A calderón multiplicative preconditioner for the combined field integral equation
Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric
2009-01-01
A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation
A calderón multiplicative preconditioner for the combined field integral equation
Bagci, Hakan
2009-10-01
A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation is resonance-free. The iterative solution of the linear system of equations obtained via the CMP-based discretization of the CFIE converges rapidly regardless of the discretization density and the frequency of excitation. © 2009 IEEE.
Bagci, Hakan
2010-08-01
A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well-posed even when applied to densely discretized volumes, a classically formulated S-EFIE operator is ill-posed when applied to densely discretized surfaces. This renders the discretized coupled S-EFIE and V-EFIE system ill-conditioned, and its iterative solution inefficient or even impossible. The proposed scheme regularizes the coupled set of S-EFIE and V-EFIE using a Calderón multiplicative preconditioner (CMP)-based technique. The resulting scheme enables the efficient analysis of electromagnetic interactions with composite structures containing fine/subwavelength geometric features. Numerical examples demonstrate the efficiency of the proposed scheme. © 2006 IEEE.
Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric
2010-01-01
A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well
Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper
2010-01-01
We present an accurate, stable, and efficient solution to the Lippmann–Schwinger equation for electromagnetic scattering in two dimensions. The method is well suited for multiple scattering problems and may be applied to problems with scatterers of arbitrary shape or non-homogenous background mat...
Multiple constant multiplication optimizations for field programmable gate arrays
Kumm, Martin
2016-01-01
This work covers field programmable gate array (FPGA)-specific optimizations of circuits computing the multiplication of a variable by several constants, commonly denoted as multiple constant multiplication (MCM). These optimizations focus on low resource usage but high performance. They comprise the use of fast carry-chains in adder-based constant multiplications including ternary (3-input) adders as well as the integration of look-up table-based constant multipliers and embedded multipliers to get the optimal mapping to modern FPGAs. The proposed methods can be used for the efficient implementation of digital filters, discrete transforms and many other circuits in the domain of digital signal processing, communication and image processing. Contents Heuristic and ILP-Based Optimal Solutions for the Pipelined Multiple Constant Multiplication Problem Methods to Integrate Embedded Multipliers, LUT-Based Constant Multipliers and Ternary (3-Input) Adders An Optimized Multiple Constant Multiplication Architecture ...
Multiple integrals in the calculus of variations
Morrey, Charles B
1966-01-01
From the reviews: "…the book contains a wealth of material essential to the researcher concerned with multiple integral variational problems and with elliptic partial differential equations. The book not only reports the researches of the author but also the contributions of his contemporaries in the same and related fields. The book undoubtedly will become a standard reference for researchers in these areas. …The book is addressed mainly to mature mathematical analysts. However, any student of analysis will be greatly rewarded by a careful study of this book." M. R. Hestenes in Journal of Optimization Theory and Applications "The work intertwines in masterly fashion results of classical analysis, topology, and the theory of manifolds and thus presents a comprehensive treatise of the theory of multiple integral variational problems." L. Schmetterer in Monatshefte für Mathematik "The book is very clearly exposed and contains the last modern theory in this domain. A comprehensive bibliography ends the book...
Multiple fields in stochastic inflation
Assadullahi, Hooshyar [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Firouzjahi, Hassan [School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Noorbala, Mahdiyar [Department of Physics, University of Tehran,P.O. Box 14395-547, Tehran (Iran, Islamic Republic of); School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Vennin, Vincent; Wands, David [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)
2016-06-24
Stochastic effects in multi-field inflationary scenarios are investigated. A hierarchy of diffusion equations is derived, the solutions of which yield moments of the numbers of inflationary e-folds. Solving the resulting partial differential equations in multi-dimensional field space is more challenging than the single-field case. A few tractable examples are discussed, which show that the number of fields is, in general, a critical parameter. When more than two fields are present for instance, the probability to explore arbitrarily large-field regions of the potential, otherwise inaccessible to single-field dynamics, becomes non-zero. In some configurations, this gives rise to an infinite mean number of e-folds, regardless of the initial conditions. Another difference with respect to single-field scenarios is that multi-field stochastic effects can be large even at sub-Planckian energy. This opens interesting new possibilities for probing quantum effects in inflationary dynamics, since the moments of the numbers of e-folds can be used to calculate the distribution of primordial density perturbations in the stochastic-δN formalism.
Multiple-stage integrating accelerometer
Devaney, H.F.
1986-01-01
An accelerometer assembly is described for use in activating a switch or the like responding to multiple acceleration pulses in series, comprising: a housing forming a chamber having a first and second end; a mass slidably disposed in the chamber and movable during acceleration from the first end toward the second end; means for biasing the movable mass toward a reset position adjacent the first end; means for damping the movement of the mass in the chamber; cam and follower means carried by the movable mass and the housing for relative movement in response to the acceleration, the cam and follower means including means for temporarily blocking the mass movement toward the second end after a first acceleration pulse; the cam and follower means cooperating together to allow continued movement toward the second end and switch activation in response to at least a second separate acceleration pulse in series with the first
Integrated solution for field operations
Aubin, Renaud; Dionis, Francois [EDF, Chatou (France)
2014-08-15
This document presents our approach to design and to implement mobile applications for field operations. Internal on-field studies yield to the fact that the value added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted.
Integrated solution for field operations
Aubin, Renaud; Dionis, Francois
2014-01-01
This document presents our approach to design and to implement mobile applications for field operations. Internal on-field studies yield to the fact that the value added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted
Integrated solution for field operations
Aubin, Renaud; Dionis, Francois
2014-01-01
This paper presents the authors' approach to design and to implement mobile applications for field operations. Internal on-field studies can yield the fact that the value-added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted. (author)
Visual field abnormalities in multiple sclerosis.
Patterson, V H; Heron, J R
1980-01-01
Visual fields were examined with a tangent screen in 54 patients with multiple sclerosis (MS) or optic neuritis (ON). Visual fields were abnormal in all patients with definite MS, 94% with probable MS and 81% with possible MS. Three-quarters of the MS patients with no history of visual symptoms had abnormal fields. The commonest defect found was an arcuate scotoma. As a diagnostic test of visual pathway involvement in MS, tangent screen examination compares favourably with more sophisticated ...
Smart wheelchair: integration of multiple sensors
Gassara, H. E.; Almuhamed, S.; Moukadem, A.; Schacher, L.; Dieterlen, A.; Adolphe, D.
2017-10-01
The aim of the present work is to develop a smart wheelchair by integrating multiple sensors for measuring user’s physiological signals and subsequently transmitting and monitoring the treated signals to the user, a designated person or institution. Among other sensors, force, accelerometer, and temperature sensors are successfully integrated within both the backrest and the seat cushions of the wheelchair; while a pulse sensor is integrated within the armrest. The pulse sensor is connected to an amplification circuit board that is, in turn, placed within the armrest. The force and temperature sensors are integrated into a textile cover of the cushions by means of embroidery and sewing techniques. The signal from accelerometer is transmitted through Wi-Fi connection. The electrical connections needed for power supplying of sensors are made by embroidered conductive threads.
A Multiple Iterated Integral Inequality and Applications
Zongyi Hou
2014-01-01
Full Text Available We establish new multiple iterated Volterra-Fredholm type integral inequalities, where the composite function w(u(s of the unknown function u with nonlinear function w in integral functions in [Ma, QH, Pečarić, J: Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities. Nonlinear Anal. 69 (2008 393–407] is changed into the composite functions w1(u(s,w2(u(s,…, wn (u(s of the unknown function u with different nonlinear functions w1,w2,…,wn, respectively. By adopting novel analysis techniques, the upper bounds of the embedded unknown functions are estimated explicitly. The derived results can be applied in the study of solutions of ordinary differential equations and integral equations.
Jacobi fields of completely integrable Hamiltonian systems
Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.
2003-01-01
We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion
Reversed-field multiple mirror concept
Steinhauer, L.C.; Grossmann, W.; Seyler, C.E.
1978-01-01
The reversed-field multiple mirror (RFMM), is a promising technique for end-stoppering linear magnetic fusion plasmas. By this means the physics and engineering advantages of a linear plasma are gained while circumventing the endloss problem, allowing the projection of very short (less than or equal to 100 m) conceptual reactors. RFMM end-stoppering is accomplished by a string of closed field-line cells on the plasma column axis; these cells strongly retard the axial flow of particles and energy. We describe the reactor implications of the RFMM
INTEGRATED FUSION METHOD FOR MULTIPLE TEMPORAL-SPATIAL-SPECTRAL IMAGES
H. Shen
2012-08-01
Full Text Available Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the proposed method is validated using simulated images.
Data requirements for integrated near field models
Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.
1981-01-01
The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities
The quantum double in integrable quantum field theory
Bernard, D.; LeClair, A.
1993-01-01
Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)
Path integral quantization of parametrized field theory
Varadarajan, Madhavan
2004-01-01
Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory
Global integrability of cosmological scalar fields
Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek
2008-11-01
We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.
Global integrability of cosmological scalar fields
Maciejewski, Andrzej J; Przybylska, Maria; Stachowiak, Tomasz; Szydlowski, Marek
2008-01-01
We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain
Integrable structures in quantum field theory
Negro, Stefano
2016-01-01
This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)
Data Integration against Multiple Evolving Autonomous Schemata
Koch, Christoph
Research in the area of data integration has resulted in approaches such as federated and multidatabases, mediation, data warehousing, global information systems, and the model management/schema matching approach. Architecturally, approaches can be categorized into those that integrate against a single global schema and those that do not, while on the level of inter-schema constraints, most work can be classied either as so-called global-as-view or as local-as-view integration. These approaches dier widely in their strengths and weaknesses. Federated databases have been found applicable in environments in which several autonomous information systems coexist { each with their individual schemata { and need to share data. However, this approach does not provide sucient support for dealing with change of schemata and requirements. Other approaches to data integration which are centered around a single \\global" integration schema, on the other hand, cannot handle design autonomy of information systems. Under evol...
Design of integral magnetic field sensor
Ma Liang; Cheng Yinhui; Wu Wei; Li Baozhong; Zhou Hui; Li Jinxi; Zhu Meng
2010-01-01
Magnetic field is one of the important physical parameters in the measuring process of pulsed EMP. We researched on anti-interference and high-sensitivity measurement technique of magnetic field in this report. Semi rigid cables were to bent into ringed antenna so that the antenna was shielded from electric-field interference and had little inductance; In order to have high sensitivity, operational transconductance amplifier was used to produce an active integrator; We designed an optical-electronic transferring module to upgrade anti-interference capability of the magnetic-field measurement system. A measurement system of magnetic field was accomplished. The measurement system was composed of antenna, integrator, and optical-electric transferring module and so on. We calibrated the measurement system in coaxial TEM cell. It indicates that, the measurement system's respondence of rise time is up to 2.5 ns, and output width at 90%-maximum of the pulse is wider than 200 ns. (authors)
Field theory a path integral approach
Das, Ashok
2006-01-01
This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.Adding new material keenly requested by readers, this second edition is an important expansion of the popular first edition. Two extra chapters cover path integral quantization of gauge theories and anomalies, and a new section extends the supersymmetry chapter, where singular potentials in supersymmetric systems are described.
Integrated field modelling[Oil and gas fields
Nazarian, Bamshad
2002-07-01
This research project studies the feasibility of developing and applying an integrated field simulator to simulate the production performance of an entire oil or gas field. It integrates the performance of the reservoir, the wells, the chokes, the gathering system, the surface processing facilities and whenever applicable, gas and water injection systems. The approach adopted for developing the integrated simulator is to couple existing commercial reservoir and process simulators using available linking technologies. The simulators are dynamically linked and customised into a single hybrid application that benefits from the concept of open software architecture. The integrated field simulator is linked to an optimisation routine developed based on the genetic algorithm search strategies. This enables optimisation of the system at field level, from the reservoir to the process. Modelling the wells and the gathering network is achieved by customising the process simulator. This study demonstrated that the integrated simulation improves current capabilities to simulate the performance of the entire field and optimise its design. This is achieved by evaluating design options including spread and layout of the wells and gathering system, processing alternatives, reservoir development schemes and production strategies. Effectiveness of the integrated simulator is demonstrated and tested through several field-level case studies that discuss and investigate technical problems relevant to offshore field development. The case studies cover topics such as process optimisation, optimum tie-in of satellite wells into existing process facilities, optimal well location and field layout assessment of a high pressure high temperature deepwater oil field. Case study results confirm the viability of the total field simulator by demonstrating that the field performance simulation and optimal design were obtained in an automated process with treasonable computation time. No significant
Effective arithmetic in finite fields based on Chudnovsky's multiplication algorithm
Atighehchi , Kévin; Ballet , Stéphane; Bonnecaze , Alexis; Rolland , Robert
2016-01-01
International audience; Thanks to a new construction of the Chudnovsky and Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they allow computations to be parallelized, while maintaining a low number of bilinear multiplications.À partir d'une nouvelle construction de l'algorithme de multiplication de Chudnovsky et Chudnovsky, nous concevons des algorithmes ef...
Karman, W.; Caputi, K. I.; Grillo, C.; Balestra, I.; Rosati, P.; Vanzella, E.; Coe, D.; Christensen, L.; Koekemoer, A. M.; Kruehler, T.; Lombardi, M.; Mercurio, A.; Nonino, M.; van der Wel, A.
We present the first observations of the Frontier Fields cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer ( MUSE) integral field spectrograph. Because of the relatively large field of view ( 1 arcmin(2)), MUSE is ideal to simultaneously target multiple galaxies
Analogue of Pontryagin's maximum principle for multiple integrals minimization problems
Mikhail, Zelikin
2016-01-01
The theorem like Pontryagin's maximum principle for multiple integrals is proved. Unlike the usual maximum principle, the maximum should be taken not over all matrices, but only on matrices of rank one. Examples are given.
Integrated Field Analyses of Thermal Springs
Shervais, K.; Young, B.; Ponce-Zepeda, M. M.; Rosove, S.
2011-12-01
A group of undergraduate researchers through the SURE internship offered by the Southern California Earthquake Center (SCEC) have examined thermal springs in southern Idaho, northern Utah as well as mud volcanoes in the Salton Sea, California. We used an integrated approach to estimate the setting and maximum temperature, including water chemistry, Ipad-based image and data-base management, microbiology, and gas analyses with a modified Giggenbach sampler.All springs were characterized using GISRoam (tmCogent3D). We are performing geothermometry calculations as well as comparisons with temperature gradient data on the results while also analyzing biological samples. Analyses include water temperature, pH, electrical conductivity, and TDS measured in the field. Each sample is sealed and chilled and delivered to a water lab within 12 hours.Temperatures are continuously monitored with the use of Solinst Levelogger Juniors. Through partnership with a local community college geology club, we receive results on a monthly basis and are able to process initial data earlier in order to evaluate data over a longer time span. The springs and mudpots contained microbial organisms which were analyzed using methods of single colony isolation, polymerase chain reaction, and DNA sequencing showing the impact of the organisms on the springs or vice versa. Soon we we will collect gas samples at sites that show signs of gas. This will be taken using a hybrid of the Giggenbach method and our own methods. Drawing gas samples has proven a challenge, however we devised a method to draw out gas samples utilizing the Giggenbach flask, transferring samples to glass blood sample tubes, replacing NaOH in the Giggenbach flask, and evacuating it in the field for multiple samples using a vacuum pump. We also use a floating platform devised to carry and lower a levelogger, to using an in-line fuel filter from a tractor in order to keep mud from contaminating the equipment.The use of raster
Field theories with multiple fermionic excitations
Crawford, J.P.
1978-01-01
The reason for the existence of the muon has been an enigma since its discovery. Since that time there has been a continuing proliferation of elementary particles. It is proposed that this proliferation of leptons and quarks is comprehensible if there are only four fundamental particles, the leptons ν/sub e/ and e - , and the quarks u and d. All other leptons and quarks are imagined to be excited states of these four fundamental entities. Attention is restricted to the charged leptons and the electromagnetic interactions only. A detailed study of a field theory in which there is only one fundamental charged fermionic field having two (or more) excitations is made. When the electromagnetic interactions are introduced and the theory is second quantized, under certain conditions this theory reproduces the S matrix obtained from usual OED. In this case no electromagnetic transitions are allowed. A leptonic charge operator is defined and a superselection rule for this leptonic charge is found. Unfortunately, the mass spectrum cannot be obtained. This theory has many renormalizable generalizations including non-abelian gauge theories, Yukawa-type theories, and Fermi-type theories. Under certain circumstances the Yukawa- and Fermi-type theories are finite in perturbation theory. It is concluded that there are no fundamental objections to having fermionic fields with more than one excitation
Integral Methodological Pluralism in Science Education Research: Valuing Multiple Perspectives
Davis, Nancy T.; Callihan, Laurie P.
2013-01-01
This article examines the multiple methodologies used in educational research and proposes a model that includes all of them as contributing to understanding educational contexts and research from multiple perspectives. The model, based on integral theory (Wilber in a theory of everything. Shambhala, Boston, 2000) values all forms of research as…
Far-field super-resolution imaging of resonant multiples
Guo, Bowen
2016-05-20
We demonstrate for the first time that seismic resonant multiples, usually considered as noise, can be used for super-resolution imaging in the far-field region of sources and receivers. Tests with both synthetic data and field data show that resonant multiples can image reflector boundaries with resolutions more than twice the classical resolution limit. Resolution increases with the order of the resonant multiples. This procedure has important applications in earthquake and exploration seismology, radar, sonar, LIDAR (light detection and ranging), and ultrasound imaging, where the multiples can be used to make high-resolution images.
Integrating out the standard Higgs field in the path integral
Dittmaier, S.
1996-01-01
We integrate out the Higgs boson in the electroweak standard model at one loop and construct a low-energy effective Lagrangian assuming that the Higgs mass is much larger than the gauge-boson masses. Instead of applying diagrammatical techniques, we integrate out the Higgs boson directly in the path integral, which turns out to be much simpler. By using the background-field method and the Stueckelberg formalism, we directly find a manifestly gauge-invariant result. The heavy-Higgs effects on fermionic couplings are derived, too. At one loop the log M H terms of the heavy-Higgs limit of the electroweak standard model coincide with the UV-divergent terms in the gauged non-linear σ-model, but vertex functions differ in addition by finite constant terms. Finally, the leading Higgs effects to some physical processes are calculated from the effective Lagrangian. (orig.)
Interstitial integrals in the multiple-scattering model
Swanson, J.R.; Dill, D.
1982-01-01
We present an efficient method for the evaluation of integrals involving multiple-scattering wave functions over the interstitial region. Transformation of the multicenter interstitial wave functions to a single center representation followed by a geometric projection reduces the integrals to products of analytic angular integrals and numerical radial integrals. The projection function, which has the value 1 in the interstitial region and 0 elsewhere, has a closed-form partial-wave expansion. The method is tested by comparing its results with exact normalization and dipole integrals; the differences are 2% at worst and typically less than 1%. By providing an efficient means of calculating Coulomb integrals, the method allows treatment of electron correlations using a multiple scattering basis set
Path integral for multi-field inflation
Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Department of Physics, Postech, Pohang 37673 (Korea, Republic of); Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science, 34051 Daejeon (Korea, Republic of); Shiu, Gary [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Department of Physics & Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)
2016-07-20
We develop the path integral formalism for studying cosmological perturbations in multi-field inflation, which is particularly well suited to study quantum theories with gauge symmetries such as diffeomorphism invariance. We formulate the gauge fixing conditions based on the Poisson brackets of the constraints, from which we derive two convenient gauges that are appropriate for multi-field inflation. We then adopt the in-in formalism to derive the most general expression for the power spectrum of the curvature perturbation including the corrections from the interactions of the curvature mode with other light degrees of freedom. We also discuss the contributions of the interactions to the bispectrum.
Visual Sample Plan (VSP) - FIELDS Integration
Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck
2003-04-19
Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user – VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download
Integrated management systems in the nuclear field
Beckmerhagen, I.A.; Berg, H.P.; Karapetrovic, S.V.; Willborn, W.O.
2005-01-01
In the last years several internationally accepted standards such as the ISO 9000 and ISO 14000 series and other function-specific management systems standards have been developed. At the same time, it has become imperative for organisations to continuously improve their overall quality, environmental and safety performance. Therefore, the need to create integrated management systems is of growing importance to enable an easier handling of the different management systems. This paper has two main objectives. The first one is to address the key issues in the underlying theory of integrated management systems including benefits and limits, the second one is to illustrate the importance of an integrated (in particular safety) management system and the experience feedback providing examples from different areas and different organisations in the nuclear field. (orig.)
Microcanonical functional integral for the gravitational field
Brown, J.D.; York, J.W. Jr.
1993-01-01
The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by any real stationary axisymmetric black hole, then in this same approximation lnν is shown to equal 1/4 the area of the black-hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν that lead to ''imaginary-time'' functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function
The Oxford SWIFT integral field spectrograph
Thatte, Niranjan; Tecza, Matthias; Clarke, Fraser; Goodsall, Timothy; Lynn, James; Freeman, David; Davies, Roger L.
2006-06-01
We present the design of the Oxford SWIFT integral field spectrograph, a dedicated I and z band instrument (0.65μm micron - 1.0μm micron at R~4000), designed to be used in conjunction with the Palomar laser guide star adaptive optics system (PALAO, and its planned upgrade PALM-3000). It builds on two recent developments (i) the improved ability of second generation adaptive optics systems to correct for atmospheric turbulence at wavelengths less than or equal to 1μm micron, and (ii) the availability of CCD array detectors with high quantum efficiency at very red wavelengths (close to the silicon band edge). Combining these with a state-of-the-art integral field unit design using an all-glass image slicer, SWIFT's design provides very high throughput and low scattered light. SWIFT simultaneously provides spectra of ~4000 spatial elements, arranged in a rectangular field-of-view of 44 × 89 pixels. It has three on-the-fly selectable pixel scales of 0.24", 0.16" and 0.08'. First light is expected in spring 2008.
Distributed magnetic field positioning system using code division multiple access
Prigge, Eric A. (Inventor)
2003-01-01
An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.
Perturbative analysis of multiple-field cosmological inflation
Lahiri, Joydev; Bhattacharya, Gautam
2006-01-01
We develop a general formalism for analyzing linear perturbations in multiple-field cosmological inflation based on the gauge-ready approach. Our inflationary model consists of an arbitrary number of scalar fields with non-minimal kinetic terms. We solve the equations for scalar- and tensor-type perturbations during inflation to the first order in slow roll, and then obtain the super-horizon solutions for adiabatic and isocurvature perturbations after inflation. Analytic expressions for power-spectra and spectral indices arising from multiple-field inflation are presented
Shared mental models of integrated care: aligning multiple stakeholder perspectives.
Evans, Jenna M; Baker, G Ross
2012-01-01
Health service organizations and professionals are under increasing pressure to work together to deliver integrated patient care. A common understanding of integration strategies may facilitate the delivery of integrated care across inter-organizational and inter-professional boundaries. This paper aims to build a framework for exploring and potentially aligning multiple stakeholder perspectives of systems integration. The authors draw from the literature on shared mental models, strategic management and change, framing, stakeholder management, and systems theory to develop a new construct, Mental Models of Integrated Care (MMIC), which consists of three types of mental models, i.e. integration-task, system-role, and integration-belief. The MMIC construct encompasses many of the known barriers and enablers to integrating care while also providing a comprehensive, theory-based framework of psychological factors that may influence inter-organizational and inter-professional relations. While the existing literature on integration focuses on optimizing structures and processes, the MMIC construct emphasizes the convergence and divergence of stakeholders' knowledge and beliefs, and how these underlying cognitions influence interactions (or lack thereof) across the continuum of care. MMIC may help to: explain what differentiates effective from ineffective integration initiatives; determine system readiness to integrate; diagnose integration problems; and develop interventions for enhancing integrative processes and ultimately the delivery of integrated care. Global interest and ongoing challenges in integrating care underline the need for research on the mental models that characterize the behaviors of actors within health systems; the proposed framework offers a starting point for applying a cognitive perspective to health systems integration.
Integration of non-Gaussian fields
Ditlevsen, Ove Dalager; Mohr, Gunnar; Hoffmeyer, Pernille
1996-01-01
The limitations of the validity of the central limit theorem argument as applied to definite integrals of non-Gaussian random fields are empirically explored by way of examples. The purpose is to investigate in specific cases whether the asymptotic convergence to the Gaussian distribution is fast....... and Randrup-Thomsen, S. Reliability of silo ring under lognormal stochastic pressure using stochastic interpolation. Proc. IUTAM Symp., Probabilistic Structural Mechanics: Advances in Structural Reliability Methods, San Antonio, TX, USA, June 1993 (eds.: P. D. Spanos & Y.-T. Wu) pp. 134-162. Springer, Berlin...
Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.
Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan
2017-04-07
In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.
A Fuzzy Logic Framework for Integrating Multiple Learned Models
Hartog, Bobi Kai Den [Univ. of Nebraska, Lincoln, NE (United States)
1999-03-01
The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.
Neural Circuit to Integrate Opposing Motions in the Visual Field.
Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander
2015-07-16
When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.
Global integrability of field theories. Proceedings
Calmet, J.; Seiler, W.M.; Tucker, R.W.
2006-01-01
The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very
Global integrability of field theories. Proceedings
Calmet, J.; Seiler, W.M.; Tucker, R.W. (eds.)
2006-07-01
The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very
An integral for second-order multiple scattering perturbation theory
Hoffman, G.G.
1997-01-01
This paper presents the closed form evaluation of a six-dimensional integral. The integral arises in the application to many-electron systems of a multiple scattering perturbation expansion at second order when formulated in fourier space. The resulting function can be used for the calculation of both the electron density and the effective one-electron potential in an SCF calculations. The closed form expression derived here greatly facilitates these calculations. In addition, the evaluated integral can be used for the computation of second-order corrections to the open-quotes optimized Thomas-Fermi theory.close quotes 10 refs., 2 figs
Integral Field Spectroscopy Surveys: Oxygen Abundance Gradients
Sánchez, S. F.; Sánchez-Menguiano, L.
2017-07-01
We present here the recent results on our understanding of oxygen abundance gradients derived using Integral Field Spectroscopic surveys. In particular we analyzed more than 2124 datacubes corresponding to individual objects observed by the CALIFA (˜ 734 objects) and the public data by MaNGA (˜ 1390 objects), deriving the oxygen abundance gradient for each galaxy. We confirm previous results that indicate that the shape of this gradient is very similar for all galaxies with masses above 109.5M⊙, presenting in average a very similar slope of ˜ -0.04 dex within 0.5-2.0 re, with a possible drop in the inner regions (r109.5M⊙) the gradient seems to be flatter than for more massive ones. All these results agree with an inside-out growth of massive galaxies and indicate that low mass ones may still be growing in an outside in phase.
Effect of reheating on predictions following multiple-field inflation
Hotinli, Selim C.; Frazer, Jonathan; Jaffe, Andrew H.; Meyers, Joel; Price, Layne C.; Tarrant, Ewan R. M.
2018-01-01
We study the sensitivity of cosmological observables to the reheating phase following inflation driven by many scalar fields. We describe a method which allows semianalytic treatment of the impact of perturbative reheating on cosmological perturbations using the sudden decay approximation. Focusing on N -quadratic inflation, we show how the scalar spectral index and tensor-to-scalar ratio are affected by the rates at which the scalar fields decay into radiation. We find that for certain choices of decay rates, reheating following multiple-field inflation can have a significant impact on the prediction of cosmological observables.
MBsums. A Mathematica package for the representation of Mellin-Barnes integrals by multiple sums
Ochman, Michal; Riemann, Tord
2015-11-01
Feynman integrals may be represented by the Mathematica package AMBRE and MB as multiple Mellin-Barnes integrals. With the Mathematica package MBsums we transform these Mellin-Barnes integrals into multiple sums.
HMC algorithm with multiple time scale integration and mass preconditioning
Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.
2006-01-01
We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.
MUSE integral-field spectroscopy towards the Frontier Fields Cluster Abell S1063
Karman, W.; Caputi, K. I.; Grillo, C.
2015-01-01
We present the first observations of the Frontier Fields Cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph. Because of the relatively large field of view (1 arcmin^2), MUSE is ideal to simultaneously target multiple galaxies...... the cluster, we find 17 galaxies at higher redshift, including three previously unknown Lyman-alpha emitters at z>3, and five multiply-lensed galaxies. We report the detection of a new z=4.113 multiply lensed galaxy, with images that are consistent with lensing model predictions derived for the Frontier...... of scientific topics that can be addressed with a single MUSE pointing. We conclude that MUSE is a very efficient instrument to observe galaxy clusters, enabling their mass modelling, and to perform a blind search for high-redshift galaxies....
Unsupervised multiple kernel learning for heterogeneous data integration.
Mariette, Jérôme; Villa-Vialaneix, Nathalie
2018-03-15
Recent high-throughput sequencing advances have expanded the breadth of available omics datasets and the integrated analysis of multiple datasets obtained on the same samples has allowed to gain important insights in a wide range of applications. However, the integration of various sources of information remains a challenge for systems biology since produced datasets are often of heterogeneous types, with the need of developing generic methods to take their different specificities into account. We propose a multiple kernel framework that allows to integrate multiple datasets of various types into a single exploratory analysis. Several solutions are provided to learn either a consensus meta-kernel or a meta-kernel that preserves the original topology of the datasets. We applied our framework to analyse two public multi-omics datasets. First, the multiple metagenomic datasets, collected during the TARA Oceans expedition, was explored to demonstrate that our method is able to retrieve previous findings in a single kernel PCA as well as to provide a new image of the sample structures when a larger number of datasets are included in the analysis. To perform this analysis, a generic procedure is also proposed to improve the interpretability of the kernel PCA in regards with the original data. Second, the multi-omics breast cancer datasets, provided by The Cancer Genome Atlas, is analysed using a kernel Self-Organizing Maps with both single and multi-omics strategies. The comparison of these two approaches demonstrates the benefit of our integration method to improve the representation of the studied biological system. Proposed methods are available in the R package mixKernel, released on CRAN. It is fully compatible with the mixOmics package and a tutorial describing the approach can be found on mixOmics web site http://mixomics.org/mixkernel/. jerome.mariette@inra.fr or nathalie.villa-vialaneix@inra.fr. Supplementary data are available at Bioinformatics online.
Computer algebra in quantum field theory integration, summation and special functions
Schneider, Carsten
2013-01-01
The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including
Predicting Protein Function via Semantic Integration of Multiple Networks.
Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong
2016-01-01
Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically integrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet.
An integral field spectrograph utilizing mirrorlet arrays
Chamberlin, Phillip C.; Gong, Qian
2016-09-01
An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 mÅ) across a 15 Å spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.
An Integral Field Spectrograph Utilizing Mirrorlet Arrays
Chamberlin, Phillip C.; Gong, Qian
2016-01-01
An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 m) across a 15 spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.
Can the meaning of multiple words be integrated unconsciously?
van Gaal, Simon; Naccache, Lionel; Meuwese, Julia D I; van Loon, Anouk M; Leighton, Alexandra H; Cohen, Laurent; Dehaene, Stanislas
2014-05-05
What are the limits of unconscious language processing? Can language circuits process simple grammatical constructions unconsciously and integrate the meaning of several unseen words? Using behavioural priming and electroencephalography (EEG), we studied a specific rule-based linguistic operation traditionally thought to require conscious cognitive control: the negation of valence. In a masked priming paradigm, two masked words were successively (Experiment 1) or simultaneously presented (Experiment 2), a modifier ('not'/'very') and an adjective (e.g. 'good'/'bad'), followed by a visible target noun (e.g. 'peace'/'murder'). Subjects indicated whether the target noun had a positive or negative valence. The combination of these three words could either be contextually consistent (e.g. 'very bad - murder') or inconsistent (e.g. 'not bad - murder'). EEG recordings revealed that grammatical negations could unfold partly unconsciously, as reflected in similar occipito-parietal N400 effects for conscious and unconscious three-word sequences forming inconsistent combinations. However, only conscious word sequences elicited P600 effects, later in time. Overall, these results suggest that multiple unconscious words can be rapidly integrated and that an unconscious negation can automatically 'flip the sign' of an unconscious adjective. These findings not only extend the limits of subliminal combinatorial language processes, but also highlight how consciousness modulates the grammatical integration of multiple words.
The topology of integrable systems with incomplete fields
Aleshkin, K R
2014-01-01
Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra sl(3) is taken as an example. Bibliography: 11 titles
Managing focal fields of vector beams with multiple polarization singularities.
Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin
2016-11-10
We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.
Multiple ionization dynamics of molecules in intense laser fields
Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko
2005-01-01
A classical field-ionization model is developed for sequential multiple ionization of diatomic and linear triatomic molecules exposed to intense (∼ 10 15 W/cm 2 ) laser fields. The distance R ion of Coulomb explosion is calculated for a combination of fragment charges, by considering nonadiabatic excitation followed by field ionization associated with the inner and outer saddle points. For diatomic molecules (N 2 , NO, and I 2 ), the model explains behaviors observed in experiments, as R ion (21→31) ion (21→22) between competing charge-asymmetric and symmetric channels, and even-odd fluctuation along a principal pathway. For a triatomic molecule CO 2 , a comparison of the model with an experiment suggests that charge-symmetric (or nearly symmetric) channels are dominantly populated. (author)
Integrative Analysis of Prognosis Data on Multiple Cancer Subtypes
Liu, Jin; Huang, Jian; Zhang, Yawei; Lan, Qing; Rothman, Nathaniel; Zheng, Tongzhang; Ma, Shuangge
2014-01-01
Summary In cancer research, profiling studies have been extensively conducted, searching for genes/SNPs associated with prognosis. Cancer is diverse. Examining the similarity and difference in the genetic basis of multiple subtypes of the same cancer can lead to a better understanding of their connections and distinctions. Classic meta-analysis methods analyze each subtype separately and then compare analysis results across subtypes. Integrative analysis methods, in contrast, analyze the raw data on multiple subtypes simultaneously and can outperform meta-analysis methods. In this study, prognosis data on multiple subtypes of the same cancer are analyzed. An AFT (accelerated failure time) model is adopted to describe survival. The genetic basis of multiple subtypes is described using the heterogeneity model, which allows a gene/SNP to be associated with prognosis of some subtypes but not others. A compound penalization method is developed to identify genes that contain important SNPs associated with prognosis. The proposed method has an intuitive formulation and is realized using an iterative algorithm. Asymptotic properties are rigorously established. Simulation shows that the proposed method has satisfactory performance and outperforms a penalization-based meta-analysis method and a regularized thresholding method. An NHL (non-Hodgkin lymphoma) prognosis study with SNP measurements is analyzed. Genes associated with the three major subtypes, namely DLBCL, FL, and CLL/SLL, are identified. The proposed method identifies genes that are different from alternatives and have important implications and satisfactory prediction performance. PMID:24766212
Integral criteria for large-scale multiple fingerprint solutions
Ushmaev, Oleg S.; Novikov, Sergey O.
2004-08-01
We propose the definition and analysis of the optimal integral similarity score criterion for large scale multmodal civil ID systems. Firstly, the general properties of score distributions for genuine and impostor matches for different systems and input devices are investigated. The empirical statistics was taken from the real biometric tests. Then we carry out the analysis of simultaneous score distributions for a number of combined biometric tests and primary for ultiple fingerprint solutions. The explicit and approximate relations for optimal integral score, which provides the least value of the FRR while the FAR is predefined, have been obtained. The results of real multiple fingerprint test show good correspondence with the theoretical results in the wide range of the False Acceptance and the False Rejection Rates.
Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors
Bao, Sun; Fu-Shen, Chen
2009-01-01
We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation
Visual field impairment captures disease burden in multiple sclerosis.
Ortiz-Perez, Santiago; Andorra, Magí; Sanchez-Dalmau, Bernardo; Torres-Torres, Rubén; Calbet, David; Lampert, Erika J; Alba-Arbalat, Salut; Guerrero-Zamora, Ana M; Zubizarreta, Irati; Sola-Valls, Nuria; Llufriu, Sara; Sepúlveda, María; Saiz, Albert; Villoslada, Pablo; Martinez-Lapiscina, Elena H
2016-04-01
Monitoring disease burden is an unmeet need in multiple sclerosis (MS). Identifying patients at high risk of disability progression will be useful for improving clinical-therapeutic decisions in clinical routine. To evaluate the role of visual field testing in non-optic neuritis eyes (non-ON eyes) as a biomarker of disability progression in MS. In 109 patients of the MS-VisualPath cohort, we evaluated the association between visual field abnormalities and global and cognitive disability markers and brain and retinal imaging markers of neuroaxonal injury using linear regression models adjusted for sex, age, disease duration and use of disease-modifying therapies. We evaluated the risk of disability progression associated to have baseline impaired visual field after 3 years of follow-up. Sixty-two percent of patients showed visual field defects in non-ON eyes. Visual field mean deviation was statistically associated with global disability; brain (normalized brain parenchymal, gray matter volume and lesion load) and retinal (peripapillary retinal nerve fiber layer thickness and macular ganglion cell complex thickness) markers of neuroaxonal damage. Patients with impaired visual field had statistically significative greater disability, lower normalized brain parenchymal volume and higher lesion volume than patients with normal visual field testing. MS patients with baseline impaired VF tripled the risk of disability progression during follow-up [OR = 3.35; 95 % CI (1.10-10.19); p = 0.033]. The association of visual field impairment with greater disability and neuroaxonal injury and higher risk of disability progression suggest that VF could be used to monitor MS disease burden.
Protection of toroidal field coils using multiple circuits
Thome, R.J.; Langton, W.G.; Mann, W.R.; Pillsbury, R.D.; Tarrh, J.M.
1983-01-01
The protection of toroidal field (TF) coils using multiple circuits is described. The discharge of a single-circuit TF system is given for purposes of definition. Two-circuit TF systems are analyzed and the results presented analytically and graphically. Induced currents, maximum discharge voltages, and discharge time constants are compared to the single-circuit system. Three-circuit TF systems are analyzed. In addition to induced currents, maximum discharge voltages, and time constants, several different discharge scenarios are included. The impacts of having discharge rates versus final maximum coil temperatures as requirements are examined. The out-of-plane forces which occur in the three-circuit system are analyzed using an approximate model. The analysis of multiplecircuit TF systems is briefly described and results for a Toroidal Fusion Core Experiment (TFCX) scale device are given based on computer analysis. The advantages and disadvantages of using multiple-circuit systems are summarized and discussed. The primary disadvantages of multiple circuits are the increased circuit complexity and potential for out-of-plane forces. These are offset by the substantial reduction in maximum discharge voltages, as well as other design options which become available when using multiple circuits
A longitudinal field multiple sampling ionization chamber for RIBLL2
Tang Shuwen; Ma Peng; Lu Chengui; Duan Limin; Sun Zhiyu; Yang Herun; Zhang Jinxia; Hu Zhengguo; Xu Shanhu
2012-01-01
A longitudinal field MUltiple Sampling Ionization Chamber (MUSIC), which makes multiple measurements of energy loss for very high energy heavy ions at RIBLL2, has been constructed and tested with 3 constituent α source ( 239 Pu : 3.435 MeV, 241 Am : 3.913 MeV, 244 Cm : 4.356 MeV). The voltage plateau curve has been plotted and-500 V is determined as a proper work voltage. The energy resolution is 271.4 keV FWHM for the sampling unit when 3.435 MeV energy deposited. A Geant4 Monte Carlo simulation is made and it indicates the detector can provide unique particle identification for ions Z≥4. (authors)
Integrated presentation of ecological risk from multiple stressors
Goussen, Benoit; Price, Oliver R.; Rendal, Cecilie; Ashauer, Roman
2016-10-01
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.
Sparse Group Penalized Integrative Analysis of Multiple Cancer Prognosis Datasets
Liu, Jin; Huang, Jian; Xie, Yang; Ma, Shuangge
2014-01-01
SUMMARY In cancer research, high-throughput profiling studies have been extensively conducted, searching for markers associated with prognosis. Because of the “large d, small n” characteristic, results generated from the analysis of a single dataset can be unsatisfactory. Recent studies have shown that integrative analysis, which simultaneously analyzes multiple datasets, can be more effective than single-dataset analysis and classic meta-analysis. In most of existing integrative analysis, the homogeneity model has been assumed, which postulates that different datasets share the same set of markers. Several approaches have been designed to reinforce this assumption. In practice, different datasets may differ in terms of patient selection criteria, profiling techniques, and many other aspects. Such differences may make the homogeneity model too restricted. In this study, we assume the heterogeneity model, under which different datasets are allowed to have different sets of markers. With multiple cancer prognosis datasets, we adopt the AFT (accelerated failure time) model to describe survival. This model may have the lowest computational cost among popular semiparametric survival models. For marker selection, we adopt a sparse group MCP (minimax concave penalty) approach. This approach has an intuitive formulation and can be computed using an effective group coordinate descent algorithm. Simulation study shows that it outperforms the existing approaches under both the homogeneity and heterogeneity models. Data analysis further demonstrates the merit of heterogeneity model and proposed approach. PMID:23938111
Integrated presentation of ecological risk from multiple stressors.
Goussen, Benoit; Price, Oliver R; Rendal, Cecilie; Ashauer, Roman
2016-10-26
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.
Integrated Production-Distribution Scheduling Problem with Multiple Independent Manufacturers
Jianhong Hao
2015-01-01
Full Text Available We consider the nonstandard parts supply chain with a public service platform for machinery integration in China. The platform assigns orders placed by a machinery enterprise to multiple independent manufacturers who produce nonstandard parts and makes production schedule and batch delivery schedule for each manufacturer in a coordinate manner. Each manufacturer has only one plant with parallel machines and is located at a location far away from other manufacturers. Orders are first processed at the plants and then directly shipped from the plants to the enterprise in order to be finished before a given deadline. We study the above integrated production-distribution scheduling problem with multiple manufacturers to maximize a weight sum of the profit of each manufacturer under the constraints that all orders are finished before the deadline and the profit of each manufacturer is not negative. According to the optimal condition analysis, we formulate the problem as a mixed integer programming model and use CPLEX to solve it.
