti

    Full Text Available The acquisition of a new bimanual skill depends on several motor coordination constraints. To date, coordination constraints have often been tested relatively independently of one another, particularly with respect to isofrequency and multifrequency rhythms. Here, we used a new paradigm to test the interaction of multiple coordination constraints. Coordination constraints that were tested included temporal complexity, directionality, muscle grouping, and hand dominance. Twenty-two healthy young adults performed a bimanual dial rotation task that required left and right hand coordination to track a moving target on a computer monitor. Two groups were compared, either with or without four days of practice with augmented visual feedback. Four directional patterns were tested such that both hands moved either rightward (clockwise, leftward (counterclockwise, inward or outward relative to each other. Seven frequency ratios (3∶1, 2∶1, 3∶2, 1∶1, 2∶3. 1∶2, 1∶3 between the left and right hand were introduced. As expected, isofrequency patterns (1∶1 were performed more successfully than multifrequency patterns (non 1∶1. In addition, performance was more accurate when participants were required to move faster with the dominant right hand (1∶3, 1∶2 and 2∶3 than with the non-dominant left hand (3∶1, 2∶1, 3∶2. Interestingly, performance deteriorated as the relative angular velocity between the two hands increased, regardless of whether the required frequency ratio was an integer or non-integer. This contrasted with previous finger tapping research where the integer ratios generally led to less error than the non-integer ratios. We suggest that this is due to the different movement topologies that are required of each paradigm. Overall, we found that this visuomotor task was useful for testing the interaction of multiple coordination constraints as well as the release from these constraints with practice in the presence of

  14. Effect of the cognitive-motor dual-task using auditory cue on balance of surviviors with chronic stroke: a pilot study.

    Science.gov (United States)

    Choi, Wonjae; Lee, GyuChang; Lee, Seungwon

    2015-08-01

    To investigate the effect of a cognitive-motor dual-task using auditory cues on the balance of patients with chronic stroke. Randomized controlled trial. Inpatient rehabilitation center. Thirty-seven individuals with chronic stroke. The participants were randomly allocated to the dual-task group (n=19) and the single-task group (n=18). The dual-task group performed a cognitive-motor dual-task in which they carried a circular ring from side to side according to a random auditory cue during treadmill walking. The single-task group walked on a treadmill only. All subjects completed 15 min per session, three times per week, for four weeks with conventional rehabilitation five times per week over the four weeks. Before and after intervention, both static and dynamic balance were measured with a force platform and using the Timed Up and Go (TUG) test. The dual-task group showed significant improvement in all variables compared to the single-task group, except for anteroposterior (AP) sway velocity with eyes open and TUG at follow-up: mediolateral (ML) sway velocity with eye open (dual-task group vs. single-task group: 2.11 mm/s vs. 0.38 mm/s), ML sway velocity with eye close (2.91 mm/s vs. 1.35 mm/s), AP sway velocity with eye close (4.84 mm/s vs. 3.12 mm/s). After intervention, all variables showed significant improvement in the dual-task group compared to baseline. The study results suggest that the performance of a cognitive-motor dual-task using auditory cues may influence balance improvements in chronic stroke patients. © The Author(s) 2014.

  15. Gait disorders in the elderly and dual task gait analysis: a new approach for identifying motor phenotypes.

    Science.gov (United States)

    Auvinet, Bernard; Touzard, Claude; Montestruc, François; Delafond, Arnaud; Goeb, Vincent

    2017-01-31

    allowed the identification of 3 motor phenotypes (p < 0.01), without any difference for white matter hyperintensities, but with an increased Scheltens score from the first to the third motor phenotype (p = 0.05). Gait analysis under dual-task conditions in elderly people suffering from gait disorders or memory impairment is of great value in assessing the severity of gait disorders, differentiating between peripheral pathologies and central nervous system pathologies, and identifying motor phenotypes. Correlations between motor phenotypes and brain imaging require further studies.

  16. Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task

    Directory of Open Access Journals (Sweden)

    Lorraine Perronnet

    2017-04-01

    Full Text Available Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and multimodal neurofeedback have never been compared before. In the present work, we introduce a simultaneous EEG-fMRI experimental protocol in which participants performed a motor-imagery task in unimodal and bimodal NF conditions. With this protocol we were able to compare for the first time the effects of unimodal EEG-neurofeedback and fMRI-neurofeedback versus bimodal EEG-fMRI-neurofeedback by looking both at EEG and fMRI activations. We also propose a new feedback metaphor for bimodal EEG-fMRI-neurofeedback that integrates both EEG and fMRI signal in a single bi-dimensional feedback (a ball moving in 2D. Such a feedback is intended to relieve the cognitive load of the subject by presenting the bimodal neurofeedback task as a single regulation task instead of two. Additionally, this integrated feedback metaphor gives flexibility on defining a bimodal neurofeedback target. Participants were able to regulate activity in their motor regions in all NF conditions. Moreover, motor activations as revealed by offline fMRI analysis were stronger during EEG-fMRI-neurofeedback than during EEG-neurofeedback. This result suggests that EEG-fMRI-neurofeedback could be more specific or more engaging than EEG-neurofeedback. Our results also suggest that during EEG-fMRI-neurofeedback, participants tended to regulate more the modality that was harder to control. Taken together our results shed first light on the specific mechanisms of bimodal EEG-fMRI-neurofeedback and on its added-value as compared to unimodal EEG-neurofeedback and fMRI-neurofeedback.

  17. Effect of task-oriented training and high-variability practice on gross motor performance and activities of daily living in children with spastic diplegia.

    Science.gov (United States)

    Kwon, Hae-Yeon; Ahn, So-Yoon

    2016-10-01

    [Purpose] This study investigates how a task-oriented training and high-variability practice program can affect the gross motor performance and activities of daily living for children with spastic diplegia and provides an effective and reliable clinical database for future improvement of motor performances skills. [Subjects and Methods] This study randomly assigned seven children with spastic diplegia to each intervention group including that of a control group, task-oriented training group, and a high-variability practice group. The control group only received neurodevelopmental treatment for 40 minutes, while the other two intervention groups additionally implemented a task-oriented training and high-variability practice program for 8 weeks (twice a week, 60 min per session). To compare intra and inter-relationships of the three intervention groups, this study measured gross motor performance measure (GMPM) and functional independence measure for children (WeeFIM) before and after 8 weeks of training. [Results] There were statistically significant differences in the amount of change before and after the training among the three intervention groups for the gross motor performance measure and functional independence measure. [Conclusion] Applying high-variability practice in a task-oriented training course may be considered an efficient intervention method to improve motor performance skills that can tune to movement necessary for daily livelihood through motor experience and learning of new skills as well as change of tasks learned in a complex environment or similar situations to high-variability practice.

  18. Decreased Modulation of EEG Oscillations in High-Functioning Autism During a Motor Control Task

    Directory of Open Access Journals (Sweden)

    Joshua Benjamin Ewen

    2016-05-01

    Full Text Available Autism spectrum disorders (ASD are thought to result in part from altered cortical excitatory-inhibitory balance; this pathophysiology may impact the generation of oscillations on EEG. We investigated premotor-parietal cortical physiology associated with praxis, which has strong theoretical and empirical associations with ASD symptomatology. 25 children with high-functioning ASD (HFA and 33 controls performed a praxis task involving the pantomiming of tool use, while EEG was recorded. We assessed task-related modulation of signal power in alpha and beta frequency bands. Compared with controls, subjects with HFA showed 27% less left central (motor/premotor beta (18-22 Hz event-related desynchronization (ERD (p = 0.030, as well as 24% less left parietal alpha (7-13 Hz ERD (p = 0.046. Within the HFA group, blunting of central ERD attenuation was associated with impairments in clinical measures of praxis imitation (r = -0.4; p = 0.04 and increased autism severity (r = 0.48; p = 0.016. The modulation of central beta activity is associated, among other things, with motor imagery, which may be necessary for imitation. Impaired imitation has been associated with core features of ASD. Altered modulation of oscillatory activity may be mechanistically involved in those aspects of motor network function that relate to the core symptoms of ASD.

  19. Multisensory integration in non-human primates during a sensory-motor task

    Directory of Open Access Journals (Sweden)

    Florian eLanz

    2013-11-01

    Full Text Available Daily our central nervous system receives inputs via several sensory modalities, processes them and integrates information in order to produce a suitable behaviour. The amazing part is that such a multisensory integration brings all information into a unified percept. An approach to start investigating this property is to show that perception is better and faster when multimodal stimuli are used as compared to unimodal stimuli. This forms the first part of the present study conducted in a non-human primate’s model (n=2 engaged in a detection sensory-motor task where visual and auditory stimuli were displayed individually or simultaneously. The measured parameters were the reaction time (RT between stimulus and onset of arm movement, successes and errors percentages, as well as the evolution as a function of time of these parameters with training. As expected, RTs were shorter when the subjects were exposed to combined stimuli. The gains for both subjects were around 20 and 40 msec, as compared with the auditory and visual stimulus alone, respectively. Moreover the number of correct responses increased in response to bimodal stimuli. We interpreted such multisensory advantage through redundant signal effect which decreases perceptual ambiguity, increases speed of stimulus detection and improves performance accuracy.The second part of the study presents single unit recordings derived from the premotor cortex (PM of the same subjects during the sensory-motor task. Response patterns to sensory/multisensory stimulation are documented and specific type proportions are reported. Characterization of bimodal neurons indicates a mechanism of audio-visual integration possibly through a decrease of inhibition. Nevertheless the neural processing leading to faster motor response from PM as a polysensory association cortical area remains still unclear.

  20. Dizzy people perform no worse at a motor imagery task requiring whole body mental rotation; a case-control comparison

    Directory of Open Access Journals (Sweden)

    Sarah B Wallwork

    2013-06-01

    Full Text Available We wanted to find out whether people who suffer from dizziness take longer than people who do not, to perform a motor imagery task that involves implicit whole body rotation. Our prediction was that people in the ‘dizzy’ group would take longer at a left/right neck rotation judgment task but not a left/right hand judgment task, because actually performing the former, but not the latter, would exacerbate their dizziness. Secondly, we predicted that when dizzy participants responded to neck rotation images, responses would be greatest when images were in the upside-down orientation; an orientation with greatest dizzy-provoking potential. To test this idea, we used a case-control comparison design. One hundred and eighteen participants who suffered from dizziness and 118 age, gender, arm pain and neck pain matched controls took part in the study. Participants undertook two motor imagery tasks; a left/right neck rotation judgment task and a left/right hand judgment task. The tasks were completed using the Recognise program; an on-line reaction time task program. Images of neck rotation were shown in four different orientations; 0°, 90°, 180° and 270°. Participants were asked to respond to each ‘neck’ image identifying it as either ‘right neck rotation’ or a ‘left neck rotation’, or for hands, a right or a left hand. Results showed that participants in the ‘dizzy’ group were slower than controls at both tasks (p= 0.015, but this was not related to task (p= 0.498. Similarly, ‘dizzy’ participants were not proportionally worse at images of different orientations (p= 0.878. Our findings suggest impaired performance in dizzy people, an impairment that may be confined to motor imagery or may extend more generally.

  1. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles?

    DEFF Research Database (Denmark)

    Hong, Zhang; Kumar, Abhishek; Kothari, Mohit

    2016-01-01

    The aim was to test the hypothesis that short-term oral sensorimotor training of the jaw muscles would increase the precision of task performance and induce neuroplastic changes in the corticomotor pathways, related to the masseter muscle. Fifteen healthy volunteers performed six series with ten...... trials of an oral sensorimotor task. The task was to manipulate and position a spherical chocolate candy in between the anterior teeth and split it into two equal halves. The precision of the task performance was evaluated by comparing the ratio between the two split halves. A series of "hold......-and-split" tasks was also performed before and after the training. The hold force and split force along with the electromyographic (EMG) activity of jaw muscles were recorded. Motor-evoked potentials and cortical motor maps of the right masseter muscle were evoked by transcranial magnetic stimulation...

  2. Motor cortex is required for learning but not executing a motor skill

    Science.gov (United States)

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  3. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion

    Science.gov (United States)

    Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.

    2017-01-01

    The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

  4. Sleep-related offline improvements in gross motor task performance occur under free recall requirements

    Directory of Open Access Journals (Sweden)

    Andreas eMalangre

    2016-03-01

    Full Text Available Nocturnal sleep effects on memory consolidation following gross motor sequence learning were examined using a complex arm movement task. This task required participants to produce non-regular spatial patterns in the horizontal plane by successively fitting a small peg into different target-holes on an electronic pegboard. The respective reaching movements typically differed in amplitude and direction. Targets were visualized prior to each transport movement on a computer screen. With this task we tested 18 subjects (22.6 +/- 1.9 years; 8 female using a between-subjects design. Participants initially learned a 10-element arm movement sequence either in the morning or in the evening. Performance was retested under free recall requirements 15 minutes post training, as well as 12 hrs and 24 hrs later. Thus each group was provided with one sleep-filled and one wake retention interval. Dependent variables were error rate (number of erroneous sequences and average sequence execution time (correct sequences only. Performance improved during acquisition. Error rate remained stable across retention. Sequence execution time (inverse to execution speed significantly decreased again during the sleep-filled retention intervals, but remained stable during the respective wake intervals. These results corroborate recent findings on sleep-related enhancement consolidation in ecological valid, complex gross motor tasks. At the same time they suggest this effect to be truly memory-based and independent from repeated access to extrinsic sequence information during retests.

  5. Protocol for a randomized comparison of integrated versus consecutive dual task practice in Parkinson's disease: the DUALITY trial

    NARCIS (Netherlands)

    Strouwen, C.; Molenaar, E.A.L.M.; Keus, S.H.J.; Munks, L.; Munneke, M.; Vandenberghe, W.; Bloem, B.R.; Nieuwboer, A.

    2014-01-01

    BACKGROUND: Multiple tasking is an integral part of daily mobility. Patients with Parkinson's disease have dual tasking difficulties due to their combined motor and cognitive deficits. Two contrasting physiotherapy interventions have been proposed to alleviate dual tasking difficulties: either to

  6. Proactive and retroactive transfer of middle age adults in a sequential motor learning task

    NARCIS (Netherlands)

    Verneau, M.; Kamp, J. van der; Savelsbergh, G,J.; Looze, M.P. de

    2015-01-01

    We assessed the effects of aging in the transfer of motor learning in a sequential manual assembly task that is representative for real working conditions. On two different days, young (18-30years) and middle-aged adults (50-65years) practiced to build two products that consisted of the same six

  7. Proactive and Retroactive transfer of middle age adults in a sequential motor learing task

    NARCIS (Netherlands)

    Verneau, M.M.N.; van der Kamp, G.J.; Savelsbergh, G.J.P.; de Looze, M.P.

    2015-01-01

    We assessed the effects of aging in the transfer of motor learning in a sequential manual assembly task that is representative for real working conditions. On two different days, young (18-30. years) and middle-aged adults (50-65. years) practiced to build two products that consisted of the same six

  8. Perceptual-motor skill learning in Gilles de la Tourette syndrome. Evidence for multiple procedural learning and memory systems.

    Science.gov (United States)

    Marsh, Rachel; Alexander, Gerianne M; Packard, Mark G; Zhu, Hongtu; Peterson, Bradley S

    2005-01-01

    Procedural learning and memory systems likely comprise several skills that are differentially affected by various illnesses of the central nervous system, suggesting their relative functional independence and reliance on differing neural circuits. Gilles de la Tourette syndrome (GTS) is a movement disorder that involves disturbances in the structure and function of the striatum and related circuitry. Recent studies suggest that patients with GTS are impaired in performance of a probabilistic classification task that putatively involves the acquisition of stimulus-response (S-R)-based habits. Assessing the learning of perceptual-motor skills and probabilistic classification in the same samples of GTS and healthy control subjects may help to determine whether these various forms of procedural (habit) learning rely on the same or differing neuroanatomical substrates and whether those substrates are differentially affected in persons with GTS. Therefore, we assessed perceptual-motor skill learning using the pursuit-rotor and mirror tracing tasks in 50 patients with GTS and 55 control subjects who had previously been compared at learning a task of probabilistic classifications. The GTS subjects did not differ from the control subjects in performance of either the pursuit rotor or mirror-tracing tasks, although they were significantly impaired in the acquisition of a probabilistic classification task. In addition, learning on the perceptual-motor tasks was not correlated with habit learning on the classification task in either the GTS or healthy control subjects. These findings suggest that the differing forms of procedural learning are dissociable both functionally and neuroanatomically. The specific deficits in the probabilistic classification form of habit learning in persons with GTS are likely to be a consequence of disturbances in specific corticostriatal circuits, but not the same circuits that subserve the perceptual-motor form of habit learning.

  9. Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    Science.gov (United States)

    Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.

    2013-01-01

    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843

  10. Developmental Differences in Motor Task Integration: A Test of Pascual-Leone's Theory of Constructive Operators.

    Science.gov (United States)

    Todor, John I.

    1979-01-01

    Assesses the ability of Pascual-Leone's Theory of Constructive Operators to predict the minimum age or maturational level at which integration of a motor task could be achieved. Subjects were 114 elementary school children ranging in age from 5 to 12. (Author/MP)

  11. Motor demand-dependent activation of ipsilateral motor cortex.

    Science.gov (United States)

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  12. Motor learning in a complex balance task and associated neuroplasticity: a comparison between endurance athletes and nonathletes.

    Science.gov (United States)

    Seidel, Oliver; Carius, Daniel; Kenville, Rouven; Ragert, Patrick

    2017-09-01

    Studies suggested that motor expertise is associated with functional and structural brain alterations, which positively affect sensorimotor performance and learning capabilities. The purpose of the present study was to unravel differences in motor skill learning and associated functional neuroplasticity between endurance athletes (EA) and nonathletes (NA). For this purpose, participants had to perform a multimodal balance task (MBT) training on 2 sessions, which were separated by 1 wk. Before and after MBT training, a static balance task (SBT) had to be performed. MBT-induced functional neuroplasticity and neuromuscular alterations were assessed by means of functional near-infrared spectroscopy (fNIRS) and electromyography (EMG) during SBT performance. We hypothesized that EA would showed superior initial SBT performance and stronger MBT-induced improvements in SBT learning rates compared with NA. On a cortical level, we hypothesized that MBT training would lead to differential learning-dependent functional changes in motor-related brain regions [such as primary motor cortex (M1)] during SBT performance. In fact, EA showed superior initial SBT performance, whereas learning rates did not differ between groups. On a cortical level, fNIRS recordings (time × group interaction) revealed a stronger MBT-induced decrease in left M1 and inferior parietal lobe (IPL) for deoxygenated hemoglobin in EA. Even more interesting, learning rates were correlated with fNIRS changes in right M1/IPL. On the basis of these findings, we provide novel evidence for superior MBT training-induced functional neuroplasticity in highly trained athletes. Future studies should investigate these effects in different sports disciplines to strengthen previous work on experience-dependent neuroplasticity. NEW & NOTEWORTHY Motor expertise is associated with functional/structural brain plasticity. How such neuroplastic reorganization translates into altered motor learning processes remains elusive. We

  13. Motor cortex is required for learning but not for executing a motor skill.

    Science.gov (United States)

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Influence of age, circadian and homeostatic processes on inhibitory motor control: a Go/Nogo task study.

    Directory of Open Access Journals (Sweden)

    Patricia Sagaspe

    Full Text Available INTRODUCTION: The contribution of circadian system and sleep pressure influences on executive performance as a function of age has never been studied. The aim of our study was to determine the age-related evolution of inhibitory motor control (i.e., ability to suppress a prepotent motor response and sustained attention under controlled high or low sleep pressure conditions. METHODS: 14 healthy young males (mean age = 23 ± 2.7; 20-29 years and 11 healthy older males (mean age = 68 ± 1.4; 66-70 years were recruited. The volunteers were placed for 40 hours in "constant routine". In the "Sleep Deprivation SD" condition, the volunteer was kept awake for 40 hours to obtain a high sleep pressure condition interacting with the circadian process. In the "NAP" condition, the volunteer adopted a short wake/sleep cycle (150/75 min resulting in a low sleep pressure condition to counteract the homeostatic pressure and investigate the circadian process. Performances were evaluated by a simple reaction time task and a Go/Nogo task repeated every 3H45. RESULTS: In the SD condition, inhibitory motor control (i.e., ability to inhibit an inappropriate response was impaired by extended wakefulness equally in both age groups (P<.01. Sustained attention (i.e. ability to respond accurately to appropriate stimuli on the executive task decreased under sleep deprivation in both groups, and even more in young participants (P<.05. In the NAP condition, age did not influence the time course of inhibitory motor control or sustained attention. In the SD and NAP conditions, older participants had a less fluctuating reaction time performance across time of day than young participants (P<.001. CONCLUSION: Aging could be a protective factor against the effects of extended wakefulness especially on sustained attention failures due to an attenuation of sleep pressure with duration of time awake.

  15. Two-phase strategy of controlling motor coordination determined by task performance optimality.

    Science.gov (United States)

    Shimansky, Yury P; Rand, Miya K

    2013-02-01

    A quantitative model of optimal coordination between hand transport and grip aperture has been derived in our previous studies of reach-to-grasp movements without utilizing explicit knowledge of the optimality criterion or motor plant dynamics. The model's utility for experimental data analysis has been demonstrated. Here we show how to generalize this model for a broad class of reaching-type, goal-directed movements. The model allows for measuring the variability of motor coordination and studying its dependence on movement phase. The experimentally found characteristics of that dependence imply that execution noise is low and does not affect motor coordination significantly. From those characteristics it is inferred that the cost of neural computations required for information acquisition and processing is included in the criterion of task performance optimality as a function of precision demand for state estimation and decision making. The precision demand is an additional optimized control variable that regulates the amount of neurocomputational resources activated dynamically. It is shown that an optimal control strategy in this case comprises two different phases. During the initial phase, the cost of neural computations is significantly reduced at the expense of reducing the demand for their precision, which results in speed-accuracy tradeoff violation and significant inter-trial variability of motor coordination. During the final phase, neural computations and thus motor coordination are considerably more precise to reduce the cost of errors in making a contact with the target object. The generality of the optimal coordination model and the two-phase control strategy is illustrated on several diverse examples.

  16. Multiple stage miniature stepping motor

    International Nuclear Information System (INIS)

    Niven, W.A.; Shikany, S.D.; Shira, M.L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed

  17. The influence of motor imagery on the learning of a fine hand motor skill

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; Verwey, Willem B.; van der Lubbe, Rob

    2017-01-01

    Motor imagery has been argued to affect the acquisition of motor skills. The present study examined the specificity of motor imagery on the learning of a fine hand motor skill by employing a modified discrete sequence production task: the Go/NoGo DSP task. After an informative cue, a response

  18. Transfer of Short-Term Motor Learning across the Lower Limbs as a Function of Task Conception and Practice Order

    Science.gov (United States)

    Stockel, Tino; Wang, Jinsung

    2011-01-01

    Interlimb transfer of motor learning, indicating an improvement in performance with one limb following training with the other, often occurs asymmetrically (i.e., from non-dominant to dominant limb or vice versa, but not both). In the present study, we examined whether interlimb transfer of the same motor task could occur asymmetrically and in…

  19. Reconciling the influence of task-set switching and motor inhibition processes on stop signal after-effects.

    Science.gov (United States)

    Anguera, Joaquin A; Lyman, Kyle; Zanto, Theodore P; Bollinger, Jacob; Gazzaley, Adam

    2013-01-01

    Executive response functions can be affected by preceding events, even if they are no longer associated with the current task at hand. For example, studies utilizing the stop signal task have reported slower response times to "GO" stimuli when the preceding trial involved the presentation of a "STOP" signal. However, the neural mechanisms that underlie this behavioral after-effect are unclear. To address this, behavioral and electroencephalography (EEG) measures were examined in 18 young adults (18-30 years) on "GO" trials following a previously "Successful Inhibition" trial (pSI), a previously "Failed Inhibition" trial (pFI), and a previous "GO" trial (pGO). Like previous research, slower response times were observed during both pSI and pFI trials (i.e., "GO" trials that were preceded by a successful and unsuccessful inhibition trial, respectively) compared to pGO trials (i.e., "GO" trials that were preceded by another "GO" trial). Interestingly, response time slowing was greater during pSI trials compared to pFI trials, suggesting executive control is influenced by both task set switching and persisting motor inhibition processes. Follow-up behavioral analyses indicated that these effects resulted from between-trial control adjustments rather than repetition priming effects. Analyses of inter-electrode coherence (IEC) and inter-trial coherence (ITC) indicated that both pSI and pFI trials showed greater phase synchrony during the inter-trial interval compared to pGO trials. Unlike the IEC findings, differential ITC was present within the beta and alpha frequency bands in line with the observed behavior (pSI > pFI > pGO), suggestive of more consistent phase synchrony involving motor inhibition processes during the ITI at a regional level. These findings suggest that between-trial control adjustments involved with task-set switching and motor inhibition processes influence subsequent performance, providing new insights into the dynamic nature of executive control.

  20. Modeling task-specific neuronal ensembles improves decoding of grasp

    Science.gov (United States)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more

  1. Balance Training Reduces Brain Activity during Motor Simulation of a Challenging Balance Task in Older Adults: An fMRI Study.

    Science.gov (United States)

    Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang

    2018-01-01

    Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.

  2. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  3. Quantitative assessment of finger motor impairment in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Laura Bonzano

    Full Text Available OBJECTIVE: To address the disability impact on fine hand motor functions in patients with Multiple Sclerosis (MS by quantitatively measuring finger opposition movements, with the aim of providing a new "score" integrating current methods for disability assessment. METHODS: 40 MS patients (Expanded Disability Status Scale (EDSS: 0-7 and 80 healthy controls (HC performed a repetitive finger-to-thumb opposition sequence with their dominant hand at spontaneous and maximal velocity, and uni- and bi-manually metronome-paced. A sensor-engineered glove was used to measure finger motor performance. Twenty-seven HC were tested twice, one month apart, to assess test-retest reliability. RESULTS: The motor parameters showed a good reproducibility in HC and demonstrated significantly worse performance in MS patients with respect to HC. A multivariate model revealed that rate of movement in the spontaneous velocity condition and inter-hand interval (IHI, indicating bimanual coordination, contributed independently to differentiate the two groups. A finger motor impairment score based on these two parameters was able to discriminate HC from MS patients with very low EDSS scores (p<0.001: a significant difference was already evident for patients with EDSS = 0. Further, in the MS group, some motor performance parameters correlated with the clinical scores. In particular, significant correlations were found between IHI and EDSS (r = 0.56; p<0.0001, MS Functional Composite (r = -0.40; p = 0.01, Paced Auditory Serial Addition (r = -0.38; p = 0.02. No motor performance parameter correlated with Timed 25-Foot Walk. CONCLUSIONS: A simple, quantitative, objective method measuring finger motor performance could be used to define a score discriminating healthy controls and MS patients, even with very low disability. This sensitivity might be of crucial importance for monitoring the disease course and the treatment effects in early MS patients, when

  4. BIOFEEDBACK: A NEW METHOD FOR CORRECTION OF MOTOR DISORDERS IN PATIENTS WITH MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    Ya. S. Pekker

    2014-01-01

    Full Text Available Major disabling factors in multiple sclerosis is motor disorders. Rehabilitation of such violations is one of the most important medical and social problems. Currently, most of the role given to the development of methods for correction of motor disorders based on accessing natural resources of the human body. One of these methods is the adaptive control with biofeedback (BFB. The aim of our study was the correction of motor disorders in multiple sclerosis patients using biofeedback training. In the study, we have developed scenarios for training rehabilitation program computer EMG biofeedback aimed at correction of motor disorders in patients with multiple sclerosis (MS. The method was tested in the neurological clinic of SSMU. The study included 9 patients with definite diagnosis of MS with the presence of the clinical picture of combined pyramidal and cerebellar symptoms. Assessed the effectiveness of rehabilitation procedures biofeedback training using specialized scales (rating scale functional systems Kurtzke; questionnaire research quality of life – SF-36, evaluation of disease impact Profile – SIP and score on a scale fatigue – FSS. In the studied group of patients decreased score on a scale of fatigue (FSS, increased motor control (SIP2, the physical and mental components of health (SF-36. The tendency to reduce the amount of neurological deficit by reducing the points on the pyramidal Kurtske violations. Analysis of the exchange rate dynamics of biofeedback training on EMG for trained muscles indicates an increase in the recorded signal OEMG from session to session. Proved a tendency to increase strength and coordination trained muscles of patients studied.Positive results of biofeedback therapy in patients with MS can be recommended to use this method in the complex rehabilitation measures to correct motor and psycho-emotional disorders.

  5. The neural network involved in a bimanual tactile-tactile matching discrimination task: a functional imaging study at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Christophe; Cabanis, Emmanuel A. [UPMC Paris 6, Service de NeuroImagerie, Hopital des Quinze-Vingts, Paris (France)

    2007-08-15

    The cerebral and cerebellar network involved in a bimanual object recognition was studied in blood oxygenation dependent level functional magnetic resonance imaging (fMRI). Nine healthy right-handed volunteers were scanned (1) while performing bilateral finger movements (nondiscrimination motor task), and (2) while performing a bimanual tactile-tactile matching discrimination task using small chess pieces (tactile discrimination task). Extensive activations were specifically observed in the parietal (SII, superior lateral lobule), insular, prefrontal, cingulate and neocerebellar cortices (HVIII), with a left predominance in motor areas, during the tactile discrimination task in contrast to the findings during the nondiscrimination motor task. Bimanual tactile-tactile matching discrimination recruits multiple sensorimotor and associative cerebral and neocerebellar networks (including the cerebellar second homunculus, HVIII), comparable to the neural circuits involved in unimanual tactile object recognition. (orig.)

  6. A Two-Level Task Scheduler on Multiple DSP System for OpenCL

    Directory of Open Access Journals (Sweden)

    Li Tian

    2014-04-01

    Full Text Available This paper addresses the problem that multiple DSP system does not support OpenCL programming. With the compiler, runtime, and the kernel scheduler proposed, an OpenCL application becomes portable not only between multiple CPU and GPU, but also between embedded multiple DSP systems. Firstly, the LLVM compiler was imported for source-to-source translation in which the translated source was supported by CCS. Secondly, two-level schedulers were proposed to support efficient OpenCL kernel execution. The DSP/BIOS is used to schedule system level tasks such as interrupts and drivers; however, the synchronization mechanism resulted in heavy overhead during task switching. So we designed an efficient second level scheduler especially for OpenCL kernel work-item scheduling. The context switch process utilizes the 8 functional units and cross path links which was superior to DSP/BIOS in the aspect of task switching. Finally, dynamic loading and software managed CACHE were redesigned for OpenCL running on multiple DSP system. We evaluated the performance using some common OpenCL kernels from NVIDIA, AMD, NAS, and Parboil benchmarks. Experimental results show that the DSP OpenCL can efficiently exploit the computing resource of multiple cores.

  7. Reduced Dual-Task Performance in MS Patients Is Further Decreased by Muscle Fatigue.

    Science.gov (United States)

    Wolkorte, Ria; Heersema, Dorothea J; Zijdewind, Inge

    2015-06-01

    Multiple sclerosis (MS) can be accompanied by motor, cognitive, and sensory impairments. Additionally, MS patients often report fatigue as one of their most debilitating symptoms. It is, therefore, expected that MS patients will have difficulties in performing cognitive-motor dual tasks (DTs), especially in a fatiguing condition. To determine whether MS patients are more challenged by a DT than controls in a fatiguing and less-fatiguing condition and whether DT performance is associated with perceived fatigue. A group of 19 MS patients and 19 age-, sex-, and education-matched controls performed a cognitive task (2-choice reaction time task) separately or concurrent with a low-force or a high-force motor task (index finger abduction at 10% or 30% maximal voluntary contraction). MS patients performed less well on a cognitive task than controls. Cognitive task performance under DT conditions decreased more for MS patients. Moreover, under high-force DT conditions, cognitive performance declined in both groups but to a larger degree for MS patients. Besides a decline in cognitive task performance, MS patients also showed a stronger decrease in motor performance under high-force DT conditions. DT costs were positively related to perceived fatigue as measured by questionnaires. Compared with controls, MS patients performed less well on DTs as demonstrated by a reduction in both cognitive and motor performances. This performance decrease was stronger under fatiguing conditions and was related to the sense of fatigue of MS patients. These data illustrate problems that MS patients may encounter in daily life because of their fatigue. © The Author(s) 2014.

  8. Effects of dual task difficulty in motor and cognitive performance: Differences between adults and adolescents.

    Science.gov (United States)

    Bustillo-Casero, Pilar; Villarrasa-Sapiña, Israel; García-Massó, Xavier

    2017-10-01

    In the present study our aim was to compare dual-task performance in thirteen adolescents and fifteen young adults while concurrently performing a cognitive and a motor task. The postural control variables were obtained under three different conditions: i) bipedal stance, ii) tandem stance and iii) unipedal stance. The cognitive task consisted of a backward digit span test in which the participants were asked to memorize a sequence of numbers and then repeat the number in reverse order at three different difficulty levels (i.e. with 3, 4 and 5 digits). The difficulty of the cognitive task was seen to have different effects on adolescents and young adults. Adolescents seem to prioritize postural control during high difficulty postural conditions while a cross-domain competition model appeared in easy postural conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  10. Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577

  11. Brief Overview of Motor Learning and It's Application to Rehabilitation: Part Ⅰ: Motor Learning Theory

    Institute of Scientific and Technical Information of China (English)

    Christopher A Zaino

    2003-01-01

    @@ 1 DEFINITION OF MOTOR LEARNING Motor learning is the study of how we acquire and modify movements.1 The acquisition of motor skills is the process of learning how to do a particular movement (performance), but the real key to therapeutic intervention is being able to affect permanent changes in motor skills via the process of motor learning. Therefore, motor learning is defined as the ability to retain the ability to perform a motor task at a later time. In rehabilitation, it is important to be cognizant of the concepts of acquisition and retention. We can facilitate acquisition,but do little to assist in the retention of the task (learning). Conversely, we can arrange practice such that acquisition is slowed, but we can actually be assisting learning the task. It is important to have a clear goal in mind and work towards the eventual learning of the task to allow full functional use of that skill.

  12. Changes in ipsilateral motor cortex activity during a unilateral isometric finger task are dependent on the muscle contraction force

    International Nuclear Information System (INIS)

    Shibuya, Kenichi; Kuboyama, Naomi; Tanaka, Junya

    2014-01-01

    It is possible to examine bilateral primary motor cortex (M1) activation during a sustained motor task using near-infrared spectroscopy (NIRS), in which it is assumed that increased oxygenation reflects cortical activation. The purpose of this study was to examine bilateral M1 activation in response to graded levels of force production during a unilateral finger task. Ten healthy right-handed male subjects participated in this study. NIRS probes were placed over the cortex to measure M1 activity while the subjects performed the finger task. The subjects performed a 10 s finger task at 20%, 40%, and 60% of the maximal voluntary contraction (MVC). Symmetrical activation was found over both M1 areas at all force levels investigated. In the contralateral M1, there were significant differences in oxygenation between 20% and 60% MVC, as well as between 40% and 60% MVC. In the ipsilateral M1, there were significant differences among all force levels. These results indicate the ipsilateral M1 takes part in muscle force control. (paper)

  13. Learning by observing: the effect of multiple sessions of action-observation training on the spontaneous movement tempo and motor resonance.

    Science.gov (United States)

    Lagravinese, Giovanna; Bisio, Ambra; Ruggeri, Piero; Bove, Marco; Avanzino, Laura

    2017-02-01

    The present study was designed to explore the changes in motor performance and motor resonance after multiple sessions of action observation (AO) training. Subjects were exposed to the observation of a video showing finger tapping movements executed at 3Hz, a frequency higher than the spontaneous one (2Hz) for four consecutive days. Motor performance and motor resonance were tested before the AO training on the first day, and on the last day. Results showed that multiple sessions of AO training induced a shift of the speed of execution of finger tapping movements toward the observed one and a change in motor resonance. Before the 3Hz-AO training cortical excitability was highest during the observation of the 2Hz video. This motor resonance effect was lost after one single session of 3Hz-AO training whereas after multiple sessions of 3Hz-AO training cortical excitability was highest during the observation of the 3Hz video. Our study shows for the first time that multiple sessions of AO training are able not only to induce performance gains but also to change the way by which the observer's motor system recognizes a certain movement as belonging to the individual motor repertoire. These results may encourage the development of novel rehabilitative protocols based on multiple sessions of action observation aimed to regain a correct movement when its spontaneous speed is modified by pathologies or to modify the innate temporal properties of certain movements. Copyright © 2017. Published by Elsevier Ltd.

  14. Relation between location of a motor unit in the human biceps brachii and its critical firing levels for different tasks

    NARCIS (Netherlands)

    Gielen, C.C.A.M.; Haar Romeny, B.M. ter; Gon, J.J.D. van der

    1984-01-01

    Critical firing levels (CFLs) of single motor units (MUs) in the long head of the human biceps brachii muscle were determined in combinations of two isometric tasks: flexion of the elbow, supination of the lower arm, and exorotation of the humerus, as well as the corresponding antagonistic tasks.

  15. The impact of positive, negative and neutral stimuli in a virtual reality cognitive-motor rehabilitation task: a pilot study with stroke patients.

