WorldWideScience

Sample records for multiple geos-chem simulations

  1. Development and Performance of the Modularized, High-performance Computing and Hybrid-architecture Capable GEOS-Chem Chemical Transport Model

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J.; Linford, J. C.; Keller, C. A.; Payer Sulprizio, M.; Jacob, D. J.

    2014-12-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been reengineered to serve as a platform for a range of computational atmospheric chemistry science foci and applications. Development included modularization for coupling to general circulation and Earth system models (ESMs) and the adoption of co-processor capable atmospheric chemistry solvers. This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of GEOS-Chem scientific code to permit seamless transition from the GEOS-Chem stand-alone serial CTM to deployment as a coupled ESM module. In this manner, the continual stream of updates contributed by the CTM user community is automatically available for broader applications, which remain state-of-science and directly referenceable to the latest version of the standard GEOS-Chem CTM. These developments are now available as part of the standard version of the GEOS-Chem CTM. The system has been implemented as an atmospheric chemistry module within the NASA GEOS-5 ESM. The coupled GEOS-5/GEOS-Chem system was tested for weak and strong scalability and performance with a tropospheric oxidant-aerosol simulation. Results confirm that the GEOS-Chem chemical operator scales efficiently for any number of processes. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemical operator means that the relative cost goes down with increasing number of processes, making fine-scale resolution simulations possible.

  2. Errors and improvements in the use of archived meteorological data for chemical transport modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology

    Directory of Open Access Journals (Sweden)

    K. Yu

    2018-01-01

    Full Text Available Global simulations of atmospheric chemistry are commonly conducted with off-line chemical transport models (CTMs driven by archived meteorological data from general circulation models (GCMs. The off-line approach has the advantages of simplicity and expediency, but it incurs errors due to temporal averaging in the meteorological archive and the inability to reproduce the GCM transport algorithms exactly. The CTM simulation is also often conducted at coarser grid resolution than the parent GCM. Here we investigate this cascade of CTM errors by using 222Rn–210Pb–7Be chemical tracer simulations off-line in the GEOS-Chem CTM at rectilinear 0.25°  ×  0.3125° (≈ 25 km and 2°  ×  2.5° (≈ 200 km resolutions and online in the parent GEOS-5 GCM at cubed-sphere c360 (≈ 25 km and c48 (≈ 200 km horizontal resolutions. The c360 GEOS-5 GCM meteorological archive, updated every 3 h and remapped to 0.25°  ×  0.3125°, is the standard operational product generated by the NASA Global Modeling and Assimilation Office (GMAO and used as input by GEOS-Chem. We find that the GEOS-Chem 222Rn simulation at native 0.25°  ×  0.3125° resolution is affected by vertical transport errors of up to 20 % relative to the GEOS-5 c360 online simulation, in part due to loss of transient organized vertical motions in the GCM (resolved convection that are temporally averaged out in the 3 h meteorological archive. There is also significant error caused by operational remapping of the meteorological archive from a cubed-sphere to a rectilinear grid. Decreasing the GEOS-Chem resolution from 0.25°  ×  0.3125° to 2°  ×  2.5° induces further weakening of vertical transport as transient vertical motions are averaged out spatially and temporally. The resulting 222Rn concentrations simulated by the coarse-resolution GEOS-Chem are overestimated by up to 40 % in surface air relative to the

  3. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  4. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model

    International Nuclear Information System (INIS)

    Wang, Long; Wang, Shuxiao; Zhang, Lei; Wang, Yuxuan; Zhang, Yanxu; Nielsen, Chris; McElroy, Michael B.; Hao, Jiming

    2014-01-01

    China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35–50% of THg concentration and 50–70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China. - Highlights: • China's anthropogenic mercury emission was 643.1 t in 2007. • GEOS-Chem model well reproduces the background Hg concentrations. • Anthropogenic emissions contribute 35–50% of Hg concentrations in polluted regions. • The priorities for mercury control in polluted regions are identified. - Anthropogenic Hg emissions are updated and their impacts on atmospheric mercury concentrations and depositions are quantified for China

  5. Aerosol comparisons between sunphotometry / sky radiometry and the GEOS-Chem model

    Science.gov (United States)

    Chaubey, J. P.; Hesaraki, S.; O'Neill, N. T.; Saha, A.; Martin, R.; Lesins, G. B.; Abboud, I.

    2014-12-01

    Comparisons of aerosol optical depth (AOD), spectral AOD parameters and microphysical parameters derived from AEROCAN / AERONET sunphotometer / sky radiometer data acquired over Canada were compared with GEOS-Chem (Geos5,v9-01-03) estimations. The Canadian sites were selected so as to encompass a representative variety of different aerosol types ranging from fine mode (submicron) pollution and smoke aerosols, coarse mode (supermicron) dust, fine and coarse mode marine aerosols, volcanic (fine mode) sulfates and volcanic (coarse mode) ash, etc). A particular focus was placed on comparisons at remote Canadian sites with a further focus on Arctic sites. The analysis included meteorological-scale event comparisons as well as seasonal and yearly comparisons on a climatological scale. The investigations were given a further aerosol type context by comparing optical retrievals of fine and coarse mode AOD with the AODs of the different aerosol types predicted by GEOS-Chem. The effects of temporal and spectral cloud screening of the sunphotometer data on the quality and robustness of these comparisons was the object of an important supporting investigation. The results of this study will be presented for a 3 year period from 2009 to 2011.

  6. Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements

    Energy Technology Data Exchange (ETDEWEB)

    Croft, B. [Dalhousie Univ., Halifax (Canada). Dept. of Physics and Atmospheric Science; Pierce, J.R. [Dalhousie Univ., Halifax (Canada). Dept. of Physics and Atmospheric Science; Colorado State Univ., Fort Collins, CO (United States); Martin, R.V. [Dalhousie Univ., Halifax (Canada). Dept. of Physics and Atmospheric Science; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2014-07-01

    Aerosol removal processes control global aerosol abundance, but the rate of that removal remains uncertain. A recent study of aerosol-bound radionuclide measurements after the Fukushima Daiichi nuclear power plant accident documents {sup 137}Cs removal (e-folding) times of 10.0-13.9 days, suggesting that mean aerosol lifetimes in the range of 3-7 days in global models might be too short by a factor of two. In this study, we attribute this discrepancy to differences between the e-folding and mean aerosol lifetimes. We implement a simulation of {sup 137}Cs and {sup 133}Xe into the GEOS-Chem chemical transport model and examine the removal rates for the Fukushima case. We find a general consistency between modelled and measured e-folding times. The simulated {sup 137}Cs global burden e-folding time is about 14 days. However, the simulated mean lifetime of aerosol-bound {sup 137}Cs over a 6-month post-accident period is only 1.8 days. We find that the mean lifetime depends strongly on the removal rates in the first few days after emissions, before the aerosols leave the boundary layer and are transported to altitudes and latitudes where lifetimes with respect to wet removal are longer by a few orders of magnitude. We present sensitivity simulations that demonstrate the influence of differences in altitude and location of the radionuclides on the mean lifetime. Global mean lifetimes are shown to strongly depend on the altitude of injection. The global mean {sup 137}Cs lifetime is more than one order of magnitude greater for the injection at 7 km than into the boundary layer above the Fukushima site. Instantaneous removal rates are slower during the first few days after the emissions for a free tropospheric versus boundary layer injection and this strongly controls the mean lifetimes. Global mean aerosol lifetimes for the GEOS-Chem model are 3-6 days, which is longer than that for the {sup 137}Cs injected at the Fukushima site (likely due to precipitation shortly after

  7. Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model

    Science.gov (United States)

    Jourdain, L.; Kulawik, S. S.; Worden, H. M.; Pickering, K. E.; Worden, J.; Thompson, A. M.

    2010-01-01

    Improved estimates of NOx from lightning sources are required to understand tropospheric NOx and ozone distributions, the oxidising capacity of the troposphere and corresponding feedbacks between chemistry and climate change. In this paper, we report new satellite ozone observations from the Tropospheric Emission Spectrometer (TES) instrument that can be used to test and constrain the parameterization of the lightning source of NOx in global models. Using the National Lightning Detection (NLDN) and the Long Range Lightning Detection Network (LRLDN) data as well as the HYPSLIT transport and dispersion model, we show that TES provides direct observations of ozone enhanced layers downwind of convective events over the USA in July 2006. We find that the GEOS-Chem global chemistry-transport model with a parameterization based on cloud top height, scaled regionally and monthly to OTD/LIS (Optical Transient Detector/Lightning Imaging Sensor) climatology, captures the ozone enhancements seen by TES. We show that the model's ability to reproduce the location of the enhancements is due to the fact that this model reproduces the pattern of the convective events occurrence on a daily basis during the summer of 2006 over the USA, even though it does not well represent the relative distribution of lightning intensities. However, this model with a value of 6 Tg N/yr for the lightning source (i.e.: with a mean production of 260 moles NO/Flash over the USA in summer) underestimates the intensities of the ozone enhancements seen by TES. By imposing a production of 520 moles NO/Flash for lightning occurring in midlatitudes, which better agrees with the values proposed by the most recent studies, we decrease the bias between TES and GEOS-Chem ozone over the USA in July 2006 by 40%. However, our conclusion on the strength of the lightning source of NOx is limited by the fact that the contribution from the stratosphere is underestimated in the GEOS-Chem simulations.

  8. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.

    Science.gov (United States)

    Wang, Long; Wang, Shuxiao; Zhang, Lei; Wang, Yuxuan; Zhang, Yanxu; Nielsen, Chris; McElroy, Michael B; Hao, Jiming

    2014-07-01

    China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35-50% of THg concentration and 50-70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Analysis of CO in the tropical troposphere using Aura satellite data and the GEOS-Chem model: insights into transport characteristics of the GEOS meteorological products

    Directory of Open Access Journals (Sweden)

    Junhua Liu

    2010-12-01

    Full Text Available We use the GEOS-Chem chemistry-transport model (CTM to interpret the spatial and temporal variations of tropical tropospheric CO observed by the Microwave Limb Sounder (MLS and the Tropospheric Emission Spectrometer (TES. In so doing, we diagnose and evaluate transport in the GEOS-4 and GEOS-5 assimilated meteorological fields that drive the model, with a particular focus on vertical mixing at the end of the dry season when convection moves over the source regions. The results indicate that over South America, deep convection in both GEOS-4 and GEOS-5 decays at too low an altitude early in the wet season, and the source of CO from isoprene in the model (MEGAN v2.1 is too large, causing a lag in the model's seasonal maximum of CO compared to MLS CO in the upper troposphere (UT. TES and MLS data reveal problems with excessive transport of CO to the eastern equatorial Pacific and lofting in the ITCZ in August and September, particularly in GEOS-4. Over southern Africa, GEOS-4 and GEOS-5 simulations match the phase of the observed CO variation from the lower troposphere (LT to the UT fairly well, although the magnitude of the seasonal maximum is underestimated considerably due to low emissions in the model. A sensitivity run with increased emissions leads to improved agreement with observed CO in the LT and middle troposphere (MT, but the amplitude of the seasonal variation is too high in the UT in GEOS-4. Difficulty in matching CO in the LT and UT implies there may be overly vigorous vertical mixing in GEOS-4 early in the wet season. Both simulations and observations show a time lag between the peak in fire emissions (July and August and in CO (September and October. We argue that it is caused by the prevailing subsidence in the LT until convection moves south in September, as well as the low sensitivity of TES data in the LT over the African Plateau. The MLS data suggest that too much CO has been transported from fires in northern Africa to the UT

  10. Constraints on Eurasian ship NOx emissions using OMI NO2 observations and GEOS-Chem

    Science.gov (United States)

    Vinken, Geert C. M.; Boersma, Folkert; van Donkelaar, Aaron; Zhang, Lin

    2013-04-01

    Ships emit large quantities of nitrogen oxides (NOx = NO + NO2), important precursors for ozone (O3) and particulate matter formation. Ships burn low-grade marine heavy fuel due to the limited regulations that exist for the maritime sector in international waters. Previous studies showed that global ship NOx emission inventories amount to 3.0-10.4 Tg N per year (15-30% of total NOx emissions), with most emissions close to land and affecting air quality in densely populated coastal regions. Bottom-up inventories depend on the extrapolation of a relatively small number of measurements that are often unable to capture annual emission changes and can suffer from large uncertainties. Satellites provide long-term, high-resolution retrievals that can be used to improve emission estimates. In this study we provide top-down constraints on ship NOx emissions in major European ship routes, using observed NO2 columns from the Ozone Monitoring Instrument (OMI) and NO2 columns simulated with the nested (0.5°×0.67°) version of the GEOS-Chem chemistry transport model. We use a plume-in-grid treatment of ship NOx emissions to account for in-plume chemistry in our model. We ensure consistency between the retrievals and model simulations by using the high-resolution GEOS-Chem NO2 profiles as a priori. We find evidence that ship emissions in the Mediterranean Sea are geographically misplaced by up to 150 km and biased high by a factor of 4 as compared to the most recent (EMEP) ship emission inventory. Better agreement is found over the shipping lane between Spain and the English Channel. We extend our approach and also provide constraints for major ship routes in the Red Sea and Indian Ocean. Using the full benefit of the long-term retrieval record of OMI, we present a new Eurasian ship emission inventory for the years 2005 to 2010, based on the EMEP and AMVER-ICOADS inventories, and top-down constraints from the satellite retrievals. Our work shows that satellite retrievals can

  11. Simulation of West African air pollution during the DACCIWA experiment with the GEOS-Chem West African regional model.

    Science.gov (United States)

    Morris, Eleanor; Evans, Mathew

    2017-04-01

    Pollutant emissions from West African cities are forecast to increase rapidly in future years because of extensive economic and population growth, together with poorly regulated industrialisation and urbanisation. Observational constraints in this region are few, leading to poor understanding of present-day air pollution in this region. To increase our understanding of the processes controlling air pollutants over the region, airborne observations were made from three research aircraft based out of Lomé, Togo during the DACCIWA field campaign in June-July 2016. A new 0.25x0.3125 degree West Africa regional version of the GEOS-Chem offline chemical transport model has also been developed to explore the processes controlling pollutants over the region. We evaluate the model using the aircraft data and focus on primary (CO, SO2, NOx, VOCs) and secondary pollutants (O3, aerosol). We find significant differences between the model and the measurements for certain primary compounds which is indicative of significant uncertainties in the base (EDGAR) emissions. For CO (a general tracer of pollution) we evaluate the role of different emissions sources (transport, low temperature combustion, power generation) in determining its concentration in the region. We conclude that the leading cause of uncertainty in our simulation is associated with the emissions datasets and explore the impact of using differing datasets.

  12. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    Science.gov (United States)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  13. Iodine's impact on tropospheric oxidants: a global model study in GEOS-Chem

    Directory of Open Access Journals (Sweden)

    T. Sherwen

    2016-02-01

    Full Text Available We present a global simulation of tropospheric iodine chemistry within the GEOS-Chem chemical transport model. This includes organic and inorganic iodine sources, standard gas-phase iodine chemistry, and simplified higher iodine oxide (I2OX, X = 2, 3, 4 chemistry, photolysis, deposition, and parametrized heterogeneous reactions. In comparisons with recent iodine oxide (IO observations, the simulation shows an average bias of  ∼ +90 % with available surface observations in the marine boundary layer (outside of polar regions, and of  ∼ +73 % within the free troposphere (350 hPa  <  p  <  900 hPa over the eastern Pacific. Iodine emissions (3.8 Tg yr−1 are overwhelmingly dominated by the inorganic ocean source, with 76 % of this emission from hypoiodous acid (HOI. HOI is also found to be the dominant iodine species in terms of global tropospheric IY burden (contributing up to 70 %. The iodine chemistry leads to a significant global tropospheric O3 burden decrease (9.0 % compared to standard GEOS-Chem (v9-2. The iodine-driven OX loss rate1 (748 Tg OX yr−1 is due to photolysis of HOI (78 %, photolysis of OIO (21 %, and reaction between IO and BrO (1 %. Increases in global mean OH concentrations (1.8 % by increased conversion of hydroperoxy radicals exceeds the decrease in OH primary production from the reduced O3 concentration. We perform sensitivity studies on a range of parameters and conclude that the simulation is sensitive to choices in parametrization of heterogeneous uptake, ocean surface iodide, and I2OX (X = 2, 3, 4 photolysis. The new iodine chemistry combines with previously implemented bromine chemistry to yield a total bromine- and iodine-driven tropospheric O3 burden decrease of 14.4 % compared to a simulation without iodine and bromine chemistry in the model, and a small increase in OH (1.8 %. This is a significant impact and so halogen chemistry needs to be

  14. Global impacts of tropospheric halogens (Cl, Br, I on oxidants and composition in GEOS-Chem

    Directory of Open Access Journals (Sweden)

    T. Sherwen

    2016-09-01

    Full Text Available We present a simulation of the global present-day composition of the troposphere which includes the chemistry of halogens (Cl, Br, I. Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans, anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous halogen chemistry. Consistent with Schmidt et al. (2016 we do not include sea-salt debromination. Observations of halogen radicals (BrO, IO are sparse but the model has some skill in reproducing these. Modelled IO shows both high and low biases when compared to different datasets, but BrO concentrations appear to be modelled low. Comparisons to the very sparse observations dataset of reactive Cl species suggest the model represents a lower limit of the impacts of these species, likely due to underestimates in emissions and therefore burdens. Inclusion of Cl, Br, and I results in a general improvement in simulation of ozone (O3 concentrations, except in polar regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden by 18.6 %, with the O3 lifetime reducing from 26 to 22 days. Global mean OH concentrations of 1.28  ×  106 molecules cm−3 are 8.2 % lower than in a simulation without halogens, leading to an increase in the CH4 lifetime (10.8 % due to OH oxidation from 7.47 to 8.28 years. Oxidation of CH4 by Cl is small (∼  2 % but Cl oxidation of other VOCs (ethane, acetone, and propane can be significant (∼  15–27 %. Oxidation of VOCs by Br is smaller, representing 3.9 % of the loss of acetaldehyde and 0.9 % of the loss of formaldehyde.

  15. Evaluation of aerosol optical properties of GEOS-Chem over East Asia during the DRAGON-Asia 2012 campaign

    Science.gov (United States)

    Jo, D. S.; Park, R.; Kim, J.

    2015-12-01

    A nested version of 3-D chemical transport model (GEOS-Chem v9-01-02) is evaluated over East Asia during the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia 2012 campaign period, focusing on fine-mode aerosol optical depth (fAOD) and single scattering albedo (SSA). Both are important to assess the effect of anthropogenic aerosols on climate. We compare the daily mean simulated optical properties of aerosols with the observations from DRAGON-Asia campaign for March-May, 2012 (provided in level 2.0: cloud screened and quality assured). We find that the model reproduces the observed daily variability of fAOD (R=0.67), but overestimates the magnitude by 30%, which is in general consistent with other global model comparisons from ACCMIP. However, a significant high bias in the model is found compared to the observed SSA at 440 nm, which is important for determining the sign of aerosol radiative forcing. In order to understand causes for this gap we conduct several sensitivity tests by changing source magnitudes and input parameters of aerosols, affecting the aerosol optical properties under various atmospheric conditions, which allows us to reduce the gap and to find the optimal values in the model.

  16. Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations

    Directory of Open Access Journals (Sweden)

    B. Franco

    2015-04-01

    Full Text Available As an ubiquitous product of the oxidation of many volatile organic compounds (VOCs, formaldehyde (HCHO plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. In this study, HCHO profiles have been successfully retrieved from ground-based Fourier transform infrared (FTIR solar spectra and UV-visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS scans recorded during the July 2010–December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.. Analysis of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art chemical transport models (CTMs, GEOS-Chem and IMAGES v2, have been compared to FTIR total columns and MAX-DOAS 3.6–8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTM outputs as the intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for the HCHO retrieval above the Jungfraujoch station. Finally, tests have revealed that the updated IR parameters from the HITRAN 2012 database have a cumulative effect and significantly decrease the retrieved HCHO columns with respect to the use of the HITRAN 2008 compilation.

  17. Modelling Poly-Aromatic Hydrocarbons "online" with the GEOS-Chem Europe and Asia regional models.

    Science.gov (United States)

    Ivatt, P.; Evans, M. J.

    2017-12-01

    Poly-Aromatic Hydrocarbons (PAHs) are carcinogens and so are restricted by international treaties. PAHs are mainly emitted into the atmosphere by domestic (heating and cooking), natural (forest fires burning), as well as some industrial processes (coke ovens). PAHs partition between the gas and particle phase (notably carbonaceous particles) based on their volatility. In recent years, interest has turned to the possible health effects of their oxidation products (both nitrogenated and oxygenated) as it has been suggested that these oxidation products may be even more carcinogenic than the parent PAHs. To increase our understanding of the processes controlling the regional concentrations of PAHs and their oxidation products an "online" PAH model has been developed within the GEOS-Chem framework. This provides for the representation of the coupled aerosol/gas phase chemistry of the parent PAH and its secondary oxidation products. Benzo[a]pyrene is used as an exemplar but the methodology is flexible and the approach can be used for any PAH species. Comparisons are made with observations and the sources of variability discussed.

  18. WRF-Chem Model Simulations of Arizona Dust Storms

    Science.gov (United States)

    Mohebbi, A.; Chang, H. I.; Hondula, D.

    2017-12-01

    The online Weather Research and Forecasting model with coupled chemistry module (WRF-Chem) is applied to simulate the transport, deposition and emission of the dust aerosols in an intense dust outbreak event that took place on July 5th, 2011 over Arizona. Goddard Chemistry Aerosol Radiation and Transport (GOCART), Air Force Weather Agency (AFWA), and University of Cologne (UoC) parameterization schemes for dust emission were evaluated. The model was found to simulate well the synoptic meteorological conditions also widely documented in previous studies. The chemistry module performance in reproducing the atmospheric desert dust load was evaluated using the horizontal field of the Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectro (MODIS) radiometer Terra/Aqua and Aerosol Robotic Network (AERONET) satellites employing standard Dark Target (DT) and Deep Blue (DB) algorithms. To assess the temporal variability of the dust storm, Particulate Matter mass concentration data (PM10 and PM2.5) from Arizona Department of Environmental Quality (AZDEQ) ground-based air quality stations were used. The promising performance of WRF-Chem indicate that the model is capable of simulating the right timing and loading of a dust event in the planetary-boundary-layer (PBL) which can be used to forecast approaching severe dust events and to communicate an effective early warning.

  19. Using the GeoFEST Faulted Region Simulation System

    Science.gov (United States)

    Parker, Jay W.; Lyzenga, Gregory A.; Donnellan, Andrea; Judd, Michele A.; Norton, Charles D.; Baker, Teresa; Tisdale, Edwin R.; Li, Peggy

    2004-01-01

    GeoFEST (the Geophysical Finite Element Simulation Tool) simulates stress evolution, fault slip and plastic/elastic processes in realistic materials, and so is suitable for earthquake cycle studies in regions such as Southern California. Many new capabilities and means of access for GeoFEST are now supported. New abilities include MPI-based cluster parallel computing using automatic PYRAMID/Parmetis-based mesh partitioning, automatic mesh generation for layered media with rectangular faults, and results visualization that is integrated with remote sensing data. The parallel GeoFEST application has been successfully run on over a half-dozen computers, including Intel Xeon clusters, Itanium II and Altix machines, and the Apple G5 cluster. It is not separately optimized for different machines, but relies on good domain partitioning for load-balance and low communication, and careful writing of the parallel diagonally preconditioned conjugate gradient solver to keep communication overhead low. Demonstrated thousand-step solutions for over a million finite elements on 64 processors require under three hours, and scaling tests show high efficiency when using more than (order of) 4000 elements per processor. The source code and documentation for GeoFEST is available at no cost from Open Channel Foundation. In addition GeoFEST may be used through a browser-based portal environment available to approved users. That environment includes semi-automated geometry creation and mesh generation tools, GeoFEST, and RIVA-based visualization tools that include the ability to generate a flyover animation showing deformations and topography. Work is in progress to support simulation of a region with several faults using 16 million elements, using a strain energy metric to adapt the mesh to faithfully represent the solution in a region of widely varying strain.

  20. Simulation of Telescope Detectivity for Geo Survey and Tracking

    Science.gov (United States)

    Richard, P.

    2014-09-01

    As the number of space debris on Earths Orbit increases steadily, the need to survey, track and catalogue them becomes of key importance. In this context, CNES has been using the TAROT Telescopes (Rapid Telescopes for Transient Objects owned and operated by CNRS) for several years to conduct studies about space surveillance and tracking. Today, two testbeds of services using the TAROT telescopes are running every night: one for GEO situational awareness and the second for debris tracking. Additionally to the CNES research activity on space surveillance and tracking domain, an operational collision avoidance service for LEO and GEO satellites is in place at CNES for several years. This service named CAESAR (Conjunction Analysis and Evaluation: Alerts and Recommendations) is used by CNES as well as by external customers. As the optical debris tracking testbed based on TAROT telescopes is the first step toward an operational provider of GEO measures that could be used by CAESAR, simulations have been done to help choosing the sites and types of telescopes that could be added in the GEO survey and debris tracking telescope network. One of the distinctive characteristics of the optical observation of space debris compared to traditional astronomic observation is the need to observe objects at low elevations. The two mains reasons for this are the need to observe the GEO belt from non-equatorial sites and the need to observe debris at longitudes far from the telescope longitude. This paper presents the results of simulations of the detectivity for GEO debris of various telescopes and sites, based on models of the GEO belt, the atmosphere and the instruments. One of the conclusions is that clever detection of faint streaks and spread sources by image processing is one of the major keys to improve the detection of debris on the GEO belt.

  1. Contributions of foreign, domestic and natural emissions to US ozone estimated using the path-integral method in CAMx nested within GEOS-Chem

    Directory of Open Access Journals (Sweden)

    A. M. Dunker

    2017-10-01

    Full Text Available The Goddard Earth Observing System global chemical transport (GEOS-Chem model was used at 2°  ×  2.5° resolution to simulate ozone formation for a base case representing year 2010 and a natural background case without worldwide anthropogenic emissions. These simulations provided boundary concentrations for base and natural background simulations with the Comprehensive Air Quality Model with Extensions (CAMx on a North American domain (one-way nested at 12 km  ×  12 km resolution over March–September 2010. The predicted maximum daily average 8 h (MDA8 background ozone for the US is largest in the mountainous areas of Colorado, New Mexico, Arizona, and California. The background MDA8 ozone in some of these locations exceeds 60 ppb, when averaged over the 10 days with the largest base-case ozone (T10base average. The background ozone generally becomes both a larger fraction of the base-case ozone in the western US and a smaller fraction in the eastern US when proceeding from spring to summer to the T10base average. The ozone difference between the base and background cases represents the increment to ozone from all anthropogenic sources. The path-integral method was applied to allocate this anthropogenic ozone increment to US anthropogenic emissions, Canadian/Mexican anthropogenic emissions, and the anthropogenic components of the lateral and top boundary concentrations (BCs. Using the T10base average MDA8 ozone, the relative importance of the sources is generally US emissions  >  anthropogenic lateral BCs  >  Canadian/Mexican emissions  ≫  anthropogenic top BCs. Specifically, for 10 US urban areas, the source contributions were 12–53 ppb for US emissions, 3–9 ppb for lateral BCs, 0.2–3 ppb for Canadian/Mexican emissions, and  ≤  0.1 ppb for top BCs. The contributions of the lateral BCs are largest for the higher-elevation US sites in the Intermountain West and along the

  2. Numerical simulation for regional ozone concentrations: A case study by weather research and forecasting/chemistry (WRF/Chem) model

    Energy Technology Data Exchange (ETDEWEB)

    Habib Al Razi, Khandakar Md; Hiroshi, Moritomi [Environmental and Renewable Energy System, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu City, 501-1193 (Japan)

    2013-07-01

    The objective of this research is to better understand and predict the atmospheric concentration distribution of ozone and its precursor (in particular, within the Planetary Boundary Layer (Within 110 km to 12 km) over Kasaki City and the Greater Tokyo Area using fully coupled online WRF/Chem (Weather Research and Forecasting/Chemistry) model. In this research, a serious and continuous high ozone episode in the Greater Tokyo Area (GTA) during the summer of 14–18 August 2010 was investigated using the observation data. We analyzed the ozone and other trace gas concentrations, as well as the corresponding weather conditions in this high ozone episode by WRF/Chem model. The simulation results revealed that the analyzed episode was mainly caused by the impact of accumulation of pollution rich in ozone over the Greater Tokyo Area. WRF/Chem has shown relatively good performance in modeling of this continuous high ozone episode, the simulated and the observed concentrations of ozone, NOx and NO2 are basically in agreement at Kawasaki City, with best correlation coefficients of 0.87, 0.70 and 0.72 respectively. Moreover, the simulations of WRF/Chem with WRF preprocessing software (WPS) show a better agreement with meteorological observations such as surface winds and temperature profiles in the ground level of this area. As a result the surface ozone simulation performances have been enhanced in terms of the peak ozone and spatial patterns, whereas WRF/Chem has been succeeded to generate meteorological fields as well as ozone, NOx, NO2 and NO.

  3. Simulation of how a geo-engineering intervention to restore arctic sea ice might work in practice

    Science.gov (United States)

    Jackson, L. S.; Crook, J. A.; Forster, P.; Jarvis, A.; Leedal, D.; Ridgwell, A. J.; Vaughan, N.

    2013-12-01

    The declining trend in annual minimum Arctic sea ice coverage and years of more pronounced drops like 2007 and 2012 raise the prospect of an Arctic Ocean largely free of sea ice in late summer and the potential for a climate crisis or emergency. In a novel computer simulation, we treated one realisation of a climate model (HadGEM2) as the real world and tried to restore its Arctic sea ice by the rapid deployment of geo-engineering with emission of SO2 into the Arctic stratosphere. The objective was to restore the annual minimum Arctic sea ice coverage to levels seen in the late twentieth century using as little geo-engineering as possible. We took intervention decisions as one might do in the real world: by committee, using a limited set of uncertain 'observations' from our simulated world and using models and control theory to plan the best intervention strategy for the coming year - so learning as we went and being thrown off course by future volcanoes and technological breakdowns. Uncertainties in real world observations were simulated by applying noise to emerging results from the climate model. Volcanic forcing of twenty-first century climate was included with the timing and magnitude of the simulated eruptions unknown by the 'geo-engineers' until after the year of the eruption. Monitoring of Arctic sea ice with the option to intervene with SO2 emissions started from 2018 and continued to 2075. Simulated SO2 emissions were made in January-May each year at a latitude of 79o N and an altitude within the range of contemporary tanker aircraft. The magnitude of emissions was chosen annually using a model predictive control process calibrated using results from CMIP5 models (excluding HadGEM2), using the simplified climate model MAGICC and assimilation of emerging annual results from the HadGEM2 'real world'. We found that doubts in the minds of the 'geo-engineers' of the effectiveness and the side effects of their past intervention, and the veracity of the models

  4. WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley

    Directory of Open Access Journals (Sweden)

    A. Mues

    2018-06-01

    Full Text Available An evaluation of the meteorology simulated using the Weather Research and Forecast (WRF model for the region of south Asia and Nepal with a focus on the Kathmandu Valley is presented. A particular focus of the model evaluation is placed on meteorological parameters that are highly relevant to air quality such as wind speed and direction, boundary layer height and precipitation. The same model setup is then used for simulations with WRF including chemistry and aerosols (WRF-Chem. A WRF-Chem simulation has been performed using the state-of-the-art emission database, EDGAR HTAP v2.2, which is the Emission Database for Global Atmospheric Research of the Joint Research Centre (JRC of the European Commission, in cooperation with the Task Force on Hemispheric Transport of Air Pollution (TF HTAP organized by the United Nations Economic Commission for Europe, along with a sensitivity simulation using observation-based black carbon emission fluxes for the Kathmandu Valley. The WRF-Chem simulations are analyzed in comparison to black carbon measurements in the valley and to each other.The evaluation of the WRF simulation with a horizontal resolution of 3×3 km2 shows that the model is often able to capture important meteorological parameters inside the Kathmandu Valley and the results for most meteorological parameters are well within the range of biases found in other WRF studies especially in mountain areas. But the evaluation results also clearly highlight the difficulties of capturing meteorological parameters in such complex terrain and reproducing subgrid-scale processes with a horizontal resolution of 3×3 km2. The measured black carbon concentrations are typically systematically and strongly underestimated by WRF-Chem. A sensitivity study with improved emissions in the Kathmandu Valley shows significantly reduced biases but also underlines several limitations of such corrections. Further improvements of the model and of the emission data are

  5. ChemProt-3.0: a global chemical biology diseases mapping

    DEFF Research Database (Denmark)

    Kringelum, Jens Vindahl; Kjærulff, Sonny Kim; Brunak, Søren

    2016-01-01

    ChemProt is a publicly available compilation of chemical-protein-disease annotation resources that enables the study of systems pharmacology for a small molecule across multiple layers of complexity from molecular to clinical levels. In this third version, ChemProt has been updated to more than 1...

  6. GEOS-5 Chemistry Transport Model User's Guide

    Science.gov (United States)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  7. B33C-0612: Evaluation of Simulated Biospheric Carbon Dioxide Fluxes and Atmospheric Concentrations Using Global in Situ Observations

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa

    2016-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  8. Measurement and simulation of laser power noise in GEO 600

    International Nuclear Information System (INIS)

    Smith, J R; Degallaix, J; Freise, A; Grote, H; Hewitson, M; Hild, S; Lueck, H; Strain, K A; Willke, B

    2008-01-01

    This paper describes measurements and simulations related to power fluctuations of the laser light in the GEO 600 laser-interferometric gravitational wave detector. Measurements of the relative fluctuations of the light power at three different ports of the main interferometer are presented. In addition, measurements and simulations of the coupling transfer functions from power fluctuations at the input laser to these ports are shown. The transfer function from the input laser to the output port of the interferometer is found to be non-trivial. Despite this, the numerical simulation produces an excellent match to it and gives insight to the mechanisms leading to the complicated shape. Furthermore, the coupling transfer functions of power fluctuations to the main (heterodyne) detector outputs are measured and simulated. These are used to evaluate the level with which laser power fluctuations contribute to the overall noise level of the instrument

  9. Ozone data assimilation with GEOS-Chem: a comparison between 3-D-Var, 4-D-Var, and suboptimal Kalman filter approaches

    Science.gov (United States)

    Singh, K.; Sandu, A.; Bowman, K. W.; Parrington, M.; Jones, D. B. A.; Lee, M.

    2011-08-01

    Chemistry transport models determine the evolving chemical state of the atmosphere by solving the fundamental equations that govern physical and chemical transformations subject to initial conditions of the atmospheric state and surface boundary conditions, e.g., surface emissions. The development of data assimilation techniques synthesize model predictions with measurements in a rigorous mathematical framework that provides observational constraints on these conditions. Two families of data assimilation methods are currently widely used: variational and Kalman filter (KF). The variational approach is based on control theory and formulates data assimilation as a minimization problem of a cost functional that measures the model-observations mismatch. The Kalman filter approach is rooted in statistical estimation theory and provides the analysis covariance together with the best state estimate. Suboptimal Kalman filters employ different approximations of the covariances in order to make the computations feasible with large models. Each family of methods has both merits and drawbacks. This paper compares several data assimilation methods used for global chemical data assimilation. Specifically, we evaluate data assimilation approaches for improving estimates of the summertime global tropospheric ozone distribution in August 2006 based on ozone observations from the NASA Tropospheric Emission Spectrometer and the GEOS-Chem chemistry transport model. The resulting analyses are compared against independent ozonesonde measurements to assess the effectiveness of each assimilation method. All assimilation methods provide notable improvements over the free model simulations, which differ from the ozonesonde measurements by about 20 % (below 200 hPa). Four dimensional variational data assimilation with window lengths between five days and two weeks is the most accurate method, with mean differences between analysis profiles and ozonesonde measurements of 1-5 %. Two sequential

  10. Multiple point statistical simulation using uncertain (soft) conditional data

    Science.gov (United States)

    Hansen, Thomas Mejer; Vu, Le Thanh; Mosegaard, Klaus; Cordua, Knud Skou

    2018-05-01

    Geostatistical simulation methods have been used to quantify spatial variability of reservoir models since the 80s. In the last two decades, state of the art simulation methods have changed from being based on covariance-based 2-point statistics to multiple-point statistics (MPS), that allow simulation of more realistic Earth-structures. In addition, increasing amounts of geo-information (geophysical, geological, etc.) from multiple sources are being collected. This pose the problem of integration of these different sources of information, such that decisions related to reservoir models can be taken on an as informed base as possible. In principle, though difficult in practice, this can be achieved using computationally expensive Monte Carlo methods. Here we investigate the use of sequential simulation based MPS simulation methods conditional to uncertain (soft) data, as a computational efficient alternative. First, it is demonstrated that current implementations of sequential simulation based on MPS (e.g. SNESIM, ENESIM and Direct Sampling) do not account properly for uncertain conditional information, due to a combination of using only co-located information, and a random simulation path. Then, we suggest two approaches that better account for the available uncertain information. The first make use of a preferential simulation path, where more informed model parameters are visited preferentially to less informed ones. The second approach involves using non co-located uncertain information. For different types of available data, these approaches are demonstrated to produce simulation results similar to those obtained by the general Monte Carlo based approach. These methods allow MPS simulation to condition properly to uncertain (soft) data, and hence provides a computationally attractive approach for integration of information about a reservoir model.

  11. GEOS. User Tutorials

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Pengchen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, Scott M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walsh, Stuart D.C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morris, Joseph P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, Frederick J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-17

    GEOS is a massively parallel, multi-physics simulation application utilizing high performance computing (HPC) to address subsurface reservoir stimulation activities with the goal of optimizing current operations and evaluating innovative stimulation methods. GEOS enables coupling of di erent solvers associated with the various physical processes occurring during reservoir stimulation in unique and sophisticated ways, adapted to various geologic settings, materials and stimulation methods. Developed at the Lawrence Livermore National Laboratory (LLNL) as a part of a Laboratory-Directed Research and Development (LDRD) Strategic Initiative (SI) project, GEOS represents the culmination of a multi-year ongoing code development and improvement e ort that has leveraged existing code capabilities and sta expertise to design new computational geosciences software.

  12. ChemProt-2.0: visual navigation in a disease chemical biology database

    DEFF Research Database (Denmark)

    Kjærulff, Sonny Kim; Wich, Louis; Kringelum, Jens Vindahl

    2013-01-01

    ChemProt-2.0 (http://www.cbs.dtu.dk/services/ChemProt-2.0) is a public available compilation of multiple chemical-protein annotation resources integrated with diseases and clinical outcomes information. The database has been updated to > 1.15 million compounds with 5.32 millions bioactivity measu...