Field Measurement of Surface Ship Magnetic Signature Using Multiple AUVs
2009-10-01
been equipped with a tri-axial fluxgate magnetometer and used to perform preliminary magnetic field measurements. Measurements of this type will be...mounted on the AUVs, shown in Fig. 1, was a three-axis fluxgate type [16] magnetometer with a range of ±100,000 nT and a sensitivity of 100μV/nT. The...surface ship. The system will employ a formation of multiple AUVs, each equipped with a magnetometer . The objective is to measure total magnetic
A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers
Jaume Llibre
2012-06-01
Full Text Available We prove a sufficient condition for the existence of explicit first integrals for vector fields which admit an integrating factor. This theorem recovers and extends previous results in the literature on the integrability of vector fields which are volume preserving and possess nontrivial normalizers. Our approach is geometric and coordinate-free and hence it works on any smooth orientable manifold.
Application of multiple timestep integration method in SSC
Guppy, J.G.
1979-01-01
The thermohydraulic transient simulation of an entire LMFBR system is, by its very nature, complex. Physically, the entire plant consists of many subsystems which are coupled by various processes and/or components. The characteristic integration timesteps for these processes/components can vary over a wide range. To improve computing efficiency, a multiple timestep scheme (MTS) approach has been used in the development of the Super System Code (SSC). In this paper: (1) the partitioning of the system and the timestep control are described, and (2) results are presented showing a savings in computer running time using the MTS of as much as five times the time required using a single timestep scheme
Integrating Multiple Teaching Methods into a General Chemistry Classroom
Francisco, Joseph S.; Nicoll, Gayle; Trautmann, Marcella
1998-02-01
In addition to the traditional lecture format, three other teaching strategies (class discussions, concept maps, and cooperative learning) were incorporated into a freshman level general chemistry course. Student perceptions of their involvement in each of the teaching methods, as well as their perceptions of the utility of each method were used to assess the effectiveness of the integration of the teaching strategies as received by the students. Results suggest that each strategy serves a unique purpose for the students and increased student involvement in the course. These results indicate that the multiple teaching strategies were well received by the students and that all teaching strategies are necessary for students to get the most out of the course.
Towards Integration of Biological and Physiological Functions at Multiple Levels
Taishin eNomura
2010-12-01
Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.
Variational method for integrating radial gradient field
Legarda-Saenz, Ricardo; Brito-Loeza, Carlos; Rivera, Mariano; Espinosa-Romero, Arturo
2014-12-01
We propose a variational method for integrating information obtained from circular fringe pattern. The proposed method is a suitable choice for objects with radial symmetry. First, we analyze the information contained in the fringe pattern captured by the experimental setup and then move to formulate the problem of recovering the wavefront using techniques from calculus of variations. The performance of the method is demonstrated by numerical experiments with both synthetic and real data.
INTEGRATING MULTIPLE CRITERIA EVALUATION AND GIS IN ECOTOURISM: A REVIEW
Z. H. Mohd
2016-09-01
Full Text Available The concept of 'Eco-tourism' is increasingly heard in recent decades. Ecotourism is one adventure that environmentally responsible intended to appreciate the nature experiences and cultures. Ecotourism should have low impact on environment and must contribute to the prosperity of local residents. This article reviews the use of Multiple Criteria Evaluation (MCE and Geographic Information System (GIS in ecotourism. Multiple criteria evaluation mostly used to land suitability analysis or fulfill specific objectives based on various attributes that exist in the selected area. To support the process of environmental decision making, the application of GIS is used to display and analysis the data through Analytic Hierarchy Process (AHP. Integration between MCE and GIS tool is important to determine the relative weight for the criteria used objectively. With the MCE method, it can resolve the conflict between recreation and conservation which is to minimize the environmental and human impact. Most studies evidences that the GIS-based AHP as a multi criteria evaluation is a strong and effective in tourism planning which can aid in the development of ecotourism industry effectively.
Move to learn: Integrating spatial information from multiple viewpoints.
Holmes, Corinne A; Newcombe, Nora S; Shipley, Thomas F
2018-05-11
Recalling a spatial layout from multiple orientations - spatial flexibility - is challenging, even when the global configuration can be viewed from a single vantage point, but more so when it must be viewed piecemeal. In the current study, we examined whether experiencing the transition between multiple viewpoints enhances spatial memory and flexible recall for a spatial configuration viewed simultaneously (Exp. 1) and sequentially (Exp. 2), whether the type of transition matters, and whether action provides an additional advantage over passive experience. In Experiment 1, participants viewed an array of dollhouse furniture from four viewpoints, but with all furniture simultaneously visible. In Experiment 2, participants viewed the same array piecemeal, from four partitioned viewpoints that allowed for viewing only a segment at a time. The transition between viewpoints involved rotation of the array or participant movement around it. Rotation and participant movement were passively experienced or actively generated. The control condition presented the dollhouse as a series of static views. Across both experiments, participant movement significantly enhanced spatial memory relative to array rotation or static views. However, in Exp. 2, there was a further advantage for actively walking around the array compared to being passively pushed. These findings suggest that movement around a stable environment is key to spatial memory and flexible recall, with action providing an additional boost to the integration of temporally segmented spatial events. Thus, spatial memory may be more flexible than prior data indicate, when studied under more natural acquisition conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Integrating Multiple Criteria Evaluation and GIS in Ecotourism: a Review
Mohd, Z. H.; Ujang, U.
2016-09-01
The concept of 'Eco-tourism' is increasingly heard in recent decades. Ecotourism is one adventure that environmentally responsible intended to appreciate the nature experiences and cultures. Ecotourism should have low impact on environment and must contribute to the prosperity of local residents. This article reviews the use of Multiple Criteria Evaluation (MCE) and Geographic Information System (GIS) in ecotourism. Multiple criteria evaluation mostly used to land suitability analysis or fulfill specific objectives based on various attributes that exist in the selected area. To support the process of environmental decision making, the application of GIS is used to display and analysis the data through Analytic Hierarchy Process (AHP). Integration between MCE and GIS tool is important to determine the relative weight for the criteria used objectively. With the MCE method, it can resolve the conflict between recreation and conservation which is to minimize the environmental and human impact. Most studies evidences that the GIS-based AHP as a multi criteria evaluation is a strong and effective in tourism planning which can aid in the development of ecotourism industry effectively.
Tools and Models for Integrating Multiple Cellular Networks
Gerstein, Mark [Yale Univ., New Haven, CT (United States). Gerstein Lab.
2015-11-06
In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed
Cortical mechanisms for trans-saccadic memory and integration of multiple object features
Prime, Steven L.; Vesia, Michael; Crawford, J. Douglas
2011-01-01
Constructing an internal representation of the world from successive visual fixations, i.e. separated by saccadic eye movements, is known as trans-saccadic perception. Research on trans-saccadic perception (TSP) has been traditionally aimed at resolving the problems of memory capacity and visual integration across saccades. In this paper, we review this literature on TSP with a focus on research showing that egocentric measures of the saccadic eye movement can be used to integrate simple object features across saccades, and that the memory capacity for items retained across saccades, like visual working memory, is restricted to about three to four items. We also review recent transcranial magnetic stimulation experiments which suggest that the right parietal eye field and frontal eye fields play a key functional role in spatial updating of objects in TSP. We conclude by speculating on possible cortical mechanisms for governing egocentric spatial updating of multiple objects in TSP. PMID:21242142
High-field MR imaging of spinal cord multiple sclerosis
De La Paz, R.L.; Floris, R.; Norman, D.; Enzmann, D.R.
1987-01-01
Fifty-one high-field MR imaging studies (1.5 T, General Electric Signa) of the spinal cord were performed in 42 patients (27 female, 15 male; mean age, 40 years) with clinically definitive (n = 34) or probable (n = 8) multiple sclerosis and suspected spinal cord lesions. MR imaging showed focal spinal cord abnormalities in 38 (75%) of 51 studies. T2-weighted images were abnormal (showing foci of high signal intensity) in 38 studies, T1-weighted images were abnormal (showing areas of low signal intensity or mass effect) in 16 (42%) of 38, and GRASS images were abnormal (showing foci of high signal intensity) in 9 (82%) of 11 cases. Brain MR imaging showed periventricular lesions typical of multiple sclerosis in 34 (81%) of 42 studies. Spinal cord studies were positive in eight cases with normal brain MR images, and brain studies were positive in 13 instances of normal spinal cord MR images. Four lesions were at the cervicomedullary junction, 44 in the cervical spinal cord, and three in the thoracic cord. Mass effect in cord lesions, simulating neoplasm, was seen in seven patients during the acute symptomatic phase. Serial studies in three patients with decreasing symptoms showed a reduction after 3-4 weeks and resolution of the mass effect after 2-6 months
Architectures for Green-Field Supply Chain Integration: Supply Chain Integration Design
Radanliev, Petar
2015-01-01
This paper applied case study research to design architectures for green-field supply chain integration. The integration design is based on a case study of a supply chain integration of 5 companies, operating in different, but supply chain complimenting industry sectors. The case study research is applied to design and validate the architectures in a real world scenario. The supply\\ud chain integration architectures enable the conversion of individual into integrated strategies. The architect...
Koch, K.R.
1985-01-01
A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations
Assessment of multiple frequency ELF electric and magnetic field exposure
Leitgeb, N
2008-01-01
Electromagnetic fields both in daily life and at workplaces exhibit increasingly complex frequency spectra. Present spectral assessment rules proved to be too conservative for health risk assessment. This is because they are based on the assumption that cells would react like linear systems in terms of responding to a sum of frequencies by a sum of independent responses to each individual frequency. Based on numerical investigations with the Hodgkin-Huxley and the Frankenhaeuser-Huxley nerve cell models, it could be shown that accounting for the nonlinear behaviour of cellular excitation processes avoids considerable overestimation of simultaneous exposures to multiple frequency ELF electric and magnetic fields. Besides this, it could be shown that the role of phase relationships is less important than that assumed so far. The present assessment rules lead to non-compliances of marketed electric appliances. For general application, a nonlinear biology-based assessment (NBBA) rule has been proposed, validated and proven advantageous compared with ICNIRP's rule. While staying conservative it avoids unnecessary overestimation and demonstrates compliance even in cases of suspected non-conformities. It is up to responsible bodies to decide upon the adoption of this proposal and the potential need for implementing additional or reducing the already incorporated safety factors
CALIFA, the Calar alto legacy integral field area survey
Husemann, B.; Jahnke, K.; Sánchez, S. F.
2013-01-01
We present the first public data release (DR1) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. It consists of science-grade optical datacubes for the first 100 of eventually 600 nearby (0.005 < z < 0.03) galaxies, obtained with the integral-field spectrograph PMAS/PPak mounted on th...... the available interfaces and tools that allow easy access to this first publicCALIFA data at http://califa.caha.es/DR1....
Schuelke, J.S.; Quirein, J.A.; Sarg, J.F.
1998-12-31
This case study shows the benefit of using multiple seismic trace attributes and the pattern recognition capabilities of neural networks to predict reservoir architecture and porosity distribution in the Pegasus Field, West Texas. The study used the power of neural networks to integrate geologic, borehole and seismic data. Illustrated are the improvements between the new neural network approach and the more traditional method of seismic trace inversion for porosity estimation. Comprehensive statistical methods and interpretational/subjective measures are used in the prediction of porosity from seismic attributes. A 3-D volume of seismic derived porosity estimates for the Devonian reservoir provide a very detailed estimate of porosity, both spatially and vertically, for the field. The additional reservoir porosity detail provided, between the well control, allows for optimal placement of horizontal wells and improved field development. 6 refs., 2 figs.
Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits
2017-03-01
Despite all actions and concerns, this problem continues to escalate due to offshore fabrication of the integrated circuits ICs [1]. In order to...diagnosis and fault isolation in ICs, as well as the characterization of the functionality of ICs including malicious circuitry. Integrated circuits ...Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits contains the RF-switch matrix and broad-band (BB) low noise amplifiers (LNAs
Integrative set enrichment testing for multiple omics platforms
Poisson Laila M
2011-11-01
Full Text Available Abstract Background Enrichment testing assesses the overall evidence of differential expression behavior of the elements within a defined set. When we have measured many molecular aspects, e.g. gene expression, metabolites, proteins, it is desirable to assess their differential tendencies jointly across platforms using an integrated set enrichment test. In this work we explore the properties of several methods for performing a combined enrichment test using gene expression and metabolomics as the motivating platforms. Results Using two simulation models we explored the properties of several enrichment methods including two novel methods: the logistic regression 2-degree of freedom Wald test and the 2-dimensional permutation p-value for the sum-of-squared statistics test. In relation to their univariate counterparts we find that the joint tests can improve our ability to detect results that are marginal univariately. We also find that joint tests improve the ranking of associated pathways compared to their univariate counterparts. However, there is a risk of Type I error inflation with some methods and self-contained methods lose specificity when the sets are not representative of underlying association. Conclusions In this work we show that consideration of data from multiple platforms, in conjunction with summarization via a priori pathway information, leads to increased power in detection of genomic associations with phenotypes.
A multiple index integrating different levels of organization.
Cortes, Rui; Hughes, Samantha; Coimbra, Ana; Monteiro, Sandra; Pereira, Vítor; Lopes, Marisa; Pereira, Sandra; Pinto, Ana; Sampaio, Ana; Santos, Cátia; Carrola, João; de Jesus, Joaquim; Varandas, Simone
2016-10-01
Many methods in freshwater biomonitoring tend to be restricted to a few levels of biological organization, limiting the potential spectrum of measurable of cause-effect responses to different anthropogenic impacts. We combined distinct organisational levels, covering biological biomarkers (histopathological and biochemical reactions in liver and fish gills), community based bioindicators (fish guilds, invertebrate metrics/traits and chironomid pupal exuviae) and ecosystem functional indicators (decomposition rates) to assess ecological status at designated Water Framework Directive monitoring sites, covering a gradient of human impact across several rivers in northern Portugal. We used Random Forest to rank the variables that contributed more significantly to successfully predict the different classes of ecological status and also to provide specific cut levels to discriminate each WFD class based on reference condition. A total of 59 Biological Quality Elements and functional indicators were determined using this procedure and subsequently applied to develop the integrated Multiple Ecological Level Index (MELI Index), a potentially powerful bioassessment tool. Copyright © 2016 Elsevier Inc. All rights reserved.
Computation of Surface Integrals of Curl Vector Fields
Hu, Chenglie
2007-01-01
This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…
High field MRI in the diagnosis of multiple sclerosis: high field-high yield?
Wattjes, Mike P.; Barkhof, Frederik
2009-01-01
Following the approval of the U.S. Food and Drug Administration (FDA), high field magnetic resonance imaging (MRI) has been increasingly incorporated into the clinical setting. Especially in the field of neuroimaging, the number of high field MRI applications has been increased dramatically. Taking advantage on increased signal-to-noise ratio (SNR) and chemical shift, higher magnetic field strengths offer new perspectives particularly in brain imaging and also challenges in terms of several technical and physical consequences. Over the past few years, many applications of high field MRI in patients with suspected and definite multiple sclerosis (MS) have been reported including conventional and quantitative MRI methods. Conventional pulse sequences at 3 T offers higher lesion detection rates when compared to 1.5 T, particularly in anatomic regions which are important for the diagnosis of patients with MS. MR spectroscopy at 3 T is characterized by an improved spectral resolution due to increased chemical shift allowing a better quantification of metabolites. It detects significant axonal damage already in patients presenting with clinically isolated syndromes and can quantify metabolites of special interest such as glutamate which is technically difficult to quantify at lower field strengths. Furthermore, the higher susceptibility and SNR offer advantages in the field of functional MRI and diffusion tensor imaging. The recently introduced new generation of ultra-high field systems beyond 3 T allows scanning in submillimeter resolution and gives new insights into in vivo MS pathology on MRI. The objectives of this article are to review the current knowledge and level of evidence concerning the application of high field MRI in MS and to give some ideas of research perspectives in the future. (orig.)
Conformal field theories, Coulomb gas picture and integrable models
Zuber, J.B.
1988-01-01
The aim of the study is to present the links between some results of conformal field theory, the conventional Coulomb gas picture in statistical mechanics and the approach of integrable models. It is shown that families of conformal theories, related by the coset construction to the SU(2) Kac-Moody algebra, may be regarded as obtained from some free field, and modified by the coupling of its winding numbers to floating charges. This representation reflects the procedure of restriction of the corresponding integrable lattice models. The work may be generalized to models based on the coset construction with higher rank algebras. The corresponding integrable models are identified. In the conformal field description, generalized parafermions appear, and are coupled to free fields living on a higher-dimensional torus. The analysis is not as exhaustive as in the SU(2) case: all the various restrictions have not been identified, nor the modular invariants completely classified
Calculation Of Multicenter Electric Field Integrals Over Slater Type Orbitals
Zaim, N.
2010-01-01
Using the properties of complete orthonormal sets of Ψ α -exponential type orbitals (α1,0,-1,-2, ...) and the relations for overlap integrals, the calculations for the multicenter electric field integrals of Slater type orbitals are performed. The results of computer calculations are presented. The convergence of the series is tested by calculating concrete cases for the arbitrary values of quantum numbers, orbital parameters and internuclear distances.
Leptophobic Z' in models with multiple Higgs doublet fields
Chiang, Cheng-Wei; Nomura, Takaaki; Yagyu, Kei
2015-05-01
We study the collider phenomenology of the leptophobic Z' boson from an extra U(1)' gauge symmetry in models with N -Higgs doublet fields. We assume that the Z' boson at tree level has (i) no Z- Z' mixing, (ii) no interaction with the charged leptons, and (iii) no flavour-changing neutral current. Under such a setup, it is shown that in the N = 1 case, all the U(1)' charges of left-handed quark doublets and right-handed up- and down- type quarks are required to be the same, while in the N ≥ 3 case one can take different charges for the three types of quarks. The N = 2 case is not well-defined under the above three requirements. We study the processes ( V = γ , Z and W ±) with the leptonic decays of Z and W ± at the LHC. The most promising discovery channel or the most stringent constraint on the U(1)' gauge coupling constant comes from the Z'γ process below the threshold and from the process above the threshold. Assuming the collision energy of 8 TeV and integrated luminosity of 19.6 fb-1, we find that the constraint from the Z'γ search in the lower mass regime can be stronger than that from the UA2 experiment. In the N ≥ 3 case, we consider four benchmark points for the Z' couplings with quarks. If such a Z' is discovered, a careful comparison between the Z'γ and Z' W signals is crucial to reveal the nature of Z' couplings with quarks. We also present the discovery reach of the Z' boson at the 14-TeV LHC in both N = 1 and N ≥ 3 cases.
Integrating Multiple Data Views for Improved Malware Analysis
Anderson, Blake H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-01-31
Exploiting multiple views of a program makes obfuscating the intended behavior of a program more difficult allowing for better performance in classification, clustering, and phylogenetic reconstruction.
Integral parameters of crystal field for RE spectra
Kustov, E.F.; Maketov, T.K.; Prgevudsky, A.K.; Steczko, G.
1980-01-01
The integral parameters of the crystal field are introduced for the interpretation of the spectra of RE ions in various crystals. The main formula of the method, the expression of the parameters for various states of Ce, Pr, Nd, Eu, Tb, Er, Tu, and Yb are determined. Integral parameters of A 2 , A 4 , A 6 and parameter of the spin-orbit interaction xi are calculated for 40 laser crystals with Nd, Er. An interpretation of the symmetry of the Eu 3+ centres of the NaBaZn silicate glass is given using integral parameters A 2 , A 4 . (author)
Optimization of multi-response dynamic systems integrating multiple ...
It also results in better optimization performance than back-propagation neural network-based approach and data mining-based approach reported by the past researchers. Keywords: multiple responses, multiple regression, weighted dynamic signal-to-noise ratio, performance measure modelling, response function ...
Invariant hyperplanes and Darboux integrability of polynomial vector fields
Zhang Xiang
2002-01-01
This paper is composed of two parts. In the first part, we provide an upper bound for the number of invariant hyperplanes of the polynomial vector fields in n variables. This result generalizes those given in Artes et al (1998 Pac. J. Math. 184 207-30) and Llibre and Rodriguez (2000 Bull. Sci. Math. 124 599-619). The second part gives an extension of the Darboux theory of integrability to polynomial vector fields on algebraic varieties
Optimum condition for spatial ion cyclotron resonance in a multiple magnetic mirror field
Mieno, Tetsu; Hatakeyama, Rikizo; Sato, Noriyoshi
1988-01-01
A Spatial cyclotron resonance of ion beams passing through a multiple magnetic mirror field is investigated experimentally by varying parameters of the multiple mirror field. The optimum resonance condition is realized with a decrease in the cell length of the multiple mirror along the beams to satisfy the local condition of the spatial ion cyclotron resonance. The results show a remarkable increase of nonadiabatic transfer of the beam energy into the transverse direction to the magnetic field. (author)
Regularization of positive definite matrix fields based on multiplicative calculus
Florack, L.M.J.; Bruckstein, A.M.; Haar Romeny, ter B.M.; Bronstein, A.M.; Bronstein, M.M.
2012-01-01
Multiplicative calculus provides a natural framework in problems involving positive images and positivity preserving operators. In increasingly important, complex imaging frameworks, such as diffusion tensor imaging, it complements standard calculus in a nontrivial way. The purpose of this article
Evaluation Of Farmer Field School On Integrated Pest | Rustum ...
This research is aimed to explore the quality of the program implementation of the Integrated Pest Management Field Farmer School (IPMFFS) (in Indonesian ... quantity (3) participate agricultural extension, (4) remedial practice, (5) insight development, (6) motivation establishment, (7) the readiness of the participants, ...
Effect of integrated pest management farmer field school (IPMFFS ...
This research aimed to explore the effect of the Integrated Pest Management Farmer Field School (IPMFFS), on farmer knowledge, farmer group's ability, process of adoption and diffusion of IPM in Jember district. The population of the research was 556 farmer groups consisting of 22.240 farmers engaged in the IPMFFS in ...
Classically integrable boundary conditions for affine Toda field theories
Bowcock, P.; Corrigan, E.; Dorey, P.E.; Rietdijk, R.H.
1995-01-01
Boundary conditions compatible with classical integrability are studied both directly, using an approach based on the explicit construction of conserved quantities, and indirectly by first developing a generalisation of the Lax pair idea. The latter approach is closer to the spirit of earlier work by Sklyanin and yields a complete set of conjectures for permissible boundary conditions for any affine Toda field theory. (orig.)
Integrating nature, culture, and society: the concept of landscape field
Lapka, Miloslav; Cudlínová, Eva; Rikoon, S.; Maxa, Josef
2001-01-01
Roč. 20, č. 1 (2001), s. 125-138 ISSN 1335-342X Institutional research plan: CEZ:AV0Z6087904 Keywords : landscape field * nature culture integration Subject RIV: EH - Ecology, Behaviour Impact factor: 0.192, year: 2001
Visualizing Vector Fields Using Line Integral Convolution and Dye Advection
Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu
1996-01-01
We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.
Integration of multiple, excess, backup, and expected covering models
M S Daskin; K Hogan; C ReVelle
1988-01-01
The concepts of multiple, excess, backup, and expected coverage are defined. Model formulations using these constructs are reviewed and contrasted to illustrate the relationships between them. Several new formulations are presented as is a new derivation of the expected covering model which indicates more clearly the relationship of the model to other multi-state covering models. An expected covering model with multiple time standards is also presented.
Non-integrable quantum field theories as perturbations of certain integrable models
Delfino, G.; Simonetti, P.
1996-03-01
We approach the study of non-integrable models of two-dimensional quantum field theory as perturbations of the integrable ones. By exploiting the knowledge of the exact S-matrix and Form Factors of the integrable field theories we obtain the first order corrections to the mass ratios, the vacuum energy density and the S-matrix of the non-integrable theories. As interesting applications of the formalism, we study the scaling region of the Ising model in an external magnetic field at T ∼ T c and the scaling region around the minimal model M 2 , τ . For these models, a remarkable agreement is observed between the theoretical predictions and the data extracted by a numerical diagonalization of their Hamiltonian. (author). 41 refs, 9 figs, 1 tab
Gravitational field strength and generalized Komar-integral
Simon, W.
1984-01-01
We define a 'gravitational field strength' in theories of the Einstein-Cartan type admitting a Killing-vector. This field strength is a second rank, antisymmetric, divergence-free tensor, whose ('Komar-') integral over a closed 2-surface gives a physically meaningful quantity. We find conditions on the Lagrange-density of the theory which ensure the existence of such a tensor, and show that they are satisfied for N = 2-supergravity and for a special case of the bosonic sector of N = 4-supergravity. We discuss a possible application of the generalized Komar-integral in the theory of stationary black holes. We also consider the Kaluza-Klein-approach to the 'field-strength-problem', which turns out to be particularly rewarding in the application to black holes. (Author)
Can the meaning of multiple words be integrated unconsciously?
van Gaal, S.; Naccache, L.; Meuwese, J.D.I.; van Loon, A.M.; Leighton, A.H.; Cohen, L.; Dehaene, S.
2014-01-01
What are the limits of unconscious language processing? Can language circuits process simple grammatical constructions unconsciously and integrate the meaning of several unseen words? Using behavioural priming and electroencephalography (EEG), we studied a specific rule-based linguistic operation
Mutual Information Based Dynamic Integration of Multiple Feature Streams for Robust Real-Time LVCSR
Sato, Shoei; Kobayashi, Akio; Onoe, Kazuo; Homma, Shinichi; Imai, Toru; Takagi, Tohru; Kobayashi, Tetsunori
We present a novel method of integrating the likelihoods of multiple feature streams, representing different acoustic aspects, for robust speech recognition. The integration algorithm dynamically calculates a frame-wise stream weight so that a higher weight is given to a stream that is robust to a variety of noisy environments or speaking styles. Such a robust stream is expected to show discriminative ability. A conventional method proposed for the recognition of spoken digits calculates the weights front the entropy of the whole set of HMM states. This paper extends the dynamic weighting to a real-time large-vocabulary continuous speech recognition (LVCSR) system. The proposed weight is calculated in real-time from mutual information between an input stream and active HMM states in a searchs pace without an additional likelihood calculation. Furthermore, the mutual information takes the width of the search space into account by calculating the marginal entropy from the number of active states. In this paper, we integrate three features that are extracted through auditory filters by taking into account the human auditory system's ability to extract amplitude and frequency modulations. Due to this, features representing energy, amplitude drift, and resonant frequency drifts, are integrated. These features are expected to provide complementary clues for speech recognition. Speech recognition experiments on field reports and spontaneous commentary from Japanese broadcast news showed that the proposed method reduced error words by 9.2% in field reports and 4.7% in spontaneous commentaries relative to the best result obtained from a single stream.
Rapid field multiplication of plantains using benzyl adenine or ...
Une technique appropriee et moins chere pour la multiplication rapide sur Ie terrain de deux varietes locales de plantain Apantu (une corne fausse) et Asamienu (une come veritable) a ete obtenue par injection de 6 ou 8 ml du jus de noix de coco mur sec apres L' ebullition et la filtration ou de 4 ml 10-2 M benzyle adenine ...
The integrable structure of nonrational conformal field theory
Bytsko, A. [Steklov Mathematics Institute, St. Petersburg (Russian Federation); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-02-15
Using the example of Liouville theory, we show how the separation into left- and rightmoving degrees of freedom of a nonrational conformal field theory can be made explicit in terms of its integrable structure. The key observation is that there exist separate Baxter Q-operators for left- and right-moving degrees of freedom. Combining a study of the analytic properties of the Q-operators with Sklyanin's Separation of Variables Method leads to a complete characterization of the spectrum. Taking the continuum limit allows us in particular to rederive the Liouville reflection amplitude using only the integrable structure. (orig.)
New twistorial integral formulas for massless free fields of arbitrary spin
Cardoso, J.G.
1991-01-01
A manifestly scaling-invariant version of the Kirchoff-D'Adhemar-Penrose field integrals is presented. The invariant integral expressions for the spinning massless free fields are directly transcribed into the framework of twistor theory. It is then shown that the resulting twistorial field integrals can be thought of as being equivalent to the universal Penrose contour integral formulas for these fields
On Riemann zeroes, lognormal multiplicative chaos, and Selberg integral
Ostrovsky, Dmitry
2016-01-01
Rescaled Mellin-type transforms of the exponential functional of the Bourgade–Kuan–Rodgers statistic of Riemann zeroes are conjecturally related to the distribution of the total mass of the limit lognormal stochastic measure of Mandelbrot–Bacry–Muzy. The conjecture implies that a non-trivial, log-infinitely divisible probability distribution is associated with Riemann zeroes. For application, integral moments, covariance structure, multiscaling spectrum, and asymptotics associated with the exponential functional are computed in closed form using the known meromorphic extension of the Selberg integral. (paper)
Integration of multiple theories for the simulation of laser interference lithography processes.
Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung
2017-11-24
The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.
Integration of multiple theories for the simulation of laser interference lithography processes
Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung
2017-11-01
The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.
A new device for production measurements of field integral and field direction of SC dipole magnets
Preissner, H.; Bouchard, R.; Luethke, P.; Makulski, A.; Meinke, R.; Nesteruk, K.
1990-01-01
The performance of all superconducting magnets for HERA is tested in the DESY magnet test facility and their magnetic field is measured. For dipole magnets the magnitude and the direction of the field is measured point by point along the axis with a mole-type probe which is transported through the beam pipe. The positioning of the probe is done via a toothed belt with an accuracy of 1 mm. The probe houses two Hall probes perpendicular to each other, a gravitational tilt sensor and an NMR probe. The field in the plateau is measured by NMR, the fringe field is measured by the Hall probes and the field direction relative to gravity is obtained from the ratio of the two Hall voltages and the tilt sensor. The field integral is determined with an accuracy of 10 -4 and the average field direction is measured with an accuracy of 0.2 mrad. 4 refs., 4 figs
Towards Integration of CAx Systems and a Multiple-View Product Modeller in Mechanical Design
H. Song
2005-01-01
Full Text Available This paper deals with the development of an integration framework and its implementation for the connexion of CAx systems and multiple-view product modelling. The integration framework is presented regarding its conceptual level and the implementation level is described currently with the connexion of a functional modeller, a multiple-view product modeller, an optimisation module and a CAD system. The integration between the multiple-view product modeller and CATIA V5 based on the STEP standard is described in detail. Finally, the presented works are discussed and future research developments are suggested.
Parallel heat transport in integrable and chaotic magnetic fields
Castillo-Negrete, D. del; Chacon, L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)
2012-05-15
The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.
LRS2: A New Integral Field Spectrograph for the HET
Tuttle, Sarah E.; Hill, Gary J.; Chonis, Taylor S.; Tonnesen, Stephanie
2016-01-01
Here we present LRS2 (Low Resolution Spectrograph) and highlight early science opportunities with the newly upgraded Hobby Eberly telescope (HET). LRS2 is a four-channel optical wavelength (370nm - 1micron) spectrograph based on two VIRUS unit spectrographs. This fiber-fed integral field spectrograph covers a 12" x 6" field of view, switched between the two units (one blue, and one red) at R~2000. We highlight design elements, including the fundamental modification to grisms (from VPH gratings in VIRUS) to access the higher resolution. We discuss early science opportunities, including investigating nearby "blue-bulge" spiral galaxies and their anomalous star formation distribution.
Integrated presentation of ecological risk from multiple stressors
Goussen, Benoit Regis Marc; Price, Oliver R.; Rendal, Cecilie; Ashauer, Roman
2016-01-01
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing ...
Integration of multiple cues for the evaluation of surface gloss
Leloup, Frédéric; Hanselaer, Peter; Pointer, Michael R.; Dutré, Philip
2012-01-01
This study reports on a psychophysical experiment with real stimuli that differ in multiple visual gloss criteria. Four samples were presented to 15 observers under different conditions of illumination, resulting in a series of 16 stimuli. Through pairwise comparisons, a gloss scale was derived and the observers’ strategy to evaluate gloss was investigated. The preference probability matrix P indicated a dichotomy among observers. A first group of observers used the distinctness-of-image as a...
Integration of Multiple Cues for Visual Gloss Evaluation
Leloup, Frédéric B.; Hanselaer, Peter; Pointer, Michael R.; Dutré, Philip
2012-01-01
This study reports on a psychophysical experiment with real stimuli that differ in multiple visual gloss criteria. Four samples were presented to 15 observers under different conditions of illumination, resulting in a series of 16 stimuli. Through pairwise comparisons, a gloss scale was derived and the observers' strategy to evaluate gloss was investigated. The preference probability matrix P indicated a dichotomy among observers. A first group of observers used the distinctnes...
Identifying multiple submissions in Internet research: preserving data integrity.
Bowen, Anne M; Daniel, Candice M; Williams, Mark L; Baird, Grayson L
2008-11-01
Internet-based sexuality research with hidden populations has become increasingly popular. Respondent anonymity may encourage participation and lower social desirability, but associated disinhibition may promote multiple submissions, especially when incentives are offered. The goal of this study was to identify the usefulness of different variables for detecting multiple submissions from repeat responders and to explore incentive effects. The data included 1,900 submissions from a three-session Internet intervention with a pretest and three post-test questionnaires. Participants were men who have sex with men and incentives were offered to rural participants for completing each questionnaire. The final number of submissions included 1,273 "unique", 132 first submissions by "repeat responders" and 495 additional submissions by the "repeat responders" (N = 1,900). Four categories of repeat responders were identified: "infrequent" (2-5 submissions), "persistent" (6-10 submissions), "very persistent" (11-30 submissions), and "hackers" (more than 30 submissions). Internet Provider (IP) addresses, user names, and passwords were the most useful for identifying "infrequent" repeat responders. "Hackers" often varied their IP address and identifying information to prevent easy identification, but investigating the data for small variations in IP, using reverse telephone look up, and patterns across usernames and passwords were helpful. Incentives appeared to play a role in stimulating multiple submissions, especially from the more sophisticated "hackers". Finally, the web is ever evolving and it will be necessary to have good programmers and staff who evolve as fast as "hackers".
The hippocampus facilitates integration within a symbolic field.
Cornelius, John Thor
2017-10-01
This paper attempts to elaborate a fundamental brain mechanism involved in the creation and maintenance of symbolic fields of thought. It will integrate theories of psychic spaces as explored by Donald Winnicott and Wilfred Bion with the neuroscientific examinations of those with bilateral hippocampal injury to show how evidence from both disciplines sheds important light on this aspect of mind. Possibly originating as a way of maintaining an oriented, first person psychic map, this capacity allows individuals a dynamic narrative access to a realm of layered elements and their connections. If the proposed hypothesis is correct, the hippocampus facilitates the integration of this symbolic field of mind, where narrative forms of thinking, creativity, memory, and dreaming are intertwined. Without the hippocampus, there is an inability to engage many typical forms of thought itself. Also, noting the ways these individuals are not impaired supports theories about other faculties of mind, providing insight into their possible roles within human thought. The evidence of different systems working in conjunction with the symbolic field provides tantalizing clues about these fundamental mechanisms of brain and mind that are normally seamlessly integrated, and hints at future areas of clinical and laboratory research, both within neuroscience and psychoanalysis. © 2017 The Authors. The International Journal of Psychoanalysis published by John Wiley & Sons Ltd on behalf of Institute of Psychoanalysis.
McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.
2012-12-01
Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the
Field evaluation of personal sampling methods for multiple bioaerosols.
Wang, Chi-Hsun; Chen, Bean T; Han, Bor-Cheng; Liu, Andrew Chi-Yeu; Hung, Po-Chen; Chen, Chih-Yong; Chao, Hsing Jasmine
2015-01-01
Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC) filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters) and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min). Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.
Field evaluation of personal sampling methods for multiple bioaerosols.
Chi-Hsun Wang
Full Text Available Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min. Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.
Multiple time step integrators in ab initio molecular dynamics
Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.
2014-01-01
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy
Field Method for Integrating the First Order Differential Equation
JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu
2007-01-01
An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.
Entanglement entropy of non-unitary integrable quantum field theory
Davide Bianchini
2015-07-01
Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3logℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.
Multiple sclerosis care: an integrated disease-management model.
Burks, J
1998-04-01
A disease-management model must be integrated, comprehensive, individual patient focused and outcome driven. In addition to high quality care, the successful model must reduce variations in care and costs. MS specialists need to be intimately involved in the long-term care of MS patients, while not neglecting primary care issues. A nurse care manager is the "glue" between the managed care company, health care providers and the patient/family. Disease management focuses on education and prevention, and can be cost effective as well as patient specific. To implement a successful program, managed care companies and health care providers must work together.
Effective field theories for superconducting systems with multiple Fermi surfaces
Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)
2016-11-15
In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.
Students' integration of multiple representations in a titration experiment
Kunze, Nicole M.
A complete understanding of a chemical concept is dependent upon a student's ability to understand the microscopic or particulate nature of the phenomenon and integrate the microscopic, symbolic, and macroscopic representations of the phenomenon. Acid-base chemistry is a general chemistry topic requiring students to understand the topics of chemical reactions, solutions, and equilibrium presented earlier in the course. In this study, twenty-five student volunteers from a second semester general chemistry course completed two interviews. The first interview was completed prior to any classroom instruction on acids and bases. The second interview took place after classroom instruction, a prelab activity consisting of a titration calculation worksheet, a titration computer simulation, or a microscopic level animation of a titration, and two microcomputer-based laboratory (MBL) titration experiments. During the interviews, participants were asked to define and describe acid-base concepts and in the second interview they also drew the microscopic representations of four stages in an acid-base titration. An analysis of the data showed that participants had integrated the three representations of an acid-base titration to varying degrees. While some participants showed complete understanding of acids, bases, titrations, and solution chemistry, other participants showed several alternative conceptions concerning strong acid and base dissociation, the formation of titration products, and the dissociation of soluble salts. Before instruction, participants' definitions of acid, base, and pH were brief and consisted of descriptive terms. After instruction, the definitions were more scientific and reflected the definitions presented during classroom instruction.
Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages
Rezaie, Behnaz
The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance
Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong
2018-01-01
In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.
Dark matter scenarios with multiple spin-2 fields
González Albornoz, N. L.; Schmidt-May, Angnis; von Strauss, Mikael
2018-01-01
We study ghost-free multimetric theories for (N+1) tensor fields with a coupling to matter and maximal global symmetry group SN×(Z2)N. Their mass spectra contain a massless mode, the graviton, and N massive spin-2 modes. One of the massive modes is distinct by being the heaviest, the remaining (N‑1) massive modes are simply identical copies of each other. All relevant physics can therefore be understood from the case N=2. Focussing on this case, we compute the full perturbative action up to cubic order and derive several features that hold to all orders in perturbation theory. The lighter massive mode does not couple to matter and neither of the massive modes decay into massless gravitons. We propose the lighter massive particle as a candidate for dark matter and investigate its phenomenology in the parameter region where the matter coupling is dominated by the massless graviton. The relic density of massive spin-2 can originate from a freeze-in mechanism or from gravitational particle production, giving rise to two different dark matter scenarios. The allowed parameter regions are very different from those in scenarios with only one massive spin-2 field and more accessible to experiments.
Cosmological problems with multiple axion-like fields
Mack, Katherine J.; Steinhardt, Paul J.
2011-01-01
Incorporating the QCD axion and simultaneously satisfying current constraints on the dark matter density and isocurvature fluctuations requires non-minimal fine-tuning of inflationary parameters or the axion misalignment angle (or both) for Peccei-Quinn symmetry-breaking scales f a > 10 12 GeV. To gauge the degree of tuning in models with many axion-like fields at similar symmetry-breaking scales and masses, as may occur in string theoretic models that include a QCD axion, we introduce a figure of merit F that measures the fractional volume of allowed parameter space: the product of the slow roll parameter ε and each of the axion misalignment angles, θ 0 . For a single axion, F∼ −11 is needed to avoid conflict with observations. We show that the fine tuning of F becomes exponentially more extreme in the case of numerous axion-like fields. Anthropic arguments are insufficient to explain the fine tuning because the bulk of the anthropically allowed parameter space is observationally ruled out by limits on the cosmic microwave background isocurvature modes. Therefore, this tuning presents a challenge to the compatibility of string-theoretic models with light axions and inflationary cosmology
Modular multiple sensors information management for computer-integrated surgery.
Vaccarella, Alberto; Enquobahrie, Andinet; Ferrigno, Giancarlo; Momi, Elena De
2012-09-01
In the past 20 years, technological advancements have modified the concept of modern operating rooms (ORs) with the introduction of computer-integrated surgery (CIS) systems, which promise to enhance the outcomes, safety and standardization of surgical procedures. With CIS, different types of sensor (mainly position-sensing devices, force sensors and intra-operative imaging devices) are widely used. Recently, the need for a combined use of different sensors raised issues related to synchronization and spatial consistency of data from different sources of information. In this study, we propose a centralized, multi-sensor management software architecture for a distributed CIS system, which addresses sensor information consistency in both space and time. The software was developed as a data server module in a client-server architecture, using two open-source software libraries: Image-Guided Surgery Toolkit (IGSTK) and OpenCV. The ROBOCAST project (FP7 ICT 215190), which aims at integrating robotic and navigation devices and technologies in order to improve the outcome of the surgical intervention, was used as the benchmark. An experimental protocol was designed in order to prove the feasibility of a centralized module for data acquisition and to test the application latency when dealing with optical and electromagnetic tracking systems and ultrasound (US) imaging devices. Our results show that a centralized approach is suitable for minimizing synchronization errors; latency in the client-server communication was estimated to be 2 ms (median value) for tracking systems and 40 ms (median value) for US images. The proposed centralized approach proved to be adequate for neurosurgery requirements. Latency introduced by the proposed architecture does not affect tracking system performance in terms of frame rate and limits US images frame rate at 25 fps, which is acceptable for providing visual feedback to the surgeon in the OR. Copyright © 2012 John Wiley & Sons, Ltd.