    Science.gov (United States)

    Cameirão, Mónica S; Faria, Ana Lúcia; Paulino, Teresa; Alves, Júlio; Bermúdez I Badia, Sergi

    2016-08-09

    Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation, but there is increasing interest in integrating motor and cognitive training to increase similarity to real-world settings. Unfortunately, more research is needed for the definition of which type of content should be used in the design of these tools. One possibility is the use of emotional stimuli, which are known to enhance attentional processes. According to the Socioemotional Selectivity Theory, as people age, the emotional salience arises for positive and neutral, but not for negative stimuli. For this study we developed a cognitive-motor VR task involving attention and short-term memory, and we investigated the impact of using emotional images of varying valence. The task consisted of finding a target image, shown for only two seconds, among fourteen neutral distractors, and selecting it through arm movements. After performing the VR task, a recall task took place and the patients had to identify the target images among a valence-matched number of distractors. Ten stroke patients participated in a within-subjects experiment with three conditions based on the valence of the images: positive, negative and neutral. Eye movements were recorded during VR task performance with an eye tracking system. Our results show decreased attention for negative stimuli in the VR task performance when compared to neutral stimuli. The recall task shows significantly more wrongly identified images (false memories) for negative stimuli than for neutral. Regression and correlation analyses with the Montreal Cognitive Assessment and the Geriatric Depression Scale revealed differential effects of cognitive function and depressive symptomatology in the encoding and recall of positive, negative and neutral images. Further, eye movement data shows reduced search patterns for wrongly selected stimuli containing emotional content. The results of this study suggest that it is feasible

  16. Reconciling the influence of task-set switching and motor inhibition processes on stop signal after-effects

    Directory of Open Access Journals (Sweden)

    Joaquin A. Anguera

    2013-09-01

    Full Text Available Executive response functions can be affected by preceding events, even if they are no longer associated with the current task at hand. For example, studies utilizing the stop signal task have reported slower response times to ‘GO’ stimuli when the preceding trial involved the presentation of a ‘STOP’ signal. However, the neural mechanisms that underlie this behavioral after-effect are unclear. To address this, behavioral and electroencephalography (EEG measures were examined in 18 young adults (18-30yrs on 'GO' trials following a previously ‘Successful Inhibition’ trial (pSI, a previously ‘Failed Inhibition’ trial (pFI, and a previous ‘GO’ trial (pGO. Like previous research, slower response times were observed during both pSI and pFI trials (i.e., ‘GO’ trials that were preceded by a successful and unsuccessful inhibition trial, respectively compared to pGO trials (i.e., ‘GO’ trials that were preceded by another ‘GO’ trial. Interestingly, response time slowing was greater during pSI trials compared to pFI trials, suggesting executive control is influenced by both task set switching and persisting motor inhibition processes. Follow-up behavioral analyses indicated that these effects resulted from between-trial control adjustments rather than repetition priming effects. Analyses of inter-electrode coherence (IEC and inter-trial coherence (ITC indicated that both pSI and pFI trials showed greater phase synchrony during the inter-trial interval compared to pGO trials. Unlike the IEC findings, differential ITC was present within the beta and alpha frequency bands in line with the observed behavior (pSI > pFI > pGO, suggestive of more consistent phase synchrony involving motor inhibition processes during the ITI at a regional level. These findings suggest that between-trial control adjustments involved with task-set switching and motor inhibition processes influence subsequent performance, providing new insights into the

  17. Motor adaptation capacity as a function of age in carrying out a repetitive assembly task at imposed work paces.

    Science.gov (United States)

    Gilles, Martine Annie; Guélin, Jean-Charles; Desbrosses, Kévin; Wild, Pascal

    2017-10-01

    The working population is getting older. Workers must adapt to changing conditions to respond to the efforts required by the tasks they have to perform. In this laboratory-based study, we investigated the capacities of motor adaptation as a function of age and work pace. Two phases were identified in the task performed: a collection phase, involving dominant use of the lower limbs; and an assembly phase, involving bi-manual motor skills. Results showed that senior workers were mainly limited during the collection phase, whereas they had less difficulty completing the assembly phase. However, senior workers did increase the vertical force applied while assembling parts, whatever the work pace. In younger and middle-aged subjects, vertical force was increased only for the faster pace. Older workers could adapt to perform repetitive tasks under different time constraints, but adaptation required greater effort than for younger workers. These results point towards a higher risk of developing musculoskeletal disorders among seniors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of aripiprazole and haloperidol on neural activation during a simple motor task in healthy individuals: A functional MRI study.

    Science.gov (United States)

    Goozee, Rhianna; O'Daly, Owen; Handley, Rowena; Reis Marques, Tiago; Taylor, Heather; McQueen, Grant; Hubbard, Kathryn; Pariante, Carmine; Mondelli, Valeria; Reinders, Antje A T S; Dazzan, Paola

    2017-04-01

    The dopaminergic system plays a key role in motor function and motor abnormalities have been shown to be a specific feature of psychosis. Due to their dopaminergic action, antipsychotic drugs may be expected to modulate motor function, but the precise effects of these drugs on motor function remain unclear. We carried out a within-subject, double-blind, randomized study of the effects of aripiprazole, haloperidol and placebo on motor function in 20 healthy men. For each condition, motor performance on an auditory-paced task was investigated. We entered maps of neural activation into a random effects general linear regression model to investigate motor function main effects. Whole-brain imaging revealed a significant treatment effect in a distributed network encompassing posterior orbitofrontal/anterior insula cortices, and the inferior temporal and postcentral gyri. Post-hoc comparison of treatments showed neural activation after aripiprazole did not differ significantly from placebo in either voxel-wise or region of interest analyses, with the results above driven primarily by haloperidol. We also observed a simple main effect of haloperidol compared with placebo, with increased task-related recruitment of posterior cingulate and precentral gyri. Furthermore, region of interest analyses revealed greater activation following haloperidol compared with placebo in the precentral and post-central gyri, and the putamen. These diverse modifications in cortical motor activation may relate to the different pharmacological profiles of haloperidol and aripiprazole, although the specific mechanisms underlying these differences remain unclear. Evaluating healthy individuals can allow investigation of the effects of different antipsychotics on cortical activation, independently of either disease-related pathology or previous treatment. Hum Brain Mapp 38:1833-1845, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Functional MRI in human motor control studies and clinical applications

    International Nuclear Information System (INIS)

    Toma, Keiichiro

    2002-01-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  20. Functional MRI in human motor control studies and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Toma, Keiichiro [Kyoto Univ. (Japan). Graduate School of Medicine; Nakai, Toshiharu [Inst. of Biomedical Research and Innovation, Kobe (Japan)

    2002-07-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  1. Motor intensive anti-gravity training improves performance in dynamic balance related tasks in persons with Parkinson's disease

    DEFF Research Database (Denmark)

    Malling, Anne Sofie Bøgh; Jensen, Bente Rona

    2016-01-01

    , the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive...... antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development...

  2. Relationships between Task-Oriented Postural Control and Motor Ability in Children and Adolescents with Down Syndrome

    Science.gov (United States)

    Wang, Hui-Yi; Long, I-Man; Liu, Mei-Fang

    2012-01-01

    Individuals with Down syndrome (DS) have been characterized by greater postural sway in quiet stance and insufficient motor ability. However, there is a lack of studies to explore the properties of dynamic postural sway, especially under conditions of task-oriented movement. The purpose of this study was to investigate the relationships between…

  3. Intervention modalities for targeting cognitive-motor interference in individuals with neurodegenerative disease: a systematic review.

    Science.gov (United States)

    Wajda, Douglas A; Mirelman, Anat; Hausdorff, Jeffrey M; Sosnoff, Jacob J

    2017-03-01

    Individuals with neurodegenerative disease (NDD) commonly have elevated cognitive-motor interference, change in either cognitive or motor performance (or both) when tasks are performed simultaneously, compared to healthy controls. Given that cognitive-motor interference is related to reduced community ambulation and elevated fall risk, it is a target of rehabilitation interventions. Areas covered: This review details the collective findings of previous dual task interventions in individuals with NDD. A total of 21 investigations focusing on 4 different neurodegenerative diseases and one NDD precursor (Parkinson's disease, multiple sclerosis, Alzheimer's disease (AD), dementia other than AD, and mild cognitive impairment) consisting of 721 participants were reviewed. Expert commentary: Preliminary evidence from interventions targeting cognitive-motor interference, both directly and indirectly, show promising results for improving CMI in individuals with neurodegenerative diseases. Methodological limitations, common to pilot investigations preclude firm conclusions. Well-designed randomized control trials targeting cognitive motor interference are warranted.

  4. Equal prefrontal cortex activation between males and females in a motor tasks and different visual imagery perspectives: a functional near-infrared spectroscopy (fNIRS study

    Directory of Open Access Journals (Sweden)

    Thiago F. Dias Kanthack

    2013-09-01

    Full Text Available The purpose of this study was to compare the prefrontal cortex (PFC blood flow variation and time on in males and females while performing a motor task and imagery perspectives. Eighteen right handed subjects (11 males and 7 females were volunteers to this study. All subjects went through three randomly conditions, a motor task condition (MT in which they had to do a simple finger tap. The other conditions included practicing imagery in first and third views. During all the conditions, the fNIRS device was attached to the subject forehead to obtain the blood flow; the total time in each task which was measured with a chronometer. No difference had been found in any condition for both sexes in the PFC and time, nor for all subjects integrated in the PFC. Therefore, we conclu-de that both imageries can be used to mentally train a motor task, and probably both sexes can be benefited.

  5. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Directory of Open Access Journals (Sweden)

    Thomas D. GRIFFIN

    2012-10-01

    Full Text Available The main goal for the current study was to investigate whether individual differences in domaingeneral thinking dispositions might affect learning from multiple-document inquiry tasks in science.Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be different from what has been observed in the past from those documents. Understanding was assessed with two measures: an essay task and an inference verification task. Domain-general thinking dispositions were assessed with a Commitment to Logic, Evidence, and Reasoning (CLEAR thinking scale. The measures of understanding wereuniquely predicted by both reading skills and CLEAR thinking scores, and these effects were not attributable to prior knowledge or interest. The results suggest independent roles for thinkingdispositions and reading ability when students read to learn from multiple-document inquiry tasks in science.

  6. Effects of hand orientation on motor imagery--event related potentials suggest kinesthetic motor imagery to solve the hand laterality judgment task.

    Science.gov (United States)

    Jongsma, Marijtje L A; Meulenbroek, Ruud G J; Okely, Judith; Baas, C Marjolein; van der Lubbe, Rob H J; Steenbergen, Bert

    2013-01-01

    Motor imagery (MI) refers to the process of imagining the execution of a specific motor action without actually producing an overt movement. Two forms of MI have been distinguished: visual MI and kinesthetic MI. To distinguish between these forms of MI we employed an event related potential (ERP) study to measure interference effects induced by hand orientation manipulations in a hand laterality judgement task. We hypothesized that this manipulation should only affect kinesthetic MI but not visual MI. The ERPs elicited by rotated hand stimuli contained the classic rotation related negativity (RRN) with respect to palm view stimuli. We observed that laterally rotated stimuli led to a more marked RRN than medially rotated stimuli. This RRN effect was observed when participants had their hands positioned in either a straight (control) or an inward rotated posture, but not when their hands were positioned in an outward rotated posture. Posture effects on the ERP-RRN have not previously been studied. Apparently, a congruent hand posture (hands positioned in an outward rotated fashion) facilitates the judgement of the otherwise more demanding laterally rotated hand stimuli. These ERP findings support a kinesthetic interpretation of MI involved in solving the hand laterality judgement task. The RRN may be used as a non-invasive marker for kinesthetic MI and seems useful in revealing the covert behavior of MI in e.g. rehabilitation programs.

  7. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity

    Science.gov (United States)

    Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.

    2017-01-01

    The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267

  8. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components.

    Science.gov (United States)

    Carpinella, Ilaria; Cattaneo, Davide; Bertoni, Rita; Ferrarin, Maurizio

    2012-05-01

    In this pilot study, we compared two protocols for robot-based rehabilitation of upper limb in multiple sclerosis (MS): a protocol involving reaching tasks (RT) requiring arm transport only and a protocol requiring both objects' reaching and manipulation (RMT). Twenty-two MS subjects were assigned to RT or RMT group. Both protocols consisted of eight sessions. During RT training, subjects moved the handle of a planar robotic manipulandum toward circular targets displayed on a screen. RMT protocol required patients to reach and manipulate real objects, by moving the robotic arm equipped with a handle which left the hand free for distal tasks. In both trainings, the robot generated resistive and perturbing forces. Subjects were evaluated with clinical and instrumental tests. The results confirmed that MS patients maintained the ability to adapt to the robot-generated forces and that the rate of motor learning increased across sessions. Robot-therapy significantly reduced arm tremor and improved arm kinematics and functional ability. Compared to RT, RMT protocol induced a significantly larger improvement in movements involving grasp (improvement in Grasp ARAT sub-score: RMT 77.4%, RT 29.5%, p=0.035) but not precision grip. Future studies are needed to evaluate if longer trainings and the use of robotic handles would significantly improve also fine manipulation.

  9. Clumsiness in fine motor tasks: evidence from the quantitative drawing evaluation of children with Down Syndrome.

    Science.gov (United States)

    Vimercati, S L; Galli, M; Stella, G; Caiazzo, G; Ancillao, A; Albertini, G

    2015-03-01

    Drawing tests are commonly used for the clinical evaluation of cognitive capabilities in children with learning disabilities. We analysed quantitatively the drawings of children with Down Syndrome (DS) and of healthy, mental age-matched controls to characterise the features of fine motor skills in DS during a drawing task, with particular attention to clumsiness, a well-known feature of DS gross movements. Twenty-three children with DS and 13 controls hand-copied the figures of a circle, a cross and a square on a sheet. An optoelectronic system allowed the acquisition of the three-dimensional track of the drawing. The participants' posture and upper limb movements were analysed as well. Results showed that the participants with DS tended to draw faster but with less accuracy than controls. While clumsiness in gross movements manifests mainly as slow, less efficient movements, it manifests as high velocity and inaccurate movements in fine motor tasks such as drawing. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  10. Non-physical practice improves task performance in an unstable, perturbed environment: Motor imagery and observational balance training

    Directory of Open Access Journals (Sweden)

    Wolfgang eTaube

    2014-12-01

    Full Text Available For consciously performed motor tasks executed in a defined and constant way, both motor imagery (MI and action observation (AO have been shown to promote motor learning. It is not known whether these forms of non-physical training also improve motor actions when these actions have to be variably applied in an unstable and unpredictable environment. The present study therefore investigated the influence of MI balance training (MI_BT and a balance training combining AO and MI (AO+MI_BT on postural control of undisturbed and disturbed upright stance on unstable ground. As spinal reflex excitability after classical (i.e., physical balance training (BT is generally decreased, we tested whether non-physical BT also has an impact on spinal reflex circuits. Thirty-six participants were randomly allocated into an MI_BT group, in which participants imagined postural exercises, an AO+MI_BT group, in which participants observed videos of other people performing balance exercises and imagined being the person in the video, and a non-active control group (CON. Before and after 4 weeks of non-physical training, balance performance was assessed on a free-moving platform during stance without perturbation and during perturbed stance. Soleus H-reflexes were recorded during stable and unstable stance. The post measurement revealed significantly decreased postural sway during undisturbed and disturbed stance after both MI_BT and AO+MI_BT. Spinal reflex excitability remained unchanged. This is the first study showing that non-physical training (MI_BT and AO+MI_BT not only promotes motor learning of ‘rigid’ postural tasks but also improves performance of highly variable and unpredictable balance actions. These findings may be relevant to improve postural control and thus reduce the risk of falls in temporarily immobilized patients.

  11. Reassessment of Non-Monosynaptic Excitation from the Motor Cortex to Motoneurons in Single Motor Units of the Human Biceps Brachii.

    Science.gov (United States)

    Nakajima, Tsuyoshi; Tazoe, Toshiki; Sakamoto, Masanori; Endoh, Takashi; Shibuya, Satoshi; Elias, Leonardo A; Mezzarane, Rinaldo A; Komiyama, Tomoyoshi; Ohki, Yukari

    2017-01-01

    Corticospinal excitation is mediated by polysynaptic pathways in several vertebrates, including dexterous monkeys. However, indirect non-monosynaptic excitation has not been clearly observed following transcranial electrical stimulation (TES) or cervicomedullary stimulation (CMS) in humans. The present study evaluated indirect motor pathways in normal human subjects by recording the activities of single motor units (MUs) in the biceps brachii (BB) muscle. The pyramidal tract was stimulated with weak TES, CMS, and transcranial magnetic stimulation (TMS) contralateral to the recording side. During tasks involving weak co-contraction of the BB and hand muscles, all stimulation methods activated MUs with short latencies. Peristimulus time histograms (PSTHs) showed that responses with similar durations were induced by TES (1.9 ± 1.4 ms) and CMS (2.0 ± 1.4 ms), and these responses often showed multiple peaks with the PSTH peak having a long duration (65.3% and 44.9%, respectively). Such long-duration excitatory responses with multiple peaks were rarely observed in the finger muscles following TES or in the BB following stimulation of the Ia fibers. The responses obtained with TES were compared in the same 14 BB MUs during the co-contraction and isolated BB contraction tasks. Eleven and three units, respectively, exhibited activation with multiple peaks during the two tasks. In order to determine the dispersion effects on the axon conduction velocities (CVs) and synaptic noise, a simulation study that was comparable to the TES experiments was performed with a biologically plausible neuromuscular model. When the model included the monosynaptic-pyramidal tract, multiple peaks were obtained in about 34.5% of the motoneurons (MNs). The experimental and simulation results indicated the existence of task-dependent disparate inputs from the pyramidal tract to the MNs of the upper limb. These results suggested that intercalated interneurons are present in the spinal cord and

  12. Reassessment of Non-Monosynaptic Excitation from the Motor Cortex to Motoneurons in Single Motor Units of the Human Biceps Brachii

    Science.gov (United States)

    Nakajima, Tsuyoshi; Tazoe, Toshiki; Sakamoto, Masanori; Endoh, Takashi; Shibuya, Satoshi; Elias, Leonardo A.; Mezzarane, Rinaldo A.; Komiyama, Tomoyoshi; Ohki, Yukari

    2017-01-01

    Corticospinal excitation is mediated by polysynaptic pathways in several vertebrates, including dexterous monkeys. However, indirect non-monosynaptic excitation has not been clearly observed following transcranial electrical stimulation (TES) or cervicomedullary stimulation (CMS) in humans. The present study evaluated indirect motor pathways in normal human subjects by recording the activities of single motor units (MUs) in the biceps brachii (BB) muscle. The pyramidal tract was stimulated with weak TES, CMS, and transcranial magnetic stimulation (TMS) contralateral to the recording side. During tasks involving weak co-contraction of the BB and hand muscles, all stimulation methods activated MUs with short latencies. Peristimulus time histograms (PSTHs) showed that responses with similar durations were induced by TES (1.9 ± 1.4 ms) and CMS (2.0 ± 1.4 ms), and these responses often showed multiple peaks with the PSTH peak having a long duration (65.3% and 44.9%, respectively). Such long-duration excitatory responses with multiple peaks were rarely observed in the finger muscles following TES or in the BB following stimulation of the Ia fibers. The responses obtained with TES were compared in the same 14 BB MUs during the co-contraction and isolated BB contraction tasks. Eleven and three units, respectively, exhibited activation with multiple peaks during the two tasks. In order to determine the dispersion effects on the axon conduction velocities (CVs) and synaptic noise, a simulation study that was comparable to the TES experiments was performed with a biologically plausible neuromuscular model. When the model included the monosynaptic-pyramidal tract, multiple peaks were obtained in about 34.5% of the motoneurons (MNs). The experimental and simulation results indicated the existence of task-dependent disparate inputs from the pyramidal tract to the MNs of the upper limb. These results suggested that intercalated interneurons are present in the spinal cord and

  13. Cortical Contribution to Linear, Non-linear and Frequency Components of Motor Variability Control during Standing.

    Science.gov (United States)

    König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B

    2017-01-01

    Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.

  14. Cerebellar contribution to motor and cognitive performance in multiple sclerosis: An MRI sub-regional volumetric analysis.

    Science.gov (United States)

    D'Ambrosio, Alessandro; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo; Rocca, Maria A

    2017-08-01

    To investigate the role of cerebellar sub-regions on motor and cognitive performance in multiple sclerosis (MS) patients. Whole and sub-regional cerebellar volumes, brain volumes, T2 hyperintense lesion volumes (LV), and motor performance scores were obtained from 95 relapse-onset MS patients and 32 healthy controls (HC). MS patients also underwent an evaluation of working memory and processing speed functions. Cerebellar anterior and posterior lobes were segmented using the Spatially Unbiased Infratentorial Toolbox (SUIT) from Statistical Parametric Mapping (SPM12). Multivariate linear regression models assessed the relationship between magnetic resonance imaging (MRI) measures and motor/cognitive scores. Compared to HC, only secondary progressive multiple sclerosis (SPMS) patients had lower cerebellar volumes (total and posterior cerebellum). In MS patients, lower anterior cerebellar volume and brain T2 LV predicted worse motor performance, whereas lower posterior cerebellar volume and brain T2 LV predicted poor cognitive performance. Global measures of brain volume and infratentorial T2 LV were not selected by the final multivariate models. Cerebellar volumetric abnormalities are likely to play an important contribution to explain motor and cognitive performance in MS patients. Consistently with functional mapping studies, cerebellar posterior-inferior volume accounted for variance in cognitive measures, whereas anterior cerebellar volume accounted for variance in motor performance, supporting the assessment of cerebellar damage at sub-regional level.

  15. Individualized tracking of self-directed motor learning in group-housed mice performing a skilled lever positioning task in the home cage.

    Science.gov (United States)

    Silasi, Gergely; Boyd, Jamie D; Bolanos, Federico; LeDue, Jeff M; Scott, Stephen H; Murphy, Timothy H

    2018-01-01

    Skilled forelimb function in mice is traditionally studied through behavioral paradigms that require extensive training by investigators and are limited by the number of trials individual animals are able to perform within a supervised session. We developed a skilled lever positioning task that mice can perform within their home cage. The task requires mice to use their forelimb to precisely hold a lever mounted on a rotary encoder within a rewarded position to dispense a water reward. A Raspberry Pi microcomputer is used to record lever position during trials and to control task parameters, thus making this low-footprint apparatus ideal for use within animal housing facilities. Custom Python software automatically increments task difficulty by requiring a longer hold duration, or a more accurate hold position, to dispense a reward. The performance of individual animals within group-housed mice is tracked through radio-frequency identification implants, and data stored on the microcomputer may be accessed remotely through an active internet connection. Mice continuously engage in the task for over 2.5 mo and perform ~500 trials/24 h. Mice required ~15,000 trials to learn to hold the lever within a 10° range for 1.5 s and were able to further refine movement accuracy by limiting their error to a 5° range within each trial. These results demonstrate the feasibility of autonomously training group-housed mice on a forelimb motor task. This paradigm may be used in the future to assess functional recovery after injury or cortical reorganization induced by self-directed motor learning. NEW & NOTEWORTHY We developed a low-cost system for fully autonomous training of group-housed mice on a forelimb motor task. We demonstrate the feasibility of tracking both end-point, as well as kinematic performance of individual mice, with each performing thousands of trials over 2.5 mo. The task is run and controlled by a Raspberry Pi microcomputer, which allows for cages to be

  16. Olfaction Is Related to Motor Function in Older Adults.

    Science.gov (United States)

    Tian, Qu; Resnick, Susan M; Studenski, Stephanie A

    2017-08-01

    Among older adults, both olfaction and motor function predict future cognitive decline and dementia, suggesting potential shared causal pathways. However, it is not known whether olfactory and motor function are independently related in late life. We assessed cross-sectional associations of olfaction with motor and cognitive function, using concurrent data on olfactory function, mobility, balance, fine motor function, manual dexterity, and cognition in 163 Baltimore Longitudinal Study of Aging participants aged 60 and older without common neurological diseases (n = 114 with available cognitive data). Using multiple linear regression, we adjusted for age, sex, race, smoking history, height, and weight for mobility and balance, and education for cognition. We used multiple linear regression to test whether olfaction-motor associations were independent of cognition and depressive symptoms. Olfactory scores were significantly associated with mobility (usual gait speed, rapid gait speed, 400-m walk time, and Health ABC Physical Performance Battery score), balance, fine motor function, and manual dexterity (all p function is associated with mobility, balance, fine motor function, and manual dexterity, and independent of cognitive function, with challenging upper and lower extremity motor function tasks. Longitudinal studies are needed to determine if olfactory performance predicts future mobility and functional decline. Published by Oxford University Press on behalf of The Gerontological Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Studying different tasks of implicit learning across multiple test sessions conducted on the web

    Directory of Open Access Journals (Sweden)

    Werner eSævland

    2016-06-01

    Full Text Available Implicit learning is usually studied through individual performance on a single task, with the most common tasks being Serial Reaction Time task (SRT; Nissen and Bullemer, 1987, Dynamic System Control task (DSC; (Berry and Broadbent, 1984 and artificial Grammar Learning task (AGL; (Reber, 1967. Few attempts have been made to compare performance across different implicit learning tasks within the same experiment. The current experiment was designed study the relationship between performance on the DSC Sugar factory task (Berry and Broadbent, 1984 and the Alternating Serial Reaction Time task (ASRT; (Howard and Howard, 1997. We also addressed another limitation to traditional implicit learning experiments, namely that implicit learning is usually studied in laboratory settings over a restricted time span lasting for less than an hour (Berry and Broadbent, 1984; Nissen and Bullemer, 1987; Reber, 1967. In everyday situations, implicit learning is assumed to involve a gradual accumulation of knowledge across several learning episodes over a larger time span (Norman and Price, 2012. One way to increase the ecological validity of implicit learning experiments could be to present the learning material repeatedly across shorter experimental sessions (Howard and Howard, 1997; Cleeremans and McClelland, 1991. This can most easily be done by using a web-based setup that participants can access from home. We therefore created an online web-based system for measuring implicit learning that could be administered in either single or multiple sessions. Participants (n = 66 were assigned to either a single-session or a multi-session condition. Learning and the degree of conscious awareness of the learned regularities was compared across condition (single vs. multiple sessions and tasks (DSC vs. ASRT. Results showed that learning on the two tasks was not related. However, participants in the multiple sessions condition did show greater improvements in reaction

  18. Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson's disease.

    Science.gov (United States)

    Obeso, Ignacio; Wilkinson, Leonora; Casabona, Enrique; Bringas, Maria Luisa; Álvarez, Mario; Álvarez, Lázaro; Pavón, Nancy; Rodríguez-Oroz, Maria-Cruz; Macías, Raúl; Obeso, Jose A; Jahanshahi, Marjan

    2011-07-01

    Recent imaging studies in healthy controls with a conditional stop signal reaction time (RT) task have implicated the subthalamic nucleus (STN) in response inhibition and the pre-supplementary motor area (pre-SMA) in conflict resolution. Parkinson's disease (PD) is characterized by striatal dopamine deficiency and overactivity of the STN and underactivation of the pre-SMA during movement. We used the conditional stop signal RT task to investigate whether PD produced similar or dissociable effects on response initiation, response inhibition and response initiation under conflict. In addition, we also examined inhibition of prepotent responses on three cognitive tasks: the Stroop, random number generation and Hayling sentence completion. PD patients were impaired on the conditional stop signal reaction time task, with response initiation both in situations with or without conflict and response inhibition all being significantly delayed, and had significantly greater difficulty in suppressing prepotent or habitual responses on the Stroop, Hayling and random number generation tasks relative to controls. These results demonstrate the existence of a generalized inhibitory deficit in PD, which suggest that PD is a disorder of inhibition as well as activation and that in situations of conflict, executive control over responses is compromised.

  19. A conveyor belt task for assessing visuo-motor coordination in the marmoset (Callithrix jacchus): effects of diazepam, chlorpromazine, pentobarbital and d-amphetamine.

    Science.gov (United States)

    D'Mello, G D; Duffy, E A; Miles, S S

    1985-01-01

    A conveyor belt task for assessing visuo-motor coordination in the marmoset is described. Animals are motivated by apple, a preferred food, under a state of minimal food deprivation. The apparatus used was designed to test animals within their home cages and not restrained in any way, thus avoiding possible confounding factors associated with restraint stress. Stable baseline levels of performance were reached by all animals in a median of 24 sessions. Performance was shown to be differentially sensitive to the effects of four psychoactive drugs. Moderate doses of diazepam, chlorpromazine and pentobarbital disrupted visuo-motor coordination in a dose-related manner. The possibility that disruption of performance observed at higher doses may have resulted from non-specific actions of these drugs such as decreases in feeding motivation were not supported by results from ancillary experiments. Changes in performance characteristic of high dose effects were similar in nature to changes observed when the degree of task difficulty was increased. Doses of d-amphetamine up to and including those reported to produce signs of stereotypy failed to influence performance. The potential of the conveyor belt task for measuring visuo-motor coordination in both primate and rodent species is discussed.

  20. Transfer of short-term motor learning across the lower limbs as a function of task conception and practice order.

    Science.gov (United States)

    Stöckel, Tino; Wang, Jinsung

    2011-11-01

    Interlimb transfer of motor learning, indicating an improvement in performance with one limb following training with the other, often occurs asymmetrically (i.e., from non-dominant to dominant limb or vice versa, but not both). In the present study, we examined whether interlimb transfer of the same motor task could occur asymmetrically and in opposite directions (i.e., from right to left leg vs. left to right leg) depending on individuals' conception of the task. Two experimental conditions were tested: In a dynamic control condition, the process of learning was facilitated by providing the subjects with a type of information that forced them to focus on dynamic features of a given task (force impulse); and in a spatial control condition, it was done with another type of information that forced them to focus on visuomotor features of the same task (distance). Both conditions employed the same leg extension task. In addition, a fully-crossed transfer paradigm was used in which one group of subjects initially practiced with the right leg and were tested with the left leg for a transfer test, while the other group used the two legs in the opposite order. The results showed that the direction of interlimb transfer varied depending on the condition, such that the right and the left leg benefited from initial training with the opposite leg only in the spatial and the dynamic condition, respectively. Our finding suggests that manipulating the conception of a leg extension task has a substantial influence on the pattern of interlimb transfer in such a way that the direction of transfer can even be opposite depending on whether the task is conceived as a dynamic or spatial control task. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Set-based Tasks within the Singularity-robust Multiple Task-priority Inverse Kinematics Framework: General Formulation, Stability Analysis and Experimental Results

    Directory of Open Access Journals (Sweden)

    Signe eMoe

    2016-04-01

    Full Text Available Inverse kinematics algorithms are commonly used in robotic systems to transform tasks to joint references, and several methods exist to ensure the achievement of several tasks simultaneously. The multiple task-priority inverse kinematicsframework allows tasks to be considered in a prioritized order by projecting task velocities through the nullspaces of higherpriority tasks. This paper extends this framework to handle setbased tasks, i.e. tasks with a range of valid values, in addition to equality tasks, which have a specific desired value. Examples of set-based tasks are joint limit and obstacle avoidance. The proposed method is proven to ensure asymptotic convergence of the equality task errors and the satisfaction of all high-priority set-based tasks. The practical implementation of the proposed algorithm is discussed, and experimental results are presented where a number of both set-based and equality tasks have been implemented on a 6 degree of freedom UR5 which is an industrial robotic arm from Universal Robots. The experiments validate thetheoretical results and confirm the effectiveness of the proposed approach.

  2. Quantitative assessment of motor functions post-stroke: Responsiveness of upper-extremity robotic measures and its task dependence.

    Science.gov (United States)

    Hussain, Asif; Budhota, Aamani; Contu, Sara; Kager, Simone; Vishwanath, Deshmukh A; Kuah, Christopher W K; Yam, Lester H L; Chua, Karen S G; Masia, Lorenzo; Campolo, Domenico

    2017-07-01

    Technology aided measures offer a sensitive, accurate and time-efflcient approach for the assessment of sensorimotor function after neurological impairment compared to standard clinical assessments. This preliminary study investigated the relationship between task definition and its effect on robotic measures using a planar, two degree of freedom, robotic-manipulator (H-Man). Four chronic stroke participants (49.5±11.95 years, 2 Female, FMA: 37.5±13.96) and eight healthy control participants (26.25± 4.70 years, 2 Female) participated in the study. Motor functions were evaluated using line tracing and circle tracing tasks with dominant and nondominant hand of healthy and affected vs. non affected hand of stroke participants. The results show significant dependence of quantitative measures on investigated tasks.

  3. Task-Based Mirror Therapy Augmenting Motor Recovery in Poststroke Hemiparesis: A Randomized Controlled Trial.

    Science.gov (United States)

    Arya, Kamal Narayan; Pandian, Shanta; Kumar, Dharmendra; Puri, Vinod

    2015-08-01

    To establish the effect of the task-based mirror therapy (TBMT) on the upper limb recovery in stroke. A pilot, randomized, controlled, assessor-blinded trial was conducted in a rehabilitation institute. A convenience sample of 33 poststroke (mean duration, 12.5 months) hemiparetic subjects was randomized into 2 groups (experimental, 17; control, 16). The subjects were allocated to receive either TBMT or standard motor rehabilitation-40 sessions (5/week) for a period of 8 weeks. The TBMT group received movements using various goal-directed tasks and a mirror box. The movements were performed by the less-affected side superimposed on the affected side. The main outcome measures were Brunnstrom recovery stage (BRS) and Fugl-Meyer assessment (FMA)-FMA of upper extremity (FMA-UE), including upper arm (FMA-UA) and wrist-hand (FMA-WH). The TBMT group exhibited highly significant improvement on mean scores of FMA-WH (P hemiparesis. MT using tasks may be used as an adjunct in stroke rehabilitation. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.

    Science.gov (United States)

    Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao

    2018-05-23

    The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.

  5. A tweaking principle for executive control: neuronal circuit mechanism for rule-based task switching and conflict resolution.

    Science.gov (United States)

    Ardid, Salva; Wang, Xiao-Jing

    2013-12-11

    A hallmark of executive control is the brain's agility to shift between different tasks depending on the behavioral rule currently in play. In this work, we propose a "tweaking hypothesis" for task switching: a weak rule signal provides a small bias that is dramatically amplified by reverberating attractor dynamics in neural circuits for stimulus categorization and action selection, leading to an all-or-none reconfiguration of sensory-motor mapping. Based on this principle, we developed a biologically realistic model with multiple modules for task switching. We found that the model quantitatively accounts for complex task switching behavior: switch cost, congruency effect, and task-response interaction; as well as monkey's single-neuron activity associated with task switching. The model yields several testable predictions, in particular, that category-selective neurons play a key role in resolving sensory-motor conflict. This work represents a neural circuit model for task switching and sheds insights in the brain mechanism of a fundamental cognitive capability.

  6. The effect of amblyopia on fine motor skills in children.

    Science.gov (United States)

    Webber, Ann L; Wood, Joanne M; Gole, Glen A; Brown, Brian

    2008-02-01

    In an investigation of the functional impact of amblyopia in children, the fine motor skills of amblyopes and age-matched control subjects were compared. The influence of visual factors that might predict any decrement in fine motor skills was also explored. Vision and fine motor skills were tested in a group of children (n = 82; mean age, 8.2 +/- 1.7 [SD] years) with amblyopia of different causes (infantile esotropia, n = 17; acquired strabismus, n = 28; anisometropia, n = 15; mixed, n = 13; and deprivation n = 9), and age-matched control children (n = 37; age 8.3 +/- 1.3 years). Visual motor control (VMC) and upper limb speed and dexterity (ULSD) items of the Bruininks-Oseretsky Test of Motor Proficiency were assessed, and logMAR visual acuity (VA) and Randot stereopsis were measured. Multiple regression models were used to identify the visual determinants of fine motor skills performance. Amblyopes performed significantly poorer than control subjects on 9 of 16 fine motor skills subitems and for the overall age-standardized scores for both VMC and ULSD items (P multiple regression model that took into account the intercorrelation between visual characteristics, poorer fine motor skills performance was associated with strabismus (F(1,75) = 5.428; P = 0.022), but not with the level of binocular function, refractive error, or visual acuity in either eye. Fine motor skills were reduced in children with amblyopia, particularly those with strabismus, compared with control subjects. The deficits in motor performance were greatest on manual dexterity tasks requiring speed and accuracy.

  7. Motor control is decision-making.

    Science.gov (United States)

    Wolpert, Daniel M; Landy, Michael S

    2012-12-01

    Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Electroencephalographic (eeg coherence between visual and motor areas of the left and the right brain hemisphere while performing visuomotor task with the right and the left hand

    Directory of Open Access Journals (Sweden)

    Simon Brežan

    2007-09-01

    Full Text Available Background: Unilateral limb movements are based on the activation of contralateral primary motor cortex and the bilateral activation of premotor cortices. Performance of a visuomotor task requires a visuomotor integration between motor and visual cortical areas. The functional integration (»binding« of different brain areas, is probably mediated by the synchronous neuronal oscillatory activity, which can be determined by electroencephalographic (EEG coherence analysis. We introduced a new method of coherence analysis and compared coherence and power spectra in the left and right hemisphere for the right vs. left hand visuomotor task, hypothesizing that the increase in coherence and decrease in power spectra while performing the task would be greater in the contralateral hemisphere.Methods: We analyzed 6 healthy subjects and recorded their electroencephalogram during visuomotor task with the right or the left hand. For data analysis, a special Matlab computer programme was designed. The results were statistically analysed by a two-way analysis of variance, one-way analysis of variance and post-hoc t-tests with Bonferroni correction.Results: We demonstrated a significant increase in coherence (p < 0.05 for the visuomotor task compared to control tasks in alpha (8–13 Hz in beta 1 (13–20 Hz frequency bands between visual and motor electrodes. There were no significant differences in coherence nor power spectra depending on the hand used. The changes of coherence and power spectra between both hemispheres were symmetrical.Conclusions: In previous studies, a specific increase of coherence and decrease of power spectra for the visuomotor task was found, but we found no conclusive asymmetries when performing the task with right vs. left hand. This could be explained in a way that increases in coherence and decreases of power spectra reflect symmetrical activation and cooperation between more complex visual and motor brain areas.