  13. Evaluation of GEOS-5 sulfur dioxide simulations during the Frostburg, MD 2010 field campaign

    Directory of Open Access Journals (Sweden)

    V. Buchard

    2014-02-01

    Full Text Available Sulfur dioxide (SO2 is a major atmospheric pollutant with a strong anthropogenic component mostly produced by the combustion of fossil fuel and other industrial activities. As a precursor of sulfate aerosols that affect climate, air quality, and human health, this gas needs to be monitored on a global scale. Global climate and chemistry models including aerosol processes along with their radiative effects are important tools for climate and air quality research. Validation of these models against in-situ and satellite measurements is essential to ascertain the credibility of these models and to guide model improvements. In this study, the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART module running on-line inside the Goddard Earth Observing System version 5 (GEOS-5 model is used to simulate aerosol and SO2 concentrations. Data taken in November 2010 over Frostburg, Maryland during an SO2 field campaign involving ground instrumentation and aircraft are used to evaluate GEOS-5 simulated SO2 concentrations. Preliminary data analysis indicated the model overestimated surface SO2 concentration, which motivated the examination of the specification of SO2 anthropogenic emission rates. As a result of this analysis, a revision of anthropogenic emission inventories in GEOS-5 was implemented, and the vertical placement of SO2 sources was updated. Results show that these revisions improve the model agreement with observations locally and in regions outside the area of this field campaign. In particular, we use the ground-based measurements collected by the United States Environmental Protection Agency (US EPA for the year 2010 to evaluate the revised model simulations over North America.

  14. Topologically Consistent Models for Efficient Big Geo-Spatio Data Distribution

    Science.gov (United States)

    Jahn, M. W.; Bradley, P. E.; Doori, M. Al; Breunig, M.

    2017-10-01

    Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial + temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented. In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment.

  15. Literature information in PubChem: associations between PubChem records and scientific articles.

    Science.gov (United States)

    Kim, Sunghwan; Thiessen, Paul A; Cheng, Tiejun; Yu, Bo; Shoemaker, Benjamin A; Wang, Jiyao; Bolton, Evan E; Wang, Yanli; Bryant, Stephen H

    2016-01-01

    PubChem is an open archive consisting of a set of three primary public databases (BioAssay, Compound, and Substance). It contains information on a broad range of chemical entities, including small molecules, lipids, carbohydrates, and (chemically modified) amino acid and nucleic acid sequences (including siRNA and miRNA). Currently (as of Nov. 2015), PubChem contains more than 150 million depositor-provided chemical substance descriptions, 60 million unique chemical structures, and 225 million biological activity test results provided from over 1 million biological assay records. Many PubChem records (substances, compounds, and assays) include depositor-provided cross-references to scientific articles in PubMed. Some PubChem contributors provide bioactivity data extracted from scientific articles. Literature-derived bioactivity data complement high-throughput screening (HTS) data from the concluded NIH Molecular Libraries Program and other HTS projects. Some journals provide PubChem with information on chemicals that appear in their newly published articles, enabling concurrent publication of scientific articles in journals and associated data in public databases. In addition, PubChem links records to PubMed articles indexed with the Medical Subject Heading (MeSH) controlled vocabulary thesaurus. Literature information, both provided by depositors and derived from MeSH annotations, can be accessed using PubChem's web interfaces, enabling users to explore information available in literature related to PubChem records beyond typical web search results. Graphical abstractLiterature information for PubChem records is derived from various sources.

  16. South African oil dependency : geo-political, geo-economic and geo-strategic considerations

    OpenAIRE

    2012-01-01

    Ph.D. There is little research undertaken on the economic assessment of oil security of supply from the dimensions of geo-politics, geo-economics and geo-strategy. This study seeks to bridge the gap by providing new analytical and empirical work that captures the impact of geo-politics, geo-economics and geo-strategy on oil supply, consumption and price. This study is the first to define, analyse and contextualise the South African oil security of supply from a geo-political, geo-economic ...

  17. File Specification for the 7-km GEOS-5 Nature Run, Ganymed Release Non-Hydrostatic 7-km Global Mesoscale Simulation

    Science.gov (United States)

    da Silva, Arlindo M.; Putman, William; Nattala, J.

    2014-01-01

    This document describes the gridded output files produced by a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2006 produced with the non-hydrostatic version of GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic sources. A description of the GEOS-5 model configuration used for this simulation can be found in Putman et al. (2014). The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (approximately 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625 deg grid that approximately matches the native cubed-sphere resolution, and another 0.5 deg reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model's native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. Information of the model surface representation can be found in Appendix B. The GEOS-5 product is organized into file collections that are described in detail in Appendix C. Additional

  18. Preserving location and absence privacy in geo-social networks

    DEFF Research Database (Denmark)

    Freni, Dario; Vicente, Carmen Ruiz; Mascetti, Sergio

    2010-01-01

    accessible to multiple users. This renders it difficult for GeoSN users to control which information about them is available and to whom it is available. This paper addresses two privacy threats that occur in GeoSNs: location privacy and absence privacy. The former concerns the availability of information...... about the presence of users in specific locations at given times, while the latter concerns the availability of information about the absence of an individual from specific locations during given periods of time. The challenge addressed is that of supporting privacy while still enabling useful services....... The resulting geo-aware social networks (GeoSNs) pose privacy threats beyond those found in location-based services. Content published in a GeoSN is often associated with references to multiple users, without the publisher being aware of the privacy preferences of those users. Moreover, this content is often...

  19. Air Quality Forecasts Using the NASA GEOS Model

    Science.gov (United States)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  20. The Case for GEO Hosted SSA Payloads

    Science.gov (United States)

    Welsch, C.; Armand, B.; Repp, M.; Robinson, A.

    2014-09-01

    Space situational awareness (SSA) in the geosynchronous earth orbit (GEO) belt presents unique challenges, and given the national importance and high value of GEO satellites, is increasingly critical as space becomes more congested and contested. Space situational awareness capabilities can serve as an effective deterrent against potential adversaries if they provide accurate, timely, and persistent information and are resilient to the threat environment. This paper will demonstrate how simple optical SSA payloads hosted on GEO commercial and government satellites can complement the SSA mission and data provided by Space-Based Space Surveillance (SBSS) and the Geosynchronous Space Situational Awareness Program (GSSAP). GSSAP is built by Orbital Sciences Corporation and launched on July 28, 2014. Analysis performed for this paper will show how GEO hosted SSA payloads, working in combination with SBSS and GSSAP, can increase persistence and timely coverage of high value assets in the GEO belt. The potential to further increase GEO object identification and tracking accuracy by integrating SSA data from multiple sources across different viewing angles including GEO hosted SSA sources will be addressed. Hosting SSA payloads on GEO platforms also increases SSA mission architecture resiliency as the sensors are by distributed across multiple platforms including commercial platforms. This distributed architecture presents a challenging target for an adversary to attempt to degrade or disable. We will present a viable concept of operations to show how data from hosted SSA sensors could be integrated with SBSS and GSSAP data to present a comprehensive and more accurate data set to users. Lastly, we will present an acquisition approach using commercial practices and building on lessons learned from the Commercially Hosted Infra Red Payload CHIRP to demonstrate the affordability of GEO hosted SSA payloads.

  1. ChemCalc: a building block for tomorrow's chemical infrastructure.

    Science.gov (United States)

    Patiny, Luc; Borel, Alain

    2013-05-24

    Web services, as an aspect of cloud computing, are becoming an important part of the general IT infrastructure, and scientific computing is no exception to this trend. We propose a simple approach to develop chemical Web services, through which servers could expose the essential data manipulation functionality that students and researchers need for chemical calculations. These services return their results as JSON (JavaScript Object Notation) objects, which facilitates their use for Web applications. The ChemCalc project http://www.chemcalc.org demonstrates this approach: we present three Web services related with mass spectrometry, namely isotopic distribution simulation, peptide fragmentation simulation, and molecular formula determination. We also developed a complete Web application based on these three Web services, taking advantage of modern HTML5 and JavaScript libraries (ChemDoodle and jQuery).

  2. Evaluation of model-simulated source contributions to tropospheric ozone with aircraft observations in the factor-projected space

    Directory of Open Access Journals (Sweden)

    Y. Yoshida

    2008-03-01

    Full Text Available Trace gas measurements of TOPSE and TRACE-P experiments and corresponding global GEOS-Chem model simulations are analyzed with the Positive Matrix Factorization (PMF method for model evaluation purposes. Specially, we evaluate the model simulated contributions to O3 variability from stratospheric transport, intercontinental transport, and production from urban/industry and biomass burning/biogenic sources. We select a suite of relatively long-lived tracers, including 7 chemicals (O3, NOy, PAN, CO, C3H8, CH3Cl, and 7Be and 1 dynamic tracer (potential temperature. The largest discrepancy is found in the stratospheric contribution to 7Be. The model underestimates this contribution by a factor of 2–3, corresponding well to a reduction of 7Be source by the same magnitude in the default setup of the standard GEOS-Chem model. In contrast, we find that the simulated O3 contributions from stratospheric transport are in reasonable agreement with those derived from the measurements. However, the springtime increasing trend over North America derived from the measurements are largely underestimated in the model, indicating that the magnitude of simulated stratospheric O3 source is reasonable but the temporal distribution needs improvement. The simulated O3 contributions from long-range transport and production from urban/industry and biomass burning/biogenic emissions are also in reasonable agreement with those derived from the measurements, although significant discrepancies are found for some regions.

  3. ChemProt-3.0: a global chemical biology diseases mapping

    DEFF Research Database (Denmark)

    Kringelum, Jens Vindahl; Kjærulff, Sonny Kim; Brunak, Søren

    2016-01-01

    ChemProt is a publicly available compilation of chemical-protein-disease annotation resources that enables the study of systems pharmacology for a small molecule across multiple layers of complexity from molecular to clinical levels. In this third version, ChemProt has been updated to more than 1...... properties. In addition, the user has the possibility to search by compound, target, pathway, disease and clinical effect. Genetic variations associated to target proteins were integrated, making it possible to plan pharmacogenetic studies and to suggest human response variability to drug. Finally...

  4. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations

    Directory of Open Access Journals (Sweden)

    I. N. Polonsky

    2014-04-01

    Full Text Available GeoCARB is a proposed instrument to measure column averaged concentrations of CO2, CH4 and CO from geostationary orbit using reflected sunlight in near-infrared absorption bands of the gases. The scanning options, spectral channels and noise characteristics of geoCARB and two descope options are described. The accuracy of concentrations from geoCARB data is investigated using end-to-end retrievals; spectra at the top of the atmosphere in the geoCARB bands are simulated with realistic trace gas profiles, meteorology, aerosol, cloud and surface properties, and then the concentrations of CO2, CH4 and CO are estimated from the spectra after addition of noise characteristic of geoCARB. The sensitivity of the algorithm to aerosol, the prior distributions assumed for the gases and the meteorology are investigated. The contiguous spatial sampling and fine temporal resolution of geoCARB open the possibility of monitoring localised sources such as power plants. Simulations of emissions from a power plant with a Gaussian plume are conducted to assess the accuracy with which the emission strength may be recovered from geoCARB spectra. Scenarios for "clean" and "dirty" power plants are examined. It is found that a reliable estimate of the emission rate is possible, especially for power plants that have particulate filters, by averaging emission rates estimated from multiple snapshots of the CO2 field surrounding the plant. The result holds even in the presence of partial cloud cover.

  5. Simulation Loop between CAD systems, Geant4 and GeoModel: Implementation and Results

    CERN Document Server

    Sharmazanashvili, Alexander; The ATLAS collaboration

    2015-01-01

    Data_vs_MonteCarlo discrepancy is one of the most important field of investigation for ATLAS simulation studies. There are several reasons of above mentioned discrepancies but primary interest is falling on geometry studies and investigation of how geometry descriptions of detector in simulation adequately representing “as-built” descriptions. Shapes consistency and detalization is not important while adequateness of volumes and weights of detector components are essential for tracking. There are 2 main reasons of faults of geometry descriptions in simulation: 1/ Inconsistency to “as-built” geometry descriptions; 2/Internal inaccuracies of transactions added by simulation packages itself. Georgian Engineering team developed hub on the base of CATIA platform and several tools enabling to read in CATIA different descriptions used by simulation packages, like XML/Persint->CATIA; IV/VP1->CATIA; GeoModel->CATIA; Geant4->CATIA. As a result it becomes possible to compare different descriptions with each othe...

  6. DayCent-Chem Simulations of Ecological and Biogeochemical Processes of Eight Mountain Ecosystems in the United States

    Science.gov (United States)

    Hartman, Melannie D.; Baron, Jill S.; Clow, David W.; Creed, Irena F.; Driscoll, Charles T.; Ewing, Holly A.; Haines, Bruce D.; Knoepp, Jennifer; Lajtha, Kate; Ojima, Dennis S.; Parton, William J.; Renfro, Jim; Robinson, R. Bruce; Van Miegroet, Helga; Weathers, Kathleen C.; Williams, Mark W.

    2009-01-01

    Atmospheric deposition of nitrogen (N) and sulfur (S) cause complex responses in ecosystems, from fertilization to forest ecosystem decline, freshwater eutrophication to acidification, loss of soil base cations, and alterations of disturbance regimes. DayCent-Chem, an ecosystem simulation model that combines ecosystem nutrient cycling and plant dynamics with aqueous geochemical equilibrium calculations, was developed to address ecosystem responses to combined atmospheric N and S deposition. It is unique among geochemically-based models in its dynamic biological cycling of N and its daily timestep for investigating ecosystem and surface water chemical response to episodic events. The model was applied to eight mountainous watersheds in the United States. The sites represent a gradient of N deposition across locales, from relatively pristine to N-saturated, and a variety of ecosystem types and climates. Overall, the model performed best in predicting stream chemistry for snowmelt-dominated sites. It was more difficult to predict daily stream chemistry for watersheds with deep soils, high amounts of atmospheric deposition, and a large degree of spatial heterogeneity. DayCent-Chem did well in representing plant and soil carbon and nitrogen pools and fluxes. Modeled stream nitrate (NO3-) and ammonium (NH4+) concentrations compared well with measurements at all sites, with few exceptions. Simulated daily stream sulfate (SO42-) concentrations compared well to measured values for sites where SO42- deposition has been low and where SO42- adsorption/desorption reactions did not seem to be important. The concentrations of base cations and silica in streams are highly dependent on the geochemistry and weathering rates of minerals in each catchment, yet these were rarely, if ever, known. Thus, DayCent-Chem could not accurately predict weathering products for some catchments. Additionally, few data were available for exchangeable soil cations or the magnitude of base cation

  7. Geographical Simulation and Optimization System (GeoSOS and Its Application in the Analysis of Geographic National Conditions

    Directory of Open Access Journals (Sweden)

    LI Xia

    2017-10-01

    Full Text Available Since the Chinese first survey on geographic national conditions has completed, an urgent need is to analyze these geographical data, such as mining of spatial distribution patterns, land use transition rules, development trends. The analysis is crucial for extracting the knowledge from these big data about geographic national conditions. The remote sensing interpretation data and land use/cover data generated by these geographic national conditions monitoring projects are the basic data sources for a variety of research and applications in terms of land use change detection, urban dynamic analysis, and urban/land use planning. The information can be used for assisting in the coordination of land resource use and decision making for urban and rural development, ecological environment protection and other issues that depends on spatial intelligent decisions. We proposed the theoretical framework of geographical simulation and optimization system (GeoSOS, which coupled geographic process simulation/prediction and spatial optimization, provides powerful theoretical support and practical tools for above researches. This paper develops the extension of GeoSOS software-GeoSOS for ArcGIS, which is an ArcGIS Add-In runs on ArcGIS platform for facilitating the above analyses. We take the urban expansion and ecological protection research in rapid urbanization area as an example, use the software to tackle a series of urbanization issues in the study area. The simulation results show that the predicted land development intensity of Guangdong Province will exceed the constraint index in 2020 according to the national development plan. However, the urbanization expansion based on the constraints of land development intensity and ecological protection can satisfy these constraints, and obtain a more compact landscape pattern. The analysis has shown that GeoSOS can be a useful tool for assisting in the analysis of geographic national conditions information

  8. Simulations of the Holuhraun eruption 2014 with WRF-Chem and evaluation with satellite and ground based SO2 measurements

    Science.gov (United States)

    Hirtl, Marcus; Arnold-Arias, Delia; Flandorfer, Claudia; Maurer, Christian; Mantovani, Simone; Natali, Stefano

    2016-04-01

    Volcanic eruptions, with gas or/and particle emissions, directly influence our environment, with special significance when they either occur near inhabited regions or are transported towards them. In addition to the well-known affectation of air traffic, with large economic impacts, the ground touching plumes can lead directly to an influence of soil, water and even to a decrease of air quality. The eruption of Holuhraun in August 2014 in central Iceland is the country's largest lava and gas eruption since the Lakagígar eruption in 1783. Nevertheless, very little volcanic ash was produced. The main atmospheric threat from this event was the SO2 pollution that frequently violated the Icelandic National Air Quality Standards in many population centers. However, the SO2 affectation was not limited to Iceland but extended to mainland Europe. The on-line coupled model WRF-Chem is used to simulate the dispersion of SO2 for this event that affected the central European regions. The volcanic emissions are considered in addition to the anthropogenic and biogenic ground sources at European scale. A modified version of WRF-Chem version 4.1 is used in order to use time depending injection heights and mass fluxes which were obtained from in situ observations. WRF-Chem uses complex gas- (RADM2) and aerosol- (MADE-SORGAM) chemistry and is operated on a European domain (12 km resolution), and a nested grid covering the Alpine region (4 km resolution). The study is showing the evaluation of the model simulations with satellite and ground based measurement data of SO2. The analysis is conducted on a data management platform, which is currently developed in the frame of the ESA-funded project TAMP "Technology and Atmospheric Mission Platform": it provides comprehensive functionalities to visualize and numerically compare data from different sources (model, satellite and ground-measurements).

  9. Calibrating the ChemCam LIBS for Carbonate Minerals on Mars

    Science.gov (United States)

    Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  10. Sensitivity of simulated convection-driven stratosphere-troposphere exchange in WRF-Chem to the choice of physical and chemical parameterization

    Science.gov (United States)

    Phoenix, Daniel B.; Homeyer, Cameron R.; Barth, Mary C.

    2017-08-01

    Tropopause-penetrating convection is capable of rapidly transporting air from the lower troposphere to the upper troposphere and lower stratosphere (UTLS), where it can have important impacts on chemistry, the radiative budget, and climate. However, obtaining in situ measurements of convection and convective transport is difficult and such observations are historically rare. Modeling studies, on the other hand, offer the advantage of providing output related to the physical, dynamical, and chemical characteristics of storms and their environments at fine spatial and temporal scales. Since these characteristics of simulated convection depend on the chosen model design, we examine the sensitivity of simulated convective transport to the choice of physical (bulk microphysics or BMP and planetary boundary layer or PBL) and chemical parameterizations in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). In particular, we simulate multiple cases where in situ observations are available from the recent (2012) Deep Convective Clouds and Chemistry (DC3) experiment. Model output is evaluated using ground-based radar observations of each storm and in situ trace gas observations from two aircraft operated during the DC3 experiment. Model results show measurable sensitivity of the physical characteristics of a storm and the transport of water vapor and additional trace gases into the UTLS to the choice of BMP. The physical characteristics of the storm and transport of insoluble trace gases are largely insensitive to the choice of PBL scheme and chemical mechanism, though several soluble trace gases (e.g., SO2, CH2O, and HNO3) exhibit some measurable sensitivity.

  11. The Another Assimilation System for WRF-Chem (AAS4WRF): a new mass-conserving emissions pre-processor for WRF-Chem regional modelling

    Science.gov (United States)

    Vara Vela, A. L.; Muñoz, A.; Lomas, A., Sr.; González, C. M.; Calderon, M. G.; Andrade, M. D. F.

    2017-12-01

    The Weather Research and Forecasting with Chemistry (WRF-Chem) community model have been widely used for the study of pollutants transport, formation of secondary pollutants, as well as for the assessment of air quality policies implementation. A key factor to improve the WRF-Chem air quality simulations over urban areas is the representation of anthropogenic emission sources. There are several tools that are available to assist users in creating their own emissions based on global emissions information (e.g. anthro_emiss, prep_chem_src); however, there is no single tool that will construct local emissions input datasets for any particular domain at this time. Because the official emissions pre-processor (emiss_v03) is designed to work with domains located over North America, this work presents the Another Assimilation System for WRF-Chem (AAS4WRF), a ncl based mass-conserving emissions pre-processor designed to create WRF-Chem ready emissions files from local inventories on a lat/lon projection. AAS4WRF is appropriate to scale emission rates from both surface and elevated sources, providing the users an alternative way to assimilate their emissions to WRF-Chem. Since it was successfully tested for the first time for the city of Lima, Peru in 2014 (managed by SENAMHI, the National Weather Service of the country), several studies on air quality modelling have applied this utility to convert their emissions to those required for WRF-Chem. Two case studies performed in the metropolitan areas of Sao Paulo and Manizales in Brazil and Colombia, respectively, are here presented in order to analyse the influence of using local or global emission inventories in the representation of regulated air pollutants such as O3 and PM2.5. Although AAS4WRF works with local emissions information at the moment, further work is being conducted to make it compatible with global/regional emissions data file format. The tool is freely available upon request to the corresponding author.

  12. On the Discrete-Time GeoX/G/1 Queues under N-Policy with Single and Multiple Vacations

    Directory of Open Access Journals (Sweden)

    Sung J. Kim

    2013-01-01

    Full Text Available We consider the discrete-time GeoX/G/1 queue under N-policy with single and multiple vacations. In this queueing system, the server takes multiple vacations and a single vacation whenever the system becomes empty and begins to serve customers only if the queue length is at least a predetermined threshold value N. Using the well-known property of stochastic decomposition, we derive the stationary queue-length distributions for both vacation models in a simple and unified manner. In addition, we derive their busy as well as idle-period distributions. Some classical vacation models are considered as special cases.

  13. Global budget of tropospheric ozone: Evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations

    Science.gov (United States)

    Hu, Lu; Jacob, Daniel J.; Liu, Xiong; Zhang, Yi; Zhang, Lin; Kim, Patrick S.; Sulprizio, Melissa P.; Yantosca, Robert M.

    2017-10-01

    The global budget of tropospheric ozone is governed by a complicated ensemble of coupled chemical and dynamical processes. Simulation of tropospheric ozone has been a major focus of the GEOS-Chem chemical transport model (CTM) over the past 20 years, and many developments over the years have affected the model representation of the ozone budget. Here we conduct a comprehensive evaluation of the standard version of GEOS-Chem (v10-01) with ozone observations from ozonesondes, the OMI satellite instrument, and MOZAIC-IAGOS commercial aircraft for 2012-2013. Global validation of the OMI 700-400 hPa data with ozonesondes shows that OMI maintained persistent high quality and no significant drift over the 2006-2013 period. GEOS-Chem shows no significant seasonal or latitudinal bias relative to OMI and strong correlations in all seasons on the 2° × 2.5° horizontal scale (r = 0.88-0.95), improving on previous model versions. The most pronounced model bias revealed by ozonesondes and MOZAIC-IAGOS is at high northern latitudes in winter-spring where the model is 10-20 ppbv too low. This appears to be due to insufficient stratosphere-troposphere exchange (STE). Model updates to lightning NOx, Asian anthropogenic emissions, bromine chemistry, isoprene chemistry, and meteorological fields over the past decade have overall led to gradual increase in the simulated global tropospheric ozone burden and more active ozone production and loss. From simulations with different versions of GEOS meteorological fields we find that tropospheric ozone in GEOS-Chem v10-01 has a global production rate of 4960-5530 Tg a-1, lifetime of 20.9-24.2 days, burden of 345-357 Tg, and STE of 325-492 Tg a-1. Change in the intensity of tropical deep convection between these different meteorological fields is a major factor driving differences in the ozone budget.

  14. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    Science.gov (United States)

    Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Shrivastava, Manish; Thomas, Jennie L.

    2017-10-01

    In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain-Fritsch + Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.

  15. geoKepler Workflow Module for Computationally Scalable and Reproducible Geoprocessing and Modeling

    Science.gov (United States)

    Cowart, C.; Block, J.; Crawl, D.; Graham, J.; Gupta, A.; Nguyen, M.; de Callafon, R.; Smarr, L.; Altintas, I.

    2015-12-01

    The NSF-funded WIFIRE project has developed an open-source, online geospatial workflow platform for unifying geoprocessing tools and models for for fire and other geospatially dependent modeling applications. It is a product of WIFIRE's objective to build an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. geoKepler includes a set of reusable GIS components, or actors, for the Kepler Scientific Workflow System (https://kepler-project.org). Actors exist for reading and writing GIS data in formats such as Shapefile, GeoJSON, KML, and using OGC web services such as WFS. The actors also allow for calling geoprocessing tools in other packages such as GDAL and GRASS. Kepler integrates functions from multiple platforms and file formats into one framework, thus enabling optimal GIS interoperability, model coupling, and scalability. Products of the GIS actors can be fed directly to models such as FARSITE and WRF. Kepler's ability to schedule and scale processes using Hadoop and Spark also makes geoprocessing ultimately extensible and computationally scalable. The reusable workflows in geoKepler can be made to run automatically when alerted by real-time environmental conditions. Here, we show breakthroughs in the speed of creating complex data for hazard assessments with this platform. We also demonstrate geoKepler workflows that use Data Assimilation to ingest real-time weather data into wildfire simulations, and for data mining techniques to gain insight into environmental conditions affecting fire behavior. Existing machine learning tools and libraries such as R and MLlib are being leveraged for this purpose in Kepler, as well as Kepler's Distributed Data Parallel (DDP) capability to provide a framework for scalable processing. geoKepler workflows can be executed via an iPython notebook as a part of a Jupyter hub at UC San Diego for sharing and reporting of the scientific analysis and results from

  16. Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States

    Science.gov (United States)

    Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.

    2018-03-01

    This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields

  17. Fluid migration through geo-membrane seams and through the interface between geo-membrane and geo-synthetic clay liner

    International Nuclear Information System (INIS)

    Barroso, M.

    2005-03-01

    both in laboratory and in field conditions to study the suitability of this test to assess the quality of the seams in situ. The results obtained suggest that it is possible to assess the quality of the geo-membrane seams from a non-destructive test conducted in situ by determining the time constant. To address the problem of fluid migration through geo-membrane defects, composite liners comprising a geo-membrane with a circular hole over a GCL over a CCL were simulated in tests at three scales. Flow rates at the interface between the geo-membrane and the GCL were measured. Correspondent interface transmissivity was estimated based on final flow rates and observation of the wetted area. A parametric study was performed to evaluate the influence of the pre-hydration of the GCL, the hydraulic head on top of the liner and the confining stress over the liner system, on the flow rate through composite liners due to defects in the geo-membrane, as well as to check the feasibility of an extrapolation of the results obtained on small-scale tests to field conditions. It was found that the transmissivity does not seem to be affected by the pre-hydration of the GCLs when low confining stresses were used. It also does not seem to be influenced by the increase in confining stress when non-pre-hydrated GCLs are used. Finally, the transmissivity does not seem to be significantly affected by the increase in hydraulic head. The results also suggest that predictions on flow rates though composite liners due to defects in the geo-membrane, which are based on transmissivity values obtained in small scale tests, are conservative. Lastly, based on the transmissivities obtained in this study, empirical equations for predicting the flow rate through composite liners consisting of a geo-membrane over a GCL over a CCL are proposed. Flow rates calculated using these equations are in better agreement with the flow rates measured experimentally than the empirical equations reported in literature

  18. SO2 Emissions and Lifetimes: Estimates from Inverse Modeling Using In Situ and Global, Space-Based (SCIAMACHY and OMI) Observations

    Science.gov (United States)

    Lee, Chulkyu; Martin Randall V.; vanDonkelaar, Aaron; Lee, Hanlim; Dickerson, RUssell R.; Hains, Jennifer C.; Krotkov, Nickolay; Richter, Andreas; Vinnikov, Konstantine; Schwab, James J.

    2011-01-01

    Top-down constraints on global sulfur dioxide (SO2) emissions are inferred through inverse modeling using SO2 column observations from two satellite instruments (SCIAMACHY and OMI). We first evaluated the S02 column observations with surface SO2 measurements by applying local scaling factors from a global chemical transport model (GEOS-Chem) to SO2 columns retrieved from the satellite instruments. The resulting annual mean surface SO2 mixing ratios for 2006 exhibit a significant spatial correlation (r=0.86, slope=0.91 for SCIAMACHY and r=0.80, slope = 0.79 for OMI) with coincident in situ measurements from monitoring networks throughout the United States and Canada. We evaluate the GEOS-Chem simulation of the SO2 lifetime with that inferred from in situ measurements to verity the applicability of GEOS-Chem for inversion of SO2 columns to emissions. The seasonal mean SO2 lifetime calculated with the GEOS-Chem model over the eastern United States is 13 h in summer and 48 h in winter, compared to lifetimes inferred from in situ measurements of 19 +/- 7 h in summer and 58 +/- 20 h in winter. We apply SO2 columns from SCIAMACHY and OMI to derive a top-down anthropogenic SO2 emission inventory over land by using the local GEOS-Chem relationship between SO2 columns and emissions. There is little seasonal variation in the top-down emissions (SO2 emissions (52.4 Tg S/yr from SCIAMACHY and 49.9 Tg S / yr from OMI) closely agrees with the bottom-up emissions (54.6 Tg S/yr) in the GEOS-Chem model and exhibits consistency in global distributions with the bottom-up emissions (r = 0.78 for SCIAMACHY, and r = 0.77 for OMI). However, there are significant regional differences.

  19. Ship-borne FTIR measurements of CO and O3 in the Western Pacific from 43° N to 35° S: an evaluation of the sources

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2012-01-01

    Full Text Available Carbon monoxide (CO and ozone (O3 have been measured in the Western Pacific (43° N to 35° S during a ship campaign with Research Vessel Sonne in fall 2009. Observations have been performed using ship-based solar absorption Fourier Transform infrared spectrometry, flask sampling, balloon sounding, and in-situ Fourier Transform infrared analysis. The results obtained are compared to the GEOS-Chem global 3-D chemistry transport model for atmospheric composition. In general, a very good agreement is found between the GEOS-Chem model and all instruments. The CO and O3 distributions show a comparable variability suggesting an impact from the same source regions. Tagged-CO simulations implemented in the GEOS-Chem model make it possible to differentiate between different source processes and source regions. The source regions are verified with HYSPLIT backward trajectory calculations. In the Northern Hemisphere fossil fuel combustion in Asia is the dominant source. European and North American fossil fuel combustion also contribute to Northern Hemispheric CO pollution. In the Southern Hemisphere contributions from biomass burning and fossil fuel combustion are dominant; African biomass burning has a significant impact on Western Pacific CO pollution. Furthermore, in the tropical Western Pacific enhanced upper tropospheric CO within the tropical tropopause layer mainly originates from Indonesian fossil fuel combustion and can be transported into the stratosphere. The source regions of the measured O3 pollution are simulated with a tagged-O3 simulation implemented in the GEOS-Chem model. Similar source regions compared to the tagged-CO simulations are identified by the model. In the Northern Hemisphere contributions from Asia, Europe, and North America are significant. In the Southern Hemisphere emissions from South America, south-east Africa, and Oceania significantly contribute to the measured O3 pollution.

  20. Exploiting PubChem for Virtual Screening.

    Science.gov (United States)

    Xie, Xiang-Qun

    2010-12-01

    IMPORTANCE OF THE FIELD: PubChem is a public molecular information repository, a scientific showcase of the NIH Roadmap Initiative. The PubChem database holds over 27 million records of unique chemical structures of compounds (CID) derived from nearly 70 million substance depositions (SID), and contains more than 449,000 bioassay records with over thousands of in vitro biochemical and cell-based screening bioassays established, with targeting more than 7000 proteins and genes linking to over 1.8 million of substances. AREAS COVERED IN THIS REVIEW: This review builds on recent PubChem-related computational chemistry research reported by other authors while providing readers with an overview of the PubChem database, focusing on its increasing role in cheminformatics, virtual screening and toxicity prediction modeling. WHAT THE READER WILL GAIN: These publicly available datasets in PubChem provide great opportunities for scientists to perform cheminformatics and virtual screening research for computer-aided drug design. However, the high volume and complexity of the datasets, in particular the bioassay-associated false positives/negatives and highly imbalanced datasets in PubChem, also creates major challenges. Several approaches regarding the modeling of PubChem datasets and development of virtual screening models for bioactivity and toxicity predictions are also reviewed. TAKE HOME MESSAGE: Novel data-mining cheminformatics tools and virtual screening algorithms are being developed and used to retrieve, annotate and analyze the large-scale and highly complex PubChem biological screening data for drug design.

  1. ChemSpell Web Service API

    Data.gov (United States)

    U.S. Department of Health & Human Services — The ChemSpell Web Service API provides chemical name spell checking and chemical name synonym look-up. ChemSpell contains more than 1.3 million chemical names...

  2. Living with geo-resources and geo-hazards

    NARCIS (Netherlands)

    Hangx, Suzanne|info:eu-repo/dai/nl/30483579X; Niemeijer, André|info:eu-repo/dai/nl/370832132

    2015-01-01

    Two of the key strategic topics on the European Committee’s Horizon2020 Roadmap revolve around geo-resources and geo-hazards, and their impact on societal and economic development. On the way towards a better policy for sustainable geo-resources production, such as oil, gas, geothermal energy and

  3. Application of WRF/Chem over East Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ

    Science.gov (United States)

    Zhang, Yang; Zhang, Xin; Wang, Litao; Zhang, Qiang; Duan, Fengkui; He, Kebin

    2016-01-01

    In this work, the application of the online-coupled Weather Research and Forecasting model with chemistry (WRF/Chem) version 3.3.1 is evaluated over East Asia for January, April, July, and October 2005 and compared with results from a previous application of an offline model system, i.e., the Mesoscale Model and Community Multiple Air Quality modeling system (MM5/CMAQ). The evaluation of WRF/Chem is performed using multiple observational datasets from satellites and surface networks in mainland China, Hong Kong, Taiwan, and Japan. WRF/Chem simulates well specific humidity (Q2) and downward longwave and shortwave radiation (GLW and GSW) with normalized mean biases (NMBs) within 24%, but shows moderate to large biases for temperature at 2-m (T2) (NMBs of -9.8% to 75.6%) and precipitation (NMBs of 11.4-92.7%) for some months, and wind speed at 10-m (WS10) (NMBs of 66.5-101%), for all months, indicating some limitations in the YSU planetary boundary layer scheme, the Purdue Lin cloud microphysics, and the Grell-Devenyi ensemble scheme. WRF/Chem can simulate the column abundances of gases reasonably well with NMBs within 30% for most months but moderately to significantly underpredicts the surface concentrations of major species at all sites in nearly all months with NMBs of -72% to -53.8% for CO, -99.4% to -61.7% for NOx, -84.2% to -44.5% for SO2, -63.9% to -25.2% for PM2.5, and -68.9% to 33.3% for PM10, and aerosol optical depth in all months except for October with NMBs of -38.7% to -16.2%. The model significantly overpredicts surface concentrations of O3 at most sites in nearly all months with NMBs of up to 160.3% and NO3- at the Tsinghua site in all months. Possible reasons for large underpredictions include underestimations in the anthropogenic emissions of CO, SO2, and primary aerosol, inappropriate vertical distributions of emissions of SO2 and NO2, uncertainties in upper boundary conditions (e.g., for O3 and CO), missing or inaccurate model representations (e

  4. Complex Functions with GeoGebra

    Science.gov (United States)

    Breda, Ana Maria D'azevedo; Dos Santos, José Manuel Dos Santos

    2016-01-01

    Complex functions, generally feature some interesting peculiarities, seen as extensions of real functions. The visualization of complex functions properties usually requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the…

  5. ChemIDplus

    Data.gov (United States)

    U.S. Department of Health & Human Services — Chemical database is a dictionary of over 400,000 chemicals (names, synonyms, and structures). ChemIDplus includes links to NLM and other databases and resources,...

  6. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    Directory of Open Access Journals (Sweden)

    L. Marelle

    2017-10-01

    Full Text Available In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols (1 a correction to the sedimentation of aerosols, (2 dimethyl sulfide (DMS oceanic emissions and gas-phase chemistry, (3 an improved representation of the dry deposition of trace gases over seasonal snow, and (4 an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5 correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6 couple and further test the recent KF-CuP (Kain–Fritsch + Cumulus Potential cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC, sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone, the improved surface temperatures over sea ice (surface ozone, BC, and sulfate, and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone. DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.

  7. CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models

    Directory of Open Access Journals (Sweden)

    J. P. McCormack

    2006-01-01

    Full Text Available The new CHEM2D-Ozone Photochemistry Parameterization (CHEM2D-OPP for high-altitude numerical weather prediction (NWP systems and climate models specifies the net ozone photochemical tendency and its sensitivity to changes in ozone mixing ratio, temperature and overhead ozone column based on calculations from the CHEM2D interactive middle atmospheric photochemical transport model. We evaluate CHEM2D-OPP performance using both short-term (6-day and long-term (1-year stratospheric ozone simulations with the prototype high-altitude NOGAPS-ALPHA forecast model. An inter-comparison of NOGAPS-ALPHA 6-day ozone hindcasts for 7 February 2005 with ozone photochemistry parameterizations currently used in operational NWP systems shows that CHEM2D-OPP yields the best overall agreement with both individual Aura Microwave Limb Sounder ozone profile measurements and independent hemispheric (10°–90° N ozone analysis fields. A 1-year free-running NOGAPS-ALPHA simulation using CHEM2D-OPP produces a realistic seasonal cycle in zonal mean ozone throughout the stratosphere. We find that the combination of a model cold temperature bias at high latitudes in winter and a warm bias in the CHEM2D-OPP temperature climatology can degrade the performance of the linearized ozone photochemistry parameterization over seasonal time scales despite the fact that the parameterized temperature dependence is weak in these regions.

  8. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  9. The Distributed Geothermal Market Demand Model (dGeo): Documentation

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mooney, Meghan E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sigrin, Benjamin O [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gleason, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-06

    The National Renewable Energy Laboratory (NREL) developed the Distributed Geothermal Market Demand Model (dGeo) as a tool to explore the potential role of geothermal distributed energy resources (DERs) in meeting thermal energy demands in the United States. The dGeo model simulates the potential for deployment of geothermal DERs in the residential and commercial sectors of the continental United States for two specific technologies: ground-source heat pumps (GHP) and geothermal direct use (DU) for district heating. To quantify the opportunity space for these technologies, dGeo leverages a highly resolved geospatial database and robust bottom-up, agent-based modeling framework. This design is consistent with others in the family of Distributed Generation Market Demand models (dGen; Sigrin et al. 2016), including the Distributed Solar Market Demand (dSolar) and Distributed Wind Market Demand (dWind) models. dGeo is intended to serve as a long-term scenario-modeling tool. It has the capability to simulate the technical potential, economic potential, market potential, and technology deployment of GHP and DU through the year 2050 under a variety of user-defined input scenarios. Through these capabilities, dGeo can provide substantial analytical value to various stakeholders interested in exploring the effects of various techno-economic, macroeconomic, financial, and policy factors related to the opportunity for GHP and DU in the United States. This report documents the dGeo modeling design, methodology, assumptions, and capabilities.