BOOK REVIEW: Path Integrals in Field Theory: An Introduction
Ryder, Lewis
2004-06-01
In the 1960s Feynman was known to particle physicists as one of the people who solved the major problems of quantum electrodynamics, his contribution famously introducing what are now called Feynman diagrams. To other physicists he gained a reputation as the author of the Feynman Lectures on Physics; in addition some people were aware of his work on the path integral formulation of quantum theory, and a very few knew about his work on gravitation and Yang--Mills theories, which made use of path integral methods. Forty years later the scene is rather different. Many of the problems of high energy physics are solved; and the standard model incorporates Feynman's path integral method as a way of proving the renormalisability of the gauge (Yang--Mills) theories involved. Gravitation is proving a much harder nut to crack, but here also questions of renormalisability are couched in path-integral language. What is more, theoretical studies of condensed matter physics now also appeal to this technique for quantisation, so the path integral method is becoming part of the standard apparatus of theoretical physics. Chapters on it appear in a number of recent books, and a few books have appeared devoted to this topic alone; the book under review is a very recent one. Path integral techniques have the advantage of enormous conceptual appeal and the great disadvantage of mathematical complexity, this being partly the result of messy integrals but more fundamentally due to the notions of functional differentiation and integration which are involved in the method. All in all this subject is not such an easy ride. Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. It assumes a background knowledge of quantum mechanics, both non-relativistic and relativistic. After three chapters on the path integral formulation of non-relativistic quantum mechanics there are eight chapters on scalar and spinor field theory, followed
The foundational origin of integrability in quantum field theory
Schroer, Bert; FU-Berlin
2012-02-01
There are two foundational model-independent concepts of integrability in QFT. One is 'dynamical' and generalizes the solvability in closed analytic form of the dynamical aspects as known from the Kepler two-body problem and its quantum mechanical counterpart. The other, referred to as 'kinematical' integrability, has no classical nor even quantum mechanical counterpart; it describes the relation between so called eld algebra and its local observable subalgebras and their discrete inequivalent representation classes (the DHR theory of superselection sectors). In the standard case of QFTs with mass gaps it contains the information about the representation of the (necessary compact) internal symmetry group and statistics in form of a tracial state on a 'dual group'. In Lagrangian or functional quantization one deals with the eld algebra and the division into observable /eld algebras does presently not play a role in constructive approaches to QFT. 'Kinematical' integrability is however of particular interest in conformal theories where the observable algebra fulfils the Huygens principle (light like propagation) and lives on the compactified Minkowski spacetime whereas the eld algebra, whose spacetime symmetry group is the universal covering of the conformal group lives on the universal covering of the compactified Minkowski spacetime. Since the (anomalous) dimensions of fields show up in the spectrum of the unitary representative of the center of this group , the kinematical structure contained in the relation fields/Huygens observables valuable information which in the usual terminology would be called 'dynamical'. The dynamical integrability is defined in terms of properties of 'wedge localization' and uses the fact that modular localization theory allows to 'emulate' interaction-free wedge-localized operators in a objective manner with the wedge localized interacting algebra. Emulation can be viewed as a generalization of the functorial relation between localized
Error Analysis and Calibration Method of a Multiple Field-of-View Navigation System.
Shi, Shuai; Zhao, Kaichun; You, Zheng; Ouyang, Chenguang; Cao, Yongkui; Wang, Zhenzhou
2017-03-22
The Multiple Field-of-view Navigation System (MFNS) is a spacecraft subsystem built to realize the autonomous navigation of the Spacecraft Inside Tiangong Space Station. This paper introduces the basics of the MFNS, including its architecture, mathematical model and analysis, and numerical simulation of system errors. According to the performance requirement of the MFNS, the calibration of both intrinsic and extrinsic parameters of the system is assumed to be essential and pivotal. Hence, a novel method based on the geometrical constraints in object space, called checkerboard-fixed post-processing calibration (CPC), is proposed to solve the problem of simultaneously obtaining the intrinsic parameters of the cameras integrated in the MFNS and the transformation between the MFNS coordinate and the cameras' coordinates. This method utilizes a two-axis turntable and a prior alignment of the coordinates is needed. Theoretical derivation and practical operation of the CPC method are introduced. The calibration experiment results of the MFNS indicate that the extrinsic parameter accuracy of the CPC reaches 0.1° for each Euler angle and 0.6 mm for each position vector component (1σ). A navigation experiment verifies the calibration result and the performance of the MFNS. The MFNS is found to work properly, and the accuracy of the position vector components and Euler angle reaches 1.82 mm and 0.17° (1σ) respectively. The basic mechanism of the MFNS may be utilized as a reference for the design and analysis of multiple-camera systems. Moreover, the calibration method proposed has practical value for its convenience for use and potential for integration into a toolkit.
Initial states in integrable quantum field theory quenches from an integral equation hierarchy
D.X. Horváth
2016-01-01
Full Text Available We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.
Initial states in integrable quantum field theory quenches from an integral equation hierarchy
Horváth, D.X., E-mail: esoxluciuslinne@gmail.com [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary); Sotiriadis, S., E-mail: sotiriad@sissa.it [SISSA and INFN, Via Bonomea 265, 34136 Trieste (Italy); Takács, G., E-mail: takacsg@eik.bme.hu [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary)
2016-01-15
We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.
Integrating multiple scientific computing needs via a Private Cloud infrastructure
Bagnasco, S; Berzano, D; Brunetti, R; Lusso, S; Vallero, S
2014-01-01
In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.
Integration of biomolecular logic gates with field-effect transducers
Poghossian, A., E-mail: a.poghossian@fz-juelich.de [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Malzahn, K. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Abouzar, M.H. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Mehndiratta, P. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Katz, E. [Department of Chemistry and Biomolecular Science, NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, NY 13699-5810 (United States); Schoening, M.J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany)
2011-11-01
Highlights: > Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. > The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. > Logic gates were activated by different combinations of chemical inputs (analytes). > The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO{sub 2}-Ta{sub 2}O{sub 5} structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta{sub 2}O{sub 5}) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.
Integration of biomolecular logic gates with field-effect transducers
Poghossian, A.; Malzahn, K.; Abouzar, M.H.; Mehndiratta, P.; Katz, E.; Schoening, M.J.
2011-01-01
Highlights: → Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. → The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. → Logic gates were activated by different combinations of chemical inputs (analytes). → The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO 2 -Ta 2 O 5 structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta 2 O 5 ) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.
Path integral for Dirac particle in plane wave field
Zeggari, S.; Boudjedaa, T.; Chetouani, L.
2001-01-01
The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)
Path integral for Dirac particle in plane wave field
Zeggari, S.; Boudjedaa, T.; Chetouani, L. [Mentouri Univ., Constantine (Algeria). Dept. of Physique
2001-10-01
The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)
Yang-Baxter algebra - Integrable systems - Conformal quantum field theories
Karowski, M.
1989-01-01
This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)
A Novel Multiple-Time Scale Integrator for the Hybrid Monte Carlo Algorithm
Kamleh, Waseem
2011-01-01
Hybrid Monte Carlo simulations that implement the fermion action using multiple terms are commonly used. By the nature of their formulation they involve multiple integration time scales in the evolution of the system through simulation time. These different scales are usually dealt with by the Sexton-Weingarten nested leapfrog integrator. In this scheme the choice of time scales is somewhat restricted as each time step must be an exact multiple of the next smallest scale in the sequence. A novel generalisation of the nested leapfrog integrator is introduced which allows for far greater flexibility in the choice of time scales, as each scale now must only be an exact multiple of the smallest step size.
The reduced basis method for the electric field integral equation
Fares, M.; Hesthaven, J.S.; Maday, Y.; Stamm, B.
2011-01-01
We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.
Social Integration as Professional Field: Psychotherapy in Sweden
Eva Johnsson
2013-12-01
Full Text Available The present article describes and analyses the emergence and development of a professional field called social integration. Ideas, theories, and occupational practices forming this field are explored, particularly those related to the development of a new discipline, that of psychotherapy. The development of three occupations (psychiatry, psychology and social work and their professionalisation is described through their qualitative and quantitative take‑offs in particular historical periods. Three periods are identified: formation, 1850-1920, when psychiatry was defined as a medical sub-discipline; consolidation, 1920-1945, with the institutionalisation of psychiatric care, and with psychoanalysis and mental hygiene as qualitatively new cognitive bases for practitioners; and professionalisation, 1945-1980, with the deinstitutionalisation of psychiatric care and the professionalisation of psychologists and social workers. New ideas on subjectivity and individualism, new welfare state institutions, as well as collaborative professionalism all favoured the creation of psychotherapy as professional knowledge, and a possible new profession of psychotherapists.
Virtual Reality System with Integrated Sound Field Simulation and Reproduction
Ingo Assenmacher
2007-01-01
Full Text Available A real-time audio rendering system is introduced which combines a full room-specific simulation, dynamic crosstalk cancellation, and multitrack binaural synthesis for virtual acoustical imaging. The system is applicable for any room shape (normal, long, flat, coupled, independent of the a priori assumption of a diffuse sound field. This provides the possibility of simulating indoor or outdoor spatially distributed, freely movable sources and a moving listener in virtual environments. In addition to that, near-to-head sources can be simulated by using measured near-field HRTFs. The reproduction component consists of a headphone-free reproduction by dynamic crosstalk cancellation. The focus of the project is mainly on the integration and interaction of all involved subsystems. It is demonstrated that the system is capable of real-time room simulation and reproduction and, thus, can be used as a reliable platform for further research on VR applications.
Conformal fields. From Riemann surfaces to integrable hierarchies
Semikhatov, A.M.
1991-01-01
I discuss the idea of translating ingredients of conformal field theory into the language of hierarchies of integrable differential equations. Primary conformal fields are mapped into (differential or matrix) operators living on the phase space of the hierarchy, whereas operator insertions of, e.g., a current or the energy-momentum tensor, become certain vector fields on the phase space and thus acquire a meaning independent of a given Riemann surface. A number of similarities are observed between the structures arising on the hierarchy and those of the theory on the world-sheet. In particular, there is an analogue of the operator product algebra with the Cauchy kernel replaced by its 'off-shell' hierarchy version. Also, hierarchy analogues of certain operator insertions admit two (equivalent, but distinct) forms, resembling the 'bosonized' and 'fermionized' versions respectively. As an application, I obtain a useful reformulation of the Virasoro constraints of the type that arise in matrix models, as a system of equations on dressing (or Lax) operators (rather than correlation functions, i.e., residues or traces). This also suggests an interpretation in terms of a 2D topological field theory, which might be extended to a correspondence between Virasoro-constrained hierarchies and topological theories. (orig.)
Baseilhac, P.; Fateev, V.A.
1998-01-01
We calculate the vacuum expectation values of local fields for the two-parameter family of integrable field theories introduced and studied by Fateev (1996). Using this result we propose an explicit expression for the vacuum expectation values of local operators in parafermionic sine-Gordon models and in integrable perturbed SU(2) coset conformal field theories. (orig.)
Wainwright, Carroll L.
2012-09-01
I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot
Ertl-Wagner, B.B.; Reith, W.; Sartor, K.
2001-01-01
As low-field MR imaging is becoming a widely used imaging technique, we aimed at a prospective assessment of differences in imaging quality between low- and high-field MR imaging in multiple sclerosis patients possibly interfering with diagnostic or therapeutic decision making. Twenty patients with clinically proven multiple sclerosis were examined with optimized imaging protocols in a 1.5- and a 0.23-T MR scanner within 48 h. Images were assessed independently by two neuroradiologists. No statistically significant interrater discrepancies were observed. A significantly lower number of white matter lesions could be identified in low-field MR imaging both on T1- and on T2-weighted images (T2: high field 700, low field 481; T1: high field 253, low field 177). A total of 114 enhancing lesions were discerned in the high-field MR imaging as opposed to 45 enhancing lesions in low-field MR imaging. Blood-brain barrier disruption was identified in 11 of 20 patients in the high-field MR imaging, but only in 4 of 20 patients in low-field MR imaging. Since a significantly lower lesion load is identified in low-field MR imaging than in high-field MR imaging, and blood-brain barrier disruption is frequently missed, caution must be exercised in interpreting a normal low-field MR imaging scan in a patient with clinical signs of multiple sclerosis and in interpreting a scan without enhancing lesions in a patient with known multiple sclerosis and clinical signs of exacerbation. (orig.)
Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M
2012-01-11
We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society
A large deviation principle in H\\"older norm for multiple fractional integrals
Sanz-Solé, Marta; Torrecilla-Tarantino, Iván
2007-01-01
For a fractional Brownian motion $B^H$ with Hurst parameter $H\\in]{1/4},{1/2}[\\cup]{1/2},1[$, multiple indefinite integrals on a simplex are constructed and the regularity of their sample paths are studied. Then, it is proved that the family of probability laws of the processes obtained by replacing $B^H$ by $\\epsilon^{{1/2}} B^H$ satisfies a large deviation principle in H\\"older norm. The definition of the multiple integrals relies upon a representation of the fractional Brownian motion in t...
Asymptotic series and functional integrals in quantum field theory
Shirkov, D.V.
1979-01-01
Investigations of the methods for analyzing ultra-violet and infrared asymptotics in the quantum field theory (QFT) have been reviewed. A powerful method of the QFT analysis connected with the group property of renormalized transformations has been created at the first stage. The result of the studies of the second period is the constructive solution of the problem of outgoing the framework of weak coupling. At the third stage of studies essential are the asymptotic series and functional integrals in the QFT, which are used for obtaining the asymptotic type of the power expansion coefficients in the coupling constant at high values of the exponents for a number of simple models. Further advance to higher values of the coupling constant requires surmounting the difficulties resulting from the asymptotic character of expansions and a constructive application in the region of strong coupling (g >> 1)
An integral-field spectroscopic strong lens survey
Bolton, Adam S; Burles, Scott
2007-01-01
We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction
A quantum group structure in integrable conformal field theories
Smit, D.J.
1990-01-01
We discuss a quantization prescription of the conformal algebras of a class of d=2 conformal field theories which are integrable. We first give a geometrical construction of certain extensions of the classical Virasoro algebra, known as classical W algebras, in which these algebras arise as the Lie algebra of the second Hamiltonian structure of a generalized Korteweg-de Vries hierarchy. This fact implies that the W algebras, obtained as a reduction with respect to the nilpotent subalgebras of the Kac-Moody algebra, describe the intergrability of a Toda field theory. Subsequently we determine the coadjoint operators of the W algebras, and relate these to classical Yang-Baxter matrices. The quantization of these algebras can be carried out using the concept of a so-called quantum group. We derive the condition under which the representations of these quantum groups admit a Hilbert space completion by exploring the relation with the braid group. Then we consider a modification of the Miura transformation which we use to define a quantum W algebra. This leads to an alternative interpretation of the coset construction for Kac-Moody algebras in terms of nonlinear integrable hierarchies. Subsequently we use the connection between the induced braid group representations and the representations of the mapping class group of Riemann surfaces to identify an action of the W algebras on the moduli space of stable curves, and we give the invariants of this action. This provides a generalization of the situation for the Virasoro algebra, where such an invariant is given by the so-called Mumford form which describes the partition function of the bosonic string. (orig.)
Integrated approach to gas accumulation identification in Field M
Malyshevskaya, K; Rukavishnikov, V; Belozerov, B; Podnebesnikh, A
2015-01-01
The given paper describes how the integration of different methods, such as core data, well logs, production logging, seismic data and well test analysis, was used to solve the problem of determining gas accumulation boundaries in sediment complex PK1-3 of Field M. This paper is devoted to the block with wells 2, 36, 49, 85, 127, 148 of the field, since it is characterized by high uncertainty, sc. recently drilled wells 1V, 2V and 120 have produced oil, although according to the present-day geological concept they were considered to be gas saturated in the intervals investigated with production logging. Besides, well 127 that was presumably oil saturated has produced gas. By accounting mismatching production data and the geological concept, the authors have supposed that PK1-3 gas accumulation is characterized by a more complex structure than it was supposed by the predecessors and it is represented by reservoir compartmentalization and high heterogeneity. Therefore, the main goal of the work was to revise the distribution of gas saturated reservoir within the PK1-3 sediment complex. To achieve this goal, the authors have set the following tasks: to revise the geological correlation and gas oil contact; to carry out fault interpretation by means of seismic and well test data; to determine areal facies distribution on the basis of integrated core, perform a log motifs and seismic facies analysis. Thus, the estimation of the gas saturated reservoir portion was implemented in two stages: defining the boundary of gas accumulation in depth on the basis of well logs, production data and fault interpretation; reservoir distribution determination on the basis of the seismic facies analysis within the derived gas accumulation boundary
Unifying the field: developing an integrative paradigm for behavior therapy.
Eifert, G H; Forsyth, J P; Schauss, S L
1993-06-01
The limitations of early conditioning models and treatments have led many behavior therapists to abandon conditioning principles and replace them with loosely defined cognitive theories and treatments. Systematic theory extensions to human behavior, using new concepts and processes derived from and built upon the basic principles, could have prevented the divisive debates over whether psychological dysfunctions are the results of conditioning or cognition and whether they should be treated with conditioning or cognitive techniques. Behavior therapy could also benefit from recent advances in experimental cognitive psychology that provide objective behavioral methods of studying dysfunctional processes. We suggest a unifying paradigm for explaining abnormal behavior that links and integrates different fields of study and processes that are frequently believed to be incompatible or antithetical such as biological vulnerability variables, learned behavioral repertoires, and that also links historical and current antecedents of the problem. An integrative paradigmatic behavioral approach may serve a unifying function in behavior therapy (a) by promoting an understanding of the dysfunctional processes involved in different disorders and (b) by helping clinicians conduct functional analyses that lead to theory-based, individualized, and effective treatments.
The Integral Field View of the Orion Nebula
Adal Mesa-Delgado
2014-01-01
Full Text Available This paper reviews the major advances achieved in the Orion Nebula through the use of integral field spectroscopy (IFS. Since the early work of Vasconcelos and collaborators in 2005, this technique has facilitated the investigation of global properties of the nebula and its morphology, providing new clues to better constrain its 3D structure. IFS has led to the discovery of shock-heated zones at the leading working surfaces of prominent Herbig-Haro objects as well as the first attempt to determine the chemical composition of Orion protoplanetary disks, also known as proplyds. The analysis of these morphologies using IFS has given us new insights into the abundance discrepancy problem, a long-standing and unresolved issue that casts doubt on the reliability of current methods used for the determination of metallicities in the universe from the analysis of H II regions. Results imply that high-density clumps and high-velocity flows may play an active role in the production of such discrepancies. Future investigations based on the large-scale IFS mosaic of Orion will be very valuable for exploring how the integrated effect of small-scale structures may have impact at larger scales in the framework of star-forming regions.
Kelso, P. R.; Brown, L. M.
2015-12-01
Based upon constructivist principles and the recognition that many students are motivated by hands-on activities and field experiences, we designed a new undergraduate curriculum at Lake Superior State University. One of our major goals was to develop stand-alone field projects in most of the academic year courses. Examples of courses impacted include structural geology, geophysics, and geotectonics, Students learn geophysical concepts in the context of near surface field-based geophysical studies while students in structural geology learn about structural processes through outcrop study of fractures, folds and faults. In geotectonics students learn about collisional and rifting processes through on-site field studies of specific geologic provinces. Another goal was to integrate data and samples collected by students in our sophomore level introductory field course along with stand-alone field projects in our clastic systems and sequence stratigraphy courses. Our emphasis on active learning helps students develop a meaningful geoscience knowledge base and complex reasoning skills in authentic contexts. We simulate the activities of practicing geoscientists by engaging students in all aspects of a project, for example: field-oriented project planning and design; acquiring, analyzing, and interpreting data; incorporating supplemental material and background data; and preparing oral and written project reports. We find through anecdotal evidence including student comments and personal observation that the projects stimulate interest, provide motivation for learning new concepts, integrate skill and concept acquisition vertically through the curriculum, apply concepts from multiple geoscience subdisiplines, and develop soft skills such as team work, problem solving, critical thinking and communication skills. Through this projected-centered Lake Superior State University geology curriculum students practice our motto of "learn geology by doing geology."
Correlation functions with fusion-channel multiplicity in W3 Toda field theory
Belavin, Vladimir; Estienne, Benoit; Foda, Omar; Santachiara, Raoul
2016-01-01
Current studies of W N Toda field theory focus on correlation functions such that the W N highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W 3 Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl 3 , and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl 3 . We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W N theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.
Correlation functions with fusion-channel multiplicity in W{sub 3} Toda field theory
Belavin, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky Avenue 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Estienne, Benoit [LPTHE, CNRS and Université Pierre et Marie Curie,Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Foda, Omar [School of Mathematics and Statistics, University of Melbourne,Parkville, Victoria 3010 (Australia); Santachiara, Raoul [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France)
2016-06-22
Current studies of W{sub N} Toda field theory focus on correlation functions such that the W{sub N} highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W{sub 3} Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl{sub 3}, and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl{sub 3}. We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W{sub N} theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.
The Athena X-ray Integral Field Unit
Barret, D.
2017-10-01
The Athena X-ray Integral Field Unit (X-IFU) is a high-resolution X-ray spectrometer, providing 2.5 eV spectral resolution, over a 5' (equivalent diameter) field of view, and count rate capabilities up to 1 Crab in the 0.2-12 keV range. Approaching the end of its feasibility study (scheduled around the end of 2017), I will briefly recall the scientific objectives of Athena driving the X-IFU specifications and will describe its current baseline configuration and the expected performances. I will outline the on-going technology developments that will enable the X-IFU. The X-IFU will be developed by an international consortium led by France (IRAP/CNES), the Netherlands (SRON), Italy (IAPS), with ESA member state contributions from Belgium, Finland, Germany, Poland, Spain and Switzerland, and international partner contributions from Japan and the United States. This talk is given on behalf of the X-IFU Consortium.
Hussain, Rifaqat
2015-06-18
© The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm^{2}. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.
A multi-disciplinary approach for the integrated assessment of multiple risks in delta areas.
Sperotto, Anna; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio
2016-04-01
The assessment of climate change related risks is notoriously difficult due to the complex and uncertain combinations of hazardous events that might happen, the multiplicity of physical processes involved, the continuous changes and interactions of environmental and socio-economic systems. One important challenge lies in predicting and modelling cascades of natural and man -made hazard events which can be triggered by climate change, encompassing different spatial and temporal scales. Another regard the potentially difficult integration of environmental, social and economic disciplines in the multi-risk concept. Finally, the effective interaction between scientists and stakeholders is essential to ensure that multi-risk knowledge is translated into efficient adaptation and management strategies. The assessment is even more complex at the scale of deltaic systems which are particularly vulnerable to global environmental changes, due to the fragile equilibrium between the presence of valuable natural ecosystems and relevant economic activities. Improving our capacity to assess the combined effects of multiple hazards (e.g. sea-level rise, storm surges, reduction in sediment load, local subsidence, saltwater intrusion) is therefore essential to identify timely opportunities for adaptation. A holistic multi-risk approach is here proposed to integrate terminology, metrics and methodologies from different research fields (i.e. environmental, social and economic sciences) thus creating shared knowledge areas to advance multi risk assessment and management in delta regions. A first testing of the approach, including the application of Bayesian network analysis for the assessment of impacts of climate change on key natural systems (e.g. wetlands, protected areas, beaches) and socio-economic activities (e.g. agriculture, tourism), is applied in the Po river delta in Northern Italy. The approach is based on a bottom-up process involving local stakeholders early in different
On Multiple Reconnection X-lines and Tripolar Perturbations of Strong Guide Magnetic Fields
Eriksson, S.; Lapenta, G.; Newman, D. L.; Phan, T. D.; Gosling, J. T.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.; Goldman, M. V.
2015-05-01
We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field BM which is almost four times as strong as the reversing field BL. The novel tripolar field consists of two narrow regions of depressed BM, with an observed 7%-14% ΔBM magnitude relative to the external field, which are found adjacent to a wide region of enhanced BM within the exhaust. A stronger reversing field is associated with each BM depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔBM/ΔXN over the normal width ΔXN between a BM minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field.
ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS
Eriksson, S.; Gosling, J. T.; Lapenta, G.; Newman, D. L.; Goldman, M. V.; Phan, T. D.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.
2015-01-01
We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B M which is almost four times as strong as the reversing field B L . The novel tripolar field consists of two narrow regions of depressed B M , with an observed 7%–14% ΔB M magnitude relative to the external field, which are found adjacent to a wide region of enhanced B M within the exhaust. A stronger reversing field is associated with each B M depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB M /ΔX N over the normal width ΔX N between a B M minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field
ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS
Eriksson, S.; Gosling, J. T. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); Lapenta, G. [Center for Mathematical Plasma Astrophysics, Department of Mathematics, University of Leuven, Leuven (Belgium); Newman, D. L.; Goldman, M. V. [Center for Integrated Plasma Studies, University of Colorado, Boulder, CO (United States); Phan, T. D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Lavraud, B. [Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Toulouse (France); Khotyaintsev, Yu. V. [Swedish Institute of Space Physics, Uppsala (Sweden); Carr, C. M. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Markidis, S., E-mail: eriksson@lasp.colorado.edu [High Performance Computing and Visualization Department, KTH, Stockholm (Sweden)
2015-05-20
We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B{sub M} {sub }which is almost four times as strong as the reversing field B{sub L}. The novel tripolar field consists of two narrow regions of depressed B{sub M}, with an observed 7%–14% ΔB{sub M} magnitude relative to the external field, which are found adjacent to a wide region of enhanced B{sub M} within the exhaust. A stronger reversing field is associated with each B{sub M} depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB{sub M}/ΔX{sub N} over the normal width ΔX{sub N} between a B{sub M} minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field.
Gravity- and non-gravity-mediated couplings in multiple-field inflation
Bernardeau, Francis
2010-01-01
Mechanisms for the generation of primordial non-Gaussian metric fluctuations in the context of multiple-field inflation are reviewed. As long as kinetic terms remain canonical, it appears that nonlinear couplings inducing non-Gaussianities can be split into two types. The extension of the one-field results to multiple degrees of freedom leads to gravity-mediated couplings that are ubiquitous but generally modest. Multiple-field inflation offers however the possibility of generating non-gravity-mediated coupling in isocurvature directions that can eventually induce large non-Gaussianities in the metric fluctuations. The robustness of the predictions of such models is eventually examined in view of a case study derived from a high-energy physics construction.
300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan
Freshley, Mark D.
2008-12-31
Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.
Multiplicity and Self-Identity: Trauma and Integration in Shirley Mason's Art
Thompson, Geoffrey
2011-01-01
This viewpoint appeared in its original form as the catalogue essay that accompanied the exhibition "Multiplicity and Self-Identity: Trauma and Integration in Shirley Mason's Art," curated by the author for Gallery 2110, Sacramento, CA, and the 2010 Annual Conference of the American Art Therapy Association. The exhibition featured 17 artworks by…
Rijken, M.; Hujala, A.; Ginneken, E. van; Melchiorre, M.G.; Groenewegen, P.; Schellevis, F.
2018-01-01
In response to the growing populations of people with multiple chronic diseases, new models of care are currently being developed in European countries to better meet the needs of these people. This paper aims to describe the occurrence and characteristics of various types of integrated care
Bøgh, Simon; Schou, Casper; Rühr, Thomas
2014-01-01
This paper presents a large-scale research experiment carried out within the TAPAS project, where multiple mobile manipulators were integrated and assessed in an industrial context. We consider an industrial scenario in which mobile manipulators naturally extend automation of logistic tasks towar...
Construction of a food-grade multiple-copy integration system for Lactococcus lactis
Leenhouts, K.; Bolhuis, A.; Venema, G.; Kok, J.
A food-grade vector system was developed that allows stable integration of multiple plasmid copies in the chromosome of Lactococcus lactis. The vector consists of the plus origin of replication (Ori(+)) of the lactococcal plasmid pWV01, the sucrose genes of the lactic acid bacterium Pediococcus
Integrating conflicting information from multiple texts: Effects of prior attitudes and text format
Van Strien, Johan; Brand-Gruwel, Saskia; Boshuizen, Els
2011-01-01
Van Strien, J. L. H., Brand-Gruwel, S., & Boshuizen, H. P. A. (2011, August). Integrating conflicting information from multiple texts: Effects of prior attitudes and text format. Round table session presented at the Junior Researchers pre-conference of the biannual meeting of the European
Multiple proviral integration events after virological synapse-mediated HIV-1 spread
Russell, Rebecca A.; Martin, Nicola; Mitar, Ivonne; Jones, Emma; Sattentau, Quentin J.
2013-01-01
HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection. - Highlights: • Cell-to-cell HIV-1 infection delivers multiple vRNA copies to the target cell. • Cell-to-cell infection results in productive infection of the target cell. • Cell-to-cell transmission is more efficient than cell-free HIV-1 infection. • Suggests a mechanism for recombination in cells infected with multiple viral genomes
Azimuthal electric fields and ambipolarity in a multiple-helicity torsatron
Hastings, D.E.; Shaing, K.C.
1985-01-01
In a torsatron there are multiple solutions to the ambipolarity relationship for the electric field. If the electric field is small over some region of space then the self-consistent poloidal electric field can be important and lead to potential islands. If the plasma is in the superbanana plateau regime, then slow resonant particles limit the rate of change of the electric field and, hence, give a minimum width for the spatial zone where the plasma is changing roots of the ambipolarity relationship
Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris
2015-07-17
Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.
Trentham, Robert C.; Weinbrandt, Richard; Robinson, William C.; Widner, Kevin
2001-05-03
The objectives of the project were to: (1) Thoroughly understand the 60-year history of the field. (2) Develop a reservoir description using geology and 3D seismic. (3) Isolate the upper Grayburg in wells producing from multiple intervals to stop cross flow. (4) Re-align and optimize the upper Grayburg waterflood. (5) Determine well condition, identify re-frac candidates, evaluate the effectiveness of well work and obtain bottom hole pressure data for simulation utilizing pressure transient testing field wide. (6) Quantitatively integrate all the data to guide the field operations, including identification of new well locations utilizing reservoir simulation.
Fazlollahtabar, Hamed; Saidi-Mehrabad, Mohammad; Balakrishnan, Jaydeep
2015-01-01
This paper proposes an integrated Markovian and back propagation neural network approaches to compute reliability of a system. While states of failure occurrences are significant elements for accurate reliability computation, Markovian based reliability assessment method is designed. Due to drawbacks shown by Markovian model for steady state reliability computations and neural network for initial training pattern, integration being called Markov-neural is developed and evaluated. To show efficiency of the proposed approach comparative analyses are performed. Also, for managerial implication purpose an application case for multiple automated guided vehicles (AGVs) in manufacturing networks is conducted. - Highlights: • Integrated Markovian and back propagation neural network approach to compute reliability. • Markovian based reliability assessment method. • Managerial implication is shown in an application case for multiple automated guided vehicles (AGVs) in manufacturing networks
Multiscale N=2 SUSY field theories, integrable systems and their stringy/brane origin
Gorsky, A.; Gukov, S.; Mironov, A.
1998-01-01
We discuss supersymmetric Yang-Mills theories with multiple scales in the brane language. The issue concerns N=2 SUSY gauge theories with massive fundamental matter including the UV finite case of n f =2n c , theories involving products of SU(n) gauge groups with bifundamental matter, and systems with several parameters similar to Λ QCD . We argue that the proper integrable systems are, accordingly, twisted XXX SL(2) spin chain, SL(p) magnets and degenerations of the spin Calogero system. The issue of symmetries underlying integrable systems is addressed. Relations with the monopole systems are specially discussed. Brane pictures behind all these integrable structures in the IIB and M-theory are suggested. We argue that degrees of freedom in integrable systems are related to KK excitations in M-theory or D-particles in the IIA string theory, which substitute the infinite number of instantons in the field theory. This implies the presence of more BPS states in the low-energy sector. (orig.)
Properties of the HII Regions Derived Using Integral Field Spectroscopy
Sebastian F. Sánchez
2013-01-01
Full Text Available Here we review some of our more recent results on the observed properties of HII regions using Integral Field Spectroscopy. In particular, we illustrate the use of this technique to study in detail the ionization conditions across the nebulae for galactic HII regions (focused on the Orion Nebula and the statistical study of large samples of extragalactic HII regions. We review the reported new scaling relation between the local mass density and the oxygen abundance across the disk galaxies and the recently discovered universal gradient for oxygen abundances. We update our previous results the lack of a dependence of the Mass-Metallicity relation with the starformation rate, including new unpublished data. Finally we discuss on the relation between the ionization conditions in the nebulae and the underlying stellar population. All together our results indicate that disk galaxies present a chemical enrichment dominated by an inside-out growth scenario, with a less evident effect of radial migrations and/or outflows.
Calibrating the SNfactory Integral Field Spectrograph (SNIFS) with SCALA
Küsters, Daniel; Lombardo, Simona; Kowalski, Marek; Aldering, Greg; Nordin, Jakob; Rigault, Mickael
2016-08-01
The SNIFS CALibration Apparatus (SCALA), a device to calibrate the Supernova Integral Field Spectrograph on the University Hawaii 2.2m telescope, was developed and installed in Spring 2014. SCALA produces an artificial planet with a diameter of 1° and a constant surface brightness. The wavelength of the beam can be tuned between 3200 Å and 10000 Å and has a bandwidth of 35 Å. The amount of light injected into the telescope is monitored with NIST calibrated photodiodes. SCALA was upgraded in 2015 with a mask installed at the entrance pupil of the UH88 telescope, ensuring that the illumination of the telescope by stars is similar to that of SCALA. With this setup, a first calibration run was performed in conjunction with the spectrophotometric observations of standard stars. We present first estimates for the expected systematic uncertainties of the in-situ calibration and discuss the results of tests that examine the influence of stray light produced in the optics.
SCALA: In situ calibration for integral field spectrographs
Lombardo, S.; Küsters, D.; Kowalski, M.; Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Boone, K.; Buton, C.; Chen, J.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Hoffmann, A.; Kim, A. G.; Leget, P.-F.; McKay, L.; Nordin, J.; Pain, R.; Pécontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Reif, K.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Smadja, G.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory
2017-11-01
Aims: The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods: We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results: By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions: The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 Å and 9000 Å is stable at the percent level over a one-year baseline.
Hamilton, Russell J.; Kuchnir, Franca T.; Sweeney, Patrick; Rubin, Steven J.; Dujovny, Manuel; Pelizzari, Charles A.; Chen, George T. Y.
1995-01-01
Purpose: Compare the use of static conformal fields with the use of multiple noncoplanar arcs for stereotactic radiosurgery or stereotactic radiotherapy treatment of intracranial lesions. Evaluate the efficacy of these treatment techniques to deliver dose distributions comparable to those considered acceptable in current radiotherapy practice. Methods and Materials: A previously treated radiosurgery case of a patient presenting with an irregularly shaped intracranial lesion was selected. Using a three-dimensional (3D) treatment-planning system, treatment plans using a single isocenter multiple noncoplanar arc technique and multiple noncoplanar conformal static fields were generated. Isodose distributions and dose volume histograms (DVHs) were computed for each treatment plan. We required that the 80% (of maximum dose) isodose surface enclose the target volume for all treatment plans. The prescription isodose was set equal to the minimum target isodose. The DVHs were analyzed to evaluate and compare the different treatment plans. Results: The dose distribution in the target volume becomes more uniform as the number of conformal fields increases. The volume of normal tissue receiving low doses (> 10% of prescription isodose) increases as the number of static fields increases. The single isocenter multiple arc plan treats the greatest volume of normal tissue to low doses, approximately 1.6 times more volume than that treated by four static fields. The volume of normal tissue receiving high (> 90% of prescription isodose) and intermediate (> 50% of prescription isodose) doses decreases by 29 and 22%, respectively, as the number of static fields is increased from four to eight. Increasing the number of static fields to 12 only further reduces the high and intermediate dose volumes by 10 and 6%, respectively. The volume receiving the prescription dose is more than 3.5 times larger than the target volume for all treatment plans. Conclusions: Use of a multiple noncoplanar
Jansen, S.E.M.; Toet, A.; Werkhoven, P.J.
2011-01-01
This study investigated how human locomotion through an obstacle environment is influenced by visual field limitation. Participants were asked to walk at a comfortable pace to a target location while avoiding multiple vertical objects. During this task, they wore goggles restricting their visual
On the multiplicative order of elements in Wiedemann's towers of finite fields
R. Popovych
2016-01-01
Full Text Available We consider recursive binary finite field extensions $E_{i+1} =E_{i} (x_{i+1} $, $i\\ge -1$, defined by D. Wiedemann. The main object of the paper is to give some proper divisors of the Fermat numbers $N_{i} $ that are not equal to the multiplicative order $O(x_{i} $.
MENTORING IN THE FIELDS OF PHYSIOTHERAPY AND INTEGRATED CARE
Gergana Nenova
2018-03-01
Full Text Available creativecommons Index Copernicus Value: 2016 -90,65 SJIF (Scientific Journal Impact Factor: 2017 - 7,61 Global Impact Factor: 2015 - 0,787 JIFACTOR: 2015 - 0,5 back to 2018Jan-Mar;24(1 Journal of IMAB - Annual Proceeding (Scientific Papers Publisher: Peytchinski Publishing ISSN: 1312-773X (Online Issue: 2018, vol. 24, issue1 Subject Area: Medicine - DOI: 10.5272/jimab.2018241.1923 Published online: 07 March 2018 Original article J of IMAB. 2018 Jan-Mar;24(1:1923-1927 MENTORING IN THE FIELDS OF PHYSIOTHERAPY AND INTEGRATED CARE Gergana Nenova1ORCID logo Corresponding Autoremail, Paraskeva Mancheva1ORCID logo, Todorka Kostadinova2, Kalin Mihov3ORCID logo, Svetoslav Dobrilov3ORCID logo, 1 Training and research sector of Rehabilitation, Medical College - Varna, Medical University of Varna, Bulgaria. 2 Department of Health Economics and Management, Faculty of Public Health, Medical University of Varna, Bulgaria. 3 Department of Orthopedics and Traumatology, Medical University of Varna, Bulgaria. ABSTRACT: A survey on the opinion of students studying Rehabilitation as a major subject on the role of their mentors and their qualities in the "Student Practice project.” The aim of the study is to investigate the point of view of the students, involved in the "Student Practice" project, about the role and the qualities that mentors and academic coaches (physiotherapists should possess in order to be created a selection criteria. Subject of the survey are 14 students studying at the Medical College of MU-Varna which study "Rehabilitation". These students participated in the "Students practice" project for the period November 2016 - March 2017. A feedback was sought from them through a questionnaire method with an exclusively prepared for the survey questionnaire. The results of the feedback from trainees showed their increased confidence in dealing with patients and their better integration within the work team. The knowledge and skills acquired by
On integrability conditions of the equations of nonsymmetrical chiral field on SO(4)
Tskhakaya, D.D.
1990-01-01
Possibility of integrating the equations of nonsymmetrical chiral field on SO(4) by means of the inverse scattering method is investigated. Maximal number of the motion integrals is found for the corresponding system of ordinary differential equations
J. Arieira
2011-03-01
Full Text Available Development of efficient methodologies for mapping wetland vegetation is of key importance to wetland conservation. Here we propose the integration of a number of statistical techniques, in particular cluster analysis, universal kriging and error propagation modelling, to integrate observations from remote sensing and field sampling for mapping vegetation communities and estimating uncertainty. The approach results in seven vegetation communities with a known floral composition that can be mapped over large areas using remotely sensed data. The relationship between remotely sensed data and vegetation patterns, captured in four factorial axes, were described using multiple linear regression models. There were then used in a universal kriging procedure to reduce the mapping uncertainty. Cross-validation procedures and Monte Carlo simulations were used to quantify the uncertainty in the resulting map. Cross-validation showed that accuracy in classification varies according with the community type, as a result of sampling density and configuration. A map of uncertainty derived from Monte Carlo simulations revealed significant spatial variation in classification, but this had little impact on the proportion and arrangement of the communities observed. These results suggested that mapping improvement could be achieved by increasing the number of field observations of those communities with a scattered and small patch size distribution; or by including a larger number of digital images as explanatory variables in the model. Comparison of the resulting plant community map with a flood duration map, revealed that flooding duration is an important driver of vegetation zonation. This mapping approach is able to integrate field point data and high-resolution remote-sensing images, providing a new basis to map wetland vegetation and allow its future application in habitat management, conservation assessment and long-term ecological monitoring in wetland
Han, H.C.; Davey, K.R.; Turner, L.
1985-08-01
The transient eddy current problem is characteristically computationally intensive. The motivation for this research was to realize an efficient, accurate, solution technique involving small matrices via an eigenvalue approach. Such a technique is indeed realized and tested using the null field integral technique. Using smart (i.e., efficient, global) basis functions to represent unknowns in terms of a minimum number of unknowns, homogeneous eigenvectors and eigenvalues are first determined. The general excitatory response is then represented in terms of these eigenvalues/eigenvectors. Excellent results are obtained for the Argonne Felix cylinder experiments using a 4 x 4 matrix. Extension to the 3-D problem (short cylinder) is set up in terms of an 8 x 8 matrix
Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils
Sasayama, Teruyoshi, E-mail: sasayama@sc.kyushu-u.ac.jp; Tsujita, Yuya; Morishita, Manabu; Muta, Masahiro; Yoshida, Takashi; Enpuku, Keiji
2017-04-01
We propose a magnetic particle imaging (MPI) method based on third harmonic signal detection using a small field gradient and multiple pickup coils. First, we developed a system using two pickup coils and performed three-dimensional detection of two magnetic nanoparticle (MNP) samples, which were spaced 15 mm apart. In the experiments, an excitation field strength of 1.6 mT was used at an operating frequency of 3 kHz. A DC gradient field with a typical value of 0.2 T/m was also used to produce the so-called field-free line. A third harmonic signal generated by the MNP samples was detected using the two pickup coils, and the samples were then mechanically scanned to obtain field maps. The field maps were subsequently analyzed using the nonnegative least squares method to obtain three-dimensional position information for the MNP samples. The results show that the positions of the two MNP samples were estimated with good accuracy, despite the small field gradient used. Further improvement in MPI performance will be achieved by increasing the number of pickup coils used. - Highlights: • 3D magnetic particle imaging system combining field-free line and two pickup coils. • Imaging method based on third harmonic signal detection and small field gradient. • Nonnegative least squares method for 3D magnetic nanoparticle image reconstruction. • High spatial resolution despite use of small field gradient.
Callaway, Libby; Enticott, Joanne; Farnworth, Louise; McDonald, Rachael; Migliorini, Christine; Willer, Barry
2017-06-01
Australia's National Disability Insurance Scheme (NDIS) is designed to influence home, social and economic participation for Scheme participants. Given the major disability reform underway, this pilot study aimed to: (i) examine community integration outcomes of people with spinal cord injury (SCI); (ii) compare findings with multiple matched controls and (iii) consider findings within the context of Australia's NDIS. Setting: Victoria, Australia. Matched analysis (people with and without SCI). Community Integration Questionnaire (CIQ). n = 40 adults with SCI (M age = 52.8 years; 61% male; 77% traumatic SCI). Matched analyses from each SCI subject aged integration (ρ = 0.02). Relative risk of low home integration was significant in the SCI cohort (conditional RR (95% CI) = 3.1 (1.5-6.3), ρ = 0.001). Relative risk of low CIQ total, social integration and productivity scores did not reach significance. This cohort of SCI participants was less integrated into home and productive occupations than matched norms, holding implications for planning and allocation of supports to influence outcomes within an NDIS. Further research is necessary to understand community integration outcomes in larger matched samples. © 2016 Occupational Therapy Australia.