  9. Effects of 2-Year Cognitive⁻Motor Dual-Task Training on Cognitive Function and Motor Ability in Healthy Elderly People: A Pilot Study.

    Science.gov (United States)

    Morita, Emiko; Yokoyama, Hisayo; Imai, Daiki; Takeda, Ryosuke; Ota, Akemi; Kawai, Eriko; Suzuki, Yuta; Okazaki, Kazunobu

    2018-05-11

    We aimed to examine the effect of 2-year cognitive⁻motor dual-task (DT) training on cognitive functions and motor ability of healthy elderly people without marked cognitive impairment. From the 25 participants of our 12-week DT trial conducted in 2014, we recruited 8 subjects who voluntarily participated in a new DT training program once a week for 2 years (exercise (EX) group). Their cognitive functions were evaluated by the Modified Mini-Mental State (3MS) examination and the Trail Making Test, and results were compared with those of the 11 subjects who discontinued the training and did not perform any types of exercise for 2 years (non-exercise (NO) group). Subjects in the NO group showed deterioration in the 3MS examination results, especially in the cognitive domain of attention. Meanwhile, participation in DT training maintained the scores in almost all domains of cognitive function, as well as the total 3MS scores. However, both groups had impaired quadriceps muscle strength and motor ability after the 2-year observation period. These results suggest that participating in exercise program comprising DT training for 2 years may be beneficial for maintaining the broad domains of cognitive function in healthy elderly people, although further verification is needed.

  10. Effects of 2-Year Cognitive–Motor Dual-Task Training on Cognitive Function and Motor Ability in Healthy Elderly People: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Emiko Morita

    2018-05-01

    Full Text Available We aimed to examine the effect of 2-year cognitive–motor dual-task (DT training on cognitive functions and motor ability of healthy elderly people without marked cognitive impairment. From the 25 participants of our 12-week DT trial conducted in 2014, we recruited 8 subjects who voluntarily participated in a new DT training program once a week for 2 years (exercise (EX group. Their cognitive functions were evaluated by the Modified Mini-Mental State (3MS examination and the Trail Making Test, and results were compared with those of the 11 subjects who discontinued the training and did not perform any types of exercise for 2 years (non-exercise (NO group. Subjects in the NO group showed deterioration in the 3MS examination results, especially in the cognitive domain of attention. Meanwhile, participation in DT training maintained the scores in almost all domains of cognitive function, as well as the total 3MS scores. However, both groups had impaired quadriceps muscle strength and motor ability after the 2-year observation period. These results suggest that participating in exercise program comprising DT training for 2 years may be beneficial for maintaining the broad domains of cognitive function in healthy elderly people, although further verification is needed.

  11. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.

    Science.gov (United States)

    Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter

    2015-03-01

    Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.

  12. Does the radiologically isolated syndrome exist? A dual-task cost pilot study.

    Science.gov (United States)

    Dattola, Vincenzo; Logiudice, Anna Lisa; Bonanno, Lilla; Famà, Fausto; Milardi, Demetrio; Chillemi, Gaetana; D'Aleo, Giangaetano; Marino, Silvia; Calabrò, Rocco Salvatore; Russo, Margherita

    2017-11-01

    Simultaneous performance of motor and cognitive tasks may compete for common brain network resources in aging or patients with some neurological diseases, suggesting the occurrence of a cognitive-motor interference. While this phenomenon has been well described for multiple sclerosis (MS) patients, it never has been tested on asymptomatic subject with magnetic resonance imaging (MRI) findings suggestive of demyelinating disease (i.e., radiologically isolated syndrome: RIS). In this pilot study, 10 RIS subjects and 10 sex/age-matched healthy controls were tested by means of static posturography under eyes opened (single-task trial) and while performing two different cognitive tasks (semantic modified word list generation for first dual-task trial and phonemic semantic modified word list generation for second dual-task trial), to estimate the dual-task cost (DTC) of standing balance. In our sample, under cognitive interference (without any substantial differences between semantic and phonemic modified word list generation), the RIS group showed significance differences in CoP (center of pressure) total sway area, ellipse eccentricity, CoP sway path length, CoP median sway velocity along the AP (anteroposterior) axis and along the ML (mediolateral) axis, reflecting a higher negative DTC respect to healthy subjects (which have simply shown a statistical trend, failing to reach a significance, in some trials). The phenomenon of cognitive-motor interference might be unmasked by a dual-task posturography in RIS subjects, too. We hypothesize that this approach could be useful to early reveal the presence of a demyelinating disease and to reach a MS diagnosis in subjects otherwise classified as RIS.

  13. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Science.gov (United States)

    Griffin, Thomas D.; Wiley, Jennifer; Britt, M. Anne; Salas, Carlos R.

    2012-01-01

    The main goal for the current study was to investigate whether individual differences in domain-general thinking dispositions might affect learning from multiple-document inquiry tasks in science. Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be…

  14. Interference in ballistic motor learning - is motor interference really sensory?

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C

    Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards. We hypothesised that interference requires the same circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects...

  15. No effect of anodal transcranial direct current stimulation over the motor cortex on response-related ERPs during a conflict task.

    Directory of Open Access Journals (Sweden)

    Alexander Christian Conley

    2016-08-01

    Full Text Available Anodal transcranial direct current stimulation (tDCS over the motor cortex is considered a potential treatment for motor rehabilitation following stroke and other neurological pathologies. However, both the context under which this stimulation is effective and the underlying mechanisms remain to be determined. In this study, we examined the mechanisms by which anodal tDCS may affect motor performance by recording event-related potentials (ERPs during a cued go/nogo task after anodal tDCS over dominant M1 in young adults (Experiment 1 and both dominant and non-dominant M1 in old adults (Experiment 2. In both experiments, anodal tDCS had no effect on either response time or response-related ERPs, including the cue-locked contingent negative variation (CNV and both target-locked and response-locked lateralised readiness potentials (LRP. Bayesian model selection analyses showed that, for all measures, the null effects model was stronger than a model including anodal tDCS vs. sham. We conclude that anodal tDCS has no effect on response time or response-related ERPs during a cued go/nogo task in either young or old adults.

  16. Haptic-Based Perception-Empathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults.

    Science.gov (United States)

    Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu

    2018-01-01

    Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in

  17. Haptic-Based Perception-Empathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yasuda

    2018-05-01

    Full Text Available Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task. Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway and dual-task performance (number of responses and correct answers. Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training

  18. Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals.

    Science.gov (United States)

    Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T

    2018-03-08

    Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.

  19. Classification Systems for Individual Differences in Multiple-task Performance and Subjective Estimates of Workload

    Science.gov (United States)

    Damos, D. L.

    1984-01-01

    Human factors practitioners often are concerned with mental workload in multiple-task situations. Investigations of these situations have demonstrated repeatedly that individuals differ in their subjective estimates of workload. These differences may be attributed in part to individual differences in definitions of workload. However, after allowing for differences in the definition of workload, there are still unexplained individual differences in workload ratings. The relation between individual differences in multiple-task performance, subjective estimates of workload, information processing abilities, and the Type A personality trait were examined.

  20. Characteristics of motor speech phenotypes in multiple sclerosis.

    Science.gov (United States)

    Rusz, Jan; Benova, Barbora; Ruzickova, Hana; Novotny, Michal; Tykalova, Tereza; Hlavnicka, Jan; Uher, Tomas; Vaneckova, Manuela; Andelova, Michaela; Novotna, Klara; Kadrnozkova, Lucie; Horakova, Dana

    2018-01-01

    Motor speech disorders in multiple sclerosis (MS) are poorly understood and their quantitative, objective acoustic characterization remains limited. Additionally, little data regarding relationships between the severity of speech disorders and neurological involvement in MS, as well as the contribution of pyramidal and cerebellar functional systems on speech phenotypes, is available. Speech data were acquired from 141 MS patients with Expanded Disability Status Scale (EDSS) ranging from 1 to 6.5 and 70 matched healthy controls. Objective acoustic speech assessment including subtests on phonation, oral diadochokinesis, articulation and prosody was performed. The prevalence of dysarthria in our MS cohort was 56% while the severity was generally mild and primarily consisted of a combination of spastic and ataxic components. Prosodic-articulatory disorder presenting with monopitch, articulatory decay, excess loudness variations and slow rate was the most salient. Speech disorders reflected subclinical motor impairment with 78% accuracy in discriminating between a subgroup of asymptomatic MS (EDSS oral diadochokinesis and the 9-Hole Peg Test (r = - 0.65, p oral diadochokinesis and excess loudness variations significantly separated pure pyramidal and mixed pyramidal-cerebellar MS subgroups. Automated speech analyses may provide valuable biomarkers of disease progression in MS as dysarthria represents common and early manifestation that reflects disease disability and underlying pyramidal-cerebellar pathophysiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    Science.gov (United States)

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P synchronization (r = -0.356; P synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  2. Dual-task training effects on motor and cognitive functional abilities in individuals with stroke: a systematic review.

    Science.gov (United States)

    He, Ying; Yang, Lei; Zhou, Jing; Yao, Liqing; Pang, Marco Yiu Chung

    2018-02-01

    This systematic review aimed to examine the effects of dual-task balance and mobility training in people with stroke. An extensive electronic databases literature search was conducted using MEDLINE, PubMed, EBSCO, The Cochrane Library, Web of Science, SCOPUS, and Wiley Online Library. Randomized controlled studies that assessed the effects of dual-task training in stroke patients were included for the review (last search in December 2017). The methodological quality was evaluated using the Cochrane Collaboration recommendation, and level of evidence was determined according to the criteria described by the Oxford Center for Evidence-Based Medicine. About 13 articles involving 457 participants were included in this systematic review. All had substantial risk of bias and thus provided level IIb evidence only. Dual-task mobility training was found to induce more improvement in single-task walking function (standardized effect size = 0.14-2.24), when compared with single-task mobility training. Its effect on dual-task walking function was not consistent. Cognitive-motor balance training was effective in improving single-task balance function (standardized effect size = 0.27-1.82), but its effect on dual-task balance ability was not studied. The beneficial effect of dual-task training on cognitive function was provided by one study only and thus inconclusive. There is some evidence that dual-task training can improve single-task walking and balance function in individuals with stroke. However, any firm recommendation cannot be made due to the weak methodology of the studies reviewed.

  3. Hippocampal Negative Event-Related Potential Recorded in Humans During a Simple Sensorimotor Task Occurs Independently of Motor Execution

    Czech Academy of Sciences Publication Activity Database

    Roman, R.; Brázdil, M.; Chládek, Jan; Rektor, I.; Jurák, Pavel; Světlák, M.; Damborská, A.; Shaw, D. J.; Kukleta, M.

    2013-01-01

    Roč. 23, č. 12 (2013), s. 1337-1344 ISSN 1050-9631 R&D Projects: GA MŠk ED0017/01/01; GA ČR GAP103/11/0933 Institutional support: RVO:68081731 Keywords : intracranial recordings * auditory task * hippocampus * ERP latency * motor response Subject RIV: BD - Theory of Information Impact factor: 4.302, year: 2013

  4. Combining motor imagery with selective sensation toward a hybrid-modality BCI.

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2014-08-01

    A hybrid modality brain-computer interface (BCI) is proposed in this paper, which combines motor imagery with selective sensation to enhance the discrimination between left and right mental tasks, e.g., the classification between left/ right stimulation sensation and right/ left motor imagery. In this paradigm, wearable vibrotactile rings are used to stimulate both the skin on both wrists. Subjects are required to perform the mental tasks according to the randomly presented cues (i.e., left hand motor imagery, right hand motor imagery, left stimulation sensation or right stimulation sensation). Two-way ANOVA statistical analysis showed a significant group effect (F (2,20) = 7.17, p = 0.0045), and the Benferroni-corrected multiple comparison test (with α = 0.05) showed that the hybrid modality group is 11.13% higher on average than the motor imagery group, and 10.45% higher than the selective sensation group. The hybrid modality experiment exhibits potentially wider spread usage within ten subjects crossed 70% accuracy, followed by four subjects in motor imagery and five subjects in selective sensation. Six subjects showed statistically significant improvement ( Benferroni-corrected) in hybrid modality in comparison with both motor imagery and selective sensation. Furthermore, among subjects having difficulties in both motor imagery and selective sensation, the hybrid modality improves their performance to 90% accuracy. The proposed hybrid modality BCI has demonstrated clear benefits for those poorly performing BCI users. Not only does the requirement of motor and sensory anticipation in this hybrid modality provide basic function of BCI for communication and control, it also has the potential for enhancing the rehabilitation during motor recovery.

  5. Motor Cortical Networks for Skilled Movements Have Dynamic Properties That Are Related to Accurate Reaching

    Directory of Open Access Journals (Sweden)

    David F. Putrino

    2011-01-01

    Full Text Available Neurons in the Primary Motor Cortex (MI are known to form functional ensembles with one another in order to produce voluntary movement. Neural network changes during skill learning are thought to be involved in improved fluency and accuracy of motor tasks. Unforced errors during skilled tasks provide an avenue to study network connections related to motor learning. In order to investigate network activity in MI, microwires were implanted in the MI of cats trained to perform a reaching task. Spike trains from eight groups of simultaneously recorded cells (95 neurons in total were acquired. A point process generalized linear model (GLM was developed to assess simultaneously recorded cells for functional connectivity during reaching attempts where unforced errors or no errors were made. Whilst the same groups of neurons were often functionally connected regardless of trial success, functional connectivity between neurons was significantly different at fine time scales when the outcome of task performance changed. Furthermore, connections were shown to be significantly more robust across multiple latencies during successful trials of task performance. The results of this study indicate that reach-related neurons in MI form dynamic spiking dependencies whose temporal features are highly sensitive to unforced movement errors.

  6. An fMRI study during finger movement tasks and recalling finger movement tasks in normal subjects and schizophrenia patients

    International Nuclear Information System (INIS)

    Ueno, Takefumi

    2003-01-01

    Using fMRI, we investigated the region of the brain, which was activated by the finger movement tasks (F1) and the recalling finger movement tasks (F2). Six right-handed age-matched healthy controls and six Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) Schizophrenia patients were included in the study. In healthy controls, contralateral motor area, supplementary motor area and somatosensory area were all activated during F1 and F2. However the contralateral parietal lobe (supramarginal gyrus etc) and ipsilateral cerebellum were also activated during F2. In schizophrenia patients, the contralateral motor area was activated during F1, but the activated region was smaller than that observed in healthy subjects. During F2, the bilateral parietal lobes (sensorimotor cortices, association cortex) were activated, while the activated regions were smaller than those seen in healthy controls and no laterality was observed. In addition, no laterality of the activated regions was clearly observed. These results suggest that the function of recalling motor tasks can be mapped onto the contralateral motor area, somatosensory area, supplementary motor area, parietal association cortices, and ipsilateral cerebellum. In schizophrenia patients, the activated regions are smaller than those observed in healthy controls, and parietal regions are also activated bilaterally during recalling motor tasks. Schizophrenia patients may therefore process to recall motor task differently from healthy subjects while also demonstrate less laterality of the brain. (author)

  7. Imaging gait analysis: An fMRI dual task study.

    Science.gov (United States)

    Bürki, Céline N; Bridenbaugh, Stephanie A; Reinhardt, Julia; Stippich, Christoph; Kressig, Reto W; Blatow, Maria

    2017-08-01

    In geriatric clinical diagnostics, gait analysis with cognitive-motor dual tasking is used to predict fall risk and cognitive decline. To date, the neural correlates of cognitive-motor dual tasking processes are not fully understood. To investigate these underlying neural mechanisms, we designed an fMRI paradigm to reproduce the gait analysis. We tested the fMRI paradigm's feasibility in a substudy with fifteen young adults and assessed 31 healthy older adults in the main study. First, gait speed and variability were quantified using the GAITRite © electronic walkway. Then, participants lying in the MRI-scanner were stepping on pedals of an MRI-compatible stepping device used to imitate gait during functional imaging. In each session, participants performed cognitive and motor single tasks as well as cognitive-motor dual tasks. Behavioral results showed that the parameters of both gait analyses, GAITRite © and fMRI, were significantly positively correlated. FMRI results revealed significantly reduced brain activation during dual task compared to single task conditions. Functional ROI analysis showed that activation in the superior parietal lobe (SPL) decreased less from single to dual task condition than activation in primary motor cortex and in supplementary motor areas. Moreover, SPL activation was increased during dual tasks in subjects exhibiting lower stepping speed and lower executive control. We were able to simulate walking during functional imaging with valid results that reproduce those from the GAITRite © gait analysis. On the neural level, SPL seems to play a crucial role in cognitive-motor dual tasking and to be linked to divided attention processes, particularly when motor activity is involved.

  8. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ana L. Faria

    2018-05-01

    Full Text Available Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients’ capability to live independently. Virtual Reality (VR based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control. Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.

  9. Motor timing deficits in sequential movements in Parkinson disease are related to action planning: a motor imagery study.

    Directory of Open Access Journals (Sweden)

    Laura Avanzino

    Full Text Available Timing of sequential movements is altered in Parkinson disease (PD. Whether timing deficits in internally generated sequential movements in PD depends also on difficulties in motor planning, rather than merely on a defective ability to materially perform the planned movement is still undefined. To unveil this issue, we adopted a modified version of an established test for motor timing, i.e. the synchronization-continuation paradigm, by introducing a motor imagery task. Motor imagery is thought to involve mainly processes of movement preparation, with reduced involvement of end-stage movement execution-related processes. Fourteen patients with PD and twelve matched healthy volunteers were asked to tap in synchrony with a metronome cue (SYNC and then, when the tone stopped, to keep tapping, trying to maintain the same rhythm (CONT-EXE or to imagine tapping at the same rhythm, rather than actually performing it (CONT-MI. We tested both a sub-second and a supra-second inter-stimulus interval between the cues. Performance was recorded using a sensor-engineered glove and analyzed measuring the temporal error and the interval reproduction accuracy index. PD patients were less accurate than healthy subjects in the supra-second time reproduction task when performing both continuation tasks (CONT-MI and CONT-EXE, whereas no difference was detected in the synchronization task and on all tasks involving a sub-second interval. Our findings suggest that PD patients exhibit a selective deficit in motor timing for sequential movements that are separated by a supra-second interval and that this deficit may be explained by a defect of motor planning. Further, we propose that difficulties in motor planning are of a sufficient degree of severity in PD to affect also the motor performance in the supra-second time reproduction task.

  10. Motor competency and social communication skills in preschool children with autism spectrum disorder.

    Science.gov (United States)

    Craig, Francesco; Lorenzo, Alessandro; Lucarelli, Elisabetta; Russo, Luigi; Fanizza, Isabella; Trabacca, Antonio

    2018-03-01

    This study aimed to investigate the association between motor competency and social communication in children with Autism Spectrum Disorder (ASD) compared with children with Intellectual Disabilities (ID) and typically developing (TD) children. Motor competency, ASD symptoms, and nonverbal Intelligent Quotient (IQ) were investigated through the following tests: Movement Assessment Battery for Children, second edition (MABC-2), Social Communication Questionnaire (SCQ), Autism Classification System of Functioning: Social Communication (ACSF:SC) and Leiter International Performances Scale Revised (Leiter-R). The ASD + ID and ID groups had lower MABC-2-manual dexterity mean scores, MABC-2-aiming and catching mean scores, MABC-2-static and dynamic balance mean scores and MABC-2-TTS compared with the TD group (P < 0.05). In addition, the ASD + ID group had lower MABC-2-aiming and catching mean scores compared with the ID group. In the ASD + ID group, we found a significant negative correlation (P < 0.001) between MABC-2-aiming and catching scores with SCQ scores, nonverbal IQ and ACSF:SC levels. Our findings provide new insight into the common neuropsychological mechanisms underlying social communication and motor deficits in ASD. Multiple deficits in motor functioning may be present in ASD and ID, however deficits involving the ability to integrate motor and social cues are somewhat specific to ASD. Autism Res 2018. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. This study highlighted the specificity of motor impairment in ASD comparing performances on a frequently used measure of motor impairment between clinical groups (ASD + ID and ID) and a non-clinical group. While previous research has suggested that multiple deficits in motor functioning may be present in ASD, our findings suggest that deficits in tasks involving the ability to integrate visual and motor cues (aiming and catching task) are somewhat specific to

  11. Validation of the fatigue scale for motor and cognitive functions in a danish multiple sclerosis cohort

    DEFF Research Database (Denmark)

    Oervik, M. S.; Sejbaek, T.; Penner, I. K.

    2017-01-01

    Background Our objective was to validate the Danish translation of the Fatigue Scale for Motor and Cognitive Functions (FSMC) in multiple sclerosis (MS) patients. Materials and methods A Danish MS cohort (n = 84) was matched and compared to the original German validation cohort (n = 309) and a he......Background Our objective was to validate the Danish translation of the Fatigue Scale for Motor and Cognitive Functions (FSMC) in multiple sclerosis (MS) patients. Materials and methods A Danish MS cohort (n = 84) was matched and compared to the original German validation cohort (n = 309...... positive correlations between the two fatigue scales implied high convergent validity (total scores: r = 0.851, p gender). Correcting for depression did not result in any significant adjustments of the correlations...

  12. Altered cortical processing of motor inhibition in schizophrenia.

    Science.gov (United States)

    Lindberg, Påvel G; Térémetz, Maxime; Charron, Sylvain; Kebir, Oussama; Saby, Agathe; Bendjemaa, Narjes; Lion, Stéphanie; Crépon, Benoît; Gaillard, Raphaël; Oppenheim, Catherine; Krebs, Marie-Odile; Amado, Isabelle

    2016-12-01

    Inhibition is considered a key mechanism in schizophrenia. Short-latency intracortical inhibition (SICI) in the motor cortex is reduced in schizophrenia and is considered to reflect locally deficient γ-aminobutyric acid (GABA)-ergic modulation. However, it remains unclear how SICI is modulated during motor inhibition and how it relates to neural processing in other cortical areas. Here we studied motor inhibition Stop signal task (SST) in stabilized patients with schizophrenia (N = 28), healthy siblings (N = 21) and healthy controls (n = 31) matched in general cognitive status and educational level. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were used to investigate neural correlates of motor inhibition. SST performance was similar in patients and controls. SICI was modulated by the task as expected in healthy controls and siblings but was reduced in patients with schizophrenia during inhibition despite equivalent motor inhibition performance. fMRI showed greater prefrontal and premotor activation during motor inhibition in schizophrenia. Task-related modulation of SICI was higher in subjects who showed less inhibition-related activity in pre-supplementary motor area (SMA) and cingulate motor area. An exploratory genetic analysis of selected markers of inhibition (GABRB2, GAD1, GRM1, and GRM3) did not explain task-related differences in SICI or cortical activation. In conclusion, this multimodal study provides direct evidence of a task-related deficiency in SICI modulation in schizophrenia likely reflecting deficient GABA-A related processing in motor cortex. Compensatory activation of premotor areas may explain similar motor inhibition in patients despite local deficits in intracortical processing. Task-related modulation of SICI may serve as a useful non-invasive GABAergic marker in development of therapeutic strategies in schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Bimanual motor coordination controlled by cooperative interactions in intrinsic and extrinsic coordinates.

    Science.gov (United States)

    Sakurada, Takeshi; Ito, Koji; Gomi, Hiroaki

    2016-01-01

    Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and

  14. Motor Impulsivity during Childhood and Adolescence: A Longitudinal Biometric Analysis of the Go/No-Go Task in 9- to 18-Year-Old Twins

    Science.gov (United States)

    Bezdjian, Serena; Tuvblad, Catherine; Wang, Pan; Raine, Adrian; Baker, Laura A.

    2014-01-01

    In the present study, we investigated genetic and environmental effects on motor impulsivity from childhood to late adolescence using a longitudinal sample of twins from ages 9 to 18 years. Motor impulsivity was assessed using errors of commission (no-go errors) in a visual go/no-go task at 4 time points: ages 9-10, 11-13, 14-15, and 16-18 years.…

  15. Within-person relationship between self-efficacy and performance across trials. Effect of task objective and task type.

    Science.gov (United States)

    Hepler, Teri J; Ritchie, Jason; Hill, Christopher R

    2017-07-05

    Self-efficacy has been shown to be a consistent, positive predictor of between-persons performance in sport. However, there have been equivocal results regarding the influence of self-efficacy on a person's performance over time. This study investigated the influence of self-efficacy on motor skill performance across trials with respect to two different task objectives and task types. Participants (N=84) performed 4 blocks of 10 trials of a dart throwing (closed skill) and a hitting (open skill) task under 2 different task objectives: competitive and goal-striving. For the goal-striving condition, success was defined as reaching a pre-determined performance level. The competitive condition involved competing against an opponent. Hierarchical linear modeling was used to examine the influence of past performance and self-efficacy on the within-person performance across multiple trials. Previous performance was negatively related with subsequent performance on all conditions. Self-efficacy was not a significant predictor of performance on any of the conditions. While task objective and task type did not moderate the efficacy-performance relationship in the current study, it is important to consider the role of other moderators in future research.

  16. Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Rémy Phan-Ba

    Full Text Available BACKGROUND AND RATIONALE: Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS. We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW, a corrected version of the T25FW with dynamic start (T25FW(+, the timed 100-meter walk (T100MW and the timed 500-meter walk (T500MW. METHODS: Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. RESULTS: The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW(+ provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤ 4000 m. CONCLUSION: The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course.

  17. The effect of a cognitive-motor intervention on voluntary step execution under single and dual task conditions in older adults: a randomized controlled pilot study

    Directory of Open Access Journals (Sweden)

    Pichierri G

    2012-07-01

    Full Text Available Giuseppe Pichierri,1 Amos Coppe,1 Silvio Lorenzetti,2 Kurt Murer,1 Eling D de Bruin11Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Switzerland; 2Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, SwitzerlandBackground: This randomized controlled pilot study aimed to explore whether a cognitive-motor exercise program that combines traditional physical exercise with dance video gaming can improve the voluntary stepping responses of older adults under attention demanding dual task conditions.Methods: Elderly subjects received twice weekly cognitive-motor exercise that included progressive strength and balance training supplemented by dance video gaming for 12 weeks (intervention group. The control group received no specific intervention. Voluntary step execution under single and dual task conditions was recorded at baseline and post intervention (Week 12.Results: After intervention between-group comparison revealed significant differences for initiation time of forward steps under dual task conditions (U = 9, P = 0.034, r = 0.55 and backward steps under dual task conditions (U = 10, P = 0.045, r = 0.52 in favor of the intervention group, showing altered stepping levels in the intervention group compared to the control group.Conclusion: A cognitive-motor intervention based on strength and balance exercises with additional dance video gaming is able to improve voluntary step execution under both single and dual task conditions in older adults.Keywords: fall prevention, exercise, dance, video game

  18. Mind wandering and motor control: off-task thinking disrupts the online adjustment of behavior.

    Science.gov (United States)

    Kam, Julia W Y; Dao, Elizabeth; Blinn, Patricia; Krigolson, Olav E; Boyd, Lara A; Handy, Todd C

    2012-01-01

    Mind wandering episodes have been construed as periods of "stimulus-independent" thought, where our minds are decoupled from the external sensory environment. In two experiments, we used behavioral and event-related potential (ERP) measures to determine whether mind wandering episodes can also be considered as periods of "response-independent" thought, with our minds disengaged from adjusting our behavioral outputs. In the first experiment, participants performed a motor tracking task and were occasionally prompted to report whether their attention was "on-task" or "mind wandering." We found greater tracking error in periods prior to mind wandering vs. on-task reports. To ascertain whether this finding was due to attenuation in visual perception per se vs. a disruptive effect of mind wandering on performance monitoring, we conducted a second experiment in which participants completed a time-estimation task. They were given feedback on the accuracy of their estimations while we recorded their EEG, and were also occasionally asked to report their attention state. We found that the sensitivity of behavior and the P3 ERP component to feedback signals were significantly reduced just prior to mind wandering vs. on-task attentional reports. Moreover, these effects co-occurred with decreases in the error-related negativity elicited by feedback signals (fERN), a direct measure of behavioral feedback assessment in cortex. Our findings suggest that the functional consequences of mind wandering are not limited to just the processing of incoming stimulation per se, but extend as well to the control and adjustment of behavior.

  19. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.

    Science.gov (United States)

    Siuly; Li, Yan; Paul Wen, Peng

    2014-03-01

    Motor imagery (MI) tasks classification provides an important basis for designing brain-computer interface (BCI) systems. If the MI tasks are reliably distinguished through identifying typical patterns in electroencephalography (EEG) data, a motor disabled people could communicate with a device by composing sequences of these mental states. In our earlier study, we developed a cross-correlation based logistic regression (CC-LR) algorithm for the classification of MI tasks for BCI applications, but its performance was not satisfactory. This study develops a modified version of the CC-LR algorithm exploring a suitable feature set that can improve the performance. The modified CC-LR algorithm uses the C3 electrode channel (in the international 10-20 system) as a reference channel for the cross-correlation (CC) technique and applies three diverse feature sets separately, as the input to the logistic regression (LR) classifier. The present algorithm investigates which feature set is the best to characterize the distribution of MI tasks based EEG data. This study also provides an insight into how to select a reference channel for the CC technique with EEG signals considering the anatomical structure of the human brain. The proposed algorithm is compared with eight of the most recently reported well-known methods including the BCI III Winner algorithm. The findings of this study indicate that the modified CC-LR algorithm has potential to improve the identification performance of MI tasks in BCI systems. The results demonstrate that the proposed technique provides a classification improvement over the existing methods tested. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Science.gov (United States)

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  1. Fine motor skills in adult Tourette patients are task-dependent

    Directory of Open Access Journals (Sweden)

    Neuner Irene

    2012-10-01

    Full Text Available Abstract Background Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics. Deficient motor inhibition underlying tics is one of the main hypotheses in its pathophysiology. Therefore the question arises whether this supposed deficient motor inhibition affects also voluntary movements. Despite severe motor tics, different personalities who suffer from Tourette perform successfully as neurosurgeon, pilot or professional basketball player. Methods For the investigation of fine motor skills we conducted a motor performance test battery in an adult Tourette sample and an age matched group of healthy controls. Results The Tourette patients showed a significant lower performance in the categories steadiness of both hands and aiming of the right hand in comparison to the healthy controls. A comparison of patients’ subgroup without comorbidities or medication and healthy controls revealed a significant difference in the category steadiness of the right hand. Conclusions Our results show that steadiness and visuomotor integration of fine motor skills are altered in our adult sample but not precision and speed of movements. This alteration pattern might be the clinical vignette of complex adaptations in the excitability of the motor system on the basis of altered cortical and subcortical components. The structurally and functionally altered neuronal components could encompass orbitofrontal, ventrolateral prefrontal and parietal cortices, the anterior cingulate, amygdala, primary motor and sensorimotor areas including altered corticospinal projections, the corpus callosum and the basal ganglia.

  2. Mu and delta opioid receptors oppositely regulate motor impulsivity in the signaled nose poke task.

    Directory of Open Access Journals (Sweden)

    Mary C Olmstead

    Full Text Available Impulsivity is a primary feature of many psychiatric disorders, most notably attention deficit hyperactivity disorder and drug addiction. Impulsivity includes a number of processes such as the inability to delay gratification, the inability to withhold a motor response, or acting before all of the relevant information is available. These processes are mediated by neural systems that include dopamine, serotonin, norepinephrine, glutamate and cannabinoids. We examine, for the first time, the role of opioid systems in impulsivity by testing whether inactivation of the mu- (Oprm1 or delta- (Oprd1 opioid receptor gene alters motor impulsivity in mice. Wild-type and knockout mice were examined on either a pure C57BL6/J (BL6 or a hybrid 50% C57Bl/6J-50% 129Sv/pas (HYB background. Mice were trained to respond for sucrose in a signaled nose poke task that provides independent measures of associative learning (responses to the reward-paired cue and motor impulsivity (premature responses. Oprm1 knockout mice displayed a remarkable decrease in motor impulsivity. This was observed on the two genetic backgrounds and did not result from impaired associative learning, as responses to the cue signaling reward did not differ across genotypes. Furthermore, mutant mice were insensitive to the effects of ethanol, which increased disinhibition and decreased conditioned responding in wild-type mice. In sharp contrast, mice lacking the Oprd1 gene were more impulsive than controls. Again, mutant animals showed no deficit in associative learning. Ethanol completely disrupted performance in these animals. Together, our results suggest that mu-opioid receptors enhance, whereas delta-opioid receptors inhibit, motor impulsivity. This reveals an unanticipated contribution of endogenous opioid receptor activity to disinhibition. In a broader context, these data suggest that alterations in mu- or delta-opioid receptor function may contribute to impulse control disorders.

  3. Cerebellar Shaping of Motor Cortical Firing Is Correlated with Timing of Motor Actions

    Directory of Open Access Journals (Sweden)

    Abdulraheem Nashef

    2018-05-01

    Full Text Available Summary: In higher mammals, motor timing is considered to be dictated by cerebellar control of motor cortical activity, relayed through the cerebellar-thalamo-cortical (CTC system. Nonetheless, the way cerebellar information is integrated with motor cortical commands and affects their temporal properties remains unclear. To address this issue, we activated the CTC system in primates and found that it efficiently recruits motor cortical cells; however, the cortical response was dominated by prolonged inhibition that imposed a directional activation across the motor cortex. During task performance, cortical cells that integrated CTC information fired synchronous bursts at movement onset. These cells expressed a stronger correlation with reaction time than non-CTC cells. Thus, the excitation-inhibition interplay triggered by the CTC system facilitates transient recruitment of a cortical subnetwork at movement onset. The CTC system may shape neural firing to produce the required profile to initiate movements and thus plays a pivotal role in timing motor actions. : Nashef et al. identified a motor cortical subnetwork recruited by cerebellar volley that was transiently synchronized at movement onset. Cerebellar control of cortical firing was dominated by inhibition that shaped task-related firing of neurons and may dictate motor timing. Keywords: motor control, primates, cerebellar-thalamo-cortical, synchrony, noise correlation, reaction time

  4. The Role of Motor Affordances in Visual Working Memory

    Directory of Open Access Journals (Sweden)

    Diane Pecher

    2014-12-01

    Full Text Available Motor affordances are important for object knowledge. Semantic tasks on visual objects often show interactions with motor actions. Prior neuro-imaging studies suggested that motor affordances also play a role in visual working memory for objects. When participants remembered manipulable objects (e.g., hammer greater premotor cortex activation was observed than when they remembered non-manipulable objects (e.g., polar bear. In the present study participants held object pictures in working memory while performing concurrent tasks such as articulation of nonsense syllables and performing hand movements. Although concurrent tasks did interfere with working memory performance, in none of the experiments did we find any evidence that concurrent motor tasks affected memory differently for manipulable and non-manipulable objects. I conclude that motor affordances are not used for visual working memory.

  5. Bilateral contributions of the cerebellum to the complex motor tasks on EPI fMRI

    International Nuclear Information System (INIS)

    Chung, Eun Chul; Youn, Eun Kyung; Lee, Young Rae; Kim, Yoo Kyung; Park, Kee Duk

    1999-01-01

    To demonstrate activation signals within the cerebellar cortex and to determine the side of the cerebellar cortex eliciting activation signals in response to complex motor tasks, as seen on EPI fMRI. Seven right-handed subjects (M : F=3 : 4; mean age, 30.3 years) underwent repetitive finger apposition with the dominant right hand. Using a 1.5 T MRI scanner, EPI fMR images were obtained. MR parameters used for EPI fMRI were TR/TE/Flip angle : 0.96 msec/64msec/90 deg FOV 22cm, 128 X 128 matrix, 10 slices, 10mm thickness while those for SE T1 weighted localized images were TR/TE : 450/16, FOV 23cm, 256 X 256 matrix. The paradigm was three sets of alternate resting and moving fingers for six cycles, resulting in times of 360 seconds (10 slices X 15 EPI X 6 cycles = 900 images). Image processing involved the use of a 200mHz Dual Pentium PC with homemade software. T-testing (p < 0.005 approx.= p < 0.0005) and time series analysis were performed, and to verify the locations of activated regions, resulting images were analyzed in a color-coded overlay to reference T1-weighted spin echo coronal images. Percentage change in signal intensity (PCSI) was calculated from the processed data. All normal subjects showed significant activation signals in both the contralateral (left) primary motor cortex (PCSI = 3.12% 0.96) and ipsilateral (right) cerebellar cortex (PCSI = 3.09% ±1.14). Signal activation was detected in the contralateral supplemental motor area (2.91% ±0.82), and motor activation in the anterior upper half of the contralateral cerebellum (PCSI 2.50% ±0.69). The difference in activation signals between both sides of the cerebellar cortex was not statistically significant. All data were matched with time-series analysis. Bilateral cerebellar activation is associated with unilateral complex finger movements, as seen on fMRI. This result may support the recent neurological observation that the cerebellum may exert bilateral effects on motor performance

  6. Psychosocial modulators of motor learning in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Petra eZemankova

    2016-02-01

    Full Text Available Using the remarkable overlap between brain circuits affected in Parkinson’s disease (PD and those underlying motor sequence learning, we may improve the effectiveness of motor rehabilitation interventions by identifying motor learning facilitators in PD. For instance, additional sensory stimulation and task cueing enhanced motor learning in people with PD, whereas exercising using musical rhythms or console computer games improved gait and balance, and reduced some motor symptoms, in addition to increasing task enjoyment. Yet, despite these advances, important knowledge gaps remain. Most studies investigating motor learning in PD used laboratory-specific tasks and equipment, with little resemblance to real life situations. Thus, it is unknown whether similar results could be achieved in more ecological setups and whether individual’s task engagement could further improve motor learning capacity. Moreover, the role of social interaction in motor skill learning process has not yet been investigated in PD and the role of mind-set and self-regulatory mechanisms have been sporadically examined. Here we review evidence suggesting that these psychosocial factors may be important modulators of motor learning in PD. We propose their incorporation in future research, given that it could lead to development of improved non-pharmacological interventions aimed to preserve or restore motor function in PD.