  10. ChemAND - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Dundar, Y.; Bergeron, M.; Laporte, R. [Hydro-Quebec, Groupe Chimie, Centrale Nucleaire Gentilly-2, Gentilly, Quebec (Canada)

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  11. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchell, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-01-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display-it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  12. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  13. GEOS Code Development Road Map - May, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Settgast, Randolph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fu, Pengcheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Antoun, Tarabay [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-05-03

    GEOS is a massively parallel computational framework designed to enable HPC-based simulations of subsurface reservoir stimulation activities with the goal of optimizing current operations and evaluating innovative stimulation methods. GEOS will enable coupling of different solvers associated with the various physical processes occurring during reservoir stimulation in unique and sophisticated ways, adapted to various geologic settings, materials and stimulation methods. The overall architecture of the framework includes consistent data structures and will allow incorporation of additional physical and materials models as demanded by future applications. Along with predicting the initiation, propagation and reactivation of fractures, GEOS will also generate a seismic source term that can be linked with seismic wave propagation codes to generate synthetic microseismicity at surface and downhole arrays. Similarly, the output from GEOS can be linked with existing fluid/thermal transport codes. GEOS can also be linked with existing, non-intrusive uncertainty quantification schemes to constrain uncertainty in its predictions and sensitivity to the various parameters describing the reservoir and stimulation operations. We anticipate that an implicit-explicit 3D version of GEOS, including a preliminary seismic source model, will be available for parametric testing and validation against experimental and field data by Oct. 1, 2013.

  14. Modelling the urban air quality in Hamburg with the new city-scale chemistry transport model CityChem

    Science.gov (United States)

    Karl, Matthias; Ramacher, Martin; Aulinger, Armin; Matthias, Volker; Quante, Markus

    2017-04-01

    Air quality modelling plays an important role by providing guidelines for efficient air pollution abatement measures. Currently, most urban dispersion models treat air pollutants as passive tracer substances or use highly simplified chemistry when simulating air pollutant concentrations on the city-scale. The newly developed urban chemistry-transport model CityChem has the capability of modelling the photochemical transformation of multiple pollutants along with atmospheric diffusion to produce pollutant concentration fields for the entire city on a horizontal resolution of 100 m or even finer and a vertical resolution of 24 layers up to 4000 m height. CityChem is based on the Eulerian urban dispersion model EPISODE of the Norwegian Institute for Air Research (NILU). CityChem treats the complex photochemistry in cities using detailed EMEP chemistry on an Eulerian 3-D grid, while using simple photo-stationary equilibrium on a much higher resolution grid (receptor grid), i.e. close to industrial point sources and traffic sources. The CityChem model takes into account that long-range transport contributes to urban pollutant concentrations. This is done by using 3-D boundary concentrations for the city domain derived from chemistry-transport simulations with the regional air quality model CMAQ. For the study of the air quality in Hamburg, CityChem was set-up with a main grid of 30×30 grid cells of 1×1 km2 each and a receptor grid of 300×300 grid cells of 100×100 m2. The CityChem model was driven with meteorological data generated by the prognostic meteorology component of the Australian chemistry-transport model TAPM. Bottom-up inventories of emissions from traffic, industry, households were based on data of the municipality of Hamburg. Shipping emissions for the port of Hamburg were taken from the Clean North Sea Shipping project. Episodes with elevated ozone (O3) were of specific interest for this study, as these are associated with exceedances of the World

  15. A novel insight into beaconless geo-routing

    KAUST Repository

    Bader, Ahmed

    2012-12-01

    Beaconless geo-routing protocols have been traditionally analyzed assuming equal communication ranges for the data and control packets. This is not true in reality, since the communication range is in practice function of the packet length. As a consequence, a substantial discrepancy may exist between analytical and empirical results offered in beaconless geo-routing literature. Furthermore, performance of beaconless geo-routing protocols has typically considered using single-hop metrics only. End-to-end performance is considered in literature only occasionally and mainly in terms of simulation only. In this paper, we re-examine this class of protocols. We first incorporate practical packet detection models in order to capture the dependency of the communication range on the packet\\'s length. We then develop a detailed analytical framework for the end-to-end delay and energy performance of beaconless geo-routing protocols. Finally, we present two different application scenarios and study various tradeoffs in light of the framework developed. © 2012 IEEE.

  16. Replica exchange enveloping distribution sampling (RE-EDS): A robust method to estimate multiple free-energy differences from a single simulation.

    Science.gov (United States)

    Sidler, Dominik; Schwaninger, Arthur; Riniker, Sereina

    2016-10-21

    In molecular dynamics (MD) simulations, free-energy differences are often calculated using free energy perturbation or thermodynamic integration (TI) methods. However, both techniques are only suited to calculate free-energy differences between two end states. Enveloping distribution sampling (EDS) presents an attractive alternative that allows to calculate multiple free-energy differences in a single simulation. In EDS, a reference state is simulated which "envelopes" the end states. The challenge of this methodology is the determination of optimal reference-state parameters to ensure equal sampling of all end states. Currently, the automatic determination of the reference-state parameters for multiple end states is an unsolved issue that limits the application of the methodology. To resolve this, we have generalised the replica-exchange EDS (RE-EDS) approach, introduced by Lee et al. [J. Chem. Theory Comput. 10, 2738 (2014)] for constant-pH MD simulations. By exchanging configurations between replicas with different reference-state parameters, the complexity of the parameter-choice problem can be substantially reduced. A new robust scheme to estimate the reference-state parameters from a short initial RE-EDS simulation with default parameters was developed, which allowed the calculation of 36 free-energy differences between nine small-molecule inhibitors of phenylethanolamine N-methyltransferase from a single simulation. The resulting free-energy differences were in excellent agreement with values obtained previously by TI and two-state EDS simulations.

  17. Ultrafine particles from power plants: Evaluation of WRF-Chem simulations with airborne measurements

    Science.gov (United States)

    Forkel, Renate; Junkermann, Wolfgang

    2017-04-01

    Ultrafine particles (UFP, particles with a diameter risk to human health and have a potential effect on climate as their presence affects the number concentration of cloud condensation nuclei. Despite of the possibly hazardous effects no regulations exist for this size class of ambient air pollution particles. While ground based continuous measurements of UFP are performed in Germany at several sites (e.g. the German Ultrafine Aerosol Network GUAN, Birmili et al. 2016, doi:10.5194/essd-8-355-2016) information about the vertical distribution of UFP within the atmospheric boundary layer is only scarce. This gap has been closed during the last years by regional-scale airborne surveys for UFP concentrations and size distributions over Germany (Junkermann et al., 2016, doi: 10.3402/tellusb.v68.29250) and Australia (Junkermann and Hacker, 2015, doi: 10.3402/tellusb.v67.25308). Power stations and refineries have been identified as a major source of UFP in Germany with observed particle concentrations > 50000 particles cm-3 downwind of these elevated point sources. Nested WRF-Chem simulations with 2 km grid width for the innermost domain are performed with UFP emission source strengths derived from the measurements in order to study the advection and vertical exchange of UFP from power plants near the Czech and Polish border and their impact on planetary boundary layer particle patterns. The simulations are evaluated against the airborne observations and the downward mixing of the UFP from the elevated sources is studied.

  18. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  19. An Overview of the GEOS-5 Aerosol Reanalysis

    Science.gov (United States)

    da Silva, Arlindo; Colarco, Peter Richard; Damenov, Anton Spasov; Buchard-Marchant, Virginie; Randles, Cynthia A.; Gupta, Pawan

    2011-01-01

    GEOS-5 is the latest version of the NASA Global Modeling and Assimilation Office (GMAO) earth system model. GEOS-5 contains components for atmospheric circulation and composition (including data assimilation), ocean circulation and biogeochemistry, and land surface processes. In addition to traditional meteorological parameters, GEOS-5 includes modules representing the atmospheric composition, most notably aerosols and tropospheric/stratospheric chemical constituents, taking explicit account of the impact of these constituents on the radiative processes of the atmosphere. MERRA is a NASA meteorological reanalysis for the satellite era (1979-present) using GEOS-5. This project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales. As a first step towards an integrated Earth System Analysis (IESA), the GMAO is extending MERRA with reanalyses for other components of the earth system: land, ocean, bio-geochemistry and atmospheric constituents. In this talk we will present results from the MERRA-driven aerosol reanalysis covering the Aqua period (2003-present). The assimilation of Aerosol Optical Depth (AOD) in GEOS-5 involves very careful cloud screening and homogenization of the observing system by means of a Neural Net scheme that translates MODIS radiances into AERONET calibrated AOD. These measurements are further quality controlled using an adaptive buddy check scheme, and assimilated using the Local Displacement Ensemble (LDE) methodology. For this reanalysis, GEOS-5 runs at a nominal 50km horizontal resolution with 72 vertical layers (top at approx. 8Skm). GEOS-5 is driven by daily biomass burning emissions derived from MODIS fire radiative power retrievals. We will present a summary of our efforts to validate such dataset. The GEOS-5 assimilated aerosol fields are first validated by comparison to independent in-situ measurements (AERONET and PM2.5 surface concentrations). In order to asses aerosol

  20. ChemProt: a disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Nielsen, Sonny Kim; Audouze, Karine Marie Laure

    2011-01-01

    Systems pharmacology is an emergent area that studies drug action across multiple scales of complexity, from molecular and cellular to tissue and organism levels. There is a critical need to develop network-based approaches to integrate the growing body of chemical biology knowledge with network...... biology. Here, we report ChemProt, a disease chemical biology database, which is based on a compilation of multiple chemical-protein annotation resources, as well as disease-associated protein-protein interactions (PPIs). We assembled more than 700 000 unique chemicals with biological annotation for 30...... evaluation of environmental chemicals, natural products and approved drugs, as well as the selection of new compounds based on their activity profile against most known biological targets, including those related to adverse drug events. Results from the disease chemical biology database associate citalopram...

  1. Calibration of GEO 600 for the S1 science run

    International Nuclear Information System (INIS)

    Hewitson, M; Grote, H; Heinzel, G; Strain, K A; Ward, H; Weiland, U

    2003-01-01

    In 2002, the interferometric gravitational wave detector GEO 600 took part in a coincident science run (S1) with other detectors world-wide. When completed, GEO will employ a dual-recycling scheme which will allow its peak sensitivity to be tuned over a range of frequencies in the detection band. Still in the commissioning phase, GEO was operated as a power-recycled Michelson for the duration of S1. The accurate calibration of the sensitivity of GEO to gravitational waves is a critical step in preparing GEO data for exchange with other detectors forming a world-wide detector network. An online calibration scheme has been developed to perform real-time calibration of the power-recycled GEO detector. This scheme will later be extended to cover the more complex case of the dual-recycled interferometer in which multiple output signals will need to be combined to optimally recover a calibrated strain channel. This report presents an outline of the calibration scheme that was used during S1. Also presented are results of detector characterization work that arises naturally from the calibration work

  2. High performance geospatial and climate data visualization using GeoJS

    Science.gov (United States)

    Chaudhary, A.; Beezley, J. D.

    2015-12-01

    GeoJS (https://github.com/OpenGeoscience/geojs) is an open-source library developed to support interactive scientific and geospatial visualization of climate and earth science datasets in a web environment. GeoJS has a convenient application programming interface (API) that enables users to harness the fast performance of WebGL and Canvas 2D APIs with sophisticated Scalable Vector Graphics (SVG) features in a consistent and convenient manner. We started the project in response to the need for an open-source JavaScript library that can combine traditional geographic information systems (GIS) and scientific visualization on the web. Many libraries, some of which are open source, support mapping or other GIS capabilities, but lack the features required to visualize scientific and other geospatial datasets. For instance, such libraries are not be capable of rendering climate plots from NetCDF files, and some libraries are limited in regards to geoinformatics (infovis in a geospatial environment). While libraries such as d3.js are extremely powerful for these kinds of plots, in order to integrate them into other GIS libraries, the construction of geoinformatics visualizations must be completed manually and separately, or the code must somehow be mixed in an unintuitive way.We developed GeoJS with the following motivations:• To create an open-source geovisualization and GIS library that combines scientific visualization with GIS and informatics• To develop an extensible library that can combine data from multiple sources and render them using multiple backends• To build a library that works well with existing scientific visualizations tools such as VTKWe have successfully deployed GeoJS-based applications for multiple domains across various projects. The ClimatePipes project funded by the Department of Energy, for example, used GeoJS to visualize NetCDF datasets from climate data archives. Other projects built visualizations using GeoJS for interactively exploring

  3. Characterisation of irradiation effect on geo-polymers

    International Nuclear Information System (INIS)

    Chupin, Frederic

    2015-01-01

    This study aims to improve knowledge about the radiation effect on geo-polymer behavior in terms of dihydrogen release and general strength in order to consider them as an alternative to usual nuclear waste cementitious coating matrices. Using various characterization techniques (nitrogen adsorption, low temperature DSC, FTIR and 1 H NMR spectroscopy) and by means of simulation irradiations (gamma, heavy ions), it has been shown that all the water present in the geo-polymer could be radiolyzed and that there was a confinement effect on the water radiolysis under low LET irradiation, probably due to efficient energy transfers from the solid matrix to the interstitial solution. Three dihydrogen production rates have been identified with the absorbed dose, depending on the concentration of dissolved dioxygen and the dihydrogen accumulation in the geo-polymer matrix. The good mechanical strength of the geo-polymer has been shown up to 9 MGy under gamma irradiation and is due to its high stability under irradiation. This could be explained by the fast recombination of the defects observed by EPR spectroscopy. However, phase crystallization was revealed during irradiation with heavy ions, which may induce some weakening of the geo-polymer network under alpha irradiation. The overall results helped to understand the phenomenology in a waste package under storage conditions. (author) [fr

  4. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they

  5. OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media

    DEFF Research Database (Denmark)

    Kolditz, O.; Bauer, S.; Bilke, L.

    In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical processes in porous media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM...

  6. ChemProt: A disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    2013-01-01

    The integration of chemistry, biology, and informatics to study drug actions across multiple biological targets, pathways, and biological systems is an emerging paradigm in drug discovery. Rather than reducing a complex system to simplistic models, fields such as chemogenomics and translational...... informatics are seeking to build a holistic model for a better understanding of the drug pharmacology and clinical effects. Here we will present a webserver called ChemProt that can assist, in silico, the drug actions in the context of cellular and disease networks and contribute in the field of disease...... chemical biology, drug repurposing, and off-target effects prediction....

  7. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    Science.gov (United States)

    Sessions, W. R.; Fuelberg, H. E.; Kahn, R. A.; Winker, D. M.

    2011-06-01

    The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia. One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and local atmospheric stability. This paper describes a case study of a 10 day period during the Spring phase of ARCTAS. It compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3-5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE). Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors. When FLAMBE provides input to the 1-D plume rise model, the resulting injection heights exhibit the best agreement with satellite-observed injection heights. The FLAMBE-derived heights are more realistic than those utilizing prep_chem_sources. Conversely, when the planetary boundary layer or the 3-5 km a.g.l. layer were filled with emissions, the resulting injection heights exhibit less agreement with observed plume heights

  8. PREDIKSI SEBARAN ASAP KEBAKARAN HUTAN/LAHAN MENGGUNAKAN WRF/CHEM (Studi Kasus: Tanggal 14 dan 20 Juni 2012, Pekanbaru-Riau

    Directory of Open Access Journals (Sweden)

    Eko Heriyanto

    2015-01-01

    Full Text Available Penelitian ini bertujuan mengembangkan prediksi sebaran asap kebakaran hutan/lahan di wilayah Indonesia. Simulasi prediksi sebaran  asap (hindcast menggunakan model Weather Research and Forecasting with CHEMistry (WRF/CHEM pada kasus kebakaran hutan/lahan tanggal 14 dan 20 Juni 2012 di wilayah Pekanbaru-Riau. Dalam penelitian ini digunakan data luaran WRF resolusi 25 km dan emisi global . Hasil simulasi  konsentrasi Carbon Monoxide (CO luaran WRF/CHEM menggambarkan pola yang identik dengan hasil luaran Monitoring Atmospheric Composition and Climate (MACC-Reanalysis 1.10. Dilakukan juga analisis kualitatif terhadap hasil simulasi kedua model dengan citra satelit Aqua-Terra MODIS, NOAA-18, dan total column CO Atmospheric Infrared Sounder (AIRS dari NASA. Korelasi simulasi kedua model menunjukkan nilai yang baik antara 0.55 – 0.83. Secara umum dapat disimpulkan bahwa WRF/CHEM mampu mensimulasikan sebaran asap kebakaran hutan/lahan secara akurat. Hasil penelitian ini bisa menjadi salah satu langkah awal dalam pengembangan sistem peringatan dini sebaran asap kebakaran hutan/lahan di wilayah Indonesia.   This study aims to develop a predictive distribution of forest fire smoke/land in the territory of Indonesia. The simulation of smoke spread prediction (hindcast is using the Weather Research and Forecasting Model with CHEMistry (WRF/CHEM in the case of forest fires/land dated June 14, 2012 in Pekanbaru-Riau region. This study uses the WRF data output resolution 25 km and global emissions. Carbon Monoxide concentration simulation results (CO which is the WRF/CHEM output describes patterns that are identical to the results of Monitoring Atmospheric Composition and Climate (MACC-Reanalysis 1.1250 outcomes. a qualitative analysis of the results of the both simulation models with satellite imagery MODIS Aqua-Terra,NOAA-18 and the Total column CO Atmospheric Infrared Sounder (Airs from NASA has  been conducted as well. Both simulation models show a

  9. Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem

    Science.gov (United States)

    Henze, D. K.; Seinfeld, J. H.; Shindell, D. T.

    2009-08-01

    Influences of specific sources of inorganic PM2.5 on peak and ambient aerosol concentrations in the US are evaluated using a combination of inverse modeling and sensitivity analysis. First, sulfate and nitrate aerosol measurements from the IMPROVE network are assimilated using the four-dimensional variational (4D-Var) method into the GEOS-Chem chemical transport model in order to constrain emissions estimates in four separate month-long inversions (one per season). Of the precursor emissions, these observations primarily constrain ammonia (NH3). While the net result is a decrease in estimated US~NH3 emissions relative to the original inventory, there is considerable variability in adjustments made to NH3 emissions in different locations, seasons and source sectors, such as focused decreases in the midwest during July, broad decreases throughout the US~in January, increases in eastern coastal areas in April, and an effective redistribution of emissions from natural to anthropogenic sources. Implementing these constrained emissions, the adjoint model is applied to quantify the influences of emissions on representative PM2.5 air quality metrics within the US. The resulting sensitivity maps display a wide range of spatial, sectoral and seasonal variability in the susceptibility of the air quality metrics to absolute emissions changes and the effectiveness of incremental emissions controls of specific source sectors. NH3 emissions near sources of sulfur oxides (SOx) are estimated to most influence peak inorganic PM2.5 levels in the East; thus, the most effective controls of NH3 emissions are often disjoint from locations of peak NH3 emissions. Controls of emissions from industrial sectors of SOx and NOx are estimated to be more effective than surface emissions, and changes to NH3 emissions in regions dominated by natural sources are disproportionately more effective than regions dominated by anthropogenic sources. NOx controls are most effective in northern states in

  10. Development of Geo-Marketing

    OpenAIRE

    Tatiana Ozhereleva

    2014-01-01

    This article analyzes the state and development of geo-marketing. The author illustrates the multi-aspectedness of geo-marketing: applied technology and management technology. The article demonstrates that geo-marketing can be viewed as a reflection of the processes of co-evolution in society. The author brings to light the specifics of geo-marketing research and situational analysis in geo-marketing. The article describes applications of geo-marketing

  11. Development of Geo-Marketing

    Directory of Open Access Journals (Sweden)

    Tatiana Ozhereleva

    2014-10-01

    Full Text Available This article analyzes the state and development of geo-marketing. The author illustrates the multi-aspectedness of geo-marketing: applied technology and management technology. The article demonstrates that geo-marketing can be viewed as a reflection of the processes of co-evolution in society. The author brings to light the specifics of geo-marketing research and situational analysis in geo-marketing. The article describes applications of geo-marketing

  12. OrChem - An open source chemistry search engine for Oracle®

    Science.gov (United States)

    2009-01-01

    Background Registration, indexing and searching of chemical structures in relational databases is one of the core areas of cheminformatics. However, little detail has been published on the inner workings of search engines and their development has been mostly closed-source. We decided to develop an open source chemistry extension for Oracle, the de facto database platform in the commercial world. Results Here we present OrChem, an extension for the Oracle 11G database that adds registration and indexing of chemical structures to support fast substructure and similarity searching. The cheminformatics functionality is provided by the Chemistry Development Kit. OrChem provides similarity searching with response times in the order of seconds for databases with millions of compounds, depending on a given similarity cut-off. For substructure searching, it can make use of multiple processor cores on today's powerful database servers to provide fast response times in equally large data sets. Availability OrChem is free software and can be redistributed and/or modified under the terms of the GNU Lesser General Public License as published by the Free Software Foundation. All software is available via http://orchem.sourceforge.net. PMID:20298521

  13. OrChem - An open source chemistry search engine for Oracle(R).

    Science.gov (United States)

    Rijnbeek, Mark; Steinbeck, Christoph

    2009-10-22

    Registration, indexing and searching of chemical structures in relational databases is one of the core areas of cheminformatics. However, little detail has been published on the inner workings of search engines and their development has been mostly closed-source. We decided to develop an open source chemistry extension for Oracle, the de facto database platform in the commercial world. Here we present OrChem, an extension for the Oracle 11G database that adds registration and indexing of chemical structures to support fast substructure and similarity searching. The cheminformatics functionality is provided by the Chemistry Development Kit. OrChem provides similarity searching with response times in the order of seconds for databases with millions of compounds, depending on a given similarity cut-off. For substructure searching, it can make use of multiple processor cores on today's powerful database servers to provide fast response times in equally large data sets. OrChem is free software and can be redistributed and/or modified under the terms of the GNU Lesser General Public License as published by the Free Software Foundation. All software is available via http://orchem.sourceforge.net.

  14. Geostationary Coastal and Air Pollution Events (GEO-CAPE) Sensitivity Analysis Experiment

    Science.gov (United States)

    Lee, Meemong; Bowman, Kevin

    2014-01-01

    Geostationary Coastal and Air pollution Events (GEO-CAPE) is a NASA decadal survey mission to be designed to provide surface reflectance at high spectral, spatial, and temporal resolutions from a geostationary orbit necessary for studying regional-scale air quality issues and their impact on global atmospheric composition processes. GEO-CAPE's Atmospheric Science Questions explore the influence of both gases and particles on air quality, atmospheric composition, and climate. The objective of the GEO-CAPE Observing System Simulation Experiment (OSSE) is to analyze the sensitivity of ozone to the global and regional NOx emissions and improve the science impact of GEO-CAPE with respect to the global air quality. The GEO-CAPE OSSE team at Jet propulsion Laboratory has developed a comprehensive OSSE framework that can perform adjoint-sensitivity analysis for a wide range of observation scenarios and measurement qualities. This report discusses the OSSE framework and presents the sensitivity analysis results obtained from the GEO-CAPE OSSE framework for seven observation scenarios and three instrument systems.

  15. Communication of geo-scientific safety arguments

    International Nuclear Information System (INIS)

    Flavelle, P.; Goodwin, B.; Jensen, M.; Linden, R.; Mazurek, M.; Srivastave, M.; Strom, A.; Sudicky, E.; Voinis, S.

    2007-01-01

    Working Group B addressed the communication of geo-scientific safety arguments through a discussion of practical experience as it related to the methods, types of information and specific arguments found to best communicate geo-scientific concepts and notions of safety with broad audiences including, colleagues, authorities and regulators, political decision makers, academics, and the general public. The following questions were suggested by the programme committee of the AMIGO-2 workshop for discussion by Working Group B with respect to the communication of geo-scientific information and safety arguments: - What is the place of geo-scientific arguments in relation to quantitative and qualitative topics like scenario and FEPs (features, events, processes) assessment, simulated repository evolution, calculated dose or risk impacts, engineering tests of materials, etc., when presenting a safety case to different audiences and with respect to the various stages of the repository programme? (see section 3). - Would we be better off focusing messages to the public on time scales of a few hundred years or a few generations? (see section 4). - How do you handle the fact that geoscience interpretations seldom are unique and data often are open to various interpretations? (see section 5). - How do you handle expert controversy on a specific topic? (see section 6). (authors)

  16. Modeling of 2008 Kasatochi Volcanic Sulfate Direct Radiative Forcing: Assimilation of OMI SO2 Plume Height Data and Comparison with MODIS and CALIOP Observations

    Science.gov (United States)

    Wang, J.; Park, S.; Zeng, J.; Ge, C.; Yang, K.; Carn, S.; Krotkov, N.; Omar, A. H.

    2013-01-01

    Volcanic SO2 column amount and injection height retrieved from the Ozone Monitoring Instrument (OMI) with the Extended Iterative Spectral Fitting (EISF) technique are used to initialize a global chemistry transport model (GEOS-Chem) to simulate the atmospheric transport and lifecycle of volcanic SO2 and sulfate aerosol from the 2008 Kasatochi eruption, and to subsequently estimate the direct shortwave, top-of-the-atmosphere radiative forcing of the volcanic sulfate aerosol. Analysis shows that the integrated use of OMI SO2 plume height in GEOS-Chem yields: (a) good agreement of the temporal evolution of 3-D volcanic sulfate distributions between model simulations and satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP), and (b) an e-folding time for volcanic SO2 that is consistent with OMI measurements, reflecting SO2 oxidation in the upper troposphere and stratosphere is reliably represented in the model. However, a consistent (approx. 25 %) low bias is found in the GEOS-Chem simulated SO2 burden, and is likely due to a high (approx.20 %) bias of cloud liquid water amount (as compared to the MODIS cloud product) and the resultant stronger SO2 oxidation in the GEOS meteorological data during the first week after eruption when part of SO2 underwent aqueous-phase oxidation in clouds. Radiative transfer calculations show that the forcing by Kasatochi volcanic sulfate aerosol becomes negligible 6 months after the eruption, but its global average over the first month is -1.3W/sq m, with the majority of the forcing-influenced region located north of 20degN, and with daily peak values up to -2W/sq m on days 16-17. Sensitivity experiments show that every 2 km decrease of SO2 injection height in the GEOS-Chem simulations will result in a approx.25% decrease in volcanic sulfate forcing; similar sensitivity but opposite sign also holds for a 0.03 m increase of geometric radius of

  17. Using GeoMapApp in the Classroom

    Science.gov (United States)

    Goodwillie, A. M.

    2017-12-01

    The GeoMapApp tool has been updated with enhanced functionality that is useful in the classroom. Hosted as a service of the IEDA Facility at Columbia University, GeoMapApp (http://www.geomapapp.org) is a free resource that integrates a wide range of research-grade geoscience data in one intuitive map-based interface. It includes earthquake and volcano data, geological maps, plate tectonic data sets, and a high-resolution topography/bathymetry base map. Users can also import and analyse their own data files. Layering and transparency capabilities allow users to compare multiple data sets at once. The GeoMapApp interface presents data in its proper geospatial context, helping students more easily gain insight and understanding from the data. Simple tools for data manipulation allow students to analyse the data in different ways such as generating profiles and producing visualisations for reports. The new Save Session capability is designed to assist in the classroom: The educator saves a pre-loaded state of GeoMapApp. When shared with the class, the saved session file allows students to open GeoMapApp with exactly the same data sets loaded and the same display parameters chosen thus freeing up valuable time in which students can explore the data. In this presentation, activities related to plate tectonics will be highlighted. One activity helps students investigate plate boundaries by exploring earthquake and volcano locations. Another requires students to calculate the rate of seafloor spreading using crustal age data in various ocean basins. A third uses the GeoMapApp layering technique to explore the influence of geological forces in shaping the landscape. Educators report that using GeoMapApp in the classroom lowers the barriers to data accessibility for students; fosters an increased sense of data "ownership" - GeoMapApp presents the same data in the same tool used by researchers; allows engagement with authentic geoscience data; promotes STEM skills and

  18. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    Directory of Open Access Journals (Sweden)

    M. J. Alvarado

    2016-07-01

    Full Text Available Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign. The four models are the NASA Global Modeling Initiative (GMI Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT, and the Optical Properties of Aerosol and Clouds (OPAC v3.1 package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1 to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass

  19. Aerosol Optical Depth Over India

    Science.gov (United States)

    David, Liji Mary; Ravishankara, A. R.; Kodros, John K.; Venkataraman, Chandra; Sadavarte, Pankaj; Pierce, Jeffrey R.; Chaliyakunnel, Sreelekha; Millet, Dylan B.

    2018-04-01

    Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were 80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor 5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.

  20. Geo-Neutrinos

    International Nuclear Information System (INIS)

    Dye, S.T.

    2009-01-01

    This paper briefly reviews recent developments in the field of geo-neutrinos. It describes current and future detection projects, discusses modeling projects, suggests an observational program, and visits geo-reactor hypotheses.

  1. Geo-Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.T. [Department of Physics and Astronomy, University of Hawaii at Manoa, 2505 Correa Road, Honolulu, Hawaii, 96822 (United States); College of Natural Sciences, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, Hawaii, 96744 (United States)

    2009-03-15

    This paper briefly reviews recent developments in the field of geo-neutrinos. It describes current and future detection projects, discusses modeling projects, suggests an observational program, and visits geo-reactor hypotheses.

  2. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    Directory of Open Access Journals (Sweden)

    W. R. Sessions

    2011-06-01

    Full Text Available The Weather Research and Forecasting Model (WRF is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia.

    One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and local atmospheric stability. This paper describes a case study of a 10 day period during the Spring phase of ARCTAS. It compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3–5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE. Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors.

    When FLAMBE provides input to the 1-D plume rise model, the resulting injection heights exhibit the best agreement with satellite-observed injection heights. The FLAMBE-derived heights are more realistic than those utilizing prep_chem_sources. Conversely, when the planetary boundary layer or the 3–5 km a.g.l. layer were filled with emissions, the resulting injection heights exhibit less

  3. Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications

    Directory of Open Access Journals (Sweden)

    M. Stuefer

    2013-04-01

    Full Text Available We describe a new functionality within the Weather Research and Forecasting (WRF model with coupled Chemistry (WRF-Chem that allows simulating emission, transport, dispersion, transformation and sedimentation of pollutants released during volcanic activities. Emissions from both an explosive eruption case and a relatively calm degassing situation are considered using the most recent volcanic emission databases. A preprocessor tool provides emission fields and additional information needed to establish the initial three-dimensional cloud umbrella/vertical distribution within the transport model grid, as well as the timing and duration of an eruption. From this source condition, the transport, dispersion and sedimentation of the ash cloud can be realistically simulated by WRF-Chem using its own dynamics and physical parameterization as well as data assimilation. Examples of model applications include a comparison of tephra fall deposits from the 1989 eruption of Mount Redoubt (Alaska and the dispersion of ash from the 2010 Eyjafjallajökull eruption in Iceland. Both model applications show good coincidence between WRF-Chem and observations.

  4. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    Directory of Open Access Journals (Sweden)

    M. S. Hammer

    2016-03-01

    Full Text Available Satellite observations of the ultraviolet aerosol index (UVAI are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT. The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (−0.32 to −0.97 exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC, and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from −0.57 to −0.09 over West Africa in January, from −0.32 to +0.0002 over South Asia in April, from −0.97 to −0.22 over southern Africa in July, and from −0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Ångström exponent (AAE values ranging from 2.9 in the ultraviolet (UV to 1.3 across the UV–Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30 % over South America in September, up to 20 % over southern Africa in July, and up to 15 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform

  5. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna

    Science.gov (United States)

    Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio; Song, In-Sun; Eichmann, Andrew

    2012-01-01

    This report is a documentation of the Fortuna version of the GEOS-5 Atmospheric General Circulation Model (AGCM). The GEOS-5 AGCM is currently in use in the NASA Goddard Modeling and Assimilation Office (GMAO) for simulations at a wide range of resolutions, in atmosphere only, coupled ocean-atmosphere, and data assimilation modes. The focus here is on the development subsequent to the version that was used as part of NASA s Modern-Era Retrospective Analysis for Research and Applications (MERRA). We present here the results of a series of 30-year atmosphere-only simulations at different resolutions, with focus on the behavior of the 1-degree resolution simulation. The details of the changes in parameterizations subsequent to the MERRA model version are outlined, and results of a series of 30-year, atmosphere-only climate simulations at 2-degree resolution are shown to demonstrate changes in simulated climate associated with specific changes in parameterizations. The GEOS-5 AGCM presented here is the model used for the GMAO s atmosphere-only and coupled CMIP-5 simulations.

  6. Status of GeoTASO Trace Gas Data Analysis for the KORUS-AQ Campaign

    Science.gov (United States)

    Janz, S. J.; Nowlan, C. R.; Lamsal, L. N.; Kowalewski, M. G.; Judd, L. M.; Wang, J.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument measures spectrally resolved backscattered solar radiation at high spatial resolution. The instrument completed 30 sorties on board the NASA LaRC UC-12 aircraft during the KORUS-AQ deployment in May-June of 2016. GeoTASO collects spatially resolved spectra with sufficient sensitivity to retrieve column amounts of the trace gas molecules NO2, SO2, H2CO, O3, and C2H2O2 as well as aerosol products. Typical product retrievals are done in 250 m2 bins with multiple overpasses of key ground sites, allowing for detailed spatio-temporal analysis. Flight patterns consisted of both contiguous overlapping grid patterns to simulate satellite observational strategies in support of future geostationary satellite algorithm development, and "race-track" sampling to perform calibration and validation with the in-situ DC-8 platform as well as ground based assets. We will summarize the status of the radiance data set as well as ongoing analysis from our co-Investigators.

  7. GEOS Atmospheric Model: Challenges at Exascale

    Science.gov (United States)

    Putman, William M.; Suarez, Max J.

    2017-01-01

    The Goddard Earth Observing System (GEOS) model at NASA's Global Modeling and Assimilation Office (GMAO) is used to simulate the multi-scale variability of the Earth's weather and climate, and is used primarily to assimilate conventional and satellite-based observations for weather forecasting and reanalysis. In addition, assimilations coupled to an ocean model are used for longer-term forecasting (e.g., El Nino) on seasonal to interannual times-scales. The GMAO's research activities, including system development, focus on numerous time and space scales, as detailed on the GMAO website, where they are tabbed under five major themes: Weather Analysis and Prediction; Seasonal-Decadal Analysis and Prediction; Reanalysis; Global Mesoscale Modeling, and Observing System Science. A brief description of the GEOS systems can also be found at the GMAO website. GEOS executes as a collection of earth system components connected through the Earth System Modeling Framework (ESMF). The ESMF layer is supplemented with the MAPL (Modeling, Analysis, and Prediction Layer) software toolkit developed at the GMAO, which facilitates the organization of the computational components into a hierarchical architecture. GEOS systems run in parallel using a horizontal decomposition of the Earth's sphere into processing elements (PEs). Communication between PEs is primarily through a message passing framework, using the message passing interface (MPI), and through explicit use of node-level shared memory access via the SHMEM (Symmetric Hierarchical Memory access) protocol. Production GEOS weather prediction systems currently run at 12.5-kilometer horizontal resolution with 72 vertical levels decomposed into PEs associated with 5,400 MPI processes. Research GEOS systems run at resolutions as fine as 1.5 kilometers globally using as many as 30,000 MPI processes. Looking forward, these systems can be expected to see a 2 times increase in horizontal resolution every two to three years, as well as

  8. An Assessment of GEO Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    Science.gov (United States)

    Rodriquez-Cowardin, H.; Abercromby, K.; Barker, E.; Mulrooney, M.; Seitzer, P.; Schildknecht, T.

    2009-01-01

    Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter and wavelength regime). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. This data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA s Optical Measurement Program, and a primary driver for creation of the Optical Measurements Center (OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 300 Watt Xenon arc lamp as a solar simulator, a CCD camera with Johnson/Bessel colored filters, and a robotic arm to orientate/rotate objects to simulate an object's orbit/rotational period. A high-resolution, high bandwidth (350nm-2500nm) Analytical Spectral Devices (ASD) spectrometer is also employed to baseline various material types. Since observation of GEO targets are generally restricted to the optical regime (due to radar range limitations), analysis of their properties is tailored to those revealed by optical data products. In this connection, much attention has been directed towards understanding the lightcurves of orbital debris with high area-to-mass (A/m) ratios (greater than 0.9 square meters per kilogram). A small population of GEO debris was recently identified, which exhibits the properties of high A/m objects, such as variable eccentricities and inclinations a dynamical characteristic generally resulting from varying solar radiation pressure on high A/m objects. Materials such as multi-layered insulation (MLI) and solar panels are two examples of materials with high area-to mass ratios. Lightcurves for such

  9. Refractory black carbon at the Whistler Peak High Elevation Research Site - Measurements and simulations

    Science.gov (United States)

    Hanna, Sarah J.; Xu, Jun-Wei; Schroder, Jason C.; Wang, Qiaoqiao; McMeeking, Gavin R.; Hayden, Katherine; Leaitch, W. Richard; Macdonald, AnneMarie; von Salzen, Knut; Martin, Randall V.; Bertram, Allan K.

    2018-05-01

    Measurements of black carbon at remote and high altitude locations provide an important constraint for models. Here we present six months of refractory black carbon (rBC) data collected in July-August of 2009, June-July of 2010, and April-May of 2012 using a single particle soot photometer (SP2) at the remote Whistler High Elevation Research Site in the Coast Mountains of British Columbia (50.06°N, 122.96°W, 2182 m a.m.s.l). In order to reduce regional boundary layer influences, only measurements collected during the night (2000-0800 PST) were considered. Times impacted by local biomass burning were removed from the data set, as were periods of in-cloud sampling. Back trajectories and back trajectory cluster analysis were used to classify the sampled air masses as Southern Pacific, Northern Pacific, Western Pacific/Asian, or Northern Canadian in origin. The largest rBC mass median diameter (182 nm) was seen for air masses in the Southern Pacific cluster, and the smallest (156 nm) was seen for air masses in the Western Pacific/Asian cluster. Considering all the clusters, the median mass concentration of rBC was 25.0 ± 7.6 ng/m3-STP. The Northern Pacific, Southern Pacific, Western Pacific/Asian, and Northern Canada clusters had median mass concentrations of 25.0 ± 7.6, 21.3 ± 6.9, 25.0 ± 7.9, and 40.6 ± 12.9 ng/m3-STP, respectively. We compared these measurements with simulations from the global chemical transport model GEOS-Chem. The default GEOS-Chem simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.2-2.2. The largest difference was observed for the Northern Pacific cluster (factor of 2.2) and the smallest difference was observed for the Northern Canada cluster (factor of 1.2). A sensitivity simulation that excluded Vancouver emissions still overestimated the median rBC mass concentrations for the different clusters by a factor of 1.1-2.0. After implementation of a revised wet scavenging scheme, the

  10. Geo-neutrino Observation

    International Nuclear Information System (INIS)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-01-01

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  11. GeoPro: Technology to Enable Scientific Modeling

    International Nuclear Information System (INIS)

    C. Juan

    2004-01-01

    Development of the ground-water flow model for the Death Valley Regional Groundwater Flow System (DVRFS) required integration of numerous supporting hydrogeologic investigations. The results from recharge, discharge, hydraulic properties, water level, pumping, model boundaries, and geologic studies were integrated to develop the required conceptual and 3-D framework models, and the flow model itself. To support the complex modeling process and the needs of the multidisciplinary DVRFS team, a hardware and software system called GeoPro (Geoscience Knowledge Integration Protocol) was developed. A primary function of GeoPro is to manage the large volume of disparate data compiled for the 100,000-square-kilometer area of southern Nevada and California. The data are primarily from previous investigations and regional flow models developed for the Nevada Test Site and Yucca Mountain projects. GeoPro utilizes relational database technology (Microsoft SQL Server(trademark)) to store and manage these tabular point data, groundwater flow model ASCII data, 3-D hydrogeologic framework data, 2-D and 2.5-D GIS data, and text documents. Data management consists of versioning, tracking, and reporting data changes as multiple users access the centralized database. GeoPro also supports the modeling process by automating the routine data transformations required to integrate project software. This automation is also crucial to streamlining pre- and post-processing of model data during model calibration. Another function of GeoPro is to facilitate the dissemination and use of the model data and results through web-based documents by linking and allowing access to the underlying database and analysis tools. The intent is to convey to end-users the complex flow model product in a manner that is simple, flexible, and relevant to their needs. GeoPro is evolving from a prototype system to a production-level product. Currently the DVRFS pre- and post-processing modeling tools are being re

  12. Evaluation of NASA GEOS-ADAS Modeled Diurnal Warming Through Comparisons to SEVIRI and AMSR2 SST Observations

    Science.gov (United States)

    Gentemann, C. L.; Akella, S.