Paniagua, Jesus M.; Rufo, Montana; Jimenez, Antonio; Pachon, Fernando T.; Carrero, Julian
2015-01-01
The evaluation of exposure to extremely low-frequency (ELF) magnetic fields using broadband measurement techniques gives satisfactory results when the field has essentially a single frequency. Nevertheless, magnetic fields are in most cases distorted by harmonic components. This work analyses the harmonic components of the ELF magnetic field in an outdoor urban context and compares the evaluation of the exposure based on broadband measurements with that based on spectral analysis. The multiple frequency rule of the International Commission on Non-ionizing Radiation Protection (ICNIRP) regulatory guidelines was applied. With the 1998 ICNIRP guideline, harmonics dominated the exposure with a 55 % contribution. With the 2010 ICNIRP guideline, however, the primary frequency dominated the exposure with a 78 % contribution. Values of the exposure based on spectral analysis were significantly higher than those based on broadband measurements. Hence, it is clearly necessary to determine the harmonic components of the ELF magnetic field to assess exposure in urban contexts. (authors)
Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.
Niu, D; Zhu, F; Qiu, R; Niu, Q
2016-01-01
High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.
Lu, Xiaodong; Mori, Kinji
The market and users' requirements have been rapidly changing and diversified. Under these heterogeneous and dynamic situations, not only the system structure itself, but also the accessible information services would be changed constantly. To cope with the continuously changing conditions of service provision and utilization, Faded Information Field (FIF) has been proposed, which is a agent-based distributed information service system architecture. In the case of a mono-service request, the system is designed to improve users' access time and preserve load balancing through the information structure. However, with interdependent requests of multi-service increasing, adaptability and timeliness have to be assured by the system. In this paper, the relationship that exists among the correlated services and the users' preferences for separate and integrated services is clarified. Based on these factors, the autonomous preference-aware information services integration technology to provide one-stop service for users multi-service requests is proposed. As compared to the conventional system, we show that proposed technology is able to reduce the total access time.
Asghari, Mohammad H; Azaña, José
2008-07-21
In exact analogy with their electronic counterparts, photonic temporal integrators are fundamental building blocks for constructing all-optical circuits for ultrafast information processing and computing. In this work, we introduce a simple and general approach for realizing all-optical arbitrary-order temporal integrators. We demonstrate that the N(th) cumulative time integral of the complex field envelope of an input optical waveform can be obtained by simply propagating this waveform through a single uniform fiber/waveguide Bragg grating (BG) incorporating N pi-phase shifts along its axial profile. We derive here the design specifications of photonic integrators based on multiple-phase-shifted BGs. We show that the phase shifts in the BG structure can be arbitrarily located along the grating length provided that each uniform grating section (sections separated by the phase shifts) is sufficiently long so that its associated peak reflectivity reaches nearly 100%. The resulting designs are demonstrated by numerical simulations assuming all-fiber implementations. Our simulations show that the proposed approach can provide optical operation bandwidths in the tens-of-GHz regime using readily feasible photo-induced fiber BG structures.
Integration of thermo-vapor compressor with multiple-effect evaporator
Sharan, Prashant; Bandyopadhyay, Santanu
2016-01-01
Highlights: • Energy integration of thermo-vapor compressor with multiple-effect evaporator. • Proposed a new methodology for optimal placement of thermo-vapor compressor. • Extended Pinch Analysis for overall energy conservation. • Obtained simultaneous reduction in evaporator area requirement and energy consumption with optimal integration. - Abstract: Thermo-vapor compressor (TVC) is used for compressing the low-pressure vapor with the help of the high-pressure motive steam, to produce the medium pressure vapor. A substantial portion of energy may be conserved by integrating TVC with the multiple-effect evaporator (MEE). The common practice in desalination industry is to compress the vapor produced in the last effect of a MEE using TVC to reduce the overall motive steam requirement. Such integration does not necessarily guarantee energy optimality. The objective of the present work is to optimally integrate TVC with a MEE system to maximize the gain output ratio (GOR). GOR is defined as the ratio of the mass flow rate of vapor produced in MEE to the mass flow rate of the motive steam supplied to TVC. GOR is the measure of the energy efficiency of MEE system. Using the principles of Pinch Analysis and techniques of mathematical optimization, a new methodology for integration of TVC with MEE is proposed in this paper. This is the first analytical methodology to optimally integrate TVC with MEE, avoiding multiple simulations of the overall system. A Theorem is proposed to directly calculate the optimal location of TVC suction position. The proposed methodology gives the designer the freedom to design an MEE-TVC with minimum energy consumption and without carrying out the detailed simulation of the entire system. The methodology is demonstrated through the illustrative case studies for concentrating corn glucose, and freshwater production through thermal desalination. In the case of corn glucose, the optimal integration of TVC with 2-effect MEE resulted in
2012-06-06
...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and Procedure (19 CFR 210.8(b)).
Integrative harm reduction psychotherapy: a case of substance use, multiple trauma, and suicidality.
Tatarsky, Andrew; Kellogg, Scott
2010-02-01
Harm reduction is a new paradigm that seeks to reduce the harmful consequences of substance use and other risky behaviors without requiring abstinence. This article discusses integrative harm reduction psychotherapy, one application of harm reduction principles to psychotherapy. Seven therapeutic tasks are described with attention to clinical process, skills, and strategies. A case is presented that illustrates the application of this approach with life-threatening substance use that was related to multiple trauma and suicidal depression. (c) 2010 Wiley Periodicals, Inc.
Janus field theories from non-linear BF theories for multiple M2-branes
Ryang, Shijong
2009-01-01
We integrate the nonpropagating B μ gauge field for the non-linear BF Lagrangian describing N M2-branes which includes terms with even number of the totally antisymmetric tensor M IJK in arXiv:0808.2473 and for the two-types of non-linear BF Lagrangians which include terms with odd number of M IJK as well in arXiv:0809:0985. For the former Lagrangian we derive directly the DBI-type Lagrangian expressed by the SU(N) dynamical A μ gauge field with a spacetime dependent coupling constant, while for the low-energy expansions of the latter Lagrangians the B μ integration is iteratively performed. The derived Janus field theory Lagrangians are compared.
A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base
Kautzmann, Frank N., III
1988-01-01
Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.
The integration of occupational therapy into primary care: a multiple case study design
2013-01-01
Background For over two decades occupational therapists have been encouraged to enhance their roles within primary care and focus on health promotion and prevention activities. While there is a clear fit between occupational therapy and primary care, there have been few practice examples, despite a growing body of evidence to support the role. In 2010, the province of Ontario, Canada provided funding to include occupational therapists as members of Family Health Teams, an interprofessional model of primary care. The integration of occupational therapists into this model of primary care is one of the first large scale initiatives of its kind in North America. The objective of the study was to examine how occupational therapy services are being integrated into primary care teams and understand the structures supporting the integration. Methods A multiple case study design was used to provide an in-depth description of the integration of occupational therapy. Four Family Health Teams with occupational therapists as part of the team were identified. Data collection included in-depth interviews, document analyses, and questionnaires. Results Each Family Health Team had a unique organizational structure that contributed to the integration of occupational therapy. Communication, trust and understanding of occupational therapy were key elements in the integration of occupational therapy into Family Health Teams, and were supported by a number of strategies including co-location, electronic medical records and team meetings. An understanding of occupational therapy was critical for integration into the team and physicians were less likely to understand the occupational therapy role than other health providers. Conclusion With an increased emphasis on interprofessional primary care, new professions will be integrated into primary healthcare teams. The study found that explicit strategies and structures are required to facilitate the integration of a new professional group
Modulation of C. elegans Touch Sensitivity Is Integrated at Multiple Levels
Chen, Xiaoyin
2014-01-01
Sensory systems can adapt to different environmental signals. Here we identify four conditions that modulate anterior touch sensitivity in Caenorhabditis elegans after several hours and demonstrate that such sensory modulation is integrated at multiple levels to produce a single output. Prolonged vibration involving integrin signaling directly sensitizes the touch receptor neurons (TRNs). In contrast, hypoxia, the dauer state, and high salt reduce touch sensitivity by preventing the release of long-range neuroregulators, including two insulin-like proteins. Integration of these latter inputs occurs at upstream neurohormonal cells and at the insulin signaling cascade within the TRNs. These signals and those from integrin signaling converge to modulate touch sensitivity by regulating AKT kinases and DAF-16/FOXO. Thus, activation of either the integrin or insulin pathways can compensate for defects in the other pathway. This modulatory system integrates conflicting signals from different modalities, and adapts touch sensitivity to both mechanical and non-mechanical conditions. PMID:24806678
A Nonparametric, Multiple Imputation-Based Method for the Retrospective Integration of Data Sets
Carrig, Madeline M.; Manrique-Vallier, Daniel; Ranby, Krista W.; Reiter, Jerome P.; Hoyle, Rick H.
2015-01-01
Complex research questions often cannot be addressed adequately with a single data set. One sensible alternative to the high cost and effort associated with the creation of large new data sets is to combine existing data sets containing variables related to the constructs of interest. The goal of the present research was to develop a flexible, broadly applicable approach to the integration of disparate data sets that is based on nonparametric multiple imputation and the collection of data from a convenient, de novo calibration sample. We demonstrate proof of concept for the approach by integrating three existing data sets containing items related to the extent of problematic alcohol use and associations with deviant peers. We discuss both necessary conditions for the approach to work well and potential strengths and weaknesses of the method compared to other data set integration approaches. PMID:26257437
Jensen, Niels Bjerg; Strucko, Tomas; Kildegaard, Kanchana Rueksomtawin
2014-01-01
of multiple genes with an option of recycling selection markers. The vectors combine the advantage of efficient uracil excision reaction-based cloning and Cre-LoxP-mediated marker recycling system. The episomal and integrative vector sets were tested by inserting genes encoding cyan, yellow, and red...... fluorescent proteins into separate vectors and analyzing for co-expression of proteins by flow cytometry. Cells expressing genes encoding for the three fluorescent proteins from three integrations exhibited a much higher level of simultaneous expression than cells producing fluorescent proteins encoded...... on episomal plasmids, where correspondingly 95% and 6% of the cells were within a fluorescence interval of Log10 mean ± 15% for all three colors. We demonstrate that selective markers can be simultaneously removed using Cre-mediated recombination and all the integrated heterologous genes remain...
María Camila Moncada Guevara
2016-01-01
Full Text Available The purpose of this article is to demonstrate, through the paradigm of the complex interdependency that the energy integration processes in the Caribbean during the 21st Century have been multiple, given the integrationist traditions and the strategic regional leadership interests displayed by Venezuela, Mexico and the United States. Therefore, gendas proposed to supply the energy demand in the region deepen the existence of hegemonic projects in dispute. In the first part, political, economic and military aspects of the integration processes in the Caribbean are defined. Then, energy agendas of the 90’s with the Hemisphere Integration Strategy are characterized. Finally, the most recent experience of CARICOM on the matter is analyzed and it is concluded that the region is going through a period of recomposition of the regional powers.
Dorman, L.I.; Yanke, V.G.
1979-01-01
Integral multiples of cosmic rays in Earth and other planets atmospheres have been determined. Kinetic equations describing the evolution of hadronic cascade in atmosphere using modern accelerating data have been solved with that end in view. Bond coefficients for nucleonic, muonic and electronic components of secondary cosmic radiation have been built using integral multiples. Normalized bond coefficients for three components obtained for maximum solar activity are presented. Integral muon and nucleon generation and bond coefficients have also been given for Mars
Auditory-visual integration in fields of the auditory cortex.
Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei
2017-03-01
While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of multiple Higgs fields on the phase structure of the SU(2)-Higgs model
Wurtz, Mark; Steele, T. G.; Lewis, Randy
2009-01-01
The SU(2)-Higgs model, with a single Higgs field in the fundamental representation and a quartic self-interaction, has a Higgs region and a confinement region which are analytically connected in the parameter space of the theory; these regions thus represent a single phase. The effect of multiple Higgs fields on this phase structure is examined via Monte Carlo lattice simulations. For the case of N≥2 identical Higgs fields, there is no remaining analytic connection between the Higgs and confinement regions, at least when Lagrangian terms that directly couple different Higgs flavors are omitted. An explanation of this result in terms of enhancement from overlapping phase transitions is explored for N=2 by introducing an asymmetry in the hopping parameters of the Higgs fields. It is found that an enhancement of the phase transitions can still occur for a moderate (10%) asymmetry in the resulting hopping parameters.
Equilibrium and stability of theta-pinch plasma in modified toroidal multiple mirror field
Shiina, S.; Saito, K.; Osanai, Y.; Itagaki, T.; Karakizawa, T.; Gesso, H.; Todoroki, J.; Kawakami, I.; Yoshimura, H.
1976-01-01
To confine a high-beta plasma a new toroidal magnetic configuration with closed lines of force has been proposed [1]. The configuration is an appropriate superposition of l = 0, l = +- 1, l = +- 2,sup(...), helical fields. In this experiment, it is generated by modifying the multiple mirror field by enclosing the discharge tube in a copper shell which has longitudinal gap. This configuration is preferred for the wall stabilizing effect to that with the separated helical windings. The characteristics of the equilibrium conditions are examined based on the near-axis approximation theory and compared with the experimental results. The stability of plasma in the configurations with l = 0 field and with superposition of l = 0, l = +- 2 fields is investigated in linear geometry. (author)
Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops
Fei Sun
2015-09-01
Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.
Carrell, John; Zhang, Hong-Chao; Wang, Shiren; Tate, Derrick
2013-11-19
Active disassembly (AD) uses innovative materials that can perform a designed disassembly action by the application of an external field. AD provides improvements over current disassembly processes by limiting machine or manual labor and enabling batch processing for end-of-life products. With improved disassembly operations, more reuse of components and purer recycling streams may be seen. One problem with AD, however, has been with the single-field actuation because of the probability of accidental disassembly. This presentation will discuss the application of shape memory polymer (SMP) nanocomposites in a new AD process. This novel AD process requires multiple-field actuation of the SMP nanocomposite fastener. In the analysis of this AD process, thermal and magnetic field tests were performed on the SMP nanocomposite. From these tests, finite-element analysis was performed to model and simulate the multiple-field AD process. The results of the simulations provide performance variables for the AD process and show a better performance time for the SMP nanocomposite fastener than for a comparable SMP fastener.
Snezhana Georgieva Gocheva-Ilieva
2013-01-01
Full Text Available There are obtained integral form and recurrence representations for some Fourier series and connected with them Favard constants. The method is based on preliminary integration of Fourier series which permits to establish general recursion formulas for Favard constants. This gives the opportunity for effective summation of infinite series and calculation of some classes of multiple singular integrals by the Favard constants.
Study of the asymptotic expansion of multiple integrals in mathematical physics
Chako, N.
1968-01-01
We have applied the method of stationary phase to evaluate double and multiple integrals of the type: (A) U(k) = g(x)e ikφ(x) d(x), (x)=(x 1 ,..., x n ) for large values of the parameter k. In the first part we have established in a rigorous manner the stationary phase method to double and multiple integrals of type (A). Furthermore we have obtained an asymptotic expansion of (A), if the amplitude and phase functions can be developed in a canonical form near the vicinity of critical or stationary points of the integral. This development contains as particular cases all those which are important in physical applications, especially, to diffraction and scattering of electromagnetic and corpuscular waves by optical systems, diffracting bodies and potential scatterers. In the second part we have considered the problem of convergence of the expansion of the principal contribution to the integral in the asymptotic sense of Poincare. The proof is based on the increasing method used in mathematical analysis. The third part is devoted to the derivation of various asymptotic series due to different types of critical or stationary points associated with the amplitude and phase functions. In the fourth part we have generalized the method to multiple integrals and to the case where the parameter k enter implicitly in the phase function The latter type of integrals extend the scope of the former type to a number of important physical problems; for instance, to the propagation of waves in dispersive and absorbing media. In the last chapter we have made a study and compared the results obtained by the application of the stationary phase method to the integrals (double) of diffraction and the results derived by using the Young-Rubinowicz method. Result of our analysis shows the equivalence of the two methods of approach to the problems of diffraction based, on one hand, on the Fresnel-Kirchhoff theory and, on the other hand, the Young-Rubinowicz theory, provided one interprets in
Error Analysis and Calibration Method of a Multiple Field-of-View Navigation System
Shi, Shuai; Zhao, Kaichun; You, Zheng; Ouyang, Chenguang; Cao, Yongkui; Wang, Zhenzhou
2017-01-01
The Multiple Field-of-view Navigation System (MFNS) is a spacecraft subsystem built to realize the autonomous navigation of the Spacecraft Inside Tiangong Space Station. This paper introduces the basics of the MFNS, including its architecture, mathematical model and analysis, and numerical simulation of system errors. According to the performance requirement of the MFNS, the calibration of both intrinsic and extrinsic parameters of the system is assumed to be essential and pivotal. Hence, a n...
Superintense fields from multiple ultrashort laser pulses retroreflected in circular geometry
Ooi, C. H. Raymond
2010-02-01
Laser field with superintensity beyond 1029 W/cm2 can be generated by coherent superposition of multiple 100 fs laser pulses in circular geometry setup upon retroreflection by a ring mirror. We have found the criteria for attaining such intensities using broadband ring mirror within the practical damage threshold and paraxial focusing regime. Simple expressions for the intensity enhancement factor are obtained, providing insight for achieving unlimited laser intensity. Higher intensities can be achieved by using few-cycle laser pulses.
Field theoretical approach to proton-nucleus reactions: II-Multiple-step excitation process
Eiras, A.; Kodama, T.; Nemes, M.
1989-01-01
A field theoretical formulation to multiple step excitation process in proton-nucleus collision within the context of a relativistic eikonal approach is presented. A closed form expression for the double differential cross section can be obtained whose structure is very simple and makes the physics transparent. Glauber's formulation of the same process is obtained as a limit of ours and the necessary approximations are studied and discussed. (author) [pt
Ballet, Stéphane; Baudru, Nicolas; Bonnecaze, Alexis; Tukumuli, Mila
2016-01-01
The Chudnovsky and Chudnovsky algorithm for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear whith respect to the degree of the extension. Recently, Randriambololona has generalized the method, allowing asymmetry in the interpolation procedure and leading to new upper bounds on the bilinear complexity. We describe the effective algorithm of this asymmetric method, without derivated evaluation. Finally, we give examples with the finite ...
Integral abutment bridges under thermal loading : field monitoring and analysis.
2017-08-01
Integral abutment bridges (IABs) have gained popularity throughout the United States due to their low construction and maintenance costs. Previous research on IABs has been heavily focused on substructure performance, leaving a need for better unders...
Particles versus fields in PT-symmetrically deformed integrable ...
reversal and parity transformation, can be used to construct new integrable models. Some complex valued multi-particle systems, such as deformations of the Calogero–Moser– Sutherland models, are shown to arise naturally from real valued ...
Integrated modelling of near field and engineered barrier system processes
Lamont, A.; Gansemer, J.
1994-01-01
The Yucca Mountain Integrating Model (YMIM) is an integrated model of the Engineered barrier System has been developed to assist project managers at LLNL in identifying areas where research emphasis should be placed. The model was designed to be highly modular so that a model of an individual process could be easily modified or replaced without interfering with the models of other processes. The modules modelling container failure and the dissolution of nuclides include particularly detailed, temperature dependent models of their corresponding processes
Rafael A. Magris
2017-07-01
Full Text Available Decision-makers focus on representing biodiversity pattern, maintaining connectivity, and strengthening resilience to global warming when designing marine protected area (MPA systems, especially in coral reef ecosystems. The achievement of these broad conservation objectives will likely require large areas, and stretch limited funds for MPA implementation. We undertook a spatial prioritisation of Brazilian coral reefs that considered two types of conservation zones (i.e. no-take and multiple use areas and integrated multiple conservation objectives into MPA planning, while assessing the potential impact of different sets of objectives on implementation costs. We devised objectives for biodiversity, connectivity, and resilience to global warming, determined the extent to which existing MPAs achieved them, and designed complementary zoning to achieve all objectives combined in expanded MPA systems. In doing so, we explored interactions between different sets of objectives, determined whether refinements to the existing spatial arrangement of MPAs were necessary, and tested the utility of existing MPAs by comparing their cost effectiveness with an MPA system designed from scratch. We found that MPAs in Brazil protect some aspects of coral reef biodiversity pattern (e.g. threatened fauna and ecosystem types more effectively than connectivity or resilience to global warming. Expanding the existing MPA system was as cost-effective as designing one from scratch only when multiple objectives were considered and management costs were accounted for. Our approach provides a comprehensive assessment of the benefits of integrating multiple objectives in the initial stages of conservation planning, and yields insights for planners of MPAs tackling multiple objectives in other regions.
Miller, Nicholas; MacDowell, Jason; Chmiel, Gary; Konopinski, Ryan; Gautam, Durga [GE Energy, Schenectady, NY (United States); Laughter, Grant; Hagen, Dave [PacifiCorp., Salt Lake City, UT (United States)
2012-07-01
At high levels of wind power penetration, multiple wind plants may be the predominant generation resource over large geographic areas. Thus, not only do wind plants need to provide a high level of functionality, they must coordinate properly with each other. This paper describes the analysis and field testing of wind plant voltage controllers designed to improve system voltage performance through passive coordination. The described wind power plant controls can coordinate the real and reactive power response of multiple wind turbines and thereby make the plant function as a single ''grid friendly'' power generation source. For this application, involving seven large wind plants with predominantly GE wind turbines in Eastern Wyoming, the voltage portion of the controllers were configured and tuned to allow the collective reactive power response of multiple wind plants in the region to work well together. This paper presents the results of the initial configuration and tuning study, and the results of the subsequent field tuning and testing of the modified controls. The paper also presents some comparisons of the measured field performance with the stability simulation models, which show that the available wind plant models provide accurate, high fidelity results for actual operating conditions of commercial wind power plants. (orig.)
Evaluation of field emission properties from multiple-stacked Si quantum dots
Takeuchi, Daichi; Makihara, Katsunori; Ohta, Akio; Ikeda, Mitsuhisa; Miyazaki, Seiichi
2016-01-01
Multiple-stacked Si quantum dots (QDs) with ultrathin SiO 2 interlayers were formed on ultrathin SiO 2 layers by repeating a process sequence consisting of the formation of Si-QDs by low pressure chemical vapor deposition using a SiH 4 gas and the surface oxidation and subsequent surface modification by remote hydrogen and oxygen plasmas, respectively. To clarify the electron emission mechanism from multiple-stacked Si-QDs covered with an ultrathin Au top electrode, the energy distribution of the emitted electrons and its electric field dependence was measured using a hemispherical electron energy analyzer in an X-ray photoelectron spectroscopy system under DC bias application to the multiple-stacked Si-QD structure. At − 6 V and over, the energy distributions reached a peak at ~ 2.5 eV with a tail toward the higher energy side. While the electron emission intensity was increased exponentially with an increase in the applied DC bias, there was no significant increase in the emission peak energy. The observed emission characteristics can be interpreted in terms of field emissions from the second and/or third topmost Si-QDs resulting from the electric concentration there. - Highlights: • Electron field emission from 6-fold stack of Si-QDs has been evaluated. • AFM measurements show the local electron emission from individual Si-QDs. • Impact of applied bias on the electron emission energy distribution was investigated.
Sen, P.; Tan, John K.G.; Spencer, David
1999-01-01
Probabilistic risk analysis (PRA) methods have been proven to be valuable in risk and reliability analysis. However, a weak link seems to exist between methods for analysing risks and those for making rational decisions. The integrated decision support system (IDSS) methodology presented in this paper attempts to address this issue in a practical manner. In consists of three phases: a PRA phase, a risk sensitivity analysis (SA) phase and an optimisation phase, which are implemented through an integrated computer software system. In the risk analysis phase the problem is analysed by the Boolean representation method (BRM), a PRA method that can deal with systems with multiple state variables and feedback loops. In the second phase the results obtained from the BRM are utilised directly to perform importance and risk SA. In the third phase, the problem is formulated as a multiple objective decision making problem in the form of multiple objective reliability optimisation. An industrial example is included. The resultant solutions of a five objective reliability optimisation are presented, on the basis of which rational decision making can be explored
Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I; Marcotte, Edward M
2011-07-01
Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.
NoSQL data model for semi-automatic integration of ethnomedicinal plant data from multiple sources.
Ningthoujam, Sanjoy Singh; Choudhury, Manabendra Dutta; Potsangbam, Kumar Singh; Chetia, Pankaj; Nahar, Lutfun; Sarker, Satyajit D; Basar, Norazah; Das Talukdar, Anupam
2014-01-01
Sharing traditional knowledge with the scientific community could refine scientific approaches to phytochemical investigation and conservation of ethnomedicinal plants. As such, integration of traditional knowledge with scientific data using a single platform for sharing is greatly needed. However, ethnomedicinal data are available in heterogeneous formats, which depend on cultural aspects, survey methodology and focus of the study. Phytochemical and bioassay data are also available from many open sources in various standards and customised formats. To design a flexible data model that could integrate both primary and curated ethnomedicinal plant data from multiple sources. The current model is based on MongoDB, one of the Not only Structured Query Language (NoSQL) databases. Although it does not contain schema, modifications were made so that the model could incorporate both standard and customised ethnomedicinal plant data format from different sources. The model presented can integrate both primary and secondary data related to ethnomedicinal plants. Accommodation of disparate data was accomplished by a feature of this database that supported a different set of fields for each document. It also allowed storage of similar data having different properties. The model presented is scalable to a highly complex level with continuing maturation of the database, and is applicable for storing, retrieving and sharing ethnomedicinal plant data. It can also serve as a flexible alternative to a relational and normalised database. Copyright © 2014 John Wiley & Sons, Ltd.
Ki Hwan Kim
Full Text Available Neuronal oscillations produce oscillating magnetic fields. There have been trials to detect neuronal oscillations using MRI, but the detectability in in vivo is still in debate. Major obstacles to detecting neuronal oscillations are (i weak amplitudes, (ii fast oscillations, which are faster than MRI temporal resolution, and (iii random frequencies and on/off intervals. In this study, we proposed a new approach for direct detection of weak and fast oscillating magnetic fields. The approach consists of (i dynamic acquisitions using multiple times to repeats (TRs and (ii an expanded frequency spectral analysis. Gradient echo echo-planar imaging was used to test the feasibility of the proposed approach with a phantom generating oscillating magnetic fields with various frequencies and amplitudes and random on/off intervals. The results showed that the proposed approach could precisely detect the weak and fast oscillating magnetic fields with random frequencies and on/off intervals. Complex and phase spectra showed reliable signals, while no meaningful signals were observed in magnitude spectra. A two-TR approach provided an absolute frequency spectrum above Nyquist sampling frequency pixel by pixel with no a priori target frequency information. The proposed dynamic multiple-TR imaging and Fourier analysis are promising for direct detection of neuronal oscillations and potentially applicable to any pulse sequences.
Integrability and the conformal field theory of the Higgs branch
Sax, Olof Ohlsson; Sfondrini, Alessandro; Bogdan, Stefański Jr.
2015-01-01
In the context of the AdS 3 /CFT 2 correspondence, we investigate the Higgs branch CFT 2 . Witten showed that states localised near the small instanton singularity can be described in terms of vector multiplet variables. This theory has a planar, weak-coupling limit, in which anomalous dimensions of single-trace composite operators can be calculated. At one loop, the calculation reduces to finding the spectrum of a spin-chain with nearest-neighbour interactions. This CFT 2 spin-chain matches precisely the one that was previously found as the weak-coupling limit of the integrable system describing the AdS 3 side of the duality. We compute the one-loop dilatation operator in a non-trivial compact subsector and show that it corresponds to an integrable spin-chain Hamiltonian. This provides the first direct evidence of integrability on the CFT 2 side of the correspondence.
Complexity of Configurators Relative to Integrations and Field of Application
Kristjansdottir, Katrin; Shafiee, Sara; Battistello, Loris
. Moreover, configurators are commonly integrated to various IT systems within companies. The complexity of configurators is an important factor when it comes to performance, development and maintenance of the systems. A direct comparison of the complexity based on the different application...... integrations to other IT systems. The research method adopted in the paper is based on a survey followed with interviews where the unit of analysis is based on operating configurators within a company.......Configurators are applied widely to automate the specification processes at companies. The literature describes the industrial application of configurators supporting both sales and engineering processes, where configurators supporting the engineering processes are described more challenging...
A multiple-field coupled resistive transition model for superconducting Nb3Sn
Lin Yang
2016-12-01
Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.
A multiple-field coupled resistive transition model for superconducting Nb3Sn
Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li
2016-12-01
A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.
ePRISM: A case study in multiple proxy and mixed temporal resolution integration
Robinson, Marci M.; Dowsett, Harry J.
2010-01-01
As part of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project, we present the ePRISM experiment designed I) to provide climate modelers with a reconstruction of an early Pliocene warm period that was warmer than the PRISM interval (similar to 3.3 to 3.0 Ma), yet still similar in many ways to modern conditions and 2) to provide an example of how best to integrate multiple-proxy sea surface temperature (SST) data from time series with varying degrees of temporal resolution and age control as we begin to build the next generation of PRISM, the PRISM4 reconstruction, spanning a constricted time interval. While it is possible to tie individual SST estimates to a single light (warm) oxygen isotope event, we find that the warm peak average of SST estimates over a narrowed time interval is preferential for paleoclimate reconstruction as it allows for the inclusion of more records of multiple paleotemperature proxies.
Curran, Patrick J.; Hussong, Andrea M.; Cai, Li; Huang, Wenjing; Chassin, Laurie; Sher, Kenneth J.; Zucker, Robert A.
2010-01-01
There are a number of significant challenges encountered when studying development over an extended period of time including subject attrition, changing measurement structures across group and developmental period, and the need to invest substantial time and money. Integrative data analysis is an emerging set of methodologies that overcomes many of the challenges of single sample designs through the pooling of data drawn from multiple existing developmental studies. This approach is characterized by a host of advantages, but this also introduces several new complexities that must be addressed prior to broad adoption by developmental researchers. In this paper we focus on methods for fitting measurement models and creating scale scores using data drawn from multiple longitudinal studies. We present findings from the analysis of repeated measures of internalizing symptomatology that were pooled from three existing developmental studies. We describe and demonstrate each step in the analysis and we conclude with a discussion of potential limitations and directions for future research. PMID:18331129
Integrated packaging of multiple double sided cooling planar bond power modules
Liang, Zhenxian
2018-04-10
An integrated double sided cooled power module has one or multiple phase legs configuration including one or more planar power packages, each planar power package having an upper power switch unit and a lower power switch unit directly bonded and interconnected between two insulated power substrates, and further sandwiched between two heat exchangers via direct bonds. A segmented coolant manifold is interposed with the one or more planar power packages and creates a sealed enclosure that defines a coolant inlet, a coolant outlet and a coolant flow path between the inlet and the outlet. A coolant circulates along the flow path to remove heat and increase the power density of the power module.
INFLUENCES OF 50HZ ELECTRIC FIELDS ON GROWTH AND MULTIPLICATION OF SOME MICROORGANISMS
VOINA A.
2016-07-01
Full Text Available By dielectric spectroscopy and specific microbiological techniques have been studied the development (cell multiplication of Saccharomyces cerevisiae and Aspergillus niger growing and multiplication - both on culture media with sucrose and on those with starch. The experimental results have been revealed that the biochemical processes of the studied biomasses have significant changes in certain frequencies in the range 1 - 160Hz, characteristic of the different species/metabolized carbon source, respectively species/ metabolized carbon source/ development phase. It has also been found that in the case of Saccharomyces cerevisiae, the electric field of 50 Hz up to 20V/cm reduces the length of the LAG time and increases the growth rate of intensive increasing phase. Cultures of Aspergillus niger on culture medium with sucrose are stimulated (increasing the spores production by approx. 50% and reducing the maturity time of 50Hz signals up to 15V/cm. Electric fields higher than 30 V/cm in all media and investigated cultures carry on to the growth reduction / multiplication - up to a complete inhibition of growth at approx. 50V/cm
Integrating Multiple Data Sources for Combinatorial Marker Discovery: A Study in Tumorigenesis.
Bandyopadhyay, Sanghamitra; Mallik, Saurav
2018-01-01
Identification of combinatorial markers from multiple data sources is a challenging task in bioinformatics. Here, we propose a novel computational framework for identifying significant combinatorial markers ( s) using both gene expression and methylation data. The gene expression and methylation data are integrated into a single continuous data as well as a (post-discretized) boolean data based on their intrinsic (i.e., inverse) relationship. A novel combined score of methylation and expression data (viz., ) is introduced which is computed on the integrated continuous data for identifying initial non-redundant set of genes. Thereafter, (maximal) frequent closed homogeneous genesets are identified using a well-known biclustering algorithm applied on the integrated boolean data of the determined non-redundant set of genes. A novel sample-based weighted support ( ) is then proposed that is consecutively calculated on the integrated boolean data of the determined non-redundant set of genes in order to identify the non-redundant significant genesets. The top few resulting genesets are identified as potential s. Since our proposed method generates a smaller number of significant non-redundant genesets than those by other popular methods, the method is much faster than the others. Application of the proposed technique on an expression and a methylation data for Uterine tumor or Prostate Carcinoma produces a set of significant combination of markers. We expect that such a combination of markers will produce lower false positives than individual markers.
The Hubble Frontier Fields: Engaging Multiple Audiences in Exploring the Cosmic Frontier
Lawton, Brandon L.; Smith, Denise A.; Summers, Frank; Ryer, Holly; Slivinski, Carolyn; Lotz, Jennifer M.
2017-06-01
The Hubble Frontier Fields is a multi-cycle program of six deep-field observations of strong-lensing galaxy clusters taken in parallel with six deep “blank fields.” The three-year long collaborative program began in late 2013 and is led by observations from NASA’s Great Observatories. The observations, now complete, allow astronomers to look deeper into the universe than ever before, and potentially uncover galaxies that are as much as 100 times fainter than what the telescopes can typically observe. The Frontier Fields science program is ideal for informing audiences about scientific advances and topics in STEM. The study of galaxy properties, statistics, optics, and Einstein’s theory of general relativity naturally leverages off of the science returns of the Frontier Fields program. As a result, the Space Telescope Science Institute’s Office of Public Outreach (OPO) has engaged multiple audiences over the past three years to follow the progress of the Frontier Fields.For over two decades, the STScI outreach program has sought to bring the wonders of the universe to the public and engage audiences in the adventure of scientific discovery. In addition, we are leveraging the reach of the new NASA’s Universe of Learning education program to bring the science of the Frontier Fields to informal education audiences. The main underpinnings of the STScI outreach program and the Universe of Learning education program are scientist-educator development teams, partnerships, and an embedded program evaluation component. OPO is leveraging the infrastructure of these education and outreach programs to bring the Frontier Fields science program to the education community and the public in a cost-effective way.This talk will feature highlights over the past three years of the program. We will highlight OPO’s strategies and infrastructure that allows for the quick delivery of groundbreaking science to the education community and public.
The Geomagnetic Field and Correlations with Multiple Sclerosis: A Possible Etiology of Disease
Wade, Brett
Multiple sclerosis (MS) is a complex autoimmune disease that results in a demyelinating process of the central nervous system. It is the most common, progressive, neurological disease affecting young adults, and there is no cure. A curious feature of MS is its distinct global prevalence with high rates of occurrence between 40 and 60 degrees latitude. While genetics may partially explain this phenomenon, studies have shown that the influence of genetics is modest. Many non-genetic variables, such as viruses, vitamin D, smoking, diet, hormones, etc., have been shown to be related to the expression of MS but none of these variables have been determined to be necessarily strong enough to exclude other factors. The geomagnetic field, which is a non-uniform, three dimensional entity which protects all living things from ionizing radiation, is suggested in this research to be related to global MS prevalence. This study hypothesized that either the total field, the vertical field, or the horizontal field strength of the geomagnetic field will be correlated with MS. Using secondary sources of prevalence studies (N=131) and geomagnetic data, the results supported all three hypotheses with the strongest correlation being an inverse relationship between the horizontal field and MS (r = -.607). The explanation for the inverse relationship being most strongly correlated with MS prevalence is explained by the fact that the horizontal aspect of the geomagnetic field has a protective effect from incoming cosmic radiation. Chronic exposure to high levels of background radiation can have deleterious health effects. This research suggests that living in areas of a weak horizontal field increases a person's exposure to ionizing radiation and therefore increases the risk for developing MS. While it was not the intention of this research, it became clear that an explanation which explained the results of this research and also attempted to unify the mechanisms of all non
2016-06-02
Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...Gilles Roy, Luc Bissonnette, Christian Bastille, and Gilles Vallee Multiple-field-of-view (MFOV) secondary-polarization lidar signals are used to...use secondary polarization. A mathematical relation among the PSD, the lidar fields of view, the scattering angles, and the angular depolarization
Seismically integrated geologic modelling: Guntong Field, Malay Basin
Calvert, Craig S.; Bhuyan, K.; Sterling, J. Helwick; Hill, Rob E.; Hubbard, R. Scott; Khare, Vijay; Wahrmund, Leslie A.; Wang, Gann-Shyong
1998-12-31
This presentation relates to a research project on offshore seismically reservoir modelling. The goal of the project was to develop and test a process for interpreting reservoir properties from 3-D seismic data and for integrating these data into the building of 3-D geologic models that would be suitable for use in flow simulation studies. The project produced a 3-D geologic model for three reservoir intervals and three predominantly non-reservoir intervals. Each reservoir interval was subdivided into faces that were determined by integrating core, well log, and seismic interpretations. predictions of porosity and lithology used in building the geologic model were made using seismic attributes calculated from acoustic impedance data. 8 figs.
Subject-field components as integrated parts of LSP dictionaries
Bergenholtz, Henning; Nielsen, Sandro
2006-01-01
The dividing line between specialised lexicography and terminography is non-existent. The focus of preparing dictionaries for a particular subject-field should be the needs of its user group in specific situations. This is catered for by the modern theory of dictionary functions and includes...... the introduction of subject-field components in dictionaries. Dictionary functions are communication-orientated or cognition-orientated, and the lexicographers must identify the relevant functions and select and present the data so that the dictionary satisfies the needs of the users. The optimal dictionary...
Exact results for integrable asymptotically-free field theories
Evans, J M; Evans, Jonathan M; Hollowood, Timothy J
1995-01-01
An account is given of a technique for testing the equivalence between an exact factorizable S-matrix and an asymptotically-free Lagrangian field theory in two space-time dimensions. The method provides a way of resolving CDD ambiguities in the S-matrix and it also allows for an exact determination of the physical mass in terms of the Lambda parameter of perturbation theory. The results for various specific examples are summarized. (To appear in the Proceedings of the Conference on Recent Developments in Quantum Field Theory and Statistical Mechanics, ICTP, Trieste, Easter 1995).
Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field
Park, Sung Min; Wang, Bo; Das, Saikat; Chae, Seung Chul; Chung, Jin-Seok; Yoon, Jong-Gul; Chen, Long-Qing; Yang, Sang Mo; Noh, Tae Won
2018-05-01
Flexoelectricity is an electromechanical coupling between electrical polarization and a strain gradient1 that enables mechanical manipulation of polarization without applying an electrical bias2,3. Recently, flexoelectricity was directly demonstrated by mechanically switching the out-of-plane polarization of a uniaxial system with a scanning probe microscope tip3,4. However, the successful application of flexoelectricity in low-symmetry multiaxial ferroelectrics and therefore active manipulation of multiple domains via flexoelectricity have not yet been achieved. Here, we demonstrate that the symmetry-breaking flexoelectricity offers a powerful route for the selective control of multiple domain switching pathways in multiaxial ferroelectric materials. Specifically, we use a trailing flexoelectric field that is created by the motion of a mechanically loaded scanning probe microscope tip. By controlling the SPM scan direction, we can deterministically select either stable 71° ferroelastic switching or 180° ferroelectric switching in a multiferroic magnetoelectric BiFeO3 thin film. Phase-field simulations reveal that the amplified in-plane trailing flexoelectric field is essential for this domain engineering. Moreover, we show that mechanically switched domains have a good retention property. This work opens a new avenue for the deterministic selection of nanoscale ferroelectric domains in low-symmetry materials for non-volatile magnetoelectric devices and multilevel data storage.
Dirac particle in a constant magnetic field: path integral treatment
Merdaci, A.; Boudiaf, N.; Chetouani, L. [Univ. Mentouri, Constantine (Algeria). Dept. de Physique
2008-05-15
The Green functions related to a Dirac particle in a constant magnetic field are calculated via two methods, global and local, by using the supersymmetric formalism of Fradkin and Gitman. The energy spectrum as well as the corresponding wave functions are extracted following these two approaches. (orig.)
Dirac particle in a constant magnetic field: path integral treatment
Merdaci, A.; Boudiaf, N.; Chetouani, L.
2008-01-01
The Green functions related to a Dirac particle in a constant magnetic field are calculated via two methods, global and local, by using the supersymmetric formalism of Fradkin and Gitman. The energy spectrum as well as the corresponding wave functions are extracted following these two approaches. (orig.)
Structure of the EGF receptor transactivation circuit integrates multiple signals with cell context
Joslin, Elizabeth J.; Shankaran, Harish; Opresko, Lee K.; Bollinger, Nikki; Lauffenburger, Douglas A.; Wiley, H. S.
2010-05-10
Transactivation of the epidermal growth factor receptor (EGFR) has been proposed to be a mechanism by which a variety of cellular inputs can be integrated into a single signaling pathway, but the regulatory topology of this important system is unclear. To understand the transactivation circuit, we first created a “non-binding” reporter for ligand shedding. We then quantitatively defined how signals from multiple agonists were integrated both upstream and downstream of the EGFR into the extracellular signal regulated kinase (ERK) cascade in human mammary epithelial cells. We found that transactivation is mediated by a recursive autocrine circuit where ligand shedding drives EGFR-stimulated ERK that in turn drives further ligand shedding. The time from shedding to ERK activation is fast (<5 min) whereas the recursive feedback is slow (>15 min). Simulations showed that this delay in positive feedback greatly enhanced system stability and robustness. Our results indicate that the transactivation circuit is constructed so that the magnitude of ERK signaling is governed by the sum of multiple direct inputs, while recursive, autocrine ligand shedding controls signal duration.