  7. Characterization of cognitive and motor performance during dual-tasking in healthy older adults and patients with Parkinson's disease.

    Science.gov (United States)

    Wild, Lucia Bartmann; de Lima, Daiane Borba; Balardin, Joana Bisol; Rizzi, Luana; Giacobbo, Bruno Lima; Oliveira, Henrique Bianchi; de Lima Argimon, Irani Iracema; Peyré-Tartaruga, Leonardo Alexandre; Rieder, Carlos R M; Bromberg, Elke

    2013-02-01

    The primary purpose of this study was to investigate the effect of dual-tasking on cognitive performance and gait parameters in patients with idiopathic Parkinson's disease (PD) without dementia. The impact of cognitive task complexity on cognition and walking was also examined. Eighteen patients with PD (ages 53-88, 10 women; Hoehn and Yahr stage I-II) and 18 older adults (ages 61-84; 10 women) completed two neuropsychological measures of executive function/attention (the Stroop Test and Wisconsin Card Sorting Test). Cognitive performance and gait parameters related to functional mobility of stride were measured under single (cognitive task only) and dual-task (cognitive task during walking) conditions with different levels of difficulty and different types of stimuli. In addition, dual-task cognitive costs were calculated. Although cognitive performance showed no significant difference between controls and PD patients during single or dual-tasking conditions, only the patients had a decrease in cognitive performance during walking. Gait parameters of patients differed significantly from controls at single and dual-task conditions, indicating that patients gave priority to gait while cognitive performance suffered. Dual-task cognitive costs of patients increased with task complexity, reaching significantly higher values then controls in the arithmetic task, which was correlated with scores on executive function/attention (Stroop Color-Word Page). Baseline motor functioning and task executive/attentional load affect the performance of cognitive tasks of PD patients while walking. These findings provide insight into the functional strategies used by PD patients in the initial phases of the disease to manage dual-task interference.

  8. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  9. The Effect of Motor Difficulty on the Acquisition of a Computer Task: A Comparison between Young and Older Adults

    Science.gov (United States)

    Fezzani, K.; Albinet, C.; Thon, B.; Marquie, J. -C.

    2010-01-01

    The present study investigated the extent to which the impact of motor difficulty on the acquisition of a computer task varies as a function of age. Fourteen young and 14 older participants performed 352 sequences of 10 serial pointing movements with a wireless pen on a digitiser tablet. A conditional probabilistic structure governed the…

  10. The impact of diurnal sleep on the consolidation of a complex gross motor adaptation task

    Science.gov (United States)

    Hoedlmoser, Kerstin; Birklbauer, Juergen; Schabus, Manuel; Eibenberger, Patrick; Rigler, Sandra; Mueller, Erich

    2015-01-01

    Diurnal sleep effects on consolidation of a complex, ecological valid gross motor adaptation task were examined using a bicycle with an inverse steering device. We tested 24 male subjects aged between 20 and 29 years using a between-subjects design. Participants were trained to adapt to the inverse steering bicycle during 45 min. Performance was tested before (TEST1) and after (TEST2) training, as well as after a 2 h retention interval (TEST3). During retention, participants either slept or remained awake. To assess gross motor performance, subjects had to ride the inverse steering bicycle 3 × 30 m straight-line and 3 × 30 m through a slalom. Beyond riding time, we sophisticatedly measured performance accuracy (standard deviation of steering angle) in both conditions using a rotatory potentiometer. A significant decrease of accuracy during straight-line riding after nap and wakefulness was shown. Accuracy during slalom riding remained stable after wakefulness but was reduced after sleep. We found that the duration of rapid eye movement sleep as well as sleep spindle activity are negatively related with gross motor performance changes over sleep. Together these findings suggest that the consolidation of adaptation to a new steering device does not benefit from a 2 h midday nap. We speculate that in case of strongly overlearned motor patterns such as normal cycling, diurnal sleep spindles and rapid eye movement sleep might even help to protect everyday needed skills, and to rapidly forget newly acquired, interfering and irrelevant material. PMID:25256866

  11. Stereotype threat and lift effects in motor task performance: the mediating role of somatic and cognitive anxiety.

    Science.gov (United States)

    Laurin, Raphael

    2013-01-01

    The aim of this investigation was to replicate the stereotype threat and lift effects in a motor task in a neutral sex-typed activity, using somatic and cognitive anxiety as key mediators of these phenomena. It was hypothesized that an ingroup/outgroup social categorization based on gender would have distinctive effects for female and male participants. A total of 161 French physical education students were randomly assigned to three threat conditions--no threat, female threat, and male threat--thus leading to a 3 x 2 (threat by gender) design. The analyses revealed a stereotype lift effect on the performances for both male and female participants, as well as a stereotype threat effect only for female participants. They also indicated that somatic anxiety had a mediating effect on the performance of female participants targeted by a negative stereotype, but that it had a facilitating effect on their performance. The stereotype threat and lift effects on motor tasks were replicated in a neutral sex-typed activity and somatic anxiety seems to have a facilitating mediating effect of the relationships between the gender-conditions (control or female threat) interaction and free-throw performance. The model used to distinguish somatic and cognitive anxiety appeared to be a relevant means of explaining the stereotype threat and lift mechanisms.

  12. Interference in motor learning - is motor interference sensory?

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C

    mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory...... was disrupted by subsequent learning of a precision tracking task with the same agonist muscle group, but not by learning involving antagonist muscles or by voluntary agonist contractions that did not require learning. If the competing task was learned with the same agonist muscle group 4 hours following...

  13. Comprehension of handwriting development: Pen-grip kinetics in handwriting tasks and its relation to fine motor skills among school-age children.

    Science.gov (United States)

    Lin, Yu-Chen; Chao, Yen-Li; Wu, Shyi-Kuen; Lin, Ho-Hsio; Hsu, Chieh-Hsiang; Hsu, Hsiao-Man; Kuo, Li-Chieh

    2017-10-01

    Numerous tools have been developed to evaluate handwriting performances by analysing written products. However, few studies have directly investigated kinetic performances of digits when holding a pen. This study thus attempts to investigate pen-grip kinetics during writing tasks of school-age children and explore the relationship between the kinetic factors and fine motor skills. This study recruited 181 children aged from 5 to 12 years old and investigated the effects of age on handwriting kinetics and the relationship between these and fine motor skills. The forces applied from the digits and pen-tip were measured during writing tasks via a force acquisition pen, and the children's fine motor performances were also evaluated. The results indicate that peak force and average force might not be direct indicators of handwriting performance for normally developing children at this age. Younger children showed larger force variation and lower adjustment frequency during writing, which might indicate they had poorer force control than the older children. Force control when handling a pen is significantly correlated with fine motor performance, especially in relation to the manual dexterity. A novel system is proposed for analysing school-age children's force control while handwriting. We observed the development of force control in relation to pen grip among the children with different ages in this study. The findings suggested that manipulation skill may be crucial when children are establishing their handwriting capabilities. © 2017 Occupational Therapy Australia.

  14. Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts.

    Directory of Open Access Journals (Sweden)

    J Lucas McKay

    Full Text Available Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3 across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2× compared to individual muscle control. Our results are consistent with the idea that hierarchical, task

  15. Effects of transcranial direct current stimulation of the motor cortex on prefrontal cortex activation during a neuromuscular fatigue task: an fNIRS study.

    Science.gov (United States)

    Muthalib, Makii; Kan, Benjamin; Nosaka, Kazunori; Perrey, Stephane

    2013-01-01

    This study investigated whether manipulation of motor cortex excitability by transcranial direct current stimulation (tDCS) modulates neuromuscular fatigue and functional near-infrared spectroscopy (fNIRS)-derived prefrontal cortex (PFC) activation. Fifteen healthy men (27.7 ± 8.4 years) underwent anodal (2 mA, 10 min) and sham (2 mA, first 30 s only) tDCS delivered to the scalp over the right motor cortex. Subjects initially performed a baseline sustained submaximal (30 % maximal voluntary isometric contraction, MVC) isometric contraction task (SSIT) of the left elbow flexors until task failure, which was followed 50 min later by either an anodal or sham treatment condition, then a subsequent posttreatment SSIT. Endurance time (ET), torque integral (TI), and fNIRS-derived contralateral PFC oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentration changes were determined at task failure. Results indicated that during the baseline and posttreatment SSIT, there were no significant differences in TI and ET, and increases in fNIRS-derived PFC activation at task failure were observed similarly regardless of the tDCS conditions. This suggests that the PFC neuronal activation to maintain muscle force production was not modulated by anodal tDCS.

  16. Age-related changes in oscillatory power affect motor action.

    Directory of Open Access Journals (Sweden)

    Liqing Liu

    Full Text Available With increasing age cognitive performance slows down. This includes cognitive processes essential for motor performance. Additionally, performance of motor tasks becomes less accurate. The objective of the present study was to identify general neural correlates underlying age-related behavioral slowing and the reduction in motor task accuracy. To this end, we continuously recorded EEG activity from 18 younger and 24 older right-handed healthy participants while they were performing a simple finger tapping task. We analyzed the EEG records with respect to local changes in amplitude (power spectrum as well as phase locking between the two age groups. We found differences between younger and older subjects in the amplitude of post-movement synchronization in the β band of the sensory-motor and medial prefrontal cortex (mPFC. This post-movement β amplitude was significantly reduced in older subjects. Moreover, it positively correlated with the accuracy with which subjects performed the motor task at the electrode FCz, which detects activity of the mPFC and the supplementary motor area. In contrast, we found no correlation between the accurate timing of local neural activity, i.e. phase locking in the δ-θ frequency band, with the reaction and movement time or the accuracy with which the motor task was performed. Our results show that only post-movement β amplitude and not δ-θ phase locking is involved in the control of movement accuracy. The decreased post-movement β amplitude in the mPFC of older subjects hints at an impaired deactivation of this area, which may affect the cognitive control of stimulus-induced motor tasks and thereby motor output.

  17. Motor conduction velocity in the human spinal cord: slowed conduction in multiple sclerosis and radiation myelopathy

    International Nuclear Information System (INIS)

    Snooks, S.J.; Swash, M.

    1985-01-01

    Transcutaneous electrical stimulation of the central nervous system was used to measure motor conduction velocity in the human spinal cord in 21 subjects aged 22 to 75 years (mean 55 years), none of whom had neurological disease. The motor conduction velocity between the sixth cervical (C6) and first lumbar (L1) vertebral levels was 67.4+-9.1 m/s. This probably represents conduction velocity in the corticospinal tracts. In these subjects the motor conduction velocity in the cauda equina, between the first lumbar (L1) and fourth lumbar (L4) vertebral levels, was 57.9+-10.3 m/s. In four of five patients with multiple sclerosis, all with corticospinal signs in the legs, motor conduction velocity between C6 and L1 was slowed (41.8+-16.8 m/s), but cauda equina conduction was normal (55.8+-7.8 m/s). Similar slowing of spinal cord motor conduction was found in a patient with radiation myelopathy. This method should provide a relevant, simple clinical test in patients with spinal cord disease. (author)

  18. Sleep benefits consolidation of visuo-motor adaptation learning in older adults.

    Science.gov (United States)

    Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C

    2016-02-01

    Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.

  19. Long lasting structural changes in primary motor cortex after motor skill learning: a behavioural and stereological study

    Directory of Open Access Journals (Sweden)

    PAOLA MORALES

    2008-12-01

    Full Text Available Many motor skills, once acquired, are stored over a long time period, probably sustained by permanent neuronal changes. Thus, in this paper we have investigated with quantitative stereology the generation and persistence of neuronal density changes in primary motor cortex (MI following motor skill learning (skilled reaching task. Rats were trained a lateralised reaching task during an "early" (22-31 days oíd or "late" (362-371 days oíd postnatal period. The trained and corresponding control rats were sacrificed at day 372, immediately after the behavioural testing. The "early" trained group preserved the learned skilled reaching task when tested at day 372, without requiring any additional training. The "late" trained group showed a similar capacity to that of the "early" trained group for learning the skilled reaching task. All trained animáis ("early" and "late" trained groups showed a significant Ínter hemispheric decrease of neuronal density in the corresponding motor forelimb representation área of MI (cortical layers II-III

  20. Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Liuba Papeo

    Full Text Available The embodied cognition hypothesis suggests that motor and premotor areas are automatically and necessarily involved in understanding action language, as word conceptual representations are embodied. This transcranial magnetic stimulation (TMS study explores the role of the left primary motor cortex in action-verb processing. TMS-induced motor-evoked potentials from right-hand muscles were recorded as a measure of M1 activity, while participants were asked either to judge explicitly whether a verb was action-related (semantic task or to decide on the number of syllables in a verb (syllabic task. TMS was applied in three different experiments at 170, 350 and 500 ms post-stimulus during both tasks to identify when the enhancement of M1 activity occurred during word processing. The delays between stimulus onset and magnetic stimulation were consistent with electrophysiological studies, suggesting that word recognition can be differentiated into early (within 200 ms and late (within 400 ms lexical-semantic stages, and post-conceptual stages. Reaction times and accuracy were recorded to measure the extent to which the participants' linguistic performance was affected by the interference of TMS with M1 activity. No enhancement of M1 activity specific for action verbs was found at 170 and 350 ms post-stimulus, when lexical-semantic processes are presumed to occur (Experiments 1-2. When TMS was applied at 500 ms post-stimulus (Experiment 3, processing action verbs, compared with non-action verbs, increased the M1-activity in the semantic task and decreased it in the syllabic task. This effect was specific for hand-action verbs and was not observed for action-verbs related to other body parts. Neither accuracy nor RTs were affected by TMS. These findings suggest that the lexical-semantic processing of action verbs does not automatically activate the M1. This area seems to be rather involved in post-conceptual processing that follows the retrieval of motor

  1. The effect of stimulus duration and motor response in hemispatial neglect during a visual search task.

    Directory of Open Access Journals (Sweden)

    Laura M Jelsone-Swain

    Full Text Available Patients with hemispatial neglect exhibit a myriad of profound deficits. A hallmark of this syndrome is the patients' absence of awareness of items located in their contralesional space. Many studies, however, have demonstrated that neglect patients exhibit some level of processing of these neglected items. It has been suggested that unconscious processing of neglected information may manifest as a fast denial. This theory of fast denial proposes that neglected stimuli are detected in the same way as non-neglected stimuli, but without overt awareness. We evaluated the fast denial theory by conducting two separate visual search task experiments, each differing by the duration of stimulus presentation. Specifically, in Experiment 1 each stimulus remained in the participants' visual field until a response was made. In Experiment 2 each stimulus was presented for only a brief duration. We further evaluated the fast denial theory by comparing verbal to motor task responses in each experiment. Overall, our results from both experiments and tasks showed no evidence for the presence of implicit knowledge of neglected stimuli. Instead, patients with neglect responded the same when they neglected stimuli as when they correctly reported stimulus absence. These findings thus cast doubt on the concept of the fast denial theory and its consequent implications for non-conscious processing. Importantly, our study demonstrated that the only behavior affected was during conscious detection of ipsilesional stimuli. Specifically, patients were slower to detect stimuli in Experiment 1 compared to Experiment 2, suggesting a duration effect occurred during conscious processing of information. Additionally, reaction time and accuracy were similar when reporting verbally versus motorically. These results provide new insights into the perceptual deficits associated with neglect and further support other work that falsifies the fast denial account of non

  2. Desempenho de idosos em uma tarefa motora de demanda dupla de controle Aging motor performance in a dual task control

    Directory of Open Access Journals (Sweden)

    Paula Regina Gehring

    2009-09-01

    old, while groups of young people are usually represented by participants in their early 20's. Such procedure could hide developmental changes with the advance of age and, consequently, could lead to results misinterpretation. Therefore the main purpose of this study was to verify whether there is an age effect on the performance in a motor task. It was used an apparatus enabling a linear positioning combined with a manual force control task. Participants performed the motor task receiving verbal knowledge of result in ten trials about the immediately finished trial that provided information about accomplishing the goal of 20% of the maximum force and 35cm of displacement. Performance was measured by absolute errors. The sample comprised 150 participants raging from 60 to 86 years old, which performed the task blinded folded and with non-dominant hand. Participants were divided in three age groups (60, 70, 80 years, and performance was also compared with a young group (21 to 30 years old. Correlation analyses show a significant but low age effect in distance control, and there was no difference in performance among older groups (except G20 and G80. Despite instructor's empirical observation about differences in motor performance with aging, apart from fitness, surprisingly, the present study did not show such age effect on the performance of this particular motor task. Perhaps, considering that these participants were physically active, possible differences in motor performance due to development were overcome by their lifestyle.

  3. Deficits in Visuo-Motor Temporal Integration Impacts Manual Dexterity in Probable Developmental Coordination Disorder.

    Science.gov (United States)

    Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio

    2018-01-01

    The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and

  4. Motor-sensory confluence in tactile perception.

    Science.gov (United States)

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  5. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    Science.gov (United States)

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  6. An Inverse Optimal Control Approach to Explain Human Arm Reaching Control Based on Multiple Internal Models.

    Science.gov (United States)

    Oguz, Ozgur S; Zhou, Zhehua; Glasauer, Stefan; Wollherr, Dirk

    2018-04-03

    Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS.

  7. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Directory of Open Access Journals (Sweden)

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  8. Effects of tDCS on Bimanual Motor Skills: A Brief Review.

    Science.gov (United States)

    Pixa, Nils H; Pollok, Bettina

    2018-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation.

  9. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles

    Science.gov (United States)

    Weiss, Patrice L.; Keshner, Emily A.

    2015-01-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522

  10. Effects of motor congruence on visual working memory.

    Science.gov (United States)

    Quak, Michel; Pecher, Diane; Zeelenberg, Rene

    2014-10-01

    Grounded-cognition theories suggest that memory shares processing resources with perception and action. The motor system could be used to help memorize visual objects. In two experiments, we tested the hypothesis that people use motor affordances to maintain object representations in working memory. Participants performed a working memory task on photographs of manipulable and nonmanipulable objects. The manipulable objects were objects that required either a precision grip (i.e., small items) or a power grip (i.e., large items) to use. A concurrent motor task that could be congruent or incongruent with the manipulable objects caused no difference in working memory performance relative to nonmanipulable objects. Moreover, the precision- or power-grip motor task did not affect memory performance on small and large items differently. These findings suggest that the motor system plays no part in visual working memory.

  11. Task-specific gross motor skills training for ambulant school-aged children with cerebral palsy: a systematic review.

    Science.gov (United States)

    Toovey, Rachel; Bernie, Charmaine; Harvey, Adrienne R; McGinley, Jennifer L; Spittle, Alicia J

    2017-01-01

    The primary objective is to systematically evaluate the evidence for the effectiveness of task-specific training (TST) of gross motor skills for improving activity and/or participation outcomes in ambulant school-aged children with cerebral palsy (CP). The secondary objective is to identify motor learning strategies reported within TST and assess relationship to outcome. Systematic review. Relevant databases were searched for studies including: children with CP (mean age >4 years and >60% of the sample ambulant); TST targeting gross motor skills and activity (skill performance, gross motor function and functional skills) and/or participation-related outcomes. Quality of included studies was assessed using standardised tools for risk of bias, study design and quality of evidence across outcomes. Continuous data were summarised for each study using standardised mean difference (SMD) and 95% CIs. Thirteen studies met inclusion criteria: eight randomised controlled trials (RCTs), three comparative studies, one repeated-measures study and one single-subject design study. Risk of bias was moderate across studies. Components of TST varied and were often poorly reported. Within-group effects of TST were positive across all outcomes of interest in 11 studies. In RCTs, between-group effects were conflicting for skill performance and functional skills, positive for participation-related outcomes (one study: Life-HABITS performance SMD=1.19, 95% CI 0.3 to 2.07, pmotor function. The quality of evidence was low-to-moderate overall. Variability and poor reporting of motor learning strategies limited assessment of relationship to outcome. Limited evidence for TST for gross motor skills in ambulant children with CP exists for improving activity and participation-related outcomes and recommendations for use over other interventions are limited by poor study methodology and heterogeneous interventions. PROSPERO ID42016036727.

  12. Changes of motor-cortical oscillations associated with motor learning.

    Science.gov (United States)

    Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A

    2014-09-05

    Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    Science.gov (United States)

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. From Children to Adults: Motor Performance across the Life-Span

    Science.gov (United States)

    Leversen, Jonas S. R.; Haga, Monika; Sigmundsson, Hermundur

    2012-01-01

    The life-span approach to development provides a theoretical framework to examine the general principles of life-long development. This study aims to investigate motor performance across the life span. It also aims to investigate if the correlations between motor tasks increase with aging. A cross-sectional design was used to describe the effects of aging on motor performance across age groups representing individuals from childhood to young adult to old age. Five different motor tasks were used to study changes in motor performance within 338 participants (7–79 yrs). Results showed that motor performance increases from childhood (7–9) to young adulthood (19–25) and decreases from young adulthood (19–25) to old age (66–80). These results are mirroring results from cognitive research. Correlation increased with increasing age between two fine motor tasks and two gross motor tasks. We suggest that the findings might be explained, in part, by the structural changes that have been reported to occur in the developing and aging brain and that the theory of Neural Darwinism can be used as a framework to explain why these changes occur. PMID:22719958

  15. Normalized Index of Synergy for Evaluating the Coordination of Motor Commands

    Science.gov (United States)

    Togo, Shunta; Imamizu, Hiroshi

    2015-01-01

    Humans perform various motor tasks by coordinating the redundant motor elements in their bodies. The coordination of motor outputs is produced by motor commands, as well properties of the musculoskeletal system. The aim of this study was to dissociate the coordination of motor commands from motor outputs. First, we conducted simulation experiments where the total elbow torque was generated by a model of a simple human right and left elbow with redundant muscles. The results demonstrated that muscle tension with signal-dependent noise formed a coordinated structure of trial-to-trial variability of muscle tension. Therefore, the removal of signal-dependent noise effects was required to evaluate the coordination of motor commands. We proposed a method to evaluate the coordination of motor commands, which removed signal-dependent noise from the measured variability of muscle tension. We used uncontrolled manifold analysis to calculate a normalized index of synergy. Simulation experiments confirmed that the proposed method could appropriately represent the coordinated structure of the variability of motor commands. We also conducted experiments in which subjects performed the same task as in the simulation experiments. The normalized index of synergy revealed that the subjects coordinated their motor commands to achieve the task. Finally, the normalized index of synergy was applied to a motor learning task to determine the utility of the proposed method. We hypothesized that a large part of the change in the coordination of motor outputs through learning was because of changes in motor commands. In a motor learning task, subjects tracked a target trajectory of the total torque. The change in the coordination of muscle tension through learning was dominated by that of motor commands, which supported the hypothesis. We conclude that the normalized index of synergy can be used to evaluate the coordination of motor commands independently from the properties of the

  16. Comparative neuroimaging in children with cerebral palsy using fMRI and a novel EEG-based brain mapping during a motor task--a preliminary investigation.

    Science.gov (United States)

    Lee, Jae Jin; Lee, Dong Ryul; Shin, Yoon Kyum; Lee, Nam Gi; Han, Bong S; You, Sung Joshua Hyun

    2013-01-01

    The purpose of this study was to compare topographical maps using a novel EEG-based brain mapping system with fMRI in normal and children with cerebral palsy (CP) during a grasping motor task. A normal child (mean ± SD = 13 ± 0 yrs) and four children with CP (mean ± SD = 10.25 ± 2.86 yrs) were recruited from a local community school and medical center. A novel EEG-based brain mapping system with 30 scalp sites (an extension of the 10-20 system) and a 3T MR scanner were used to observe cortical activation patterns during a grasping motor task. Descriptive analysis. In the EEG brain mapping data, the sensorimotor cortex (SMC) and inferior parietal cortex (IPC) were activated in all of the children. The children with CP showed additional activation areas in the premotor cortex (PMC), superior parietal cortex (SPC), and prefrontal cortex (PFC). In the fMRI brain mapping data, SMC activation was observed in all of the children, and the children with CP showed additional activation areas in the PMC and primary somatosensory cortex (PSC). The EEG-based topographical maps were equivalent to the maps obtained from fMRI during the grasping motor task. The results indicate that our novel EEG-based brain mapping system is useful for probing cortical activation patterns in normal children and children with CP.

  17. The Use of Digital Technology in Finding Multiple Paths to Solve and Extend an Equilateral Triangle Task

    Science.gov (United States)

    Santos-Trigo, Manuel; Reyes-Rodriguez, Aaron

    2016-01-01

    Mathematical tasks are crucial elements for teachers to orient, foster and assess students' processes to comprehend and develop mathematical knowledge. During the process of working and solving a task, searching for or discussing multiple solution paths becomes a powerful strategy for students to engage in mathematical thinking. A simple task that…

  18. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients.

    Directory of Open Access Journals (Sweden)

    Da-Hye Kim

    Full Text Available Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal

  19. Building a Framework for a Dual Task Taxonomy

    Directory of Open Access Journals (Sweden)

    Tara L. McIsaac

    2015-01-01

    Full Text Available The study of dual task interference has gained increasing attention in the literature for the past 35 years, with six MEDLINE citations in 1979 growing to 351 citations indexed in 2014 and a peak of 454 cited papers in 2013. Increasingly, researchers are examining dual task cost in individuals with pathology, including those with neurodegenerative diseases. While the influence of these papers has extended from the laboratory to the clinic, the field has evolved without clear definitions of commonly used terms and with extreme variations in experimental procedures. As a result, it is difficult to examine the interference literature as a single body of work. In this paper we present a new taxonomy for classifying cognitive-motor and motor-motor interference within the study of dual task behaviors that connects traditional concepts of learning and principles of motor control with current issues of multitasking analysis. As a first step in the process we provide an operational definition of dual task, distinguishing it from a complex single task. We present this new taxonomy, inclusive of both cognitive and motor modalities, as a working model; one that we hope will generate discussion and create a framework from which one can view previous studies and develop questions of interest.

  20. Formal Derivation of Lotka-Volterra-Haken Amplitude Equations of Task-Related Brain Activity in Multiple, Consecutively Performed Tasks

    Science.gov (United States)

    Frank, T. D.

    The Lotka-Volterra-Haken equations have been frequently used in ecology and pattern formation. Recently, the equations have been proposed by several research groups as amplitude equations for task-related patterns of brain activity. In this theoretical study, the focus is on the circular causality aspect of pattern formation systems as formulated within the framework of synergetics. Accordingly, the stable modes of a pattern formation system inhibit the unstable modes, whereas the unstable modes excite the stable modes. Using this circular causality principle it is shown that under certain conditions the Lotka-Volterra-Haken amplitude equations can be derived from a general model of brain activity akin to the Wilson-Cowan model. The model captures the amplitude dynamics for brain activity patterns in experiments involving several consecutively performed multiple-choice tasks. This is explicitly demonstrated for two-choice tasks involving grasping and walking. A comment on the relevance of the theoretical framework for clinical psychology and schizophrenia is given as well.

  1. The efficacy of two task-orientated interventions for children with Developmental Coordination Disorder : Neuromotor Task Training and Nintendo Wii Fit training

    NARCIS (Netherlands)

    Ferguson, G. D.; Jelsma, D.; Jelsma, J.; Smits-Engelsman, B. C. M.

    Neuromotor Task Training (NTT) and Nintendo Wii Fit Training (Wii training) are both task-based interventions used to improve performance in children with motor coordination problems. The aim of this study was to compare the efficacy of these two interventions on the motor performance, isometric

  2. Differential activation of brain regions involved with error-feedback and imitation based motor simulation when observing self and an expert's actions in pilots and non-pilots on a complex glider landing task.

    Science.gov (United States)

    Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki

    2013-05-15

    In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Interference in ballistic motor learning: specificity and role of sensory error signals

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C

    2011-01-01

    Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlap......Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity...... in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non......-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic...

  4. A familial case of segregation of motor sensory neuropathy type 1B with multiple exostoses in monozygous twins

    Directory of Open Access Journals (Sweden)

    V. P. Fedotov

    2015-01-01

    Full Text Available Hereditary motor-sensory neuropathy (MIM 118200 is a rare genetic variant of myelinopathy with autosomal-dominant type of inheritance. Multiple exostosis bones are signs of multiple exostoses chondrodysplasia, genetically heterogeneous form of systemic bone disease with an autosomal dominant mode of inheritance. The combination of two rare autosomal dominant diseases, affecting bone and peripheral nervous system in a pair of monozygotic twins and their father in one family, belongs to a unique clinical observations: since early childhood twins presented sharp reduction of the conduction velocity in all investigated motor nerves (>10 times together with multiple exostosis bone, confirmed by x-ray with a relatively benign course. Similar manifestations were detected in the patients father. DNA analysis confirmed the presence of 2 separate mutations in 2 different genes, с.389А>G/N gene MPZ and c.678С>А/N EXT2 gene that was inherited autosomal dominant manner, independently of each members of the same family.

  5. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    Science.gov (United States)

    Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  6. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    Full Text Available A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  7. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model

    Science.gov (United States)

    Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723

  8. Signs of abnormal motor performance in preschool children

    Directory of Open Access Journals (Sweden)

    Martina Šlachtová

    2013-12-01

    Full Text Available BACKGROUND: The determination of the level of motor development should be a common part of examinations performed by paediatricians, physiotherapists and also teachers. The importance has been increasing because of the prevalence of developmental coordination disorder. OBJECTIVE: The aim of the study was to find the differences in performance of the selected motor tasks of gross motor function in preschoolers on both quantitative and qualitative parameters. METHODS: In the study 261 children were included, boys and girls aged 4–6 years (the average age 5.4 years attending regular kindergartens. We used motor tasks of standing on one leg and hopping. Significant differences in quantitative parameters were assessed by two-way ANOVA in Statistica (version 9 software. Relative frequency of characters in qualitative parameters was assessed by the test of the difference between two proportions. RESULTS: Significant differences between the age groups appeared in the quantitative parameters comparing 4 and 5 year old children and 4 and 6 year old children. Regardless of gender there were no differences between 5 year and 6 year old children. Overall, the girls mastered the tasks of the test better than the boys in the quantitative parameters of evaluation. From the evaluation of the quality of motor performance the most frequently reached performance in the tasks of the test has been described (relative frequency of characters. Significantly different motor performance from most children of the sample was observed particularly in the associated movements of limbs or trunk and face, showing for a reduced ability of selective relaxation at higher demands of the movement task. CONCLUSIONS: The different motor performance in observed parameters, showing for a reduced ability of selective relaxation, could be regarded as signs of abnormal motor performance in that age category.

  9. Adjustments differ among low-threshold motor units during intermittent, isometric contractions.

    Science.gov (United States)

    Farina, Dario; Holobar, Ales; Gazzoni, Marco; Zazula, Damjan; Merletti, Roberto; Enoka, Roger M

    2009-01-01

    We investigated the changes in muscle fiber conduction velocity, recruitment and derecruitment thresholds, and discharge rate of low-threshold motor units during a series of ramp contractions. The aim was to compare the adjustments in motor unit activity relative to the duration that each motor unit was active during the task. Multichannel surface electromyographic (EMG) signals were recorded from the abductor pollicis brevis muscle of eight healthy men during 12-s contractions (n = 25) in which the force increased and decreased linearly from 0 to 10% of the maximum. The maximal force exhibited a modest decline (8.5 +/- 9.3%; P motor units that were active for 16-98% of the time during the first five contractions were identified throughout the task by decomposition of the EMG signals. Action potential conduction velocity decreased during the task by a greater amount for motor units that were initially active for >70% of the time compared with that of less active motor units. Moreover, recruitment and derecruitment thresholds increased for these most active motor units, whereas the thresholds decreased for the less active motor units. Another 18 motor units were recruited at an average of 171 +/- 32 s after the beginning of the task. The recruitment and derecruitment thresholds of these units decreased during the task, but muscle fiber conduction velocity did not change. These results indicate that low-threshold motor units exhibit individual adjustments in muscle fiber conduction velocity and motor neuron activation that depended on the relative duration of activity during intermittent contractions.

  10. A framework to describe, analyze and generate interactive motor behaviors.

    Directory of Open Access Journals (Sweden)

    Nathanaël Jarrassé

    Full Text Available While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.

  11. Long-term progressive motor skill training enhances corticospinal excitability for the ipsilateral hemisphere and motor performance of the untrained hand

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Larsen, Malte Nejst; Grey, Michael James

    2017-01-01

    It is well-established that unilateral motor practice can lead to increased performance in the opposite non-trained hand. Here, we test the hypothesis that progressively increasing task difficulty during long-term skill training with the dominant right hand increase performance and corticomotor...... and accuracy to individual proficiency promotes motor skill learning and drives the iM1-CSE resulting in enhanced performance of the non-trained hand. The results underline the importance of increasing task difficulty progressively and individually in skill learning and rehabilitation training. This article...... excitability of the left non-trained hand. Subjects practiced a visuomotor tracking task engaging right digit V for 6 weeks with either progressively increasing task difficulty (PT) or no progression (NPT). Corticospinal excitability(CSE) was evaluated from the resting motor threshold(rMT) and recruitment...

  12. Long-term progressive motor skill training enhances corticospinal excitability for the ipsilateral hemisphere and motor performance of the untrained hand

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Larsen, Malte Nejst; Grey, Michael James

    2017-01-01

    It is well established that unilateral motor practice can lead to increased performance in the opposite non-trained hand. Here, we test the hypothesis that progressively increasing task difficulty during long-term skill training with the dominant right hand increase performance and corticomotor...... demands for timing and accuracy to individual proficiency promotes motor skill learning and drives the iM1-CSE resulting in enhanced performance of the non-trained hand. The results underline the importance of increasing task difficulty progressively and individually in skill learning and rehabilitation...... excitability of the left non-trained hand. Subjects practiced a visuomotor tracking task engaging right digit V for 6 weeks with either progressively increasing task difficulty (PT) or no progression (NPT). Corticospinal excitability (CSE) was evaluated from the resting motor threshold (rMT) and recruitment...

  13. Biomechanical Analyses of Stair-climbing while Dual-tasking

    Science.gov (United States)

    Vallabhajosula, Srikant; Tan, Chi Wei; Mukherjee, Mukul; Davidson, Austin J.; Stergiou, Nicholas

    2015-01-01

    Stair-climbing while doing a concurrent task like talking or holding an object is a common activity of daily living which poses high risk for falls. While biomechanical analyses of overground walking during dual-tasking have been studied extensively, little is known on the biomechanics of stair-climbing while dual-tasking. We sought to determine the impact of performing a concurrent cognitive or motor task during stair-climbing. We hypothesized that a concurrent cognitive task will have a greater impact on stair climbing performance compared to a concurrent motor task and that this impact will be greater on a higher-level step. Ten healthy young adults performed 10 trials of stair-climbing each under four conditions: stair ascending only, stair ascending and performing subtraction of serial sevens from a three-digit number, stair ascending and carrying an empty opaque box and stair ascending, performing subtraction of serial sevens from a random three-digit number and carrying an empty opaque box. Kinematics (lower extremity joint angles and minimum toe clearance) and kinetics (ground reaction forces and joint moments and powers) data were collected. We found that a concurrent cognitive task impacted kinetics but not kinematics of stair-climbing. The effect of dual-tasking during stair ascent also seemed to vary based on the different phases of stair ascent stance and seem to have greater impact as one climbs higher. Overall, the results of the current study suggest that the association between the executive functioning and motor task (like gait) becomes stronger as the level of complexity of the motor task increases. PMID:25773590

  14. On the (elusive) role of oral motor-movements in fluency-based memory illusions.

    Science.gov (United States)

    Westerman, Deanne L; Klin, Celia M; Lanska, Meredith

    2015-07-01

    It is well established that the ease with which a stimulus is processed affects many different types of evaluative judgments. Recently, it has been proposed that for verbal stimuli the effect of fluency on such judgments is mediated by the muscles that are involved in speech (Topolinski & Strack, 2009, 2010). Evidence for this claim can be found in studies that have shown that fluency effects are eliminated if such judgments are made while these muscles are otherwise engaged (such as while chewing gum or eating). Additional research has found that oral-motor tasks block familiarity-based responding on recognition memory tasks (Topolinski, 2012). The current study investigated the effect of an oral-motor task on recognition memory. Of particular interest was whether the fluency-blocking effects of an oral-motor task would extend to fluency-based illusions of recognition memory. Although we found robust fluency-based illusions of familiarity, we did not find that the effects were modulated by the nature of the concurrent task (gum-chewing vs. a manual-motor task). Moreover, we found no evidence that oral-motor tasks affected recognition more generally, nor did we find that an oral-motor task modulated affective ratings to repeated stimuli. We were also unable to replicate the finding that an oral-motor task blocks the false fame effect (Topolinski & Strack, 2010). These results call into question the assertion that oral-motor movements mediate fluency effects in recognition memory and other evaluative judgments. (c) 2015 APA, all rights reserved.

  15. Microprocessor controller for stepping motors

    International Nuclear Information System (INIS)

    Strait, B.G.; Thuot, M.E.