    2018-02-01

    An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.

  13. Viking telecommunication effects of GEOS satellite interference based on testing at the Madrid deep space station

    Science.gov (United States)

    Stuhr, F. V.; Kent, S. S.; Galvez, J. L.; Luaces, B. G.; Pasero, G. R.; Urech, J. M.

    1976-01-01

    In support of the ongoing NASA-European Space Agency (ESA) effort to understand and control possible interference between missions, testing was conducted at the Madrid Deep Space Station from July 1975 to February 1976 to characterize the effect on Viking 1975 telecommunication link performance of Geodetic Earth-Orbiting Satellite (GEOS) downlink signals. The prime use of the data was to develop a capability to predict GEOS interference effects for evaluation of Viking 1975 mission impacts and possible temporary GEOS shutdown. Also, the data would serve as a basis for assessment of the GEOS impact on missions other than Viking as well as for more general interference applications. Performances of the reference receiver, telemetry, and planetary ranging were measured in the presence of various types of GEOS-related interference, including an unmodulated GEOS carrier and simulation of the actual spectrum by an ESA-supplied GEOS suitcase model.

  14. ChemPreview: an augmented reality-based molecular interface.

    Science.gov (United States)

    Zheng, Min; Waller, Mark P

    2017-05-01

    Human computer interfaces make computational science more comprehensible and impactful. Complex 3D structures such as proteins or DNA are magnified by digital representations and displayed on two-dimensional monitors. Augmented reality has recently opened another door to access the virtual three-dimensional world. Herein, we present an augmented reality application called ChemPreview with the potential to manipulate bio-molecular structures at an atomistic level. ChemPreview is available at https://github.com/wallerlab/chem-preview/releases, and is built on top of the Meta 1 platform https://www.metavision.com/. ChemPreview can be used to interact with a protein in an intuitive way using natural hand gestures, thereby making it appealing to computational chemists or structural biologists. The ability to manipulate atoms in real world could eventually provide new and more efficient ways of extracting structural knowledge, or designing new molecules in silico. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. radEq Add-On Module for CFD Solver Loci-CHEM

    Science.gov (United States)

    McCloud, Peter

    2013-01-01

    Loci-CHEM to be applied to flow velocities where surface radiation due to heating from compression and friction becomes significant. The module adds a radiation equilibrium boundary condition to the computational fluid dynamics (CFD) code to produce accurate results. The module expanded the upper limit for accurate CFD solutions of Loci-CHEM from Mach 4 to Mach 10 based on Space Shuttle Orbiter Re-Entry trajectories. Loci-CHEM already has a very promising architecture and performance, but absence of radiation equilibrium boundary condition limited the application of Loci-CHEM to below Mach 4. The immediate advantage of the add-on module is that it allows Loci-CHEM to work with supersonic flows up to Mach 10. This transformed Loci-CHEM from a rocket engine- heritage CFD code with general subsonic and low-supersonic applications, to an aeroheating code with hypersonic applications. The follow-on advantage of the module is that it is a building block for additional add-on modules that will solve for the heating generated at Mach numbers higher than 10.

  16. USGS Geospatial Fabric and Geo Data Portal for Continental Scale Hydrology Simulations

    Science.gov (United States)

    Sampson, K. M.; Newman, A. J.; Blodgett, D. L.; Viger, R.; Hay, L.; Clark, M. P.

    2013-12-01

    This presentation describes use of United States Geological Survey (USGS) data products and server-based resources for continental-scale hydrologic simulations. The USGS Modeling of Watershed Systems (MoWS) group provides a consistent national geospatial fabric built on NHDPlus. They have defined more than 100,000 hydrologic response units (HRUs) over the continental United States based on points of interest (POIs) and split into left and right bank based on the corresponding stream segment. Geophysical attributes are calculated for each HRU that can be used to define parameters in hydrologic and land-surface models. The Geo Data Portal (GDP) project at the USGS Center for Integrated Data Analytics (CIDA) provides access to downscaled climate datasets and processing services via web-interface and python modules for creating forcing datasets for any polygon (such as an HRU). These resources greatly reduce the labor required for creating model-ready data in-house, contributing to efficient and effective modeling applications. We will present an application of this USGS cyber-infrastructure for assessments of impacts of climate change on hydrology over the continental United States.

  17. The GEOS Chemistry Climate Model: Comparisons to Satellite Data

    Science.gov (United States)

    Stolarski, R. S.; Douglass, A. R.

    2008-05-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. We will compare model simulations of ozone, and the minor constituents that affect ozone, for the period around 1980 with newly released revised data from the Limb Infrared Monitor of the Stratosphere (LIMS) instrument on Nimbus 4. We will also compare model simulations for the period of the early 2000s with the data from the Microwave Limb Sounder (MLS) and the High Resolution Dynamic Limb Sounder (HRDLS) on the Aura satellite. We will use these comparisons to examine the performance of the model for the present atmosphere and for the change that has occurred during the last 2 decades of ozone loss due to chlorine and bromine compounds released from chlorofluorocarbons and halons.

  18. Engaging Organic Chemistry Students Using ChemDraw for iPad

    Science.gov (United States)

    Morsch, Layne A.; Lewis, Michael

    2015-01-01

    Drawing structures, mechanisms, and syntheses is a vital part of success in organic chemistry courses. ChemDraw for iPad has been used to increase classroom experiences in the preparation of high quality chemical drawings. The embedded Flick-to-Share allows for simple, real-time exchange of ChemDraw documents. ChemDraw for iPad also allows…

  19. GEO Optical Data Association with Concurrent Metric and Photometric Information

    Science.gov (United States)

    Dao, P.; Monet, D.

    Data association in a congested area of the GEO belt with occasional visits by non-resident objects can be treated as a Multi-Target-Tracking (MTT) problem. For a stationary sensor surveilling the GEO belt, geosynchronous and near GEO objects are not completely motionless in the earth-fixed frame and can be observed as moving targets. In some clusters, metric or positional information is insufficiently accurate or up-to-date to associate the measurements. In the presence of measurements with uncertain origin, star tracks (residuals) and other sensor artifacts, heuristic techniques based on hard decision assignment do not perform adequately. In the MMT community, Bar-Shalom [2009 Bar-Shalom] was first in introducing the use of measurements to update the state of the target of interest in the tracking filter, e.g. Kalman filter. Following Bar-Shalom’s idea, we use the Probabilistic Data Association Filter (PDAF) but to make use of all information obtainable in the measurement of three-axis-stabilized GEO satellites, we combine photometric with metric measurements to update the filter. Therefore, our technique Concurrent Spatio- Temporal and Brightness (COSTB) has the stand-alone ability of associating a track with its identity –for resident objects. That is possible because the light curve of a stabilized GEO satellite changes minimally from night to night. We exercised COSTB on camera cadence data to associate measurements, correct mistags and detect non-residents in a simulated near real time cadence. Data on GEO clusters were used.

  20. Searching Online Chemical Data Repositories via the ChemAgora Portal.

    Science.gov (United States)

    Zanzi, Antonella; Wittwehr, Clemens

    2017-12-26

    ChemAgora, a web application designed and developed in the context of the "Data Infrastructure for Chemical Safety Assessment" (diXa) project, provides search capabilities to chemical data from resources available online, enabling users to cross-reference their search results with both regulatory chemical information and public chemical databases. ChemAgora, through an on-the-fly search, informs whether a chemical is known or not in each of the external data sources and provides clikable links leading to the third-party web site pages containing the information. The original purpose of the ChemAgora application was to correlate studies stored in the diXa data warehouse with available chemical data. Since the end of the diXa project, ChemAgora has evolved into an independent portal, currently accessible directly through the ChemAgora home page, with improved search capabilities of online data sources.

  1. ChemANDTM - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Balakrishnan, P.V.; Tosello, G.

    1999-07-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation and feeds these parameters to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently has two analytical models developed for the balance-of-plant. CHEMSOLV calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information will be used by operations personnel to evaluate the potential for SG tube corrosion in the crevice region. CHEMSOLV also calculates chemistry conditions throughout the steam-cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. A second model, SLUDGE, calculates the deposit loading in the SG as a function of time, based on concentrations of corrosion product in the final feedwater and plant operating conditions. Operations personnel can use this information to predict where to inspect and when to clean. In a future development, SLUDGE will track deposit loading arising from start-up crud bursts and will be used in conjunction with the thermohydraulics code, THIRST, to predict

  2. Ships going slow in reducing their NOx emissions

    NARCIS (Netherlands)

    Boersma, K.F.; Vinken, G.C.M.; Tournadre, J.

    2015-01-01

    Weaddress the lack of temporal information on ship emissions, and report on rapid short-term variations of satellite-derived shipNOx emissions between 2005 and 2012 over European seas. Our inversion is based onOMI observed troposphericNO2 columns and GEOS-Chem simulations. Average European shipNOx

  3. Parallel continuous simulated tempering and its applications in large-scale molecular simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Tianwu; Yu, Linglin; Zhang, Chong [Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005 (United States); Ma, Jianpeng, E-mail: jpma@bcm.tmc.edu [Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005 (United States); Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, Texas 77030 (United States)

    2014-07-28

    In this paper, we introduce a parallel continuous simulated tempering (PCST) method for enhanced sampling in studying large complex systems. It mainly inherits the continuous simulated tempering (CST) method in our previous studies [C. Zhang and J. Ma, J. Chem. Phys. 130, 194112 (2009); C. Zhang and J. Ma, J. Chem. Phys. 132, 244101 (2010)], while adopts the spirit of parallel tempering (PT), or replica exchange method, by employing multiple copies with different temperature distributions. Differing from conventional PT methods, despite the large stride of total temperature range, the PCST method requires very few copies of simulations, typically 2–3 copies, yet it is still capable of maintaining a high rate of exchange between neighboring copies. Furthermore, in PCST method, the size of the system does not dramatically affect the number of copy needed because the exchange rate is independent of total potential energy, thus providing an enormous advantage over conventional PT methods in studying very large systems. The sampling efficiency of PCST was tested in two-dimensional Ising model, Lennard-Jones liquid and all-atom folding simulation of a small globular protein trp-cage in explicit solvent. The results demonstrate that the PCST method significantly improves sampling efficiency compared with other methods and it is particularly effective in simulating systems with long relaxation time or correlation time. We expect the PCST method to be a good alternative to parallel tempering methods in simulating large systems such as phase transition and dynamics of macromolecules in explicit solvent.

  4. GeoNetwork powered GI-cat: a geoportal hybrid solution

    Science.gov (United States)

    Baldini, Alessio; Boldrini, Enrico; Santoro, Mattia; Mazzetti, Paolo

    2010-05-01

    To the aim of setting up a Spatial Data Infrastructures (SDI) the creation of a system for the metadata management and discovery plays a fundamental role. An effective solution is the use of a geoportal (e.g. FAO/ESA geoportal), that has the important benefit of being accessible from a web browser. With this work we present a solution based integrating two of the available frameworks: GeoNetwork and GI-cat. GeoNetwork is an opensource software designed to improve accessibility of a wide variety of data together with the associated ancillary information (metadata), at different scale and from multidisciplinary sources; data are organized and documented in a standard and consistent way. GeoNetwork implements both the Portal and Catalog components of a Spatial Data Infrastructure (SDI) defined in the OGC Reference Architecture. It provides tools for managing and publishing metadata on spatial data and related services. GeoNetwork allows harvesting of various types of web data sources e.g. OGC Web Services (e.g. CSW, WCS, WMS). GI-cat is a distributed catalog based on a service-oriented framework of modular components and can be customized and tailored to support different deployment scenarios. It can federate a multiplicity of catalogs services, as well as inventory and access services in order to discover and access heterogeneous ESS resources. The federated resources are exposed by GI-cat through several standard catalog interfaces (e.g. OGC CSW AP ISO, OpenSearch, etc.) and by the GI-cat extended interface. Specific components implement mediation services for interfacing heterogeneous service providers, each of which exposes a specific standard specification; such components are called Accessors. These mediating components solve providers data modelmultiplicity by mapping them onto the GI-cat internal data model which implements the ISO 19115 Core profile. Accessors also implement the query protocol mapping; first they translate the query requests expressed

  5. A report on the status of the GEO 600 gravitational wave detector

    International Nuclear Information System (INIS)

    Hewitson, M; Aufmuth, P; Aulbert, C

    2003-01-01

    GEO 600 is an interferometric gravitational wave detector with 600 m arms, which will employ a novel, dual-recycled optical scheme allowing its optical response to be tuned over a range of frequencies (from ∼100 Hz to a few kHz). Additional advanced technologies, such as multiple pendulum suspensions with monolithic bottom stages, make the anticipated sensitivity of GEO 600 comparable to initial detectors with kilometre arm lengths. This paper discusses briefly the design of GEO, reports on the status of the detector up to the end of 2002 with particular focus on participation in coincident engineering and science runs with LIGO detectors. The plans leading to a fully optimized detector and participation in future coincident science runs are briefly outlined

  6. Air Quality Modeling for the Urban Jackson, Mississippi Region Using a High Resolution WRF/Chem Model

    Directory of Open Access Journals (Sweden)

    Shelton J. Swanier

    2011-06-01

    Full Text Available In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi region using an online WRF/Chem (Weather Research and Forecasting–Chemistry model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators.

  7. Regional modelling of polycyclic aromatic hydrocarbons: WRF-Chem-PAH model development and East Asia case studies

    Science.gov (United States)

    Mu, Qing; Lammel, Gerhard; Gencarelli, Christian N.; Hedgecock, Ian M.; Chen, Ying; Přibylová, Petra; Teich, Monique; Zhang, Yuxuan; Zheng, Guangjie; van Pinxteren, Dominik; Zhang, Qiang; Herrmann, Hartmut; Shiraiwa, Manabu; Spichtinger, Peter; Su, Hang; Pöschl, Ulrich; Cheng, Yafang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants, with increasing emissions in pace with economic development in East Asia, but their distribution and fate in the atmosphere are not yet well understood. We extended the regional atmospheric chemistry model WRF-Chem (Weather Research Forecast model with Chemistry module) to comprehensively study the atmospheric distribution and the fate of low-concentration, slowly degrading semivolatile compounds. The WRF-Chem-PAH model reflects the state-of-the-art understanding of current PAHs studies with several new or updated features. It was applied for PAHs covering a wide range of volatility and hydrophobicity, i.e. phenanthrene, chrysene and benzo[a]pyrene, in East Asia. Temporally highly resolved PAH concentrations and particulate mass fractions were evaluated against observations. The WRF-Chem-PAH model is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions. Sensitivity study shows that the heterogeneous reaction with ozone and the homogeneous reaction with the nitrate radical significantly influence the fate and distributions of PAHs. The methods to implement new species and to correct the transport problems can be applied to other newly implemented species in WRF-Chem.

  8. GeoServer cookbook

    CERN Document Server

    Iacovella, Stefano

    2014-01-01

    This book is ideal for GIS experts, developers, and system administrators who have had a first glance at GeoServer and who are eager to explore all its features in order to configure professional map servers. Basic knowledge of GIS and GeoServer is required.

  9. Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. Concept Presentation

    Science.gov (United States)

    Janz, Scott; Smith, James C.; Mannino, Antonio

    2010-01-01

    This slide presentation reviews the concepts of the Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) which will be used on the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. The primary science requirements require scans of the U.S. Coastal waters 3 times per day during the daylight hours. Included in the overview are presentations about the systems, the optics, the detectors, the mechanical systems, the electromechanical systems, the electrical design, the flight software, the thermal systems, and the contamination prevention requirements.

  10. DuraChem trademark - challenges and solutions

    International Nuclear Information System (INIS)

    Howard, I.S.; Bowan, B.W.; Kirshe, M.H.

    1996-01-01

    Vitrification of low-level ion exchange resins represents numerous challenges never before successfully accomplished. These challenges include (1) Feed material preparation and transfer, (2) Melter temperature and volume control, (3) Glass composition, stabilization, and control, and (4) Off-gas treatment and particulate capture. The DuraChem trademark team of Chem-Nuclear Systems, Inc. and GTS Duratek, Inc. began its journey in 1994 and is in the process of starting-up the first centralized vitrification facility for commercial ion-exchange and filtration media. This paper addresses each of the challenges and provides an update of this unique volume-reduction and stabilization technology

  11. ChemSearch Journal: Submissions

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... SCOPE: ChemSearch Journal is a peer-reviewed journal that publishes ... Authors whose papers have been accepted for publication will be notified in writing. ... The literature cited must be discussed to show the relationships between the ...

  12. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    Science.gov (United States)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  13. Study on Zero-Doppler Centroid Control for GEO SAR Ground Observation

    Directory of Open Access Journals (Sweden)

    Yicheng Jiang

    2014-01-01

    Full Text Available In geosynchronous Earth orbit SAR (GEO SAR, Doppler centroid compensation is a key step for imaging process, which could be performed by the attitude steering of a satellite platform. However, this zero-Doppler centroid control method does not work well when the look angle of radar is out of an expected range. This paper primarily analyzes the Doppler properties of GEO SAR in the Earth rectangular coordinate. Then, according to the actual conditions of the GEO SAR ground observation, the effective range is presented by the minimum and maximum possible look angles which are directly related to the orbital parameters. Based on the vector analysis, a new approach for zero-Doppler centroid control in GEO SAR, performing the attitude steering by a combination of pitch and roll rotation, is put forward. This approach, considering the Earth’s rotation and elliptical orbit effects, can accurately reduce the residual Doppler centroid. All the simulation results verify the correctness of the range of look angle and the proposed steering method.

  14. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    Science.gov (United States)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  15. Teaching quantum physics by the sum over paths approach and GeoGebra simulations

    International Nuclear Information System (INIS)

    Malgieri, M; Onorato, P; De Ambrosis, A

    2014-01-01

    We present a research-based teaching sequence in introductory quantum physics using the Feynman sum over paths approach. Our reconstruction avoids the historical pathway, and starts by reconsidering optics from the standpoint of the quantum nature of light, analysing both traditional and modern experiments. The core of our educational path lies in the treatment of conceptual and epistemological themes, peculiar of quantum theory, based on evidence from quantum optics, such as the single photon Mach–Zehnder and Zhou–Wang–Mandel experiments. The sequence is supported by a collection of interactive simulations, realized in the open source GeoGebra environment, which we used to assist students in learning the basics of the method, and help them explore the proposed experimental situations as modeled in the sum over paths perspective. We tested our approach in the context of a post-graduate training course for pre-service physics teachers; according to the data we collected, student teachers displayed a greatly improved understanding of conceptual issues, and acquired significant abilities in using the sum over path method for problem solving. (paper)

  16. Incorporation of a Chemical Equilibrium Equation of State into LOCI-Chem

    Science.gov (United States)

    Cox, Carey F.

    2005-01-01

    Renewed interest in development of advanced high-speed transport, reentry vehicles and propulsion systems has led to a resurgence of research into high speed aerodynamics. As this flow regime is typically dominated by hot reacting gaseous flow, efficient models for the characteristic chemical activity are necessary for accurate and cost effective analysis and design of aerodynamic vehicles that transit this regime. The LOCI-Chem code recently developed by Ed Luke at Mississippi State University for NASA/MSFC and used by NASA/MSFC and SSC represents an important step in providing an accurate, efficient computational tool for the simulation of reacting flows through the use of finite-rate kinetics [3]. Finite rate chemistry however, requires the solution of an additional N-1 species mass conservation equations with source terms involving reaction kinetics that are not fully understood. In the equilibrium limit, where the reaction rates approach infinity, these equations become very stiff. Through the use of the assumption of local chemical equilibrium the set of governing equations is reduced back to the usual gas dynamic equations, and thus requires less computation, while still allowing for the inclusion of reacting flow phenomenology. The incorporation of a chemical equilibrium equation of state module into the LOCI-Chem code was the primary objective of the current research. The major goals of the project were: (1) the development of a chemical equilibrium composition solver, and (2) the incorporation of chemical equilibrium solver into LOCI-Chem. Due to time and resource constraints, code optimization was not considered unless it was important to the proper functioning of the code.

  17. AutoClickChem: click chemistry in silico.

    Directory of Open Access Journals (Sweden)

    Jacob D Durrant

    Full Text Available Academic researchers and many in industry often lack the financial resources available to scientists working in "big pharma." High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu.

  18. AutoClickChem: click chemistry in silico.

    Science.gov (United States)

    Durrant, Jacob D; McCammon, J Andrew

    2012-01-01

    Academic researchers and many in industry often lack the financial resources available to scientists working in "big pharma." High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu.

  19. Multiple x-ray diffraction simulation and applications

    International Nuclear Information System (INIS)

    Costa, C.A.B.S. da.

    1989-09-01

    A computer program (MULTX) was implemented for simulation X-ray multiple diffraction diagrams in Renninger geometries. The program uses the X-ray multiple diffraction theory for imperfect crystals. The iterative calculation of the intensities is based on the Taylor series general term, and the primary beam power expansion is given as function of the beam x penetration in the crystal surface. This development allows to consider the simultaneous interaction of the beams involved in the multiple diffraction phenomenon. The simulated diagrams are calculated point-to-point and the tests for the Si and GaAs presented good reproduction of the experimental diagrams for different primary reflections. (L.C.J.A.)

  20. GeoGebra for Mathematical Statistics

    Science.gov (United States)

    Hewson, Paul

    2009-01-01

    The GeoGebra software is attracting a lot of interest in the mathematical community, consequently there is a wide range of experience and resources to help use this application. This article briefly outlines how GeoGebra will be of great value in statistical education. The release of GeoGebra is an excellent example of the power of free software…

  1. Control and automatic alignment of the output mode cleaner of GEO 600

    Energy Technology Data Exchange (ETDEWEB)

    Prijatelj, M; Grote, H; Degallaix, J; Hewitson, M; Affeldt, C; Leong, J; Lueck, H; Strain, K A; Wittel, H; Willke, B; Danzmann, K [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Leibniz Universitaet Hannover, Callinstr. 38, 30167 Hannover (Germany); Hild, S; Freise, A, E-mail: mirko.prijatelj@aei.mpg.d [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2010-05-01

    The implementation of a mode cleaner at the output port of the GEO 600 gravitational wave detector will be part of the upcoming transition from GEO 600 to GEO-HF. Part of the transition will be the move from a heterodyne readout to a DC readout scheme. DC readout performance will be limited by higher order optical modes and control sidebands present at the output port. For optimum performance of DC readout an output mode cleaner (OMC) will clean the output beam of these contributions. Inclusion of an OMC will introduce new noise sources whose magnitudes needed to be estimated and for which new control systems will be needed. In this article we set requirements on the performance of these control systems and investigate the simulated performance of different designs.

  2. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    Science.gov (United States)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  3. The standard-based open workflow system in GeoBrain (Invited)

    Science.gov (United States)

    Di, L.; Yu, G.; Zhao, P.; Deng, M.

    2013-12-01

    intelligence technology. The GeoBrain workflow system has been used in multiple Earth science applications, including the monitoring of global agricultural drought, the assessment of flood damage, the derivation of national crop condition and progress information, and the detection of nuclear proliferation facilities and events.

  4. Maritime Geo-Fence Letter Report

    Science.gov (United States)

    2016-07-01

    1 Classification | CG-926 RDC | author | audience | month year Maritime Geo-Fence Letter Report Authors: Irene Gonin and Gregory...Johnson   Distribution Statement A: Approved for public release; distribution is unlimited. July 2016 Report No. CG-D-10-16 Maritime Geo-Fence...United States Coast Guard Research & Development Center 1 Chelsea Street New London, CT 06320 Maritime Geo-Fence Letter Report 1

  5. Transport of regional pollutions to UTLS during Asian Summer Monsoon - A CTM study

    Science.gov (United States)

    Li, Qian; Bian, Jianchun; Lu, Daren

    2013-04-01

    We use a 3-D global Chemical Transport Model (CTM) GEOS-Chem to simulate the observed Asian Summer Monsoon transport of biomass burning tracers HCN and CO from local emissions to UTLS. By analyzing the satellite observations, we focus on the distribution and spatial-temporal variation of HCN and CO concentration in UTLS. The model simulations capture well the main features of distribution of HCN and CO compared with satellite observations. Recent studies (Li et al., 2009; Randel et al., 2010) indicated that regional emissions may play an important role controlling the distribution and variation of HCN in tropical UTLS during Asian Summer Monsoon seasons, mainly due to the local dynamical uplift of Asian Summer Monsoon. By using GEOS-Chem simulations, we will analyze the UTLS distribution and variation of HCN and CO from emissions of different regions including S.E. Asia, Boreal Asia, Indonesia and Australia, Africa, Europe, Northern America and Southern America. According to the amount and seasonal variability of emissions, the contribution of biomass burning and biofuel burning emissions of different regions to the highly concentrated HCN and CO in UTLS during Asian Summer Monsoon seasons will be discussed, individually.

  6. Geo synthetic-reinforced Pavement systems

    International Nuclear Information System (INIS)

    Zornberg, J. G.

    2014-01-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  7. PubChem Power User Gateway (PUG)

    Data.gov (United States)

    U.S. Department of Health & Human Services — PUG provides access to PubChem services via a programmatic interface. Users may download data, initiate chemical structure searches, standardize chemical structures...

  8. Internet Geo-Location

    Science.gov (United States)

    2017-12-01

    INTERNET GEO-LOCATION DUKE UNIVERSITY DECEMBER 2017 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR...REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) MAY 2014 – MAY 2017 4. TITLE AND SUBTITLE INTERNET GEO-LOCATION 5a. CONTRACT...of SpeedTest servers that are used by end users to measure the speed of their Internet connection. The servers log the IP address and the location

  9. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    Science.gov (United States)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  10. Upper-tropospheric CO and O3 budget during the Asian summer monsoon

    Directory of Open Access Journals (Sweden)

    B. Barret

    2016-07-01

    Full Text Available During the Asian summer monsoon, the circulation in the upper troposphere/lower stratosphere (UTLS is dominated by the Asian monsoon anticyclone (AMA. Pollutants convectively uplifted to the upper troposphere are trapped within this anticyclonic circulation that extends from the Pacific Ocean to the Eastern Mediterranean basin. Among the uplifted pollutants are ozone (O3 and its precursors, such as carbon monoxide (CO and nitrogen oxides (NOx. Many studies based on global modeling and satellite data have documented the source regions and transport pathways of primary pollutants (CO, HCN into the AMA. Here, we aim to quantify the O3 budget by taking into consideration anthropogenic and natural sources. We first use CO and O3 data from the MetOp-A/IASI sensor to document their tropospheric distributions over Asia, taking advantage of the useful information they provide on the vertical dimension. These satellite data are used together with MOZAIC tropospheric profiles recorded in India to validate the distributions simulated by the global GEOS-Chem chemistry transport model. Over the Asian region, UTLS monthly CO and O3 distributions from IASI and GEOS-Chem display the same large-scale features. UTLS CO columns from GEOS-Chem are in agreement with IASI, with a low bias of 11 ± 9 % and a correlation coefficient of 0.70. For O3, the model underestimates IASI UTLS columns over Asia by 14 ± 26 % but the correlation between both is high (0.94. GEOS-Chem is further used to quantify the CO and O3 budget through sensitivity simulations. For CO, these simulations confirm that South Asian anthropogenic emissions have a more important impact on enhanced concentrations within the AMA (∼  25 ppbv than East Asian emissions (∼  10 ppbv. The correlation between enhanced emissions over the Indo-Gangetic Plain and monsoon deep convection is responsible for this larger impact. Consistently, South Asian anthropogenic NOx emissions also

  11. TASK ALLOCATION IN GEO-DISTRIBUTATED CYBER-PHYSICAL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Rachel; Smidts, Carol

    2017-03-01

    This paper studies the task allocation algorithm for a distributed test facility (DTF), which aims to assemble geo-distributed cyber (software) and physical (hardware in the loop components into a prototype cyber-physical system (CPS). This allows low cost testing on an early conceptual prototype (ECP) of the ultimate CPS (UCPS) to be developed. The DTF provides an instrumentation interface for carrying out reliability experiments remotely such as fault propagation analysis and in-situ testing of hardware and software components in a simulated environment. Unfortunately, the geo-distribution introduces an overhead that is not inherent to the UCPS, i.e. a significant time delay in communication that threatens the stability of the ECP and is not an appropriate representation of the behavior of the UCPS. This can be mitigated by implementing a task allocation algorithm to find a suitable configuration and assign the software components to appropriate computational locations, dynamically. This would allow the ECP to operate more efficiently with less probability of being unstable due to the delays introduced by geo-distribution. The task allocation algorithm proposed in this work uses a Monte Carlo approach along with Dynamic Programming to identify the optimal network configuration to keep the time delays to a minimum.

  12. Nuclear physics for geo-neutrino studies

    International Nuclear Information System (INIS)

    Fiorentini, Gianni; Ianni, Aldo; Korga, George; Suvorov, Yury; Lissia, Marcello; Mantovani, Fabio; Miramonti, Lino; Oberauer, Lothar; Obolensky, Michel; Smirnov, Oleg

    2010-01-01

    Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results for the geo-neutrinos from 214 Bi decay, a process that accounts for about one-half of the total geo-neutrino signal. The feeding probability of the lowest state of 214 Bi--the most important for geo-neutrino signal--is found to be p 0 =0.177±0.004 (stat) -0.001 +0.003 (sys), under the hypothesis of universal neutrino spectrum shape (UNSS). This value is consistent with the (indirect) estimate of the table of isotopes. We show that achievable larger statistics and reduction of systematics should allow for the testing of possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed.

  13. The Geo/Geo/1+1 Queueing System with Negative Customers

    OpenAIRE

    Ma, Zhanyou; Guo, Yalin; Wang, Pengcheng; Hou, Yumei

    2013-01-01

    We study a Geo/Geo/1+1 queueing system with geometrical arrivals of both positive and negative customers in which killing strategies considered are removal of customers at the head (RCH) and removal of customers at the end (RCE). Using quasi-birth-death (QBD) process and matrix-geometric solution method, we obtain the stationary distribution of the queue length, the average waiting time of a new arrival customer, and the probabilities of servers in busy or idle period, respectively. Finally, ...

  14. Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts

    Directory of Open Access Journals (Sweden)

    G. Grell

    2011-06-01

    Full Text Available A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather simulations using model resolutions of 10 km and 2 km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the vertical distribution of the emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations, the interaction of the aerosols with the atmospheric radiation led to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5 and the resulting large numbers of Cloud Condensation Nuclei (CCN had a strong impact on clouds and cloud microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 h of the integration. During the afternoon, storms were of convective nature and appeared significantly stronger, probably as a result of both the interaction of aerosols with radiation (through an increase in CAPE as well as the interaction with cloud microphysics.

  15. Geo-collaboration under stress

    NARCIS (Netherlands)

    Looije, R.; Brake, G.M. te; Neerincx, M.A.

    2007-01-01

    “Most of the science and decision making involved in geo-information is the product of collaborative teams. Current geospatial technologies are a limiting factor because they do not provide any direct support for group efforts. In this paper we present a method to enhance geo-collaboration by

  16. E4CHEM. A simulation program for the fate of chemicals in the environment. Handbook. User`s guide and description. Version 3.6. December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, R [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Projektgruppe Umweltgefaehrdungspotentiale von Chemikalien; Drescher-Kaden, U [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Projektgruppe Umweltgefaehrdungspotentiale von Chemikalien; Muenzer, B [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Projektgruppe Umweltgefaehrdungspotentiale von Chemikalien

    1996-02-01

    The predominant aims of E4CHEM are: Deterministic description of the chemical`s behavior in the environment with varying ecoparameters including the special aspects; Behavior of the same chemical in different compartments; Behavior of different chemicals in the same compartment with the same ecoparameters; Tracing back of chemicals detected in the environment to the possible source by means of check procedures like in EXWAT, one of the E4CHEM models; Discharge of the user from extensive calculation operations; Interpretation of experimental results. In combination with statistics and algebraic tools (lattice theory) but not included in E4CHEM yet: Selection of descriptors as tool for priority setting; Identification and ranking of chemicals according to their risk to the environment by comparing descriptors within descriptor matrices about the behavior of chemicals deived from the different models. Furthermore: Identification of chemical applicable as reference substances with respect to environmental behavior. The program E4CHEM is described in this manual. (orig./SR)

  17. [Brief introduction of geo-authentic herbs].

    Science.gov (United States)

    Liang, Fei; Li, Jian; Zhang, Wei; Zhang, Rui-Xian

    2013-05-01

    The science of geo-authentic herbs is a characteristic discipline of traditional Chinese medicine established during thousands of years of clinical practices. It has a long history under the guidance of profound theories of traditional Chinese medicine. The words of "geo-authentic product" were derived from an administrative division unit in the ancient times, which layed stress on the good quality of products in particular regions. In ancient records of traditional Chinese medicine, the words of "geo-authentic product" were first found in Concise Herbal Foundation Compilation of the Ming dynasty, and the words of "geo-authentic herbs" were first discovered in Peony Pavilion of the late Ming dynasty. After all, clinical effect is the fundamental evaluation standard of geo-authentic herbs.

  18. ChemAND{sup TM} - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Balakrishnan, P.V.; Tosello, G

    1999-07-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation and feeds these parameters to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently has two analytical models developed for the balance-of-plant. CHEMSOLV calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information will be used by operations personnel to evaluate the potential for SG tube corrosion in the crevice region. CHEMSOLV also calculates chemistry conditions throughout the steam-cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. A second model, SLUDGE, calculates the deposit loading in the SG as a function of time, based on concentrations of corrosion product in the final feedwater and plant operating conditions. Operations personnel can use this information to predict where to inspect and when to clean. In a future development, SLUDGE will track deposit loading arising from start-up crud bursts and will be used in conjunction with the thermohydraulics code, THIRST, to

  19. SemantGeo: Powering Ecological and Environment Data Discovery and Search with Standards-Based Geospatial Reasoning

    Science.gov (United States)

    Seyed, P.; Ashby, B.; Khan, I.; Patton, E. W.; McGuinness, D. L.

    2013-12-01

    Recent efforts to create and leverage standards for geospatial data specification and inference include the GeoSPARQL standard, Geospatial OWL ontologies (e.g., GAZ, Geonames), and RDF triple stores that support GeoSPARQL (e.g., AllegroGraph, Parliament) that use RDF instance data for geospatial features of interest. However, there remains a gap on how best to fuse software engineering best practices and GeoSPARQL within semantic web applications to enable flexible search driven by geospatial reasoning. In this abstract we introduce the SemantGeo module for the SemantEco framework that helps fill this gap, enabling scientists find data using geospatial semantics and reasoning. SemantGeo provides multiple types of geospatial reasoning for SemantEco modules. The server side implementation uses the Parliament SPARQL Endpoint accessed via a Tomcat servlet. SemantGeo uses the Google Maps API for user-specified polygon construction and JsTree for providing containment and categorical hierarchies for search. SemantGeo uses GeoSPARQL for spatial reasoning alone and in concert with RDFS/OWL reasoning capabilities to determine, e.g., what geofeatures are within, partially overlap with, or within a certain distance from, a given polygon. We also leverage qualitative relationships defined by the Gazetteer ontology that are composites of spatial relationships as well as administrative designations or geophysical phenomena. We provide multiple mechanisms for exploring data, such as polygon (map-based) and named-feature (hierarchy-based) selection, that enable flexible search constraints using boolean combination of selections. JsTree-based hierarchical search facets present named features and include a 'part of' hierarchy (e.g., measurement-site-01, Lake George, Adirondack Region, NY State) and type hierarchies (e.g., nodes in the hierarchy for WaterBody, Park, MeasurementSite), depending on the ';axis of choice' option selected. Using GeoSPARQL and aforementioned ontology

  20. GeoSciGraph: An Ontological Framework for EarthCube Semantic Infrastructure

    Science.gov (United States)

    Gupta, A.; Schachne, A.; Condit, C.; Valentine, D.; Richard, S.; Zaslavsky, I.

    2015-12-01

    The CINERGI (Community Inventory of EarthCube Resources for Geosciences Interoperability) project compiles an inventory of a wide variety of earth science resources including documents, catalogs, vocabularies, data models, data services, process models, information repositories, domain-specific ontologies etc. developed by research groups and data practitioners. We have developed a multidisciplinary semantic framework called GeoSciGraph semantic ingration of earth science resources. An integrated ontology is constructed with Basic Formal Ontology (BFO) as its upper ontology and currently ingests multiple component ontologies including the SWEET ontology, GeoSciML's lithology ontology, Tematres controlled vocabulary server, GeoNames, GCMD vocabularies on equipment, platforms and institutions, software ontology, CUAHSI hydrology vocabulary, the environmental ontology (ENVO) and several more. These ontologies are connected through bridging axioms; GeoSciGraph identifies lexically close terms and creates equivalence class or subclass relationships between them after human verification. GeoSciGraph allows a community to create community-specific customizations of the integrated ontology. GeoSciGraph uses the Neo4J,a graph database that can hold several billion concepts and relationships. GeoSciGraph provides a number of REST services that can be called by other software modules like the CINERGI information augmentation pipeline. 1) Vocabulary services are used to find exact and approximate terms, term categories (community-provided clusters of terms e.g., measurement-related terms or environmental material related terms), synonyms, term definitions and annotations. 2) Lexical services are used for text parsing to find entities, which can then be included into the ontology by a domain expert. 3) Graph services provide the ability to perform traversal centric operations e.g., finding paths and neighborhoods which can be used to perform ontological operations like

  1. "CHEM"opera for Chemistry Education

    Science.gov (United States)

    Chung, Yong Hee

    2013-01-01

    "CHEM"opera is an opera blended with demonstrations of chemical reactions. It has been produced and performed twice by chemistry undergraduate students at Hallym University in South Korea. It aims to demonstrate interesting chemical reactions to chemistry students, children and the public and to facilitate their understanding of the role…

  2. Radiative effects of light-absorbing particles deposited in snow over Himalayas using WRF-Chem simulations

    Science.gov (United States)

    Sarangi, C.; Qian, Y.; Painter, T. H.; Liu, Y.; Lin, G.; Wang, H.