CLASS-PAIR-GUIDED MULTIPLE KERNEL LEARNING OF INTEGRATING HETEROGENEOUS FEATURES FOR CLASSIFICATION
Q. Wang
2017-10-01
Full Text Available In recent years, many studies on remote sensing image classification have shown that using multiple features from different data sources can effectively improve the classification accuracy. As a very powerful means of learning, multiple kernel learning (MKL can conveniently be embedded in a variety of characteristics. The conventional combined kernel learned by MKL can be regarded as the compromise of all basic kernels for all classes in classification. It is the best of the whole, but not optimal for each specific class. For this problem, this paper proposes a class-pair-guided MKL method to integrate the heterogeneous features (HFs from multispectral image (MSI and light detection and ranging (LiDAR data. In particular, the one-against-one strategy is adopted, which converts multiclass classification problem to a plurality of two-class classification problem. Then, we select the best kernel from pre-constructed basic kernels set for each class-pair by kernel alignment (KA in the process of classification. The advantage of the proposed method is that only the best kernel for the classification of any two classes can be retained, which leads to greatly enhanced discriminability. Experiments are conducted on two real data sets, and the experimental results show that the proposed method achieves the best performance in terms of classification accuracies in integrating the HFs for classification when compared with several state-of-the-art algorithms.
MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES
Y. Di
2017-05-01
Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.
Chang, P.; Lee, S.Y.; Yan, Y.T.
2006-01-01
A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders
Chang, P
2004-01-01
A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders
Marzec, J.; Pawlowski, Z.
1982-01-01
The work describes the construction of a proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons. It has been shown that in this counter filled with Penning's mixtures Ne+Ar+CO 2 , Ne+CH 4 and Ar+C 2 H 2 , much higher resolutions are obtained than in typical cylindrical counters. In the counter described filled with a mixture of Ne+1%CH 4 , a resolution of fwhm=10.5% has been obtained for E=5.9 keV. (orig.)
Marzec, J.; Pawlowski, Z. (Politechnika Warszawska (Poland). Inst. Radioelektroniki)
1982-09-15
The work describes the construction of a proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons. It has been shown that in this counter filled with Penning's mixtures Ne+Ar+CO/sub 2/, Ne+CH/sub 4/ and Ar+C/sub 2/H/sub 2/, much higher resolutions are obtained than in typical cylindrical counters. In the counter described filled with a mixture of Ne+1%CH/sub 4/, a resolution of fwhm=10.5% has been obtained for E=5.9 keV.
Peeters, E.T.H.M.
2001-01-01
Organisms are always exposed to several simultaneously operating stressors in nature. It appears that the combined effects of multiple stressors cannot be understood as a simple product of their individual effects. To understand how multiple stressors affect the composition and functioning
Cluster of Sound Speed Fields by an Integral Measure
2010-06-01
the same cost in time. The increasing the number of sensor depths does not cause execution time to increase. And finally assume that the time required...to be P = Z − ∫ 0 b ∂C(ρ, θ, λ) ∂ρ ∂C(ρ, θ, λ) ∂ρ dρ (2) where (ρ,θ,λ) are the usual geocentric spherical coordinates, and the limits of integration...but using spherical coordinates requires that the horizontal (θ , λ) terms be normalized by the radius. In the case of geocentric coordinates this
Tackling Energy Loss for High-Efficiency Organic Solar Cells with Integrated Multiple Strategies.
Zuo, Lijian; Shi, Xueliang; Jo, Sae Byeok; Liu, Yun; Lin, Fracis; Jen, Alex K-Y
2018-04-01
Limited by the various inherent energy losses from multiple channels, organic solar cells show inferior device performance compared to traditional inorganic photovoltaic techniques, such as silicon and CuInGaSe. To alleviate these fundamental limitations, an integrated multiple strategy is implemented including molecular design, interfacial engineering, optical manipulation, and tandem device construction into one cell. Considering the close correlation among these loss channels, a sophisticated quantification of energy-loss reduction is tracked along with each strategy in a perspective to reach rational overall optimum. A novel nonfullerene acceptor, 6TBA, is synthesized to resolve the thermalization and V OC loss, and another small bandgap nonfullerene acceptor, 4TIC, is used in the back sub-cell to alleviate transmission loss. Tandem architecture design significantly reduces the light absorption loss, and compensates carrier dynamics and thermalization loss. Interfacial engineering further reduces energy loss from carrier dynamics in the tandem architecture. As a result of this concerted effort, a very high power conversion efficiency (13.20%) is obtained. A detailed quantitative analysis on the energy losses confirms that the improved device performance stems from these multiple strategies. The results provide a rational way to explore the ultimate device performance through molecular design and device engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rice, Glenn; Teuschler, Linda; MacDonel, Margaret; Butler, Jim; Finster, Molly; Hertzberg, Rick; Harou, Lynne
2007-01-01
Available in abstract form only. Full text of publication follows: As information about environmental contamination has increased in recent years, so has public interest in the combined effects of multiple contaminants. This interest has been highlighted by recent tragedies such as the World Trade Center disaster and hurricane Katrina. In fact, assessing multiple contaminants, exposures, and effects has long been an issue for contaminated sites, including U.S. Department of Energy (DOE) legacy waste sites. Local citizens have explicitly asked the federal government to account for cumulative risks, with contaminants moving offsite via groundwater flow, surface runoff, and air dispersal being a common emphasis. Multiple exposures range from ingestion and inhalation to dermal absorption and external gamma irradiation. Three types of concerns can lead to cumulative assessments: (1) specific sources or releases - e.g., industrial facilities or accidental discharges; (2) contaminant levels - in environmental media or human tissues; and (3) elevated rates of disease - e.g., asthma or cancer. The specific initiator frames the assessment strategy, including a determination of appropriate models to be used. Approaches are being developed to better integrate a variety of data, extending from environmental to internal co-location of contaminants and combined effects, to support more practical assessments of cumulative health risks. (authors)
Integrable models in 1+1 dimensional quantum field theory
Faddeev, Ludvig.
1982-09-01
The goal of this lecture is to present a unifying view on the exactly soluble models. There exist several reasons arguing in favor of the 1+1 dimensional models: every exact solution of a field-theoretical model can teach about the ability of quantum field theory to describe spectrum and scattering; some 1+1 d models have physical applications in the solid state theory. There are several ways to become acquainted with the methods of exactly soluble models: via classical statistical mechanics, via Bethe Ansatz, via inverse scattering method. Fundamental Poisson bracket relation FPR and/or fundamental commutation relations FCR play fundamental role. General classification of FPR is given with promizing generalizations to FCR
On integration over Fermi fields in chiral and supersymmetric theories
Vainshtein, A.I.; Zakharov, V.I.
1982-01-01
Chiral and supersymmetric theories are considered which cannot be formulated directly in Euclidean space or regularized by means of massive fields in a manifestly gauge invariant fashion. In case of so called real representations a simple recipe is proposed which allows for unambiguous evaluation of the fermionic determinant circumventing the difficulties mentioned. As application of the general technique the effective fermionic interactions induced by instantons of small size within simplest chiral and supesymmetric theories are calculated (SU(2) as the gauge group and one doublet of Weyl spinors or a triplet of Majorana spinors, respectively). In the latter case the effective Lagrangian violates explicitly invariance under supersymmetric transformations on the fermionic and vector fields defined in standard way [ru
Integration of multiple determinants in the neuronal computation of economic values.
Raghuraman, Anantha P; Padoa-Schioppa, Camillo
2014-08-27
Economic goods may vary on multiple dimensions (determinants). A central conjecture in decision neuroscience is that choices between goods are made by comparing subjective values computed through the integration of all relevant determinants. Previous work identified three groups of neurons in the orbitofrontal cortex (OFC) of monkeys engaged in economic choices: (1) offer value cells, which encode the value of individual offers; (2) chosen value cells, which encode the value of the chosen good; and (3) chosen juice cells, which encode the identity of the chosen good. In principle, these populations could be sufficient to generate a decision. Critically, previous work did not assess whether offer value cells (the putative input to the decision) indeed encode subjective values as opposed to physical properties of the goods, and/or whether offer value cells integrate multiple determinants. To address these issues, we recorded from the OFC while monkeys chose between risky outcomes. Confirming previous observations, three populations of neurons encoded the value of individual offers, the value of the chosen option, and the value-independent choice outcome. The activity of both offer value cells and chosen value cells encoded values defined by the integration of juice quantity and probability. Furthermore, both populations reflected the subjective risk attitude of the animals. We also found additional groups of neurons encoding the risk associated with a particular option, the risky nature of the chosen option, and whether the trial outcome was positive or negative. These results provide substantial support for the conjecture described above and for the involvement of OFC in good-based decisions. Copyright © 2014 the authors 0270-6474/14/3311583-21$15.00/0.
Integrated Community Based Coastal Management: Lesson From The Field
Hadi, Sudharto P.
2018-02-01
Coastal abrasion has been occurred throughout coastline of Java reaching 745 km at length, account for 44% of total Java’s coastline. This phenomena is caused by reclamation, cutting of mangrove, land-use change and other human activities specifically at coastal area. Coastal abrasion stimulates flood or tidal flood, when sea level rise, the sea water flows to the land undated fish pond, settlement and other infrastructures standing at coastal area. Tidal flood destroys settlement lead to significant decrease of property value: land and house. Coastal abrasion caused lose people’s job and income. One measure taken by local community is mangrove cultivation intended to prevent sea level rise flowing to the inland. However many efforts taken by community frequently fail because of un-integrated approach. This paper reviews a mangrove plantations in Mangunharjo, district of Tugu, Semarang, Central Java by utilizing an innovative approach integrating environmental, economic and social aspect. These mangrove cultivations environmentally useful to prevent coastal abrasion, economically creating income for local people and socially supported by local community. These three approaches ensure sustainability of mangrove’s culture.
Near-Field Coupling and Mode Competition in Multiple Anapole Systems
Mazzone, Valerio
2017-05-24
All-dielectric metamaterials are a promising platform for the development of integrated photonics applications. In this work, we investigate the mutual coupling and interaction of an ensemble of anapole states in silicon nanoparticles. Anapoles are intriguing non-radiating states originated by the superposition of internal multipole components which cancel each other in the far-field. While the properties of anapole states in single nanoparticles have been extensively studied, the mutual interaction and coupling of several anapole states have not been characterized. By combining first-principles simulations and analytical results, we demonstrate the transferring of anapole states across an ensemble of nanoparticles, opening to the development of advanced integrated devices and robust waveguides relying on non-radiating modes.
The Blurred Boundaries and Multiple Effects of European Integration and Globalisation
Lynggaard, Kennet
2015-01-01
of how European integration contribute to, and are effected by, globalisation. By means of concrete research examples the chapter discusses the advantages of the research strategies and tools typically applied on the area and the challenges we face in this regard. This includes discussions of top......This chapter presents analytical strategies for the study of European integration and Globalisation in concert. This is an increasingly important as well as a highly diverse field of inquiry. The chapter presents a series of research clusters in various ways concerned with the fundamental questions......-down and bottom-up research designs, process tracing, counterfactual analysis, comparative designs and comparative temporal analysis. The chapter gives special attention to the promotion of cross-fertilisation in this otherwise dispersed area of research and concludes by giving pointers to potential areas...
Optical design of a Michelson wide-field multiple-aperture telescope
Cassaing, Frederic; Sorrente, Beatrice; Fleury, Bruno; Laubier, David
2004-02-01
Multiple-Aperture Optical Telescopes (MAOTs) are a promising solution for very high resolution imaging. In the Michelson configuration, the instrument is made of sub-telescopes distributed in the pupil and combined by a common telescope via folding periscopes. The phasing conditions of the sub-pupils lead to specific optical constraints in these subsystems. The amplitude of main contributors to the wavefront error (WFE) is given as a function of high level requirements (such as field or resolution) and free parameters, mainly the sub-telescope type, magnification and diameter. It is shown that for the periscopes, the field-to-resolution ratio is the main design driver and can lead to severe specifications. The effect of sub-telescopes aberrations on the global WFE can be minimized by reducing their diameter. An analytical tool for the MAOT design has been derived from this analysis, illustrated and validated in three different cases: LEO or GEO Earth observation and astronomy with extremely large telescopes. The last two cases show that a field larger than 10 000 resolution elements can be covered with a very simple MAOT based on Mersenne paraboloid-paraboloid sub-telescopes. Michelson MAOTs are thus a solution to be considered for high resolution wide-field imaging, from space or ground.
Chen, Tianle; Zeng, Donglin
2015-01-01
Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419
Integrated Stewardship of NASA Satellite and Field Campaign Data
Hausman, J.; Tsontos, V. M.; Hardman, S. H.
2016-02-01
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) is NASA's archive, steward and distributor for physical oceanographic satellite data. Those data are typically organized along the lines of single parameters, such as Sea Surface Temperature, Ocean Winds, Salinity, etc. However there is a need supplement satellite data with in situ and various other remote sensing data to provide higher spatial and temporal sampling and information on physical processes that the satellites are not capable of measuring. This presentation will discuss how PO.DAAC is creating a stewardship and distribution plan that will accommodate satellite, in situ and other remote sensing data that can be used to solve a more integrated approach to data access and utilization along thematic lines in support of science and applications, specifically those posed by Salinity Processes in the Upper Ocean Regional Study (SPURS) and Oceans Melting Greenland (OMG) projects. SPURS used shipboard data, moorings and in situ instruments to investigate changes in salinity and how that information can be used in explaining the water cycle. OMG is studying ice melt in Greenland and how it contributes to changes in sea level through shipboard measurements, airborne and a variety of in situ instruments. PO.DAAC plans on adapting to stewarding and distributing these varieties of data through applications of file format and metadata standards (so data are discoverable and interoperable), extend the internal data system (to allow for better archiving, collection generation and querying of in situ and airborne data) and integration into tools (visualization and data access). We are also working on Virtual Collections with ESDWG, which could provide access to relevant data across DAACs/Agencies along thematic lines. These improvements will improve long-term data management and make it easier for users of various background, regardless if remote sensing or in situ, to discover and use the data.
On the mixed discretization of the time domain magnetic field integral equation
Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan
2012-01-01
Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed
Integrated vehicle-based safety systems light-vehicle field operational test key findings report.
2011-01-01
"This document presents key findings from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michigan Transportat...
2010-12-01
"This document presents the methodology and results from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michi...
2009-12-22
This document presents the University of Michigan Transportation Research Institutes plan to : perform analysis of data collected from the light vehicle platform field operational test of the : Integrated Vehicle-Based Safety Systems (IVBSS) progr...
2009-11-23
This document presents the University of Michigan Transportation Research Institutes plan to perform : analysis of data collected from the heavy truck platform field operational test of the Integrated Vehicle- : Based Safety Systems (IVBSS) progra...
Introduction to functional and path integral methods in quantum field theory
Strathdee, J.
1991-11-01
The following aspects concerning the use of functional and path integral methods in quantum field theory are discussed: generating functionals and the effective action, perturbation series, Yang-Mills theory and BRST symmetry. 10 refs, 3 figs
Anon.
1975-01-01
Some recommendations for the design of laboratory and field studies in marine radioecology are formulated. The difficulties concerning the comparability of various experimental methods used to measure the fluxes of radionuclides through marine organisms and ecosystems, and also the use of laboratory results to make predictions for the natural environment are discussed. Three working groups were established during the panel meeting, to consider laboratory experiments, field studies, and the design and execution of integrated laboratory and field studies respectively. A number of supporting papers dealing with marine radioecological experiments were presented
Integration of field data into operational snowmelt-runoff models
Brandt, M.; Bergström, S.
1994-01-01
Conceptual runoff models have become standard tools for operational hydrological forecasting in Scandinavia. These models are normally based on observations from the national climatological networks, but in mountainous areas the stations are few and sometimes not representative. Due to the great economic importance of good hydrological forecasts for the hydro-power industry attempts have been made to improve the model simulations by support from field observations of the snowpack. The snowpack has been mapped by several methods; airborne gamma-spectrometry, airborne georadars, satellites and by conventional snow courses. The studies cover more than ten years of work in Sweden. The conclusion is that field observations of the snow cover have a potential for improvement of the forecasts of inflow to the reservoirs in the mountainous part of the country, where the climatological data coverages is poor. This is pronounced during years with unusual snow distribution. The potential for model improvement is smaller in the climatologically more homogeneous forested lowlands, where the climatological network is denser. The costs of introduction of airborne observations into the modelling procedure are high and can only be justified in areas of great hydropower potential. (author)
An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates
Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.
2007-05-01
The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.
Uhde, Britta; Hahn, W Andreas; Griess, Verena C; Knoke, Thomas
2015-08-01
Multi-criteria decision analysis (MCDA) is a decision aid frequently used in the field of forest management planning. It includes the evaluation of multiple criteria such as the production of timber and non-timber forest products and tangible as well as intangible values of ecosystem services (ES). Hence, it is beneficial compared to those methods that take a purely financial perspective. Accordingly, MCDA methods are increasingly popular in the wide field of sustainability assessment. Hybrid approaches allow aggregating MCDA and, potentially, other decision-making techniques to make use of their individual benefits and leading to a more holistic view of the actual consequences that come with certain decisions. This review is providing a comprehensive overview of hybrid approaches that are used in forest management planning. Today, the scientific world is facing increasing challenges regarding the evaluation of ES and the trade-offs between them, for example between provisioning and regulating services. As the preferences of multiple stakeholders are essential to improve the decision process in multi-purpose forestry, participatory and hybrid approaches turn out to be of particular importance. Accordingly, hybrid methods show great potential for becoming most relevant in future decision making. Based on the review presented here, the development of models for the use in planning processes should focus on participatory modeling and the consideration of uncertainty regarding available information.
Uhde, Britta; Andreas Hahn, W.; Griess, Verena C.; Knoke, Thomas
2015-08-01
Multi-criteria decision analysis (MCDA) is a decision aid frequently used in the field of forest management planning. It includes the evaluation of multiple criteria such as the production of timber and non-timber forest products and tangible as well as intangible values of ecosystem services (ES). Hence, it is beneficial compared to those methods that take a purely financial perspective. Accordingly, MCDA methods are increasingly popular in the wide field of sustainability assessment. Hybrid approaches allow aggregating MCDA and, potentially, other decision-making techniques to make use of their individual benefits and leading to a more holistic view of the actual consequences that come with certain decisions. This review is providing a comprehensive overview of hybrid approaches that are used in forest management planning. Today, the scientific world is facing increasing challenges regarding the evaluation of ES and the trade-offs between them, for example between provisioning and regulating services. As the preferences of multiple stakeholders are essential to improve the decision process in multi-purpose forestry, participatory and hybrid approaches turn out to be of particular importance. Accordingly, hybrid methods show great potential for becoming most relevant in future decision making. Based on the review presented here, the development of models for the use in planning processes should focus on participatory modeling and the consideration of uncertainty regarding available information.
Investigation of acoustic field near to elastic thin plate using integral method
В.І. Токарев
2004-01-01
Full Text Available Investigation of acoustic field near to elastic thin plate using integral method The influence of boundary conditions on sound wave propagation, radiation and transmission through thin elastic plate is investigated. Necessary for that numerical model was found using the Helmholtz equation and equation of oscilated plate by means of integral formulation of the solution for acoustic fields near to elastic thin plate and for bending waves of small amplitudes.
Simulation of sensory integration dysfunction in autism with dynamic neural fields model
Chonnaparamutt, W.; Barakova, E.I.; Rutkowski, L.; Taseusiewicz, R.
2008-01-01
This paper applies dynamic neural fields model [1,23,7] to multimodal interaction of sensory cues obtained from a mobile robot, and shows the impact of different temporal aspects of the integration to the precision of movements. We speculate that temporally uncoordinated sensory integration might be
Integrals of random fields treated by the model correction factor method
Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der
2002-01-01
The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...
Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der
2002-01-01
The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...
Pfreundt, Andrea
This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...
Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria
2016-01-01
This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...
The Magnetic Physical Optics Scattered Field in Terms of a Line Integral
Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik
2000-01-01
An exact line integral representation Is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by a magnetic Hertzian dipole. A numerical example is presented to illustrate the exactness of the line integral representation...
An Exact Line Integral Representation of the Magnetic Physical Optics Scattered Field
Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik
2003-01-01
An exact line integral representation is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by electric or magnetic Hertzian dipoles. The positions of source and observation points can be almost arbitrary. Numerical examples...... are presented to illustrate the exactness of the line integral representation....
An efficient explicit marching on in time solver for magnetic field volume integral equation
Sayed, Sadeed Bin; Ulku, H. Arda; Bagci, Hakan
2015-01-01
An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep
Tijhuis, M J; Pohjola, M V; Gunnlaugsdóttir, H; Kalogeras, N; Leino, O; Luteijn, J M; Magnússon, S H; Odekerken-Schröder, G; Poto, M; Tuomisto, J T; Ueland, O; White, B C; Holm, F; Verhagen, H
2012-01-01
An integrated benefit-risk analysis aims to give guidance in decision situations where benefits do not clearly prevail over risks, and explicit weighing of benefits and risks is thus indicated. The BEPRARIBEAN project aims to advance benefit-risk analysis in the area of food and nutrition by learning from other fields. This paper constitutes the final stage of the project, in which commonalities and differences in benefit-risk analysis are identified between the Food and Nutrition field and other fields, namely Medicines, Food Microbiology, Environmental Health, Economics and Marketing-Finance, and Consumer Perception. From this, ways forward are characterized for benefit-risk analysis in Food and Nutrition. Integrated benefit-risk analysis in Food and Nutrition may advance in the following ways: Increased engagement and communication between assessors, managers, and stakeholders; more pragmatic problem-oriented framing of assessment; accepting some risk; pre- and post-market analysis; explicit communication of the assessment purpose, input and output; more human (dose-response) data and more efficient use of human data; segmenting populations based on physiology; explicit consideration of value judgments in assessment; integration of multiple benefits and risks from multiple domains; explicit recognition of the impact of consumer beliefs, opinions, views, perceptions, and attitudes on behaviour; and segmenting populations based on behaviour; the opportunities proposed here do not provide ultimate solutions; rather, they define a collection of issues to be taken account of in developing methods, tools, practices and policies, as well as refining the regulatory context, for benefit-risk analysis in Food and Nutrition and other fields. Thus, these opportunities will now need to be explored further and incorporated into benefit-risk practice and policy. If accepted, incorporation of these opportunities will also involve a paradigm shift in Food and Nutrition benefit
Integral of notion for a quantum Sutherland-Calogero system in the external field
Meshcheryakov, D.V.; Tverskoj, V.B.
2000-01-01
The Sutherland-Calogero three-particle system in the external field is considered. The formula for ordering non-commutating variables in the motion integrals is proposed. The motion integrals are obtained in an obvious form. The problem on analytical evidence of the system complete integration by arbitrary N remains open. The formula, proposed in this paper for ordering non-commutating variables in the I n , may be applied by conducting the total evidence [ru
Imaging FTS: A Different Approach to Integral Field Spectroscopy
Laurent Drissen
2014-01-01
Full Text Available Imaging Fourier transform spectroscopy (iFTS is a promising, although technically very challenging, option for wide-field hyperspectral imagery. We present in this paper an introduction to the iFTS concept and its advantages and drawbacks, as well as examples of data obtained with a prototype iFTS, SpIOMM, attached to the 1.6 m telescope of the Observatoire du Mont-Mégantic: emission line ratios in the spiral galaxy NGC 628 and absorption line indices in the giant elliptical M87. We conclude by introducing SpIOMM's successor, SITELLE, which will be installed at the Canada-France-Hawaii Telescope in 2014.
Interaction with a field: a simple integrable model with backreaction
Mouchet, Amaury
2008-09-01
The classical model of an oscillator linearly coupled to a string captures, for a low price in technique, many general features of more realistic models for describing a particle interacting with a field or an atom in an electromagnetic cavity. The scattering matrix and the asymptotic in and out-waves on the string can be computed exactly and the phenomenon of resonant scattering can be introduced in the simplest way. The dissipation induced by the coupling of the oscillator to the string can be studied completely. In the case of a d'Alembert string, the backreaction leads to an Abraham-Lorentz-Dirac-like equation. In the case of a Klein-Gordon string, one can see explicitly how radiation governs the (meta)stability of the (quasi)bounded mode.
Evaluation of compensation in breast radiotherapy: a planning study using multiple static fields
Donovan, Ellen M.; Johnson, Ursula; Shentall, Glyn; Evans, Philip M.; Neal, Anthony J.; Yarnold, John R.
2000-01-01
Purpose: A method that uses electronic portal imaging to design intensity-modulated beams for compensation in breast radiotherapy was implemented using multiple static fields in a planning study. We present the results of the study to verify the algorithm, and to assess improvements to the dosimetry. Methods and Materials: Fourteen patients were imaged with computed tomography (CT) and on a treatment unit using an electronic portal imager. The portal imaging data were used to design intensity-modulated beams to give an ideal dose distribution in the breast. These beams were implemented as multiple static fields added to standard wedged tangential fields. Planning of these treatments was performed on a commercial treatment planning system (Target 2, IGE Medical Systems, Slough, U.K.) using the CT data for each patient. Dose-volume histogram (DVH) analysis of the plans with and without multileaf collimator (MLC) compensation was carried out. This work has been used as the basis for a randomized clinical trial investigating whether improvements in dosimetry are correlated with the reduction of long-term side effects from breast radiotherapy. Results: The planning analysis showed a mean increase in target volume receiving 95-105% of prescribed dose of 7.5% (range -0.8% to 15.9%) when additional MLC compensation was applied. There was no change to the minimum dose for all 14 patient data sets. The change in the volume of breast tissue receiving over 105% of prescribed dose, when applying MLC compensation, was between -1.4% and 11.9%, with positive numbers indicating an improvement. These effects showed a correlation with breast size; the larger the breast the greater the amount of improvement. Conclusions: The method for designing compensation for breast treatments using an electronic portal imager has been verified using planning on CT data for 14 patients. An improvement was seen in planning when applying MLC compensation and this effect was greater the larger the
Integrating Decentralized Indoor Evacuation with Information Depositories in the Field
Haifeng Zhao
2017-07-01
Full Text Available The lonelier evacuees find themselves, the riskier become their wayfinding decisions. This research supports single evacuees in a dynamically changing environment with risk-aware guidance. It deploys the concept of decentralized evacuation, where evacuees are guided by smartphones acquiring environmental knowledge and risk information via exploration and knowledge sharing by peer-to-peer communication. Peer-to-peer communication, however, relies on the chance that people come into communication range with each other. This chance can be low. To bridge between people being not at the same time at the same places, this paper suggests information depositories at strategic locations to improve information sharing. Information depositories collect the knowledge acquired by the smartphones of evacuees passing by, maintain this information, and convey it to other passing-by evacuees. Multi-agent simulation implementing these depositories in an indoor environment shows that integrating depositories improves evacuation performance: It enhances the risk awareness and consequently increases the chance that people survive and reduces their evacuation time. For evacuating dynamic events, deploying depositories at staircases has been shown more effective than deploying them in corridors.
Musick, Charles R [Castro Valley, CA; Critchlow, Terence [Livermore, CA; Ganesh, Madhaven [San Jose, CA; Slezak, Tom [Livermore, CA; Fidelis, Krzysztof [Brentwood, CA
2006-12-19
A system and method is disclosed for integrating and accessing multiple data sources within a data warehouse architecture. The metadata formed by the present method provide a way to declaratively present domain specific knowledge, obtained by analyzing data sources, in a consistent and useable way. Four types of information are represented by the metadata: abstract concepts, databases, transformations and mappings. A mediator generator automatically generates data management computer code based on the metadata. The resulting code defines a translation library and a mediator class. The translation library provides a data representation for domain specific knowledge represented in a data warehouse, including "get" and "set" methods for attributes that call transformation methods and derive a value of an attribute if it is missing. The mediator class defines methods that take "distinguished" high-level objects as input and traverse their data structures and enter information into the data warehouse.
2012-07-05
...Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 31, 2012, under section 337 of the Tariff Act of 1930, as amended, on behalf of Industrial Technology Research Institute of Taiwan and ITRI International of San Jose, California. The complaint alleges violations of section 337 based upon the importation into the United States, the sale for importation, and the sale within the United States after importation of certain integrated circuit packages provided with multiple heat-conducting paths and products containing same by reason of infringement of certain claims of U.S. Patent No. 5,710,459 (``the `459 patent''). The complaint further alleges that an industry in the United States exists as required by subsection (a)(2) of section 337. The complainants request that the Commission institute an investigation and, after the investigation, issue an exclusion order and cease and desist order.
Chaos Synchronization Based on Unknown Input Proportional Multiple-Integral Fuzzy Observer
T. Youssef
2013-01-01
Full Text Available This paper presents an unknown input Proportional Multiple-Integral Observer (PIO for synchronization of chaotic systems based on Takagi-Sugeno (TS fuzzy chaotic models subject to unmeasurable decision variables and unknown input. In a secure communication configuration, this unknown input is regarded as a message encoded in the chaotic system and recovered by the proposed PIO. Both states and outputs of the fuzzy chaotic models are subject to polynomial unknown input with kth derivative zero. Using Lyapunov stability theory, sufficient design conditions for synchronization are proposed. The PIO gains matrices are obtained by resolving linear matrix inequalities (LMIs constraints. Simulation results show through two TS fuzzy chaotic models the validity of the proposed method.
The continuous end-state comfort effect: weighted integration of multiple biases.
Herbort, Oliver; Butz, Martin V
2012-05-01
The grasp orientation when grasping an object is frequently aligned in anticipation of the intended rotation of the object (end-state comfort effect). We analyzed grasp orientation selection in a continuous task to determine the mechanisms underlying the end-state comfort effect. Participants had to grasp a box by a circular handle-which allowed for arbitrary grasp orientations-and then had to rotate the box by various angles. Experiments 1 and 2 revealed both that the rotation's direction considerably determined grasp orientations and that end-postures varied considerably. Experiments 3 and 4 further showed that visual stimuli and initial arm postures biased grasp orientations if the intended rotation could be easily achieved. The data show that end-state comfort but also other factors determine grasp orientation selection. A simple mechanism that integrates multiple weighted biases can account for the data.
Walzer, Andreas; Schausberger, Peter
2013-01-01
Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040
Quantifying multiple telecouplings using an integrated suite of spatially-explicit tools
Tonini, F.; Liu, J.
2016-12-01
Telecoupling is an interdisciplinary research umbrella concept that enables natural and social scientists to understand and generate information for managing how humans and nature can sustainably coexist worldwide. To systematically study telecoupling, it is essential to build a comprehensive set of spatially-explicit tools for describing and quantifying multiple reciprocal socioeconomic and environmental interactions between a focal area and other areas. Here we introduce the Telecoupling Toolbox, a new free and open-source set of tools developed to map and identify the five major interrelated components of the telecoupling framework: systems, flows, agents, causes, and effects. The modular design of the toolbox allows the integration of existing tools and software (e.g. InVEST) to assess synergies and tradeoffs associated with policies and other local to global interventions. We show applications of the toolbox using a number of representative studies that address a variety of scientific and management issues related to telecouplings throughout the world. The results suggest that the toolbox can thoroughly map and quantify multiple telecouplings under various contexts while providing users with an easy-to-use interface. It provides a powerful platform to address globally important issues, such as land use and land cover change, species invasion, migration, flows of ecosystem services, and international trade of goods and products.
Mauricio Carvallo Aceves
2016-02-01
Full Text Available The implementation of stormwater Best Management Practices (BMPs could help re-establish the natural hydrological cycle of watersheds after urbanization, with each BMP presenting a different performance across a range of criteria (flood prevention, pollutant removal, etc.. Additionally, conflicting views from the relevant stakeholders may arise, resulting in a complex selection process. This paper proposes a methodology for BMP selection based on the application of multi-criteria decision aid (MCDA methods, integrating multiple stakeholder priorities and BMP combinations. First, in the problem definition, the MCDA methods, relevant criteria and design guidelines are selected. Next, information from the preliminary analysis of the watershed is used to obtain a list of relevant BMPs. The third step comprises the watershed modeling and analysis of the BMP alternatives to obtain performance values across purely objective criteria. Afterwards, a stakeholder analysis based on survey applications is carried out to obtain social performance values and criteria priorities. Then, the MCDA methods are applied to obtain the final BMP rankings. The last step considers the sensitivity analysis and rank comparisons in order to draw the final conclusions and recommendations. Future improvements to the methodology could explore inclusion of multiple objective analysis, and alternative means for obtaining social performance values.
Jerome J. Schleier III
2015-01-01
Full Text Available Decision analysis often considers multiple lines of evidence during the decision making process. Researchers and government agencies have advocated for quantitative weight-of-evidence approaches in which multiple lines of evidence can be considered when estimating risk. Therefore, we utilized Bayesian Markov Chain Monte Carlo to integrate several human-health risk assessment, biomonitoring, and epidemiology studies that have been conducted for two common insecticides (malathion and permethrin used for adult mosquito management to generate an overall estimate of risk quotient (RQ. The utility of the Bayesian inference for risk management is that the estimated risk represents a probability distribution from which the probability of exceeding a threshold can be estimated. The mean RQs after all studies were incorporated were 0.4386, with a variance of 0.0163 for malathion and 0.3281 with a variance of 0.0083 for permethrin. After taking into account all of the evidence available on the risks of ULV insecticides, the probability that malathion or permethrin would exceed a level of concern was less than 0.0001. Bayesian estimates can substantially improve decisions by allowing decision makers to estimate the probability that a risk will exceed a level of concern by considering seemingly disparate lines of evidence.
PMAS: The Potsdam Multi-Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak
Kelz, Andreas; Verheijen, Marc A. W.; Roth, Martin M.; Bauer, Svend M.; Becker, Thomas; Paschke, Jens; Popow, Emil; Sánchez, Sebastian F.; Laux, Uwe
2006-01-01
PPak is a new fiber-based integral field unit (IFU) developed at the Astrophysical Institute of Potsdam and implemented as a module into the existing Potsdam Multi-Aperture Spectrophotometer (PMAS) spectrograph. The purpose of PPak is to provide an extended field of view with a large
The Athena X-ray Integral Field Unit (X-IFU)
Barret, Didier; Lam Trong, Thien; den Herder, Jan-Willem; Piro, Luigi; Barcons, Xavier; Huovelin, Juhani; Kelley, Richard; Mas-Hesse, J. Miguel; Mitsuda, Kazuhisa; Paltani, Stéphane; Rauw, Gregor; RoŻanska, Agata; Wilms, Joern; Barbera, Marco; Bozzo, Enrico; Ceballos, Maria Teresa; Charles, Ivan; Decourchelle, Anne; den Hartog, Roland; Duval, Jean-Marc; Fiore, Fabrizio; Gatti, Flavio; Goldwurm, Andrea; Jackson, Brian; Jonker, Peter; Kilbourne, Caroline; Macculi, Claudio; Mendez, Mariano; Molendi, Silvano; Orleanski, Piotr; Pajot, François; Pointecouteau, Etienne; Porter, Frederick; Pratt, Gabriel W.; Prêle, Damien; Ravera, Laurent; Renotte, Etienne; Schaye, Joop; Shinozaki, Keisuke; Valenziano, Luca; Vink, Jacco; Webb, Natalie; Yamasaki, Noriko; Delcelier-Douchin, Françoise; Le Du, Michel; Mesnager, Jean-Michel; Pradines, Alice; Branduardi-Raymont, Graziella; Dadina, Mauro; Finoguenov, Alexis; Fukazawa, Yasushi; Janiuk, Agnieszka; Miller, Jon; Nazé, Yaël; Nicastro, Fabrizio; Sciortino, Salvatore; Torrejon, Jose Miguel; Geoffray, Hervé; Hernandez, Isabelle; Luno, Laure; Peille, Philippe; André, Jérôme; Daniel, Christophe; Etcheverry, Christophe; Gloaguen, Emilie; Hassin, Jérémie; Hervet, Gilles; Maussang, Irwin; Moueza, Jérôme; Paillet, Alexis; Vella, Bruno; Campos Garrido, Gonzalo; Damery, Jean-Charles; Panem, Chantal; Panh, Johan; Bandler, Simon; Biffi, Jean-Marc; Boyce, Kevin; Clénet, Antoine; DiPirro, Michael; Jamotton, Pierre; Lotti, Simone; Schwander, Denis; Smith, Stephen; van Leeuwen, Bert-Joost; van Weers, Henk; Brand, Thorsten; Cobo, Beatriz; Dauser, Thomas; de Plaa, Jelle; Cucchetti, Edoardo
2016-01-01
The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5" pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5
Yuan Chang; Li Yong; Ye Zhiqiang
2011-01-01
To realize the coordination in multi-fields' work and information sharing, by applying the method of Enterprise Architecture (EA), the business architecture, functional flow and application architecture of Nuclear Power Plant's operation preparation information integrated platform are designed, which can realize the information sharing and coordination of multi fields. (authors)
Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches
Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo
This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.
The blackboard model - A framework for integrating multiple cooperating expert systems
Erickson, W. K.
1985-01-01
The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.
Ducrotoy, M J; Yahyaoui Azami, H; El Berbri, I; Bouslikhane, M; Fassi Fihri, O; Boué, F; Petavy, A F; Dakkak, A; Welburn, S; Bardosh, K L
2015-12-01
Integrating the control of multiple neglected zoonoses at the community-level holds great potential, but critical data is missing to inform the design and implementation of different interventions. In this paper we present an evaluation of an integrated health messaging intervention, using powerpoint presentations, for five bacterial (brucellosis and bovine tuberculosis) and dog-associated (rabies, cystic echinococcosis and leishmaniasis) zoonotic diseases in Sidi Kacem Province, northwest Morocco. Conducted by veterinary and epidemiology students between 2013 and 2014, this followed a process-based approach that encouraged sequential adaptation of images, key messages, and delivery strategies using auto-evaluation and end-user feedback. We describe the challenges and opportunities of this approach, reflecting on who was targeted, how education was conducted, and what tools and approaches were used. Our results showed that: (1) replacing words with local pictures and using "hands-on" activities improved receptivity; (2) information "overload" easily occurred when disease transmission pathways did not overlap; (3) access and receptivity at schools was greater than at the community-level; and (4) piggy-backing on high-priority diseases like rabies offered an important avenue to increase knowledge of other zoonoses. We conclude by discussing the merits of incorporating our validated education approach into the school curriculum in order to influence long-term behaviour change. Copyright © 2015 Elsevier B.V. All rights reserved.
Near Field Communication-based telemonitoring with integrated ECG recordings.
Morak, J; Kumpusch, H; Hayn, D; Leitner, M; Scherr, D; Fruhwald, F M; Schreier, G
2011-01-01
Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system's technical feasibility, usability and patient's adherence to twice daily usage. 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients.
BIGRE: A LOW CROSS-TALK INTEGRAL FIELD UNIT TAILORED FOR EXTRASOLAR PLANETS IMAGING SPECTROSCOPY
Antichi, Jacopo; Mouillet, David; Puget, Pascal; Beuzit, Jean-Luc; Dohlen, Kjetil; Gratton, Raffaele G.; Mesa, Dino; Claudi, Riccardo U.; Giro, Enrico; Boccaletti, Anthony
2009-01-01
Integral field spectroscopy represents a powerful technique for the detection and characterization of extrasolar planets through high-contrast imaging since it allows us to obtain simultaneously a large number of monochromatic images. These can be used to calibrate and then to reduce the impact of speckles, once their chromatic dependence is taken into account. The main concern in designing integral field spectrographs for high-contrast imaging is the impact of the diffraction effects and the noncommon path aberrations together with an efficient use of the detector pixels. We focus our attention on integral field spectrographs based on lenslet arrays, discussing the main features of these designs: the conditions of appropriate spatial and spectral sampling of the resulting spectrograph's slit functions and their related cross-talk terms when the system works at the diffraction limit. We present a new scheme for the integral field unit based on a dual-lenslet device (BIGRE), that solves some of the problems related to the classical Traitement Integral des Galaxies par l'Etude de leurs Rays (TIGER) design when used for such applications. We show that BIGRE provides much lower cross-talk signals than TIGER, allowing a more efficient use of the detector pixels and a considerable saving of the overall cost of a lenslet-based integral field spectrograph.
Gómez Rodríguez, Rafael Ángel
2014-01-01
To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.
Coelho, L A A [Programa de Pos-Graduacao em Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, Rio de Janeiro, RJ, 20550-900 (Brazil); Skea, J E F [Departamento de Fisica Teorica, Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, Rio de Janeiro, RJ, 20550-900 (Brazil); Stuchi, T J [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68528, Rio de Janeiro, RJ, 21945-970 (Brazil)], E-mail: luis@dft.if.uerj.br, E-mail: jimsk@dft.if.uerj.br, E-mail: tstuchi@if.ufrj.br
2008-02-22
In this paper, we use a nonintegrability theorem by Morales and Ramis to analyse the integrability of Friedmann-Robertson-Walker cosmological models with a conformally coupled massive scalar field. We answer the long-standing question of whether these models with a vanishing cosmological constant and non-self-interacting scalar field are integrable: by applying Kovacic's algorithm to the normal variational equations, we prove analytically and rigorously that these equations and, consequently, the Hamiltonians are nonintegrable. We then address the models with a self-interacting massive scalar field and cosmological constant and show that, with the exception of a set of measure zero, the models are nonintegrable. For the spatially curved cases, we prove that there are no additional integrable cases other than those identified in the previous work based on the non-rigorous Painleve analysis. In our study of the spatially flat model, we explicitly obtain a new possibly integrable case.