    1977-01-01

    A new concept for digital computer control of multiple stepping motors which operate in a severe electromagnetic pulse environment is presented. The motors position mirrors in the beam-alignment system of a 100-kJ CO 2 laser. An asynchronous communications channel of a computer is used to send coded messages, containing the motor address and stepping-command information, to the stepping-motor controller in a bit serial format over a fiber-optics communications link. The addressed controller responds by transmitting to the computer its address and other motor information, thus confirming the received message. Each controller is capable of controlling three stepping motors. The controller contains the fiber-optics interface, a microprocessor, and the stepping-motor driven circuits. The microprocessor program, which resides in an EPROM, decodes the received messages, transmits responses, performs the stepping-motor sequence logic, maintains motor-position information, and monitors the motor's reference switch. For multiple stepping-motor application, the controllers are connected in a daisy chain providing control of many motors from one asynchronous communications channel of the computer

  16. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Science.gov (United States)

    Mokienko, Olesya A.; Chervyakov, Alexander V.; Kulikova, Sofia N.; Bobrov, Pavel D.; Chernikova, Liudmila A.; Frolov, Alexander A.; Piradov, Mikhail A.

    2013-01-01

    Background: Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI). Subjects and Methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years) were either trained with an MI-based BCI (BCI-trained, n = 5) or received no BCI training (n = 6, controls). Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS). Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17%) during MI, which was also observed only in BCI-trained subjects. Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy. PMID:24319425

  17. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Directory of Open Access Journals (Sweden)

    Olesya eMokienko

    2013-11-01

    Full Text Available Background: Motor imagery (MI is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms.Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI.Subjects and methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years were either trained with an MI-based BCI (BCI-trained, n = 5 or received no BCI training (n = 6, controls. Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS.Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17% during MI, which was also observed only in BCI-trained subjects.Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.

  18. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort.

    Science.gov (United States)

    Guell, Xavier; Gabrieli, John D E; Schmahmann, Jeremy D

    2018-05-15

    Delineation of functional topography is critical to the evolving understanding of the cerebellum's role in a wide range of nervous system functions. We used data from the Human Connectome Project (n = 787) to analyze cerebellar fMRI task activation (motor, working memory, language, social and emotion processing) and resting-state functional connectivity calculated from cerebral cortical seeds corresponding to the peak Cohen's d of each task contrast. The combination of exceptional statistical power, activation from both motor and multiple non-motor tasks in the same participants, and convergent resting-state networks in the same participants revealed novel aspects of the functional topography of the human cerebellum. Consistent with prior studies there were two distinct representations of motor activation. Newly revealed were three distinct representations each for working memory, language, social, and emotional task processing that were largely separate for these four cognitive and affective domains. In most cases, the task-based activations and the corresponding resting-network correlations were congruent in identifying the two motor representations and the three non-motor representations that were unique to working memory, language, social cognition, and emotion. The definitive localization and characterization of distinct triple representations for cognition and emotion task processing in the cerebellum opens up new basic science questions as to why there are triple representations (what different functions are enabled by the different representations?) and new clinical questions (what are the differing consequences of lesions to the different representations?). Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    Science.gov (United States)

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-10-01

    The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.

  20. Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor chunking in humans.

    Science.gov (United States)

    Wymbs, Nicholas F; Bassett, Danielle S; Mucha, Peter J; Porter, Mason A; Grafton, Scott T

    2012-06-07

    Motor chunking facilitates movement production by combining motor elements into integrated units of behavior. Previous research suggests that chunking involves two processes: concatenation, aimed at the formation of motor-motor associations between elements or sets of elements, and segmentation, aimed at the parsing of multiple contiguous elements into shorter action sets. We used fMRI to measure the trial-wise recruitment of brain regions associated with these chunking processes as healthy subjects performed a cued-sequence production task. A dynamic network analysis identified chunking structure for a set of motor sequences acquired during fMRI and collected over 3 days of training. Activity in the bilateral sensorimotor putamen positively correlated with chunk concatenation, whereas a left-hemisphere frontoparietal network was correlated with chunk segmentation. Across subjects, there was an aggregate increase in chunk strength (concatenation) with training, suggesting that subcortical circuits play a direct role in the creation of fluid transitions across chunks. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Load type influences motor unit recruitment in biceps brachii during a sustained contraction.

    Science.gov (United States)

    Baudry, Stéphane; Rudroff, Thorsten; Pierpoint, Lauren A; Enoka, Roger M

    2009-09-01

    Twenty subjects participated in four experiments designed to compare time to task failure and motor-unit recruitment threshold during contractions sustained at 15% of maximum as the elbow flexor muscles either supported an inertial load (position task) or exerted an equivalent constant torque against a rigid restraint (force task). Subcutaneous branched bipolar electrodes were used to record single motor unit activity from the biceps brachii muscle during ramp contractions performed before and at 50 and 90% of the time to failure for the position task during both fatiguing contractions. The time to task failure was briefer for the position task than for the force task (P=0.0002). Thirty and 29 motor units were isolated during the force and position tasks, respectively. The recruitment threshold declined by 48 and 30% (P=0.0001) during the position task for motor units with an initial recruitment threshold below and above the target force, respectively, whereas no significant change in recruitment threshold was observed during the force task. Changes in recruitment threshold were associated with a decrease in the mean discharge rate (-16%), an increase in discharge rate variability (+40%), and a prolongation of the first two interspike intervals (+29 and +13%). These data indicate that there were faster changes in motor unit recruitment and rate coding during the position task than the force task despite a similar net muscle torque during both tasks. Moreover, the results suggest that the differential synaptic input observed during the position task influences most of the motor unit pool.

  2. Kinesthetic motor imagery modulates body sway.

    Science.gov (United States)

    Rodrigues, E C; Lemos, T; Gouvea, B; Volchan, E; Imbiriba, L A; Vargas, C D

    2010-08-25

    The aim of this study was to investigate the effect of imagining an action implicating the body axis in the kinesthetic and visual motor imagery modalities upon the balance control system. Body sway analysis (measurement of center of pressure, CoP) together with electromyography (EMG) recording and verbal evaluation of imagery abilities were obtained from subjects during four tasks, performed in the upright position: to execute bilateral plantar flexions; to imagine themselves executing bilateral plantar flexions (kinesthetic modality); to imagine someone else executing the same movement (visual modality), and to imagine themselves singing a song (as a control imagery task). Body sway analysis revealed that kinesthetic imagery leads to a general increase in CoP oscillation, as reflected by an enhanced area of displacement. This effect was also verified for the CoP standard deviation in the medial-lateral direction. An increase in the trembling displacement (equivalent to center of pressure minus center of gravity) restricted to the anterior-posterior direction was also observed to occur during kinesthetic imagery. The visual imagery task did not differ from the control (sing) task for any of the analyzed parameters. No difference in the subjects' ability to perform the imagery tasks was found. No modulation of EMG data were observed across imagery tasks, indicating that there was no actual execution during motor imagination. These results suggest that motor imagery performed in the kinesthetic modality evokes motor representations involved in balance control. Copyright (c)10 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization.

    Directory of Open Access Journals (Sweden)

    Femke E van den Berg

    Full Text Available Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1(ipsi to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS to investigate whether representations of the wrist flexor (FCR and extensor (ECR in M1(ipsi would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1(ipsi facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1(ipsi only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1(ipsi than in the right. In experiment 2, we tested whether the modulations of M1(ipsi facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI. We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1(ipsi. We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks.

  4. Increased Reliance on Value-based Decision Processes Following Motor Cortex Disruption.

    Science.gov (United States)

    Zénon, Alexandre; Klein, Pierre-Alexandre; Alamia, Andrea; Boursoit, François; Wilhelm, Emmanuelle; Duque, Julie

    2015-01-01

    During motor decision making, the neural activity in primary motor cortex (M1) encodes dynamically the competition occurring between potential action plans. A common view is that M1 represents the unfolding of the outcome of a decision process taking place upstream. Yet, M1 could also be directly involved in the decision process. Here we tested this hypothesis by assessing the effect of M1 disruption on a motor decision-making task. We applied continuous theta burst stimulation (cTBS) to inhibit either left or right M1 in different groups of subjects and included a third control group with no stimulation. Following cTBS, participants performed a task that required them to choose between two finger key-presses with the right hand according to both perceptual and value-based information. Effects were assessed by means of generalized linear mixed models and computational simulations. In all three groups, subjects relied both on perceptual (P < 0.0001) and value-based information (P = 0.003) to reach a decision. Yet, left M1 disruption led to an increased reliance on value-based information (P = 0.03). This result was confirmed by a computational model showing an increased weight of the valued-based process on the right hand finger choices following left M1 cTBS (P < 0.01). These results indicate that M1 is involved in motor decision making, possibly by weighting the final integration of multiple sources of evidence driving motor behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease.

    Science.gov (United States)

    van Gilst, Merel M; van Mierlo, Petra; Bloem, Bastiaan R; Overeem, Sebastiaan

    2015-10-01

    Many people with Parkinson disease experience "sleep benefit": temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. Eighteen Parkinson patients with and 20 without subjective sleep benefit and 20 healthy controls participated. Before and directly after a regular night sleep and an afternoon nap, subjects performed the timed pegboard dexterity task and quantified finger tapping task. Subjective ratings of motor functioning and mood/vigilange were included. Sleep was monitored using polysomnography. On both tasks, patients were overall slower than healthy controls (night: F2,55 = 16.938, P Parkinson patients. Here we show that the subjective experience of sleep benefit is not paralleled by an actual improvement in motor functioning. Sleep benefit therefore appears to be a subjective phenomenon and not a Parkinson-specific reduction in symptoms. © 2015 Associated Professional Sleep Societies, LLC.

  6. Visuospatial attention and motor skills in kung fu athletes.

    Science.gov (United States)

    Muiños, Mónica; Ballesteros, Soledad

    2013-01-01

    The present study compared the performance of a group of sixteen kung fu athletes with that of a control group of fourteen nonathletes on a speeded visuospatial task and a hand-tapping motor task. In the visuospatial task the results showed that athletes were faster than the control participants when stimuli were presented at the periphery of the visual field at a middle and high presentation speed with short interstimulus intervals. Athletes were also significantly faster than nonathlete participants when performing motor actions such as hand-tapping with their dominant hand but groups did not differ with the nondominant hand. These results support the view that athletes perform some speeded visuospatial and motor tasks faster than nonathletes under certain conditions. The findings suggest that, after several years of practice, kung fu athletes develop certain skills that allow them to perform motor speed maneuvers under time pressure conditions.

  7. The influence of catch trials on the consolidation of motor memory in force field adaptation tasks

    Directory of Open Access Journals (Sweden)

    Anne eFocke

    2013-07-01

    Full Text Available In computational neuroscience it is generally accepted that human motor memory contains neural representations of the physics of the musculoskeletal system and the objects in the environment. These representations are called internal models. Force field studies, in which subjects have to adapt to dynamic perturbations induced by a robotic manipulandum, are an established tool to analyze the characteristics of such internal models. The aim of the current study was to investigate whether catch trials during force field learning could influence the consolidation of motor memory in more complex tasks. Thereby, the force field was more than double the force field of previous studies (35 Ns/m. Moreover, the arm of the subjects was not supported. A total of forty-six subjects participated in this study and performed center-out movements at a robotic manipulandum in two different force fields. Two control groups learned force field A on day 1 and were retested in the same force field on day 3 (AA. Two test groups additionally learned an interfering force field B (=-A on day 2 (ABA. The difference between the two test and control groups, respectively, was the absence (0% or presence (19% of catch trials, in which the force field was turned off suddenly. The results showed consolidation of force field A on day 3 for both control groups. Test groups showed no consolidation of force field A (19% catch trials and even poorer performance on day 3 (0% catch trials. In conclusion, it can be stated that catch trials seem to have a positive effect on the performance on day 3 but do not trigger a consolidation process as shown in previous studies that used a lower force field viscosity with supported arm. These findings indicate that the results of previous studies in which less complex tasks were analyzed, cannot be fully transferred to more complex tasks. Moreover, the effects of catch trials in these situations are insufficiently understood and further research

  8. Development of Vestibular Stochastic Resonance as a Sensorimotor Countermeasure: Improving Otolith Ocular and Motor Task Responses

    Science.gov (United States)

    Mulavara, Ajitkumar; Fiedler, Matthew; DeDios,Yiri E.; Galvan, Raquel; Bloomberg, Jacob; Wood, Scott

    2011-01-01

    Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. The goal of our present study is to develop a countermeasure based on vestibular SR that could improve central interpretation of vestibular input and improve motor task responses to mitigate associated risks.

  9. Verbal-motor attention-focusing instructions influence kinematics and performance on a golf-putting task.

    Science.gov (United States)

    Munzert, Jörn; Maurer, Heiko; Reiser, Mathias

    2014-01-01

    The authors examined how varying the content of verbal-motor instructions and requesting an internal versus external focus influenced the kinematics and outcome of a golf putting task. On Day 1, 30 novices performed 120 trials with the instruction to focus attention either on performing a pendulum-like movement (internal) or on the desired ball path (external). After 20 retention trials on Day 2, they performed 20 transfer trials with the opposite instruction. Group differences for retention and a group by block interaction showed that external instruction enhanced movement outcome. Kinematic data indicated that specific instruction content influenced outcomes by eliciting changes in movement execution. Switching from the external to the internal focus instruction resulted in a more pendulum-like movement.

  10. Task-related signal decrease on functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamaki, Norihiko; Tamura, Shogo; Kitamura, Junji

    2001-01-01

    An atypical pattern of signal change was identified on functional magnetic resonance (fMR) imaging in pathologic patients. Three normal volunteers and 34 patients with pathologic lesions near the primary motor cortex underwent fMR imaging with echo-planar imaging while performing a hand motor task. Signal intensities were evaluated with the z-score method, and the time course and changes of the signal intensity were calculated. Nine of the 34 patients with pathologic lesions displayed a significant task-related signal reduction in motor-related areas. They also presented a conventional task-related signal increase in other motor-related areas. The time courses of the increase and decrease were the inverse of each other. There was no significant difference between rates of signal increase and decrease. Our findings suggest that this atypical signal decrease is clinically significant, and that impaired vascular reactivity and altered oxygen metabolism could contribute to the task-related signal reduction. Brain areas showing such task-related signal decrease should be preserved at surgery. (author)

  11. Corrective response times in a coordinated eye-head-arm countermanding task.

    Science.gov (United States)

    Tao, Gordon; Khan, Aarlenne Z; Blohm, Gunnar

    2018-06-01

    Inhibition of motor responses has been described as a race between two competing decision processes of motor initiation and inhibition, which manifest as the reaction time (RT) and the stop signal reaction time (SSRT); in the case where motor initiation wins out over inhibition, an erroneous movement occurs that usually needs to be corrected, leading to corrective response times (CRTs). Here we used a combined eye-head-arm movement countermanding task to investigate the mechanisms governing multiple effector coordination and the timing of corrective responses. We found a high degree of correlation between effector response times for RT, SSRT, and CRT, suggesting that decision processes are strongly dependent across effectors. To gain further insight into the mechanisms underlying CRTs, we tested multiple models to describe the distribution of RTs, SSRTs, and CRTs. The best-ranked model (according to 3 information criteria) extends the LATER race model governing RTs and SSRTs, whereby a second motor initiation process triggers the corrective response (CRT) only after the inhibition process completes in an expedited fashion. Our model suggests that the neural processing underpinning a failed decision has a residual effect on subsequent actions. NEW & NOTEWORTHY Failure to inhibit erroneous movements typically results in corrective movements. For coordinated eye-head-hand movements we show that corrective movements are only initiated after the erroneous movement cancellation signal has reached a decision threshold in an accelerated fashion.

  12. Sensory-motor problems in Autism

    Science.gov (United States)

    Whyatt, Caroline; Craig, Cathy

    2013-01-01

    Despite being largely characterized as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD). This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC2) to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with “hyperdexterity” witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardized assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being “secondary” level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential root of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis. PMID:23882194

  13. Sensory-motor problems in Autism

    Directory of Open Access Journals (Sweden)

    Caroline eWhyatt

    2013-07-01

    Full Text Available Despite being largely characterised as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD. This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC2 to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with hyperdexterity witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardised assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being secondary level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential route of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis.

  14. Cross-limb interference during motor learning.

    Directory of Open Access Journals (Sweden)

    Benedikt Lauber

    Full Text Available It is well known that following skill learning, improvements in motor performance may transfer to the untrained contralateral limb. It is also well known that retention of a newly learned task A can be degraded when learning a competing task B that takes place directly after learning A. Here we investigate if this interference effect can also be observed in the limb contralateral to the trained one. Therefore, five different groups practiced a ballistic finger flexion task followed by an interfering visuomotor accuracy task with the same limb. Performance in the ballistic task was tested before the training, after the training and in an immediate retention test after the practice of the interference task for both the trained and the untrained hand. After training, subjects showed not only significant learning and interference effects for the trained limb but also for the contralateral untrained limb. Importantly, the interference effect in the untrained limb was dependent on the level of skill acquisition in the interfering motor task. These behavioural results of the untrained limb were accompanied by training specific changes in corticospinal excitability, which increased for the hemisphere ipsilateral to the trained hand following ballistic training and decreased during accuracy training of the ipsilateral hand. The results demonstrate that contralateral interference effects may occur, and that interference depends on the level of skill acquisition in the interfering motor task. This finding might be particularly relevant for rehabilitation.

  15. Wh-question intonation in Peninsular Spanish: Multiple contours and the effect of task type

    Directory of Open Access Journals (Sweden)

    Nicholas C. Henriksen

    2009-06-01

    Full Text Available This paper reports on an experimental investigation of wh-question intonation in Peninsular Spanish. Speech data were collected from six León, Spain Peninsular Spanish speakers, and oral production data were elicited under two conditions: a computerized sentence reading task and an information gap task-oriented dialogue. The latter task was an adaptation of the HCRC Map Task method (cf. Anderson et al., 1991 and was designed to elicit multiple wh-question productions in an unscripted and more spontaneous speech style than the standard sentence reading task. Results indicate that four contours exist in the tonal inventory of the six speakers. The two most frequent contours were a final rise contour and a nuclear circumflex contour. Systematic task-based differences were found for four of the six speakers, indicating that sentence reading task data alone may not accurately reflect spontaneous speech tonal patterns (cf. Cruttenden, 2007; but see also Lickley, Schepman, & Ladd, 2005. The experimental findings serve to clarify a number of assumptions about the syntax-prosody interface underlying wh-question utterance signaling; they also have implications for research methods in intonation and task-based variation in laboratory phonology.

  16. Music and On-task Behaviors in Preschool Children With Autism Spectrum Disorder.

    Science.gov (United States)

    Dieringer, Shannon Titus; Porretta, David L; Sainato, Diane

    2017-07-01

    The purpose of our study was to determine the effect of music (music with lyrics versus music with lyrics plus instruction) relative to on-task behaviors in preschool children with autism spectrum disorder (ASD) in a gross motor setting. Five preschool children (4 boys, 1 girl) diagnosed with ASD served as participants. A multiple baseline across participants in conjunction with an alternating-treatment design was used. For all participants, music with lyrics plus instruction increased on-task behaviors to a greater extent than did music with lyrics. The results of our study provide a better understanding of the role of music with regard to the behaviors of young children with ASD.

  17. A novel semi-immersive virtual reality visuo-motor task activates ventrolateral prefrontal cortex: a functional near-infrared spectroscopy study

    Science.gov (United States)

    Basso Moro, Sara; Carrieri, Marika; Avola, Danilo; Brigadoi, Sabrina; Lancia, Stefania; Petracca, Andrea; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-06-01

    Objective. In the last few years, the interest in applying virtual reality systems for neurorehabilitation is increasing. Their compatibility with neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), allows for the investigation of brain reorganization with multimodal stimulation and real-time control of the changes occurring in brain activity. The present study was aimed at testing a novel semi-immersive visuo-motor task (VMT), which has the features of being adopted in the field of neurorehabilitation of the upper limb motor function. Approach. A virtual environment was simulated through a three-dimensional hand-sensing device (the LEAP Motion Controller), and the concomitant VMT-related prefrontal cortex (PFC) response was monitored non-invasively by fNIRS. Upon the VMT, performed at three different levels of difficulty, it was hypothesized that the PFC would be activated with an expected greater level of activation in the ventrolateral PFC (VLPFC), given its involvement in the motor action planning and in the allocation of the attentional resources to generate goals from current contexts. Twenty-one subjects were asked to move their right hand/forearm with the purpose of guiding a virtual sphere over a virtual path. A twenty-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb/HHb, respectively). Main results. A VLPFC O2Hb increase and a concomitant HHb decrease were observed during the VMT performance, without any difference in relation to the task difficulty. Significance. The present study has revealed a particular involvement of the VLPFC in the execution of the novel proposed semi-immersive VMT adoptable in the neurorehabilitation field.

  18. [Recommendations for the clinical use of motor evoked potentials in multiple sclerosis].

    Science.gov (United States)

    Fernández, V; Valls-Sole, J; Relova, J L; Raguer, N; Miralles, F; Dinca, L; Taramundi, S; Costa-Frossard, L; Ferrandiz, M; Ramió-Torrentà, Ll; Villoslada, P; Saiz, A; Calles, C; Antigüedad, A; Alvarez-Cermeño, J C; Prieto, J M; Izquierdo, G; Montalbán, X; Fernández, O

    2013-09-01

    To establish clinical guidelines for the clinical use and interpretation of motor evoked potentials (MEP) in diagnosing and monitoring patients with multiple sclerosis (MS). Recommendations for MEP use and interpretation will help us rationalise and optimise resources used in MS patient diagnosis and follow up. We completed an extensive literature review and pooled our own data to produce a consensus statement with recommendations for the clinical use of MEPs in the study of MS. MEPs, in addition to spinal and cranial magnetic resonance imaging (MRI), help us diagnose and assess MS patients whose disease initially presents as spinal cord syndrome and those with non-specific brain MRI findings, or a normal brain MRI and clinical signs of MS. Whenever possible, a multimodal evoked potential study should be performed on patients with suspected MS in order to demonstrate involvement of the motor pathway which supports a diagnosis of dissemination in space. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  19. Associations among measures of sequential processing in motor and linguistics tasks in adults with and without a family history of childhood apraxia of speech: a replication study.

    Science.gov (United States)

    Button, Le; Peter, Beate; Stoel-Gammon, Carol; Raskind, Wendy H

    2013-03-01

    The purpose of this study was to address the hypothesis that childhood apraxia of speech (CAS) is influenced by an underlying deficit in sequential processing that is also expressed in other modalities. In a sample of 21 adults from five multigenerational families, 11 with histories of various familial speech sound disorders, 3 biologically related adults from a family with familial CAS showed motor sequencing deficits in an alternating motor speech task. Compared with the other adults, these three participants showed deficits in tasks requiring high loads of sequential processing, including nonword imitation, nonword reading and spelling. Qualitative error analyses in real word and nonword imitations revealed group differences in phoneme sequencing errors. Motor sequencing ability was correlated with phoneme sequencing errors during real word and nonword imitation, reading and spelling. Correlations were characterized by extremely high scores in one family and extremely low scores in another. Results are consistent with a central deficit in sequential processing in CAS of familial origin.

  20. Relationship between Age Cognitive Decline and Performance of Cognitive Motor Tasks in Seniors

    Directory of Open Access Journals (Sweden)

    Jiří Mudrák

    2015-03-01

    Full Text Available Relationship between Age Cognitive Decline and Performance of Cognitive Motor Tasks in Seniors Relationship between the age-related cognitive decline and decline in cognitive processing speed, in a variety of cognitive motor tasks was examined. The sample consisted of 33 well-adjusted older adults (on average 68 years old, recruited from several physical activity programs. The participants performed five cognitive tests selected from the Vienna test system battery. Subsequently, the relationship of their age and the measures of cognitive function was analyzed. It was found that the age of respondents was related only to their performance in complex tasks which included a processing speed component. The participant’s performance in simple tasks and in measures unaffected by processing speed was unrelated to age. Results are consistent with the processing speed theory of adult age differences in cognition (Salthouse, 1996. Furthermore, the performance in complex cognitive tasks was influenced by the level of participation in leisure physical activities; this suggests that physically active lifestyle may limit the impact of age on cognitive function. Stárnutí a rychlost zpracování kognitivních funkcí V předkládáné studii se zabýváme některými aspekty věkem podmíněného úbytku kognitivních funkcí. Konkrétně zkoumáme předpoklady vycházející z teorie rychlosti zpracování (Salthouse, 1996 týkající se toho, že věkem podmíněný pokles kognitivních funkcí je dán především poklesem rychlosti kognitivních procesů, což se projevuje především u komplexních kognitivních úkolů. Vzorek v naší studii se skládal z 33 seniorů a seniorek (průměrný věk byl 68 let, které jsme oslovili prostřednictvím několika programů pro seniory. Respondenti byli testováni prostřednictvím pěti testů kognitivních funkcí, které jsme vybrali z testové baterie Vienna test systém. Následně jsme analyzovali

  1. Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.

    Science.gov (United States)

    Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro

    2012-07-30

    Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Synergy Repetition Training versus Task Repetition Training in Acquiring New Skill.

    Science.gov (United States)

    Patel, Vrajeshri; Craig, Jamie; Schumacher, Michelle; Burns, Martin K; Florescu, Ionut; Vinjamuri, Ramana

    2017-01-01

    Traditionally, repetitive practice of a task is used to learn a new skill, exhibiting as immediately improved performance. Research suggests, however, that a more experience-based rather than exposure-based training protocol may allow for better transference of the skill to related tasks. In synergy-based motor control theory, fundamental motor skills, such as hand grasping, are represented with a synergy subspace that captures essential motor patterns. In this study, we propose that motor-skill learning through synergy-based mechanisms may provide advantages over traditional task repetition learning. A new task was designed to highlight the range of motion and dexterity of the human hand. Two separate training strategies were tested in healthy subjects: task repetition training and synergy training versus a control. All three groups showed improvements when retested on the same task. When tested on a similar, but different set of tasks, only the synergy group showed improvements in accuracy (9.27% increase) compared to the repetition (3.24% decline) and control (3.22% decline) groups. A kinematic analysis revealed that although joint angular peak velocities decreased, timing benefits stemmed from the initial feed-forward portion of the task (reaction time). Accuracy improvements may have derived from general improved coordination among the four involved fingers. These preliminary results warrant further investigation of synergy-based motor training in healthy individuals, as well as in individuals undergoing hand-based rehabilitative therapy.

  3. Effects of Multi-Session Repetitive Transcranial Magnetic Stimulation on Motor Control and Spontaneous Brain Activity in Multiple System Atrophy: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Zhu Liu

    2018-05-01

    Full Text Available Background: Impaired motor control is one of the most common symptoms of multiple system atrophy (MSA. It arises from dysfunction of the cerebellum and its connected neural networks, including the primary motor cortex (M1, and is associated with altered spontaneous (i.e., resting-state brain network activity. Non-invasive repetitive transcranial magnetic stimulation (rTMS selectively facilitates the excitability of supraspinal networks. Repeated rTMS sessions have been shown to induce long-term changes to both resting-state brain dynamics and behavior in several neurodegenerative diseases. Here, we hypothesized that a multi-session rTMS intervention would improve motor control in patients with MSA, and that such improvements would correlate with changes in resting-state brain activity.Methods: Nine participants with MSA received daily sessions of 5 Hz rTMS for 5 days. rTMS targeted both the cerebellum and the bilateral M1. Before and within 3 days after the intervention, motor control was assessed by the motor item of the Unified Multiple System Atrophy Rating Scale (UMSARS. Resting-state brain activity was recorded by blood-oxygen-level dependency (BOLD functional magnetic resonance imaging. The “complexity” of resting-state brain activity fluctuations was quantified within seven well-known functional cortical networks using multiscale entropy, a technique that estimates the degree of irregularity of the BOLD time-series across multiple scales of time.Results: The rTMS intervention was well-attended and was not associated with any adverse events. Average motor scores were lower (i.e., better performance following the rTMS intervention as compared to baseline (t8 = 2.3, p = 0.003. Seven of nine participants exhibited such pre-to-post intervention improvements. A trend toward an increase in resting-state complexity was observed within the motor network (t8 = 1.86, p = 0.07. Participants who exhibited greater increases in motor network resting

  4. Causal Role of Motor Simulation in Turn-Taking Behavior.

    Science.gov (United States)

    Hadley, Lauren V; Novembre, Giacomo; Keller, Peter E; Pickering, Martin J

    2015-12-16

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such "motor simulation"? By combining a musical duet task with a real

  5. The Effect of Picture Task Cards on Performance of the Test of Gross Motor Development by Preschool-Aged Children: A Preliminary Study

    Science.gov (United States)

    Breslin, Casey M.; Robinson, Leah E.; Rudisill, Mary E.

    2013-01-01

    Performance on the Test of Gross Motor Development (Second Edition; TGMD-2) by children with autism spectrum disorders improves when picture task cards were implemented into the assessment protocol [Breslin, C.M., & Rudisill, M.E. (2011). "The effect of visual supports on performance of the TGMD-2 for children with autism spectrum…

  6. Can a single session of motor imagery promote motor learning of locomotion in older adults? A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nicholson VP

    2018-04-01

    Full Text Available Vaughan P Nicholson,1 Justin WL Keogh,2–4 Nancy L Low Choy1 1School of Physiotherapy, Australian Catholic University, Brisbane, QLD, Australia; 2Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia; 3Human Potential Centre, AUT University, Auckland, New Zealand; 4Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia Purpose: To investigate the influence of a single session of locomotor-based motor imagery training on motor learning and physical performance. Patients and methods: Thirty independent adults aged >65 years took part in the randomized controlled trial. The study was conducted within an exercise science laboratory. Participants were randomly divided into three groups following baseline locomotor testing: motor imagery training, physical training, and control groups. The motor imagery training group completed 20 imagined repetitions of a locomotor task, the physical training group completed 20 physical repetitions of a locomotor task, and the control group spent 25 minutes playing mentally stimulating games on an iPad. Imagined and physical performance times were measured for each training repetition. Gait speed (preferred and fast, timed-up-and-go, gait variability and the time to complete an obstacle course were completed before and after the single training session. Results: Motor learning occurred in both the motor imagery training and physical training groups. Motor imagery training led to refinements in motor planning resulting in imagined movements better matching the physically performed movement at the end of training. Motor imagery and physical training also promoted improvements in some locomotion outcomes as demonstrated by medium to large effect size improvements after training for fast gait speed and timed-up-and-go. There were no training effects on gait variability. Conclusion: A single session

  7. Consolidating the effects of waking and sleep on motor-sequence learning.

    Science.gov (United States)

    Brawn, Timothy P; Fenn, Kimberly M; Nusbaum, Howard C; Margoliash, Daniel

    2010-10-20

    Sleep is widely believed to play a critical role in memory consolidation. Sleep-dependent consolidation has been studied extensively in humans using an explicit motor-sequence learning paradigm. In this task, performance has been reported to remain stable across wakefulness and improve significantly after sleep, making motor-sequence learning the definitive example of sleep-dependent enhancement. Recent work, however, has shown that enhancement disappears when the task is modified to reduce task-related inhibition that develops over a training session, thus questioning whether sleep actively consolidates motor learning. Here we use the same motor-sequence task to demonstrate sleep-dependent consolidation for motor-sequence learning and explain the discrepancies in results across studies. We show that when training begins in the morning, motor-sequence performance deteriorates across wakefulness and recovers after sleep, whereas performance remains stable across both sleep and subsequent waking with evening training. This pattern of results challenges an influential model of memory consolidation defined by a time-dependent stabilization phase and a sleep-dependent enhancement phase. Moreover, the present results support a new account of the behavioral effects of waking and sleep on explicit motor-sequence learning that is consistent across a wide range of tasks. These observations indicate that current theories of memory consolidation that have been formulated to explain sleep-dependent performance enhancements are insufficient to explain the range of behavioral changes associated with sleep.

  8. Role of the Frontal Cortex in Standing Postural Sway Tasks While Dual-Tasking: A Functional Near-Infrared Spectroscopy Study Examining Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujita

    2016-01-01

    Full Text Available Posture control during a dual-task involves changing the distribution of attention resources between the cognitive and motor tasks and involves the frontal cortex working memory (WM. The present study aimed to better understand the impact of frontal lobe activity and WM capacity in postural control during a dual-task. High and low WM-span groups were compared using their reading span test scores. High and low WM capacity were compared based on cognitive and balance performance and hemoglobin oxygenation (oxyHb levels during standing during single (S-S, standing during dual (S-D, one leg standing during single (O-S, and one leg standing during dual (O-D tasks. For sway pass length, significant difference in only the O-D task was observed between both groups. oxyHb levels were markedly increased in the right dorsolateral prefrontal cortex and supplementary motor area in the high-span group during a dual-task. Therefore, WM capacity influenced the allocation of attentional resources and motor performance.

  9. Association between Body Composition and Motor Performance in Preschool Children

    Directory of Open Access Journals (Sweden)

    Tanja H. Kakebeeke

    2017-09-01

    Full Text Available Objective: Being overweight makes physical movement more difficult. Our aim was to investigate the association between body composition and motor performance in preschool children. Methods: A total of 476 predominantly normal-weight preschool children (age 3.9 ± 0.7 years; m/f: 251/225; BMI 16.0 ± 1.4 kg/m2 participated in the Swiss Preschoolers' Health Study (SPLASHY. Body composition assessments included skinfold thickness, waist circumference (WC, and BMI. The Zurich Neuromotor Assessment (ZNA was used to assess gross and fine motor tasks. Results: After adjustment for age, sex, socioeconomic status, sociocultural characteristics, and physical activity (assessed with accelerometers, skinfold thickness and WC were both inversely correlated with jumping sideward (gross motor task β-coefficient -1.92, p = 0.027; and -3.34, p = 0.014, respectively, while BMI was positively correlated with running performance (gross motor task β-coefficient 9.12, p = 0.001. No significant associations were found between body composition measures and fine motor tasks. Conclusion: The inverse associations between skinfold thickness or WC and jumping sideward indicates that children with high fat mass may be less proficient in certain gross motor tasks. The positive association between BMI and running suggests that BMI might be an indicator of fat-free (i.e., muscle mass in predominately normal-weight preschool children.

  10. Motor activation in people with profound intellectual and multiple disabilities: research in daily practice in residential facilities

    NARCIS (Netherlands)

    Bossink, Leontien; van der Putten, Annette; Vlaskamp, Carla

    2014-01-01

    Aim: The total study aims at generating knowledge about the best way to motor activate persons with profound intellectual and multiple disabilities (PIMD) in residential facilities. The purpose of the current poster presentation is to present the results of the first step executed in this project

  11. MotorSense: Using Motion Tracking Technology to Support the Identification and Treatment of Gross-Motor Dysfunction.

    Science.gov (United States)

    Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît

    2017-01-01

    MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.

  12. Evaluation of motor development in children with learning disabilities

    Directory of Open Access Journals (Sweden)

    Josiane Medina-Papst

    2010-01-01

    Full Text Available The aim of this study was to determine whether children with learning disabilities present any impairment in the components of motor development. Thirty children (21 boys and 9 girls, aged 8 to 10 years, with learning difficulties in school were studied. The Motor Development Scale was used to evaluate the development of the children in terms of fine motor control, gross motor control, balance, body scheme, spatial organization, and temporal organization. A deficit in the development of the body scheme component was observed for all three age groups, as well as a delayed motor development in terms of balance and gross motor control. No significant differences in general motor age were observed between (age groups. In conclusion, the children studied, especially older ones, presented motor deficits in most of the components evaluated. The inclusion of tasks that assist in the development of motor components, in addition to regular school tasks, is recommended to improve the process of learning in these children..

  13. Cognitive evaluation by tasks in a virtual reality environment in multiple sclerosis.

    Science.gov (United States)

    Lamargue-Hamel, Delphine; Deloire, Mathilde; Saubusse, Aurore; Ruet, Aurélie; Taillard, Jacques; Philip, Pierre; Brochet, Bruno

    2015-12-15

    The assessment of cognitive impairment in multiple sclerosis (MS) requires large neuropsychological batteries that assess numerous domains. The relevance of these assessments to daily cognitive functioning is not well established. Cognitive ecological evaluation has not been frequently studied in MS. The aim of this study was to determine the interest of cognitive evaluation in a virtual reality environment in a sample of persons with MS with cognitive deficits. Thirty persons with MS with at least moderate cognitive impairment were assessed with two ecological evaluations, an in-house developed task in a virtual reality environment (Urban DailyCog®) and a divided attention task in a driving simulator. Classical neuropsychological testing was also used. Fifty-two percent of the persons with MS failed the driving simulator task and 80% failed the Urban DailyCog®. Virtual reality assessments are promising in identifying cognitive impairment in MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Motor control and the management of musculoskeletal dysfunction.

    Science.gov (United States)

    van Vliet, Paulette M; Heneghan, Nicola R

    2006-08-01

    This paper aims to develop understanding of three important motor control issues--feedforward mechanisms, cortical plasticity and task-specificity and assess the implications for musculoskeletal practice. A model of control for the reach-to-grasp movement illustrates how the central nervous system integrates sensorimotor processes to control complex movements. Feedforward mechanisms, an essential element of motor control, are altered in neurologically intact patients with chronic neck pain and low back pain. In healthy subjects, cortical mapping studies using transcranial magnetic stimulation have demonstrated that neural pathways adapt according to what and how much is practised. Neuroplasticity has also been demonstrated in a number of musculoskeletal conditions, where cortical maps are altered compared to normal. Behavioural and neurophysiological studies indicate that environmental and task constraints such as the goal of the task and an object's shape and size, are determinants of the motor schema for reaching and other movements. Consideration of motor control issues as well as signs and symptoms, may facilitate management of musculoskeletal conditions and improve outcome. Practice of entire everyday tasks at an early stage and systematic variation of the task is recommended. Training should be directed with the aim of re-educating feedforward mechanisms where necessary and the amount of practice should be sufficient to cause changes in cortical activity.