    2017-12-01

    Radiative forcing induced by light-absorbing particles (LAP) deposited on snow is an important surface forcing. It has been debated that an aerosol-induced increase in atmospheric and surface warming over Tibetan Plateau (TP) prior to the South Asian summer monsoon can have a significant effect on the regional thermodynamics and South Asian monsoon circulation. However, knowledge about the radiative effects due to deposition of LAP in snow over TP is limited. In this study we have used a high-resolution WRF-Chem (coupled with online chemistry and snow-LAP-radiation model) simulations during 2013-2014 to estimate the spatio-temporal variation in LAP deposition on snow, specifically black carbon (BC) and dust particles, in Himalayas. Simulated distributions in meteorology, aerosol concentrations, snow albedo, snow grain size and snow depth are evaluated against satellite and in-situ measurements. The spatio-temporal change in snow albedo and snow grain size with variation in LAP deposition is investigated and the resulting shortwave LAP radiative forcing at surface is calculated. The LAP-radiative forcing due to aerosol deposition, both BC and dust, is higher in magnitude over Himalayan slopes (terrain height below 4 km) compared to that over TP (terrain height above 4 km). We found that the shortwave aerosol radiative forcing efficiency at surface due to increase in deposited mass of BC particles in snow layer ( 25 (W/m2)/ (mg/m2)) is manifold higher than the efficiency of dust particles ( 0.1 (W/m2)/ (mg/m2)) over TP. However, the radiative forcing of dust deposited in snow is similar in magnitude (maximum 20-30 W/m2) to that of BC deposited in snow over TP. This is mainly because the amount of dust deposited in snow over TP can be about 100 times greater than the amount of BC deposited in snow during polluted conditions. The impact of LAP on surface energy balance, snow melting and atmospheric thermodynamics is also examined.

  3. A GEOS-Based OSSE for the "MISTiC Winds" Concept

    Science.gov (United States)

    McCarty, W.; Blaisdell, J.; Fuentes, M.; Carvalho, D.; Errico, R.; Gelaro, R.; Kouvaris, L.; Moradi, I.; Pawson, S.; Prive, N.; hide

    2018-01-01

    The Goddard Earth Observing System (GEOS) atmospheric model and data assimilation system are used to perform an Observing System Simulation Experiment (OSSE) for the proposed MISTiC Wind mission. The GEOS OSSE includes a reference simulation (the Nature Run), from which the pseudo-observations are generated. These pseuo-observations span the entire suite of in-situ and space space-based observations presently used in operational weather prediction, with the addition of the MISTiC-Wind dataset. New observation operators have been constructed for the MISTiC Wind data, including both the radiances measured in the 4-micron part of the solar spectrum and the winds derived from these radiances. The OSSE examines the impacts on global forecast skill of adding these observations to the current operational suite, showing substantial improvements in forecasts when the wind information are added. It is shown that a constellation of four MISTiC Wind satellites provides more benefit than a single platform, largely because of the increased accuracy of the feature-derived wind measurements when more platforms are used.

  4. Interpretation of Aura satellite observations of CO and aerosol index related to the December 2006 Australia fires

    Science.gov (United States)

    Luo, M.; Boxe, C.; Jiang, J.; Nassar, R.; Livesey, N.

    2009-11-01

    Enhanced Carbon Monoxide (CO) in the upper troposphere (UT) is shown by collocated Tropospheric Emission Spectrometer (TES) and Microwave Limb Sounder (MLS) measurements near and down-wind from the known wildfire region of SE Australia from 12-19 December 2006. Enhanced UV aerosol index (AI) derived from Ozone Monitoring Instrument (OMI) measurements correlate with these high CO concentrations. HYSPLIT model back trajectories trace selected air parcels to the SE Australia fire region as their initial location, where TES observes enhanced CO in the upper and lower troposphere. Simultaneously, they show a lack of vertical advection along their tracks. TES retrieved CO vertical profiles in the higher and lower southern latitudes are examined together with the averaging kernels and show that TES CO retrievals are most sensitive at approximately 300-400 hPa. The enhanced CO observed by TES at the upper (215 hPa) and lower (681 hPa) troposphere are, therefore, influenced by mid-tropospheric CO. GEOS-Chem model simulations with an 8-day emission inventory, as the wildfire source over Australia, are sampled to the TES/MLS observation times and locations. These simulations only show CO enhancements in the lower troposphere near and down-wind from the wildfire region of SE Australia with drastic underestimates of UT CO. Although CloudSat along-track ice-water content curtains are examined to see whether possible vertical convection events can explain the high UT CO values, sparse observations of collocated Aura CO and CloudSat along-track ice-water content measurements for the single event precludes any conclusive correlation. Vertical convection that uplift fire-induced CO (i.e. most notably referred to as pyro-cumulonimbus, pyroCb) may provide an explanation for the incongruence between these simulations and the TES/MLS observations of enhanced CO in the UT. Future GEOS-Chem simulations are needed to validate this conjecture as the the PyroCb mechanism is currently not

  5. Pricing Analysis in Geo/Geo/1 Queueing System

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2015-01-01

    Full Text Available This paper studies the equilibrium behavior of customers and optimal pricing strategies of servers in a Geo/Geo/1 queueing system. Two common pricing mechanisms are considered. The first one is called ex-post payment (EPP scheme where the server collects tolls proportional to queue times, and the second one is called ex-ante payment (EAP scheme where the server charges a flat fee for the total service. The server sets the toll price to maximize its own profit. It is found that, under a customer’s choice equilibrium, the two toll mechanisms are equivalent from the economic point of view. Finally, we present several numerical experiments to investigate the effects of system parameters on the equilibrium customer joining rate and servers’ profits.

  6. Early Warning: Brought to you by the DoD Chem-Bio Defense Program

    Science.gov (United States)

    Security Robots Lasers RSS Feed Early Warning: Brought to you by the DoD Chem-Bio Defense Program help warfighters prevent, protect against, respond to or recover from chem-bio threats and effects . Hassell said he and his team don't monitor the world for chem-bio threats, they develop the tools that

  7. The geo-genic radon potential map of the aspiring 'Buzau Land' Geo-park

    International Nuclear Information System (INIS)

    Moldovan, M. C.; Burghele, B. D.; Roba, C. A.; Sferle, T. L.; Buterez, C.; Mitrofan, H.

    2017-01-01

    Mapping the geo-genic radon potential in Buzau County is part of a research project aiming to apply research for sustainable development and economic growth following the principles of geo-conservation in order to support the 'Buzau Land' UNESCO Geo-park initiative. The mapping of geo-genic radon will be used as an overview for planning purposes. The main geological formations of the studied area were identified as Cretaceous and Paleogene flysch, included in a thin-skinned nappes pile and consisting of alternating sandstones, marls, clays and, subordinately, conglomerates, all tightly folded or faulted. Significant variations in the concentration of radon were therefore determined in the ground. However, no high values were determined, the maximum measured activity concentration being 101.6 kBq m -3 . (authors)

  8. Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Zhongwei; Bi, Jianrong; Zhang, Wu; Shi, Jinsen; Yang, Lei; Li, Deshuai; Li, Jinxin

    2014-12-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust mass balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.

  9. 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine

    NARCIS (Netherlands)

    McGuire, R.; Verhoeven, S.; Vass, M.; Vriend, G.; Esch, I.J. de; Lusher, S.J.; Leurs, R.; Ridder, L.; Kooistra, A.J.; Ritschel, T.; Graaf, C. de

    2017-01-01

    3D-e-Chem-VM is an open source, freely available Virtual Machine ( http://3d-e-chem.github.io/3D-e-Chem-VM/ ) that integrates cheminformatics and bioinformatics tools for the analysis of protein-ligand interaction data. 3D-e-Chem-VM consists of software libraries, and database and workflow tools

  10. 3D-e-Chem-VM : Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine

    NARCIS (Netherlands)

    McGuire, Ross; Verhoeven, Stefan; Vass, Márton; Vriend, Gerrit; De Esch, Iwan J P; Lusher, Scott J.; Leurs, Rob; Ridder, Lars; Kooistra, Albert J.; Ritschel, Tina; de Graaf, C.

    2017-01-01

    3D-e-Chem-VM is an open source, freely available Virtual Machine ( http://3d-e-chem.github.io/3D-e-Chem-VM/ ) that integrates cheminformatics and bioinformatics tools for the analysis of protein-ligand interaction data. 3D-e-Chem-VM consists of software libraries, and database and workflow tools

  11. Modeling regional air quality and climate: improving organic aerosol and aerosol activation processes in WRF/Chem version 3.7.1

    Science.gov (United States)

    Yahya, Khairunnisa; Glotfelty, Timothy; Wang, Kai; Zhang, Yang; Nenes, Athanasios

    2017-06-01

    Air quality and climate influence each other through the uncertain processes of aerosol formation and cloud droplet activation. In this study, both processes are improved in the Weather, Research and Forecasting model with Chemistry (WRF/Chem) version 3.7.1. The existing Volatility Basis Set (VBS) treatments for organic aerosol (OA) formation in WRF/Chem are improved by considering the following: the secondary OA (SOA) formation from semi-volatile primary organic aerosol (POA), a semi-empirical formulation for the enthalpy of vaporization of SOA, and functionalization and fragmentation reactions for multiple generations of products from the oxidation of VOCs. Over the continental US, 2-month-long simulations (May to June 2010) are conducted and results are evaluated against surface and aircraft observations during the Nexus of Air Quality and Climate Change (CalNex) campaign. Among all the configurations considered, the best performance is found for the simulation with the 2005 Carbon Bond mechanism (CB05) and the VBS SOA module with semivolatile POA treatment, 25 % fragmentation, and the emissions of semi-volatile and intermediate volatile organic compounds being 3 times the original POA emissions. Among the three gas-phase mechanisms (CB05, CB6, and SAPRC07) used, CB05 gives the best performance for surface ozone and PM2. 5 concentrations. Differences in SOA predictions are larger for the simulations with different VBS treatments (e.g., nonvolatile POA versus semivolatile POA) compared to the simulations with different gas-phase mechanisms. Compared to the simulation with CB05 and the default SOA module, the simulations with the VBS treatment improve cloud droplet number concentration (CDNC) predictions (normalized mean biases from -40.8 % to a range of -34.6 to -27.7 %), with large differences between CB05-CB6 and SAPRC07 due to large differences in their OH and HO2 predictions. An advanced aerosol activation parameterization based on the Fountoukis and Nenes

  12. Publicly Available Geosynchronous (GEO) Space Object Catalog for Future Space Situational Awareness (SSA) Studies

    Science.gov (United States)

    Koblick, D. C.; Shankar, P.; Xu, S.

    Previously, there have been many commercial proposals and extensive academic studies regarding ground and space based sensors to assist a space surveillance network in obtaining metric observations of satellites and debris near Geosynchronous Earth Orbit (GEO). Most use physics based models for geometric constraints, lighting, and tasker/scheduler operations of sensor architectures. Under similar physics modeling assumptions, the space object catalog is often different due to proprietary standards and datasets. Lack of catalog commonality between studies creates barriers and difficulty comparing performance benefits of sensor trades. To solve this problem, we have constructed a future GEO space catalog from publicly available datasets and literature. The annual number of new payloads and rocket bodies is drawn from a Poisson distribution while the growth of the current GEO catalog is bootstrapped from the historical payload, upper stage, and debris data. We adopt a spherically symmetric explosion model and couple it with the NASA standard breakup model to simulate explosions of payloads and rocket bodies as they are the primary drivers of the debris population growth. The cumulative number of fragments follow a power-law distribution. Result from 1,000 random catalog growth simulations indicates that the GEO space object population in the year 2050 will include over 3,600 objects, nearly half of which are debris greater than 10 cm spherical diameter. The number of rocket bodies and dead payloads is projected to nearly double over the next 33 years. For comparison, the current Air Force Space Command catalog snapshot contains fewer than 50 pieces of debris and coarse Radar Cross Section (RCS) estimates which include: small, medium, and large. The current catalog may be sufficient for conjunction studies, but not for analyzing future sensor system performance. The 2050 GEO projected catalog will be available online for commercial/academic research and development.

  13. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    OpenAIRE

    W. R. Sessions; H. E. Fuelberg; R. A. Kahn; D. M. Winker

    2010-01-01

    The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia.

  14. User Defined Geo-referenced Information

    DEFF Research Database (Denmark)

    Konstantas, Dimitri; Villalba, Alfredo; di Marzo Serugendo, Giovanna

    2009-01-01

    . In this paper we present two novel mobile and wireless collaborative services and concepts, the Hovering Information, a mobile, geo-referenced content information management system, and the QoS Information service, providing user observed end-to-end infrastructure geo-related QoS information....

  15. The Modulation of Tropical Storm Activity in the Western North Pacific by the Madden-Julian Oscillation in GEOS-5 AGCM Experiments

    Science.gov (United States)

    Kim, Dongmin; Lee, Myong-In; Kim, Hye-Mi; Schubert, Siegfried D.; Yoo, Jin Ho

    2014-01-01

    This study examines the influence of the Madden-Julian Oscillation (MJO) on tropical storm (TS) activity in the western North Pacific, using observations and GEOS-5 simulations at 50-km horizontal resolution. While GEOS-5 produces an MJO of faster propagation and weaker amplitude, it nevertheless reproduces the observed modulation of TS activity by the MJO with the highest TS genesis and increased track density in the active phases of MJO. The study suggests that the simulation of the sub-seasonal variability of TS activity could be improved by improving the simulations of the MJO in climate models.

  16. Chem/bio sensing with non-classical light and integrated photonics.

    Science.gov (United States)

    Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B

    2018-01-29

    Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.

  17. Framework 'interstitial' oxygen in La10(GeO4)5-(GeO5)O2 apatite electrolyte

    International Nuclear Information System (INIS)

    Pramana, S.S.; White, T.J.

    2007-01-01

    Oxygen conduction at low temperatures in apatites make these materials potentially useful as electrolytes in solid-oxide fuel cells, but our understanding of the defect structures enabling ion migration is incomplete. While conduction along [001] channels is dominant, considerable inter-tunnel mobility has been recognized. Using neutron powder diffraction of stoichiometric 'La 10 (GeO 4 ) 6 O 3 ', it has been shown that this compound is more correctly described as an La 10 (GeO 4 ) 5- (GeO 5 )O 2 apatite, in which high concentrations of interstitial oxygen reside within the channel walls. It is suggested that these framework interstitial O atoms provide a reservoir of ions that can migrate into the conducting channels of apatite, via a mechanism of inter-tunnel oxygen diffusion that transiently converts GeO 4 tetrahedra to GeO 5 distorted trigonal bipyramids. This structural modification is consistent with known crystal chemistry and may occur generally in oxide apatites. (orig.)

  18. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    Science.gov (United States)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; Bender, Steve; Lemmon, Mark; Wiens, Roger C.; Maurice, Sylvestre; Gasnault, Olivier; Lasue, Jeremie; Meslin, Pierre-Yves; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Martínez, Germán M.; DeFlores, Lauren; Blaney, Diana; Johnson, Jeffrey R.; Bell, James F.

    2018-06-01

    We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 Ls = 291° (March 30, 2013) to Mars Year 33 Ls= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO2 absorptions and the known CO2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus

  19. Distributed chemical computing using ChemStar: an open source java remote method invocation architecture applied to large scale molecular data from PubChem.

    Science.gov (United States)

    Karthikeyan, M; Krishnan, S; Pandey, Anil Kumar; Bender, Andreas; Tropsha, Alexander

    2008-04-01

    We present the application of a Java remote method invocation (RMI) based open source architecture to distributed chemical computing. This architecture was previously employed for distributed data harvesting of chemical information from the Internet via the Google application programming interface (API; ChemXtreme). Due to its open source character and its flexibility, the underlying server/client framework can be quickly adopted to virtually every computational task that can be parallelized. Here, we present the server/client communication framework as well as an application to distributed computing of chemical properties on a large scale (currently the size of PubChem; about 18 million compounds), using both the Marvin toolkit as well as the open source JOELib package. As an application, for this set of compounds, the agreement of log P and TPSA between the packages was compared. Outliers were found to be mostly non-druglike compounds and differences could usually be explained by differences in the underlying algorithms. ChemStar is the first open source distributed chemical computing environment built on Java RMI, which is also easily adaptable to user demands due to its "plug-in architecture". The complete source codes as well as calculated properties along with links to PubChem resources are available on the Internet via a graphical user interface at http://moltable.ncl.res.in/chemstar/.

  20. Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)

    Science.gov (United States)

    Nebert, D. D.; Huang, Q.; Yang, C.

    2013-12-01

    The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This

  1. Reciprocal Estimation of Pedestrian Location and Motion State toward a Smartphone Geo-Context Computing Solution

    Directory of Open Access Journals (Sweden)

    Jingbin Liu

    2015-06-01

    Full Text Available The rapid advance in mobile communications has made information and services ubiquitously accessible. Location and context information have become essential for the effectiveness of services in the era of mobility. This paper proposes the concept of geo-context that is defined as an integral synthesis of geographical location, human motion state and mobility context. A geo-context computing solution consists of a positioning engine, a motion state recognition engine, and a context inference component. In the geo-context concept, the human motion states and mobility context are associated with the geographical location where they occur. A hybrid geo-context computing solution is implemented that runs on a smartphone, and it utilizes measurements of multiple sensors and signals of opportunity that are available within a smartphone. Pedestrian location and motion states are estimated jointly under the framework of hidden Markov models, and they are used in a reciprocal manner to improve their estimation performance of one another. It is demonstrated that pedestrian location estimation has better accuracy when its motion state is known, and in turn, the performance of motion state recognition can be improved with increasing reliability when the location is given. The geo-context inference is implemented simply with the expert system principle, and more sophisticated approaches will be developed.

  2. GEO portal

    Data.gov (United States)

    US Agency for International Development — The USAID GeoPortal is a new application that groups web-based capabilities for on-demand discovery of and access to geospatial content, services, expertise, and...

  3. New Results from the Geoengineering Model Intercomparison Project (GeoMIP)

    Science.gov (United States)

    Robock, A.; Kravitz, B.

    2013-12-01

    The Geoengineering Model Intercomparison Project (GeoMIP) was designed to determine robust climate system model responses to Solar Radiation Management (SRM). While mitigation (reducing greenhouse gases emissions) is the most effective way of reducing future climate change, SRM (the deliberate modification of incoming solar radiation) has been proposed as a means of temporarily alleviating some of the effects of global warming. For society to make informed decisions as to whether SRM should ever be implemented, information is needed on the benefits, risks, and side effects, and GeoMIP seeks to aid in that endeavor. GeoMIP has organized four standardized climate model simulations involving reduction of insolation or increased amounts of stratospheric sulfate aerosols to counteract increasing greenhouse gases. Thirteen comprehensive atmosphere-ocean general circulation models have participated in the project so far. GeoMIP is a 'CMIP Coordinated Experiment' as part of the Climate Model Intercomparison Project 5 (CMIP5) and has been endorsed by SPARC (Stratosphere-troposphere Processes And their Role in Climate). GeoMIP has held three international workshops and has produced a number of recent journal articles. GeoMIP has found that if increasing greenhouse gases could be counteracted with insolation reduction, the global average temperature could be kept constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform. The tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without SRM. If SRM were halted all at once, there would be rapid temperature and precipitation increases at 5-10 times the rates from gradual global warming. SRM combined with CO2 fertilization would have small impacts on rice production in China, but would increase maize production

  4. GeoBrain for Facilitating Earth Science Education in Higher-Education Institutes--Experience and Lessons-learned

    Science.gov (United States)

    Deng, M.; di, L.

    2007-12-01

    Data integration and analysis are the foundation for the scientific investigation in Earth science. In the past several decades, huge amounts of Earth science data have been collected mainly through remote sensing. Those data have become the treasure for Earth science research. Training students how to discover and use the huge volume of Earth science data in research become one of the most important trainings for making a student a qualified scientist. Being developed by a NASA funded project, the GeoBrain system has adopted and implemented the latest Web services and knowledge management technologies for providing innovative methods in publishing, accessing, visualizing, and analyzing geospatial data and in building/sharing geoscience knowledge. It provides a data-rich online learning and research environment enabled by wealthy data and information available at NASA Earth Observing System (EOS) Data and Information System (EOSDIS). Students, faculty members, and researchers from institutes worldwide can easily access, analyze, and model with the huge amount of NASA EOS data just like they possess such vast resources locally at their desktops. Although still in development, the GeoBrain system has been operational since 2005. A number of education materials have been developed for facilitating the use of GeoBrain as a powerful education tool for Earth science education at both undergraduate and graduate levels. Thousands of online higher-education users worldwide have used GeoBrain services. A number of faculty members in multiple universities have been funded as GeoBrain education partners to explore the use of GeoBrain in the classroom teaching and student research. By summarizing and analyzing the feedbacks from the online users and the education partners, this presentation presents the user experiences on using GeoBrain in Earth science teaching and research. The feedbacks on classroom use of GeoBrain have demonstrated that GeoBrain is very useful for

  5. User Experience Design in Professional Map-Based Geo-Portals

    Directory of Open Access Journals (Sweden)

    Bastian Zimmer

    2013-10-01

    Full Text Available We have recently been witnessing the growing establishment of map-centered web-based geo-portals on national, regional and local levels. However, a particular issue with these geo-portals is that each instance has been implemented in different ways in terms of design, usability, functionality, interaction possibilities, map size and symbologies. In this paper, we try to tackle these shortcomings by analyzing and formalizing the requirements for map-based geo-portals in a user experience based approach. First, we propose a holistic definition the term of a “geo-portal”. Then, we present our approach to user experience design for map-based geo-portals by defining the functional requirements of a geo-portal, by analyzing previous geo-portal developments, by distilling the results of our empirical user study to perform practically-oriented user requirements, and finally by establishing a set of user experience design guidelines for the creation of map-based geo-portals. These design guidelines have been extracted for each of the main components of a geo-portal, i.e., the map, the search dialogue, the presentation of the search results, symbologies, and other aspects. These guidelines shall constitute the basis for future geo-portal developments to achieve standardization in the user-experience design of map-based geo-portals.

  6. Comparison of boundary conditions from Global Chemistry Model (GCM) for regional air quality application

    Science.gov (United States)

    Lam, Yun Fat; Cheung, Hung Ming; Fu, Joshua; Huang, Kan

    2015-04-01

    Applying Global Chemistry Model (GCM) for regional Boundary Conditions (BC) has become a common practice to account for long-range transport of air pollutants in the regional air quality modeling. The limited domain model such as CMAQ and CAMx requires a global BC to prescribe the real-time chemical flux at the boundary grids, in order to give a realistic estimate of boundary impacts. Several GCMs have become available recently for use in regional air quality studies. In this study, three GCM models (i.e., GEOS-chem, CHASER and IFS-CB05 MACC provided by Seoul National University, Nagoya University and ECWMF, respectively) for the year of 2010 were applied in CMAQ for the East Asia domain under the framework of Model Inter-comparison Study Asia Phase III (MISC-Asia III) and task force on Hemispheric Transport of Air Pollution (HTAP) jointed experiments. Model performance evaluations on vertical profile and spatial distribution of O3 and PM2.5 have been made on those three models to better understand the model uncertainties from the boundary conditions. Individual analyses on various mega-cities (i.e., Hong Kong, Guangzhou, Taipei, Chongqing, Shanghai, Beijing, Tianjin, Seoul and Tokyo) were also performed. Our analysis found that the monthly estimates of O3 for CHASER were a bit higher than GEOS-Chem and IFS-CB05 MACC, particularly in the northern part of China in the winter and spring, while the monthly averages of PM2.5 in GEOS-Chem were the lowest among the three models. The hourly maximum values of PM2.5 from those three models (GEOS-Chem, CHASER and IFS-CB05 MACC are 450, 321, 331 μg/m3, while the maximum O3 are 158, 212, 380 ppbv, respectively. Cross-comparison of CMAQ results from the 45 km resolution were also made to investigate the boundary impacts from the global GCMs. The results presented here provide insight on how global GCM selection influences the regional air quality simulation in East Asia.

  7. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    Science.gov (United States)

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  8. Geo-neutrino review

    International Nuclear Information System (INIS)

    Tolich, N.

    2012-01-01

    The principal source of energy for dynamic processes of the earth, such as plate tectonics is thought to come from the radioactive decays of 238 U, 232 Th, and 40 K within the earth. These decays produce electron-antineutrinos, so-called geo-neutrinos, the measurement of which near the earth's surface allows for a direct measure of the total radiogenic heat production in the earth. The KamLAND and Borexino experiments have both measured a geo-neutrino flux significantly greater than zero. As shown in these proceedings, more precise future measurements will significantly constrain earth composition models.

  9. GEO600: status and plans

    International Nuclear Information System (INIS)

    Willke, B

    2007-01-01

    The GEO600 gravitational wave detector located near Hannover in Germany is one of the four detectors of the LIGO Scientific Collaboration (LSC). For almost the entire year of 2006, GEO600 participated in the S5 science run of the LSC. Overall an equivalent of about 270 days of science data with an average peak sensitivity of better than 3 x 10 -22 Hz -1/2 have been acquired so far. In this paper, we describe the status of the GEO600 project during the period between January 2006 and February 2007. In addition, plans for the near-term and medium-term future are discussed

  10. Why Geo-Humanities

    Science.gov (United States)

    Graells, Robert Casals i.; Sibilla, Anna; Bohle, Martin

    2016-04-01

    Anthropogenic global change is a composite process. It consists of societal processes (in the 'noosphere') and natural processes (in the 'bio-geosphere'). The 'noosphere' is the ensemble of social, cultural or political insights ('shared subjective mental concepts') of people. Understanding the composite of societal and natural processes ('human geo-biosphere intersections'), which shapes the features of anthropogenic global change, would benefit from a description that draws equally on natural sciences, social sciences and humanities. To that end it is suggested to develop a concept of 'geo-humanities': This essay presents some aspects of its scope, discussing "knowledge that is to manage", "intentions that are to shape", "choices that are to justify" and "complexity that is to handle". Managing knowledge: That people understand anthropogenic global change requires their insights into how 'human geosphere intersections' function. Insights are formed ('processed') in the noosphere by means of interactions between people. Understanding how 'human geosphere intersections' functions combines scientific, engineering and economic studies with studies of the dynamics of the noosphere. Shaping intentions: During the last century anthropogenic global change developed as the collateral outcome of humankind's accumulated actions. It is caused by the number of people, the patterns of their consumption of resources, and the alterations of their environments. Nowadays, anthropogenic global chance is either an intentional negligence or a conscious act. Justifying choices: Humanity has alternatives how to alter Earth at planetary scale consciously. For example, there is a choice to alter the geo-biosphere or to adjust the noosphere. Whatever the choice, it will depend on people's world-views, cultures and preferences. Thus beyond issues whether science and technology are 'sound' overarching societal issues are to tackle, such as: (i) how to appropriate and distribute natural

  11. Ductile failure simulation of tensile plates with multiple through-wall cracks

    International Nuclear Information System (INIS)

    Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae

    2009-01-01

    In this paper, failure behaviors of ductile plates with multiple cracks are simulated, finite element analyses using ABAQUS. To simulate crack coalescence or propagation of multiple cracks, a technique to reduce stresses within an finite element is proposed and implemented using user-defined subroutines provided in ABAQUS. In the proposed method, all stress components reduce to almost zero when the effective strain reaches critical values which are a function of the stress triaxiality. A main benefit of the proposed numerical scheme is its simplicity. The proposed scheme is applied to simulate multiple-cracked plate tests by Japanese researchers. Simulated maximum loads are compared with experimental ones, showing overall good agreements.

  12. Bi-static Optical Observations of GEO Objects

    Science.gov (United States)

    Seitzer, Patrick; Barker, Edwin S.; Cowardin, Heather; Lederer, Susan M.; Buckalew, Brent

    2014-01-01

    A bi-static study of objects at Geosynchronous Earth Orbit (GEO) was conducted using two ground-based wide-field optical telescopes. The University of Michigan's 0.6-m MODEST (Michigan Orbital Debris Survey Telescope) located at the Cerro Tololo Inter- American Observatory in Chile was employed in a series of coordinated observations with the U.S. Naval Observatory's (USNO) 1.3-m telescope at the USNO Flagstaff Station near Flagstaff, Arizona, USA. The goals of this project are twofold: (1) Obtain optical distances to known and unknown objects at GEO from the difference in the observed topocentric position of objects measured with respect to a reference star frame. The distance can be derived directly from these measurements, and is independent of any orbital solution. The wide geographical separation of these two telescopes means that the parallax difference is larger than ten degrees, and (2) Compare optical photometry in similar filters of GEO objects taken during the same time period from the two sites. The object's illuminated surfaces presented different angles of reflected sunlight to the two telescopes.During a four hour period on the night.of 22 February 2014 (UT), coordinated observations were obtained for eight different GEO positions. Each coordinated observation sequence was started on the hour or half-hour, and was selected to ensure the same cataloged GEO object was available in the field of view of both telescopes during the thirty minute observing sequence. GEO objects were chosen to be both controlled and uncontrolled at a range of orbital inclinations, and the objects were not tracked. Instead both telescopes were operated with all drives off in GEO survey mode to discover un-cataloged objects at GEO. The initial results from this proof-of-concept observing run will be presented, with the intent of laying the foundation for future large-scale bi-static observing campaigns of the GEO regime.

  13. Research on Utilization of Geo-Energy

    Science.gov (United States)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field

  14. Fluid migration through geo-membrane seams and through the interface between geo-membrane and geo-synthetic clay liner; Contribution a l'etude des transferts de masse au niveau des joints de geomembrane et a l'interface entre geomembrane et geosynthetique bentonitique

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, M

    2005-03-15

    carried out both in laboratory and in field conditions to study the suitability of this test to assess the quality of the seams in situ. The results obtained suggest that it is possible to assess the quality of the geo-membrane seams from a non-destructive test conducted in situ by determining the time constant. To address the problem of fluid migration through geo-membrane defects, composite liners comprising a geo-membrane with a circular hole over a GCL over a CCL were simulated in tests at three scales. Flow rates at the interface between the geo-membrane and the GCL were measured. Correspondent interface transmissivity was estimated based on final flow rates and observation of the wetted area. A parametric study was performed to evaluate the influence of the pre-hydration of the GCL, the hydraulic head on top of the liner and the confining stress over the liner system, on the flow rate through composite liners due to defects in the geo-membrane, as well as to check the feasibility of an extrapolation of the results obtained on small-scale tests to field conditions. It was found that the transmissivity does not seem to be affected by the pre-hydration of the GCLs when low confining stresses were used. It also does not seem to be influenced by the increase in confining stress when non-pre-hydrated GCLs are used. Finally, the transmissivity does not seem to be significantly affected by the increase in hydraulic head. The results also suggest that predictions on flow rates though composite liners due to defects in the geo-membrane, which are based on transmissivity values obtained in small scale tests, are conservative. Lastly, based on the transmissivities obtained in this study, empirical equations for predicting the flow rate through composite liners consisting of a geo-membrane over a GCL over a CCL are proposed. Flow rates calculated using these equations are in better agreement with the flow rates measured experimentally than the empirical equations reported in

  15. ChemTS: an efficient python library for de novo molecular generation

    Science.gov (United States)

    Yang, Xiufeng; Zhang, Jinzhe; Yoshizoe, Kazuki; Terayama, Kei; Tsuda, Koji

    2017-12-01

    Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.

  16. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    Directory of Open Access Journals (Sweden)

    Cédric de Poorter

    Full Text Available Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  17. Simulation program for multiple expansion Stirling machines

    International Nuclear Information System (INIS)

    Walker, G.; Weiss, M.; Fauvel, R.; Reader, G.; Bingham, E.R.

    1992-01-01

    Multiple expansion Stirling machines have been a topic of interest at the University of Calgary for some years. Recently a second-order computer simulation program with integral graphics package for Stirling cryocoolers with up to four stages of expansion were developed and made available to the Stirling community. Adaptation of the program to multiple expansion Stirling power systems is anticipated. This paper briefly introduces the program and presents a specimen result

  18. The energy geo-policy

    International Nuclear Information System (INIS)

    Duval, M.

    2005-01-01

    This analysis updates and develops the analysis of the energy geo-policy proposed by the French Review of geo-policy. In this framework the today policies of the different sate and geographical actors, as suppliers and consumers of petroleum energy, are examined. Then the author analyzes the political problems resulting from, this petroleum energy transfers by earth and sea and the problems resulting specifically from the nuclear energy. The last part brings the author own opinions. (A.L.B.)

  19. Auto-Scaling of Geo-Based Image Processing in an OpenStack Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Sanggoo Kang

    2016-08-01

    Full Text Available Cloud computing is a base platform for the distribution of large volumes of data and high-performance image processing on the Web. Despite wide applications in Web-based services and their many benefits, geo-spatial applications based on cloud computing technology are still developing. Auto-scaling realizes automatic scalability, i.e., the scale-out and scale-in processing of virtual servers in a cloud computing environment. This study investigates the applicability of auto-scaling to geo-based image processing algorithms by comparing the performance of a single virtual server and multiple auto-scaled virtual servers under identical experimental conditions. In this study, the cloud computing environment is built with OpenStack, and four algorithms from the Orfeo toolbox are used for practical geo-based image processing experiments. The auto-scaling results from all experimental performance tests demonstrate applicable significance with respect to cloud utilization concerning response time. Auto-scaling contributes to the development of web-based satellite image application services using cloud-based technologies.

  20. Visual analytics of geo-social interaction patterns for epidemic control.

    Science.gov (United States)

    Luo, Wei

    2016-08-10

    Human interaction and population mobility determine the spatio-temporal course of the spread of an airborne disease. This research views such spreads as geo-social interaction problems, because population mobility connects different groups of people over geographical locations via which the viruses transmit. Previous research argued that geo-social interaction patterns identified from population movement data can provide great potential in designing effective pandemic mitigation. However, little work has been done to examine the effectiveness of designing control strategies taking into account geo-social interaction patterns. To address this gap, this research proposes a new framework for effective disease control; specifically this framework proposes that disease control strategies should start from identifying geo-social interaction patterns, designing effective control measures accordingly, and evaluating the efficacy of different control measures. This framework is used to structure design of a new visual analytic tool that consists of three components: a reorderable matrix for geo-social mixing patterns, agent-based epidemic models, and combined visualization methods. With real world human interaction data in a French primary school as a proof of concept, this research compares the efficacy of vaccination strategies between the spatial-social interaction patterns and the whole areas. The simulation results show that locally targeted vaccination has the potential to keep infection to a small number and prevent spread to other regions. At some small probability, the local control strategies will fail; in these cases other control strategies will be needed. This research further explores the impact of varying spatial-social scales on the success of local vaccination strategies. The results show that a proper spatial-social scale can help achieve the best control efficacy with a limited number of vaccines. The case study shows how GS-EpiViz does support the design

  1. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    Science.gov (United States)

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  2. Cementation of nuclear graphite using geo-polymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H.J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2012-01-01

    Geo-polymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geo-polymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geo-polymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geo-polymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated about how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfill the specifications at best. As result geo-polymers have been identified as a promising matrix for graphite containing nuclear wastes. With geo-polymers both favorable properties in the cementation process and a high long time structural stability of the products can be achieved. (authors)

  3. Parallel Beam-Beam Simulation Incorporating Multiple Bunches and Multiple Interaction Regions

    CERN Document Server

    Jones, F W; Pieloni, T

    2007-01-01

    The simulation code COMBI has been developed to enable the study of coherent beam-beam effects in the full collision scenario of the LHC, with multiple bunches interacting at multiple crossing points over many turns. The program structure and input are conceived in a general way which allows arbitrary numbers and placements of bunches and interaction points (IP's), together with procedural options for head-on and parasitic collisions (in the strong-strong sense), beam transport, statistics gathering, harmonic analysis, and periodic output of simulation data. The scale of this problem, once we go beyond the simplest case of a pair of bunches interacting once per turn, quickly escalates into the parallel computing arena, and herein we will describe the construction of an MPI-based version of COMBI able to utilize arbitrary numbers of processors to support efficient calculation of multi-bunch multi-IP interactions and transport. Implementing the parallel version did not require extensive disruption of the basic ...

  4. FastChem: An ultra-fast equilibrium chemistry

    Science.gov (United States)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  5. Real-Time Integration of Geo-data in ORM

    NARCIS (Netherlands)

    Balsters, Herman; Klaver, Chris; Huitema, George B.; Meersman, R; Dillon, T; Herrero, P

    2010-01-01

    Geographic information (geo-data; i.e., data with a spatial component.) is being used for civil, political, and commercial applications. Modeling geo-data can be involved due to its often very complex structure, hence placing high demands on the modeling language employed. Many geo-applications

  6. The PubChem chemical structure sketcher

    Directory of Open Access Journals (Sweden)

    Ihlenfeldt Wolf D

    2009-12-01

    Full Text Available Abstract PubChem is an important public, Web-based information source for chemical and bioactivity information. In order to provide convenient structure search methods on compounds stored in this database, one mandatory component is a Web-based drawing tool for interactive sketching of chemical query structures. Web-enabled chemical structure sketchers are not new, being in existence for years; however, solutions available rely on complex technology like Java applets or platform-dependent plug-ins. Due to general policy and support incident rate considerations, Java-based or platform-specific sketchers cannot be deployed as a part of public NCBI Web services. Our solution: a chemical structure sketching tool based exclusively on CGI server processing, client-side JavaScript functions, and image sequence streaming. The PubChem structure editor does not require the presence of any specific runtime support libraries or browser configurations on the client. It is completely platform-independent and verified to work on all major Web browsers, including older ones without support for Web2.0 JavaScript objects.

  7. Ontario Power Generation's proposed L and ILW deep geologic repository: geo-scientific assessment

    International Nuclear Information System (INIS)

    Jensen, Mark; Raven, Ken; Leech, Robert

    2012-01-01

    repository safety. Site specific investigations of the Bruce nuclear site began in the fall of 2006 and were completed by summer 2010 (INTERA, 2011; NWMO, 2011). Planning activities leading to the execution of the site-specific investigations were guided, in part, by a conceptual understanding of the geologic and hydrologic settings, and the development of seven hypotheses, which addressed issues such as long-term groundwater system behaviour, natural resource potential, geomechanical stability, seismic hazard and protection of ground and surface water resources (INTERA 2006; INTERA 2008). The intent of the later was to focus data collection and improve the integration of data sets to test and confirm the initial conceptual model. The investigations were conducted in three phases or campaigns and have involved among other studies, the drilling, coring and instrumentation of 6 deep (4 vertical; 2 inclined) boreholes through the sedimentary sequence coupled with in-situ and laboratory testing (INTERA 2011). Results provide a unique data set that describes a groundwater system comprised of multiple near-horizontally layered aquitards-aquicludes [thick ( -13 m sec -1 ), low porosity (0.01-0.08), saline (TDS ≥ 250 gm l -1 ), low effective diffusion coefficient (10 -12 m 2 sec -1 )] in which multiple lines of evidence point to a deep-seated diffusion-dominant transport regime. The Geo-synthesis examines the geologic setting from a broader geo-scientific context in order to present an integrated assessment of the Bruce nuclear site (NWMO, 2011). In addition to the site-specific data, the Geo-synthesis is supported by 14 supplemental studies, which assess, for example, glacial ice-sheet history, site and regional-scale paleo-hydrogeology, geomechanical stability of un-backfilled DGR openings, aquiclude pore fluid diagenesis/origin, long-term DGR shaft seal integrity, karstification, neo-tectonics, seismic hazard and Ordovician shale cap rock barrier integrity. This paper provides

  8. Geo-communication and web-based infrastructure

    DEFF Research Database (Denmark)

    Brodersen, Lars; Nielsen, Anders

    2005-01-01

    The role of geo-information and the distribution of geo-information have changed dramatically since the introduction of web-services on the Internet. In the framework of web-services maps should be seen as an index to further geo-information. Maps are no longer an aim in themselves. In this context...... web-services perform the function as index-portals on the basis of geoinformation. The introduction of web-services as index-portals based on geoinformation has changed the conditions for both content and form of geocommunication. A high number of players and interactions (as well as a very high...... number of all kinds of information and combinations of these) characterize web-services, where maps are only a part of the whole. These new conditions demand new ways of modelling the processes leading to geo-communication. One new aspect is the fact that the service providers have become a part...