Bill Tu
2008-07-01
Full Text Available Bill Tu, Michael Johnston, Ka-Kit HuiUCLA Center for East–West Medicine, Department of Internal Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USABackground: Polypharmacy is a common and serious problem in the elderly today. Few solutions have been effective in reducing its incidence.Case summary: An 87-year-old female with a history of osteoarthritis and spinal stenosis presented with a five month history of severe right hip pain. She had been seen by multiple specialists and hospitalized many times. During these encounters, she was prescribed a long list of pain medications. However, these medications did not improve her pain and added to her risk of adverse drug events. After exhausting traditional Western medical therapies, she received a referral to the UCLA Center for East–West Medicine. There, clinicians treated her with a nonpharmacological integrative East-West medicine approach that included acupuncture, dry needling of trigger points, and education on self-acupressure. Her pain began improving and she was able to cut back on analgesic use under physician supervision. Ultimately, she improved to the point where she was able to discontinue all of her pain medications. Symptomatic relief was evidenced by improvement in health-related quality of life (HRQOL.Conclusions: This case study suggests that integrative East–West medicine may have the potential to reduce the incidence of polypharmacy in elderly patients presenting with pain conditions and improve their quality of life.Keywords: polypharmacy, pain, osteoarthritis, acupuncture, complementary and alternative medicine, integrative medicine, adverse drug reaction, elderly
Fast Near-Field Calculation for Volume Integral Equations for Layered Media
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2005-01-01
. Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since......An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density...
Constant external fields in gauge theory and the spin 0, 1/2, 1 path integrals
Reuter, M.; Schmidt, M.G.
1996-10-01
We investigate the usefulness of the ''string-inspired technique'' for gauge theory calculations in a constant external field background. Our approach is based on Strassler's worldline path integral approach to the Bern-Kosower formalism, and on the construction of worldline (super-) Green's functions incorporating external fields as well as internal propagators. The worldline path integral representation of the gluon loop is reexamined in detail. We calculate the two-loop effective actions induced for a constant external field by a scalar and spinor loop, and the corresponding one-loop effective action in the gluon loop case. (orig.)
Approximate Integrals of rf-driven Particle Motion in Magnetic Field
Dodin, I.Y.; Fisch, N.J.
2004-01-01
For a particle moving in nonuniform magnetic field under the action of an rf wave, ponderomotive effects result from rf-driven oscillations nonlinearly coupled with Larmor rotation. Using Lagrangian and Hamiltonian formalism, we show how, despite this coupling, two independent integrals of the particle motion are approximately conserved. Those are the magnetic moment of free Larmor rotation and the quasi-energy of the guiding center motion parallel to the magnetic field. Under the assumption of non-resonant interaction of the particle with the rf field, these integrals represent adiabatic invariants of the particle motion
Nurindah Nurindah; Dwi Adi Sunarto
2014-01-01
Cotton production nationally is low due to various constraints, including pests. Two main pests commonly found in cotton plantation in rain fed fields are cotton leafhopper (Amrasca biguttula) and cotton bollworm (Helicoverpa armigera). The study aimed to evaluate four packages of integrated pest management (IPM) techniques to control cotton leafhopper and cotton bollworm in rain fed fields. The experiment was conducted in farmers’ fields at Asembagus, East Java, between January and July 2012...
Contreras-Astorga, A.; Negro, J.; Tristao, S.
2016-01-01
This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.
Contreras-Astorga, A., E-mail: alonso.contreras.astorga@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Tristao, S., E-mail: hetsudoyaguiu@gmail.com [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2016-01-08
This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.
Keanchuan Lee
2012-06-01
Full Text Available A silver nanoparticles self-assembled monolayer (SAM was incorporated in pentacene field-effect transistor and its effects on the carrier injection and transport were investigated using the current-voltage (I − V and impedance spectroscopy (IS measurements. The I − V results showed that there was a significant negative shift of the threshold voltage, indicating the hole trapping inside the devices with about two orders higher in the contact resistance and an order lower in the effective mobility when a SAM was introduced. The IS measurements with the simulation using a Maxwell-Wagner equivalent circuit model revealed the existence of multiple trapping states for the devices with NPs, while the devices without NPs exhibited only a single trap state.
Streamlined Archaeo-geophysical Data Processing and Integration for DoD Field Use
2012-04-01
6 Figure 2-3. Flowchart illustrating the old, ad-hoc approach of processing...Figure 2-3. Flowchart illustrating the old, ad-hoc approach of processing and integrating multiple geophysical datasets. Each color represents a... beginner , intermediate, and expert user. Most users agreed that the software is very effective for beginners because: (1) it provides a geophysics
Onzo, A.; Sabelis, M.W.; Hanna, R.
2014-01-01
To determine whether to use single or multiple predator species for biological pest control requires manipulative field experiments. We performed such tests in Benin (West Africa) in cassava fields infested by the cassava green mite Mononychellus tanajoa, and the cotton red mite Oligonychus
Guseinov, I I
2004-01-01
The new central and noncentral potential functions (CPFs and NCPFs) of a molecule depending on the coordinates of the nuclei are introduced. Using complete orthonormal sets of Ψ α -exponential-type orbitals (Ψ α -ETOs) introduced by the author, the series expansion formulae for the multicentre electronic attraction (EA), electric field (EF) and electric field gradient (EFG) integrals over Slater-type orbitals (STOs) in terms of CPFs and NCPFs are derived. The relationships obtained are valid for the arbitrary location, quantum numbers and screening constants of STOs
Arora, Karun S; Boland, Michael V; Friedman, David S; Jefferys, Joan L; West, Sheila K; Ramulu, Pradeep Y
2013-12-01
To determine the extent of difference between better-eye visual field (VF) mean deviation (MD) and integrated VF (IVF) MD among Salisbury Eye Evaluation (SEE) subjects and a larger group of glaucoma clinic subjects and to assess how those measures relate to objective and subjective measures of ability/performance in SEE subjects. Retrospective analysis of population- and clinic-based samples of adults. A total of 490 SEE and 7053 glaucoma clinic subjects with VF loss (MD ≤-3 decibels [dB] in at least 1 eye). Visual field testing was performed in each eye, and IVF MD was calculated. Differences between better-eye and IVF MD were calculated for SEE and clinic-based subjects. In SEE subjects with VF loss, models were constructed to compare the relative impact of better-eye and IVF MD on driving habits, mobility, self-reported vision-related function, and reading speed. Difference between better-eye and IVF MD and relationship of better-eye and IVF MD with performance measures. The median difference between better-eye and IVF MD was 0.41 dB (interquartile range [IQR], -0.21 to 1.04 dB) and 0.72 dB (IQR, 0.04-1.45 dB) for SEE subjects and clinic-based patients with glaucoma, respectively, with differences of ≥ 2 dB between the 2 MDs observed in 9% and 18% of the groups, respectively. Among SEE subjects with VF loss, both MDs demonstrated similar associations with multiple ability and performance metrics as judged by the presence/absence of a statistically significant association between the MD and the metric, the magnitude of observed associations (odds ratios, rate ratios, or regression coefficients associated with 5-dB decrements in MD), and the extent of variability in the metric explained by the model (R(2)). Similar associations of similar magnitude also were noted for the subgroup of subjects with glaucoma and subjects in whom better-eye and IVF MD differed by ≥ 2 dB. The IVF MD rarely differs from better-eye MD, and similar associations between VF loss and
Advanced field-solver techniques for RC extraction of integrated circuits
Yu, Wenjian
2014-01-01
Resistance and capacitance (RC) extraction is an essential step in modeling the interconnection wires and substrate coupling effect in nanometer-technology integrated circuits (IC). The field-solver techniques for RC extraction guarantee the accuracy of modeling, and are becoming increasingly important in meeting the demand for accurate modeling and simulation of VLSI designs. Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits presents a systematic introduction to, and treatment of, the key field-solver methods for RC extraction of VLSI interconnects and substrate coupling in mixed-signal ICs. Various field-solver techniques are explained in detail, with real-world examples to illustrate the advantages and disadvantages of each algorithm. This book will benefit graduate students and researchers in the field of electrical and computer engineering, as well as engineers working in the IC design and design automation industries. Dr. Wenjian Yu is an Associate Professor at the Department of ...
Field visit placements: An integrated and community approach to learning in children's nursing.
Cummins, Ann
2010-03-01
This paper reports on the development of a new initiative, field visit placements towards and integrated and community approach to learning for nursing students. To date, limited literature exists on the potential of community field visits as meaningful learning opportunities for nursing students. Drawing on our experiences, the structure and processes involved in implementing field visits are described in this paper. Students evaluated the field visits positively indicating that they provided a wealth of learning opportunities that enhanced their knowledge and awareness of services available to children and their families in the community. The potential of field visits to promote an integrated and community approach to placements in children\\'s nursing is discussed.
Integration of six sigma with lean production: an analysis through multiple cases
Thiago Henrique Pinheiro
2013-08-01
Full Text Available The intense competition between markets has taken companies, regardless of their size, to implement one or more quality improvement programs. One of the main purposes of these programs is the enhancement of company effectiveness and efficiency. There is today a growing interested in a proposal named Lean Six Sigma. Their objective is to apply six sigma concepts integrated with Lean Production. A model named Lean Six Sigma has raised interest, once its objective is to apply the concepts of the Six Sigma program integrating them with the principles of Lean Production. Six Sigma contributes with methods for problem identification, measurement and analysis, and the Lean Production offers techniques and procedures applied to reduce waste in the production. In this context, this paper aims at demonstrating the results of a field research, from which purpose was to identify relevant factors for Six Sigma implementation combined with Lean Production. To meet these objectives, three organizations from different industrial sectors were investigated. It was verified that in two of those companies, the programs were successfully implemented. Based on data analysis, it is possible to identify that one of the major difficulties encountered by the program leaders is related to the company’s human resources infra-structure. It is necessary to take into account that the conclusions are limited to a small sample of three units of analysis. However, this work offers the possibility of an analytical generalization.
Maury, Jerome; Germann, Susanne Manuela; Jacobsen, Simo Abdessamad
2016-01-01
Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred...... of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci...... and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP...
Numerical evaluation of the bispectrum in multiple field inflation—the transport approach with code
Dias, Mafalda; Frazer, Jonathan [Theory Group, Deutsches Elektronen-Synchrotron, DESY, D-22603, Hamburg (Germany); Mulryne, David J. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Seery, David, E-mail: mafalda.dias@desy.de, E-mail: jonathan.frazer@desy.de, E-mail: d.mulryne@qmul.ac.uk, E-mail: D.Seery@sussex.ac.uk [Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom)
2016-12-01
We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, including (i) interference between growing and decaying modes near horizon exit; (ii) correlation and coupling between species near horizon exit and on superhorizon scales; (iii) contributions from mass terms; and (iv) all contributions from coupling to gravity. We track the evolution of each correlation function from the vacuum state through horizon exit and the superhorizon regime, with no need to match quantum and classical parts of the calculation; when integrated, our approach corresponds exactly with the tree-level Schwinger or 'in-in' formulation of quantum field theory. In this paper we give the equations necessary to evolve all two- and three-point correlation functions together with suitable initial conditions. The final formalism is suitable to compute the amplitude, shape, and scale dependence of the bispectrum in models with | f {sub NL}| of order unity or less, which are a target for future galaxy surveys such as Euclid, DESI and LSST. As an illustration we apply our framework to a number of examples, obtaining quantitatively accurate predictions for their bispectra for the first time. Two accompanying reports describe publicly-available software packages that implement the method.
Numerical evaluation of the bispectrum in multiple field inflation—the transport approach with code
Dias, Mafalda; Frazer, Jonathan; Mulryne, David J.; Seery, David
2016-01-01
We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, including (i) interference between growing and decaying modes near horizon exit; (ii) correlation and coupling between species near horizon exit and on superhorizon scales; (iii) contributions from mass terms; and (iv) all contributions from coupling to gravity. We track the evolution of each correlation function from the vacuum state through horizon exit and the superhorizon regime, with no need to match quantum and classical parts of the calculation; when integrated, our approach corresponds exactly with the tree-level Schwinger or 'in-in' formulation of quantum field theory. In this paper we give the equations necessary to evolve all two- and three-point correlation functions together with suitable initial conditions. The final formalism is suitable to compute the amplitude, shape, and scale dependence of the bispectrum in models with | f NL | of order unity or less, which are a target for future galaxy surveys such as Euclid, DESI and LSST. As an illustration we apply our framework to a number of examples, obtaining quantitatively accurate predictions for their bispectra for the first time. Two accompanying reports describe publicly-available software packages that implement the method.
Numerical evaluation of the bispectrum in multiple field inflation. The transport approach with code
Dias, Mafalda; Mulryne, David J.; Seery, David
2016-09-01
We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, including (i) interference between growing and decaying modes near horizon exit; (ii) correlation and coupling between species near horizon exit and on superhorizon scales; (iii) contributions from mass terms; and (iv) all contributions from coupling to gravity. We track the evolution of each correlation function from the vacuum state through horizon exit and the superhorizon regime, with no need to match quantum and classical parts of the calculation; when integrated, our approach corresponds exactly with the tree-level Schwinger or 'in-in' formulation of quantum field theory. In this paper we give the equations necessary to evolve all two- and three-point correlation functions together with suitable initial conditions. The final formalism is suitable to compute the amplitude, shape, and scale dependence of the bispectrum in models with vertical stroke f_N_L vertical stroke of order unity or less, which are a target for future galaxy surveys such as Euclid, DESI and LSST. As an illustration we apply our framework to a number of examples, obtaining quantitatively accurate predictions for their bispectra for the first time. Two accompanying reports describe publicly-available software packages that implement the method.
Numerical evaluation of the bispectrum in multiple field inflation. The transport approach with code
Dias, Mafalda [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Sussex Univ., Brighton (United Kingdom). Astronomy Centre; Frazer, Jonathan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Basque Country Univ., Bilbao (Spain). Dept. of Theoretical Physics; IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Mulryne, David J. [Queen Mary Univ., London (United Kingdom). School of Physics and Astronomy; Seery, David [Sussex Univ., Brighton (United Kingdom). Astronomy Centre
2016-09-15
We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, including (i) interference between growing and decaying modes near horizon exit; (ii) correlation and coupling between species near horizon exit and on superhorizon scales; (iii) contributions from mass terms; and (iv) all contributions from coupling to gravity. We track the evolution of each correlation function from the vacuum state through horizon exit and the superhorizon regime, with no need to match quantum and classical parts of the calculation; when integrated, our approach corresponds exactly with the tree-level Schwinger or 'in-in' formulation of quantum field theory. In this paper we give the equations necessary to evolve all two- and three-point correlation functions together with suitable initial conditions. The final formalism is suitable to compute the amplitude, shape, and scale dependence of the bispectrum in models with vertical stroke f{sub NL} vertical stroke of order unity or less, which are a target for future galaxy surveys such as Euclid, DESI and LSST. As an illustration we apply our framework to a number of examples, obtaining quantitatively accurate predictions for their bispectra for the first time. Two accompanying reports describe publicly-available software packages that implement the method.
Integrating Field Buses at the Application Level C Interface and LabView Integration
Charrue, P
1996-01-01
The controls group of the SPS and LEP accelerators at CERN, Geneva, uses many different fieldbuses into the controls infrastucture, such as 1553, BITBUS, GPIB, RS232, JBUS, etc. A software package (SL-EQUIP) has been developped to give end users a standardized application program interface (API) to access any equipment connected to any fieldbus. This interface has now been integrated to LabView. We can offer a powerful graphical package, running on HP-UX workstations which treats data from heterogeneous equipment using the great flexibility of LabView. This paper will present SL-EQUIP and LabView, and will then describe some applications using these tools.
Integrating multiple distribution models to guide conservation efforts of an endangered toad
Treglia, Michael L.; Fisher, Robert N.; Fitzgerald, Lee A.
2015-01-01
Species distribution models are used for numerous purposes such as predicting changes in species’ ranges and identifying biodiversity hotspots. Although implications of distribution models for conservation are often implicit, few studies use these tools explicitly to inform conservation efforts. Herein, we illustrate how multiple distribution models developed using distinct sets of environmental variables can be integrated to aid in identification sites for use in conservation. We focus on the endangered arroyo toad (Anaxyrus californicus), which relies on open, sandy streams and surrounding floodplains in southern California, USA, and northern Baja California, Mexico. Declines of the species are largely attributed to habitat degradation associated with vegetation encroachment, invasive predators, and altered hydrologic regimes. We had three main goals: 1) develop a model of potential habitat for arroyo toads, based on long-term environmental variables and all available locality data; 2) develop a model of the species’ current habitat by incorporating recent remotely-sensed variables and only using recent locality data; and 3) integrate results of both models to identify sites that may be employed in conservation efforts. We used a machine learning technique, Random Forests, to develop the models, focused on riparian zones in southern California. We identified 14.37% and 10.50% of our study area as potential and current habitat for the arroyo toad, respectively. Generally, inclusion of remotely-sensed variables reduced modeled suitability of sites, thus many areas modeled as potential habitat were not modeled as current habitat. We propose such sites could be made suitable for arroyo toads through active management, increasing current habitat by up to 67.02%. Our general approach can be employed to guide conservation efforts of virtually any species with sufficient data necessary to develop appropriate distribution models.
Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.
Shi, Hongbo; Zhang, Guangde; Zhou, Meng; Cheng, Liang; Yang, Haixiu; Wang, Jing; Sun, Jie; Wang, Zhenzhen
2016-01-01
MicroRNAs (miRNAs) play an important role in the development and progression of human diseases. The identification of disease-associated miRNAs will be helpful for understanding the molecular mechanisms of diseases at the post-transcriptional level. Based on different types of genomic data sources, computational methods for miRNA-disease association prediction have been proposed. However, individual source of genomic data tends to be incomplete and noisy; therefore, the integration of various types of genomic data for inferring reliable miRNA-disease associations is urgently needed. In this study, we present a computational framework, CHNmiRD, for identifying miRNA-disease associations by integrating multiple genomic and phenotype data, including protein-protein interaction data, gene ontology data, experimentally verified miRNA-target relationships, disease phenotype information and known miRNA-disease connections. The performance of CHNmiRD was evaluated by experimentally verified miRNA-disease associations, which achieved an area under the ROC curve (AUC) of 0.834 for 5-fold cross-validation. In particular, CHNmiRD displayed excellent performance for diseases without any known related miRNAs. The results of case studies for three human diseases (glioblastoma, myocardial infarction and type 1 diabetes) showed that all of the top 10 ranked miRNAs having no known associations with these three diseases in existing miRNA-disease databases were directly or indirectly confirmed by our latest literature mining. All these results demonstrated the reliability and efficiency of CHNmiRD, and it is anticipated that CHNmiRD will serve as a powerful bioinformatics method for mining novel disease-related miRNAs and providing a new perspective into molecular mechanisms underlying human diseases at the post-transcriptional level. CHNmiRD is freely available at http://www.bio-bigdata.com/CHNmiRD.
Samuel Neal Lockhart
2012-03-01
Full Text Available Previous neuroimaging research indicates that white matter injury and integrity, measured respectively by white matter hyperintensities (WMH and fractional anisotropy (FA obtained from diffusion tensor imaging, differ with aging and cerebrovascular disease and are associated with episodic memory deficits in cognitively normal older adults. However, knowledge about tract-specific relationships between WMH, FA, and episodic memory in aging remains limited. We hypothesized that white matter connections between frontal cortex and subcortical structures as well as connections between frontal and temporo-parietal cortex would be most affected. In the current study, we examined relationships between WMH, FA and episodic memory in 15 young adults, 13 elders with minimal WMH and 15 elders with extensive WMH, using an episodic recognition memory test for object-color associations. Voxel-based statistics were used to identify voxel clusters where white matter measures were specifically associated with variations in episodic memory performance, and white matter tracts intersecting these clusters were analyzed to examine white matter-memory relationships. White matter injury and integrity measures were significantly associated with episodic memory in extensive regions of white matter, located predominantly in frontal, parietal, and subcortical regions. Template based tractography indicated that white matter injury, as measured by WMH, in the uncinate and inferior longitudinal fasciculi were significantly negatively associated with episodic memory performance. Other tracts such as thalamo-frontal projections, superior longitudinal fasciculus, and dorsal cingulum bundle demonstrated strong negative associations as well. The results suggest that white matter injury to multiple pathways, including connections of frontal and temporal cortex and frontal-subcortical white matter tracts, plays a critical role in memory differences seen in older individuals.
Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.
Hongbo Shi
Full Text Available MicroRNAs (miRNAs play an important role in the development and progression of human diseases. The identification of disease-associated miRNAs will be helpful for understanding the molecular mechanisms of diseases at the post-transcriptional level. Based on different types of genomic data sources, computational methods for miRNA-disease association prediction have been proposed. However, individual source of genomic data tends to be incomplete and noisy; therefore, the integration of various types of genomic data for inferring reliable miRNA-disease associations is urgently needed. In this study, we present a computational framework, CHNmiRD, for identifying miRNA-disease associations by integrating multiple genomic and phenotype data, including protein-protein interaction data, gene ontology data, experimentally verified miRNA-target relationships, disease phenotype information and known miRNA-disease connections. The performance of CHNmiRD was evaluated by experimentally verified miRNA-disease associations, which achieved an area under the ROC curve (AUC of 0.834 for 5-fold cross-validation. In particular, CHNmiRD displayed excellent performance for diseases without any known related miRNAs. The results of case studies for three human diseases (glioblastoma, myocardial infarction and type 1 diabetes showed that all of the top 10 ranked miRNAs having no known associations with these three diseases in existing miRNA-disease databases were directly or indirectly confirmed by our latest literature mining. All these results demonstrated the reliability and efficiency of CHNmiRD, and it is anticipated that CHNmiRD will serve as a powerful bioinformatics method for mining novel disease-related miRNAs and providing a new perspective into molecular mechanisms underlying human diseases at the post-transcriptional level. CHNmiRD is freely available at http://www.bio-bigdata.com/CHNmiRD.
Farber, Ruth S; Kern, Margaret L; Brusilovsky, Eugene
2015-05-01
Being a mother has become a realizable life role for women with disabilities and chronic illnesses, including multiple sclerosis (MS). Identifying psychosocial factors that facilitate participation in important life roles-including motherhood-is essential to help women have fuller lives despite the challenge of their illness. By integrating the International Classification of Functioning, Disability, and Health (ICF) and a positive psychology perspective, this study examined how environmental social factors and positive personal factors contribute to daily role participation and satisfaction with parental participation. One hundred and 11 community-dwelling mothers with MS completed Ryff's Psychological Well-Being Scales, the Medical Outcome Study Social Support Survey, the Short Form-36, and the Parental Participation Scale. Hierarchical regression analyses examined associations between social support and positive personal factors (environmental mastery, self-acceptance, purpose in life) with daily role participation (physical and emotional) and satisfaction with parental participation. One-way ANOVAs tested synergistic combinations of social support and positive personal factors. Social support predicted daily role participation (fewer limitations) and greater satisfaction with parental participation. Positive personal factors contributed additional unique variance. Positive personal factors and social support synergistically predicted better function and greater satisfaction than either alone. Integrating components of the ICF and positive psychology provides a useful model for understanding how mothers with MS can thrive despite challenge or impairment. Both positive personal factors and environmental social factors were important contributors to positive role functioning. Incorporating these paradigms into treatment may help mothers with MS participate more fully in meaningful life roles. (c) 2015 APA, all rights reserved).
Degenerate variational integrators for magnetic field line flow and guiding center trajectories
Ellison, C. L.; Finn, J. M.; Burby, J. W.; Kraus, M.; Qin, H.; Tang, W. M.
2018-05-01
Symplectic integrators offer many benefits for numerically approximating solutions to Hamiltonian differential equations, including bounded energy error and the preservation of invariant sets. Two important Hamiltonian systems encountered in plasma physics—the flow of magnetic field lines and the guiding center motion of magnetized charged particles—resist symplectic integration by conventional means because the dynamics are most naturally formulated in non-canonical coordinates. New algorithms were recently developed using the variational integration formalism; however, those integrators were found to admit parasitic mode instabilities due to their multistep character. This work eliminates the multistep character, and therefore the parasitic mode instabilities via an adaptation of the variational integration formalism that we deem "degenerate variational integration." Both the magnetic field line and guiding center Lagrangians are degenerate in the sense that the resultant Euler-Lagrange equations are systems of first-order ordinary differential equations. We show that retaining the same degree of degeneracy when constructing discrete Lagrangians yields one-step variational integrators preserving a non-canonical symplectic structure. Numerical examples demonstrate the benefits of the new algorithms, including superior stability relative to the existing variational integrators for these systems and superior qualitative behavior relative to non-conservative algorithms.
Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.
1976-01-01
This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field
Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.
1976-10-01
The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field
The integration of open access journals in the scholarly communication system: Three science fields
Faber Frandsen, Tove
2009-01-01
across disciplines. This study is an analysis of the citing behaviour in journals within three science fields: biology, mathematics, and pharmacy and pharmacology. It is a statistical analysis of OAJs as well as non-OAJs including both the citing and cited side of the journal to journal citations......The greatest number of open access journals (OAJs) is found in the sciences and their influence is growing. However, there are only a few studies on the acceptance and thereby integration of these OAJs in the scholarly communication system. Even fewer studies provide insight into the differences....... The multivariate linear regression reveals many similarities in citing behaviour across fields and media. But it also points to great differences in the integration of OAJs. The integration of OAJs in the scholarly communication system varies considerably across fields. The implications for bibliometric research...
Supply Chain Systems Architecture and Engineering Design: Green-field Supply Chain Integration
Radanliev, P
2015-01-01
This paper developed a new theory for supply chain architecture, and engineering design that enables integration of the business and supply chain strategies. The architecture starts with individual supply chain participants and derives insights into the complex and abstract concept of green-field integration design. The paper presented a conceptual system for depicting the interactions between business and supply chain strategy engineering. The system examines the decisions made when engineer...
Alternative integral equations and perturbation expansions for self-coupled scalar fields
Ford, L.H.
1985-01-01
It is shown that the theory of a self-coupled scalar field may be expressed in terms of a class of integral equations which include the Yang-Feldman equation as a particular case. Other integral equations in this class could be used to generate alternative perturbation expansions which contain a nonanalytic dependence upon the coupling constant and are less ultraviolet divergent than the conventional perturbation expansion. (orig.)
Houser, P. I. Q.
2017-12-01
21st century earth science is data-intensive, characterized by heterogeneous, sometimes voluminous collections representing phenomena at different scales collected for different purposes and managed in disparate ways. However, much of the earth's surface still requires boots-on-the-ground, in-person fieldwork in order to detect the subtle variations from which humans can infer complex structures and patterns. Nevertheless, field experiences can and should be enabled and enhanced by a variety of emerging technologies. The goal of the proposed research project is to pilot test emerging data integration, semantic and visualization technologies for evaluation of their potential usefulness in the field sciences, particularly in the context of field geology. The proposed project will investigate new techniques for data management and integration enabled by semantic web technologies, along with new techniques for augmented reality that can operate on such integrated data to enable in situ visualization in the field. The research objectives include: Develop new technical infrastructure that applies target technologies to field geology; Test, evaluate, and assess the technical infrastructure in a pilot field site; Evaluate the capabilities of the systems for supporting and augmenting field science; and Assess the generality of the system for implementation in new and different types of field sites. Our hypothesis is that these technologies will enable what we call "field science situational awareness" - a cognitive state formerly attained only through long experience in the field - that is highly desirable but difficult to achieve in time- and resource-limited settings. Expected outcomes include elucidation of how, and in what ways, these technologies are beneficial in the field; enumeration of the steps and requirements to implement these systems; and cost/benefit analyses that evaluate under what conditions the investments of time and resources are advisable to construct
On the estimation of multiple random integrals and U-statistics
Major, Péter
2013-01-01
This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linearization causes a negligible error. The estimation of this error leads to some important large deviation type problems, and the main subject of this work is their investigation. We provide sharp estimates of the tail distribution of multiple integrals with respect to a normalized empirical measure and so-called degenerate U-statistics and also of the supremum of appropriate classes of such quantities. The proofs apply a number of useful techniques of modern probability that enable us to investigate the non-linear functionals of independent random variables. This lecture note yields insights into these methods, and may also be useful for those who only want some new tools to help them prove limit theorems when stand...
Optimal multiple-information integration inherent in a ring neural network
Takiyama, Ken
2017-01-01
Although several behavioral experiments have suggested that our neural system integrates multiple sources of information based on the certainty of each type of information in the manner of maximum-likelihood estimation, it is unclear how the maximum-likelihood estimation is implemented in our neural system. Here, I investigate the relationship between maximum-likelihood estimation and a widely used ring-type neural network model that is used as a model of visual, motor, or prefrontal cortices. Without any approximation or ansatz, I analytically demonstrate that the equilibrium of an order parameter in the neural network model exactly corresponds to the maximum-likelihood estimation when the strength of the symmetrical recurrent synaptic connectivity within a neural population is appropriately stronger than that of asymmetrical connectivity, that of local and external inputs, and that of symmetrical or asymmetrical connectivity between different neural populations. In this case, strengths of local and external inputs or those of symmetrical connectivity between different neural populations exactly correspond to the input certainty in maximum-likelihood estimation. Thus, my analysis suggests appropriately strong symmetrical recurrent connectivity as a possible candidate for implementing the maximum-likelihood estimation within our neural system. (paper)
INTEGRATION OF SOCIAL TECHNOLOGIES MICRO DAMS AND MULTIPLE-USE PONDS
Luciano Cordoval de Barros
2011-07-01
Full Text Available The integration of Social Technologies Micro Dams and Multiple-Use Ponds has guaranteed to farmers their water sustainability, allowing the creation of fish farms and the irrigation of gardens. In Araçaí, Minas Gerais State, in the community Pai José Farms, in a dry soil under Cerrado vegetation, predominantly yellow and red, porous, deep latosoils was built 96 micro dams in 2008 and 90 in 2009 to collect surface runoff water from rainfall, after meetings with the community. Since the water is contained, were also reduced the erosion and the silting. The micro dams are loaded and unloaded eight to 12 times a year, infiltrating water and raising the groundwater, moistening the soil around them and on lowlands, mitigating droughts and revitalizing streams. Increase in the level of tanks from four to 10 or 11 meters of water was observed, resulting in farmers' feeling of abundance. This enabled the construction of ponds sealed with common plastic tarpaulins for water storage during the dry season by pumping water from the tanks, which enabled fish farming and also irrigation of gardens. As a complement, in the rainy season, the ponds are also supplied with water collected from roofs. The experiment has been replicated successfully in two more neighboring towns and may be applied in states of central Brazil, where similar soils and conditions prevail.
Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits
Xinyi Xu
2014-04-01
Full Text Available Constructing reservoirs can make more efficient use of water resources for human society. However, the negative impacts of these projects on the environment are often ignored. Optimal reoperation of reservoirs, which considers not only in socio-economic values but also environmental benefits, is increasingly important. A model of optimal reoperation of multi-reservoirs for integrated watershed management with multiple benefits was proposed to alleviate the conflict between water use and environmental deterioration. The social, economic, water quality and ecological benefits were respectively taken into account as the scheduling objectives and quantified according to economic models. River minimum ecological flows and reservoir water levels based on flood control were taken as key constraint conditions. Feasible search discrete differential dynamic programming (FS-DDDP was used to run the model. The proposed model was used in the upstream of the Nanpan River, to quantitatively evaluate the difference between optimal reoperation and routine operation. The results indicated that the reoperation could significantly increase the water quality benefit and have a minor effect on the benefits of power generation and irrigation under different hydrological years. The model can be readily adapted to other multi-reservoir systems for water resources management.
Yang, Liang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China); Zhang, Chun-Lu [China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China)
2010-02-15
The paper presents a model-based analysis on the energy saving potential of supermarket HVAC (heating, ventilating, and air-conditioning) and refrigeration systems using multiple subcoolers among the high-temperature HVAC system, the medium-temperature refrigeration system, and the low-temperature refrigeration system. The principle of energy reduction is to have the higher COP (coefficient of performance) system generate more cooling capacity to increase the cooling capacity or reduce the power consumption of the lower COP system. The subcooler could be placed between the medium-temperature and low-temperature systems, between the high-temperature and medium-temperature systems, and between the high-temperature and low-temperature systems. All integration scenarios of adding one, two and three subcoolers have been investigated. The energy saving potential varies with the load ratio between high-, medium- and low-temperature systems, COP of three systems, and the ''on-off'' duty time of HVAC system. The optimal sequence of adding subcoolers is also proposed. (author)
Genova, Helen M.; DeLuca, John; Chiaravalloti, Nancy; Wylie, Glenn
2014-01-01
The primary purpose of the current study was to examine the relationship between performance on executive tasks and white matter integrity, assessed by diffusion tensor imaging (DTI) in Multiple Sclerosis (MS). A second aim was to examine how processing speed affects the relationship between executive functioning and FA. This relationship was examined in two executive tasks that rely heavily on processing speed: the Color-Word Interference Test and Trail-Making Test (Delis-Kaplan Executive Function System). It was hypothesized that reduced fractional anisotropy (FA) is related to poor performance on executive tasks in MS, but that this relationship would be affected by the statistical correction of processing speed from the executive tasks. 15 healthy controls and 25 persons with MS participated. Regression analyses were used to examine the relationship between executive functioning and FA, both before and after processing speed was removed from the executive scores. Before processing speed was removed from the executive scores, reduced FA was associated with poor performance on Color-Word Interference Test and Trail-Making Test in a diffuse network including corpus callosum and superior longitudinal fasciculus. However, once processing speed was removed, the relationship between executive functions and FA was no longer significant on the Trail Making test, and significantly reduced and more localized on the Color-Word Interference Test. PMID:23777468
Scott Cukras
Full Text Available Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.
Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon
2014-01-01
Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.
Trammel, E. Jamie; Carter, Sarah; Haby, Travis S.; Taylor, Jason J.
2018-01-01
Enhancing natural resource management has been a focus of landscape ecology since its inception, but numerous authors argue that landscape ecology has not yet been effective in achieving the underlying goal of planning and designing sustainable landscapes. We developed nine questions reflecting the application of fundamental research topics in landscape ecology to the landscape planning process and reviewed two recent landscape-scale plans in western North America for evidence of these concepts in plan decisions. Both plans considered multiple resources, uses, and values, including energy development, recreation, conservation, and protection of cultural and historic resources. We found that land use change and multiscale perspectives of resource uses and values were very often apparent in planning decisions. Pattern-process relationships, connectivity and fragmentation, ecosystem services, landscape history, and climate change were reflected less frequently. Landscape sustainability was considered only once in the 295 decisions reviewed, and outputs of landscape models were not referenced. We suggest six actionable opportunities for further integrating landscape ecology concepts into landscape planning efforts: 1) use landscape sustainability as an overarching goal, 2) adopt a broad ecosystem services framework, 3) explore the role of landscape history more comprehensively, 4) regularly consider and accommodate potential effects of climate change, 5) use landscape models to support plan decisions, and 6) promote a greater presence of landscape ecologists within agencies that manage large land bases and encourage active involvement in agency planning efforts. Together these actions may improve the defensibility, durability, and sustainability of landscape plan decisions.
Koutsis, Georgios; Kokotis, Panagiotis; Papagianni, Aikaterini E; Evangelopoulos, Maria-Eleftheria; Kilidireas, Constantinos; Karandreas, Nikolaos
2016-09-01
To integrate neurophysiological findings with clinical and imaging data in a consecutive series of multiple sclerosis (MS) patients developing facial numbness during the course of an MS attack. Nine consecutive patients with MS and recent-onset facial numbness were studied clinically, imaged with routine MRI, and assessed neurophysiologically with trigeminal somatosensory evoked potential (TSEP), blink reflex (BR), masseter reflex (MR), facial nerve conduction, facial muscle and masseter EMG studies. All patients had unilateral facial hypoesthesia on examination and lesions in the ipsilateral pontine tegmentum on MRI. All patients had abnormal TSEPs upon stimulation of the affected side, excepting one that was tested following remission of numbness. BR was the second most sensitive neurophysiological method with 6/9 examinations exhibiting an abnormal R1 component. The MR was abnormal in 3/6 patients, always on the affected side. Facial conduction and EMG studies were normal in all patients but one. Facial numbness was always related to abnormal TSEPs. A concomitant R1 abnormality on BR allowed localization of the responsible pontine lesion, which closely corresponded with MRI findings. We conclude that neurophysiological assessment of MS patients with facial numbness is a sensitive tool, which complements MRI, and can improve lesion localization. Copyright © 2016 Elsevier B.V. All rights reserved.
Peng, Ting; Sun, Xiaochun; Mumm, Rita H
2014-01-01
Multiple trait integration (MTI) is a multi-step process of converting an elite variety/hybrid for value-added traits (e.g. transgenic events) through backcross breeding. From a breeding standpoint, MTI involves four steps: single event introgression, event pyramiding, trait fixation, and version testing. This study explores the feasibility of marker-aided backcross conversion of a target maize hybrid for 15 transgenic events in the light of the overall goal of MTI of recovering equivalent performance in the finished hybrid conversion along with reliable expression of the value-added traits. Using the results to optimize single event introgression (Peng et al. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Mol Breed, 2013) which produced single event conversions of recurrent parents (RPs) with ≤8 cM of residual non-recurrent parent (NRP) germplasm with ~1 cM of NRP germplasm in the 20 cM regions flanking the event, this study focused on optimizing process efficiency in the second and third steps in MTI: event pyramiding and trait fixation. Using computer simulation and probability theory, we aimed to (1) fit an optimal breeding strategy for pyramiding of eight events into the female RP and seven in the male RP, and (2) identify optimal breeding strategies for trait fixation to create a 'finished' conversion of each RP homozygous for all events. In addition, next-generation seed needs were taken into account for a practical approach to process efficiency. Building on work by Ishii and Yonezawa (Optimization of the marker-based procedures for pyramiding genes from multiple donor lines: I. Schedule of crossing between the donor lines. Crop Sci 47:537-546, 2007a), a symmetric crossing schedule for event pyramiding was devised for stacking eight (seven) events in a given RP. Options for trait fixation breeding strategies considered selfing and doubled haploid approaches to achieve homozygosity
Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.
1996-01-01
Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits
Calculation of an axisymmetric current coil field with the bounding contour integration method
Telegin, Alexander P.; Klevets, Nickolay I. E-mail: pmsolution@mail.ru
2004-06-01
Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded.
Calculation of an axisymmetric current coil field with the bounding contour integration method
Telegin, Alexander P.; Klevets, Nickolay I.
2004-01-01
Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded
Shogren, Karrie A.
2013-01-01
In light of the rapid evolution of research, policy, and practice in the intellectual disability (ID) field resulting from shifts in our conceptualization of disability and in frameworks for the diagnosis and classification of ID, systematic consideration of the multiple, interrelated contextual factors that impact research, policy, and practice…
Balliu, Brunilda; Tsonaka, Roula; Boehringer, Stefan; Houwing-Duistermaat, Jeanine
2015-03-01
Integrative omics, the joint analysis of outcome and multiple types of omics data, such as genomics, epigenomics, and transcriptomics data, constitute a promising approach for powerful and biologically relevant association studies. These studies often employ a case-control design, and often include nonomics covariates, such as age and gender, that may modify the underlying omics risk factors. An open question is how to best integrate multiple omics and nonomics information to maximize statistical power in case-control studies that ascertain individuals based on the phenotype. Recent work on integrative omics have used prospective approaches, modeling case-control status conditional on omics, and nonomics risk factors. Compared to univariate approaches, jointly analyzing multiple risk factors with a prospective approach increases power in nonascertained cohorts. However, these prospective approaches often lose power in case-control studies. In this article, we propose a novel statistical method for integrating multiple omics and nonomics factors in case-control association studies. Our method is based on a retrospective likelihood function that models the joint distribution of omics and nonomics factors conditional on case-control status. The new method provides accurate control of Type I error rate and has increased efficiency over prospective approaches in both simulated and real data. © 2015 Wiley Periodicals, Inc.
Fox, J.E.; Bridgham, J.T.; Bovee, T.F.H.; Thornton, J.W.
2007-01-01
To study a gene interaction network, we developed a gene-targeting strategy that allows efficient and stable genomic integration of multiple genetic constructs at distinct target loci in the yeast genome. This gene-targeting strategy uses a modular plasmid with a recyclable selectable marker and a
Crawford, Carrie L.
1990-01-01
Reviews literature on hypnosis, imagery, and metaphor as applied to the treatment and integration of those with multiple personality disorder (MPD) and dissociative states. Considers diagnostic criteria of MPD; explores current theories of etiology and treatment; and suggests specific examples of various clinical methods of treatment using…
Doroszuk, A.; Brake, te E.; Crespo-Gonzalez, D.; Kammenga, J.E.
2007-01-01
Realistic measures of the impact of individual or multiple stressors are important for ecological risk assessment. Although multiple anthropogenic stressors are common in human-dominated environments, knowledge of their influence on functional population parameters such as secondary production (P)
Leon, Gabriel [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico DF 04510 (Mexico); De Unanue, Adolfo [C3 Centro de Ciencias de la Complejidad, Universidad Nacional Autonoma de Mexico, Torre de IngenierIa, Circuito Exterior S/N Ciudad Universitaria, Mexico DF 04510 (Mexico); Sudarsky, Daniel, E-mail: gabriel.leon@nucleares.unam.mx, E-mail: adolfo@nucleares.unam.mx, E-mail: sudarsky@nucleares.unam.mx [Instituto de AstronomIa y Fisica del Espacio (UBA-CONICET), Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires (Argentina)
2011-08-07
The standard inflationary account for the origin of cosmic structure is, without a doubt, extremely successful. However, it is not fully satisfactory as has been argued in Perez et al (2006 Class. Quantum Grav. 23 2317). The central point is that, in the standard accounts, the inhomogeneity and anisotropy of our universe seem to emerge, unexplained, from an exactly homogeneous and isotropic initial state through processes that do not break those symmetries. The proposal made there to address this shortcoming calls for a dynamical and self-induced quantum collapse of the original homogeneous and isotropic state of the inflaton. In this paper, we consider the possibility of a multiplicity of collapses in each one of the modes of the quantum field. As we will see, the results are sensitive to a more detailed characterization of the collapse than those studied in the previous works, and in this regard two simple options will be studied. We find important constraints on the model, most remarkably on the number of possible collapses for each mode.
A novel QC-LDPC code based on the finite field multiplicative group for optical communications
Yuan, Jian-guo; Xu, Liang; Tong, Qing-zhen
2013-09-01
A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) code is proposed based on the finite field multiplicative group, which has easier construction, more flexible code-length code-rate adjustment and lower encoding/decoding complexity. Moreover, a regular QC-LDPC(5334,4962) code is constructed. The simulation results show that the constructed QC-LDPC(5334,4962) code can gain better error correction performance under the condition of the additive white Gaussian noise (AWGN) channel with iterative decoding sum-product algorithm (SPA). At the bit error rate (BER) of 10-6, the net coding gain (NCG) of the constructed QC-LDPC(5334,4962) code is 1.8 dB, 0.9 dB and 0.2 dB more than that of the classic RS(255,239) code in ITU-T G.975, the LDPC(32640,30592) code in ITU-T G.975.1 and the SCG-LDPC(3969,3720) code constructed by the random method, respectively. So it is more suitable for optical communication systems.