  15. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    Science.gov (United States)

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  16. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    Directory of Open Access Journals (Sweden)

    Teresa eSollfrank

    2015-08-01

    Full Text Available A repetitive movement practice by motor imagery (MI can influence motor cortical excitability in the electroencephalogram (EEG. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007. This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during motor imagery. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronisation (ERD of the upper alpha band (10-12 Hz over the sensorimotor cortices thereby potentially improving MI based BCI protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb motor imagery present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (2D vs. 3D. The largest upper alpha band power decrease was obtained during motor imagery after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D visualization modality group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during MI. Realistic visual feedback, consistent with the participant’s motor imagery, might be helpful for accomplishing successful motor imagery and the use of such feedback may assist in making BCI a more natural interface for motor imagery based BCI rehabilitation.

  17. Multiple roads lead to Rome: combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults.

    Science.gov (United States)

    Berryman, Nicolas; Bherer, Louis; Nadeau, Sylvie; Lauzière, Séléna; Lehr, Lora; Bobeuf, Florian; Lussier, Maxime; Kergoat, Marie Jeanne; Vu, Thien Tuong Minh; Bosquet, Laurent

    2014-01-01

    The effects of physical activity on cognition in older adults have been extensively investigated in the last decade. Different interventions such as aerobic, strength, and gross motor training programs have resulted in improvements in cognitive functions. However, the mechanisms underlying the relationship between physical activity and cognition are still poorly understood. Recently, it was shown that acute bouts of exercise resulted in reduced executive control at higher relative exercise intensities. Considering that aging is characterized by a reduction in potential energy ([Formula: see text] max - energy cost of walking), which leads to higher relative walking intensity for the same absolute speed, it could be argued that any intervention aimed at reducing the relative intensity of the locomotive task would improve executive control while walking. The objective of the present study was to determine the effects of a short-term (8 weeks) high-intensity strength and aerobic training program on executive functions (single and dual task) in a cohort of healthy older adults. Fifty-one participants were included and 47 (age, 70.7 ± 5.6) completed the study which compared the effects of three interventions: lower body strength + aerobic training (LBS-A), upper body strength + aerobic training (UBS-A), and gross motor activities (GMA). Training sessions were held 3 times every week. Both physical fitness (aerobic, neuromuscular, and body composition) and cognitive functions (RNG) during a dual task were assessed before and after the intervention. Even though the LBS-A and UBS-A interventions increased potential energy to a higher level (Effect size: LBS-A-moderate, UBS-A-small, GMA-trivial), all groups showed equivalent improvement in cognitive function, with inhibition being more sensitive to the intervention. These findings suggest that different exercise programs targeting physical fitness and/or gross motor skills may lead to equivalent improvement in

  18. Declínio de desempenho motor no envelhecimento é específico à tarefa Caída del desempeño motor en el envejecimiento es específico a la tarea Task-specific performance decline in aging

    Directory of Open Access Journals (Sweden)

    Luís Augusto Teixeira

    2006-12-01

    tareas: tiempo de reacción, tiempo de movimiento en contacto con un objetivo, fuerza manual máxima, sincronización, control de fuerza, toques repetidos con una vara vertical, figuras en secuencia y toques entre los dedos. El análisis de los resultados indicó perfiles variables de desempeño entre las tareas motoras en comparación a las edades, con disminución motor a una tasa moderada entre 20 y 60 años para tiempo de reacción, caídas más acentuadas de desempeño en la transición entre 20 y 40 años en tareas requiriendo velocidad de ejecución de movimientos simples o precisión temporal, caídas más acentuadas en la transición entre 60 y 70 años para fuerza máxima y habilidad gráfica y mantenimiento de capacidad de desempeño con el envejecimiento para control de fuerza manual. De esta forma, esos resultados se muestran contradictorios con hipótesis de factor único, y ofrecen soporte a la hipótesis alternativa de que la tasa de descenso de desempeño sensor-motor durante el envejecimiento es específica a la tarea.Decline of motor performance characteristically observed in the aging process has been proposed to be caused by a single factor: deterioration of the central information processing capacity. If so, motor performance in different tasks should decline in a similar way as an individual gets older. In order to test this hypothesis, motor performance of 19- to 73-years-old physical active individuals was studied in eight motor tasks: reaction time, movement time in aiming, handgrip strength, anticipatory timing, force control, repetitive tapping, sequential drawing and sequential fingers movements. The analysis indicated a diversity of performance profiles between tasks across ages, with motor decline at a moderate rate between 20 and 60 years for reaction time, larger performance decline in the transitions between 20 and 40 years in tasks requiring movement speed in simple movements or temporal accuracy, larger decline in the transition

  19. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery

    Science.gov (United States)

    Hatem, Samar M.; Saussez, Geoffroy; della Faille, Margaux; Prist, Vincent; Zhang, Xue; Dispa, Delphine; Bleyenheuft, Yannick

    2016-01-01

    Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation. PMID:27679565

  20. Characterization of fine motor development: dynamic analysis of children's drawing movements.

    Science.gov (United States)

    Lin, Qiushi; Luo, Jianfei; Wu, Zhongcheng; Shen, Fei; Sun, Zengwu

    2015-04-01

    In this study, we investigated children's fine motor development by analyzing drawing trajectories, kinematics and kinetics. Straight lines drawing task and circles drawing task were performed by using a force sensitive tablet. Forty right-handed and Chinese mother-tongue students aged 6-12, attending classes from grade 1 to 5, were engaged in the experiment. Three spatial parameters, namely cumulative trace length, vector length of straight line and vertical diameter of circle were determined. Drawing duration, mean drawing velocity, and number of peaks in stroke velocity profile (NPV) were derived as kinematic parameters. Besides mean normal force, two kinetic indices were proposed: normalized force angle regulation (NFR) and variation of fine motor control (VFC) for circles drawing task. The maturation and automation of fine motor ability were reflected by increased drawing velocity, reduced drawing duration, NPV and NFR, with decreased VFC in circles drawing task. Grade and task main effects as well as significant correlations between age and parameters suggest that factors such as schooling, age and task should be considered in the assessment of fine motor skills. Compared with kinematic parameters, findings of NFR and VFC revealed that kinetics is another important perspective in the analysis of fine motor movement. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Specialized motor-driven dusp1 expression in the song systems of multiple lineages of vocal learning birds.

    Directory of Open Access Journals (Sweden)

    Haruhito Horita

    Full Text Available Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1 was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.

  2. Characterization of EEG Signals Using Wavelet Packet and Fuzzy Entropy in Motor Imagination Tasks

    Directory of Open Access Journals (Sweden)

    Boris Alexander Medina

    2017-05-01

    Full Text Available Context:  Clinical rhythm analysis on advanced signal processing methods is very important in medical areas such as brain disorder diagnostic, epilepsy, sleep analysis, anesthesia analysis, and more recently in brain-computer interfaces (BCI. Method: Wavelet transform package is used on this work to extract brain rhythms of electroencephalographic signals (EEG related to motor imagination tasks. We used the Competition BCI 2008 database for this characterization. Using statistical functions we obtained features that characterizes brain rhythms, which are discriminated using different classifiers; they were evaluated using a 10-fold cross validation criteria. Results: The classification accuracy achieved 81.11% on average, with a degree of agreement of 61%, indicating a "suitable" concordance, as it has been reported in the literature. An analysis of relevance showed the concentration of characteristics provided in the nodes as a result of Wavelet decomposition, as well as the characteristics that more information content contribute to improve the separability decision region for the classification task. Conclusions: The proposed method can be used as a reference to support future studies focusing on characterizing EEG signals oriented to the imagination of left and right hand movement, considering that our results proved to compared favourably to those reported in the literature. Language: Spanish.

  3. Prediction of kindergarteners' behavior on Metropolitan Readiness Tests from preschool perceptual and perceptual-motor performances: a validation study.

    Science.gov (United States)

    Belka, D E

    1981-06-01

    Multiple regression equations were generated to predict cognitive achievement for 40 children (ages 57 to 68 mo.) 1 yr. after administration of a battery of 6 perceptual and perceptual-motor tests to determine if previous results from Toledo could be replicated. Regression equations generated from maximum R2 improvement techniques indicated that performance at prekindergarten is useful for prediction of cognitive performance (total score and total score without the copying subtest on the Metropolitan Readiness Tests) 1 yr. later at the end of kindergarten. The optimal battery included scores on auditory perception, fine perceptual-motor, and gross perceptual-motor tasks. The moderate predictive power of the equations obtained was compared with high predictive power generated in the Toledo study.

  4. Assessment of patients with multiple sclerosis according to tests of the Multiple Sclerosis Functional Composite

    Directory of Open Access Journals (Sweden)

    Anelise Ineu Figueiredo

    Full Text Available Abstract Introduction: The Multiple Sclerosis Functional Composite (MSFC is a scale that evaluates the functional and cognitive aspects of patients with multiple sclerosis (MS. Objective: To compare the performance of individuals with the relapsing-remitting form of MS (RRMS with a group of healthy subjects using the MSFC. Methods: Twenty subjects were investigated in this study, consisting of 10 patients with clinical diagnosis of RRMS and 10 controls with similar gender and age to the group with the disease. The three tests that comprise the MSFC were used for the evaluation of gait, upper limb motor function and cognition (memory and processing speed. Student's t-test was used to assess data with normal distribution and data with skewed distribution were evaluated using the Mann-Whitney test. Results: The results showed that the patients with RRMS took longer to perform the locomotion test (6.91 ± 2.35 compared to the control group (5.16 ± 1.28. The MS group (22.06 ± 5.44 also showed greater difficulty in performing a task with the dominant upper limb compared to the healthy subjects (17.79 ± 2.96. No statistically significant difference was found between the groups in the performance of cognitive tasks (p = .65. Conclusion: The use of the MSFC tests proved valuable for measuring possible motor and cognitive impairments in patients with RRMS. Thus, it is suggested that this scale is adopted in clinical practice, improving therapies for the treatment of MS patients and thereby providing them a better quality of life.

  5. Note: high precision angle generator using multiple ultrasonic motors and a self-calibratable encoder.

    Science.gov (United States)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan; Eom, Tae Bong

    2011-11-01

    We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20") effectively by applying the equal-division-averaged method. The angle generator configures a position feedback control loop using the readout of the encoder. By combining the ac and dc operation mode, the angle generator produced stepwise angular motion with 0.005" resolution. We also evaluated the performance of the angle generator using a precision angle encoder and an autocollimator. The expanded uncertainty (k = 2) in the angle generation was estimated less than 0.03", which included the calibrated scale error and the nonlinearity error. © 2011 American Institute of Physics

  6. Bipedal hopping timed to a metronome to detect impairments in anticipatory motor control in people with mild multiple sclerosis.

    Science.gov (United States)

    Kirkland, Megan C; Chen, Alice; Downer, Matthew B; Holloway, Brett J; Wallack, Elizabeth M; Lockyer, Evan J; Buckle, Natasha C M; Abbott, Courtney L; Ploughman, Michelle

    2018-06-01

    People with mild multiple sclerosis (MS) often report subtle deficits in balance and cognition but display no measurable impairment on clinical assessments. We examined whether hopping to a metronome beat had the potential to detect anticipatory motor control deficits among people with mild MS (Expanded Disability Status Scale ≤ 3.5). Participants with MS (n = 13), matched controls (n = 9), and elderly subjects (n = 13) completed tests of cognition (Montreal Cognitive Assessment (MoCA)) and motor performance (Timed 25 Foot Walk Test (T25FWT)). Participants performed two bipedal hopping tasks: at 40 beats/min (bpm) and 60-bpm in random order. Hop characteristics (length, symmetry, variability) and delay from the metronome beat were extracted from an instrumented walkway and compared between groups. The MS group became more delayed from the metronome beat over time whereas elderly subjects tended to hop closer to the beat (F = 4.52, p = 0.02). Delay of the first hop during 60-bpm predicted cognition in people with MS (R = 0.55, β = 4.64 (SD 4.63), F = 4.85, p = 0.05) but not among control (R = 0.07, p = 0.86) or elderly subjects (R = 0.17, p = 0.57). In terms of hopping characteristics, at 60-bpm, people with MS and matched controls were significantly different from the elderly group. However, at 40-bpm, the MS group was no longer significantly different from the elderly group, even though matched controls and elderly still differed significantly. This new timed hopping test may be able to detect both physical ability, and feed-forward anticipatory control impairments in people with mild MS. Hopping at a frequency of 40-bpm seemed more challenging. Several aspects of anticipatory motor control can be measured: including reaction time to the first metronome cue and the ability to adapt and anticipate the beat over time. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  7. The Effect of Cerebellar Transcranial Direct Current Stimulation on A Throwing Task Depends on Individual Level of Task Performance.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Katayama, Takashi; Kanosue, Kazuyuki

    2018-02-10

    The effect of cerebellar transcranial direct current stimulation (tDCS) on motor performance remains controversial. Some studies suggest that the effect of tDCS depends upon task-difficulty and individual level of task performance. Here, we investigated whether the effect of cerebellar tDCS on the motor performance depends upon the individual's level of performance. Twenty-four naïve participants practiced dart throwing while receiving a 2-mA cerebellar tDCS for 20 min under three stimulus conditions (anodal-, cathodal-, and sham-tDCS) on separate days with a double-blind, counter-balanced cross-over design. Task performance was assessed by measuring the distance between the center of the bull's eye and the dart's position. Although task performance tended to improve throughout the practice under all stimulus conditions, improvement within a given day was not significant as compared to the first no-stimulus block. In addition, improvement did not differ among stimulation conditions. However, the magnitude of improvement was associated with an individual's level of task performance only under cathodal tDCS condition (p performance improvement only for the sub-group of participants with lower performance levels as compared to that with sham-tDCS (p task performance. Thus, cerebellar tDCS would facilitate learning of a complex motor skill task only in a subset of individuals. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Residual attentional capacity amongst young and elderly during dual and triple task walking

    DEFF Research Database (Denmark)

    Læssøe, Uffe; Hoeck, Hans C.; Simonsen, Ole

    2008-01-01

    to the cognitive task the elderly increased their temporal stride-to-stride variability by 39% in the walking task and by 57% in the combined motor task. These increases were significantly larger than observed for the young. Equivalent decreases in trunk acceleration autocorrelation coefficients and gait speed...... in the study. The participants walked along a figure-of-eight track at a self-selected speed. The effect of introducing a concurrent cognitive task and a concurrent functional motor task was evaluated. Stride-to-stride variability was measured by heel contacts and by trunk accelerometry. In response...... were found. A combination of sufficiently challenging motor tasks and concurrent cognitive tasks can reveal signs of limited residual attentional capacity during walking amongst the elderly....

  9. Language and motor abilities of preschool children who stutter: Evidence from behavioral and kinematic indices of nonword repetition performance

    Science.gov (United States)

    Smith, Anne; Goffman, Lisa; Sasisekaran, Jayanthi; Weber-Fox, Christine

    2012-01-01

    Stuttering is a disorder of speech production that typically arises in the preschool years, and many accounts of its onset and development implicate language and motor processes as critical underlying factors. There have, however, been very few studies of speech motor control processes in preschool children who stutter. Hearing novel nonwords and reproducing them engages multiple neural networks, including those involved in phonological analysis and storage and speech motor programming and execution. We used this task to explore speech motor and language abilities of 31 children aged 4–5 years who were diagnosed as stuttering. We also used sensitive and specific standardized tests of speech and language abilities to determine which of the children who stutter had concomitant language and/or phonological disorders. Approximately half of our sample of stuttering children had language and/or phonological disorders. As previous investigations would suggest, the stuttering children with concomitant language or speech sound disorders produced significantly more errors on the nonword repetition task compared to typically developing children. In contrast, the children who were diagnosed as stuttering, but who had normal speech sound and language abilities, performed the nonword repetition task with equal accuracy compared to their normally fluent peers. Analyses of interarticulator motions during accurate and fluent productions of the nonwords revealed that the children who stutter (without concomitant disorders) showed higher variability in oral motor coordination indices. These results provide new evidence that preschool children diagnosed as stuttering lag their typically developing peers in maturation of speech motor control processes. Educational objectives The reader will be able to: (a) discuss why performance on nonword repetition tasks has been investigated in children who stutter; (b) discuss why children who stutter in the current study had a higher incidence

  10. Motor performance of tongue with a computer-integrated system under different levels of background physical exertion

    Science.gov (United States)

    Huo, Xueliang; Johnson-Long, Ashley N.; Ghovanloo, Maysam; Shinohara, Minoru

    2015-01-01

    The purpose of this study was to compare the motor performance of tongue, using Tongue Drive System, to hand operation for relatively complex tasks under different levels of background physical exertion. Thirteen young able-bodied adults performed tasks that tested the accuracy and variability in tracking a sinusoidal waveform, and the performance in playing two video games that require accurate and rapid movements with cognitive processing using tongue and hand under two levels of background physical exertion. Results show additional background physical activity did not influence rapid and accurate displacement motor performance, but compromised the slow waveform tracking and shooting performances in both hand and tongue. Slow waveform tracking performance by the tongue was compromised with an additional motor or cognitive task, but with an additional motor task only for the hand. Practitioner Summary We investigated the influence of task complexity and background physical exertion on the motor performance of tongue and hand. Results indicate the task performance degrades with an additional concurrent task or physical exertion due to the limited attentional resources available for handling both the motor task and background exertion. PMID:24003900

  11. Fundamental Principles underlying Motor Reflexes

    NARCIS (Netherlands)

    K. Zhou (Kuikui)

    2017-01-01

    markdownabstractThe cerebellum has been suggested to be involved in motor control ever since the early 19th century. The motor control ranges from timing and strength of simple reflexes to multiple joint/limb coordination and complex motor sequence acquisition. The current thesis discusses the

  12. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  13. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Science.gov (United States)

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  14. Dissociable effects of practice variability on learning motor and timing skills.

    Science.gov (United States)

    Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline

    2018-01-01

    Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a

  15. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery

    Directory of Open Access Journals (Sweden)

    Samar M Hatem

    2016-09-01

    Full Text Available Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients’ mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed.At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.

  16. Mechanisms of Practice-Related Reductions of Dual-Task Interference with Simple Tasks: Data and Theory

    Science.gov (United States)

    Strobach, Tilo; Torsten, Schubert

    2017-01-01

    In dual-task situations, interference between two simultaneous tasks impairs performance. With practice, however, this impairment can be reduced. To identify mechanisms leading to a practice-related improvement in sensorimotor dual tasks, the present review applied the following general hypothesis: Sources that impair dual-task performance at the beginning of practice are associated with mechanisms for the reduction of dual-task impairment at the end of practice. The following types of processes provide sources for the occurrence of this impairment: (a) capacity-limited processes within the component tasks, such as response-selection or motor response stages, and (b) cognitive control processes independent of these tasks and thus operating outside of component-task performance. Dual-task practice studies show that, under very specific conditions, capacity-limited processes within the component tasks are automatized with practice, reducing the interference between two simultaneous tasks. Further, there is evidence that response-selection stages are shortened with practice. Thus, capacity limitations at these stages are sources for dual-task costs at the beginning of practice and are overcome with practice. However, there is no evidence demonstrating the existence of practice-related mechanisms associated with capacity-limited motor-response stages. Further, during practice, there is an acquisition of executive control skills for an improved allocation of limited attention resources to two tasks as well as some evidence supporting the assumption of improved task coordination. These latter mechanisms are associated with sources of dual-task interference operating outside of component task performance at the beginning of practice and also contribute to the reduction of dual-task interference at its end. PMID:28439319

  17. Abnormal functional connectivity and cortical integrity influence dominant hand motor disability in multiple sclerosis: a multimodal analysis.

    Science.gov (United States)

    Zhong, Jidan; Nantes, Julia C; Holmes, Scott A; Gallant, Serge; Narayanan, Sridar; Koski, Lisa

    2016-12-01

    Functional reorganization and structural damage occur in the brains of people with multiple sclerosis (MS) throughout the disease course. However, the relationship between resting-state functional connectivity (FC) reorganization in the sensorimotor network and motor disability in MS is not well understood. This study used resting-state fMRI, T1-weighted and T2-weighted, and magnetization transfer (MT) imaging to investigate the relationship between abnormal FC in the sensorimotor network and upper limb motor disability in people with MS, as well as the impact of disease-related structural abnormalities within this network. Specifically, the differences in FC of the left hemisphere hand motor region between MS participants with preserved (n = 17) and impaired (n = 26) right hand function, compared with healthy controls (n = 20) was investigated. Differences in brain atrophy and MT ratio measured at the global and regional levels were also investigated between the three groups. Motor preserved MS participants had stronger FC in structurally intact visual information processing regions relative to motor impaired MS participants. Motor impaired MS participants showed weaker FC in the sensorimotor and somatosensory association cortices and more severe structural damage throughout the brain compared with the other groups. Logistic regression analysis showed that regional MTR predicted motor disability beyond the impact of global atrophy whereas regional grey matter volume did not. More importantly, as the first multimodal analysis combining resting-state fMRI, T1-weighted, T2-weighted and MTR images in MS, we demonstrate how a combination of structural and functional changes may contribute to motor impairment or preservation in MS. Hum Brain Mapp 37:4262-4275, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

    Directory of Open Access Journals (Sweden)

    Joseph J Thompson

    Full Text Available Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load.

  19. Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

    Science.gov (United States)

    Thompson, Joseph J; Blair, Mark R; Henrey, Andrew J

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load.

  20. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    International Nuclear Information System (INIS)

    Ismail, S S; Mohamad, M; Syazarina, S O; Nafisah, W Y

    2014-01-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain

  1. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    Science.gov (United States)

    Ismail, S. S.; Mohamad, M.; Syazarina, S. O.; Nafisah, W. Y.

    2014-11-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain.

  2. Linear versus non-linear measures of temporal variability in finger tapping and their relation to performance on open- versus closed-loop motor tasks: comparing standard deviations to Lyapunov exponents.

    Science.gov (United States)

    Christman, Stephen D; Weaver, Ryan

    2008-05-01

    The nature of temporal variability during speeded finger tapping was examined using linear (standard deviation) and non-linear (Lyapunov exponent) measures. Experiment 1 found that right hand tapping was characterised by lower amounts of both linear and non-linear measures of variability than left hand tapping, and that linear and non-linear measures of variability were often negatively correlated with one another. Experiment 2 found that increased non-linear variability was associated with relatively enhanced performance on a closed-loop motor task (mirror tracing) and relatively impaired performance on an open-loop motor task (pointing in a dark room), especially for left hand performance. The potential uses and significance of measures of non-linear variability are discussed.

  3. Search strategies in practice: Influence of information and task constraints.

    Science.gov (United States)

    Pacheco, Matheus M; Newell, Karl M

    2018-01-01

    The practice of a motor task has been conceptualized as a process of search through a perceptual-motor workspace. The present study investigated the influence of information and task constraints on the search strategy as reflected in the sequential relations of the outcome in a discrete movement virtual projectile task. The results showed that the relation between the changes of trial-to-trial movement outcome to performance level was dependent on the landscape of the task dynamics and the influence of inherent variability. Furthermore, the search was in a constrained parameter region of the perceptual-motor workspace that depended on the task constraints. These findings show that there is not a single function of trial-to-trial change over practice but rather that local search strategies (proportional, discontinuous, constant) adapt to the level of performance and the confluence of constraints to action. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fine motor skills development of children with autism sepctrum disorder.

    OpenAIRE

    Marešová, Petra

    2010-01-01

    My diploma thesis topic is Fine motor skills development of children with autism spectrum disorder. The objective of this document is to create a well arranged group of exercises and structured tasks aimed to develop fine motor skills of children at pre-school age with autism spectrum disorder. Theoretical part of this diploma thesis contains basic information related to autism and various details about motor skills. Practical section describes individual jobs and structured tasks used for fi...

  5. Motor heuristics and embodied choices: how to choose and act

    OpenAIRE

    Raab, M

    2017-01-01

    © 2017 Elsevier LtdHuman performance requires choosing what to do and how to do it. The goal of this theoretical contribution is to advance understanding of how the motor and cognitive components of choices are intertwined. From a holistic perspective I extend simple heuristics that have been tested in cognitive tasks to motor tasks, coining the term motor heuristics. Similarly I extend the concept of embodied cognition, that has been tested in simple sensorimotor processes changing decisions...

  6. Cognitive-motor interference while grasping, lifting and holding objects.

    Directory of Open Access Journals (Sweden)

    Erwan Guillery

    Full Text Available In daily life, object manipulation is usually performed concurrently to the execution of cognitive tasks. The aim of the present study was to determine which aspects of precision grip require cognitive resources using a motor-cognitive dual-task paradigm. Eighteen healthy participants took part in the experiment, which comprised two conditions. In the first condition, participants performed a motor task without any concomitant cognitive task. They were instructed to grip, lift and hold an apparatus incorporating strain gauges allowing a continuous measurement of the force perpendicular to each contact surface (grip force, GF as well as the total tangential force applied on the object (load force, LF. In the second condition, participants performed the same motor task while concurrently performing a cognitive task consisting in a complex visual search combined with counting. In the dual-task condition, we found a significant increase in the duration of the preload phase (time between initial contact of the fingers with the apparatus and onset of the load force, as well as a significant increase of the grip force during the holding phase, indicating that the cognitive task interfered with the initial force scaling performed during the preload phase and the fine-tuning of grip force during the hold phase. These findings indicate that these aspects of precision grip require cognitive resources. In contrast, other aspects of the precision grip, such as the temporal coupling between grip and load forces, were not affected by the cognitive task, suggesting that they reflect more automatic processes. Taken together, our results suggest that assessing the dynamic and temporal parameters of precision grip in the context of a concurrent cognitive task may constitute a more ecological and better-suited tool to characterize motor dysfunction in patients.

  7. Motor development in individuals with congenital adrenal hyperplasia: strength, targeting, and fine motor skill.

    Science.gov (United States)

    Collaer, Marcia L; Brook, Charles G D; Conway, Gerard S; Hindmarsh, Peter C; Hines, Melissa

    2009-02-01

    This study investigated early androgen influence on the development of human motor and visuomotor characteristics. Participants, ages 12-45 years, were individuals with congenital adrenal hyperplasia (CAH), a disorder causing increased adrenal androgen production before birth (40 females, 29 males) and their unaffected relatives (29 females, 30 males). We investigated grip strength and visuomotor targeting tasks on which males generally outperform females, and fine motor pegboard tasks on which females generally outperform males. Physical characteristics (height and weight) were measured to explore whether body parameters could explain differences in motor skills. Females with CAH were stronger and showed better targeting than unaffected females and showed reduced fine visuomotor skill on one pegboard measure, with no difference on the other. Males with CAH were weaker than unaffected males in grip strength but did not differ on the targeting or pegboard measures. Correction for body size could not explain the findings for females, but suggests that the reduced strength of males with CAH may relate to their smaller stature. Further, the targeting advantage in females with CAH persisted following adjustment for their greater strength. Results in females support the hypothesis that androgen may masculinize, or promote, certain motor characteristics at which males excel, and contribute to defeminization of certain fine motor characteristics at which females excel. Thus, these data suggest that organizational effects of androgens on behavior during prenatal life may extend to motor characteristics and may contribute to general sex differences in motor-related behaviors; however, alternative explanations based on activational influences of androgen or altered experiential factors cannot be excluded without further study.

  8. Self-Controlled Practice Enhances Motor Learning in Introverts and Extroverts

    Science.gov (United States)

    Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda, Jr.; Tani, Go

    2014-01-01

    Purpose: The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Method: Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys…

  9. Balance Training Enhances Motor Coordination During a Perturbed Sidestep Cutting Task.

    Science.gov (United States)

    Oliveira, Anderson Souza; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav

    2017-11-01

    Study Design Controlled laboratory study. Background Balance training may improve motor coordination. However, little is known about the changes in motor coordination during unexpected perturbations to postural control following balance training. Objectives To study the effects of balance training on motor coordination and knee mechanics during perturbed sidestep cutting maneuvers in healthy adults. Methods Twenty-six healthy men were randomly assigned to a training group or a control group. Before balance training, subjects performed unperturbed, 90° sidestep cutting maneuvers and 1 unexpected perturbed cut (10-cm translation of a movable platform). Participants in the training group participated in a 6-week balance training program, while those in the control group followed their regular activity schedule. Both groups were retested after a 6-week period. Surface electromyography was recorded from 16 muscles of the supporting limb and trunk, as well as kinematics and ground reaction forces. Motor modules were extracted from electromyography by nonnegative matrix factorization. External knee abduction moments were calculated using inverse dynamics equations. Results Balance training reduced the external knee abduction moment (33% ± 25%, PBalance training also increased burst duration for the motor module related to landing early in the perturbation phase (23% ± 11%, PBalance training resulted in altered motor coordination and a reduction in knee abduction moment during an unexpected perturbation. The previously reported reduction in injury incidence following balance training may be linked to changes in dynamic postural stability and modular neuromuscular control. J Orthop Sports Phys Ther 2017;47(11):853-862. Epub 23 Sep 2017. doi:10.2519/jospt.2017.6980.

  10. Interference in Ballistic Motor Learning: Specificity and Role of Sensory Error Signals

    Science.gov (United States)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C.; Nielsen, Jens Bo

    2011-01-01

    Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals. PMID:21408054

  11. Altered kinematics of arm swing in Parkinson's disease patients indicates declines in gait under dual-task conditions.

    Science.gov (United States)

    Baron, Elise I; Miller Koop, Mandy; Streicher, Matthew C; Rosenfeldt, Anson B; Alberts, Jay L

    2018-03-01

    Declines in simultaneous performance of a cognitive and motor task are present in Parkinson's disease due to compromised basal ganglia function related to information processing. The aim of this project was to determine if biomechanical measures of arm swing could be used as a marker of gait function under dual-task conditions in Parkinson's disease patients. Twenty-three patients with Parkinson's disease completed single and dual-task cognitive-motor tests while walking on a treadmill at a self-selected rate. Multiple cognitive domains were evaluated with five cognitive tests. Cognitive tests were completed in isolation (single-task) and simultaneously with gait (dual-task). Upper extremity biomechanical data were gathered using the Motek CAREN system. Primary outcomes characterizing arm swing were: path length, normalized jerk, coefficient of variation of arm swing time, and cognitive performance. Performance on the cognitive tasks were similar across single and dual-task conditions. However, biomechanical measures exhibited significant changes between single and dual-task conditions, with the greatest changes occurring in the most challenging conditions. Arm swing path length decreased significantly from single to dual-task, with the greatest decrease of 21.16%. Jerk, characterizing smoothness, increased significantly when moving from single to dual-task conditions. The simultaneous performance of a cognitive and gait task resulted in decrements in arm swing while cognitive performance was maintained. Arm swing outcomes provide a sensitive measure of declines in gait function in Parkinson's disease under dual-task conditions. The quantification of arm swing is a feasible approach to identifying and evaluating gait related declines under dual-task conditions. Copyright © 2017. Published by Elsevier Ltd.

  12. Infant motor and cognitive abilities and subsequent executive function.

    Science.gov (United States)

    Wu, Meng; Liang, Xi; Lu, Shan; Wang, Zhengyan

    2017-11-01

    Although executive function (EF) is widely considered crucial to several aspects of life, the mechanisms underlying EF development remain largely unexplored, especially for infants. From a behavioral or neurodevelopmental perspective, motor and general cognitive abilities are linked with EF. EF development is a multistage process that starts with sensorimotor interactive behaviors, which become basic cognitive abilities and, in turn, mature EF. This study aims to examine how infant motor and general cognitive abilities are linked with their EF at 3 years of age. This work also aims to explore the potential processes of EF development from early movement. A longitudinal study was conducted with 96 infants (55 girls and 41 boys). The infants' motor and general cognitive abilities were assessed at 1 and 2 years of age with Bayley Scales of Infant and Toddler Development, Second and Third Editions, respectively. Infants' EFs were assessed at 3 years of age with Working Memory Span task, Day-Night task, Wrapped Gift task, and modified Gift-in-Bag task. Children with higher scores for cognitive ability at 2 years of age performed better in working memory, and children with higher scores for gross motor ability at 2 years performed better in cognitive inhibitory control (IC). Motor ability at 1 year and fine/gross motor ability at 2 years indirectly affected cognitive IC via general cognitive ability at 2 years and working memory. EF development is a multistage process that originates from physical movement to simple cognitive function, and then to complex cognitive function. Infants and toddlers can undergo targeted motor training to promote EF development. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Optimized Motor Imagery Paradigm Based on Imagining Chinese Characters Writing Movement.

    Science.gov (United States)

    Qiu, Zhaoyang; Allison, Brendan Z; Jin, Jing; Zhang, Yu; Wang, Xingyu; Li, Wei; Cichocki, Andrzej

    2017-07-01

    motor imagery (MI) is a mental representation of motor behavior. The MI-based brain computer interfaces (BCIs) can provide communication for the physically impaired. The performance of MI-based BCI mainly depends on the subject's ability to self-modulate electroencephalogram signals. Proper training can help naive subjects learn to modulate brain activity proficiently. However, training subjects typically involve abstract motor tasks and are time-consuming. to improve the performance of naive subjects during motor imagery, a novel paradigm was presented that would guide naive subjects to modulate brain activity effectively. In this new paradigm, pictures of the left or right hand were used as cues for subjects to finish the motor imagery task. Fourteen healthy subjects (11 male, aged 22-25 years, and mean 23.6±1.16) participated in this study. The task was to imagine writing a Chinese character. Specifically, subjects could imagine hand movements corresponding to the sequence of writing strokes in the Chinese character. This paradigm was meant to find an effective and familiar action for most Chinese people, to provide them with a specific, extensively practiced task and help them modulate brain activity. results showed that the writing task paradigm yielded significantly better performance than the traditional arrow paradigm (p paradigm was easier. the proposed new motor imagery paradigm could guide subjects to help them modulate brain activity effectively. Results showed that there were significant improvements using new paradigm, both in classification accuracy and usability.

  14. Does intrinsic motivation enhance motor cortex excitability?

    Science.gov (United States)

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research. © 2016 Society for Psychophysiological Research.

  15. Altered visual strategies and attention are related to increased force fluctuations during a pinch grip task in older adults.

    Science.gov (United States)

    Keenan, Kevin G; Huddleston, Wendy E; Ernest, Bradley E

    2017-11-01

    The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 yr) were monitored during a low-force pinch grip task while subjects viewed three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5 times greater force fluctuations in those that exhibited saccades compared with those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated ( r s = 0.6; P = 0.002) with fewer saccades during the pursuit task. Also, decreased low-frequency (attention z scores. Comparison of these results with our previously published results in young subjects indicates that saccadic eye movements and attention are related to force control in older adults. NEW & NOTEWORTHY The significant contributions of the study are the addition of eye movement data and an attention task to explain differences in hand motor control across different visual displays in older adults. Older participants used different visual strategies across varying feedback displays, and saccadic eye movements were related with motor performance. In addition, those older individuals with deficits in attention had impaired motor performance on two different hand motor control tasks, including

  16. A Multi-Area Stochastic Model for a Covert Visual Search Task.

    Directory of Open Access Journals (Sweden)

    Michael A Schwemmer

    Full Text Available Decisions typically comprise several elements. For example, attention must be directed towards specific objects, their identities recognized, and a choice made among alternatives. Pairs of competing accumulators and drift-diffusion processes provide good models of evidence integration in two-alternative perceptual choices, but more complex tasks requiring the coordination of attention and decision making involve multistage processing and multiple brain areas. Here we consider a task in which a target is located among distractors and its identity reported by lever release. The data comprise reaction times, accuracies, and single unit recordings from two monkeys' lateral interparietal area (LIP neurons. LIP firing rates distinguish between targets and distractors, exhibit stimulus set size effects, and show response-hemifield congruence effects. These data motivate our model, which uses coupled sets of leaky competing accumulators to represent processes hypothesized to occur in feature-selective areas and limb motor and pre-motor areas, together with the visual selection process occurring in LIP. Model simulations capture the electrophysiological and behavioral data, and fitted parameters suggest that different connection weights between LIP and the other cortical areas may account for the observed behavioral differences between the animals.

  17. Simple motor tasks independently predict extubation failure in critically ill neurological patients.

    Science.gov (United States)

    Kutchak, Fernanda Machado; Rieder, Marcelo de Mello; Victorino, Josué Almeida; Meneguzzi, Carla; Poersch, Karla; Forgiarini, Luiz Alberto; Bianchin, Marino Muxfeldt

    2017-01-01

    To evaluate the usefulness of simple motor tasks such as hand grasping and tongue protrusion as predictors of extubation failure in critically ill neurological patients. This was a prospective cohort study conducted in the neurological ICU of a tertiary care hospital in the city of Porto Alegre, Brazil. Adult patients who had been intubated for neurological reasons and were eligible for weaning were included in the study. The ability of patients to perform simple motor tasks such as hand grasping and tongue protrusion was evaluated as a predictor of extubation failure. Data regarding duration of mechanical ventilation, length of ICU stay, length of hospital stay, mortality, and incidence of ventilator-associated pneumonia were collected. A total of 132 intubated patients who had been receiving mechanical ventilation for at least 24 h and who passed a spontaneous breathing trial were included in the analysis. Logistic regression showed that patient inability to grasp the hand of the examiner (relative risk = 1.57; 95% CI: 1.01-2.44; p commands is predictive of extubation failure in critically ill neurological patients. Hand grasping and tongue protrusion on command might be quick and easy bedside tests to identify neurocritical care patients who are candidates for extubation. Avaliar a utilidade de tarefas motoras simples, tais como preensão de mão e protrusão da língua, para predizer extubação malsucedida em pacientes neurológicos críticos. Estudo prospectivo de coorte realizado na UTI neurológica de um hospital terciário em Porto Alegre (RS). Pacientes adultos que haviam sido intubados por motivos neurológicos e que eram candidatos ao desmame foram incluídos no estudo. O estudo avaliou se a capacidade dos pacientes de realizar tarefas motoras simples como apertar as mãos do examinador e pôr a língua para fora seria um preditor de extubação malsucedida. Foram coletados dados referentes ao tempo de ventilação mecânica, tempo de internação na

  18. Relationship of ocular accommodation and motor skills performance in developmental coordination disorder.

    Science.gov (United States)

    Rafique, Sara A; Northway, Nadia

    2015-08-01

    Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Testing the distinctiveness of visual imagery and motor imagery in a reach paradigm.