  9. Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals

    Science.gov (United States)

    Zamyadi, A.; Pouliot, J.; Bédard, Y.

    2013-09-01

    Data Infrastructure (CGDI) metadata which is an implementation of North American Profile of ISO-19115. The comparison analyzes the two metadata against three simulated scenarios about discovering needed 3D geo-spatial datasets. Considering specific metadata about 3D geospatial models, the proposed metadata-set has six additional classes on geometric dimension, level of detail, geometric modeling, topology, and appearance information. In addition classes on data acquisition, preparation, and modeling, and physical availability have been specialized for 3D geospatial models.

  10. XAFS study of GeO sub 2 glass under pressure

    CERN Document Server

    Ohtaka, O; Fukui, H; Murai, K; Okube, M; Takebe, H; Katayama, Y; Utsumi, W

    2002-01-01

    Using a large-volume high-pressure apparatus, Li sub 2 O-4GeO sub 2 glass and pure GeO sub 2 gel have been compressed to 14 GPa at room temperature and their local structural changes have been investigated by an in situ XAFS (x-ray absorption fine-structure) method. On compression of Li sub 2 O-4GeO sub 2 glass, the Ge-O distance gradually becomes short below 7 GPa, showing the conventional compression of the GeO sub 4 tetrahedron. Abrupt increase in the Ge-O distance occurs between 8 and 10 GPa, which corresponds to the coordination number (CN) changing from 4 to 6. The CN change is completed at 10 GPa. On decompression, the reverse transition occurs gradually below 10 GPa. In contrast to the case for Li sub 2 O-4GeO sub 2 glass, the Ge-O distance in GeO sub 2 gel gradually increases over a pressure range from 2 to 12 GPa, indicating that continuous change in CN occurs. The Ge-O distance at 12 GPa is shorter than that of Li-4GeO sub 2 indicating that the change in CN is not completed even at this pressure. O...

  11. Photochemical Pollution Modeling of Ozone at Metropolitan Area of Porto Alegre - RS/Brazil using WRF/Chem

    Science.gov (United States)

    Cuchiara, G. C.; Carvalho, J.

    2013-05-01

    One of the main problems related to air pollution in urban areas is caused by photochemical oxidants, particularly troposphere ozone (O3), which is considered a harmful substance. The O3 precursors (carbon monoxide CO, nitrogen oxides NOx and hydrocarbons HCs) are predominantly of anthropogenic origin in these areas, and vehicles are the main emission sources. Due to the increased urbanization and industrial development in recent decades, air pollutant emissions have increased likewise, mainly by mobile sources in the highly urbanized and developed areas, such as the Metropolitan Area of Porto Alegre-RS (MAPA). According to legal regulations implemented in Brazil in 2005, which aimed at increasing the fraction of biofuels in the national energy matrix, 2% biodiesel were supposed to be added to the fuel mixture within three years, and up to 5% after eight years of implementation of these regulations. Our work performs an analysis of surface concentrations for O3, NOx, CO, and HCs through numerical simulations with WRF/Chem (Weather Research and Forecasting model with Chemistry). The model is validated against observational data obtained from the local urban air quality network for the period from January 5 to 9, 2009 (96 hours). One part of the study focused on the comparison of simulated meteorological variables, to observational data from two stations in MAPA. The results showed that the model simulates well the diurnal evolution of pressure and temperature at the surface, but is much less accurate for wind speed. Another part included the evaluation of model results of WRF/Chem for O3 versus observed data at air quality stations Esteio and Porto Alegre. Comparisons between simulated and observed O3 revealed that the model simulates well the evolution of the observed values, but on many occasions the model did not reproduce well the maximum and minimum concentrations. Finally, a preliminary quantitative sensitivity study on the impact of biofuel on the

  12. Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies

    Science.gov (United States)

    Singh, N.; Poore, A.; Sheaff, C.; Aristoff, J.; Jah, M.

    2013-09-01

    tracking performance compared to existing methods at a lower computational cost, especially for closely-spaced objects, in realistic multi-sensor multi-object tracking scenarios over multiple regimes of space. Specifically, we demonstrate that the prototype MHT system can accurately and efficiently process tens of thousands of UCTs and angles-only UCOs emanating from thousands of objects in LEO, GEO, MEO and HELO, many of which are closely-spaced, in real-time on a single laptop computer, thereby making it well-suited for large-scale breakup and tracking scenarios. This is possible in part because complexity reduction techniques are used to control the runtime of MHT without sacrificing accuracy. We assess the performance of MHT in relation to other tracking methods in multi-target, multi-sensor scenarios ranging from easy to difficult (i.e., widely-spaced objects to closely-spaced objects), using realistic physics and probabilities of detection less than one. In LEO, it is shown that the MHT system is able to address the challenges of processing breakups by analyzing multiple frames of data simultaneously in order to improve association decisions, reduce cross-tagging, and reduce unassociated UCTs. As a result, the multi-frame MHT system can establish orbits up to ten times faster than single-frame methods. Finally, it is shown that in GEO, MEO and HELO, the MHT system is able to address the challenges of processing angles-only optical observations by providing a unified multi-frame framework.

  13. New "Tau-Leap" Strategy for Accelerated Stochastic Simulation.

    Science.gov (United States)

    Ramkrishna, Doraiswami; Shu, Che-Chi; Tran, Vu

    2014-12-10

    The "Tau-Leap" strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev's inequality for random variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while the use of Chebyshev's inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed, with respect to one discussed by Cao et al. ( J. Chem. Phys. 2006 , 124 , 044109), a second pertaining to binomial leap (Tian and Burrage J. Chem. Phys. 2004 , 121 , 10356; Chatterjee et al. J. Chem. Phys. 2005 , 122 , 024112; Peng et al. J. Chem. Phys. 2007 , 126 , 224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys. 2001 , 115 , 1716). The performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational improvements such as those reported herein are therefore of considerable significance.

  14. Collaborative Web-Enabled GeoAnalytics Applied to OECD Regional Data

    Science.gov (United States)

    Jern, Mikael

    Recent advances in web-enabled graphics technologies have the potential to make a dramatic impact on developing collaborative geovisual analytics (GeoAnalytics). In this paper, tools are introduced that help establish progress initiatives at international and sub-national levels aimed at measuring and collaborating, through statistical indicators, economic, social and environmental developments and to engage both statisticians and the public in such activities. Given this global dimension of such a task, the “dream” of building a repository of progress indicators, where experts and public users can use GeoAnalytics collaborative tools to compare situations for two or more countries, regions or local communities, could be accomplished. While the benefits of GeoAnalytics tools are many, it remains a challenge to adapt these dynamic visual tools to the Internet. For example, dynamic web-enabled animation that enables statisticians to explore temporal, spatial and multivariate demographics data from multiple perspectives, discover interesting relationships, share their incremental discoveries with colleagues and finally communicate selected relevant knowledge to the public. These discoveries often emerge through the diverse backgrounds and experiences of expert domains and are precious in a creative analytics reasoning process. In this context, we introduce a demonstrator “OECD eXplorer”, a customized tool for interactively analyzing, and collaborating gained insights and discoveries based on a novel story mechanism that capture, re-use and share task-related explorative events.

  15. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations

    Science.gov (United States)

    Glover, William J.; Mori, Toshifumi; Schuurman, Michael S.; Boguslavskiy, Andrey E.; Schalk, Oliver; Stolow, Albert; Martínez, Todd J.

    2018-04-01

    The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 11Bu (ππ*) state and non-adiabatically coupled dark 21Ag state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 11Bu state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1Bu or the dark 21Ag state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.

  16. Geophysical Data Sets in GeoMapApp

    Science.gov (United States)

    Goodwillie, A. M.

    2017-12-01

    GeoMapApp (http://www.geomapapp.org), a free map-based data tool developed at Lamont-Doherty Earth Observatory, provides access to hundreds of integrated geoscience data sets that are useful for geophysical studies. Examples include earthquake and volcano catalogues, gravity and magnetics data, seismic velocity tomographic models, geological maps, geochemical analytical data, lithospheric plate boundary information, geodetic velocities, and high-resolution bathymetry and land elevations. Users can also import and analyse their own data files. Data analytical functions provide contouring, shading, profiling, layering and transparency, allowing multiple data sets to be seamlessly compared. A new digitization and field planning portal allow stations and waypoints to be generated. Sessions can be saved and shared with colleagues and students. In this eLightning presentation we will demonstrate some of GeoMapApp's capabilities with a focus upon subduction zones and tectonics. In the attached screen shot of the Cascadia margin, the contoured depth to the top of the subducting Juan de Fuca slab is overlain on a shear wave velocity depth slice. Geochemical data coloured on Al2O3 and scaled on MgO content is shown as circles. The stack of data profiles was generated along the white line.

  17. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    Science.gov (United States)

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  18. Kennisagenda Geo-informatie: GISsen met beleid

    NARCIS (Netherlands)

    Dessing, N.; Lips, F.; Hoogenboom, J.; Vullings, L.A.E.

    2009-01-01

    LNV wil méér geo-informatie inzetten bij de ontwikkeling en uitvoering van beleid en beleidsnota’s ruimer voorzien van kaartmateriaal. Dit betekent dat geo-informatie vaker moet worden benut om lokale knelpunten, mogelijkheden en de gevolgen van alternatieve oplossingen inzichtelijk te maken. Om dit

  19. SOIL Geo-Wiki: A tool for improving soil information

    Science.gov (United States)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  20. The AtChem On-line model and Electronic Laboratory Notebook (ELN): A free community modelling tool with provenance capture

    Science.gov (United States)

    Young, J. C.; Boronska, K.; Martin, C. J.; Rickard, A. R.; Vázquez Moreno, M.; Pilling, M. J.; Haji, M. H.; Dew, P. M.; Lau, L. M.; Jimack, P. K.

    2010-12-01

    AtChem On-line1 is a simple to use zero-dimensional box modelling toolkit, developed for use by laboratory, field and chamber scientists. Any set of chemical reactions can be simulated, in particular the whole Master Chemical Mechanism (MCM2) or any subset of it. Parameters and initial data can be provided through a self-explanatory web form and the resulting model is compiled and run on a dedicated server. The core part of the toolkit, providing a robust solver for thousands of chemical reactions, is written in Fortran and uses SUNDIALS3 CVODE libraries. Chemical systems can be constrained at multiple, user-determined timescales; this enabled studies of radical chemistry at one minute timescales. AtChem On-line is free to use and requires no installation - a web browser, text editor and any compressing software is all the user needs. CPU and storage are provided by the server (input and output data are saved indefinitely). An off-line version is also being developed, which will provide batch processing, an advanced graphical user interface and post-processing tools, for example, Rate of Production Analysis (ROPA) and chainlength analysis. The source code is freely available for advanced users wishing to adapt and run the program locally. Data management, dissemination and archiving are essential in all areas of science. In order to do this in an efficient and transparent way, there is a critical need to capture high quality metadata/provenance for modelling activities. An Electronic Laboratory Notebook (ELN) has been developed in parallel with AtChem Online as part of the EC EUROCHAMP24 project. In order to use controlled chamber experiments to evaluate the MCM, we need to be able to archive, track and search information on all associated chamber model runs, so that they can be used in subsequent mechanism development. Therefore it would be extremely useful if experiment and model metadata/provenance could be easily and automatically stored electronically

  1. Requirements elicitation for geo-information solutions

    NARCIS (Netherlands)

    Robbi Sluter, Claudia; van Elzakker, Corné P.J.M.; Ivanova, Ivana

    2017-01-01

    Geo-information solutions can achieve a higher level of quality if they are developed in accordance with a user-centred design that requires definition of the user requirements in the first step of solution construction. We treat a geo-information solution as a system designed to support human-based

  2. Discovery of accessible locations using region-based geo-social data

    KAUST Repository

    Wang, Yan

    2018-03-17

    Geo-social data plays a significant role in location discovery and recommendation. In this light, we propose and study a novel problem of discovering accessible locations in spatial networks using region-based geo-social data. Given a set Q of query regions, the top-k accessible location discovery query (k ALDQ) finds k locations that have the highest spatial-density correlations to Q. Both the spatial distances between locations and regions and the POI (point of interest) density within the regions are taken into account. We believe that this type of k ALDQ query can bring significant benefit to many applications such as travel planning, facility allocation, and urban planning. Three challenges exist in k ALDQ: (1) how to model the spatial-density correlation practically, (2) how to prune the search space effectively, and (3) how to schedule the searches from multiple query regions. To tackle the challenges and process k ALDQ effectively and efficiently, we first define a series of spatial and density metrics to model the spatial-density correlation. Then we propose a novel three-phase solution with a pair of upper and lower bounds of the spatial-density correlation and a heuristic scheduling strategy to schedule multiple query regions. Finally, we conduct extensive experiments on real and synthetic spatial data to demonstrate the performance of the developed solutions.

  3. Modeling regional air quality and climate: improving organic aerosol and aerosol activation processes in WRF/Chem version 3.7.1

    Directory of Open Access Journals (Sweden)

    K. Yahya

    2017-06-01

    Full Text Available Air quality and climate influence each other through the uncertain processes of aerosol formation and cloud droplet activation. In this study, both processes are improved in the Weather, Research and Forecasting model with Chemistry (WRF/Chem version 3.7.1. The existing Volatility Basis Set (VBS treatments for organic aerosol (OA formation in WRF/Chem are improved by considering the following: the secondary OA (SOA formation from semi-volatile primary organic aerosol (POA, a semi-empirical formulation for the enthalpy of vaporization of SOA, and functionalization and fragmentation reactions for multiple generations of products from the oxidation of VOCs. Over the continental US, 2-month-long simulations (May to June 2010 are conducted and results are evaluated against surface and aircraft observations during the Nexus of Air Quality and Climate Change (CalNex campaign. Among all the configurations considered, the best performance is found for the simulation with the 2005 Carbon Bond mechanism (CB05 and the VBS SOA module with semivolatile POA treatment, 25 % fragmentation, and the emissions of semi-volatile and intermediate volatile organic compounds being 3 times the original POA emissions. Among the three gas-phase mechanisms (CB05, CB6, and SAPRC07 used, CB05 gives the best performance for surface ozone and PM2. 5 concentrations. Differences in SOA predictions are larger for the simulations with different VBS treatments (e.g., nonvolatile POA versus semivolatile POA compared to the simulations with different gas-phase mechanisms. Compared to the simulation with CB05 and the default SOA module, the simulations with the VBS treatment improve cloud droplet number concentration (CDNC predictions (normalized mean biases from −40.8 % to a range of −34.6 to −27.7 %, with large differences between CB05–CB6 and SAPRC07 due to large differences in their OH and HO2 predictions. An advanced aerosol activation

  4. Integrated Geo Hazard Management System in Cloud Computing Technology

    Science.gov (United States)

    Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.

    2016-11-01

    Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.

  5. I:\\AA-TYPESET\\CHEM\\2005\\Van Es.vp

    African Journals Online (AJOL)

    NJD

    aDepartment of Biochemistry and Microbiology, Cook College, Rutgers The State University of New Jersey, 08903-0231, USA. .... 4 formation is expected to transfer to the more basic nitrogen of ...... Jouannetaud, French Patent (2000). Chem.

  6. Global Particulate Matter Source Apportionment

    Science.gov (United States)

    Lamancusa, C.; Wagstrom, K.

    2017-12-01

    As our global society develops and grows it is necessary to better understand the impacts and nuances of atmospheric chemistry, in particular those associated with atmospheric particulate matter. We have developed a source apportionment scheme for the GEOS-Chem global atmospheric chemical transport model. While these approaches have existed for several years in regional chemical transport models, the Global Particulate Matter Source Apportionment Technology (GPSAT) represents the first incorporation into a global chemical transport model. GPSAT runs in parallel to a standard GEOS-Chem run. GPSAT uses the fact that all molecules of a given species have the same probability of undergoing any given process as a core principle. This allows GPSAT to track many different species using only the flux information provided by GEOS-Chem's many processes. GPSAT accounts for the change in source specific concentrations as a result of aqueous and gas-phase chemistry, horizontal and vertical transport, condensation and evaporation on particulate matter, emissions, and wet and dry deposition. By using fluxes, GPSAT minimizes computational cost by circumventing the computationally costly chemistry and transport solvers. GPSAT will allow researchers to address many pertinent research questions about global particulate matter including the global impact of emissions from different source regions and the climate impacts from different source types and regions. For this first application of GPSAT, we investigate the contribution of the twenty largest urban areas worldwide to global particulate matter concentrations. The species investigated include: ammonium, nitrates, sulfates, and the secondary organic aerosols formed by the oxidation of benzene, isoprene, and terpenes. While GPSAT is not yet publically available, we will incorporate it into a future standard release of GEOS-Chem so that all GEOS-Chem users will have access to this new tool.

  7. A GeoWall with Physics and Astronomy Applications

    Science.gov (United States)

    Dukes, Phillip; Bruton, Dan

    2008-03-01

    A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.

  8. Monte Carlo simulations of multiple scattering effects in ERD measurements

    International Nuclear Information System (INIS)

    Doyle, Barney Lee; Arstila, Kai.; Nordlumd, K.; Knapp, James Arthur

    2003-01-01

    Multiple scattering effects in ERD measurements are studied by comparing two Monte Carlo simulation codes, representing different approaches to obtain acceptable statistics, to experimental spectra measured from a HfO 2 sample with a time-of-flight-ERD setup. The results show that both codes can reproduce the absolute detection yields and the energy distributions in an adequate way. The effect of the choice of the interatomic potential in multiple scattering effects is also studied. Finally the capabilities of the MC simulations in the design of new measurement setups are demonstrated by simulating the recoil energy spectra from a WC x N y sample with a low energy heavy ion beam.

  9. The Population of Optically Faint GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2016-01-01

    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  10. PubChem atom environments.

    Science.gov (United States)

    Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H

    2015-01-01

    Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many

  11. GeoSteamNet: A computer code to simulate geothermal steam flow in a pipeline network; GeoSteamNet: Programa de computo para simular el flujo de vapor geotermico de una red de vaporductos

    Energy Technology Data Exchange (ETDEWEB)

    Verma P., Mahendra; Aragon A., Alfonso [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: mahendra@iie.org.mx; Ruiz L., Alejando; Mendoza C., Alfredo [Comision Federal de Electricidad, Campo Geotermico Los Azufres, Campamento Agua Fria, Michoacan (Mexico)

    2011-07-15

    A computer package, GeoSteamNet, was developed to simulate steam transport in a pipeline network of a geothermal field. The fluid motion is governed by the following basic principles: conservation of mass, linear momentum principle (Newton's second law or the Navier Stokes equations), and the first and second laws of thermodynamics. The second law of thermodynamics defines the direction of a spontaneous process, which is indirectly validated in the algorithm as vapor flows from high-to-low pressure, and heat flows from high-to-low temperatures. The nonlinear equations are solved with the Newton-Raphson method. Using the ActiveX component OrificeMeter, the steam-flow balance was calculated for power plants U-15 and U-16 in Los Azufres Geothermal Field, Mich., in February 2009. U-15 was fed by the production wells AZ-04, AZ-28, AZ-30, AZ-65D, and AZ-66, whereas wells AZ-28A, AZ-45, AZ-56, AZ-67, AZ-69D were connected to U-16. The analytical error is within {+-}4%, which is acceptable for practical purposes for steam-supply management, considering the uncertainties in parameters, such as pressure, temperature, pressure fluctuation at the wellhead, etc. The steam simulation results by GeoSteamNet for a hypothetical-pipeline network in a geothermal system with two production wells and a power plant illustrate its functionality. Several points need to be emphasized. For a specific geometry-pipeline network, there is only a certain amount of mass (vapor) that can be transported at a given pressure at the wellheads and the power plant. The construction and modification of a pipeline network is very expensive and the production of geothermal wells depends on many natural factors; therefore, there is need to conduct a tolerance study for each component of the network. A simulation study of the virtual-pipeline network for the design of a geothermal power plant can save money, effort, and time. [Spanish] Se desarrollo un paquete de computo, GeoSteamNet, para simular el

  12. Chem systems

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that world styrene demand, paced by a near doubling of combined requirements in East Asia and Oceania, could reach 19.3 million metric tons by 2000, an average growth rate of 3.7%/year. So concludes Chem Systems Inc., Tarrytown, N.Y., in a study of world styrene markets through the end of the century. Pacific Rim styrene production and consumption throughout the 1990s are predicted to make up increasingly larger shares of world markets, while demand and production lag in the U.S. and western Europe. Demand and capacity in other parts of the world will grow in real terms, increasing combined market shares only slightly. Most of the increase will be driven by demand in East Asia and Oceania, where consumption by century's end is expected to increase 4.48 million metric tons from 2.25 million tons in 1991. Meantime, Japan's styrene demand in 2000 is projected at 2.64 million tons, a 500,000 ton increase from 1991 demand but a net market loss of 1.9%

  13. Paradigm shift from cartography to geo-communication

    DEFF Research Database (Denmark)

    Brodersen, Lars

    2007-01-01

    This paper argues that the domain of GIS, cartography, geo-information etc. is facing a paradigm shift. The implication of a paradigm shift is a complete and necessary re-definition of e.g. the philosophical foundation of the system, as well as with a major upgrade and readjustment of procedures......-information is actually not possible at all without having a usage (a project identity and a purpose) in mind. Objective and neutral geo-information does not exist. Therefore the overall philosophy of the geo-domain will be that it is a communication discipline....

  14. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Directory of Open Access Journals (Sweden)

    A. Sharma

    2017-12-01

    Full Text Available We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem with the second-generation Regional Acid Deposition Model (RADM2 chemical mechanism: the Emissions Database for Global Atmospheric Research – Hemispheric Transport of Air Pollution (EDGAR-HTAP, the Intercontinental Chemical Transport Experiment phase B (INTEX-B and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS. Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30–16:30 IST – Indian Standard Time – UTC +5:30, are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10–30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP, central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  15. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Science.gov (United States)

    Sharma, Amit; Ojha, Narendra; Pozzer, Andrea; Mar, Kathleen A.; Beig, Gufran; Lelieveld, Jos; Gunthe, Sachin S.

    2017-12-01

    We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem) with the second-generation Regional Acid Deposition Model (RADM2) chemical mechanism: the Emissions Database for Global Atmospheric Research - Hemispheric Transport of Air Pollution (EDGAR-HTAP), the Intercontinental Chemical Transport Experiment phase B (INTEX-B) and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS). Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30-16:30 IST - Indian Standard Time - UTC +5:30), are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10-30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP), central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART) chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  16. Dynamical simulation of structural multiplicity in grain boundaries

    International Nuclear Information System (INIS)

    Majid, I.; Bristowe, P.D.

    1987-06-01

    Work on a computer simulation study of a low-energy high-angle boundary structure which is not periodic have been recently reported. This result is of interest since grain boundary structures are usually assumed to have a periodicity corresponding to the appropriate coincidence site lattice (CSL) and many experimental observations of the structure of grain boundaries performed using conventional and high-resolution electron microscopy, electron diffraction and x-ray diffraction appear to support this work. However, this work, using empirical interatomic pair potentials and the relaxation method of molecular statics, have simulated a Σ = 5 36.87 0 (001) twist boundary and found a low energy structure having a larger repeat cell than the CSL and is composed of two different types of structural unit that are randomly distributed in the boundary plane. This result, which has been termed the multiplicity of grain boundary structures, has also been found in the simulation of tilt boundaries. The multiplicity phenomenon is of special interest in twist boundaries since it is used as a structural model to explain the x-ray scattering from a Σ = 5 boundary in gold. These scattering patterns had previously remained unexplained using stable structures that had simple CSL periodicity. Also, the effect of having a multiple number of low energy structural units coexisting in the grain boundary is of more general interest since it implies that the boundary structures may be quasi-periodic and, in some circumstances, may even result in a roughening of the boundary plane. This paper extends this work by showing, using molecular dynamics, that a multiplicity of structural units can actually nucleate spontaneously in a high-angle grain boundary at finite temperatures

  17. The Results of Complex Research of GSS "SBIRS-Geo 2" Behavior in the Orbit

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P.; Sukhov, K. P.; Karpenko, G. F.; Motrunich, I. I.

    2017-04-01

    The new generation of geosynchronous satellites SBIRS of US Air Force early warning system series (Satellite Early Warning System) replaced the previous DSP-satellite series (Defense Support Program). Currently from the territory of Ukraine, several GSS of DSP series and one "SBIRS-Geo 2" are available to observation. During two years of observations, we have received and analyzed for two satellites more than 30 light curves in B, V, R photometric system. As a result of complex research, we propose a model of "SBIRS-Geo" 2 orbital behavior compared with the same one of the DSP-satellite. To control the entire surface of the Earth with 15-16 sec interval, including the polar regions, 4 SBIRS satellites located every 90 deg. along the equator are enough in GEO orbit. Since DSP-satellites provide the coverage of the Earth's surface to 83 deg. latitudes with a period of 50 sec, DSP-satellites should be 8. All the conclusions were made based on an analysis of photometric and coordinate observations using the simulation of the dynamics of their orbital behavior.

  18. CME Simulations with Boundary Conditions Derived from Multiple Viewpoints of STEREO

    Science.gov (United States)

    Singh, T.; Yalim, M. S.; Pogorelov, N. V.

    2017-12-01

    Coronal Mass Ejections (CMEs) are major drivers of extreme space weather conditions, which is a matter of huge concern for our modern technologically dependent society. Development of numerical approaches that would reproduce CME propagation through the interplanetary space is an important step towards our capability to predict CME arrival time at Earth and their geo-effectiveness. It is also important that CMEs are propagating through a realistic, data-driven background solar wind (SW). In this study, we use a version of the flux-rope-driven Gibson-Low (GL) model to simulate CMEs. We derive inner boundary conditions for the GL flux rope model using the Graduate Cylindrical Shell (GCS) method. This method uses viewpoints from STEREO A and B, and SOHO/LASCO coronagraphs to determine the size and orientation of a CME flux rope as it starts to erupt from Sun. A flux rope created this way is inserted into an SDO/HMI vector magnetogram driven SW background obtained with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). Numerical results are compared with STEREO, SDO/AIA and SOHO/LASCO observations in particular in terms of the CME speed, acceleration and magnetic field structure.

  19. Multiple Time Series Ising Model for Financial Market Simulations

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2015-01-01

    In this paper we propose an Ising model which simulates multiple financial time series. Our model introduces the interaction which couples to spins of other systems. Simulations from our model show that time series exhibit the volatility clustering that is often observed in the real financial markets. Furthermore we also find non-zero cross correlations between the volatilities from our model. Thus our model can simulate stock markets where volatilities of stocks are mutually correlated

  20. A Study of the Carbon Cycle Using NASA Observations and the GEOS Model

    Science.gov (United States)

    Pawson, Steven; Gelaro, Ron; Ott, Lesley; Putman, Bill; Chatterjee, Abhishek; Koster, Randy; Lee, Eunjee; Oda, Tom; Weir, Brad; Zeng, Fanwei

    2018-01-01

    The Goddard Earth Observing System (GEOS) model has been developed in the Global Modeling and Assimilation Office (GMAO) at NASA's Goddard Space Flight Center. From its roots in chemical transport and as a General Circulation Model, the GEOS model has been extended to an Earth System Model based on a modular construction using the Earth System Modeling Framework (ESMF), combining elements developed in house in the GMAO with others that are imported through collaborative research. It is used extensively for research and for product generation, both as a free-running model and as the core of the GMAO's data assimilation system. In recent years, the GMAO's modeling and assimilation efforts have been strongly supported by Piers Sellers, building on both his earlier legacy as an observationally oriented model developer and his post-astronaut career as a dynamic leader into new territory. Piers' long-standing interest in the carbon cycle and the combination of models with observations motivates this presentation, which will focus on the representation of the carbon cycle in the GEOS Earth System Model. Examples will include: (i) the progression from specified land-atmosphere surface fluxes to computations with an interactive model component (Catchment-CN), along with constraints on vegetation distributions using satellite observations; (ii) the use of high-resolution satellite observations to constrain human-generated inputs to the atmosphere; (iii) studies of the consistency of the observed atmospheric carbon dioxide concentrations with those in the model simulations. The presentation will focus on year-to-year variations in elements of the carbon cycle, specifically on how the observations can inform the representation of mechanisms in the model and lead to integrity in global carbon dioxide simulations. Further, applications of the GEOS model to the planning of new carbon-climate observations will be addressed, as an example of the work that was strongly supported by

  1. The influence of aerosols and land-use type on NO2 satellite retrieval over China

    Science.gov (United States)

    Liu, Mengyao; Lin, Jintai; Boersma, Folkert; Eskes, Henk; Chimot, Julien

    2017-04-01

    Both aerosols and surface reflectance have a strong influence on the retrieval of NO2 tropospheric vertical column densities (VCDs), especially over China with its heavy aerosol loading and rapid changes in land-use type. However, satellite retrievals of NO2 VCDs usually do not explicitly account for aerosol optical effects and surface reflectance anisotropy (BRDF) that varies in space and time. We develop an improved algorithm to derive tropospheric AMFs and VCDs over China from the OMI instrument - POMINO and DOMINO. This method can also be applied to TropOMI NO2 retrievals in the future. With small pixels of TropOMI and higher probability of encountering clear-sky scenes, the influence of BRDF and aerosol interference becomes more important than for OMI. Daily aerosol information is taken from the GEOS-Chem chemistry transport model and the aerosol optical depth (AOD) is adjusted via MODIS AOD climatology. We take the MODIS MCD43C2 C5 product to account for BRDF effects. The relative altitude of NO2 and aerosols is critical factor influencing the NO2 retrieval. In order to evaluate the aerosol extinction profiles (AEP) of GEOS-Chem improve our algorithm, we compare the GEOS-Chem simulation with CALIOP and develop a CALIOP AEP climatology to regulate the model's AEP. This provides a new way to include aerosol information into the tracer gas retrieval for OMI and TropOMI. Preliminary results indicate that the model performs reasonably well in reproducing the AEP shape. However, it seems to overestimate aerosols under 2km and underestimate above. We find that relative humidity (RH) is an important factor influencing the AEP shape when comparing the model with observations. If we adjust the GEOS-Chem RH to CALIOP's RH, the correlations of their AEPs also improve. Besides, take advantage of our retrieval method, we executed sensitivity tests to analyze their influences on NO2 trend and spatiotemporal variations in retrieval. It' the first time to investigate

  2. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations.

    Science.gov (United States)

    Glover, William J; Mori, Toshifumi; Schuurman, Michael S; Boguslavskiy, Andrey E; Schalk, Oliver; Stolow, Albert; Martínez, Todd J

    2018-04-28

    The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 1 1 B u (ππ*) state and non-adiabatically coupled dark 2 1 A g state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 1 1 B u state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1 B u or the dark 2 1 A g state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.

  3. Kennisagenda Geo-informatie: GISsen met beleid

    OpenAIRE

    Dessing, N.; Lips, F.; Hoogenboom, J.; Vullings, L.A.E.

    2009-01-01

    LNV wil méér geo-informatie inzetten bij de ontwikkeling en uitvoering van beleid en beleidsnota’s ruimer voorzien van kaartmateriaal. Dit betekent dat geo-informatie vaker moet worden benut om lokale knelpunten, mogelijkheden en de gevolgen van alternatieve oplossingen inzichtelijk te maken. Om dit te bereiken moet de beschikbaarheid van adequate data en gebruikersvriendelijke en nieuwe GIS-technieken aanmerkelijk verbeteren.

  4. Geo-registration of Unprofessional and Weakly-related Image and Precision Evaluation

    Directory of Open Access Journals (Sweden)

    LIU Yingzhen

    2015-09-01

    Full Text Available The 3D geo-spatial model built by unprofessional and weakly-related image is a significant source of geo-spatial information. The unprofessional and weakly-related image cannot be useful geo-spatial information until be geo-registered with accurate geo-spatial orientation and location. In this paper, we present an automatic geo-registration using the coordination acquired by real-time GPS module. We calculate 2D and 3D spatial transformation parameters based on the spatial similarity between the image location in the geo-spatial coordination system and in the 3D reconstruction coordination system. Because of the poor precision of GPS information and especially the unstability of elevation measurement, we use RANSAC algorithm to get rid of outliers. In the experiment, we compare the geo-registered image positions to their differential GPS coordinates. The errors of translation, rotation and scaling are evaluated quantitively and the causes of bad result are analyzed. The experiment demonstrates that this geo-registration method can get a precise result with enough images.

  5. A Geo-Distributed System Architecture for Different Domains

    Science.gov (United States)

    Moßgraber, Jürgen; Middleton, Stuart; Tao, Ran

    2013-04-01

    The presentation will describe work on the system-of-systems (SoS) architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". In this project we deal with two use-cases: Natural Crisis Management (e.g. Tsunami Early Warning) and Industrial Subsurface Development (e.g. drilling for oil). These use-cases seem to be quite different at first sight but share a lot of similarities, like managing and looking up available sensors, extracting data from them and annotate it semantically, intelligently manage the data (big data problem), run mathematical analysis algorithms on the data and finally provide decision support on this basis. The main challenge was to create a generic architecture which fits both use-cases. The requirements to the architecture are manifold and the whole spectrum of a modern, geo-distributed and collaborative system comes into play. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. The most important architectural challenges we needed to address are 1. Build a scalable communication layer for a System-of-sytems 2. Build a resilient communication layer for a System-of-sytems 3. Efficiently publish large volumes of semantically rich sensor data 4. Scalable and high performance storage of large distributed datasets 5. Handling federated multi-domain heterogeneous data 6. Discovery of resources in a geo-distributed SoS 7. Coordination of work between geo-distributed systems The design decisions made for each of them will be presented. These developed concepts are also applicable to the requirements of the Future Internet (FI) and Internet of Things (IoT) which will provide services like smart grids, smart metering, logistics and

  6. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    Science.gov (United States)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  7. NutriChem 2.0: exploring the effect of plant-based foods on human health and drug efficacy

    DEFF Research Database (Denmark)

    Ni, Yueqiong; Jensen, Kasper; Kouskoumvekaki, Eirini

    2017-01-01

    NutriChem is a database generated by text mining of 21 million MEDLINE abstracts that links plant-based foods with their small molecule components and human health effect. In this new, second release of NutriChem (NutriChem 2.0) we have integrated information on overlapping protein targets between...

  8. Automated JPSS VIIRS GEO code change testing by using Chain Run Scripts

    Science.gov (United States)

    Chen, W.; Wang, W.; Zhao, Q.; Das, B.; Mikles, V. J.; Sprietzer, K.; Tsidulko, M.; Zhao, Y.; Dharmawardane, V.; Wolf, W.

    2015-12-01

    The Joint Polar Satellite System (JPSS) is the next generation polar-orbiting operational environmental satellite system. The first satellite in the JPSS series of satellites, J-1, is scheduled to launch in early 2017. J1 will carry similar versions of the instruments that are on board of Suomi National Polar-Orbiting Partnership (S-NPP) satellite which was launched on October 28, 2011. The center for Satellite Applications and Research Algorithm Integration Team (STAR AIT) uses the Algorithm Development Library (ADL) to run S-NPP and pre-J1 algorithms in a development and test mode. The ADL is an offline test system developed by Raytheon to mimic the operational system while enabling a development environment for plug and play algorithms. The Perl Chain Run Scripts have been developed by STAR AIT to automate the staging and processing of multiple JPSS Sensor Data Record (SDR) and Environmental Data Record (EDR) products. JPSS J1 VIIRS Day Night Band (DNB) has anomalous non-linear response at high scan angles based on prelaunch testing. The flight project has proposed multiple mitigation options through onboard aggregation, and the Option 21 has been suggested by the VIIRS SDR team as the baseline aggregation mode. VIIRS GEOlocation (GEO) code analysis results show that J1 DNB GEO product cannot be generated correctly without the software update. The modified code will support both Op21, Op21/26 and is backward compatible with SNPP. J1 GEO code change version 0 delivery package is under development for the current change request. In this presentation, we will discuss how to use the Chain Run Script to verify the code change and Lookup Tables (LUTs) update in ADL Block2.

  9. Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models

    Science.gov (United States)

    Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.

    2017-12-01

    Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.

  10. 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine.

    Science.gov (United States)

    McGuire, Ross; Verhoeven, Stefan; Vass, Márton; Vriend, Gerrit; de Esch, Iwan J P; Lusher, Scott J; Leurs, Rob; Ridder, Lars; Kooistra, Albert J; Ritschel, Tina; de Graaf, Chris

    2017-02-27

    3D-e-Chem-VM is an open source, freely available Virtual Machine ( http://3d-e-chem.github.io/3D-e-Chem-VM/ ) that integrates cheminformatics and bioinformatics tools for the analysis of protein-ligand interaction data. 3D-e-Chem-VM consists of software libraries, and database and workflow tools that can analyze and combine small molecule and protein structural information in a graphical programming environment. New chemical and biological data analytics tools and workflows have been developed for the efficient exploitation of structural and pharmacological protein-ligand interaction data from proteomewide databases (e.g., ChEMBLdb and PDB), as well as customized information systems focused on, e.g., G protein-coupled receptors (GPCRdb) and protein kinases (KLIFS). The integrated structural cheminformatics research infrastructure compiled in the 3D-e-Chem-VM enables the design of new approaches in virtual ligand screening (Chemdb4VS), ligand-based metabolism prediction (SyGMa), and structure-based protein binding site comparison and bioisosteric replacement for ligand design (KRIPOdb).

  11. ChemSkill Builder 2000, Version 6.1 [CD-ROM] (by James D. Spain and Harold J. Peters)

    Science.gov (United States)

    Keeney-Kennicutt, Reviewed By Wendy L.

    2000-07-01

    dimensional analysis in Sections 2.3 and 2.5, the pH meter simulation in Section 18.3, the Geiger counter simulation in Section 23.5, and the new periodic table game in Appendix A. I informally polled my Fall 1999 students on their midsemester impressions of the ChemSkill Builder, version 5.1--the previous version. The preliminary results in Table 1 show an overall acceptable rating of 3.45. Note that 51% of the students thought that incorporating the CSB into the syllabus was good to very good, compared to only 16% who gave negative responses. Positive comments included "a great tool to study for the test" and "it shows how to work out the problems". The major negative comment was that the CSB was too time-consuming because the acceptable answer had to include the right number of significant figures and the correct unit--sexactly what an instructor wants the student to learn. Interestingly, the scores given appeared to be independent of the students' midterm grades, suggesting that acceptance of this product might be linked to a specific learning style. When I compared my students' responses to their Keirsey temperaments in Table 2, the ChemSkill Builder appealed somewhat more to the students who like activity, entertainment and immediate feedback (SP) or who enjoy technology and constant success experiences (NT) than to the students who prefer more group interactions (NF) or who need more structure (SJ). At the semester's end, the students were asked again to rate the ChemSkill Builder, and 97% of 155 responses either agreed (28%) or strongly agreed (69%) that it proved helpful in learning course material. Moreover, 99% thought that I should continue to incorporate the ChemSkill Builder in future courses. To summarize, the ChemSkill Builder 2000, version 6.1, will be an excellent tool for augmenting the learning process in the general chemistry classroom.