Symstad, Amy J.; Fisichelli, Nicholas A.; Miller, Brian W.; Rowland, Erika; Schuurman, Gregor W.
2017-01-01
Scenario planning helps managers incorporate climate change into their natural resource decision making through a structured “what-if” process of identifying key uncertainties and potential impacts and responses. Although qualitative scenarios, in which ecosystem responses to climate change are derived via expert opinion, often suffice for managers to begin addressing climate change in their planning, this approach may face limits in resolving the responses of complex systems to altered climate conditions. In addition, this approach may fall short of the scientific credibility managers often require to take actions that differ from current practice. Quantitative simulation modeling of ecosystem response to climate conditions and management actions can provide this credibility, but its utility is limited unless the modeling addresses the most impactful and management-relevant uncertainties and incorporates realistic management actions. We use a case study to compare and contrast management implications derived from qualitative scenario narratives and from scenarios supported by quantitative simulations. We then describe an analytical framework that refines the case study’s integrated approach in order to improve applicability of results to management decisions. The case study illustrates the value of an integrated approach for identifying counterintuitive system dynamics, refining understanding of complex relationships, clarifying the magnitude and timing of changes, identifying and checking the validity of assumptions about resource responses to climate, and refining management directions. Our proposed analytical framework retains qualitative scenario planning as a core element because its participatory approach builds understanding for both managers and scientists, lays the groundwork to focus quantitative simulations on key system dynamics, and clarifies the challenges that subsequent decision making must address.
Vijai Kumar Baskaran
2017-12-01
Full Text Available In this research, an integrated reservoir study is performed in the J#Field (J-Oil Field of western onshore, India to evaluate its additional reserves expectations and implement field developments plan using waterflood pilot program. The target strata includes two formations of Paleogene, which is about 3600 ft, namely G#Fm (G-Formation of the Eocene and T#Fm (T-Formation of Oligocene, subdivided into 11 zones. Based on these results, an attempt was made to construct of an optimization plan to exploit it, taking into account that the field is producing since 1947, with a cumulative production of 183.5 MMbbl and an overall recovery factor of 28% until January 2016. On the basis of the potential evaluation and geological modeling, blocks J48 and J45 were simulated, and the remaining oil distribution characteristics in two blocks were studied after history match. The work includes the stratigraphic studies, seismic study, logging interpretation, sedimentary facies modeling, three dimensional geological modeling, simulations for waterflooding, and future field development plans.
Capra, Gian Franco; Tidu, Simona; Lovreglio, Raffaella; Certini, Giacomo; Salis, Michele; Bacciu, Valentina; Ganga, Antonio; Filzmoser, Peter
2018-05-15
Sardinia (Italy), the second largest island of the Mediterranean Sea, is a fire-prone land. Most Sardinian environments over time were shaped by fire, but some of them are too intrinsically fragile to withstand the currently increasing fire frequency. Calcareous pedoenvironments represent a significant part of Mediterranean areas, and require important efforts to prevent long-lasting degradation from fire. The aim of this study was to assess through an integrated multiple approach the impact of a single and highly severe wildland fire on limestone-derived soils. For this purpose, we selected two recently burned sites, Sant'Antioco and Laconi. Soil was sampled from 80 points on a 100×100m grid - 40 in the burned area and 40 in unburned one - and analyzed for particle size fractions, pH, electrical conductivity, organic carbon, total N, total P, and water repellency (WR). Fire behavior (surface rate of spread (ROS), fireline intensity (FLI), flame length (FL)) was simulated by BehavePlus 5.0.5 software. Comparisons between burned and unburned areas were done through ANOVA as well as deterministic and stochastic interpolation techniques; multiple correlations among parameters were evaluated by principal factor analysis (PFA) and differences/similarities between areas by principal component analysis (PCA). In both sites, fires were characterized by high severity and determined significant changes to some soil properties. The PFA confirmed the key ecological role played by fire in both sites, with the variability of a four-modeled components mainly explained by fire parameters, although the induced changes on soils were mainly site-specific. The PCA revealed the presence of two main "driving factors": slope (in Sant'Antioco), which increased the magnitude of ROS and FLI; and soil properties (in Laconi), which mostly affected FL. In both sites, such factors played a direct role in differentiating fire behavior and sites, while they played an indirect role in determining
Malcolm, Andrew A.; Liu, Tong; Ng, Ivan Kee Beng; Teng, Wei Yuen; Yap, Tsi Tung; Wan, Siew Ping; Kong, Chun Jeng
2013-01-01
X-ray Computed Tomography (CT) allows visualisation of the physical structures in the interior of an object without physically opening or cutting it. This technology supports a wide range of applications in the non-destructive testing, failure analysis or performance evaluation of industrial products and components. Of the numerous factors that influence the performance characteristics of an X-ray CT system the energy level in the X-ray spectrum to be used is one of the most significant. The ability of the X-ray beam to penetrate a given thickness of a specific material is directly related to the maximum available energy level in the beam. Higher energy levels allow penetration of thicker components made of more dense materials. In response to local industry demand and in support of on-going research activity in the area of 3D X-ray imaging for industrial inspection the Singapore Institute of Manufacturing Technology (SIMTech) engaged in the design, development and integration of large scale multiple source X-ray computed tomography system based on X-ray sources operating at higher energies than previously available in the Institute. The system consists of a large area direct digital X-ray detector (410 x 410 mm), a multiple-axis manipulator system, a 225 kV open tube microfocus X-ray source and a 450 kV closed tube millifocus X-ray source. The 225 kV X-ray source can be operated in either transmission or reflection mode. The body of the 6-axis manipulator system is fabricated from heavy-duty steel onto which high precision linear and rotary motors have been mounted in order to achieve high accuracy, stability and repeatability. A source-detector distance of up to 2.5 m can be achieved. The system is controlled by a proprietary X-ray CT operating system developed by SIMTech. The system currently can accommodate samples up to 0.5 x 0.5 x 0.5 m in size with weight up to 50 kg. These specifications will be increased to 1.0 x 1.0 x 1.0 m and 100 kg in future
Integration of gamma cameras and PET devices of multiple vendors in several locations
Dresel, S.; Vollmar, C.; Sengupta, S.; Hahn, K.
2002-01-01
. Problems that occur in the process of becoming filmfree are mainly based on compatibility issues and demand strong cooperation between the user and the manufacturer of the imaging devices in order to integrate all systems into one tool. The experience of the many advantages of making all nuclear medicine studies available on any places of the multiple locations makes a return to conventional film reading unconceivable. (author)
Puja Sahai
2015-01-01
Full Text Available The purpose of our study is to describe a planning technique using multi-leaf collimator and asymmetric fields for irradiating an ‘inverted Y’ shaped geometry in a patient with testicular seminoma. The entire target area covering the para-aortic, pelvic, and inguinal nodal regions was split into three fields. Single isocenter half-beam block technique was employed. The fields were planned with antero-posterior and postero-anterior portals with a differential weightage. The dose was prescribed at the respective reference points of the fields. A uniform dose distribution for the entire portal was achieved without any under- or over-dosing at the field junctions.
Ni, Xinzhi; Xu, Wenwei; Krakowsky, Matthew D; Buntin, G David; Brown, Steve L; Lee, R Dewey; Coy, Anton E
2007-10-01
Identifying and using native insect resistance genes is the core of integrated pest management. In this study, 10 experimental corn, Zea mays L., hybrids and 10 inbred lines were screened for resistance to major ear-feeding insects in the southeastern Coastal Plain region of the United States during 2004 and 2005. Ear-feeding insect damage was assessed at harvest by visual damage rating for the corn earworm, Helicoverpa zea (Boddie), and by the percentage of kernels damaged by the maize weevil, Sitophilus zeamais Motschulsky, and stink bugs [combination of Euschistus servus (Say) and southern green stink bug, Nezara viridula (L.)]. Among the eight inbred lines and two control populations examined, C3S1B73-5b was resistant to corn earworm, maize weevil, and stink bugs. In contrast, C3S1B73-4 was resistant to corn earworm and stink bugs, but not to maize weevil. In a similar manner, the corn hybrid S1W*CML343 was resistant to all three ear-feeding insects, whereas hybrid C3S1B73-3*Tx205 was resistant to corn earworm and maize weevil in both growing seasons, but susceptible to stink bugs in 2005. The silk-feeding bioassay showed that corn earworm developed better on corn silk than did fall armyworm. Among all phenotypic traits examined (i.e., corn ear size, husk extension, and husk tightness), only corn ear size was negatively correlated to corn earworm damage in the inbred lines examined, whereas only husk extension (i.e., coverage) was negatively correlated to both corn earworm and maize weevil damage on the experimental hybrids examined. Such information could be used to establish a baseline for developing agronomically elite corn germplasm that confers multiple ear-feeding insect resistance.
Integrable systems and quantum field theory. Works in progress Nr 75
Baird, Paul; Helein, Frederic; Kouneiher, Joseph; Roubtsov, Volodya; Antunes, Paulo; Banos, Bertrand; Barbachoux, Cecile; Desideri, Laura; Kahouadji, Nabil; Gerding, Aaron; Heller, Sebastian; Schmitt, Nicholas; Harrivel, Dikanaina; Hoevenaars, Luuk K.; Iftime, Mihaela; Levy, Thierry; Lisovyy, Oleg; Masson, Thierry; Skrypnyk, Taras; Pedit, Franz; Egeileh, Michel
2009-01-01
The contributions of this collective book address the quantum field theory (integrable systems and quantum field theory, introduction to supermanifolds and supersymmetry, beyond geometric quantification, Gaussian measurements and Fock spaces), differential geometry and physics (gravitation and geometry, physical events and the superspace about the hole argument, the Cartan-Kaehler theory and applications to local isometric and conformal embedding, calibrations, Cabal-Yau structures and Monge-Ampere structures, Hamiltonian multi-symplectic formalism and Monge-Ampere equations, big bracket, derivations and derivative multi-brackets), integrable system, geometry and physics (finite-volume correlation functions of monodromy fields on the lattice with the Toeplitz representation, Frobenius manifolds and algebraic integrability, an introduction to twistors, Hamiltonian systems on the 'coupled' curves, Nambu-Poisson mechanics and Fairlie-type integrable systems, minimal surfaces with polygonal boundary and Fuchsian equations, global aspects of integrable surface geometry), and non commutative geometry (an informal introduction to the ideas and concepts of non commutative geometry)
Stability Analysis and Variational Integrator for Real-Time Formation Based on Potential Field
Shengqing Yang
2014-01-01
Full Text Available This paper investigates a framework of real-time formation of autonomous vehicles by using potential field and variational integrator. Real-time formation requires vehicles to have coordinated motion and efficient computation. Interactions described by potential field can meet the former requirement which results in a nonlinear system. Stability analysis of such nonlinear system is difficult. Our methodology of stability analysis is discussed in error dynamic system. Transformation of coordinates from inertial frame to body frame can help the stability analysis focus on the structure instead of particular coordinates. Then, the Jacobian of reduced system can be calculated. It can be proved that the formation is stable at the equilibrium point of error dynamic system with the effect of damping force. For consideration of calculation, variational integrator is introduced. It is equivalent to solving algebraic equations. Forced Euler-Lagrange equation in discrete expression is used to construct a forced variational integrator for vehicles in potential field and obstacle environment. By applying forced variational integrator on computation of vehicles' motion, real-time formation of vehicles in obstacle environment can be implemented. Algorithm based on forced variational integrator is designed for a leader-follower formation.
Integrated Study of Lithofacies Identification—A Case Study in X Field, Sabah, Malaysia
Jia Qi Ngui
2018-02-01
Full Text Available Understanding subsurface geology is essential for oil and gas exploration. Seismic facies interpretation is very useful in investigating this concept. The interpretation of the depositional setting of the X Field is achieved by integrating the seismic facies characteristics on 3D seismic data and well log data. Both the seismic and well log data are widely used in hydrocarbon exploration to map the subsurface, as they complement each other. Well logs yield the vertical resolution of the subsurface geology at the drilled well, whereas seismic data reveal the lateral continuity. The objective of this paper is to demonstrate the integration of 3D seismic data and well log data for lithofacies identification. Interpretation and analysis of lithofacies is carried out through the integration of the characteristics of seismic reflections with well information (logs. Horizons are interpreted based on the variation in seismic reflections on the seismic section, which is caused by the change in geology within seismic sequences. Well logs give detailed information at the points where the wells were drilled. Interpolating between these points and extrapolating away from the points into undrilled areas can be helpful in providing a better geological knowledge of an area. The result of this integrated study depicts the lithofacies in the area. This integrated study will provide a better insight with higher degree of reliability to the facies distribution and depositional setting of the X Field. The geological and geophysical aspects of the field will be documented.
National Aeronautics and Space Administration — The many different generations of integrated circuit (IC) technologies required for new space exploration systems demand designs operate at multiple and often...
Some comments on rigorous quantum field path integrals in the analytical regularization scheme
Botelho, Luiz C.L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Matematica Aplicada]. E-mail: botelho.luiz@superig.com.br
2008-07-01
Through the systematic use of the Minlos theorem on the support of cylindrical measures on R{sup {infinity}}, we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)
Some comments on rigorous quantum field path integrals in the analytical regularization scheme
Botelho, Luiz C.L.
2008-01-01
Through the systematic use of the Minlos theorem on the support of cylindrical measures on R ∞ , we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)
Integrating iPad Technology in Earth Science K-12 Outreach Courses: Field and Classroom Applications
Wallace, Davin J.; Witus, Alexandra E.
2013-01-01
Incorporating technology into courses is becoming a common practice in universities. However, in the geosciences, it is difficult to find technology that can easily be transferred between classroom- and field-based settings. The iPad is ideally suited to bridge this gap. Here, we fully integrate the iPad as an educational tool into two…
On the classical origins of yangian symmetry in integrable field theory
MacKay, N.J.
1992-01-01
We show that Drinfeld's yangian algebra, studied recently as the algebra of conserved charges in certain two-dimensional integrable quantum field theories, is also present in the classical theory as a Poisson-Hopf algebra, and exhibit explicitly the Serre relations, coproduct and antipode. (orig.)
PPAK integral field spectroscopy survey of the Orion nebula. Data release
Sánchez, S. F.; Cardiel, N.; Verheijen, M. A. W.; Martín-Gordón, D.; Vilchez, J. M.; Alves, J.
2007-01-01
Aims:We present a low-resolution spectroscopic survey of the Orion nebula. The data are released for public use. We show the possible applications of this dataset analyzing some of the main properties of the nebula. Methods: We perform an integral field spectroscopy mosaic of an area of ~5 arcmin× 6
Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite
Walzer, Andreas; Schausberger, Peter
2012-01-01
In mutual intraguild predation (IGP), the role of individual guild members is strongly context dependent and, during ontogeny, can shift from an intraguild (IG) prey to a food competitor or to an IG predator. Consequently, recognition of an offspring's predator is more complex for IG than classic prey females. Thus, IG prey females should be able to modulate their oviposition decisions by integrating multiple IG predator cues and by experience. Using a guild of plant-inhabiting predatory mites sharing the spider mite Tetranychus urticae as prey and passing through ontogenetic role shifts in mutual IGP, we assessed the effects of single and combined direct cues of the IG predator Amblyseius andersoni (eggs and traces left by a female on the substrate) on prey patch selection and oviposition behaviour of naïve and IG predator-experienced IG prey females of Phytoseiulus persimilis. The IG prey females preferentially resided in patches without predator cues when the alternative patch contained traces of predator females or the cue combination. Preferential egg placement in patches without predator cues was only apparent in the choice situation with the cue combination. Experience increased the responsiveness of females exposed to the IG predator cue combination, indicated by immediate selection of the prey patch without predator cues and almost perfect oviposition avoidance in patches with the cue combination. We argue that the evolution of the ability of IG prey females to evaluate offspring's IGP risk accurately is driven by the irreversibility of oviposition and the functionally complex relationships between predator guild members. PMID:23264692
Zumpf, Colleen; Ssegane, Herbert; Negri, Maria Cristina; Campbell, Patty; Cacho, Julian
2017-07-01
Agricultural landscape design has gained recognition by the international environmental and development community as a strategy to address multiple goals in land, water, and ecosystem service management; however, field research is needed to quantify impacts on specific local environments. The production of bioenergy crops in specific landscape positions within a grain-crop field can serve the dual purpose of producing cellulosic biomass (nutrient recovery) while also providing regulating ecosystem services to improve water quality (nutrient reduction). The effectiveness of such a landscape design was evaluated by the strategic placement of a 0.8-ha short-rotation shrub willow ( Seemen) bioenergy buffer along marginal soils in a 6.5-ha corn ( L.) field in a 6-yr field study in central Illinois. The impact of willow integration on water quality (soil water, shallow groundwater leaching, and crop nutrient uptake) and quantity (soil moisture and transpiration) was monitored in comparison with corn in the willow's first cycle of growth. Willows significantly reduced nitrate leachate in shallow subsurface water by 88% while maintaining adequate nutrient and water usage. Results suggest that willows offer an efficient nutrient-reduction strategy and may provide additional ecosystem services and benefits, including enhanced soil health. However, low values for calculated willow biomass will need to be readdressed in the future as harvest data become available to understand contributing factors that affected productivity beyond nutrient availability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Entanglement entropy in integrable field theories with line defects II. Non-topological defect
Jiang, Yunfeng
2017-08-01
This is the second part of two papers where we study the effect of integrable line defects on bipartite entanglement entropy in integrable field theories. In this paper, we consider non-topological line defects in Ising field theory. We derive an infinite series expression for the entanglement entropy and show that both the UV and IR limits of the bulk entanglement entropy are modified by the line defect. In the UV limit, we give an infinite series expression for the coefficient in front of the logarithmic divergence and the exact defect g-function. By tuning the defect to be purely transmissive and reflective, we recover correctly the entanglement entropy of the bulk and with integrable boundary respectively.
Unbounded representations of symmetry groups in gauge quantum field theory. II. Integration
Voelkel, A.H.
1986-01-01
Within the gauge quantum field theory of the Wightman--Garding type, the integration of representations of Lie algebras is investigated. By means of the covariance condition (substitution rules) for the basic fields, it is shown that a form skew-symmetric representation of a Lie algebra can be integrated to a form isometric and in general unbounded representation of the universal covering group of a corresponding Lie group provided the conditions (Nelson, Sternheimer, etc.), which are well known for the case of Hilbert or Banach representations, hold. If a form isometric representation leaves the subspace from which the physical Hilbert space is obtained via factorization and completion invariant, then the same is proved to be true for its differential. Conversely, a necessary and sufficient condition is derived for the transmission of the invariance of this subspace under a form skew-symmetric representation of a Lie algebra to its integral
Low-frequency scaling of the standard and mixed magnetic field and Müller integral equations
Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan
2014-01-01
The standard and mixed discretizations for the magnetic field integral equation (MFIE) and the Müller integral equation (MUIE) are investigated in the context of low-frequency (LF) scattering problems involving simply connected scatterers
Wang Shumin; Duyn, Jeff H [Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, 10/B1D728, Bethesda, MD 20892 (United States)
2006-06-21
We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.
Integral equation and simulation studies of a planar nematogenic liquid in crossed external fields
Lado, F; Lomba, E; MartIn, C; Almarza, N G
2005-01-01
We study a fluid of nematogenic molecules with centres of mass constrained to lie in a plane but with axes free to rotate in any direction. An external disorienting field perpendicular to the plane along with a second orienting field in the plane induce an in-plane order-disorder transition. We analyse the behaviour of this simple biaxial model using a well-established generalization of molecular integral equation methods built upon specially tailored basis functions that maintain orthogonality in the presence of anisotropy. Computer simulation and integral equation calculations predict an isotropic-nematic transition at low temperatures in zero field and an in-plane transition at somewhat higher temperatures in the presence of the disorienting field. The oriented states obtained in the presence of both fields can subsequently be used as input to uncover in detail first the transition in the absence of the in-plane orienting field and finally the spontaneous transition in the absence of any field. According to the simulation, the transition apparently belongs to the Berezinskii-Kosterlitz-Thouless defect-mediated type, whereas the theory reproduces a weak first-order transition
Maimaitiyiming, M.; Bozzolo, A.; Wulamu, A.; Wilkins, J. L.
2015-12-01
Precision farming requires high spectral, spatial and temporal resolution remote sensing data to detect plant physiological changes. The higher spatial resolution is particularly as important as the spectral resolution for crop monitoring. It is important to develop data integration techniques between field or airborne hyperspectral data with spaceborne broad band multispectral images for plant productivity monitoring. To investigate varying rootstock and irrigation interactions, different irrigation treatments are implemented in a vineyard experimental site either i) unirrigated ii) full replacement of evapotranspiration (ET) iii) irrigated at 50 % of the potential ET. In summer 2014, we collected leaf and canopy spectra of the vineyard using field spectroscopy along with other plant physiological and nutritional variables. In this contribution, we integrate the field spectra and the spectral wavelengths of WorldView-2 to develop a predictive model for plant productivity,i.e., fruit quality and yield. First, we upscale field and canopy spectra to WorldView-2 spectral bands using radiative transfer simulations (e.g., MODTRAN). Then we develop remote sensing techniques to quantify plant productivity in different scenarios water stress by identifying the most effective and sensitive wavelengths, and indices that are capable of early detection of plant health and estimation of crop nutrient status. Finally we present predictive models developed from partial least square regression (PLSR) for plant productivity using spectral wavelengths and indices derived from integrated field and satellite remote sensing data.
Bardhan, Jaydeep P
2008-10-14
The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement
Wang, Lizhi; Pan, Rong; Li, Xiaoyang; Jiang, Tongmin
2013-01-01
Accelerated degradation testing (ADT) is a common approach in reliability prediction, especially for products with high reliability. However, oftentimes the laboratory condition of ADT is different from the field condition; thus, to predict field failure, one need to calibrate the prediction made by using ADT data. In this paper a Bayesian evaluation method is proposed to integrate the ADT data from laboratory with the failure data from field. Calibration factors are introduced to calibrate the difference between the lab and the field conditions so as to predict a product's actual field reliability more accurately. The information fusion and statistical inference procedure are carried out through a Bayesian approach and Markov chain Monte Carlo methods. The proposed method is demonstrated by two examples and the sensitivity analysis to prior distribution assumption
Bertschinger, E.
1987-01-01
Path integrals may be used to describe the statistical properties of a random field such as the primordial density perturbation field. In this framework the probability distribution is given for a Gaussian random field subjected to constraints such as the presence of a protovoid or supercluster at a specific location in the initial conditions. An algorithm has been constructed for generating samples of a constrained Gaussian random field on a lattice using Monte Carlo techniques. The method makes possible a systematic study of the density field around peaks or other constrained regions in the biased galaxy formation scenario, and it is effective for generating initial conditions for N-body simulations with rare objects in the computational volume. 21 references
Louboutin Michel
2004-09-01
Full Text Available Nature oil and gas fields are difficult to rehabilitate effectively because of the economics of declining production. Many fields are abandoned prematurely when their life could be prolonged significantly through application of new technology. Romgaz (a national exploration and production company and Schlumberger (an integrated oilfield services company developed a new business model to overcome these obstacles. The key to success of this model, which is being applied to gas fields in the Transylvanian basin of Romania, is the shared risk and shared reward for the two companies. Integrated management processes addressing the complete system from reservoir to wellbore to surface/transmission facilities and application of new technology (logging, perforation, etc. have resulted in multifold increases in production.
Adugna Abdi Woldesemayat
Full Text Available Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations.In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO, Trait Ontology (TO, Plant Ontology (PO, Growth Ontology (GRO and Environment Ontology (EO were used to semantically integrate drought related information.Target genes linked to Quantitative Trait Loci (QTLs controlling yield and stress tolerance in sorghum (Sorghum bicolor (L. Moench and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%, salt (32%, cold (20%, heat (8% and oxidative stress (25% were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs
Non-Gaussian path integration in self-interacting scalar field theories
Kaya, Ali
2004-01-01
In self-interacting scalar field theories kinetic expansion is an alternative way of calculating the generating functional for Green's functions where the zeroth order non-Gaussian path integral becomes diagonal in x-space and reduces to the product of an ordinary integral at each point which can be evaluated exactly. We discuss how to deal with such functional integrals and propose a new perturbative expansion scheme which combines the elements of the kinetic expansion with the usual perturbation theory techniques. It is then shown that, when the cutoff dependences of the bare parameters in the potential are chosen to have a well defined non-Gaussian path integral without the kinetic term, the theory becomes trivial in the continuum limit
Exploring the use of storytelling in quantitative research fields using a multiple case study method
Matthews, Lori N. Hamlet
The purpose of this study was to explore the emerging use of storytelling in quantitative research fields. The focus was not on examining storytelling in research, but rather how stories are used in various ways within the social context of quantitative research environments. In-depth interviews were conducted with seven professionals who had experience using storytelling in their work and my personal experience with the subject matter was also used as a source of data according to the notion of researcher-as-instrument. This study is qualitative in nature and is guided by two supporting theoretical frameworks, the sociological perspective and narrative inquiry. A multiple case study methodology was used to gain insight about why participants decided to use stories or storytelling in a quantitative research environment that may not be traditionally open to such methods. This study also attempted to identify how storytelling can strengthen or supplement existing research, as well as what value stories can provide to the practice of research in general. Five thematic findings emerged from the data and were grouped under two headings, "Experiencing Research" and "Story Work." The themes were found to be consistent with four main theoretical functions of storytelling identified in existing scholarly literature: (a) sense-making; (b) meaning-making; (c) culture; and (d) communal function. The five thematic themes that emerged from this study and were consistent with the existing literature include: (a) social context; (b) quantitative versus qualitative; (c) we think and learn in terms of stories; (d) stories tie experiences together; and (e) making sense and meaning. Recommendations are offered in the form of implications for various social contexts and topics for further research are presented as well.
Verhey, L.J.; Xia, P.; Akazawa, P.
1997-01-01
Purpose: A number of different beam delivery methods have been proposed for implementing intensity modulated radiotherapy (IMRT), including fixed gantry with multiple static MLC fields (MSMLC - often referred to as 'stop and shoot'), fixed gantry with dynamic MLC (DMLC), intensity modulated arc therapy (IMAT), Tomotherapy and Peacock MIMiC. Using two complex head and neck cases as examples, we have compared dose distributions achievable with 3-D conformal radiotherapy (3DCRT) to those which can be achieved using IMRT delivered with MSMLC, DMLC and Peacock MIMiC. The goal is to demonstrate the potential value of IMRT in the treatment of complex lesions in the head and neck and to determine whether MSMLC, the simplest of the proposed IMRT methods, can produce dose distributions which are competitive with dynamic IMRT methods and which can be implemented in clinically acceptable times. Materials and Methods: Two patients with nasopharyngeal carcinoma were selected from the archives of the Department of Radiation Oncology at the University of California, San Francisco (UCSF). These patients were previously planned and treated with CT-based 3-D treatment planning methods which are routinely used at UCSF, including non-axial beam directions and partial transmission blocks when indicated. The CT data tapes were then read into a test version of CORVUS, an inverse treatment planning program being developed by NOMOS Corporation, target volumes and critical normal structures were outlined on axial CT slices and dose goals and limits were defined for the targets and normal tissues of interest. Optimized dose plans were then obtained for each delivery method including MSMLC (4 or 5 hand-selected beams with 3 levels of intensity), DMLC (9 evenly spaced axial beams with 10 levels of intensity) and Peacock MIMiC (55 axial beams spanning 270 degrees with 10 levels of intensity). Dose-volume histograms (DVH's) for all IMRT plans were then compared with the 3DCRT plans. Treatment
Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck
2017-09-15
The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.
Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck
2017-09-01
The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.
Wei, Liew Tze; Sazilah, Salam
2012-01-01
This study investigated the effects of visual cues in multiple external representations (MER) environment on the learning performance of novices' program comprehension. Program codes and flowchart diagrams were used as dual representations in multimedia environment to deliver lessons on C-Programming. 17 field independent participants and 16 field…
Self-field calculation of CICC with fast direct Biot–Savart integration
Wang, Xu; Li, Yingxu [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou, Youhe [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)
2014-04-15
Highlights: • An algorithm of fast direct Biot–Savart integration (FDBS) is proposed. • FDBS calculates the self-field of ITER cable-in-conduit conductor (CICC). • FDBS is more effective and easier to implement. • This new method will benefit future magnet design. - Abstract: ITER magnetic device (Tokamak) requires a strong magnetic field produced by charged cable conductors and external sources to arrive at stable and reliable magnetic confinement performance. Before manufacturing and assembling conductors, preliminary analysis of self-field induction is helpful for reducing the cost of varying-parameter experiments. Spatial helix shape of numerous strand elements and multi-level twist of the finalized cable, known as CICC type, make it unpractical to direct use finite-element methods and other numerical procedures for self-field calculation. An algorithm FDBS (fast direct Biot–Savart integration) is proposed to surmount this difficulty, which improves the traditional method (DBS, direct implementing Biot–Savart law for all strand sources) in terms of computational effort. As such the complexity reduces to O(N) from the original O(N{sup 2}) and speed enhancement is achieved in the parallel computation environment. FDBS calculates out a detailed self-field profile for the uncompressed ITER TF conductors carrying uniform current at each cabling level; the layered self-field distribution becomes more indistinct for higher level subcable.
Self-field calculation of CICC with fast direct Biot–Savart integration
Wang, Xu; Li, Yingxu; Gao, Yuanwen; Zhou, Youhe
2014-01-01
Highlights: • An algorithm of fast direct Biot–Savart integration (FDBS) is proposed. • FDBS calculates the self-field of ITER cable-in-conduit conductor (CICC). • FDBS is more effective and easier to implement. • This new method will benefit future magnet design. - Abstract: ITER magnetic device (Tokamak) requires a strong magnetic field produced by charged cable conductors and external sources to arrive at stable and reliable magnetic confinement performance. Before manufacturing and assembling conductors, preliminary analysis of self-field induction is helpful for reducing the cost of varying-parameter experiments. Spatial helix shape of numerous strand elements and multi-level twist of the finalized cable, known as CICC type, make it unpractical to direct use finite-element methods and other numerical procedures for self-field calculation. An algorithm FDBS (fast direct Biot–Savart integration) is proposed to surmount this difficulty, which improves the traditional method (DBS, direct implementing Biot–Savart law for all strand sources) in terms of computational effort. As such the complexity reduces to O(N) from the original O(N 2 ) and speed enhancement is achieved in the parallel computation environment. FDBS calculates out a detailed self-field profile for the uncompressed ITER TF conductors carrying uniform current at each cabling level; the layered self-field distribution becomes more indistinct for higher level subcable
Chremmos, Ioannis
2010-01-01
The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.
Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.
2016-09-01
Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.
An integrated pan-tropical biomass map using multiple reference datasets.
Avitabile, Valerio; Herold, Martin; Heuvelink, Gerard B M; Lewis, Simon L; Phillips, Oliver L; Asner, Gregory P; Armston, John; Ashton, Peter S; Banin, Lindsay; Bayol, Nicolas; Berry, Nicholas J; Boeckx, Pascal; de Jong, Bernardus H J; DeVries, Ben; Girardin, Cecile A J; Kearsley, Elizabeth; Lindsell, Jeremy A; Lopez-Gonzalez, Gabriela; Lucas, Richard; Malhi, Yadvinder; Morel, Alexandra; Mitchard, Edward T A; Nagy, Laszlo; Qie, Lan; Quinones, Marcela J; Ryan, Casey M; Ferry, Slik J W; Sunderland, Terry; Laurin, Gaia Vaglio; Gatti, Roberto Cazzolla; Valentini, Riccardo; Verbeeck, Hans; Wijaya, Arief; Willcock, Simon
2016-04-01
We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets. © 2015 John Wiley & Sons Ltd.
Field configurations for small deviations of the integral filling factors in IQHE
Cabo, A.; Castineiras, J.; Gonzalez, R.; Penaranda, S.
1990-07-01
A numerical solution of the effective Maxwell equations of the IQHE is presented. It corresponds to inhomogeneous electromagnetic field distributions appearing after a small constant magnetic field is added to a 2D-electron gas sheet when the density exactly fills an integral number of Landau levels. It follows that the Chern-Simons terms of the Maxwell equation transform the applied magnetic field into an equivalent homogeneous charge density. The numerical value of this density is exactly the one which is needed to furnish complete filling at the new value of the total magnetic field. The system then reacts tending to screen the effective charge density by removing charge from the sample edges. It is interesting that for the selected parameter values here, reflecting the current experimental situations, the system response is able to approximately establish an integral filling factor in the central portion of the sheet. Then, at least a small plateau is predicted to occur in pure samples at zero temperature. It also follows that the current distribution is unsymmetric under the inversion, as opposed to the configuration associated to a flow of a net Hall current at integral filling factors. (author). 8 refs, 4 figs
Xiang, Wei; Yin, Jiao; Lim, Gino
2015-02-01
Operating room (OR) surgery scheduling determines the individual surgery's operation start time and assigns the required resources to each surgery over a schedule period, considering several constraints related to a complete surgery flow and the multiple resources involved. This task plays a decisive role in providing timely treatments for the patients while balancing hospital resource utilization. The originality of the present study is to integrate the surgery scheduling problem with real-life nurse roster constraints such as their role, specialty, qualification and availability. This article proposes a mathematical model and an ant colony optimization (ACO) approach to efficiently solve such surgery scheduling problems. A modified ACO algorithm with a two-level ant graph model is developed to solve such combinatorial optimization problems because of its computational complexity. The outer ant graph represents surgeries, while the inner graph is a dynamic resource graph. Three types of pheromones, i.e. sequence-related, surgery-related, and resource-related pheromone, fitting for a two-level model are defined. The iteration-best and feasible update strategy and local pheromone update rules are adopted to emphasize the information related to the good solution in makespan, and the balanced utilization of resources as well. The performance of the proposed ACO algorithm is then evaluated using the test cases from (1) the published literature data with complete nurse roster constraints, and 2) the real data collected from a hospital in China. The scheduling results using the proposed ACO approach are compared with the test case from both the literature and the real life hospital scheduling. Comparison results with the literature shows that the proposed ACO approach has (1) an 1.5-h reduction in end time; (2) a reduction in variation of resources' working time, i.e. 25% for ORs, 50% for nurses in shift 1 and 86% for nurses in shift 2; (3) an 0.25h reduction in
Chao, W. C.
1982-01-01
With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.
Integrable model of Yang-Mills theory with scalar field and quasi-instantons
Yatsun, V.A.
1988-01-01
In the framework of Euclidean conformally invariant Yang-Mills theory with a scalar field a study is made of a Hamiltonian system with two degrees of freedom that is integrable for a definite relationship between the coupling constants. A particular solution of the Hamilton-Jacobi equation leads to first-order equations that ensure a nonself-dual solution of instanton type of the considered model. As generalization of the first-order equations a quasiself-dual equation that can be integrated by means of the 't Hooft ansatz and leads to quasiself-dual instantons - quasi-instantons - is proposed
Yuan Lin; Zhou Ben-Hu; Zhao Yun-Hui; Xu Jun; Hai Wen-Hua
2012-01-01
A variational-integral perturbation method (VIPM) is established by combining the variational perturbation with the integral perturbation. The first-order corrected wave functions are constructed, and the second-order energy corrections for the ground state and several lower excited states are calculated by applying the VIPM to the hydrogen atom in a strong uniform magnetic field. Our calculations demonstrated that the energy calculated by the VIPM only shows a negative value, which indicates that the VIPM method is more accurate than the other methods. Our study indicated that the VIPM can not only increase the accuracy of the results but also keep the convergence of the wave functions
NONE
2004-07-01
This report summarises the results of the first eighteen months of the Large-Scale Building Integrated Photovoltaic Field Trial focussing on technical aspects. The project aims included increasing awareness and application of the technology, raising the UK capabilities in application of the technology, and assessing the potential for building integrated photovoltaics (BIPV). Details are given of technology choices; project organisation, cost, and status; and the evaluation criteria. Installations of BIPV described include University buildings, commercial centres, and a sports stadium, wildlife park, church hall, and district council building. Lessons learnt are discussed, and a further report covering monitoring aspects is planned.
Eppler, D. B.
2015-01-01
Lunar surface geological exploration should be founded on a number of key elements that are seemingly disparate, but which can form an integrated operational concept when properly conceived and deployed. If lunar surface geological exploration is to be useful, this integration of key elements needs to be undertaken throughout the development of both mission hardware, training and operational concepts. These elements include the concept of mission class, crew makeup and training, surface mobility assets that are matched with mission class, and field tools and IT assets that make data collection, sharing and archiving transparent to the surface crew.
Correction of inhomogeneous RF field using multiple SPGR signals for high-field spin-echo MRI
Ishimori, Yoshiyuki; Monma, Masahiko; Yamada, Kazuhiro; Kimura, Hirohiko; Uematsu, Hidemasa; Fujiwara, Yasuhiro; Yamaguchi, Isao
2007-01-01
The purpose of this study was to propose a simple and useful method for correcting nonuniformity of high-field (3 Tesla) T 1 -weighted spin-echo (SE) images based on a B1 field map estimated from gradient recalled echo (GRE) signals. The method of this study was to estimate B1 inhomogeneity, spoiled gradient recalled echo (SPGR) images were collected using a fixed repetition time of 70 ms, flip angles of 45 and 90 degrees, and echo times of 4.8 and 10.4 ms. Selection of flip angles was based on the observation that the relative intensity changes in SPGR signals were very similar among different tissues at larger flip angles than the Ernst angle. Accordingly, spatial irregularity that was observed on a signal ratio map of the SPGR images acquired with these 2 flip angles was ascribed to inhomogeneity of the B1 field. Dual echo time was used to eliminate T 2 * effects. The ratio map that was acquired was scaled to provide an intensity correction map for SE images. Both phantom and volunteer studies were performed using a 3T magnetic resonance scanner to validate the method. In the phantom study, the uniformity of the T 1 -weighted SE image improved by 23%. Images of human heads also showed practically sufficient improvement in the image uniformity. The present method improves the image uniformity of high-field T 1 -weighted SE images. (author)
Dose calculations for irregular fields using three-dimensional first-scatter integration
Boesecke, R.; Scharfenberg, H.; Schlegel, W.; Hartmann, G.H.
1986-01-01
This paper describes a method of dose calculations for irregular fields which requires only the mean energy of the incident photons, the geometrical properties of the irregular field and of the therapy unit, and the attenuation coefficient of tissue. The method goes back to an approach including spatial aspects of photon scattering for inhomogeneities for the calculation of dose reduction factors as proposed by Sontag and Cunningham (1978). It is based on the separation of dose into a primary component and a scattered component. The scattered component can generally be calculated for each field by integration over dose contributions from scattering in neighbouring volume elements. The quotient of this scattering contribution in the irregular field and the scattering contribution in the equivalent open field is then the correction factor for scattering in an irregular field. A correction factor for the primary component can be calculated if the attenuation of the photons in the shielding block is properly taken into account. The correction factor is simply given by the quotient of primary photons of the irregular field and the primary photons of the open field. (author)
Rider-Bertrand, Joey H.
At the start of the 21st century, STEM education was a new priority in many schools as the focus shifted from separate disciplines to integrative STEM education. Unfortunately, there was limited research to offer guidance to practitioners (Brown, 2012; Honey, Pearson & Schweingruber, 2014). This qualitative, multiple case study explored the experiences of two multi-disciplinary teams of secondary teachers from Pennsylvania who developed and implemented integrative STEM curriculum. Four teachers from a rural high school and four teachers from a suburban high school participated in the study. A document review of integrative STEM curriculum and semi-structured interviews were conducted to learn about the curriculum development process and teachers' perceptions regarding conditions that support or hinder success. Individual and cross-case analyses were performed to establish findings and themes. Although the individual case themes varied slightly, the cross-case themes and assertions that emerged provided highly sought after guidance to practitioners and added to the limited body of research on integrative STEM education. This study found that current curriculum models do not fit integrative STEM curriculum, the development process is fluid, and substantial administrative support and resources are necessary to develop, implement, and sustain integrative STEM education programs. The results offered implications for all educators, as well as two examples of how teachers navigated the terrain of integrative STEM curriculum.
The use of artificial intelligence techniques to improve the multiple payload integration process
Cutts, Dannie E.; Widgren, Brian K.
1992-01-01
A maximum return of science and products with a minimum expenditure of time and resources is a major goal of mission payload integration. A critical component then, in successful mission payload integration is the acquisition and analysis of experiment requirements from the principal investigator and payload element developer teams. One effort to use artificial intelligence techniques to improve the acquisition and analysis of experiment requirements within the payload integration process is described.
Determination of the bending field integral of the LEP spectrometer dipole
Chritin, R.; Cornuet, D.; Dehning, B.; Hidalgo, A.; Hildreth, M.; Kalbreier, W.; Leclere, P.; Mugnai, G.; Palacios, J.; Roncarolo, F.; Torrence, E.; Wilkinson, G.