    Science.gov (United States)

    Gabbard, Carl; Ammar, Diala; Cordova, Alberto

    2009-01-01

    We examined the distinctiveness of motor imagery (MI) and visual imagery (VI) in the context of perceived reachability. The aim was to explore the notion that the two visual modes have distinctive processing properties tied to the two-visual-system hypothesis. The experiment included an interference tactic whereby participants completed two tasks at the same time: a visual or motor-interference task combined with a MI or VI-reaching task. We expected increased error would occur when the imaged task and the interference task were matched (e.g., MI with the motor task), suggesting an association based on the assumption that the two tasks were in competition for space on the same processing pathway. Alternatively, if there were no differences, dissociation could be inferred. Significant increases in the number of errors were found when the modalities for the imaged (both MI and VI) task and the interference task were matched. Therefore, it appears that MI and VI in the context of perceived reachability recruit different processing mechanisms.

  20. Children show limited movement repertoire when learning a novel motor skill.

    Science.gov (United States)

    Lee, Mei-Hua; Farshchiansadegh, Ali; Ranganathan, Rajiv

    2017-09-27

    Examining age differences in motor learning using real-world tasks is often problematic due to task novelty and biomechanical confounds. Here, we investigated how children and adults acquire a novel motor skill in a virtual environment. Participants of three different age groups (9-year-olds, 12-year-olds, and adults) learned to use their upper body movements to control a cursor on a computer screen. Results showed that 9-year-old and 12-year-old children showed poorer ability to control the cursor at the end of practice. Critically, when we investigated the movement coordination, we found that the lower task performance of children was associated with limited exploration of their movement repertoire. These results reveal the critical role of motor exploration in understanding developmental differences in motor learning. © 2017 John Wiley & Sons Ltd.

  1. A shared resource between declarative memory and motor memory.

    Science.gov (United States)

    Keisler, Aysha; Shadmehr, Reza

    2010-11-03

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.

  2. A shared resource between declarative memory and motor memory

    Science.gov (United States)

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140

  3. Motor heuristics and embodied choices: how to choose and act.

    Science.gov (United States)

    Raab, Markus

    2017-08-01

    Human performance requires choosing what to do and how to do it. The goal of this theoretical contribution is to advance understanding of how the motor and cognitive components of choices are intertwined. From a holistic perspective I extend simple heuristics that have been tested in cognitive tasks to motor tasks, coining the term motor heuristics. Similarly I extend the concept of embodied cognition, that has been tested in simple sensorimotor processes changing decisions, to complex sport behavior coining the term embodied choices. Thus both motor heuristics and embodied choices explain complex behavior such as studied in sport and exercise psychology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Motor learning interference is proportional to occlusion of LTP-like plasticity.

    Science.gov (United States)

    Cantarero, Gabriela; Tang, Byron; O'Malley, Rebecca; Salas, Rachel; Celnik, Pablo

    2013-03-13

    Learning interference occurs when learning something new causes forgetting of an older memory (retrograde interference) or when learning a new task disrupts learning of a second subsequent task (anterograde interference). This phenomenon, described in cognitive, sensory, and motor domains, limits our ability to learn multiple tasks in close succession. It has been suggested that the source of interference is competition of neural resources, although the neuronal mechanisms are unknown. Learning induces long-term potentiation (LTP), which can ultimately limit the ability to induce further LTP, a phenomenon known as occlusion. In humans we quantified the magnitude of occlusion of anodal transcranial direct current stimulation-induced increased excitability after learning a skill task as an index of the amount of LTP-like plasticity used. We found that retention of a newly acquired skill, as reflected by performance in the second day of practice, is proportional to the magnitude of occlusion. Moreover, the degree of behavioral interference was correlated with the magnitude of occlusion. Individuals with larger occlusion after learning the first skill were (1) more resilient to retrograde interference and (2) experienced larger anterograde interference when training a second task, as expressed by decreased performance of the learned skill in the second day of practice. This effect was not observed if sufficient time elapsed between training the two skills and LTP-like occlusion was not present. These findings suggest competition of LTP-like plasticity is a factor that limits the ability to remember multiple tasks trained in close succession.

  5. The use of cognitive cues for anticipatory strategies in a dynamic postural control task - validation of a novel approach to dual-task testing

    DEFF Research Database (Denmark)

    Læssøe, Uffe; Grarup, Bo; Bangshaab, Jette

    2016-01-01

    Introduction: Dual-task testing is relevant in the assessment of postural control. A combination of a primary (motor) and a secondary (distracting cognitive) tasks is most often used. It remains a challenge however, to standardize and monitor the cognitive task. In this study a new dual......-task testing approach with a facilitating, rather than distracting, cognitive component was evaluated. Methods: Thirty-one community-dwelling elderly and fifteen young people were tested with respect to their ability to use anticipatory postural control strategies. The motor task consisted of twenty...... two sessions. Conclusion: The dual-task test was sensitive enough to discriminate between elderly and young people. It revealed that the elderly did not utilize cognitive cues for their anticipatory postural control strategies as well as the young were able to. The test procedure was feasible...

  6. The role of rotational hand movements and general motor ability in children’s mental rotation performance

    Directory of Open Access Journals (Sweden)

    Petra eJansen

    2015-07-01

    Full Text Available Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular seem to have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N= 83; Age range: 7.0-8.3 and 9.0-10.11 years. In addition, we assessed the role of motor ability in this relationship. Boys in the 7-8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability.

  7. Enhancement of motor learning by focal intermittent theta burst stimulation (iTBS) of either the primary motor (M1) or somatosensory area (S1) in healthy human subjects.

    Science.gov (United States)

    Platz, Thomas; Adler-Wiebe, Marija; Roschka, Sybille; Lotze, Martin

    2018-01-01

    Motor rehabilitation after brain damage relies on motor re-learning as induced by specific training. Non-invasive brain stimulation (NIBS) can alter cortical excitability and thereby has a potential to enhance subsequent training-induced learning. Knowledge about any priming effects of NIBS on motor learning in healthy subjects can help to design targeted therapeutic applications in brain-damaged subjects. To examine whether complex motor learning in healthy subjects can be enhanced by intermittent theta burst stimulation (iTBS) to primary motor or sensory cortical areas. Eighteen young healthy subjects trained eight different arm motor tasks (arm ability training, AAT) once a day for 5 days using their left non-dominant arm. Except for day 1 (baseline), training was performed after applying an excitatory form of repetitive transcranial magnetic stimulation (iTBS) to either (I) right M1 or (II) S1, or (III) sham stimulation to the right M1. Subjects were randomly assigned to conditions I, II, or III. A principal component analysis of the motor behaviour data suggested eight independent motor abilities corresponding to the 8 trained tasks. AAT induced substantial motor learning across abilities with generalisation to a non-trained test of finger dexterity (Nine-Hole-Peg-Test, NHPT). Participants receiving iTBS (to either M1 or S1) showed better performance with the AAT tasks over the period of training compared to sham stimulation as well as a bigger improvement with the generalisation task (NHPT) for the trained left hand after training completion. Priming with an excitatory repetitive transcranial magnetic stimulation as iTBS of either M1 or S1 can enhance motor learning across different sensorimotor abilities.

  8. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors

    International Nuclear Information System (INIS)

    Mueller, W.M.; Zerrin Yetkin, F.; Hammeke, T.A.

    1997-01-01

    Objective. The purpose of this study was to determine the usefulness of functional magnetic resonance imaging (FMRI) to map cerebral functions in patients with frontal or parietal tumors. Methods. Charts and images of patients with cerebral tumors or vascular malformations who underwent FMRI with an echo-planar technique were reviewed. The FMRI maps of motor (11 patients), tactile sensory (12 patients) and language tasks (4 patients) were obtained. The location of the FMRI activation and the positive responses to intraoperative cortical stimulation were compared. The reliability of the paradigms for mapping the rolandic cortex was evaluated. Results. Rolandic cortex was activated by tactile tasks in hall 12 patients and by motor tasks in 10 of 11 patients. Language tasks elicited activation in each of the four patients. Activation was obtained within edematous brain and adjacent to tumors. FMRI in three cases with intraoperative electro-cortical mapping results showed activation for a language, tactile, or motor task within the same gyrus in which stimulation elicited a related motor, sensory, or language function. In patients with >2 cm between the margin of the tumor, as revealed by magnetic resonance imaging, and the activation, no decline in motor function occurred from surgical resection. Conclusions. FMRI of tactile, motor, and language tasks is feasible in patients with cerebral tumors. FMRI shows promise as a means of determining the risk of a postoperative motor deficit from surgical resection of frontal or parietal tumors. (authors)

  9. The correlation between motor impairments and event-related desynchronization during motor imagery in ALS patients

    Directory of Open Access Journals (Sweden)

    Kasahara Takashi

    2012-06-01

    Full Text Available Abstract Background The event-related desynchronization (ERD in EEG is known to appear during motor imagery, and is thought to reflect cortical processing for motor preparation. The aim of this study is to examine the modulation of ERD with motor impairment in ALS patients. ERD during hand motor imagery was obtained from 8 ALS patients with a variety of motor impairments. ERD was also obtained from age-matched 11 healthy control subjects with the same motor task. The magnitude and frequency of ERD were compared between groups for characterization of ALS specific changes. Results The ERD of ALS patients were significantly smaller than those of control subjects. Bulbar function and ERD were negatively correlated in ALS patients. Motor function of the upper extremities did was uncorrelated with ERD. Conclusions ALS patients with worsened bulbar scales may show smaller ERD. Motor function of the upper extremities did was uncorrelated with ERD.

  10. Autonomous Inter-Task Transfer in Reinforcement Learning Domains

    Science.gov (United States)

    2008-08-01

    Mountain Car. However, because the source task uses a car with a motor more than twice as powerful as in the 3D task, the tran- sition function learned in...powerful car motor or changing the surface friction of the hill • s: changing the range of the state variables • si: changing where the car starts...Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodological variations, and system approaches, 1994. Mazda Ahmadi, Matthew E

  11. Individual differences in motor timing and its relation to cognitive and fine motor skills.

    Directory of Open Access Journals (Sweden)

    Håvard Lorås

    Full Text Available The present study investigated the relationship between individual differences in timing movements at the level of milliseconds and performance on selected cognitive and fine motor skills. For this purpose, young adult participants (N = 100 performed a repetitive movement task paced by an auditory metronome at different rates. Psychometric measures included the digit-span and symbol search subtasks from the Wechsler battery as well as the Raven SPM. Fine motor skills were assessed with the Purdue Pegboard test. Motor timing performance was significantly related (mean r = .3 to cognitive measures, and explained both unique and shared variance with information-processing speed of Raven's scores. No significant relations were found between motor timing measures and fine motor skills. These results show that individual differences in cognitive and motor timing performance is to some extent dependent upon shared processing not associated with individual differences in manual dexterity.

  12. The Effect of Prior Task Success on Older Adults' Memory Performance: Examining the Influence of Different Types of Task Success.

    Science.gov (United States)

    Geraci, Lisa; Hughes, Matthew L; Miller, Tyler M; De Forrest, Ross L

    2016-01-01

    Negative aging stereotypes can lead older adults to perform poorly on memory tests. Yet, memory performance can be improved if older adults have a single successful experience on a cognitive test prior to participating in a memory experiment (Geraci & Miller, 2013, Psychology and Aging, 28, 340-345). The current study examined the effects of different types of prior task experience on subsequent memory performance. Before participating in a verbal free recall experiment, older adults in Experiment 1 successfully completed either a verbal or a visual cognitive task or no task. In Experiment 2, they successfully completed either a motor task or no task before participating in the free recall experiment. Results from Experiment 1 showed that relative to control (no prior task), participants who had prior success, either on a verbal or a visual task, had better subsequent recall performance. Experiment 2 showed that prior success on a motor task, however, did not lead to a later memory advantage relative to control. These findings demonstrate that older adults' memory can be improved by a successful prior task experience so long as that experience is in a cognitive domain.

  13. Shared and differentiated motor skill impairments in children with dyslexia and/or attention deficit disorder: From simple to complex sequential coordination.

    Directory of Open Access Journals (Sweden)

    Marie-Ève Marchand-Krynski

    Full Text Available Dyslexia and Attention deficit disorder (AD are prevalent neurodevelopmental conditions in children and adolescents. They have high comorbidity rates and have both been associated with motor difficulties. Little is known, however, about what is shared or differentiated in dyslexia and AD in terms of motor abilities. Even when motor skill problems are identified, few studies have used the same measurement tools, resulting in inconstant findings. The present study assessed increasingly complex gross motor skills in children and adolescents with dyslexia, AD, and with both Dyslexia and AD. Our results suggest normal performance on simple motor-speed tests, whereas all three groups share a common impairment on unimanual and bimanual sequential motor tasks. Children in these groups generally improve with practice to the same level as normal subjects, though they make more errors. In addition, children with AD are the most impaired on complex bimanual out-of-phase movements and with manual dexterity. These latter findings are examined in light of the Multiple Deficit Model.

  14. Brain activation in motor sequence learning is related to the level of native cortical excitability.

    Directory of Open Access Journals (Sweden)

    Silke Lissek

    Full Text Available Cortical excitability may be subject to changes through training and learning. Motor training can increase cortical excitability in motor cortex, and facilitation of motor cortical excitability has been shown to be positively correlated with improvements in performance in simple motor tasks. Thus cortical excitability may tentatively be considered as a marker of learning and use-dependent plasticity. Previous studies focused on changes in cortical excitability brought about by learning processes, however, the relation between native levels of cortical excitability on the one hand and brain activation and behavioral parameters on the other is as yet unknown. In the present study we investigated the role of differential native motor cortical excitability for learning a motor sequencing task with regard to post-training changes in excitability, behavioral performance and involvement of brain regions. Our motor task required our participants to reproduce and improvise over a pre-learned motor sequence. Over both task conditions, participants with low cortical excitability (CElo showed significantly higher BOLD activation in task-relevant brain regions than participants with high cortical excitability (CEhi. In contrast, CElo and CEhi groups did not exhibit differences in percentage of correct responses and improvisation level. Moreover, cortical excitability did not change significantly after learning and training in either group, with the exception of a significant decrease in facilitatory excitability in the CEhi group. The present data suggest that the native, unmanipulated level of cortical excitability is related to brain activation intensity, but not to performance quality. The higher BOLD mean signal intensity during the motor task might reflect a compensatory mechanism in CElo participants.

  15. Evaluation of a modified Fitts law brain-computer interface target acquisition task in able and motor disabled individuals

    Science.gov (United States)

    Felton, E. A.; Radwin, R. G.; Wilson, J. A.; Williams, J. C.

    2009-10-01

    A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts' law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts' law, which has been used as a predictor of movement time in studies of human movement, was used here to determine the information transfer rate, which was based on target acquisition time and target difficulty. The information transfer rate was used to make comparisons between control modalities and subject groups on the same task. Data were analyzed from eight able-bodied and five motor disabled participants who wore an electrode cap that recorded and translated their electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons were made between able-bodied and disabled subjects, and between EEG and joystick cursor control in able-bodied subjects. Fitts' law aptly described the relationship between movement time and index of difficulty for each task movement direction when evaluated separately and averaged together. This study showed that Fitts' law can be successfully applied to computer cursor movement controlled by neural signals.

  16. Relationships between Spontaneous Note-Taking, Self-Reported Strategies and Comprehension When Reading Multiple Texts in Different Task Conditions

    Science.gov (United States)

    Hagen, Åste M.; Braasch, Jason L. G.; Bråten, Ivar

    2014-01-01

    This study investigated note-taking during multiple-text reading across two different task conditions in relation to comprehension performance and self-reports of strategy use. Forty-four undergraduates read multiple texts about climate change to write an argument or a summary. Analysis of students' spontaneous note-taking during reading…

  17. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans

    DEFF Research Database (Denmark)

    Perez, Monica A.; Lungholt, Bjarke K.S.; Nielsen, Jens Bo

    2005-01-01

    Sensory information continuously converges on the spinal cord during a variety of motor behaviours. Here, we examined presynaptic control of group Ia afferents in relation to acquisition of a novel motor skill. We tested whether repetition of two motor tasks with different degrees of difficulty......, a novel visuo-motor task involving the ankle muscles, and a control task involving simple voluntary ankle movements, would induce changes in the size of the soleus H-reflex. The slope of the H-reflex recruitment curve and the H-max/M-max ratio were depressed after repetition of the visuo-motor skill task...... of the monosynaptic Ia facilitation of the soleus H-reflex evoked by femoral nerve stimulation. The D1 inhibition was increased and the femoral nerve facilitation was decreased following the visuo-motor skill task, suggesting an increase in presynaptic inhibition of Ia afferents. No changes were observed...

  18. The effect of a motor skills training program in the improvement of practiced and non-practiced tasks performance in children with developmental coordination disorder (DCD).

    Science.gov (United States)

    Farhat, Faiçal; Hsairi, Ines; Baati, Hamza; Smits-Engelsman, B C M; Masmoudi, Kaouthar; Mchirgui, Radhouane; Triki, Chahnez; Moalla, Wassim

    2016-04-01

    The purpose of the present study was to examine the effect of a group-based task oriented skills training program on motor and physical ability for children with DCD. It was also investigated if there was an effect on fine motor and handwriting tasks that were not specifically practiced during the training program. Forty-one children aged 6-10years took part in this study. Children were assigned to three groups: an experimental training group consisting of 14 children with DCD, a control non-training group consisted of 13 children with DCD and a control non-training group consisting of 14 typically developed children. The measurements included were, the Movement Assessment Battery for Children (MABC), the Modified Agility Test (MAT), the Triple Hop Distance (THD), the 5 Jump-test (5JT) and the Handwriting Performance Test. All measures were administered pre and post an 8-week training program. The results showed that 10 children of the DCD training-group improved their performance in MABC test, attaining a score above the 15th percentile after their participation in the training program. DCD training-group showed a significant improvement on all cluster scores (manual dexterity (t (13)=5.3, pskills (t (13)=2.73, pskills, in the training program, may reflect improvement in motor skill but also transfer to other skills. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  20. Gait analysis with cognitive-motor dual tasks to distinguish fallers from nonfallers among rehabilitating stroke patients.

    Science.gov (United States)

    Baetens, Tina; De Kegel, Alexandra; Palmans, Tanneke; Oostra, Kristine; Vanderstraeten, Guy; Cambier, Dirk

    2013-04-01

    To evaluate fall risk in stroke patients based on single- and dual-task gait analyses, and to investigate the difference between 2 cognitive tasks in the dual-task paradigm. Prospective cohort study. Rehabilitation hospitals. Subacute stroke patients (N=32), able to walk without physical/manual help with or without walking aids, while performing a verbal task. Not applicable. Functional gait measures were Functional Ambulation Categories (FAC) and use of a walking aid. Gait measures were evaluated by an electronic walkway system under single- and dual-task (DT) conditions. For the single-task, subjects were instructed to walk at their usual speed. One of the DTs was a verbal fluency dual task, whereby subjects had to walk while simultaneously enumerating as many different animals as possible. For the other DT (counting dual task), participants had to walk while performing serial subtractions. After inclusion, participants kept a 6-month falls diary. Eighteen (56.3%) of the 32 included patients fell. Ten (31.3%) were single fallers (SFs), and 8 (25%) were multiple fallers (MFs). Fallers (Fs) more frequently used a walking aid and more frequently needed an observatory person for walking safely (FAC score of 3) than nonfallers (NFs). Two gait decrement parameters in counting dual task could distinguish potential Fs from NFs: decrement in stride length percentage (P=.043) and nonparetic step length percentage (P=.047). Regarding the division in 3 groups (NFs, SFs, and MFs), only MFs had a significantly higher percentage of decrement for paretic step length (P=.023) than SFs. Examining the decrement of spatial gait characteristics (stride length and paretic and nonparetic step length) during a DT addressing working memory can identify fall-prone subacute stroke patients. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Orbital stability analysis in biomechanics: a systematic review of a nonlinear technique to detect instability of motor tasks.

    Science.gov (United States)

    Riva, F; Bisi, M C; Stagni, R

    2013-01-01

    Falls represent a heavy economic and clinical burden on society. The identification of individual chronic characteristics associated with falling is of fundamental importance for the clinicians; in particular, the stability of daily motor tasks is one of the main factors that the clinicians look for during assessment procedures. Various methods for the assessment of stability in human movement are present in literature, and methods coming from stability analysis of nonlinear dynamic systems applied to biomechanics recently showed promise. One of these techniques is orbital stability analysis via Floquet multipliers. This method allows to measure orbital stability of periodic nonlinear dynamic systems and it seems a promising approach for the definition of a reliable motor stability index, taking into account for the whole task cycle dynamics. Despite the premises, its use in the assessment of fall risk has been deemed controversial. The aim of this systematic review was therefore to provide a critical evaluation of the literature on the topic of applications of orbital stability analysis in biomechanics, with particular focus to methodologic aspects. Four electronic databases have been searched for articles relative to the topic; 23 articles were selected for review. Quality of the studies present in literature has been assessed with a customised quality assessment tool. Overall quality of the literature in the field was found to be high. The most critical aspect was found to be the lack of uniformity in the implementation of the analysis to biomechanical time series, particularly in the choice of state space and number of cycles to include in the analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Males and females differ in brain activation during cognitive tasks.

    Science.gov (United States)

    Bell, Emily C; Willson, Morgan C; Wilman, Alan H; Dave, Sanjay; Silverstone, Peter H

    2006-04-01

    To examine the effect of gender on regional brain activity, we utilized functional magnetic resonance imaging (fMRI) during a motor task and three cognitive tasks; a word generation task, a spatial attention task, and a working memory task in healthy male (n = 23) and female (n = 10) volunteers. Functional data were examined for group differences both in the number of pixels activated, and the blood-oxygen-level-dependent (BOLD) magnitude during each task. Males had a significantly greater mean activation than females in the working memory task with a greater number of pixels being activated in the right superior parietal gyrus and right inferior occipital gyrus, and a greater BOLD magnitude occurring in the left inferior parietal lobe. However, despite these fMRI changes, there were no significant differences between males and females on cognitive performance of the task. In contrast, in the spatial attention task, men performed better at this task than women, but there were no significant functional differences between the two groups. In the word generation task, there were no external measures of performance, but in the functional measurements, males had a significantly greater mean activation than females, where males had a significantly greater BOLD signal magnitude in the left and right dorsolateral prefrontal cortex, the right inferior parietal lobe, and the cingulate. In neither of the motor tasks (right or left hand) did males and females perform differently. Our fMRI findings during the motor tasks were a greater mean BOLD signal magnitude in males in the right hand motor task, compared to females where males had an increased BOLD signal magnitude in the right inferior parietal gyrus and in the left inferior frontal gyrus. In conclusion, these results demonstrate differential patterns of activation in males and females during a variety of cognitive tasks, even though performance in these tasks may not vary, and also that variability in performance may not

  3. Language and motor abilities of preschool children who stutter: evidence from behavioral and kinematic indices of nonword repetition performance.

    Science.gov (United States)

    Smith, Anne; Goffman, Lisa; Sasisekaran, Jayanthi; Weber-Fox, Christine

    2012-12-01

    Stuttering is a disorder of speech production that typically arises in the preschool years, and many accounts of its onset and development implicate language and motor processes as critical underlying factors. There have, however, been very few studies of speech motor control processes in preschool children who stutter. Hearing novel nonwords and reproducing them engages multiple neural networks, including those involved in phonological analysis and storage and speech motor programming and execution. We used this task to explore speech motor and language abilities of 31 children aged 4-5 years who were diagnosed as stuttering. We also used sensitive and specific standardized tests of speech and language abilities to determine which of the children who stutter had concomitant language and/or phonological disorders. Approximately half of our sample of stuttering children had language and/or phonological disorders. As previous investigations would suggest, the stuttering children with concomitant language or speech sound disorders produced significantly more errors on the nonword repetition task compared to typically developing children. In contrast, the children who were diagnosed as stuttering, but who had normal speech sound and language abilities, performed the nonword repetition task with equal accuracy compared to their normally fluent peers. Analyses of interarticulator motions during accurate and fluent productions of the nonwords revealed that the children who stutter (without concomitant disorders) showed higher variability in oral motor coordination indices. These results provide new evidence that preschool children diagnosed as stuttering lag their typically developing peers in maturation of speech motor control processes. The reader will be able to: (a) discuss why performance on nonword repetition tasks has been investigated in children who stutter; (b) discuss why children who stutter in the current study had a higher incidence of concomitant language

  4. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation.

    Directory of Open Access Journals (Sweden)

    Dhakshin S Ramanathan

    Full Text Available Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning.

  5. Motor performance is not enhanced by daytime naps in older adults

    Directory of Open Access Journals (Sweden)

    Winifried eBackhaus

    2016-05-01

    Full Text Available The impact of sleep on motor learning in the aging brain was investigated using an experimental diurnal nap setup. As the brain ages several components of learning as well as motor performance change. In addition, aging is also related to sleep architectural changes. This combination of slowed learning processes and impaired sleep behavior raises the question of whether sleep can enhance learning and specifically performance of procedural tasks in healthy, older adults. Previous research was able to show sleep-dependent consolidation overnight for numerous tasks in young adults. Some of these study findings can also be replicated for older adults. This study aims to clarify whether sleep-dependent consolidation can also be found during shorter periods of diurnal sleep. The impact of midday naps on motor consolidation was analyzed by comparing procedural learning using a sequence and a motor adaptation task, in a crossover fashion in healthy, non-sleep deprived, older adults randomly subjected to wake (45 min, short nap (10-20 min sleep or long nap (50-70 min sleep conditions. Older adults exhibited learning gains, these were not found to be sleep-dependent in either task. The results suggest that daytime naps do not have an impact on performance and motor learning in an aging population.

  6. Cognitive-motor integration deficits in young adult athletes following concussion.

    Science.gov (United States)

    Brown, Jeffrey A; Dalecki, Marc; Hughes, Cindy; Macpherson, Alison K; Sergio, Lauren E

    2015-01-01

    The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate the information for an appropriate motor response. Here, we look at how performance on such tasks is affected in young adult athletes with concussion history. Participants displaced a cursor from a central to peripheral targets on a vertical display by sliding their finger along a touch sensitive screen in one of two spatial planes. The addition of a memory component, along with variations in cursor feedback increased task complexity across conditions. Significant main effects between participants with concussion history and healthy controls without concussion history were observed in timing and accuracy measures. Importantly, the deficits were distinctly more pronounced for participants with concussion history compared to healthy controls, especially when the brain had to control movements having two levels of decoupling between vision and action. A discriminant analysis correctly classified athletes with a history of concussion based on task performance with an accuracy of 94 %, despite the majority of these athletes being rated asymptomatic by current standards. These findings correspond to our previous work with adults at risk of developing dementia, and support the use of cognitive motor integration as an enhanced assessment tool for those who may have mild brain dysfunction. Such a task may provide a more sensitive metric of performance relevant to daily function than what is currently in use, to assist in return to play/work/learn decisions.

  7. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    Science.gov (United States)

    Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that

  8. Investigating neural efficiency of elite karate athletes during a mental arithmetic task using EEG.

    Science.gov (United States)

    Duru, Adil Deniz; Assem, Moataz

    2018-02-01

    Neural efficiency is proposed as one of the neural mechanisms underlying elite athletic performances. Previous sports studies examined neural efficiency using tasks that involve motor functions. In this study we investigate the extent of neural efficiency beyond motor tasks by using a mental subtraction task. A group of elite karate athletes are compared to a matched group of non-athletes. Electroencephalogram is used to measure cognitive dynamics during resting and increased mental workload periods. Mainly posterior alpha band power of the karate players was found to be higher than control subjects under both tasks. Moreover, event related synchronization/desynchronization has been computed to investigate the neural efficiency hypothesis among subjects. Finally, this study is the first study to examine neural efficiency related to a cognitive task, not a motor task, in elite karate players using ERD/ERS analysis. The results suggest that the effect of neural efficiency in the brain is global rather than local and thus might be contributing to the elite athletic performances. Also the results are in line with the neural efficiency hypothesis tested for motor performance studies.

  9. Cross-limb Interference during motor learning

    DEFF Research Database (Denmark)

    Lauber, Benedikt; Jensen, Jesper Lundbye; Keller, Martin

    2013-01-01

    It is well known that following skill learning, improvements in motor performance may transfer to the untrained contralateral limb. It is also well known that retention of a newly learned task A can be degraded when learning a competing task B that takes place directly after learning A. Here we...

  10. Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts’s-Law-Inspired Approach

    OpenAIRE

    C. S. George Lee; Hsien-I Lin

    2013-01-01

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp ) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an...

  11. Intersession reliability of fMRI activation for heat pain and motor tasks.

    Science.gov (United States)

    Quiton, Raimi L; Keaser, Michael L; Zhuo, Jiachen; Gullapalli, Rao P; Greenspan, Joel D

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test-retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this

  12. Intersession reliability of fMRI activation for heat pain and motor tasks

    Science.gov (United States)

    Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this

  13. Does motor expertise facilitate amplitude differentiation of lower limb-movements in an asymmetrical bipedal coordination task?

    Science.gov (United States)

    Roelofsen, Eefje G J; Brown, Derrick D; Nijhuis-van der Sanden, Maria W G; Staal, J Bart; Meulenbroek, Ruud G J

    2018-04-30

    The motor system's natural tendency is to move the limbs over equal amplitudes, for example in walking. However, in many situations in which people must perform complex movements, a certain degree of amplitude differentiation of the limbs is required. Visual and haptic feedback have recently been shown to facilitate such independence of limb movements. However, it is unknown whether motor expertise moderates the extent to which individuals are able to differentiate the amplitudes of their limb-movements while being supported with visual and haptic feedback. To answer this question 14 pre-professional dancers were compared to 14 non-dancers on simultaneously generating a small displacement with one foot, and a larger one with the other foot, in four different feedback conditions. In two conditions, haptic guidance was offered, either in a passive or active mode. In the other two conditions, veridical and enhanced visual feedback were provided. Surprisingly, no group differences were found regarding the degree to which the visual or haptic feedback assisted the generation of the different target amplitudes of the feet (mean amplitude difference between the feet). The correlation between the displacements of the feet and the standard deviation of the continuous relative phase between the feet, reflecting the degree of independence of the feet movements, also failed to show between-group differences. Sample entropy measures, indicating the predictability of the foot movements, did show a group difference. In the haptically-assisted conditions, the dancers demonstrated more predictable coordination patterns than the non-dancers as reflected by lower sample entropy values whereas the reverse was true in the visual-feedback conditions. The results demonstrate that motor expertise does not moderate the extent to which haptic tracking facilitates the differentiation of the amplitudes of the lower limb movements in an asymmetrical bipedal coordination task. Copyright © 2018

  14. Fine motor deficits in reading disability and language impairment: same or different?

    Directory of Open Access Journals (Sweden)

    Annie Brookman

    2013-11-01

    Full Text Available Several studies have found evidence of motor deficits in poor readers. There is no obvious reason for motor and literacy skills to go together, and it has been suggested that both deficits could be indicative of an underlying problem with cerebellar function and/or procedural learning. However, the picture is complicated by the fact that reading problems often co-occur with oral language impairments, which have also been linked with motor deficits. This raises the question of whether motor deficits characterise poor readers when language impairment has been accounted for – and vice versa. We considered these questions by assessing motor deficits associated with reading disability (RD and language impairment (LI. A large community sample provided a subset of 9- to 10-year-olds, selected to oversample children with reading and/or language difficulties, to give 37 children with comorbid LI + RD, 67 children with RD only, 32 children with LI only, and 117 typically-developing (TD children with neither type of difficulty. These children were given four motor tasks that taxed speed, sequence, and imitation abilities to differing extents. Different patterns of results were found for the four motor tasks. There was no effect of RD or LI on two speeded fingertip tapping tasks, one of which involved sequencing of movements. LI, but not RD, was associated with problems in imitating hand positions and slowed performance on a speeded peg-moving task that required a precision grip. Fine motor deficits in poor readers may be more a function of language impairment than literacy problems.

  15. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    Science.gov (United States)

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on

  16. Task-dependent changes in cross-level coupling between single neurons and oscillatory activity in multiscale networks.

    Directory of Open Access Journals (Sweden)

    Ryan T Canolty

    Full Text Available Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC or under direct neural control through a brain-machine interface (Brain Control, BC. In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10-45 Hz during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to

  17. Mathematical modeling of alignment dynamics in active motor-filament systems

    Science.gov (United States)

    Swaminathan, Sumanth

    The formation of the cytoskeleton, via motor-mediated microtubule self-organization, is an important subject of study in the biological sciences as well as in nonequilibrium, soft matter physics. Accurate modeling of the dynamics is a formidable task as it involves intrinsic nonlinearities, structural anisotropies, nonequilibrium processes, and a broad window of time scales, length scales, and densities. In this thesis, we study the ordering dynamics and pattern formations arising from motor-mediated microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model in which microtubules interact through motor induced, inelastic binary collisions. This model shows that initially disordered filament solutions exhibit an ordering transition resulting in the emergence of well aligned rod bundles. We study the existence and dynamic interaction of microtubule bundles analytically and numerically. Our results show a long term attraction and coalescing of bundles indicating a clear coarsening in the system; microtubule bundles concentrate into fewer orientations on a slow logarithmic time scale. In the semi-dilute case, multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered state with a nonzero mean orientation. We develop a spatially homogeneous, mean-field theory that explicitly accounts for motor forcing and thermal fluctuations which enter into the model as multiplicative and additive noises respectively. Our model further incorporates a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. We demonstrate that the transition to the oriented state changes from second order to first order when the force-dependent detachment becomes important. In our final analysis, we add complex spatial inhomogeneities to our mean field theory. The revised model consists of a system

  18. A Test of Motor (Not Executive) Planning in Developmental Coordination Disorder and Autism

    NARCIS (Netherlands)

    van Swieten, Lisa M.; van Bergen, Elsje; Williams, Justin H G; Wilson, Andrew D.; Plumb, Mandy S.; Kent, Samuel W.; Mon-Williams, Mark A.

    Grip selection tasks have been used to test "planning" in both autism and developmental coordination disorder (DCD). We differentiate between motor and executive planning and present a modified motor planning task. Participants grasped a cylinder in 1 of 2 orientations before turning it clockwise or

  19. A test of motor (not executive) planning in developmental coordination disorder and autism

    NARCIS (Netherlands)

    van Swieten, L.M.; van Bergen, E.; Williams, J.H.G.; Wilson, A.D.; Plumb, M.S.; Kent, S.W.; Mon-Williams, M.A.

    2010-01-01

    Grip selection tasks have been used to test "planning" in both autism and developmental coordination disorder (DCD). We differentiate between motor and executive planning and present a modified motor planning task. Participants grasped a cylinder in 1 of 2 orientations before turning it clockwise or

  20. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  1. EFFECTIVE INDICES FOR MONITORING MENTAL WORKLOAD WHILE PERFORMING MULTIPLE TASKS.

    Science.gov (United States)

    Hsu, Bin-Wei; Wang, Mao-Jiun J; Chen, Chi-Yuan; Chen, Fang

    2015-08-01

    This study identified several physiological indices that can accurately monitor mental workload while participants performed multiple tasks with the strategy of maintaining stable performance and maximizing accuracy. Thirty male participants completed three 10-min. simulated multitasks: MATB (Multi-Attribute Task Battery) with three workload levels. Twenty-five commonly used mental workload measures were collected, including heart rate, 12 HRV (heart rate variability), 10 EEG (electroencephalography) indices (α, β, θ, α/θ, θ/β from O1-O2 and F4-C4), and two subjective measures. Analyses of index sensitivity showed that two EEG indices, θ and α/θ (F4-C4), one time-domain HRV-SDNN (standard deviation of inter-beat intervals), and four frequency-domain HRV: VLF (very low frequency), LF (low frequency), %HF (percentage of high frequency), and LF/HF were sensitive to differentiate high workload. EEG α/θ (F4-C4) and LF/HF were most effective for monitoring high mental workload. LF/HF showed the highest correlations with other physiological indices. EEG α/θ (F4-C4) showed strong correlations with subjective measures across different mental workload levels. Operation strategy would affect the sensitivity of EEG α (F4-C4) and HF.