  12. Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2010-02-01

    Full Text Available We combine CO column measurements from the MOPITT, AIRS, SCIAMACHY, and TES satellite instruments in a full-year (May 2004–April 2005 global inversion of CO sources at 4°×5° spatial resolution and monthly temporal resolution. The inversion uses the GEOS-Chem chemical transport model (CTM and its adjoint applied to MOPITT, AIRS, and SCIAMACHY. Observations from TES, surface sites (NOAA/GMD, and aircraft (MOZAIC are used for evaluation of the a posteriori solution. Using GEOS-Chem as a common intercomparison platform shows global consistency between the different satellite datasets and with the in situ data. Differences can be largely explained by different averaging kernels and a priori information. The global CO emission from combustion as constrained in the inversion is 1350 Tg a−1. This is much higher than current bottom-up emission inventories. A large fraction of the correction results from a seasonal underestimate of CO sources at northern mid-latitudes in winter and suggests a larger-than-expected CO source from vehicle cold starts and residential heating. Implementing this seasonal variation of emissions solves the long-standing problem of models underestimating CO in the northern extratropics in winter-spring. A posteriori emissions also indicate a general underestimation of biomass burning in the GFED2 inventory. However, the tropical biomass burning constraints are not quantitatively consistent across the different datasets.

  13. The Key Driving Forces for Geo-Economic Relationships between China and ASEAN Countries

    Directory of Open Access Journals (Sweden)

    Shufang Wang

    2017-12-01

    Full Text Available With the rise of China and the implementation of the “21st Century Maritime Silk Road” strategy, research on geo-economics between China and ASEAN (Association of Southeast Asian Nations countries has become increasingly important. Current studies mainly focus on influencing factors, while there is little consideration about how these influencing factors act on geo-economic relationships. Therefore, this paper explores the key driving forces for geo-economic relationships between China and ASEAN countries by use of the structural equation modeling based on Partial Lease Squares. There are three main findings: (1 Economic factors have the greatest impact on geo-economic relationships and the total path effect is 0.778. Geo-location, geopolitics and geo-culture act on geo-economic relationships directly and indirectly. Their total path effects are 0.731, 0.645 and 0.513, respectively. (2 Indirect effects of geo-location, geopolitics and geo-culture impacting geo-economic relationships are far greater than direct effects. Geo-culture, in particular, has a vital mediating effect on geo-economic relationships. (3 Economic drivers promote geo-economic relationships through market, industrial policy, technical, network and benefit-sharing mechanisms. Political drivers improve geo-economic relationships through cooperation, negotiation, coordination and institutional mechanisms. Cultural drivers enhance geo-economic relationships through transmission mechanism. Location drivers facilitate geo-economic relationships through selection mechanism. We provide new insights on the geo-economic relationships through quantitative analysis and enrich the existing literature by revealing the key driving forces and mechanisms for geo-economic relationships.

  14. The Multiple-Patient Simulation Toolkit: Purpose, Process, and Pilot.

    Science.gov (United States)

    Beroz, Sabrina; Sullivan, Nancy; Kramasz, Vanessa; Morgan, Patricia

    Educating nursing students to safely care for multiple patients has become an important but challenging focus for nurse educators. New graduate nurses are expected to manage care for multiple patients in a complex and multifaceted health care system. With patient safety as a priority, multiple-patient assignments are necessary in order for nursing students to learn how to effectively prioritize and delegate care. The purpose of this project was the construction of an adaptable and flexible template for the development of multiple-patient simulations. Through utilization, the template moved to a toolkit adding an operational guide, sample-populated template, and bibliography.

  15. Differential evolution-simulated annealing for multiple sequence alignment

    Science.gov (United States)

    Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.

    2017-10-01

    Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.

  16. Development of Two-Moment Cloud Microphysics for Liquid and Ice Within the NASA Goddard Earth Observing System Model (GEOS-5)

    Science.gov (United States)

    Barahona, Donifan; Molod, Andrea M.; Bacmeister, Julio; Nenes, Athanasios; Gettelman, Andrew; Morrison, Hugh; Phillips, Vaughan,; Eichmann, Andrew F.

    2013-01-01

    This work presents the development of a two-moment cloud microphysics scheme within the version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically-based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid scale vertical velocity distribution accounting for turbulence and gravity wave motion is developed. The implementation of the new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model shows agreement of the simulated droplet and ice crystal effective and volumetric radius with satellite retrievals and in situ observations. The simulated global distribution of supersaturation is also in agreement with observations. It was found that when using the new microphysics the fraction of condensate that remains as liquid follows a sigmoidal increase with temperature which differs from the linear increase assumed in most models and is in better agreement with available observations. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. However the new microphysics tends to underestimate the coverage of persistent low level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters

  17. Lower tropospheric ozone over India and its linkage to the South Asian monsoon

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Liu, Xiong; Gao, Meng; Zhao, Yuanhong; Shao, Jingyuan

    2018-03-01

    Lower tropospheric (surface to 600 hPa) ozone over India poses serious risks to both human health and crops, and potentially affects global ozone distribution through frequent deep convection in tropical regions. Our current understanding of the processes controlling seasonal and long-term variations in lower tropospheric ozone over this region is rather limited due to spatially and temporally sparse observations. Here we present an integrated process analysis of the seasonal cycle, interannual variability, and long-term trends of lower tropospheric ozone over India and its linkage to the South Asian monsoon using the Ozone Monitoring Instrument (OMI) satellite observations for years 2006-2014 interpreted with a global chemical transport model (GEOS-Chem) simulation for 1990-2010. OMI observed lower tropospheric ozone over India averaged for 2006-2010, showing the highest concentrations (54.1 ppbv) in the pre-summer monsoon season (May) and the lowest concentrations (40.5 ppbv) in the summer monsoon season (August). Process analyses in GEOS-Chem show that hot and dry meteorological conditions and active biomass burning together contribute to 5.8 Tg more ozone being produced in the lower troposphere in India in May than January. The onset of the summer monsoon brings ozone-unfavorable meteorological conditions and strong upward transport, which all lead to large decreases in the lower tropospheric ozone burden. Interannually, we find that both OMI and GEOS-Chem indicate strong positive correlations (r = 0.55-0.58) between ozone and surface temperature in pre-summer monsoon seasons, with larger correlations found in high NOx emission regions reflecting NOx-limited production conditions. Summer monsoon seasonal mean ozone levels are strongly controlled by monsoon strengths. Lower ozone concentrations are found in stronger monsoon seasons mainly due to less ozone net chemical production. Furthermore, model simulations over 1990-2010 estimate a mean annual trend of 0

  18. Towards a Comprehensive Dynamic-chemistry Assimilation for Eos-Chem: Plans and Status in NASA's Data Assimilation Office

    Science.gov (United States)

    Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Stajner, Ivanka; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.

    2000-01-01

    In order to support the EOS-Chem project, a comprehensive assimilation package for the coupled chemical-dynamical system is being developed by the Data Assimilation Office at NASA GSFC. This involves development of a coupled chemistry/meteorology model and of data assimilation techniques for trace species and meteorology. The model is being developed using the flux-form semi-Lagrangian dynamical core of Lin and Rood, the physical parameterizations from the NCAR Community Climate Model, and atmospheric chemistry modules from the Atmospheric Chemistry and Dynamics branch at NASA GSFC. To date the following results have been obtained: (i) multi-annual simulations with the dynamics-radiation model show the credibility of the package for atmospheric simulations; (ii) initial simulations including a limited number of middle atmospheric trace gases reveal the realistic nature of transport mechanisms, although there is still a need for some improvements. Samples of these results will be shown. A meteorological assimilation system is currently being constructed using the model; this will form the basis for the proposed meteorological/chemical assimilation package. The latter part of the presentation will focus on areas targeted for development in the near and far terms, with the objective of Providing a comprehensive assimilation package for the EOS-Chem science experiment. The first stage will target ozone assimilation. The plans also encompass a reanalysis (ReSTS) for the 1991-1995 period, which includes the Mt. Pinatubo eruption and the time when a large number of UARS observations were available. One of the most challenging aspects of future developments will be to couple theoretical advances in tracer assimilation with the practical considerations of a real environment and eventually a near-real-time assimilation system.

  19. Evaluate dry deposition velocity of the nitrogen oxides using Noah-MP physics ensemble simulations for the Dinghushan Forest, Southern China

    Science.gov (United States)

    Zhang, Qi; Chang, Ming; Zhou, Shengzhen; Chen, Weihua; Wang, Xuemei; Liao, Wenhui; Dai, Jianing; Wu, ZhiYong

    2017-11-01

    There has been a rapid growth of reactive nitrogen (Nr) deposition over the world in the past decades. The Pearl River Delta region is one of the areas with high loading of nitrogen deposition. But there are still large uncertainties in the study of dry deposition because of its complex processes of physical chemistry and vegetation physiology. At present, the forest canopy parameterization scheme used in WRF-Chem model is a single-layer "big leaf" model, and the simulation of radiation transmission and energy balance in forest canopy is not detailed and accurate. Noah-MP land surface model (Noah-MP) is based on the Noah land surface model (Noah LSM) and has multiple parametric options to simulate the energy, momentum, and material interactions of the vegetation-soil-atmosphere system. Therefore, to investigate the improvement of the simulation results of WRF-Chem on the nitrogen deposition in forest area after coupled with Noah-MP model and to reduce the influence of meteorological simulation biases on the dry deposition velocity simulation, a dry deposition single-point model coupled by Noah- MP and the WRF-Chem dry deposition module (WDDM) was used to simulate the deposition velocity (Vd). The model was driven by the micro-meteorological observation of the Dinghushan Forest Ecosystem Location Station. And a series of numerical experiments were carried out to identify the key processes influencing the calculation of dry deposition velocity, and the effects of various surface physical and plant physiological processes on dry deposition were discussed. The model captured the observed Vd well, but still underestimated the Vd. The self-defect of Wesely scheme applied by WDDM, and the inaccuracy of built-in parameters in WDDM and input data for Noah-MP (e.g. LAI) were the key factors that cause the underestimation of Vd. Therefore, future work is needed to improve model mechanisms and parameterization.

  20. Calcium Sulfate Characterized by ChemCam/Curiosity at Gale Crater, Mars

    Science.gov (United States)

    Nachon, M.; Clegg, S. N.; Mangold, N.; Schroeder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R.; Oehler, D. Z.; Bridges, J. C.; hide

    2014-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of :(1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets [1;2] and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis [3]. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material were seen [4;5]. ChemCam analysis demonstrate that those fracture fills consist of calcium sulfates [6].

  1. Comparative Analysis of NOAA REFM and SNB3GEO Tools for the Forecast of the Fluxes of High-Energy Electrons at GEO

    Science.gov (United States)

    Balikhin, M. A.; Rodriguez, J. V.; Boynton, R. J.; Walker, S. N.; Aryan, Homayon; Sibeck, D. G.; Billings, S. A.

    2016-01-01

    Reliable forecasts of relativistic electrons at geostationary orbit (GEO) are important for the mitigation of their hazardous effects on spacecraft at GEO. For a number of years the Space Weather Prediction Center at NOAA has provided advanced online forecasts of the fluence of electrons with energy >2 MeV at GEO using the Relativistic Electron Forecast Model (REFM). The REFM forecasts are based on real-time solar wind speed observations at L1. The high reliability of this forecasting tool serves as a benchmark for the assessment of other forecasting tools. Since 2012 the Sheffield SNB3GEO model has been operating online, providing a 24 h ahead forecast of the same fluxes. In addition to solar wind speed, the SNB3GEO forecasts use solar wind density and interplanetary magnetic field B(sub z) observations at L1. The period of joint operation of both of these forecasts has been used to compare their accuracy. Daily averaged measurements of electron fluxes by GOES 13 have been used to estimate the prediction efficiency of both forecasting tools. To assess the reliability of both models to forecast infrequent events of very high fluxes, the Heidke skill score was employed. The results obtained indicate that SNB3GEO provides a more accurate 1 day ahead forecast when compared to REFM. It is shown that the correction methodology utilized by REFM potentially can improve the SNB3GEO forecast.

  2. Comparative analysis of NOAA REFM and SNB3GEO tools for the forecast of the fluxes of high-energy electrons at GEO

    Science.gov (United States)

    Balikhin, M. A.; Rodriguez, J. V.; Boynton, R. J.; Walker, S. N.; Aryan, H.; Sibeck, D. G.; Billings, S. A.

    2016-01-01

    Reliable forecasts of relativistic electrons at geostationary orbit (GEO) are important for the mitigation of their hazardous effects on spacecraft at GEO. For a number of years the Space Weather Prediction Center at NOAA has provided advanced online forecasts of the fluence of electrons with energy >2 MeV at GEO using the Relativistic Electron Forecast Model (REFM). The REFM forecasts are based on real-time solar wind speed observations at L1. The high reliability of this forecasting tool serves as a benchmark for the assessment of other forecasting tools. Since 2012 the Sheffield SNB3GEO model has been operating online, providing a 24 h ahead forecast of the same fluxes. In addition to solar wind speed, the SNB3GEO forecasts use solar wind density and interplanetary magnetic field Bz observations at L1.The period of joint operation of both of these forecasts has been used to compare their accuracy. Daily averaged measurements of electron fluxes by GOES 13 have been used to estimate the prediction efficiency of both forecasting tools. To assess the reliability of both models to forecast infrequent events of very high fluxes, the Heidke skill score was employed. The results obtained indicate that SNB3GEO provides a more accurate 1 day ahead forecast when compared to REFM. It is shown that the correction methodology utilized by REFM potentially can improve the SNB3GEO forecast.

  3. Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system

    Directory of Open Access Journals (Sweden)

    Y. Yan

    2016-02-01

    Full Text Available Small-scale nonlinear chemical and physical processes over pollution source regions affect the tropospheric ozone (O3, but these processes are not captured by current global chemical transport models (CTMs and chemistry–climate models that are limited by coarse horizontal resolutions (100–500 km, typically 200 km. These models tend to contain large (and mostly positive tropospheric O3 biases in the Northern Hemisphere. Here we use the recently built two-way coupling system of the GEOS-Chem CTM to simulate the regional and global tropospheric O3 in 2009. The system couples the global model (at 2.5° long.  ×  2° lat. and its three nested models (at 0.667° long.  ×  0.5° lat. covering Asia, North America and Europe, respectively. Specifically, the nested models take lateral boundary conditions (LBCs from the global model, better capture small-scale processes and feed back to modify the global model simulation within the nested domains, with a subsequent effect on their LBCs. Compared to the global model alone, the two-way coupled system better simulates the tropospheric O3 both within and outside the nested domains, as found by evaluation against a suite of ground (1420 sites from the World Data Centre for Greenhouse Gases (WDCGG, the United States National Oceanic and Atmospheric Administration (NOAA Earth System Research Laboratory Global Monitoring Division (GMD, the Chemical Coordination Centre of European Monitoring and Evaluation Programme (EMEP, and the United States Environmental Protection Agency Air Quality System (AQS, aircraft (the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER Pole-to-Pole Observations (HIPPO and Measurement of Ozone and Water Vapor by Airbus In- Service Aircraft (MOZAIC and satellite measurements (two Ozone Monitoring Instrument (OMI products. The two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean surface O3

  4. Improved Near Real Time WRF-Chem Volcanic Emission Prediction and Impacts of Ash Aerosol on Weather.

    Science.gov (United States)

    Stuefer, M.; Webley, P. W.; Hirtl, M.

    2017-12-01

    We use the numerical Weather Research Forecasting (WRF) model with online Chemistry (WRF-Chem) to investigate the regional effects of volcanic aerosol on weather. A lot of observational data have become available since the Icelandic eruption of Eyjafjallajökull in spring 2010. The observed plume characteristics and meteorological data have been exploited for volcanic WRF-Chem case studies. We concluded that the Eyjafjallajökull ash plume resulted in significant direct aerosol effects altering the state of the atmosphere over large parts of Europe. The WRF-Chem model runs show near surface temperature differences up to 3ºC, altered vertical stability, changed pressure- and wind fields within the atmosphere loaded with ash aerosol. The modeled results have been evaluated with lidar network data, and ground and balloon based observations all over Europe. Besides case studies, we use WRF-Chem to build an improved volcanic ash decision support system that NOAA can use within the Volcanic Ash Advisory Center (VAAC) system. Realistic eruption source parameter (ESP) estimates are a main challenge in predicting volcanic emission dispersion in near real time. We implemented historic ESP into the WRF-Chem preprocessing routine, which can be used as a first estimate to assess a volcanic plume once eruption activity is reported. In a second step, a range of varying plume heights has been associated with the different ash variables within WRF-Chem, resulting in an assembly of different plume scenarios within one WRF-Chem model run. Once there is plume information available from ground or satellite observations, the forecaster has the option to select the corresponding ash variable that best matches the observations. In addition we added an automatic domain generation tool to create near real time WRF-Chem model runs anywhere on the globe by reducing computing expenses at the same time.

  5. Rheological behavior of alkali-activated metakaolin during geo-polymerization

    International Nuclear Information System (INIS)

    Poulesquen, A.; Frizon, F.; Lambertin, D.

    2011-01-01

    The dynamic rheological behavior of geo-polymers, inorganic materials synthesized by activation of an aluminosilicate source by an alkaline solution, is described. The pastes studied were mixtures of an activation solution (alkali + silica) and metakaolin. The influence of the activation solution (NaOH vs. KOH), the silica (Aerosil vs. Tixosil), and the temperature on the evolution of the elastic modulus (G') and viscous modulus (G') over time were studied in the linear viscoelastic range. The results show that the nature of the silica has little influence on the viscous and elastic moduli when the geo-polymer is activated by KOH, and that the setting time is faster with sodium hydroxide and at higher temperatures regardless of the geo-polymer. In addition, during geo-polymerization the stepwise variation of the modulus values indicates that the formation of the 3D network occurs in several steps. Moreover, geo-polymers activated by potassium hydroxide exhibit slower kinetics but the interactions between constituents are stronger, as the loss tangent (tanδ = G''/G') is lower. Finally, the maximum loss tangent, tanδ, was also used as a criterion to determine the temperature dependence of the geo-polymers synthesized. This criterion is a precursor of the transition to the glassy state. The activation energies could thus be determined for the geo-polymers synthesized with potassium hydroxide or sodium hydroxide. (authors)

  6. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    Directory of Open Access Journals (Sweden)

    Q. Yang

    2011-12-01

    Full Text Available This study assesses the ability of the recent chemistry version (v3.3 of the Weather Research and Forecasting (WRF-Chem model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS, Clouds and Earth's Radiant Energy System (CERES, and GOES-10 are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October–16 November 2008 WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter is also compared to a simulation (MET hereafter with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties, and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with

  7. Modelling of Diffuse Failure and Fluidization in geo materials and Geo structures

    International Nuclear Information System (INIS)

    Pastor, M.

    2013-01-01

    Failure of geo structures is caused by changes in effective stresses induced by external loads (earthquakes, for instance), change in the pore pressures (rain), in the geometry (erosion), or in materials properties (chemical attack, degradation, weathering). Landslides can by analysed as the failure of a geo structure, the slope. There exist many alternative classifications of landslides can be analyzed as the failure of a geo structure, the slope. There exist many alternative classifications of landslides, but we will consider here a simple classification into slides and flows. In the case of slides, the failure consists on the movement of a part of the slope with deformations which concentrate in a narrow zone, the failure surface. This can be idealized as localized failure, and it is typical of over consolidated or dense materials exhibiting softening. On the other hand, flows are made of fluidized materials, flowing in a fluid like manner. This mechanism of failure is known as diffuse failure, and has received much less attention by researchers. Modelling of diffuse failure of slopes is complex, because there appear difficulties in the mathematical, constitutive and numerical models, which have to account for a phase transition. This work deals with modeling, and we will present here some tools recently developed by the author and the group to which he belongs. (Author)

  8. GeoForum MV 2012. GIS schafft Energie. Contributions of geo-information science to the energy turnaround; GeoForum MV 2012. GIS schafft Energie. Beitraege der Geoinformationswirtschaft zur Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Bill, Ralf [Rostock Univ. (Germany). Professur fuer Geodaesie und Geoinformatik; Flach, Guntram [Fraunhofer IGD, Rostock (Germany); Klammer, Ulf; Lerche, Tobias (eds.) [GeoMV e.V. Verein der Geoinformationswirtschaft Mecklenburg-Vorpommern e.V., Rostock (Germany)

    2012-07-01

    Geo-information systems (GIS) have become indispensable in the development and implementation of concepts for enhanced use of renewable energy sources. Publications in geo-informatics so far have tended to focus on potential studies and regional planning aspects, but also on the establishment of land registers for energy sources and heat consumption. This year's GeoForum presented a comprehensive and concise picture of all these trends. Further subjects were discussed as well, i.e. 1. Logistics, eMobility and the development of individualised services in public transportation; 2. Geodata especially of Mecklenburg-Western Pomerania state and with a view to the power supply sector; 3. Basic technologies as current trends in INSPIRE with increasing data volumes and services will enhance their uses in the energy sector.

  9. Retrieved Products from Simulated Hyperspectral Observations of a Hurricane

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2015-01-01

    Demonstrate via Observing System Simulation Experiments (OSSEs) the potential utility of flying high spatial resolution AIRS class IR sounders on future LEO and GEO missions.The study simulates and analyzes radiances for 3 sounders with AIRS spectral and radiometric properties on different orbits with different spatial resolutions: 1) Control run 13 kilometers AIRS spatial resolution at nadir on LEO in Aqua orbit; 2) 2 kilometer spatial resolution LEO sounder at nadir ARIES; 3) 5 kilometers spatial resolution sounder on a GEO orbit, radiances simulated every 72 minutes.

  10. CO2 Injectivity in Geological Storages: an Overview of Program and Results of the GeoCarbone-Injectivity Project

    International Nuclear Information System (INIS)

    Lombard, J.M.; Egermann, P.; Azaroual, M.; Pironon, J.; Broseta, D.; Egermann, P.; Munier, G.; Mouronval, G.

    2010-01-01

    The objective of the GeoCarbone-Injectivity project was to develop a methodology to study the complex phenomena involved in the near well bore region during CO 2 injection. This paper presents an overview of the program and results of the project, and some further necessary developments. The proposed methodology is based on experiments and simulations at the core scale, in order to understand (physical modelling and definition of constitutive laws) and quantify (calibration of simulation tools) the mechanisms involved in injectivity variations: fluid/rock interactions, transport mechanisms, geomechanical effects. These mechanisms and the associated parameters have then to be integrated in the models at the well bore scale. The methodology has been applied for the study of a potential injection of CO 2 in the Dogger geological formation of the Paris Basin, in collaboration with the other ANR GeoCarbone projects. (authors)

  11. GeoSciML and EarthResourceML Update, 2012

    Science.gov (United States)

    Richard, S. M.; Commissionthe Management; Application Inte, I.

    2012-12-01

    CGI Interoperability Working Group activities during 2012 include deployment of services using the GeoSciML-Portrayal schema, addition of new vocabularies to support properties added in version 3.0, improvements to server software for deploying services, introduction of EarthResourceML v.2 for mineral resources, and collaboration with the IUSS on a markup language for soils information. GeoSciML and EarthResourceML have been used as the basis for the INSPIRE Geology and Mineral Resources specifications respectively. GeoSciML-Portrayal is an OGC GML simple-feature application schema for presentation of geologic map unit, contact, and shear displacement structure (fault and ductile shear zone) descriptions in web map services. Use of standard vocabularies for geologic age and lithology enables map services using shared legends to achieve visual harmonization of maps provided by different services. New vocabularies have been added to the collection of CGI vocabularies provided to support interoperable GeoSciML services, and can be accessed through http://resource.geosciml.org. Concept URIs can be dereferenced to obtain SKOS rdf or html representations using the SISSVoc vocabulary service. New releases of the FOSS GeoServer application greatly improve support for complex XML feature schemas like GeoSciML, and the ArcGIS for INSPIRE extension implements similar complex feature support for ArcGIS Server. These improved server implementations greatly facilitate deploying GeoSciML services. EarthResourceML v2 adds features for information related to mining activities. SoilML provides an interchange format for soil material, soil profile, and terrain information. Work is underway to add GeoSciML to the portfolio of Open Geospatial Consortium (OGC) specifications.

  12. The Correlation of Geo-Ecological Environment and Mountain Urban planning

    Science.gov (United States)

    Yang, Chun; Zeng, Wei

    2018-01-01

    As a special area with the complex geological structure, mountain city is more prone to geological disasters. Due to air pollution, ground subsidence, serious water pollution, earthquakes and floods geo-ecological environment problems have become increasingly serious, mountain urban planning is facing more severe challenges. Therefore, this article bases on the correlation research of geo-ecological environment and mountain urban planning, and re-examins mountain urban planning from the perspective of geo-ecological, coordinates the relationship between the human and nature by geo-ecological thinking, raises the questions which urban planning need to pay attention. And advocates creating an integrated system of geo-ecological and mountain urban planning, analysis the status and dynamics of present mountain urban planning.

  13. Monte Carlo simulations of GeoPET experiments: 3D images of tracer distributions (18F, 124I and 58Co) in Opalinus clay, anhydrite and quartz

    Science.gov (United States)

    Zakhnini, Abdelhamid; Kulenkampff, Johannes; Sauerzapf, Sophie; Pietrzyk, Uwe; Lippmann-Pipke, Johanna

    2013-08-01

    Understanding conservative fluid flow and reactive tracer transport in soils and rock formations requires quantitative transport visualization methods in 3D+t. After a decade of research and development we established the GeoPET as a non-destructive method with unrivalled sensitivity and selectivity, with due spatial and temporal resolution by applying Positron Emission Tomography (PET), a nuclear medicine imaging method, to dense rock material. Requirements for reaching the physical limit of image resolution of nearly 1 mm are (a) a high-resolution PET-camera, like our ClearPET scanner (Raytest), and (b) appropriate correction methods for scatter and attenuation of 511 keV—photons in the dense geological material. The latter are by far more significant in dense geological material than in human and small animal body tissue (water). Here we present data from Monte Carlo simulations (MCS) reflecting selected GeoPET experiments. The MCS consider all involved nuclear physical processes of the measurement with the ClearPET-system and allow us to quantify the sensitivity of the method and the scatter fractions in geological media as function of material (quartz, Opalinus clay and anhydrite compared to water), PET isotope (18F, 58Co and 124I), and geometric system parameters. The synthetic data sets obtained by MCS are the basis for detailed performance assessment studies allowing for image quality improvements. A scatter correction method is applied exemplarily by subtracting projections of simulated scattered coincidences from experimental data sets prior to image reconstruction with an iterative reconstruction process.

  14. A statistical downscaling approach for roadside NO2 concentrations: Application to a WRF-Chem study for Berlin

    Science.gov (United States)

    Kuik, Friderike; Lauer, Axel; von Schneidemesser, Erika; Butler, Tim

    2017-04-01

    Many European cities continue to struggle with meeting the European air quality limits for NO2. In Berlin, Germany, most of the exceedances in NO2 recorded at monitoring sites near busy roads can be largely attributed to emissions from traffic. In order to assess the impact of changes in traffic emissions on air quality at policy relevant scales, we combine the regional atmosphere-chemistry transport model WRF-Chem at a resolution of 1kmx1km with a statistical downscaling approach. Here, we build on the recently published study evaluating the performance of a WRF-Chem setup in representing observed urban background NO2 concentrations from Kuik et al. (2016) and extend this setup by developing and testing an approach to statistically downscale simulated urban background NO2 concentrations to street level. The approach uses a multilinear regression model to relate roadside NO2 concentrations observed with the municipal monitoring network with observed NO2 concentrations at urban background sites and observed traffic counts. For this, the urban background NO2 concentrations are decomposed into a long term, a synoptic and a diurnal component using the Kolmogorov-Zurbenko filtering method. We estimate the coefficients of the regression model for five different roadside stations in Berlin representing different street types. In a next step we combine the coefficients with simulated urban background concentrations and observed traffic counts, in order to estimate roadside NO2 concentrations based on the results obtained with WRF-Chem at the five selected stations. In a third step, we extrapolate the NO2 concentrations to all major roads in Berlin. The latter is based on available data for Berlin of daily mean traffic counts, diurnal and weekly cycles of traffic as well as simulated urban background NO2 concentrations. We evaluate the NO2 concentrations estimated with this method at street level for Berlin with additional observational data from stationary measurements and

  15. Geo-engineering: a curse or a blessing?

    NARCIS (Netherlands)

    Wissenburg, M.L.J.

    2016-01-01

    In recent years, geo-engineering has been suggested as a viable strategy in dealing with climate change, the main indicator of what has become known as ‘the Anthropocene’. In this paper, I investigate the effects of geo-engineering in terms of freedom – not the only but perhaps the most important

  16. Instrumental Genesis in GeoGebra Based Board Game Design

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2013-01-01

    In this paper I address the use of digital tools (GeoGebra) in open ended design activities, with primary school children. I present results from the research and development project “Creative Digital Mathematics”, which aims to use the pupil’s development of mathematical board games as a vehicle...... in their work with GeoGebra and how they relate their work with GeoGebra and mathematics to fellow pupils and real life situations. The results show that pupils’ consider development of board games as meaningful mathematical activity, and that they develop skills with GeoGebra, furthermore the pupils considers...... potential use of their board game by classmates in their design activities....

  17. Facilitating Geoscience Education in Higher-Education Institutes Worldwide With GeoBrain -- An Online Learning and Research Environment for Classroom Innovations

    Science.gov (United States)

    Deng, M.; di, L.

    2006-12-01

    become much easier or practical. For an instance, dynamic classroom demonstration and training for students to deal with data-intensive global climate and environment change issues in real-world applications through the system has become a very pleasant experience instead of the struggling efforts in the past. With GeoBrain, each student can be easily trained to handle multi-terabytes of EOS and other geospatial data in simulation and modeling for solving global-scale problems catering his own interests with a simple Internet connected computer. Preliminary classroom use of GeoBrain in multiple universities has demonstrated that the system is very useful for facilitating the transition of both undergraduate and graduate students from learners to investigators. It has also shown the system can improve teaching effectiveness, refine student's learning habit, and inspire students' interests in pursuing geoscience as their career. As an on-going project, GeoBrain has not reached its maturity. Surely it will improve its functionalities and make great advances in the above areas continuously.

  18. Combining Interactive Thermodynamics Simulations with Screencasts and Conceptests

    Science.gov (United States)

    Falconer, John L.

    2016-01-01

    More than 40 interactive "Mathematica" simulations were prepared for chemical engineering thermodynamics, screencasts were prepared that explain how to use each simulation, and more than 100 ConcepTests were prepared that utilize the simulations. They are located on www.LearnChemE.com. The purposes of these simulations are to clarify…

  19. Advances and Directions for the Intelligent Systems for Geosciences Research Community: Updates and Opportunities from the NSF EarthCube IS-GEO RCN

    Science.gov (United States)

    Pierce, S. A.

    2017-12-01

    The Earthcube Intelligent Systems for Geosciences Research Collaboration Network (IS-GEO RCN) represents an emerging community of interdisciplinary researchers aiming to create fundamental new capabilities for understanding Earth systems. Collaborative efforts across IS-GEO fields of study offer opportunities to accelerate scientific discovery and understanding. The IS-GEO community has an active membership of approximately 65 researchers and includes researchers from across the US, international members, and an early career committee. Current working groups are open to new participants and are focused on four thematic areas with regular coordination meetings and upcoming sessions at professional conferences. (1) The Sensor-based data Collection and Integration Working group looks at techniques for analyzing and integrating of information from heterogeneous sources, with a possible application for early warning systems. (2) The Geoscience Case Studies Working group is creating benchmark data sets to enable new collaborations between geoscientists and data scientists. (3) The Geo-Simulations Working group is evaluating the state of the art in practices for parametrizations, scales, and model integration. (4) The Education Working group is gathering, organizing and collecting all the materials from the different IS-GEO courses. Innovative IS-GEO applications will help researchers overcome common challenges while will redefining the frontiers of discovery across fields and disciplines. (Visit IS-GEO.org for more information or to sign up for any of the working groups.)

  20. GeoGebra 3D from the perspectives of elementary pre-service mathematics teachers who are familiar with a number of software programs

    Directory of Open Access Journals (Sweden)

    Serdal Baltaci

    2015-01-01

    Full Text Available Each new version of the GeoGebra dynamic mathematics software goes through updates and innovations. One of these innovations is the GeoGebra 5.0 version. This version aims to facilitate 3D instruction by offering opportunities for students to analyze 3D objects. While scanning the previous studies of GeoGebra 3D, it is seen that they mainly focus on the visualization of a problem in daily life and the dimensions of the evaluation of the process of problem solving with various variables. Therefore, this research problem was determined to reveal the opinions of pre-service elementary mathematics teachers who can use multiple software programs very well, about the usability of GeoGebra 3D. Compared to other studies conducted in this field, this study is thought to add a new dimension to the literature on GeoGebra 3D because the participants in the study had received training in using the Derive, Cabri, Cabri 3D, GeoGebra and GeoGebra 3D programs and had developed activities throughout their undergraduate programs and in some cases they were held responsible for those programs in their exams. In this research, we used the method of case study. The participants consisted of five elementary pre-service mathematics teachers who were enrolled in fourth year courses. We employed semi-structured interviews to collect data. It is concluded that pre-service elementary mathematics teachers expressed a great deal of opinions about the positive contribution of the GeoGebra 3D dynamic mathematics software.

  1. ChemCam on MSL 2009: first laser induced breakdown spectrometer for space science

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Roger C [Los Alamos National Laboratory

    2008-01-01

    ChemCam is one of the 10 instrument suites on the Mars Science Laboratory, a martian rover being built by Jet Propulsion Laboratory, for the next NASA mission to Mars (MSL 2009). ChemCam is an instrument package consisting of two remote sensing instruments: a Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI). LIBS provides elemental compositions of rocks and soils, while the RMI places the LIBS analyses in their geomorphologic context. Both instruments rely on an autofocus capability to precisely focus on the chosen target, located at distances from the rover comprised between 1 and 9 m for LIBS, and 2 m and infinity for RMI. ChemCam will help determine which samples, within the vicinity of the MSL rover, are of sufficient interest to use the contact and in-situ instruments for further characterization. It will provide valuable analyses of samples that are inaccessible to contact and in-situ instruments, and of a much larger number of samples than can be done with this kind of instrument. ChemCam also has a capability to provide passive spectroscopy data of rocks and soils on Mars. ChemCam hardware consists of a Mast Unit (MU), provided by France, and a Body Unit (BU) built and tested in the USA. The Flight Model of the MU is assembled, tested and now available in the USA, while the BU is currently being assembled and tested. Both will be connected by the end of year '08 for end-to-end functional and performance tests, before delivery to JPL and assembly on the MSL rover. Launch is scheduled for October 09. After describing the concept of ChemCam, this presentation focuses on its French part, Mast Unit. The results presented show that Mast Unit is able to generate a plasma and collect its light, over the full applicable ranges of distances and temperatures on Mars.

  2. Geo Uruguay

    International Nuclear Information System (INIS)

    2008-06-01

    This book is based on the Geo Uruguay project which consists on the analysis and diagnosis of the environmental impact in the human welfare. The main topics covered in the different chapters are: human welfare, geographical aspects, climate change, transport and energy, changes in land use, coastal features, biodiversity, industrial urbanization, waste and territorial ordering, energy offers like oil, wood, natural gas, coal and electricity

  3. Multiple time-scale methods in particle simulations of plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1985-01-01

    This paper surveys recent advances in the application of multiple time-scale methods to particle simulation of collective phenomena in plasmas. These methods dramatically improve the efficiency of simulating low-frequency kinetic behavior by allowing the use of a large timestep, while retaining accuracy. The numerical schemes surveyed provide selective damping of unwanted high-frequency waves and preserve numerical stability in a variety of physics models: electrostatic, magneto-inductive, Darwin and fully electromagnetic. The paper reviews hybrid simulation models, the implicitmoment-equation method, the direct implicit method, orbit averaging, and subcycling

  4. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    Science.gov (United States)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  5. Simulation of multiple scattering background in heavy ion backscattering spectrometry

    International Nuclear Information System (INIS)

    Li, M.M.; O'Connor, D.J.