2005-01-01
The LEP spectrometer performed calibrations of the beam energy in the 2000 LEP run, in order to provide a kinematical constraint for the W boson mass measurement. The beam was deflected in the spectrometer by a steel core dipole, and the bending angle was measured by Beam-Position Monitors on either side of the magnet. The energy determination relies on measuring the change in bending angle when ramping the beam from a reference point at 50GeV to an energy within the LEP W physics regime, typically 93GeV. The ratio of integrated bending fields at these settings (approximately 1.18Tm/0.64Tm) must be known with a precision of a few 10 -5 . The paper reports on the field mapping measurements which were conducted to determine the bending integral under a range of excitation currents and coil temperatures. These were made in the laboratory before and after spectrometer operation, using a test-bench equipped with a moving arm, carrying an NMR probe and Hall probes, and in the LEP tunnel itself, with a mapping trolley inside the vacuum chamber. The mapping data are related to local readings supplied by fixed NMR probes in the dipole, and a predictive model developed which shows good consistency for all datasets within the estimated uncertainty, which is 14x10 -5 for the moving arm, and 3x10 -5 for the mapping trolley. Measurements are also presented of the field gradient inside the dipole, and of the environmental magnetic fields in the LEP tunnel. When applied to the spectrometer energy calibrations, the bending field model calculates the ratio of integrated fields with an estimated uncertainty of 1.5x10 -5
The new integrated aeromagnetic map of the Phlegrean Fields volcano and surrounding areas
A. Rapolla
2004-06-01
Full Text Available In this paper we present and analyze the new detailed aeromagnetic data set resulting from a recent survey carried out in the Phlegrean Fields volcanic area. The survey was aimed at gaining new insight into the volcanological characteristics of the region north of Phlegrean Fields (Parete-Villa Literno area where remarkable thickness of volcanic/sub- volcanic rocks were found in wells. Measurement of total magnetic field was performed on two different flight levels, 70 m and 400 m above the ground surface, along flight lines spaced 400 m apart. Both aeromagnetic maps show the noisy effect of linear anomalies evidently due to the presence of railway lines. To filter out these local anomalies a method based on discrete wavelet transform was used, allowing an accurate local filtering and leaving the rest of the field practically unchanged. The filtered data set was integrated with the existing Agip aeromagnetic map of the Phlegrean Fields, leading to a new aeromagnetic map of the whole Phlegrean volcanic area. The compilation of the pole reduced map and of the maps of the Analytic Signal and of the Horizontal Derivative of the integrated data set represents a first step for the interpretation of the maps in terms of geological structures of the whole Phlegrean volcanic district.
Mahmoud Paripour
2014-08-01
Full Text Available In this paper, the Bernstein polynomials are used to approximatethe solutions of linear integral equations with multiple time lags (IEMTL through expansion methods (collocation method, partition method, Galerkin method. The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is carried out
Peter Lercher
2017-06-01
Full Text Available Sufficient data refer to the relevant prevalence of sound exposure by mixed traffic sources in many nations. Furthermore, consideration of the potential effects of combined sound exposure is required in legal procedures such as environmental health impact assessments. Nevertheless, current practice still uses single exposure response functions. It is silently assumed that those standard exposure-response curves accommodate also for mixed exposures—although some evidence from experimental and field studies casts doubt on this practice. The ALPNAP-study population (N = 1641 shows sufficient subgroups with combinations of rail-highway, highway-main road and rail-highway-main road sound exposure. In this paper we apply a few suggested approaches of the literature to investigate exposure-response curves and its major determinants in the case of exposure to multiple traffic sources. Highly/moderate annoyance and full scale mean annoyance served as outcome. The results show several limitations of the current approaches. Even facing the inherent methodological limitations (energy equivalent summation of sound, rating of overall annoyance the consideration of main contextual factors jointly occurring with the sources (such as vibration, air pollution or coping activities and judgments of the wider area soundscape increases the variance explanation from up to 8% (bivariate, up to 15% (base adjustments up to 55% (full contextual model. The added predictors vary significantly, depending on the source combination. (e.g., significant vibration effects with main road/railway, not highway. Although no significant interactions were found, the observed additive effects are of public health importance. Especially in the case of a three source exposure situation the overall annoyance is already high at lower levels and the contribution of the acoustic indicators is small compared with the non-acoustic and contextual predictors. Noise mapping needs to go down to
Integrated passive and wireless sensor for magnetic fields, temperature and humidity
Li, Bodong
2013-11-01
This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.
Integrated passive and wireless sensor for magnetic fields, temperature and humidity
Li, Bodong; Yassine, Omar; Kosel, Jü rgen
2013-01-01
This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.
Duchene, Gaspard; Lacour, Sylvestre; Moraux, Estelle; Bouvier, Jerome; Goodwin, Simon
2018-01-01
While stellar multiplicity is an ubiquitous outcome of star formation, there is a clear dichotomy between the multiplicity properties of young (~1 Myr-old) stellar clusters, like the ONC, which host a mostly field-like population of visual binaries, and those of equally young sparse populations, like the Taurus-Auriga region, which host twice as many stellar companions. Two distinct scenarios can account for this observation: one in which different star-forming regions form different number of stars, and one in which multiplicity properties are universal at birth but where internal cluster dynamics destroy many wide binaries. To solve this ambiguity, one must probe binaries that are sufficiently close so as not to be destroyed through interactions with other cluster members. To this end, we have conducted a survey for 10-100 au binaries in the ONC using the aperture masking technique with the VLT adaptive optics system. Among our sample of the 42 ONC members, we discovered 13 companions in this range of projected separations. This is consistent with the companion frequency observed in the Taurus population and twice as high as that observed among field stars. This survey thus strongly supports the idea that stellar multiplicity is characterized by near-universal initial properties that can later be dynamically altered. On the other hand, this exacerbates the question of the origin of field stars, since only clusters much denser than the ONC can effectively destroyed binaries closer than 100 au.
Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes
Shen, Chao
2017-11-30
The challenges to realizing III-nitride photonic integrated circuit (PIC) are discussed. Utilizing InGaN-based multi-section laser diode (LD) on semipolar GaN substrate, the seamless on-chip integration of III-nitride waveguide photodetector (WPD) in the visible regime has been demonstrated.
Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes
Shen, Chao; Lee, Changmin; Ng, Tien Khee; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.; Ooi, Boon S.
2017-01-01
The challenges to realizing III-nitride photonic integrated circuit (PIC) are discussed. Utilizing InGaN-based multi-section laser diode (LD) on semipolar GaN substrate, the seamless on-chip integration of III-nitride waveguide photodetector (WPD) in the visible regime has been demonstrated.
An innovative large scale integration of silicon nanowire-based field effect transistors
Legallais, M.; Nguyen, T. T. T.; Mouis, M.; Salem, B.; Robin, E.; Chenevier, P.; Ternon, C.
2018-05-01
Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge due to time consuming, complex and costly technology. In order to bypass these issues, we report here on the first integration of silicon nanowire networks, called nanonet, into long channel field effect transistors using standard microelectronic process. A special attention is paid to the silicidation of the contacts which involved a large number of SiNWs. The electrical characteristics of these FETs constituted by randomly oriented silicon nanowires are also studied. Compatible integration on the back-end of CMOS readout and promising electrical performances open new opportunities for sensing applications.
An efficient explicit marching on in time solver for magnetic field volume integral equation
Sayed, Sadeed Bin
2015-07-25
An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep scheme. At each time step, a system with a Gram matrix is solved for the predicted/corrected field expansion coefficients. Depending on the type of spatial testing scheme Gram matrix is sparse or consists of blocks with only diagonal entries regardless of the time step size. Consequently, the resulting MOT scheme is more efficient than its implicit counterparts, which call for inversion of fuller matrix system at lower frequencies. Numerical results, which demonstrate the efficiency, accuracy, and stability of the proposed MOT scheme, are presented.
On the algebra of deformed differential operators, and induced integrable Toda field theory
Hssaini, M.; Kessabi, M.; Maroufi, B.; Sedra, M.B.
2000-07-01
We build in this paper the algebra of q-deformed pseudo-differential operators shown to be an essential step towards setting a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalised KdV hierarchy. We focus in particular the first leading orders of this q-deformed hierarchy namely the q-KdV and q-Boussinesq integrable systems. We also present the q-generalisation of the conformal transformations of the currents u n , n ≥ 2 and discuss the primary condition of the fields w n , n ≥ 2 by using the Volterra gauge group transformations for the q-covariant Lax operators. An induced su(n)-Toda(su(2)-Liouville) field theory construction is discussed and other important features are presented. (author)
Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric
2012-01-01
An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.
Chudnovsky, D.V.; Columbia Univ., New York; Chudnovsky, G.V.; Columbia Univ., New York
1980-01-01
General algebraic and analytic formalism for derivation and solution of general two dimensional field theory equations of Zakharov-Shabat-Mikhailov type is presented. The examples presented show that this class of equations covers most of the known two-dimensional completely integrable equations. Possible generalizations for four dimensional systems require detailed analysis of Baecklund transformation of these equations. Baecklund transformation is presented in the form of Riemann problem and one special case of dual symmetry is worked out. (orig.)
Magnetostatic fields computed using an integral equation derived from Green's theorems
Simkin, J.; Trowbridge, C.W.
1976-04-01
A method of computing magnetostatic fields is described that is based on a numerical solution of the integral equation obtained from Green's Theorems. The magnetic scalar potential and its normal derivative on the surfaces of volumes are found by solving a set of linear equations. These are obtained from Green's Second Theorem and the continuity conditions at interfaces between volumes. Results from a two-dimensional computer program are presented and these show the method to be accurate and efficient. (author)
Wolter, Andrea Elaine
2014-01-01
I apply a forensic, multidisciplinary approach that integrates engineering geology field investigations, engineering geomorphology mapping, long-range terrestrial photogrammetry, and a numerical modelling toolbox to two large rock slope failures to study their causes, initiation, kinematics, and dynamics. I demonstrate the significance of endogenic and exogenic processes, both separately and in concert, in contributing to landscape evolution and conditioning slopes for failure, and use geomor...
Contour integral representations for the characters of rational conformal field theories
Mukhi, S.; Panda, S.; Sen, A.
1989-01-01
We propose simple Feigin-Fuchs contour integral representations for the characters of a large class of rational conformal field theories. These include the A, D and E series SU(2) WZW theories, the A and D series c<1 minimal theories, and the k=1 SU(N) WZW theories. All these theories are characterized by the absence of the zeroes in the wronskian determinant of the characters in the interior of moduli space. This proposal is verified by several calculations. (orig.)
Souza Alves, Marcelo de.
1990-03-01
Some general aspects on field theories in curved space-time and a introduction to conformal symmetry are presented.The behavior of the physical systems under Weyl transformations is discussed. The quantization of such systems are performed through the functional integration method. The regularization in curved space-time is also discussed. An application of this analysis in String theories is made. 42 refs
Ulku, Huseyin Arda
2012-09-01
An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.
Differential Galois theory and non-integrability of planar polynomial vector fields
Acosta-Humánez, Primitivo B.; Lázaro, J. Tomás; Morales-Ruiz, Juan J.; Pantazi, Chara
2018-06-01
We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. The method is systematic starting with the first order variational equation. We illustrate this result with several families of examples. A key point is to check whether a suitable primitive is elementary or not. Using a theorem by Liouville, the problem is equivalent to the existence of a rational solution of a certain first order linear equation, the Risch equation. This is a classical problem studied by Risch in 1969, and the solution is given by the "Risch algorithm". In this way we point out the connection of the non integrability with some higher transcendent functions, like the error function.
Reproduction of pressure field in ultrasonic-measurement-integrated simulation of blood flow.
Funamoto, Kenichi; Hayase, Toshiyuki
2013-07-01
Ultrasonic-measurement-integrated (UMI) simulation of blood flow is used to analyze the velocity and pressure fields by applying feedback signals of artificial body forces based on differences of Doppler velocities between ultrasonic measurement and numerical simulation. Previous studies have revealed that UMI simulation accurately reproduces the velocity field of a target blood flow, but that the reproducibility of the pressure field is not necessarily satisfactory. In the present study, the reproduction of the pressure field by UMI simulation was investigated. The effect of feedback on the pressure field was first examined by theoretical analysis, and a pressure compensation method was devised. When the divergence of the feedback force vector was not zero, it influenced the pressure field in the UMI simulation while improving the computational accuracy of the velocity field. Hence, the correct pressure was estimated by adding pressure compensation to remove the deteriorating effect of the feedback. A numerical experiment was conducted dealing with the reproduction of a synthetic three-dimensional steady flow in a thoracic aneurysm to validate results of the theoretical analysis and the proposed pressure compensation method. The ability of the UMI simulation to reproduce the pressure field deteriorated with a large feedback gain. However, by properly compensating the effects of the feedback signals on the pressure, the error in the pressure field was reduced, exhibiting improvement of the computational accuracy. It is thus concluded that the UMI simulation with pressure compensation allows for the reproduction of both velocity and pressure fields of blood flow. Copyright © 2012 John Wiley & Sons, Ltd.
Thermal management in MoS{sub 2} based integrated device using near-field radiation
Peng, Jiebin [Department of Physics, National University of Singapore, Singapore 117546 (Singapore); Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore); Li, Baowen [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)
2015-09-28
Recently, wafer-scale growth of monolayer MoS{sub 2} films with spatial homogeneity is realized on SiO{sub 2} substrate. Together with the latest reported high mobility, MoS{sub 2} based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS{sub 2}, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS{sub 2} to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS{sub 2} and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS{sub 2} sheet. Therefore, an efficient thermal management strategy for MoS{sub 2} integrated device is proposed: Graphene sheet is brought into close proximity, 10–20 nm from MoS{sub 2} device; heat energy transfer from MoS{sub 2} to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.
Rapp, S; Baier, H
2010-01-01
Large satellites are often equipped with more than 1000 temperature sensors during the test campaign. Hundreds of them are still used for monitoring during launch and operation in space. This means an additional mass and especially high effort in assembly, integration and verification on a system level. So the use of fiber Bragg grating temperature sensors is investigated as they offer several advantages. They are lightweight, small in size and electromagnetically immune, which fits well in space applications. Their multiplexing capability offers the possibility to build extensive sensor networks including dozens of sensors of different types, such as strain sensors, accelerometers and temperature sensors. The latter allow the detection of hot spots and the reconstruction of temperature fields via proper algorithms, which is shown in this paper. A temperature sensor transducer was developed, which can be integrated into satellite sandwich panels with negligible mechanical influence. Mechanical and thermal vacuum tests were performed to verify the space compatibility of the developed sensor system. Proper reconstruction algorithms were developed to estimate the temperature field and detect thermal hot spots on the panel surface. A representative hardware demonstrator has been built and tested, which shows the capability of using an integrated fiber Bragg grating temperature sensor network for temperature field reconstruction and hot spot detection in satellite structures
Xianshu eLuo
2015-04-01
Full Text Available Integrated optical light source on silicon is one of the key building blocks for optical interconnect technology. Great research efforts have been devoting worldwide to explore various approaches to integrate optical light source onto the silicon substrate. The achievements so far include the successful demonstration of III/V-on-Si hybrid lasers through III/V-gain material to silicon wafer bonding technology. However, for potential large-scale integration, leveraging on mature silicon complementary metal oxide semiconductor (CMOS fabrication technology and infrastructure, more effective bonding scheme with high bonding yield is in great demand considering manufacturing needs. In this paper, we propose and demonstrate a high-throughput multiple dies-to-wafer (D2W bonding technology which is then applied for the demonstration of hybrid silicon lasers. By temporarily bonding III/V dies to a handle silicon wafer for simultaneous batch processing, it is expected to bond unlimited III/V dies to silicon device wafer with high yield. As proof-of-concept, more than 100 III/V dies bonding to 200 mm silicon wafer is demonstrated. The high performance of the bonding interface is examined with various characterization techniques. Repeatable demonstrations of 16-III/V-die bonding to pre-patterned 200 mm silicon wafers have been performed for various hybrid silicon lasers, in which device library including Fabry-Perot (FP laser, lateral-coupled distributed feedback (LC-DFB laser with side wall grating, and mode-locked laser (MLL. From these results, the presented multiple D2W bonding technology can be a key enabler towards the large-scale heterogeneous integration of optoelectronic integrated circuits (H-OEIC.
Guimei Ran
2017-01-01
Full Text Available Purpose. The study was designed to evaluate the disease outcome based on multiple biomarkers related to cerebral ischemia. Methods. Rats were randomly divided into sham, permanent middle cerebral artery occlusion, and edaravone-treated groups. Cerebral ischemia was induced by permanent middle cerebral artery occlusion surgery in rats. To form a simplified crosstalk network, the related multiple biomarkers were chosen as S100β, HIF-1α, IL-1β, PGI2, TXA2, and GSH-Px. The levels or activities of these biomarkers in plasma were detected before and after ischemia. Concurrently, neurological deficit scores and cerebral infarct volumes were assessed. Based on a mathematic model, network balance maps and three integral disruption parameters (k, φ, and u of the simplified crosstalk network were achieved. Results. The levels or activities of the related biomarkers and neurological deficit scores were significantly impacted by cerebral ischemia. The balance maps intuitively displayed the network disruption, and the integral disruption parameters quantitatively depicted the disruption state of the simplified network after cerebral ischemia. The integral disruption parameter u values correlated significantly with neurological deficit scores and infarct volumes. Conclusion. Our results indicate that the approach based on crosstalk network may provide a new promising way to integrally evaluate the outcome of cerebral ischemia.
Chako, N [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-07-01
We have applied the method of stationary phase to evaluate double and multiple integrals of the type: (A) U(k) = g(x)e{sup ik{phi}}{sup (x)} d(x), (x)=(x{sub 1},..., x{sub n}) for large values of the parameter k. In the first part we have established in a rigorous manner the stationary phase method to double and multiple integrals of type (A). Furthermore we have obtained an asymptotic expansion of (A), if the amplitude and phase functions can be developed in a canonical form near the vicinity of critical or stationary points of the integral. This development contains as particular cases all those which are important in physical applications, especially, to diffraction and scattering of electromagnetic and corpuscular waves by optical systems, diffracting bodies and potential scatterers. In the second part we have considered the problem of convergence of the expansion of the principal contribution to the integral in the asymptotic sense of Poincare. The proof is based on the increasing method used in mathematical analysis. The third part is devoted to the derivation of various asymptotic series due to different types of critical or stationary points associated with the amplitude and phase functions. In the fourth part we have generalized the method to multiple integrals and to the case where the parameter k enter implicitly in the phase function The latter type of integrals extend the scope of the former type to a number of important physical problems; for instance, to the propagation of waves in dispersive and absorbing media. In the last chapter we have made a study and compared the results obtained by the application of the stationary phase method to the integrals (double) of diffraction and the results derived by using the Young-Rubinowicz method. Result of our analysis shows the equivalence of the two methods of approach to the problems of diffraction based, on one hand, on the Fresnel-Kirchhoff theory and, on the other hand, the Young-Rubinowicz theory
Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.
2018-02-01
Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.
Okuyama, F.; Beckey, H.D.
1978-01-01
The ion emission properties of the multiple tungsten emitters developed recently for field ionization mass spectrometry were investigated with the aid of a sector type mass spectrometer at emitter-cathode voltages of 10-15 kV using acetone, n-heptane and benzene as test substances. The emitters, which comprised a 10-μm tungsten filament bearing thickly arrayed microneedles of tungsten, produced very weak and unstable signals at voltages of about 10 kV, but increasing the voltage to 14 kV led to intensifying ion currents high enough to yield mass spectra of satisfactory quality. During the course of the experiments, it was observed that nucleating tungsten carbide particles on the emitter surface by means of a high-field chemical reaction with benzene vapours can significanlty promote the field ionization of gas molecules, presumably as a result of the field enhancement resulting from roughening of the surface. (Auth.)
Multi-Disciplinary Research Experiences Integrated with Industry –Field Experiences
Suzanne Lunsford
2015-10-01
Full Text Available The purpose of this environmentally inquiry-based lab was to allow the students to engage into real-world concepts that integrate industry setting (Ohio Aggregate Industrial Mineral Association with the academia setting. Our students are engaged into a field trip where mining occurs to start the problem based learning of how the heavy metals leak in the mining process. These heavy metals such as lead and indium in the groundwater are a serious concern for the environment (Environmental Protection Agency from the mining process. The field experiences at the mining process assist in building our students interest in developing sensors to detect heavy metals of concern such as lead and indium simultaneously by a unique electrochemistry technique called Square Wave Anodic Stripping Voltammetry (SWASV. The field experience assists building the students interest in real –world application and what qualities do they want the electrochemical sensor to possess to be successful for real world usage. During the field trip the students are engaged into learning novel instrumentation such as an SEM (Scanning Electron Microscope to study the working electrode sensor developed to understand the sensor surface morphology properties better as well. The integration of industry setting with academia has been a positive experience for our students that has allowed their understanding of real-world science research needs to succeed in an industrial setting of research.
Path integral approach for electron transport in disturbed magnetic field lines
Kanno, Ryutaro; Nakajima, Noriyoshi; Takamaru, Hisanori
2002-05-01
A path integral method is developed to investigate statistical property of an electron transport described as a Langevin equation in a statically disturbed magnetic field line structure; especially a transition probability of electrons strongly tied to field lines is considered. The path integral method has advantages that 1) it does not include intrinsically a growing numerical error of an orbit, which is caused by evolution of the Langevin equation under a finite calculation accuracy in a chaotic field line structure, and 2) it gives a method of understanding the qualitative content of the Langevin equation and assists to expect statistical property of the transport. Monte Carlo calculations of the electron distributions under both effects of chaotic field lines and collisions are demonstrated to comprehend above advantages through some examples. The mathematical techniques are useful to study statistical properties of various phenomena described as Langevin equations in general. By using parallel generators of random numbers, the Monte Carlo scheme to calculate a transition probability can be suitable for a parallel computation. (author)
Sauerwein, Timothy A.; Gostomski, Thomas
2008-01-01
The ST5 technology demonstration mission led by GSFC of NASA's New Millennium Program managed by JPL consisted of three micro satellites (approximately 30 kg each) deployed into orbit from the Pegasus XL launch vehicle. In order to meet the launch date schedule of ST5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center. It was determined that there was insufficient time in the schedule to perform three spacecraft I&T activities in series using standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all three spacecraft, learning and gaining knowledge and efficiency as spacecraft #1 integration and testing progressed. They became acutely familiar with the hardware, operation and processes for I&T, thus had the experience and knowledge to safely execute I&T for spacecraft #2 and #3. The integration team was extremely versatile; each member could perform many different activities or work any spacecraft, when needed. ST5 was successfully integrated, tested and shipped to the launch site per the I&T schedule that was planned three years previously. The I&T campaign was completed with ST5's successful launch on March 22, 2006.
Integral transport theory for charged particles in electric and magnetic fields
Boffi, V.C.; Molinari, V.G.
1979-01-01
An integral transport theory for charged particles which, in the presence of electric and magnetic fields, diffuse by collisions against the atoms (or molecules) of a host medium is proposed. The combined effects of both the external fields and the mechanisms of scattering, removal and creation in building up the distribution function of the charged particles considered are investigated. The eigenvalue problem associated with the sourceless case of the given physical situation is also commented. Applications of the theory to a purely velocity-dependent problem and to a space-dependent problem, respectively, are illustrated for the case of a separable isotropic scattering kernel of synthetic type. Calculations of the distribution function, of the total current density and of relevant electrical conductivity are then carried out for different specializations of the external fields. (author)
Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.
1987-01-01
The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.
Explicit higher order symplectic integrator for s-dependent magnetic field
Wu, Y.; Forest, E.; Robin, D.S.
2001-01-01
We derive second and higher order explicit symplectic integrators for the charged particle motion in an s-dependent magnetic field with the paraxial approximation. The Hamiltonian of such a system takes the form of H (summation) k (p k - a k (rvec q), s) 2 + V((rvec q), s). This work solves a long-standing problem for modeling s-dependent magnetic elements. Important applications of this work include the studies of the charged particle dynamics in a storage ring with strong field wigglers, arbitrarily polarized insertion devices,and super-conducting magnets with strong fringe fields. Consequently, this work will have a significant impact on the optimal use of the above magnetic devices in the light source rings as well as in next generation linear collider damping rings
Apparent soil electrical conductivity (ECa) is an efficient technique for understanding within-field variability of physical and chemical soil characteristics. Commercial devices are readily available for collecting ECa on whole fields and used broadly for crop management in precision agriculture; h...
Communication: Multiple atomistic force fields in a single enhanced sampling simulation
Hoang Viet, Man [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France); Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)
2015-07-14
The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.
Ballet, Stéphane; Bonnecaze, Alexis; Tukumuli, Mila
2013-01-01
International audience; We indicate a strategy in order to construct bilinear multiplication algorithms of type Chudnovsky in large extensions of any finite field. In particular, using the symmetric version of the generalization of Randriambololona specialized on the elliptic curves, we show that it is possible to construct such algorithms with low bilinear complexity. More precisely, if we only consider the Chudnovsky-type algorithms of type symmetric elliptic, we show that the symmetric bil...
Fast algorithms for coordinate processors in Galois field for multiplicity t = 4.5 and t > 5
Nikityuk, N.M.
1989-01-01
Fast algorithms for solving the coordinate equations for special-purpose processors at multiplicity t = 4.5 and t > 5 are described. Block diagrams of coordinate processor for t 4 in Galois field GF(2 m ) is presented which is solved by a table method. Economical algorithms for solving the coordinate equations by serial methods at t > 5 are described. The algorithms and devices proposed could be applied when creating fast processors in high energy physics spectrometers. 9 refs.; 3 figs
Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Chi, Nan; Yu, Jianguo
2013-03-01
We experimentally investigate the interference in multiple-input multiple-output (MIMO) wireless transmission by adjusting the relative locations of horn antennas (HAs) in a 100 GHz optical wireless integration system, which can deliver a 50 Gb/s polarization-division-multiplexing quadrature-phase-shift-keying signal over 80 km single-mode fiber-28 and a 2×2 MIMO wireless link. For the parallel 2×2 MIMO wireless link, each receiver HA can only get wireless power from the corresponding transmitter HA, while for the crossover ones, the receiver HA can get wireless power from two transmitter HAs. At the wireless receiver, polarization demultiplexing is realized by the constant modulus algorithm (CMA) in the digital-signal-processing part. Compared to the parallel case, wireless interference causes about 2 dB optical signal-to-noise ratio penalty at a bit-error ratio (BER) of 3.8×10(-3) for the crossover cases if similar CMA taps are employed. The increase in CMA tap length can reduce wireless interference and improve BER performance. Furthermore, more CMA taps should be adopted to overcome the severe wireless interference when two pairs of transmitter and receiver HAs have different wireless distances.
Arslanagic, Samel; Meincke, Peter; Jørgensen, Erik
2003-01-01
We derive a line integral representation of the physical optics scattered far field that yields the exact same result as the conventional surface radiation integral. This representation applies to a perfectly electrically conducting plane scatterer illuminated by electric or magnetic Hertzian...... dipoles. The source and observation points can take on almost arbitrary positions. To illustrate the exactness and efficiency of the new line integral, numerical comparisons with the conventional surface radiation integral are carried out....
Estimating Ambiguity Preferences and Perceptions in Multiple Prior Models: Evidence from the Field
S.G. Dimmock (Stephen); R.R.P. Kouwenberg (Roy); O.S. Mitchell (Olivia); K. Peijnenburg (Kim)
2015-01-01
markdownabstractWe develop a tractable method to estimate multiple prior models of decision-making under ambiguity. In a representative sample of the U.S. population, we measure ambiguity attitudes in the gain and loss domains. We find that ambiguity aversion is common for uncertain events of
Dianwei Qian
2016-11-01
Full Text Available This article proposes a control scheme for formation of maneuvers of a team of mobile robots. The control scheme integrates the integral sliding mode control method with the nonlinear disturbance observer technique. The leader–follower formation dynamics suffer from uncertainties originated from the individual robots. The uncertainties challenge the formation control of such robots. Assuming that the uncertainties are unknown but bounded, an nonlinear disturbance observer-based observer is utilized to approximate them. The observer outputs feed on an integral sliding mode control-based controller. The controller and observer are integrated into the control scheme to realize formation maneuvers despite uncertainties. The formation stability is analyzed by means of the Lyapunov’s theorem. In the sense of Lyapunov, not only the convergence of the approximation errors is guaranteed but also such a control scheme can asymptotically stabilize the formation system. Compared to the results by the sole integral sliding mode control, some simulations are presented to demonstrate the feasibility and performance of the control scheme.
Controlling three-dimensional vortices using multiple and moving external fields
Das, Nirmali Prabha; Dutta, Sumana
2017-08-01
Spirals or scroll wave activities in cardiac tissues are the cause of lethal arrhythmias. The external control of these waves is thus of prime interest to scientists and physicians. In this article, we demonstrate the spatial control of scroll waves by using external electric fields and thermal gradients in experiments with the Belousov-Zhabotinsky reaction. We show that a scroll ring can be made to trace cyclic trajectories under a rotating electric field. Application of a thermal gradient in addition to the electric field deflects the motion and changes the nature of the trajectory. Our experimental results are analyzed and corroborated by numerical simulations based on an excitable reaction diffusion model.
Steven P. Norman; Danny C. Lee; Sandra Jacobson; Christine Damiani
2010-01-01
The tradeoffs that surround forest management are inherently complex, often involving multiple temporal and spatial scales. For example, conflicts may result when fuel treatments are designed to mediate long-term fuel hazards, but activities could impair sensitive aquatic habitat or degrade wildlife habitat in the short term. This complexity makes it hard for managers...
Multiple second order generalized integrators for harmonic synchronization of power converters
Rodriguez, Pedro; Luna, Alvaro; Etxeberría, Ion
2009-01-01
This paper presents a new frequency-adaptive synchronization method for grid-connected power converters which allows estimating not only the positive- and negativesequence components of the power signal at the fundamental frequency, but also other sequence components at multiple frequencies. The ...
The Multiple Abilities Paradigm: Integrated General and Special Education Teacher Preparation.
Ellis, Edwin S.; And Others
1995-01-01
The Multiple Abilities Program (MAP) at the University of Alabama is a five-semester, competency-based preservice program preparing teachers to teach all students regardless of settings or disability labels. This article outlines the program rationale, organizational framework, and the program feature in which undergraduates spend over 50 percent…
Integrated analysis of multiple data sources reveals modular structure of biological networks
Lu Hongchao; Shi Baochen; Wu Gaowei; Zhang Yong; Zhu Xiaopeng; Zhang Zhihua; Liu Changning; Zhao, Yi; Wu Tao; Wang Jie; Chen Runsheng
2006-01-01
It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks
Integration of multiple national markets for electricity: The case of Norway and Sweden
Amundsen, Eirik S.
2007-01-01
During the second part of the 1990s the Nordic (Denmark, Finland, Norway and Sweden) countries have created a unique multinational market for electricity. This paper aims to analyse the degree of integration of the different national markets that constitute the Nordic electricity market. In particular the Norwegian and Swedish wholesale and retail electricity markets are analysed. The results suggest that the wholesale markets are well integrated. Thus prices differ significantly only during periods with unusually high or low supply of hydropower. However, the retail markets are not integrated to the same degree. Thus retail prices and trade margins differ significantly. Differences in the national electricity market legislation seem to be a key factor behind these differences. (author)
Brian Winterman
2011-11-01
Full Text Available Within disciplines are a set of shared values and thought processes that students must master in order to become participants of that discipline. Information literacy as defined by the ACRL is a set of standards and principles that can apply to all disciplines. In order to produce information literate undergraduates in a given discipline, information literacy standards must be integrated with the values and processes of the discipline. In this study, librarians partnered with faculty in gender studies and molecular biology to integrate information literacy with courses in those areas. Student performance and attitudes improved as a result of the collaboration. This article discusses the collaboration process, the assessment methods and results, and the long-term importance of developing best practices for information literacy integration at the campus level through a disciplinary approach.
Llanos Tobarra
2014-09-01
Full Text Available This work presents the integration of an automatic assessment system for virtual/remote laboratories and the institutional Learning Management System (LMS, in order to analyze the students’ progress and their collaborative learning in virtual/remote laboratories. As a result of this integration, it is feasible to extract useful information for the characterization of the students’ learning process and detecting the students’ engagement with the practical activities of our subjects. From this integration, a dashboard has been created to graphically present to lecturers the analyzed results. Thanks to this, faculty can use the analyzed information in order to guide the learning/teaching process of each student. As an example, a subject focused on the configuration of network services has been chosen to implement our proposal.
Extended depth of field integral imaging using multi-focus fusion
Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua
2018-03-01
In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.
Integration of real-time 3D capture, reconstruction, and light-field display
Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao
2015-03-01
Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.
Near-Field Coupling and Mode Competition in Multiple Anapole Systems
Mazzone, Valerio; Gongora, J. S. Totero; Fratalocchi, Andrea
2017-01-01
are intriguing non-radiating states originated by the superposition of internal multipole components which cancel each other in the far-field. While the properties of anapole states in single nanoparticles have been extensively studied, the mutual interaction
Integrating Multiple Types of Data for Signaling Research: Challenges and Opportunities
Wiley, H. S.
2011-02-15
New technologies promise to provide unprecedented amounts of information that can provide a foundation for creating predictive models of cell signaling pathways. To be useful, however, this information must be integrated into a coherent framework. In addition, the sheer volume of data gathered from the new technologies requires computational approaches for its analysis. Unfortunately, there are many barriers to data integration and analysis, mostly because of a lack of adequate data standards and their inconsistent use by scientists. However, solving the fundamental issues of data sharing will enable the investigation of entirely new areas of cell signaling research.
Chandrasekar, A; Rakkiyappan, R; Cao, Jinde
2015-10-01
This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
McElwain, Michael W.; Grady, Carol A.; Bally, John; Brinkmann, Jonathan V.; Bubeck, James; Gong, Qian; Hilton, George M.; Ketzeback, William F.; Lindler, Don; Llop Sayson, Jorge; Malatesta, Michael A.; Norton, Timothy; Rauscher, Bernard J.; Rothe, Johannes; Straka, Lorrie; Wilkins, Ashlee N.; Wisniewski, John P.; Woodgate, Bruce E.; York, Donald G.
2015-01-01
We present the current status and progress towards photon counting with the Goddard Integral Field Spectrograph (GIFS), a new instrument at the Apache Point Observatory's ARC 3.5m telescope. GIFS is a visible light imager and integral field spectrograph operating from 400-1000 nm over a 2.8' x 2.8' and 14' x 14' field of view, respectively. As an IFS, GIFS obtains over 1000 spectra simultaneously and its data reduction pipeline reconstructs them into an image cube that has 32 x 32 spatial elements and more than 200 spectral channels. The IFS mode can be applied to a wide variety of science programs including exoplanet transit spectroscopy, protostellar jets, the galactic interstellar medium probed by background quasars, Lyman-alpha emission line objects, and spectral imaging of galactic winds. An electron-multiplying CCD (EMCCD) detector enables photon counting in the high spectral resolution mode to be demonstrated at the ARC 3.5m in early 2015. The EMCCD work builds upon successful operational and characterization tests that have been conducted in the IFS laboratory at NASA Goddard. GIFS sets out to demonstrate an IFS photon-counting capability on-sky in preparation for future exoplanet direct imaging missions such as the AFTA-Coronagraph, Exo-C, and ATLAST mission concepts. This work is supported by the NASA APRA program under RTOP 10-APRA10-0103.
Integrated Design of Superconducting Magnets with the CERN Field Computation Program ROXIE
Russenschuck, Stephan; Bazan, M; Lucas, J; Ramberger, S; Völlinger, Christine
2000-01-01
The program package ROXIE has been developed at CERN for the field computation of superconducting accelerator magnets and is used as an approach towards the integrated design of such magnets. It is also an example of fruitful international collaborations in software development.The integrated design of magnets includes feature based geometry generation, conceptual design using genetic optimization algorithms, optimization of the iron yoke (both in 2d and 3d) using deterministic methods, end-spacer design and inverse field calculation.The paper describes the version 8.0 of ROXIE which comprises an automatic mesh generator, an hysteresis model for the magnetization in superconducting filaments, the BEM-FEM coupling method for the 3d field calculation, a routine for the calculation of the peak temperature during a quench and neural network approximations of the objective function for the speed-up of optimization algorithms, amongst others.New results of the magnet design work for the LHC are given as examples.
The Impact of Technology Integration upon Collegiate Pedagogy from the Lens of Multiple Disciplines
Swanson, Joan Ann
2016-01-01
Technology integration on college campuses has become both a reality and necessity to meet the demands for function and flow in an ever advancing world of learning. This study qualitatively reviewed how a multi-disciplinary sample of collegiate instructors viewed technology and how they incorporated it into their pedagogy. Results indicated a…
Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro
Hof, Van den W.F.P.M.; Ruiz Aracama, Ainhoa; Summeren, Van Anke; Jennen, D.G.J.; Gaj, Stan; Coonen, M.L.J.; Brauers, Karen; Wodzig, W.K.W.H.; Delft, van J.H.M.; Kleinjans, J.C.S.
2015-01-01
In order to improve attrition rates of candidate-drugs there is a need for a better understanding of the mechanisms underlying drug-induced hepatotoxicity. We aim to further unravel the toxicological response of hepatocytes to a prototypical cholestatic compound by integrating transcriptomic and
Of blooming flowers and multiple sockets: infrastructure Integration and the Technological Imaginary
M.J.C. Aspria (Marcello); M. de Mul (Marleen); S.A. Adams (Samantha)
2013-01-01
markdownabstractWe analyze and discuss the use of two metaphors for integration work in the development of Zorgportaal Rijnmond (ZPR), an online portal for healthcare and wellbeing in the Rotterdam Rijnmond region of the Netherlands. We view these metaphors as elements of actor-networks, and follow
D'Souza, Mark; Sulakhe, Dinanath; Wang, Sheng; Xie, Bing; Hashemifar, Somaye; Taylor, Andrew; Dubchak, Inna; Conrad Gilliam, T; Maltsev, Natalia
2017-01-01
Recent technological advances in genomics allow the production of biological data at unprecedented tera- and petabyte scales. Efficient mining of these vast and complex datasets for the needs of biomedical research critically depends on a seamless integration of the clinical, genomic, and experimental information with prior knowledge about genotype-phenotype relationships. Such experimental data accumulated in publicly available databases should be accessible to a variety of algorithms and analytical pipelines that drive computational analysis and data mining.We present an integrated computational platform Lynx (Sulakhe et al., Nucleic Acids Res 44:D882-D887, 2016) ( http://lynx.cri.uchicago.edu ), a web-based database and knowledge extraction engine. It provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization. It gives public access to the Lynx integrated knowledge base (LynxKB) and its analytical tools via user-friendly web services and interfaces. The Lynx service-oriented architecture supports annotation and analysis of high-throughput experimental data. Lynx tools assist the user in extracting meaningful knowledge from LynxKB and experimental data, and in the generation of weighted hypotheses regarding the genes and molecular mechanisms contributing to human phenotypes or conditions of interest. The goal of this integrated platform is to support the end-to-end analytical needs of various translational projects.
Sockman, Beth Rajan; Sutton, Rhonda; Herrmann, Michele
2016-01-01
This study determined the usefulness of digital comic creation with 77 graduate students in a teacher technology course. Students completed an assigned reading and created digital comics that addressed technology integration concerns in the schools and society. Using practical action research, 77 student-created comics were analyzed. The findings…
Talsma, D.; Woldorff, Marty G.
2005-01-01
We used event-related potentials (ERPs) to evaluate the role of attention in the integration of visual and auditory features of multisensory objects. This was done by contrasting the ERPs to multisensory stimuli (AV) to the sum of the ERPs to the corresponding auditory-only (A) and visual-only (V)
A multiple choice decision analysis: an integrated QFD – AHP model ...
The aim of this work is to propose a new methodological approach to define customer specifications through the employment of an integrated Quality Function Deployment (QFD) – Analytic Hierarchy Process (AHP) model. The model, which is loosely based on QFD, incorporates the AHP approach to delineate and rank the ...
Belyi, Vladimir A; Levine, Arnold J; Skalka, Anna Marie
2010-07-29
Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected), later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important biological
Vladimir A Belyi
2010-07-01
Full Text Available Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected, later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important
Do Students Behave Rationally in Multiple Choice Tests? Evidence from a Field Experiment
María Paz Espinosa; Javier Gardeazabal
2013-01-01
A disadvantage of multiple choice tests is that students have incentives to guess. To discourage guessing, it is common to use scoring rules that either penalize wrong answers or reward omissions. In psychometrics, penalty and reward scoring rules are considered equivalent. However, experimental evidence indicates that students behave differently under penalty or reward scoring rules. These differences have been attributed to the different framing (penalty versus reward). In this paper, we mo...
A flux calibration device for the SuperNova Integral Field Spectrograph (SNIFS)
Lombardo, Simona; Aldering, Greg; Hoffmann, Akos; Kowalski, Marek; Kuesters, Daniel; Reif, Klaus; Rigault, Michael
2014-07-01
Observational cosmology employing optical surveys often require precise flux calibration. In this context we present SNIFS Calibration Apparatus (SCALA), a flux calibration system developed for the SuperNova Integral Field Spectrograph (SNIFS), operating at the University of Hawaii 2.2 m telescope. SCALA consists of a hexagonal array of 18 small parabolic mirrors distributed over the face of, and feeding parallel light to, the telescope entrance pupil. The mirrors are illuminated by integrating spheres and a wavelength-tunable (from UV to IR) light source, generating light beams with opening angles of 1°. These nearly parallel beams are flat and flux-calibrated at a subpercent level, enabling us to calibrate our "telescope + SNIFS system" at the required precision.
Field-Programmable Gate Array-based fluxgate magnetometer with digital integration
Butta, Mattia; Janosek, Michal; Ripka, Pavel
2010-05-01
In this paper, a digital magnetometer based on printed circuit board fluxgate is presented. The fluxgate is pulse excited and the signal is extracted by gate integration. We investigate the possibility to perform integration on very narrow gates (typically 500 ns) by using digital techniques. The magnetometer is based on field-programmable gate array (FPGA) card: we will show all the advantages and disadvantages, given by digitalization of fluxgate output voltage by means of analog-to-digital converter on FPGA card, as well as digitalization performed by external digitizer. Due to very narrow gate, it is shown that a magnetometer entirely based on a FPGA card is preferable, because it avoids noise due to trigger instability. Both open loop and feedback operative mode are described and achieved results are presented.
Sun, Yi-Zhi; Feng, Li-Shuang; Bachelot, Renaud; Blaize, Sylvain; Ding, Wei
2017-07-24
We theoretically develop a hybrid architecture consisting of photonic integrated circuit and plasmonic nanoantennas to fully control optical far-field radiation with unprecedented flexibility. By exploiting asymmetric and lateral excitation from silicon waveguides, single gold nanorod and cascaded nanorod pair can function as component radiation pixels, featured by full 2π phase coverage and nanoscale footprint. These radiation pixels allow us to design scalable on-chip devices in a wavefront engineering fashion. We numerically demonstrate beam collimation with 30° out of the incident plane and nearly diffraction limited divergence angle. We also present high-numerical-aperture (NA) beam focusing with NA ≈0.65 and vector beam generation (the radially-polarized mode) with the mode similarity greater than 44%. This concept and approach constitutes a designable optical platform, which might be a future bridge between integrated photonics and metasurface functionalities.