  2. Does spinal excitability scale to the difficulty of the dual-task?

    Science.gov (United States)

    Day, Devon M; Boivin, Mario T; Adkin, Allan L; Tokuno, Craig D

    2017-08-01

    This study examined whether spinal excitability, as measured by the soleus Hoffmann reflex (H-reflex), is scaled to the difficulty level of the dual-task being performed. Twenty-two participants completed a combination of three balance task and three secondary cognitive (visuo-motor) task difficulty levels for a total of nine dual-task conditions. An additional eight participants were tested while performing the same three balance task difficulty levels on its own (i.e., single-tasking). The balance task required participants to maintain their balance on a fixed or rotating stabilometer while the visuo-motor task required participants to respond to moving targets presented on a monitor. Throughout each single- and dual-task trial, H-reflexes were elicited from the soleus. Although dual-task performance, as quantified by visuo-motor task accuracy as well as the root mean square of the stabilometer position and velocity, decreased by 10-34% with increasing dual-task difficulty (p dual-task conditions (p = 0.483-0.758). This contrasts to when participants performed the balance task as a single-task, where the H-reflex amplitude decreased by ~25% from the easy to the hard balance task difficulty level (p = 0.037). In contrast to the commonly reported finding of a reduced soleus H-reflex amplitude when individuals perform a less posturally stable task by itself, the results indicate that spinal excitability is not modulated as a function of dual-task difficulty. It is possible that when an individual's attentional resource capacity is exceeded during dual-tasking, they become ineffective in regulating spinal excitability for balance control.

  3. Motor skills in Czech children with attention-deficit/hyperactivity disorder and their neurotypical counterparts.

    Science.gov (United States)

    Scharoun, S M; Bryden, P J; Otipkova, Z; Musalek, M; Lejcarova, A

    2013-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurobehavioural disorder. Characterized by recurring problems with impulsiveness and inattention in combination with hyperactivity, motor impairments have also been well documented in the literature. The aim of this study was to compare the fine and gross motor skills of male and female children with ADHD and their neurotypical counterparts within seven skill assessments. This included three fine motor tasks: (1) spiral tracing, (2) dot filling, (3) tweezers and beads; and four gross motor tasks: (1) twistbox, (2) foot tapping, (3) small plate finger tapping, and (4) large plate finger tapping. It was hypothesized that children with ADHD would display poorer motor skills in comparison to neurotypical controls in both fine and gross motor assessments. However, statistically significant differences between the groups only emerged in four of the seven tasks (spiral tracing, dot filling, tweezers and beads and foot tapping). In line with previous findings, the complexity underlying upper limb tasks solidified the divide in performance between children with ADHD and their neurotypical counterparts. In light of similar research, impairments in lower limb motor skill were also observed. Future research is required to further delineate trends in motor difficulties in ADHD, while further investigating the underlying mechanisms of impairment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The influence of a real job on upper limb performance in motor skill tests: which abilities are transferred?

    Science.gov (United States)

    Giangiardi, Vivian Farahte; Alouche, Sandra Regina; de Freitas, Sandra Maria Sbeghen Ferreira; Pires, Raquel Simoni; Padula, Rosimeire Simprini

    2018-06-01

    To investigate whether the specificities of real jobs create distinctions in the performance of workers in different motor tests for the upper limbs, 24 participants were divided into two groups according to their specific job: fine and repetitive tasks and general tasks. Both groups reproduced tasks related to aiming movements, handling and strength of the upper limbs. There were no significant differences between groups in the dexterity and performance of aiming movements. However, the general tasks group had higher grip strength than the repetitive tasks group, demonstrating differences according to job specificity. The results suggest that a particular motor skill in a specific job cannot improve performance in other tasks with the same motor requirements. The transfer of the fine and gross motor skills from previous experience in a job-specific task is the basis for allocating training and guidance to workers.

  5. Contingent attentional capture across multiple feature dimensions in a temporal search task.

    Science.gov (United States)

    Ito, Motohiro; Kawahara, Jun I

    2016-01-01

    The present study examined whether attention can be flexibly controlled to monitor two different feature dimensions (shape and color) in a temporal search task. Specifically, we investigated the occurrence of contingent attentional capture (i.e., interference from task-relevant distractors) and resulting set reconfiguration (i.e., enhancement of single task-relevant set). If observers can restrict searches to a specific value for each relevant feature dimension independently, the capture and reconfiguration effect should only occur when the single relevant distractor in each dimension appears. Participants identified a target letter surrounded by a non-green square or a non-square green frame. The results revealed contingent attentional capture, as target identification accuracy was lower when the distractor contained a target-defining feature than when it contained a nontarget feature. Resulting set reconfiguration was also obtained in that accuracy was superior when the current target's feature (e.g., shape) corresponded to the defining feature of the present distractor (shape) than when the current target's feature did not match the distractor's feature (color). This enhancement was not due to perceptual priming. The present study demonstrated that the principles of contingent attentional capture and resulting set reconfiguration held even when multiple target feature dimensions were monitored. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Multiple neuropeptides in cholinergic motor neurons of Aplysia: evidence for modulation intrinsic to the motor circuit

    International Nuclear Information System (INIS)

    Cropper, E.C.; Lloyd, P.E.; Reed, W.; Tenenbaum, R.; Kupfermann, I.; Weiss, K.R.

    1987-01-01

    Changes in Aplysia biting responses during food arousal are partially mediated by the serotonergic metacerebral cells (MCCs). The MCCs potentiate contractions of a muscle utilized in biting, the accessory radula closer (ARCM), when contractions are elicited by stimulation of either of the two cholinergic motor neurons B15 or B16 that innervate the muscle. The authors have now shown that ARCM contractions may also be potentiated by peptide cotransmitters in the ARCM motor neurons. They found that motor neuron B15 contains small cardioactive peptides A and B (SCP/sub A/ and SCP/sub B/) i.e., whole B15 neurons were bioactive on the SCP-sensitive Helix heart, as were reverse-phase HPLC fractions of B15 neurons that eluted like synthetic SCP/sub A/ and SCP/sub B/. Furthermore, [ 35 S]methionine-labeled B15 peptides precisely coeluted with synthetic SCP/sub A/ and SCP/sub B/. SCP/sub B/-like immunoreactivity was associated with dense-core vesicles in the soma of B15 and in neuritic varicosities and terminals in the ARCM. B16 motor neurons did not contain SCP/sub A/ or SCP/sub B/ but contained an unidentified bioactive peptide. RP-HPLC of [ 35 S]methionine-labeled B16s resulted in one major peak of radioactivity that did not coelute with either SCP and which, when subject to Edman degradation, yielded [ 35 S]methionine in positions where there is no methionine in the SCPs. Exogenously applied B16 peptide potentiated ARCM contractions elicited by stimulation of B15 or B16 neurons. Thus, in this system there appear to be two types of modulation; one type arises from the MCCs and is extrinsic to the motor system, whereas the second type arises from the motor neurons themselves and hence is intrinsic

  7. Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves †.

    Science.gov (United States)

    Cai, Wenyu; Zhang, Meiyan; Zheng, Yahong Rosa

    2017-07-11

    This paper investigates the task assignment and path planning problem for multiple AUVs in three dimensional (3D) underwater wireless sensor networks where nonholonomic motion constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and path planning problem is modeled by the Multiple Traveling Sales Person (MTSP) problem and the Genetic Algorithm (GA) is used to solve the MTSP problem with Euclidean distance as the cost function and the Tour Hop Balance (THB) or Tour Length Balance (TLB) constraints as the stop criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X - Y plane, and then interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails to achieve G 1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated 3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving the 3D target assignment and path planning problem.

  8. Multiple time scale analysis of pressure oscillations in solid rocket motors

    Science.gov (United States)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  9. A Novel Approach to Diagnosing Motor Skills

    Science.gov (United States)

    Aguirre, Aitor; Lozano-Rodero, Alberto; Matey, Luis M.; Villamañe, Mikel; Ferrero, Begoña

    2014-01-01

    The combination of virtual reality interactive systems and educational technologies have been used in the training of procedural tasks, but there is a lack of research with regard to providing specific assistance for acquiring motor skills. In this paper we present a novel approach to evaluating motor skills with an interactive intelligent…

  10. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  11. Motor Skill Learning and Corticospinal Excitability

    DEFF Research Database (Denmark)

    Christiansen, Lasse

    Background Motor skill learning (MSL) is the persistent increase in performance of a skill obtained through practice. This process is associated with changes throughout the central nervous system. One of these is a change in corticospinal excitability (CSE) assessable with Transcranial Magnetic...... a novel visuomotor skill. I hypothesized that changes in CSE accompanying long-term motor practice relate to the process of learning rather than repetitive practice on an acquired skill and investigated this by incrementally increasing task difficulty and thus postponing saturation of learning....... Furthermore, we aimed to investigate the feasibility of applying paired associative stimulation to the investigation of learning-dependent motor cortical plasticity by comparing the transient increase in CSE accompanying motor skill learning to the associative plasticity induced by pairing electrical motor...

  12. Refinement of learned skilled movement representation in motor cortex deep output layer

    Science.gov (United States)

    Li, Qian; Ko, Ho; Qian, Zhong-Ming; Yan, Leo Y. C.; Chan, Danny C. W.; Arbuthnott, Gordon; Ke, Ya; Yung, Wing-Ho

    2017-01-01

    The mechanisms underlying the emergence of learned motor skill representation in primary motor cortex (M1) are not well understood. Specifically, how motor representation in the deep output layer 5b (L5b) is shaped by motor learning remains virtually unknown. In rats undergoing motor skill training, we detect a subpopulation of task-recruited L5b neurons that not only become more movement-encoding, but their activities are also more structured and temporally aligned to motor execution with a timescale of refinement in tens-of-milliseconds. Field potentials evoked at L5b in vivo exhibit persistent long-term potentiation (LTP) that parallels motor performance. Intracortical dopamine denervation impairs motor learning, and disrupts the LTP profile as well as the emergent neurodynamical properties of task-recruited L5b neurons. Thus, dopamine-dependent recruitment of L5b neuronal ensembles via synaptic reorganization may allow the motor cortex to generate more temporally structured, movement-encoding output signal from M1 to downstream circuitry that drives increased uniformity and precision of movement during motor learning. PMID:28598433

  13. Learning motor skills from algorithms to robot experiments

    CERN Document Server

    Kober, Jens

    2014-01-01

    This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters, and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation, and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author’s doctoral thesis, which wo...

  14. Unilateral implicit motor learning deficit in developmental dyslexia.

    Science.gov (United States)

    Yang, Yang; Hong-Yan, Bi

    2011-02-01

    It has been suggested that developmental dyslexia involves various literacy, sensory, motor skill, and processing speed deficits. Some recent studies have shown that individuals with developmental dyslexia exhibit implicit motor learning deficits, which may be related to cerebellar functioning. However, previous studies on implicit motor learning in developmental dyslexics have produced conflicting results. Findings from cerebellar lesion patients have shown that patients' implicit motor learning performance varied when different hands were used to complete tasks. This suggests that dyslexia may have different effects on implicit motor learning between the two hands if cerebellar dysfunction is involved. To specify this question, we used a one-handed version of a serial reaction time task to compare the performance of 27 Chinese children with developmental dyslexics with another 27 age-matched children without reading difficulties. All the subjects were students from two primary schools, Grades 4 to 6. The results showed that children with developmental dyslexic responded more slowly than nondyslexic children, and exhibited no implicit motor learning in the condition of left-hand response. In contrast, there was no significant difference in reaction time between two groups of children when they used the right hand to respond. This finding indicates that children with developmental dyslexia exhibited normal motor skill and implicit motor learning ability provided the right hand was used. Taken together, these results suggested that Chinese children with developmental dyslexia exhibit unilateral deficits in motor skill and implicit motor learning in the left hand. Our findings lend partial support to the cerebellar deficit theory of developmental dyslexia.

  15. The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and cognitive and motor performance.

    Science.gov (United States)

    Kaplan, Janna; Ventura, Joel; Bakshi, Avijit; Pierobon, Alberto; Lackner, James R; DiZio, Paul

    2017-01-01

    Our goal was to determine how sleep deprivation, nauseogenic motion, and a combination of motion and sleep deprivation affect cognitive vigilance, visual-spatial perception, motor learning and retention, and balance. We exposed four groups of subjects to different combinations of normal 8h sleep or 4h sleep for two nights combined with testing under stationary conditions or during 0.28Hz horizontal linear oscillation. On the two days following controlled sleep, all subjects underwent four test sessions per day that included evaluations of fatigue, motion sickness, vigilance, perceptual discrimination, perceptual learning, motor performance and learning, and balance. Sleep loss and exposure to linear oscillation had additive or multiplicative relationships to sleepiness, motion sickness severity, decreases in vigilance and in perceptual discrimination and learning. Sleep loss also decelerated the rate of adaptation to motion sickness over repeated sessions. Sleep loss degraded the capacity to compensate for novel robotically induced perturbations of reaching movements but did not adversely affect adaptive recovery of accurate reaching. Overall, tasks requiring substantial attention to cognitive and motor demands were degraded more than tasks that were more automatic. Our findings indicate that predicting performance needs to take into account in addition to sleep loss, the attentional demands and novelty of tasks, the motion environment in which individuals will be performing and their prior susceptibility to motion sickness during exposure to provocative motion stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Role of association cortices and cerebellum during motor consolidation process

    International Nuclear Information System (INIS)

    Nagata, Ken; Wright, David K.; Box, Georgia A.

    2008-01-01

    Positron emission tomography (PET) studies of cerebral circulation activated during the first (naive) and second (learned) visual-motor tasks were performed to confirm the hypothesis that activated brain regions are different before and after the motor work. Subjects were 30 normal healthy right-handed volunteers (av. age 21 y), who had the first 10 tasks of cursor tracing (regular tracing, rt), as rapidly and accurately as possible, along the given star features and then second 15 tasks of tracing with the cursor with inverse polarity (mirror tracing, mt). During the tasks, PET images were obtained at 7th and 9th rt, and 10 times (1st-15th) during mt, with the high-resolution positron camera (HEADTOME V) to measure the cerebral blood flow after intravenous 15 O-water and were processed into 3D for statistics. At the 1st mt (under the most unfamiliar condition), stimulated were the right frontal and supplementary motor areas and temporal lobe, bilateral centriciput lobe, anterior cingulated gyrus, and left cerebellum hemisphere. Under the learned condition (at 15th mt), the primary motor area, lingual gyrus, cuneus, anterior cuneus, occipital lobe involving posterior cingulated gyrus and left cerebellum hemisphere were activated. Thus the hypothesis above was confirmed: reconfirmation of the brain plasticity. (R.T.)

  17. Gross and fine motor function in fibromyalgia and chronic fatigue syndrome.

    Science.gov (United States)

    Rasouli, Omid; Fors, Egil A; Borchgrevink, Petter Chr; Öhberg, Fredrik; Stensdotter, Ann-Katrin

    2017-01-01

    This paper aimed to investigate motor proficiency in fine and gross motor function, with a focus on reaction time (RT) and movement skill, in patients with fibromyalgia (FM) and chronic fatigue syndrome (CFS) compared to healthy controls (HC). A total of 60 individuals (20 CFS, 20 FM, and 20 HC), age 19-49 years, participated in this study. Gross motor function in the lower extremity was assessed using a RT task during gait initiation in response to an auditory trigger. Fine motor function in the upper extremity was measured during a precision task (the Purdue Pegboard test) where the number of pins inserted within 30 s was counted. No significant differences were found between FM and CFS in any parameters. FM and CFS groups had significantly longer RT than HC in the gait initiation ( p =0.001, and p =0.004 respectively). In the Purdue Pegboard test, 20% in the FM group, 15% in the CFS groups, and 0% of HC group, scored below the threshold of the accepted performance. However, there were no significant differences between FM, CFS, and HC in this task ( p =0.12). Compared to controls, both CFS and FM groups displayed significantly longer RT in the gait initiation task. Generally, FM patients showed the worst results in both tests, although no group differences were found in fine motor control, according to the Purdue Pegboard test.

  18. Motor laterality as an indicator of speech laterality.

    Science.gov (United States)

    Flowers, Kenneth A; Hudson, John M

    2013-03-01

    The determination of speech laterality, especially where it is anomalous, is both a theoretical issue and a practical problem for brain surgery. Handedness is commonly thought to be related to speech representation, but exactly how is not clearly understood. This investigation analyzed handedness by preference rating and performance on a reliable task of motor laterality in 34 patients undergoing a Wada test, to see if they could provide an indicator of speech laterality. Hand usage preference ratings divided patients into left, right, and mixed in preference. Between-hand differences in movement time on a pegboard task determined motor laterality. Results were correlated (χ2) with speech representation as determined by a standard Wada test. It was found that patients whose between-hand difference in speed on the motor task was small or inconsistent were the ones whose Wada test speech representation was likely to be ambiguous or anomalous, whereas all those with a consistently large between-hand difference showed clear unilateral speech representation in the hemisphere controlling the better hand (χ2 = 10.45, df = 1, p laterality are related where they both involve a central control of motor output sequencing and that a measure of that aspect of the former will indicate the likely representation of the latter. A between-hand measure of motor laterality based on such a measure may indicate the possibility of anomalous speech representation. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  19. Quantitative motor performance and sleep benefit in Parkinson disease

    NARCIS (Netherlands)

    van Gilst, Merel; van Mierlo, P.; Bloem, B.R.; Overeem, S.

    2015-01-01

    STUDY OBJECTIVES: Many people with Parkinson disease experience "sleep benefit": temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. DESIGN: Eighteen Parkinson patients with and 20 without

  20. Motor and sensory responses after percutaneous tibial nerve stimulation in multiple sclerosis patients with lower urinary tract symptoms treated in daily practice.

    Science.gov (United States)

    Zecca, C; Digesu, G A; Robshaw, P; Puccini, F; Khullar, V; Tubaro, A; Gobbi, C

    2014-03-01

    Posterior tibial nerve stimulation (PTNS) is an effective treatment option for lower urinary tract symptoms (LUTS) in multiple sclerosis (MS) patients. Patients with MS and LUTS unresponsive to medical treatment received PTNS for 12 weeks after saline urodynamics to evaluate the prevalence of motor, sensory and combined responses during PTNS and to determine whether the type of response can predict treatment outcome. LUTS were also assessed using a 3-day bladder diary, patient perception of bladder condition (PPBC) questionnaire, patient perception of intensity of urgency scale (PPIUS), Kings Health QOL questionnaire (KHQ) and Overactive Bladder Questionnaire (OAB-q) before and after treatment. Patients were considered as "responders" if they reported an improvement >50% in their LUTS according to the PPBC. Sensory, motor and combined sensory/motor responses were compared between responders and non-responders. Eighty-three patients were included. 61% (51/83) of patients were responders. Sensory, motor and combined sensory/motor responses were found in 64% (53/83), 6% (5/83) and 30% (25/83) of patients respectively. A sensory response alone, or in combination with a motor response, was better associated with a successful outcome than the presence of a motor response alone (P = 0.001). A sensory response, either alone or in combination with a motor response, is more frequent and seems to be better associated with a successful outcome of PTNS than motor response alone. © 2014 The Author(s) European Journal of Neurology © 2014 EFNS.

  1. Fact retrieval and memory consolidation for a movement sequence: bidirectional effects of 'unrelated' cognitive tasks on procedural memory.

    Directory of Open Access Journals (Sweden)

    Rachel Tibi

    Full Text Available The generation of long-term memory for motor skills can be modulated by subsequent motor experiences that interfere with the consolidation process. Recent studies suggest that even a non-motor task may adversely affect some aspects of motor sequence memory. Here we show that motor sequence memory can be either enhanced or reduced, by different cognitive tasks. Participants were trained in performing finger movement sequences. Fully explicit instructions about the target sequence were given before practice. The buildup of procedural knowledge was tested at three time-points: immediately before training (T1, after practice (T2, and 24 hours later (T3. Each participant performed the task on two separate occasions; training on a different movement sequence on each occasion. In one condition, interference, participants performed a non-motor task immediately after T2. Half the participants solved simple math problems and half performed a simple semantic judgment task. In the baseline condition there was no additional task. All participants improved significantly between T1 and T2 (within-session gains. In addition, in the baseline condition, performance significantly improved between T2 and T3 (delayed 'off-line' gains. Solving math problems significantly enhanced these delayed gains in motor performance, whereas performing semantic decisions significantly reduced delayed gains compared to baseline. Thus, procedural motor memory consolidation can be either enhanced or inhibited by subsequent cognitive experiences. These effects do not require explicit or implicit new learning. The retrieval of unrelated, non-motor, well established knowledge can modulate procedural memory.

  2. Virtual street-crossing performance in persons with multiple sclerosis: Feasibility and task performance characteristics.

    Science.gov (United States)

    Stratton, M E; Pilutti, L A; Crowell, J A; Kaczmarski, H; Motl, R W

    2017-01-02

    Multiple sclerosis (MS) is a neurological disease that commonly results in physical and cognitive dysfunction. Accordingly, MS might impact the ability to safely cross the street. The purpose of this study was to examine the feasibility of a simulated street-crossing task in persons with MS and to determine differences in street-crossing performance between persons with MS and non-MS controls. 26 participants with MS (median Expanded Disability Status Scale [EDSS] score = 3.5) and 19 controls completed 40 trials of a virtual street-crossing task. There were 2 crossing conditions (i.e., no distraction and phone conversation), and participants performed 20 trials per condition. Participants were instructed that the goal of the task was to cross the street successfully (i.e., without being hit be a vehicle). The primary outcome was task feasibility, assessed as completion and adverse events. Secondary outcomes were measures of street-crossing performance. Overall, the simulated street-crossing task was feasible (i.e., 90% completion, no adverse events) in participants with MS. Participants with MS waited longer and were less attentive to traffic before entering the street compared with controls (all P .05). A virtual street-crossing task is feasible for studying street-crossing behavior in persons with mild MS and most individuals with moderate MS. Virtual street-crossing performance is impaired in persons with MS compared to controls; however, persons with MS do not appear to be more vulnerable to a distracting condition. The virtual reality environment presents a safe and useful setting for understanding pedestrian behavior in persons with MS.

  3. Training Attentional Control Improves Cognitive and Motor Task Performance.

    Science.gov (United States)

    Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin

    2016-10-01

    Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.

  4. Effects of dual-task balance training on postural performance in patients with Multiple Sclerosis: a double-blind, randomized controlled pilot trial.

    Science.gov (United States)

    Monjezi, Saeideh; Negahban, Hossein; Tajali, Shirin; Yadollahpour, Nava; Majdinasab, Nastaran

    2017-02-01

    To investigate the effects of dual-task balance training on postural performance in patients with multiple sclerosis as compared with single-task balance training. Double-blind, pretest-posttest, randomized controlled pilot trial. Local Multiple Sclerosis Society. A total of 47 patients were randomly assigned to two equal groups labeled as single-task training and dual-task training groups. All patients received supervised balance training sessions, 3 times per week for 4 weeks. The patients in the single-task group performed balance activities, alone. However, patients in dual-task group practiced balance activities while simultaneously performing cognitive tasks. The 10-Meter Walk Test and Timed Up-and-Go under single-task and dual-task conditions, in addition to Activities-specific Balance Confidence, Berg Balance Scale, and Functional Gait Assessment were assessed pre-, and post intervention and also 6-weeks after the end of intervention. Only 38 patients completed the treatment plan. There was no difference in the amount of improvement seen between the two study groups. In both groups there was a significant effect of time for dual-10 Meter Walk Test (F 1, 36 =11.33, p=0.002) and dual-Timed Up-and-Go (F 1, 36 =14.27, p=0.001) but not for their single-tasks. Moreover, there was a significant effect of time for Activities-specific Balance Confidence, Berg Balance Scale, and Functional Gait Assessment ( Ppilot study did not show more benefits from undertaking dual-task training than single-task training. A power analysis showed 71 patients per group would be needed to determine whether there was a clinically relevant difference for dual-task gait speed between the groups.

  5. Effects of cognitive-motor dual-task training combined with auditory motor synchronization training on cognitive functioning in individuals with chronic stroke: A pilot randomized controlled trial.

    Science.gov (United States)

    Park, Myoung-Ok; Lee, Sang-Heon

    2018-06-01

    Preservation and enhancement of cognitive function are essential for the restoration of functional abilities and independence following stroke. While cognitive-motor dual-task training (CMDT) has been utilized in rehabilitation settings, many patients with stroke experience impairments in cognitive function that can interfere with dual-task performance. In the present study, we investigated the effects of CMDT combined with auditory motor synchronization training (AMST) utilizing rhythmic cues on cognitive function in patients with stroke. The present randomized controlled trial was conducted at a single rehabilitation hospital. Thirty patients with chronic stroke were randomly divided an experimental group (n = 15) and a control group (n = 15). The experimental group received 3 CMDT + AMST sessions per week for 6 weeks, whereas the control group received CMDT only 3 times per week for 6 weeks. Changes in cognitive function were evaluated using the trail making test (TMT), digit span test (DST), and stroop test (ST). Significant differences in TMT-A and B (P = .001, P = .001), DST-forward (P = .001, P = .001), DST-backward (P = .000, P = .001), ST-word (P = .001, P = .001), and ST-color (P = .002, P = .001) scores were observed in both the control and experimental groups, respectively. Significant differences in TMT-A (P = .001), DST-forward (P = .027), DST-backward (P = .002), and ST-word (P = .025) scores were observed between the 2 groups. Performance speed on the TMT-A was faster in the CMDT + AMST group than in the CMDT group. Moreover, DST-forward and DST-backward scores were higher in the CMDT + AMST group than in the CDMT group. Although ST-color results were similar in the 2 groups, ST-word scores were higher in the CMDT + AMST group than in the CMDT group. This finding indicates that the combined therapy CMDT and AMST can be used to increase attention, memory, and executive

  6. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    Science.gov (United States)

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  7. Mild Contralesional Hypothermia Reduces Use of the Unimpaired Forelimb in a Skilled Reaching Task After Motor Cortex Injury in Rats.

    Science.gov (United States)

    Klahr, Ana C; Fagan, Kelly; Aziz, Jasmine R; John, Roseleen; Colbourne, Frederick

    2018-06-01

    Therapeutic hypothermia (TH) mitigates neuronal injury in models of ischemic stroke. Although this therapy is meant for injured tissue, most protocols cool the whole body, including the contralesional hemisphere. Neuroplasticity responses within this hemisphere can affect functional outcome. Thus, cooling the contralesional hemisphere serves no clear neuroprotective function and may instead be detrimental. In this study, we cooled the contralesional hemisphere to determine whether this harms behavioral recovery after cortical injury in rats. All rats were trained on skilled reaching and walking tasks. Rats then received a motor cortex insult contralateral to their dominant paw after which they were randomly assigned to focal contralesional TH (∼33°C) for 1-48, 1-97, or 48-96 hours postinjury, or to a normothermic control group. Contralesional cooling did not impact lesion volume (p = 0.371) and had minimal impact on neurological outcome of the impaired limb. However, rats cooled early were significantly less likely to shift paw preference to the unimpaired paw (p ≤ 0.043), suggesting that cooling reduced learned nonuse. In a second experiment, we tested whether cooling impaired learning of the skilled reaching task in naive rats. Localized TH applied to the hemisphere contralateral or ipsilateral to the preferred paw did not impair learning (p ≥ 0.677) or dendritic branching/length in the motor cortex (p ≥ 0.105). In conclusion, localized TH did not impair learning or plasticity in the absence of neural injury, but contralesional TH may reduce unwanted shifts in limb preference after stroke.

  8. Changes in gross grasp strength and fine motor skills in adolescents with pediatric multiple sclerosis.

    Science.gov (United States)

    Squillace, Mary; Ray, Sharon; Milazzo, Maria

    2015-01-01

    This study examined the gross grasp strength and fine motor dexterity of adolescents, who are diagnosed with multiple sclerosis (MS). A total sample size of 72 participants between the ages of 13 to 17 was studied. Thirty six with a diagnosis of pediatric relapse remitting MS and 36 matched control participants were selected from various local youth groups. Data on hand strength and dexterity was collected using a dynamometer, nine hole peg board and Purdue pegboard on both groups. Utilizing ANCOVA to describe the differences across the two groups by diagnosis, controlling for age and gender, it was found that the MS group demonstrated significantly decreased dexterity when compared to age and gender matched controls. There was no significant difference in gross grasp strength by diagnostic group. This preliminary study showed that children with a diagnosis of pediatric MS may have differences in fine motor dexterity, but not gross grasp strength from their peers who do not have the diagnosis. Further study is indicated to examine this phenomenon.

  9. Aging and motor variability: a test of the neural noise hypothesis.

    Science.gov (United States)

    Sosnoff, Jacob J; Newell, Karl M

    2011-07-01

    Experimental tests of the neural noise hypothesis of aging, which holds that aging-related increments in motor variability are due to increases in white noise in the perceptual-motor system, were conducted. Young (20-29 years old) and old (60-69 and 70-79 years old) adults performed several perceptual-motor tasks. Older adults were progressively more variable in their performance outcome, but there was no age-related difference in white noise in the motor output. Older adults had a greater frequency-dependent structure in their motor variability that was associated with performance decrements. The findings challenge the main tenet of the neural noise hypothesis of aging in that the increased variability of older adults was due to a decreased ability to adapt to the constraints of the task rather than an increment of neural noise per se.

  10. A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing

    Science.gov (United States)

    Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.

    2017-11-01

    Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.

  11. Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.

    Science.gov (United States)

    Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M

    2015-01-01

    Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.

  12. Carbon monoxide exposure and information processing during perceptual-motor performance

    Energy Technology Data Exchange (ETDEWEB)

    Mihevic, P.M.; Gliner, J.A.; Horvath, S.M.

    1983-01-01

    This study examined the influence of exposure to ambient carbon monoxide resulting in final carboxyhemoglobin (COHb) levels of approximately 5.0% on the ability to process information during motor performance. Subjects (n . 16) performed a primary reciprocal tapping task and a secondary digit manipulation task singly and/or concurrently during 2.5 h exposure to room air (0 ppm CO) or 100 ppm CO. Five levels of tapping difficulty and two levels of digit manipulation were employed. Tapping performance was unaffected when COHb levels were as high as 5%. However, at this level of COHb it was noted that CO exposure interacted with task difficulty of both tasks to influence reaction time on the digit manipulation task. It was concluded that motor performance was not influenced by exposure to CO leading to COHb concentrations of 5%. Task difficulty was a significant factor mediating behavioral effects of CO exposure.

  13. Carbon monoxide exposure and information processing during perceptual-motor performance

    Energy Technology Data Exchange (ETDEWEB)

    Mihevic, P.M.; Gliner, J.A.; Horvath, S.M.

    1983-04-01

    This study examined the influence of exposure to ambient carbon monoxide resulting in final carboxyhemoglobin (COHb) levels of approximately 5.0% on the ability to process information during motor performance. Subjects (n = 16) performed a primary reciprocal tapping task and a secondary digit manipulation task singly and/or concurrently during 2.5 h exposure to room air (0 ppm CO) or 100 ppm CO. Five levels of tapping difficulty and two levels of digit manipulation were employed. Tapping performance was unaffected when COHb levels were as high as 5%. However, at this level of COHb it was noted that CO exposure interacted with task difficulty of both tasks to influence reaction time on the digit manipulation task. It was concluded that motor performance was not influenced by exposure to CO leading to COHb concentrations of 5%. Task difficulty was a significant factor mediating behavioral effects of CO exposure.

  14. Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.

    Science.gov (United States)

    Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar

    2015-01-01

    Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed.

  15. A virtual trainer concept for robot-assisted human motor learning in rowing

    Directory of Open Access Journals (Sweden)

    Baumgartner L.

    2011-12-01

    Full Text Available Keeping the attention level and observing multiple physiological and biomechanical variables at the same time at high precision is very challenging for human trainers. Concurrent augmented feedback, which is suggested to enhance motor learning in complex motor tasks, can also hardly be provided by a human trainer. Thus, in this paper, a concept for a virtual trainer is presented that may overcome the limits of a human trainer. The intended virtual trainer will be implemented in a CAVE providing auditory, visual and haptic cues. As a first application, the virtual trainer will be used in a realistic scenario for sweep rowing. To provide individual feedback to each rower, the virtual trainer quantifies errors and provides concurrent auditory, visual, and haptic feedback. The concurrent feedback will be adapted according to the actual performance, individual maximal rowing velocity, and the athlete’s individual perception.

  16. Design and evaluation of nonverbal sound-based input for those with motor handicapped.

    Science.gov (United States)

    Punyabukkana, Proadpran; Chanjaradwichai, Supadaech; Suchato, Atiwong

    2013-03-01

    Most personal computing interfaces rely on the users' ability to use their hand and arm movements to interact with on-screen graphical widgets via mainstream devices, including keyboards and mice. Without proper assistive devices, this style of input poses difficulties for motor-handicapped users. We propose a sound-based input scheme enabling users to operate Windows' Graphical User Interface by producing hums and fricatives through regular microphones. Hierarchically arranged menus are utilized so that only minimal numbers of different actions are required at a time. The proposed scheme was found to be accurate and capable of responding promptly compared to other sound-based schemes. Being able to select from multiple item-selecting modes helps reducing the average time duration needed for completing tasks in the test scenarios almost by half the time needed when the tasks were performed solely through cursor movements. Still, improvements on facilitating users to select the most appropriate modes for desired tasks should improve the overall usability of the proposed scheme.

  17. Fine and gross motor skills differ between healthy-weight and obese children.

    Science.gov (United States)

    Gentier, Ilse; D'Hondt, Eva; Shultz, Sarah; Deforche, Benedicte; Augustijn, Mireille; Hoorne, Sofie; Verlaecke, Katja; De Bourdeaudhuij, Ilse; Lenoir, Matthieu

    2013-11-01

    Within the obesity literature, focus is put on the link between weight status and gross motor skills. However, research on fine motor skills in the obese (OB) childhood population is limited. Therefore, the present study focused on possible weight related differences in gross as well as fine motor skill tasks. Thirty-four OB children (12 ♀ and 22 ♂, aged 7-13 years) were recruited prior to participating in a multidisciplinary treatment program at the Zeepreventorium (De Haan, Belgium). Additionally, a control group of 34 age and gender-matched healthy-weight (HW) children was included in the study. Anthropometric measures were recorded and gross and fine motor skills were assessed using the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2). Results were analyzed by independent samples t-tests, multivariate analysis of variance, and a chi-squared test. Being OB was detrimental for all subtests evaluating gross motor skill performance (i.e., upper-limb coordination, bilateral coordination, balance, running speed and agility, and strength). Furthermore, OB children performed worse in fine motor precision and a manual dexterity task, when compared to their HW peers. No group differences existed for the fine motor integration task. Our study provides evidence that lower motor competence in OB children is not limited to gross motor skills alone; OB children are also affected by fine motor skill problems. Further investigation is warranted to provide possible explanations for these differences. It is tentatively suggested that OB children experience difficulties with the integration and processing of sensory information. Future research is needed to explore whether this assumption is correct and what the underlying mechanism(s) could be. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Multiple-modality exercise and mind-motor training to improve cardiovascular health and fitness in older adults at risk for cognitive impairment: A randomized controlled trial.

    Science.gov (United States)

    Boa Sorte Silva, Narlon C; Gregory, Michael A; Gill, Dawn P; Petrella, Robert J

    The effects of multiple-modality exercise on arterial stiffening and cardiovascular fitness has not been fully explored. To explore the influence of a 24-week multiple-modality exercise program associated with a mind-motor training in cardiovascular health and fitness in community-dwelling older adults, compared to multiple-modality exercise (M2) alone. Participants (n=127, aged 67.5 [7.3] years, 71% females) were randomized to either M4 or M2 groups. Both groups received multiple-modality exercise intervention (60min/day, 3days/week for 24-weeks); however, the M4 group underwent additional 15min of mind-motor training, whereas the M2 group received 15min of balance training. Participants were assessed at 24-weeks and after a 28-week non-contact follow-up (52-weeks). at 52-weeks, the M4 group demonstrated a greater VO2max (ml/kg/min) compared to the M2 group (mean difference: 2.39, 95% CI: 0. 61 to 4.16, p=0.009). Within-group analysis indicated that the M4 group demonstrated a positive change in VO2max at 24-weeks (mean change: 1.93, 95% CI: 0.82 to 3.05, p=0.001) and 52-weeks (4.02, 95% CI: 2.71 to 5.32, p=0.001). Similarly, the M2 group increased VO2max at 24-weeks (2.28, 95% CI: 1.23 to 3.32, pMind-motor training associated with multiple-modality exercise can positively impact cardiovascular fitness to the same extent as multiple-modality exercise alone. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Motor sequence learning-induced neural efficiency in functional brain connectivity.

    Science.gov (United States)

    Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M

    2017-02-15

    Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Motor Decline in Clinically Presymptomatic Spinocerebellar Ataxia Type 2 Gene Carriers

    Science.gov (United States)

    Velázquez-Perez, Luis; Díaz, Rosalinda; Pérez-González, Ruth; Canales, Nalia; Rodríguez-Labrada, Roberto; Medrano, Jacquelín; Sánchez, Gilberto; Almaguer-Mederos, Luis; Torres, Cira; Fernandez-Ruiz, Juan

    2009-01-01

    Background Motor deficits are a critical component of the clinical characteristics of patients with spinocerebellar ataxia type 2. However, there is no current information on the preclinical manifestation of those motor deficits in presymptomatic gene carriers. To further understand and characterize the onset of the clinical manifestation in this disease, we tested presymptomatic spinocerebellar ataxia type 2 gene carriers, and volunteers, in a task that evaluates their motor performance and their motor learning capabilities. Methods and Findings 28 presymptomatic spinocerebellar ataxia type 2 gene carriers and an equal number of control volunteers matched for age and gender participated in the study. Both groups were tested in a prism adaptation task known to be sensible to both motor performance and visuomotor learning deficits. Our results clearly show that although motor learning capabilities are intact, motor performance deficits are present even years before the clinical manifestation of the disease start. Conclusions The results show a clear deficit in motor performance that can be detected years before the clinical onset of the disease. This motor performance deficit appears before any motor learning or clinical manifestations of the disease. These observations identify the performance coefficient as an objective and quantitative physiological biomarker that could be useful to assess the efficiency of different therapeutic agents. PMID:19401771