    1999-01-01

    With the development of heavy ion backscattering spectrometry (HIBS) for the detection of trace quantities of heavy-atom impurities on Si surfaces, it is necessary to quantify the multiple scattering contribution to the spectral background. In the present work, the Monte Carlo computer simulation program TRIM has been used to study the backscattering spectrum and the multiple scattering background features for heavy ions C, Ne, Si, Ar and Kr impinging on four types of targets: (1) a single ultra-thin (free standing) Au film of 10 A thickness, (2) a 10 A Au film on a 50 A Si surface, (3) a 10 A Au film on an Si substrate (10 000 A), and (4) a thick target (10 000 A) of pure Si. The ratio of the signal from the Au thin layer to the background due to multiple scattering has been derived by fitting the simulation results. From the simulation results, it is found that the Au film contributes to the background which the Si plays a role in developing due to the ion's multiple scattering in the substrate. Such a background is generated neither by only the Au thin layer nor by the pure Si substrate independently. The corresponding mechanism of multiple scattering in the target can be explained as one large-angle scattering in the Au layer and subsequently several small angle scatterings in the substrate. This study allows an appropriate choice of incident beam species and energy range when the HIBS is utilized to analyse low level impurities in Si wafers

  6. Regional uncertainty of GOSAT XCO2 retrievals in China: quantification and attribution

    Science.gov (United States)

    Bie, Nian; Lei, Liping; Zeng, ZhaoCheng; Cai, Bofeng; Yang, Shaoyuan; He, Zhonghua; Wu, Changjiang; Nassar, Ray

    2018-03-01

    The regional uncertainty of the column-averaged dry air mole fraction of CO2 (XCO2) retrieved using different algorithms from the Greenhouse gases Observing SATellite (GOSAT) and its attribution are still not well understood. This paper investigates the regional performance of XCO2 within a latitude band of 37-42° N segmented into 8 cells in a grid of 5° from west to east (80-120° E) in China, where typical land surface types and geographic conditions exist. The former includes desert, grassland and built-up areas mixed with cropland; and the latter includes anthropogenic emissions that change from small to large from west to east, including those from the megacity of Beijing. For these specific cells, we evaluate the regional uncertainty of GOSAT XCO2 retrievals by quantifying and attributing the consistency of XCO2 retrievals from four algorithms (ACOS, NIES, OCFP and SRFP) by intercomparison. These retrievals are then specifically compared with simulated XCO2 from the high-resolution nested model in East Asia of the Goddard Earth Observing System 3-D chemical transport model (GEOS-Chem). We also introduce the anthropogenic CO2 emissions data generated from the investigation of surface emitting point sources that was conducted by the Ministry of Environmental Protection of China to GEOS-Chem simulations of XCO2 over the Chinese mainland. The results indicate that (1) regionally, the four algorithms demonstrate smaller absolute biases of 0.7-1.1 ppm in eastern cells, which are covered by built-up areas mixed with cropland with intensive anthropogenic emissions, than those in the western desert cells (1.0-1.6 ppm) with a high-brightness surface from the pairwise comparison results of XCO2 retrievals. (2) Compared with XCO2 simulated by GEOS-Chem (GEOS-XCO2), the XCO2 values from ACOS and SRFP have better agreement, while values from OCFP are the least consistent with GEOS-XCO2. (3) Viewing attributions of XCO2 in the spatio-temporal pattern, ACOS and SRFP

  7. Regional uncertainty of GOSAT XCO2 retrievals in China: quantification and attribution

    Directory of Open Access Journals (Sweden)

    N. Bie

    2018-03-01

    Full Text Available The regional uncertainty of the column-averaged dry air mole fraction of CO2 (XCO2 retrieved using different algorithms from the Greenhouse gases Observing SATellite (GOSAT and its attribution are still not well understood. This paper investigates the regional performance of XCO2 within a latitude band of 37–42° N segmented into 8 cells in a grid of 5° from west to east (80–120° E in China, where typical land surface types and geographic conditions exist. The former includes desert, grassland and built-up areas mixed with cropland; and the latter includes anthropogenic emissions that change from small to large from west to east, including those from the megacity of Beijing. For these specific cells, we evaluate the regional uncertainty of GOSAT XCO2 retrievals by quantifying and attributing the consistency of XCO2 retrievals from four algorithms (ACOS, NIES, OCFP and SRFP by intercomparison. These retrievals are then specifically compared with simulated XCO2 from the high-resolution nested model in East Asia of the Goddard Earth Observing System 3-D chemical transport model (GEOS-Chem. We also introduce the anthropogenic CO2 emissions data generated from the investigation of surface emitting point sources that was conducted by the Ministry of Environmental Protection of China to GEOS-Chem simulations of XCO2 over the Chinese mainland. The results indicate that (1 regionally, the four algorithms demonstrate smaller absolute biases of 0.7–1.1 ppm in eastern cells, which are covered by built-up areas mixed with cropland with intensive anthropogenic emissions, than those in the western desert cells (1.0–1.6 ppm with a high-brightness surface from the pairwise comparison results of XCO2 retrievals. (2 Compared with XCO2 simulated by GEOS-Chem (GEOS-XCO2, the XCO2 values from ACOS and SRFP have better agreement, while values from OCFP are the least consistent with GEOS-XCO2. (3 Viewing attributions of XCO2 in the spatio

  8. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  9. Real Time Adaptive Stream-oriented Geo-data Filtering

    Directory of Open Access Journals (Sweden)

    A. A. Golovkov

    2016-01-01

    Full Text Available The cutting-edge engineering maintenance software systems of various objects are aimed at processing of geo-location data coming from the employees’ mobile devices in real time. To reduce the amount of transmitted data such systems, usually, use various filtration methods of geo-coordinates recorded directly on mobile devices.The paper identifies the reasons for errors of geo-data coming from different sources, and proposes an adaptive dynamic method to filter geo-location data. Compared with the static method previously described in the literature [1] the approach offers to align adaptively the filtering threshold with changing characteristics of coordinates from many sources of geo-location data.To evaluate the efficiency of the developed filter method have been involved about 400 thousand points, representing motion paths of different type (on foot, by car and high-speed train and parking (indoors, outdoors, near high-rise buildings to take data from different mobile devices. Analysis of results has shown that the benefits of the proposed method are the more precise location of long parking (up to 6 hours and coordinates when user is in motion, the capability to provide steam-oriented filtering of data from different sources that allows to use the approach in geo-information systems, providing continuous monitoring of the location in streamoriented data processing in real time. The disadvantage is a little bit more computational complexity and increasing amount of points of the final track as compared to other filtration techniques.In general, the developed approach enables a significant quality improvement of displayed paths of moving mobile objects.

  10. Characterization of ginger essential oil/palygorskite composite (GEO-PGS) and its anti-bacteria activity.

    Science.gov (United States)

    Lei, Hong; Wei, Qiaonian; Wang, Qing; Su, Anxiang; Xue, Mei; Liu, Qin; Hu, Qiuhui

    2017-04-01

    To explore a novel kind of anti-bacterial composite material having the excellent antibacterial ability, stability and specific-targeting capability, palygorskite (PGS) was used as the carrier of ginger essential oil (GEO) and a novel kind of composite GEO-PGS was prepared by ion exchange process. The characterization and the antibacterial activity of GEO-PGS was investigated in this study. Results of FTIR, XPS, XRD,TG analysis and SEM observation demonstrated the combination of GEO and PGS, GEO was absorbed on the surface of PGS, and the content of GEO in the composite was estimated to be 18.66%. Results of minimal inhibitory concentration (MIC) analysis, growth curve and Gram staining analysis of Staphylococci aureus and Escherichia coli exposed to GEO-PGS showed that GEO-PGS had much higher antibacterial activity than GEO, and GEO-PGS had the specific-targeting antibacterial capability. Moreover, GEO-PGS showed the characteristics of thermo-stability, acidity and alkalinity-resistance in exerting its anti-bacteria activity. In conclusion, the novel composite GEO-PGS combined the bacteria-absorbent activity of PGS and the antibacterial activity of GEO, suggesting the great potential application of GEO-PGS as the novel composite substance with high antibacterial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions: INCREASE IN WINTER HAZE IN EASTERN CHINA

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Liao, Hong [School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing China; Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing China; Lou, Sijia [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2016-11-05

    The increase in winter haze over eastern China in recent decades due to variations in meteorological parameters and anthropogenic emissions was quantified using observed atmospheric visibility from the National Climatic Data Center Global Summary of Day database for 1980–2014 and simulated PM2.5 concentrations for 1985–2005 from the Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). Observed winter haze days averaged over eastern China (105–122.5°E, 20–45°N) increased from 21 d in 1980 to 42 d in 2014, and from 22 to 30 d between 1985 and 2005. The GEOS-Chem model captured the increasing trend of winter PM2.5 concentrations for 1985–2005, with concentrations averaged over eastern China increasing from 16.1 μg m-3 in 1985 to 38.4 μg m-3 in 2005. Considering variations in both anthropogenic emissions and meteorological parameters, the model simulated an increase in winter surface-layer PM2.5 concentrations of 10.5 (±6.2) μg m-3 decade-1 over eastern China. The increasing trend was only 1.8 (±1.5) μg m-3 decade-1 when variations in meteorological parameters alone were considered. Among the meteorological parameters, the weakening of winds by -0.09 m s-1 decade-1 over 1985–2005 was found to be the dominant factor leading to the decadal increase in winter aerosol concentrations and haze days over eastern China during recent decades.

  12. Geo-communication, web-services, and spatial data infrastructure

    DEFF Research Database (Denmark)

    Brodersen, Lars; Nielsen, Anders

    2007-01-01

    The introduction of web-services as index-portals based on geo-information has changed the conditions for both content and form of geo-communication. A high number of players and interactions as well as a very high number of all kinds of information and combinations of these caracterise web...... looks very complex, and it will get even more complex. Therefore, there is a strong need for theories and models that can describe this complex web in the SDI and geo-communication consisting of active components, passive components, users, and information in order to make it possible to handle...

  13. Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars

    Science.gov (United States)

    Meslin, P.-Y.; Gasnault, O.; Forni, O.; Schröder, S.; Cousin, A.; Berger, G.; Clegg, S. M.; Lasue, J.; Maurice, S.; Sautter, V.; Le Mouélic, S.; Wiens, R. C.; Fabre, C.; Goetz, W.; Bish, D.; Mangold, N.; Ehlmann, B.; Lanza, N.; Harri, A.-M.; Anderson, R.; Rampe, E.; McConnochie, T. H.; Pinet, P.; Blaney, D.; Léveillé, R.; Archer, D.; Barraclough, B.; Bender, S.; Blake, D.; Blank, J. G.; Bridges, N.; Clark, B. C.; DeFlores, L.; Delapp, D.; Dromart, G.; Dyar, M. D.; Fisk, M.; Gondet, B.; Grotzinger, J.; Herkenhoff, K.; Johnson, J.; Lacour, J.-L.; Langevin, Y.; Leshin, L.; Lewin, E.; Madsen, M. B.; Melikechi, N.; Mezzacappa, A.; Mischna, M. A.; Moores, J. E.; Newsom, H.; Ollila, A.; Perez, R.; Renno, N.; Sirven, J.-B.; Tokar, R.; de la Torre, M.; d'Uston, L.; Vaniman, D.; Yingst, A.; Kemppinen, Osku; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Mauchien, Patrick; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Schieber, Juergen; Geffroy, Claude; Baratoux, David; Cros, Alain; Lee, Qiu-Mei; Pallier, Etienne; Parot, Yann; Toplis, Mike; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Robert, François; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Fassett, Caleb; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Nolan, Thomas; Radziemski, Leon; Berman, Daniel; Dobrea, Eldar Noe; Williams, Rebecca M. E.; Lewis, Kevin; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey

    2013-09-01

    The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

  14. Soil diversity and hydration as observed by ChemCam at Gale crater, Mars

    Science.gov (United States)

    Meslin, P.-Y.; Gasnault, O.; Forni, O.; Schroder, S.; Cousin, A.; Berger, G.; Clegg, S.M.; Lasue, J.; Maurice, S.; Sautter, V.; Le Mouélic, S.; Wiens, R.C.; Fabre, C.; Goetz, W.; Bish, D.L.; Mangold, N.; Ehlmann, B.; Lanza, N.; Harri, A.-M.; Anderson, Ryan Bradley; Rampe, E.; McConnochie, T.H.; Pinet, P.; Blaney, D.; ,; Archer, D.; Barraclough, B.; Bender, S.; Blake, D.; Blank, J.G.; Bridges, N.; Clark, B. C.; DeFlores, L.; Delapp, D.; Dromart, G.; Dyar, M.D.; Fisk, M. R.; Gondet, B.; Grotzinger, J.; Herkenhoff, K.; Johnson, J.; Lacour, J.-L.; Langevin, Y.; Leshin, L.; Lewin, E.; Madsen, M.B.; Melikechi, N.; Mezzacappa, Alissa; Mischna, M.A.; Moores, J.E.; Newsom, H.; Ollila, A.; ,; Renno, N.; Sirven, J.B.; Tokar, R.; de la Torre, M.; d'Uston, L.; Vaniman, D.; Yingst, A.

    2013-01-01

    The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

  15. Geo textiles and related products used in the waterproofing of reservoirs. Situation in Morocco

    International Nuclear Information System (INIS)

    Leiro Lopez, A.; Mateo Sanz, B.

    2015-01-01

    The aim of this paper is to describe the geo textiles, and products related to geo textiles, used for the building of water-storage reservoirs, which can be applicable to the construction of this kind of structures in Morocco. It presents different types of geo textiles and related products most commonly used in reservoirs, such as geo nets, geo grids, geo mats and geo composites, describing their characteristics and experimental methodology. Furthermore, and drawing on the Spanish Manual for Design, Construction, Operation and Maintenance of Reservoirs, emphasis is placed on the functions that geo synthetics can perform, such as protection and filter in the case of geo textiles, and drainage in the case of geo nets and draining composites. Finally, several works of this sort of structures located in Morocco are cited. (Author)

  16. The ConnectinGEO Observation Inventory

    Science.gov (United States)

    Santoro, M.; Nativi, S.; Jirka, S.; McCallum, I.

    2016-12-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations) is an EU-funded project under the H2020 Framework Programme. The primary goal of the project is to link existing coordinated Earth Observation networks with science and technology (S&T) communities, the industry sector and the GEOSS and Copernicus stakeholders. An expected outcome of the project is a prioritized list of critical gaps within GEOSS (Global Earth Observation System of Systems) in observations and models that translate observations into practice relevant knowledge. The project defines and utilizes a formalized methodology to create a set of observation requirements that will be related to information on available observations to identify key gaps. Gaps in the information provided by current observation systems as well as gaps in the systems themselves will be derived from five different threads. One of these threads consists in the analysis of the observations and measurements that are currently registered in GEO Discovery and Access Broker (DAB). To this aim, an Observation Inventory (OI) has been created and populated using the current metadata information harmonized by the DAB. This presentation describes the process defined to populate the ConnectinGEO OI and the resulting system architecture. In addition, it provides information on how to systematically access the OI for performing the gap analysis. Furthermore it demonstrates initial findings of the gap analysis, and shortcomings in the metadata that need attention. The research leading to these results benefited from funding by the European Union H2020 Framework Programme under grant agreement n. 641538 (ConnectinGEO).

  17. Sulfur Geochemical Analysis and Interpretation with ChemCam on the Curiosity Rover

    Science.gov (United States)

    Clegg, S. M.; Anderson, R. B.; Frydenvang, J.; Forni, O.; Newsom, H. E.; Blaney, D. L.; Maurice, S.; Wiens, R. C.

    2017-12-01

    The Curiosity rover has encountered many forms of sulfur including calcium sulfate veins [1], hydrated Mg sulfates, and Fe sulfates along the traverse through Gale crater. A new SO3 calibration model for the remote Laser-Induced Breakdown Spectroscopy (LIBS) technique used by the ChemCam instrument enables improved quantitative analysis of SO3, which has not been previously reported by ChemCam on a routine or quantitative basis. In this paper, the details of this new LIBS calibration model will be described and applied to many disparate Mars targets. Among them, Mavor contains a calcium sulfate vein surrounded by bedrock. In contrast, Jake M. is a float rock, Wernecke is a bedrock, Cumberland and Windjana are drill targets. In 2015 the ChemCam instrument team completed a re-calibration of major elements based on a significantly expanded set of >500 geochemical standards using the ChemCam testbed at Los Alamos National Laboratory [2]. In addition to these standards, the SO3 compositional range was recently extended with a series of doped samples containing various mixtures of Ca- and Mg-sulfate with basalt BHVO2. Spectra from these standards were processed per [4]. Calibration and Mars spectra were converted to peak-area-summed LIBS spectra that enables the SO3 calibration. These peak-area spectra were used to generate three overlapping partial least squares (PLS1) calibration sub-models as described by Anderson et al. [3, 5]. ChemCam analysis of Mavor involved a 3x3 raster in which locations 5 and 6 primarily probed Ca-sulfate material. The new ChemCam SO3 compositions for Mavor 5 and Mavor 6 are 48.6±1.2 and 50.3±1.2 wt% SO3, respectively. The LIBS spectra also recorded the presence of other elements that are likely responsible for the departure from pure Ca-sulfate chemistry. On the low-abundance side, the remaining 7 Mavor locations, Jake M., Cumberland, Windjana, and Wernecke all contain much lower SO3, between 1.4±0.5 wt% and 2.3±0.3 wt% SO3. [1] Nachon et

  18. The Space-Time Cube as part of a GeoVisual Analytics Environment to support the understanding of movement data

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, M. J.; van Elzakker, C. P. J. M.

    2015-01-01

    This paper reports the results of an empirical usability experiment on the performance of the space-time cube in a GeoVisual analytics environment. It was developed to explore movement data based on the requirements of human geographers. The interactive environment consists of multiple coordinated...

  19. Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip.

    Science.gov (United States)

    Van Nostrand, Joy D; Yin, Huaqin; Wu, Liyou; Yuan, Tong; Zhou, Jizhong

    2016-01-01

    Functional gene arrays, like the GeoChip, allow for the study of tens of thousands of genes in a single assay. The GeoChip array (5.0) contains probes for genes involved in geochemical cycling (N, C, S, and P), metal homeostasis, stress response, organic contaminant degradation, antibiotic resistance, secondary metabolism, and virulence factors as well as genes specific for fungi, protists, and viruses. Here, we briefly describe GeoChip design strategies (gene selection and probe design) and discuss minimum quantity and quality requirements for nucleic acids. We then provide detailed protocols for amplification, labeling, and hybridization of samples to the GeoChip.

  20. Spatial Data Infrastructure in the Perspective of Modern Geo-communication

    DEFF Research Database (Denmark)

    Brodersen, Lars; Nielsen, Anders

    2006-01-01

    -edge of communication-theories play important roles. The introduction of web-services as index-portals based on geo-information has changed the conditions for both content and form of geo-communication. A high number of players and interactions as well as a very high number of all kinds of information and combinations...... the increasing complexity. Modern web-based geo-communication and its infrastructure looks very complex, and it will get even more complex! Therefore there is a strong need for theories and models that can de-scribe this complex web in the SDI in the perspective of modern geo-communication....

  1. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    OpenAIRE

    Stojce Dimov Ilcev

    2013-01-01

    In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA) employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC) between ships and Coast Earth Station (CES) via Geostationary Earth Orbit (GEO) or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multip...

  2. Ensemble mean climatology of snow darkening effect due to deposition of dust, black carbon, and organic carbon as simulated with the NASA GEOS-5 Earth System Model

    Science.gov (United States)

    Yasunari, T. J.; Lau, W. K.; Mahanama, S. P.; Colarco, P. R.; Koster, R. D.; Kim, K.; da Silva, A.

    2013-12-01

    The importance of the snow darkening effect (SDE) caused by solar absorbing aerosols such as dust and black carbon (BC) on climate has been discussed in previous studies. We have developed a snow darkening package for the catchment land surface model coupled to the NASA Goddard Earth Observing System, version 5 (GEOS-5), Earth System Model. Our snow darkening package includes the schemes for snow albedo and mass concentration calculations in polluted snow by dust, BC, and organic carbon (OC) depositions. The snow darkening package is currently available for seasonal snowpack over the model-defined land areas, excluding sea ice and inland of the ice sheets. The depositions of the solar absorbing aerosols are obtained from the GOCART aerosol module in the GEOS-5. Here we show the preliminary results of ensemble mean climatology (EMC) of the full SDE (i.e., dust+BC+OC). Ensemble simulations covering 10-year of 2002-2011 were carried out with the GEOS-5 including and excluding the full SDE for which each has 10 ensemble members. Shortwave radiative forcing (RF) at the top of atmosphere under all-sky condition for the 10-member EMC of the full SDE was relatively larger over Europe, Central Asia (CA), the Himalayas, the Tibetan Plateau (TP), East Asia (EA), Eastern Siberia (ES), the US, and Canadian Arctic. The RF was the strongest over the Himalayas and the TP in the northern hemisphere. The increases of surface air temperature also well correspond to the RF pattern. Larger reductions of snow water equivalent in seasonal snowpack were seen over the Himalayas, the TP, Alaska, Western Canada, and Arctic regions. We will discuss more on the day of the presentation.

  3. New Measurements of Methyl Ethyl Ketone (MEK) Photolysis Rates and Their Relevance to Global Oxidative Capacity

    Science.gov (United States)

    Brewer, J.; Ravishankara, A. R.; Mellouki, A.; Fischer, E. V.; Kukui, A.; Véronique, D.; Ait-helal, W.; Leglise, J.; Ren, Y.

    2017-12-01

    Methyl ethyl ketone (MEK) is one of the most abundant ketones in the atmosphere. MEK can be emitted directly into the atmosphere from both anthropogenic and natural sources, and it is also formed during the gas-phase oxidation of volatile organic compounds (VOCs). MEK is lost via reaction with OH, photolysis and deposition to the surface. Similar to the other atmospheric ketones, the photolysis of MEK may represent a source of HOx (OH + HO2) radicals in the upper troposphere. The degradation of MEK also leads to the atmospheric formation of acetaldehyde and formaldehyde. This work presents a new analysis of the temperature dependence of MEK photolysis cross-sections and a quantification of MEK photolysis rates under surface pressures using the CNRS HELIOS outdoor atmospheric chamber (Chambre de simulation atmosphérique à irradiation naturelle d'Orléans; http://www.era-orleans.org/ERA-TOOLS/helios-project.html). Additionally, we use the GEOS-Chem 3-D CTM (version 10-01, www.geos-chem.org) to investigate the impact of these newly measured rates and cross-sections on the global distribution and seasonality of MEK, as well as its importance to the tropospheric oxidative capacity.

  4. CASSINI S MIMI CHEMS SENSOR CALIBRATED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Magnetospheric Imaging Instrument(MIMI) Charge Energy Mass Spectrometer (CHEMS) contains a deflection system and an overall field of view of 159 x 4 deg....

  5. Web catalog of oceanographic data using GeoNetwork

    Science.gov (United States)

    Marinova, Veselka; Stefanov, Asen

    2017-04-01

    Most of the data collected, analyzed and used by Bulgarian oceanographic data center (BgODC) from scientific cruises, argo floats, ferry boxes and real time operating systems are spatially oriented and need to be displayed on the map. The challenge is to make spatial information more accessible to users, decision makers and scientists. In order to meet this challenge, BgODC concentrate its efforts on improving dynamic and standardized access to their geospatial data as well as those from various related organizations and institutions. BgODC currently is implementing a project to create a geospatial portal for distributing metadata and search, exchange and harvesting spatial data. There are many open source software solutions able to create such spatial data infrastructure (SDI). Finally, the GeoNetwork open source is chosen, as it is already widespread. This software is free, effective and "cheap" solution for implementing SDI at organization level. It is platform independent and runs under many operating systems. Filling of the catalog goes through these practical steps: • Managing and storing data reliably within MS SQL spatial data base; • Registration of maps and data of various formats and sources in GeoServer (most popular open source geospatial server embedded with GeoNetwork) ; • Filling added meta data and publishing geospatial data at the desktop of GeoNetwork. GeoServer and GeoNetwork are based on Java so they require installing of a servlet engine like Tomcat. The experience gained from the use of GeoNetwork Open Source confirms that the catalog meets the requirements for data management and is flexible enough to customize. Building the catalog facilitates sustainable data exchange between end users. The catalog is a big step towards implementation of the INSPIRE directive due to availability of many features necessary for producing "INSPIRE compliant" metadata records. The catalog now contains all available GIS data provided by BgODC for Internet

  6. ExaGeoStat: A High Performance Unified Framework for Geostatistics on Manycore Systems

    KAUST Repository

    Abdulah, Sameh

    2017-08-09

    We present ExaGeoStat, a high performance framework for geospatial statistics in climate and environment modeling. In contrast to simulation based on partial differential equations derived from first-principles modeling, ExaGeoStat employs a statistical model based on the evaluation of the Gaussian log-likelihood function, which operates on a large dense covariance matrix. Generated by the parametrizable Matern covariance function, the resulting matrix is symmetric and positive definite. The computational tasks involved during the evaluation of the Gaussian log-likelihood function become daunting as the number n of geographical locations grows, as O(n2) storage and O(n3) operations are required. While many approximation methods have been devised from the side of statistical modeling to ameliorate these polynomial complexities, we are interested here in the complementary approach of evaluating the exact algebraic result by exploiting advances in solution algorithms and many-core computer architectures. Using state-of-the-art high performance dense linear algebra libraries associated with various leading edge parallel architectures (Intel KNLs, NVIDIA GPUs, and distributed-memory systems), ExaGeoStat raises the game for statistical applications from climate and environmental science. ExaGeoStat provides a reference evaluation of statistical parameters, with which to assess the validity of the various approaches based on approximation. The framework takes a first step in the merger of large-scale data analytics and extreme computing for geospatial statistical applications, to be followed by additional complexity reducing improvements from the solver side that can be implemented under the same interface. Thus, a single uncompromised statistical model can ultimately be executed in a wide variety of emerging exascale environments.

  7. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.

    Science.gov (United States)

    Fischer, Nina M; van Maaren, Paul J; Ditz, Jonas C; Yildirim, Ahmet; van der Spoel, David

    2015-07-14

    In order to increase the accuracy of classical computer simulations, existing methodologies may need to be adapted. Hitherto, most force fields employ a truncated potential function to model van der Waals interactions, sometimes augmented with an analytical correction. Although such corrections are accurate for homogeneous systems with a long cutoff, they should not be used in inherently inhomogeneous systems such as biomolecular and interface systems. For such cases, a variant of the particle mesh Ewald algorithm (Lennard-Jones PME) was already proposed 20 years ago (Essmann et al. J. Chem. Phys. 1995, 103, 8577-8593), but it was implemented only recently (Wennberg et al. J. Chem. Theory Comput. 2013, 9, 3527-3537) in a major simulation code (GROMACS). The availability of this method allows surface tensions of liquids as well as bulk properties to be established, such as density and enthalpy of vaporization, without approximations due to truncation. Here, we report on simulations of ≈150 liquids (taken from a force field benchmark: Caleman et al. J. Chem. Theory Comput. 2012, 8, 61-74) using three different force fields and compare simulations with and without explicit long-range van der Waals interactions. We find that the density and enthalpy of vaporization increase for most liquids using the generalized Amber force field (GAFF, Wang et al. J. Comput. Chem. 2004, 25, 1157-1174) and the Charmm generalized force field (CGenFF, Vanommeslaeghe et al. J. Comput. Chem. 2010, 31, 671-690) but less so for OPLS/AA (Jorgensen and Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665-6670), which was parametrized with an analytical correction to the van der Waals potential. The surface tension increases by ≈10(-2) N/m for all force fields. These results suggest that van der Waals attractions in force fields are too strong, in particular for the GAFF and CGenFF. In addition to the simulation results, we introduce a new version of a web server, http

  8. GeoBus: sharing science research with schools

    Science.gov (United States)

    Roper, Kathryn; Robinson, Ruth; Moorhouse, Ben

    2016-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is currently sponsored by industry, NERC, The Crown Estate, and the Scottish Government. The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have little or no experience in teaching this subject. This is, in part, done through the sharing of new science research outcomes and the experiences of young researchers with school pupils to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, over 40,000 pupils will have been involved in experiential Earth science learning activities in 190 different schools (over 400 separate visits) across the length and breadth of Scotland: many of these schools are in remote and disadvantaged regions. A new GeoBus project is under development within the Department of Earth Sciences at UCL in London. A key aim of GeoBus is to incorporate new research into our workshops with the main challenge being the development of appropriate resources that incorporate the key learning aims and requirements of the science and geography curricula. GeoBus works closely with researchers, teachers and educational practitioners to tailor the research outcomes to the curricula as much as possible. Over the past four years, GeoBus has developed 17 workshops, 5 challenge events and extensive field trips and each of these activities are trialled and evaluated within the university, and adjustments are made before the activities are delivered in schools. Activities are continually reviewed and further developments are made in response to both teacher and pupil feedback. This critical reflection of the project's success and impact is important to insure a positive and significant contribution to the science learning in

  9. A note on the optimal pricing strategy in the discrete-time Geo/Geo/1 queuing system with sojourn time-dependent reward

    Directory of Open Access Journals (Sweden)

    Doo Ho Lee

    Full Text Available This work studies the optimal pricing strategy in a discrete-time Geo/Geo/1 queuing system under the sojourn time-dependent reward. We consider two types of pricing schemes. The first one is called the ex-post payment scheme where the server charges a price that is proportional to the time a customer spends in the system, and the second one is called ex-ante payment scheme where the server charges a flat price for all services. In each pricing scheme, a departing customer receives the reward that is inversely proportional to his/her sojourn time. The server should make the optimal pricing decisions in order to maximize its expected profits per time unit in each pricing scheme. This work also investigates customer's equilibrium joining or balking behavior under server's optimal pricing strategy. Numerical experiments are also conducted to validate our analysis. Keywords: Optimal pricing, Equilibrium behavior, Geo/Geo/1 queue, Sojourn time-dependent reward

  10. A replica exchange transition interface sampling method with multiple interface sets for investigating networks of rare events

    Science.gov (United States)

    Swenson, David W. H.; Bolhuis, Peter G.

    2014-07-01

    The multiple state transition interface sampling (TIS) framework in principle allows the simulation of a large network of complex rare event transitions, but in practice suffers from convergence problems. To improve convergence, we combine multiple state TIS [J. Rogal and P. G. Bolhuis, J. Chem. Phys. 129, 224107 (2008)] with replica exchange TIS [T. S. van Erp, Phys. Rev. Lett. 98, 268301 (2007)]. In addition, we introduce multiple interface sets, which allow more than one order parameter to be defined for each state. We illustrate the methodology on a model system of multiple independent dimers, each with two states. For reaction networks with up to 64 microstates, we determine the kinetics in the microcanonical ensemble, and discuss the convergence properties of the sampling scheme. For this model, we find that the kinetics depend on the instantaneous composition of the system. We explain this dependence in terms of the system's potential and kinetic energy.

  11. Balancing geo-privacy and spatial patterns in epidemiological studies

    Directory of Open Access Journals (Sweden)

    Chien-Chou Chen

    2017-11-01

    Full Text Available To balance the protection of geo-privacy and the accuracy of spatial patterns, we developed a geo-spatial tool (GeoMasker intended to mask the residential locations of patients or cases in a geographic information system (GIS. To elucidate the effects of geo-masking parameters, we applied 2010 dengue epidemic data from Taiwan testing the tool’s performance in an empirical situation. The similarity of pre- and post-spatial patterns was measured by D statistics under a 95% confidence interval. In the empirical study, different magnitudes of anonymisation (estimated Kanonymity ≥10 and 100 were achieved and different degrees of agreement on the pre- and post-patterns were evaluated. The application is beneficial for public health workers and researchers when processing data with individuals’ spatial information.

  12. Data mining a small molecule drug screening representative subset from NIH PubChem.

    Science.gov (United States)

    Xie, Xiang-Qun; Chen, Jian-Zhong

    2008-03-01

    PubChem is a scientific showcase of the NIH Roadmap Initiatives. It is a compound repository created to facilitate information exchange and data sharing among the NIH Roadmap-funded Molecular Library Screening Center Network (MLSCN) and the scientific community. However, PubChem has more than 10 million records of compound information. It will be challenging to conduct a drug screening of the whole database of millions of compounds. Thus, the purpose of the present study was to develop a data mining cheminformatics approach in order to construct a representative and structure-diverse sublibrary from the large PubChem database. In this study, a new chemical diverse representative subset, rePubChem, was selected by whole-molecule chemistry-space matrix calculation using the cell-based partition algorithm. The representative subset was generated and was then subjected to evaluations by compound property analyses based on 1D and 2D molecular descriptors. The new subset was also examined and assessed for self-similarity analysis based on 2D molecular fingerprints in comparing with the source compound library. The new subset has a much smaller library size (540K compounds) with minimum similarity and redundancy without loss of the structural diversity and basic molecular properties of its parent library (5.3 million compounds). The new representative subset library generated could be a valuable structure-diverse compound resource for in silico virtual screening and in vitro HTS drug screening. In addition, the established subset generation method of using the combined cell-based chemistry-space partition metrics with pairwised 2D fingerprint-based similarity search approaches will also be important to a broad scientific community interested in acquiring structurally diverse compounds for efficient drug screening, building representative virtual combinatorial chemistry libraries for syntheses, and data mining large compound databases like the PubChem library in general.

  13. Towards the creation of a European Network of Earth Observation Networks within GEO. The ConnectinGEO project.

    Science.gov (United States)

    Masó, Joan; Serral, Ivette; Menard, Lionel; Wald, Lucien; Nativi, Stefano; Plag, Hans-Peter; Jules-Plag, Shelley; Nüst, Daniel; Jirka, Simon; Pearlman, Jay; De Maziere, Martine

    2015-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is a new H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. ConnectinGEO aims to facilitate a broader and more accessible knowledge base to support the needs of GEO, its Societal Benefit Areas (SBAs) and the users of the Global Earth Observing System of Systems (GEOSS). A broad range of subjects from climate, natural resources and raw materials, to the emerging UN Sustainable Development Goals (SDGs) will be addressed. The project will generate a prioritized list of critical gaps within available observation data and models to translate observations into practice-relevant knowledge, based on stakeholder consultation and systematic analysis. Ultimately, it will increase coherency of European observation networks, increase the use of Earth observations for assessments and forecasts and inform the planning for future observation systems. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed by project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the space-based, airborne and in-situ observations European networks (e.g. EPOS, EMSO and GROOM, etc), representatives of the industry sector and European and national funding agencies, in particular those participating in the future ERA-PlaNET. At the beginning, the ENEON will be created and managed by the project. Then the management will be transferred to the network itself to ensure

  14. Pro iOS Geo building apps with location based services

    CERN Document Server

    Andreucci, Giacomo

    2013-01-01

    Deepen your app development skills with Pro iOS Geo. This book shows you how to use geolocation-based tools to enhance the iOS apps you develop. Author Giacomo Andreucci describes different ways to integrate geo services, depending on the kind of app you're looking to develop: a web app, a hybrid app, or a native app. You'll discover how to use the Google Maps API features to integrate powerful geo capabilities in your apps with a little effort. You'll learn how to: Design geographic features for your apps while respecting usability criteria Design touristic geo apps Use HTML5 and the Google M

  15. The Group on Earth Observations (GEO) through 2025

    Science.gov (United States)

    Ryan, Barbara; Cripe, Douglas

    Ministers from the Group on Earth Observations (GEO) Member governments, meeting in Geneva, Switzerland in January 2014, unanimously renewed the mandate of GEO through 2025. Through a Ministerial Declaration, they reconfirmed that GEO’s guiding principles of collaboration in leveraging national, regional and global investments and in developing and coordinating strategies to achieve full and open access to Earth observations data and information in order to support timely and knowledge-based decision-making - are catalysts for improving the quality of life of people around the world, advancing global sustainability, and preserving the planet and its biodiversity. GEO Ministers acknowledged and valued the contributions of GEO Member governments and invited all remaining Member States of the United Nations to consider joining GEO. The Ministers also encouraged all Members to strengthen national GEO arrangements, and - of particular interest to COSPAR - they highlighted the unique contributions of Participating Organizations. In this regard, ten more organizations saw their applications approved by Plenary and joined the ranks along with COSPAR to become a Participating Organization in GEO, bringing the current total to 77. Building on the efforts of a Post-2015 Working Group, in which COSPAR participated, Ministers provided additional guidance for GEO and the evolution of its Global Earth Observation System of System (GEOSS) through 2025. Five key areas of activities for the next decade include the following: 1.) Advocating for the value of Earth observations and the need to continue improving Earth observation worldwide; 2.) Urging the adoption and implementation of data sharing principles globally; 3.) Advancing the development of the GEOSS information system for the benefit of users; 4.) Developing a comprehensive interdisciplinary knowledge base defining and documenting observations needed for all disciplines and facilitate availability and accessibility of

  16. File Specification for GEOS-5 FP (Forward Processing)

    Science.gov (United States)

    Lucchesi, R.

    2013-01-01

    The GEOS-5 FP Atmospheric Data Assimilation System (GEOS-5 ADAS) uses an analysis developed jointly with NOAA's National Centers for Environmental Prediction (NCEP), which allows the Global Modeling and Assimilation Office (GMAO) to take advantage of the developments at NCEP and the Joint Center for Satellite Data Assimilation (JCSDA). The GEOS-5 AGCM uses the finite-volume dynamics (Lin, 2004) integrated with various physics packages (e.g, Bacmeister et al., 2006), under the Earth System Modeling Framework (ESMF) including the Catchment Land Surface Model (CLSM) (e.g., Koster et al., 2000). The GSI analysis is a three-dimensional variational (3DVar) analysis applied in grid-point space to facilitate the implementation of anisotropic, inhomogeneous covariances (e.g., Wu et al., 2002; Derber et al., 2003). The GSI implementation for GEOS-5 FP incorporates a set of recursive filters that produce approximately Gaussian smoothing kernels and isotropic correlation functions. The GEOS-5 ADAS is documented in Rienecker et al. (2008). More recent updates to the model are presented in Molod et al. (2011). The GEOS-5 system actively assimilates roughly 2 × 10(exp 6) observations for each analysis, including about 7.5 × 10(exp 5) AIRS radiance data. The input stream is roughly twice this volume, but because of the large volume, the data are thinned commensurate with the analysis grid to reduce the computational burden. Data are also rejected from the analysis through quality control procedures designed to detect, for example, the presence of cloud. To minimize the spurious periodic perturbations of the analysis, GEOS-5 FP uses the Incremental Analysis Update (IAU) technique developed by Bloom et al. (1996). More details of this procedure are given in Appendix A. The assimilation is performed at a horizontal resolution of 0.3125-degree longitude by 0.25- degree latitude and at 72 levels, extending to 0.01 hPa. All products are generated at the native resolution of the

  17. Application of geo-information science methods in ecotourism exploitation

    Science.gov (United States)

    Dong, Suocheng; Hou, Xiaoli

    2004-11-01

    Application of geo-information science methods in ecotourism development was discussed in the article. Since 1990s, geo-information science methods, which take the 3S (Geographic Information System, Global Positioning System, and Remote Sensing) as core techniques, has played an important role in resources reconnaissance, data management, environment monitoring, and regional planning. Geo-information science methods can easily analyze and convert geographic spatial data. The application of 3S methods is helpful to sustainable development in tourism. Various assignments are involved in the development of ecotourism, such as reconnaissance of ecotourism resources, drawing of tourism maps, dealing with mass data, and also tourism information inquire, employee management, quality management of products. The utilization of geo-information methods in ecotourism can make the development more efficient by promoting the sustainable development of tourism and the protection of eco-environment.

  18. 3D GEO-INFORMATION REQUIREMENTS FOR DISASTER AND EMERGENCY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    E. Demir Ozbek

    2016-06-01

    Full Text Available A conceptual approach is proposed to define 3D geo-information requirement for different types of disasters. This approach includes components such as Disaster Type-Sector-Actor-Process-Activity-Task-Data. According to disaster types processes, activities, tasks, sectors, and responsible and operational actors are derived. Based on the tasks, the needed level of detail for 3D geo-information model is determined. The levels of detail are compliant with the 3D international standard CityGML. After a brief introduction on the disaster phases and geo-information requirement for actors to perform the tasks, the paper discusses the current situation of disaster and emergency management in Turkey and elaborates on components of conceptual approach. This paper discusses the 3D geo-information requirements for the tasks to be used in the framework of 3D geo-information model for Disaster and Emergency Management System in Turkey. The framework is demonstrated for an industrial fire case in Turkey.

  19. NutriChem: a systems chemical biology resource to explore the medicinal value of plant-based foods

    DEFF Research Database (Denmark)

    Jensen, Kasper; Panagiotou, Gianni; Kouskoumvekaki, Irene

    2015-01-01

    million MEDLINE abstracts for information thatlinks plant-based foods with their small moleculecomponents and human disease phenotypes. Nu-triChem contains text-mined data for 18478 pairs of1772 plant-based foods and 7898 phytochemicals,and 6242 pairs of 1066 plant-based foods and 751diseases. In addition......,there is currently no exhaustive resource on thehealth benefits associated to specific dietary inter-ventions, or a resource covering the broad molecu-lar content of food. Here we present the first releaseof NutriChem, available athttp://cbs.dtu.dk/services/NutriChem-1.0, a database generated by text miningof 21...

  20. Comb-e-Chem: an e-science research project

    OpenAIRE

    Frey, Jeremy G.

    2003-01-01

    The background to the Comb-e-Chem e-Science pilot project funded under the UK -Science Programme is presented and the areas being addresses within chemistry and more specifically combinatorial chemistry are disucssed. The ways in which the ideas underlying the application of computer technology can improve the production, analysis and dissemination of chemical information and knowledge in a collaborative environment are discussed.

  1. Global ozone–CO correlations from OMI and AIRS: constraints on tropospheric ozone sources

    Directory of Open Access Journals (Sweden)

    P. S. Kim

    2013-09-01

    Full Text Available We present a global data set of free tropospheric ozone–CO correlations with 2° × 2.5° spatial resolution from the Ozone Monitoring Instrument (OMI and Atmospheric Infrared Sounder (AIRS satellite instruments for each season of 2008. OMI and AIRS have near-daily global coverage of ozone and CO respectively and observe coincident scenes with similar vertical sensitivities. The resulting ozone–CO correlations are highly statistically significant (positive or negative in most regions of the world, and are less noisy than previous satellite-based studies that used sparser data. Comparison with ozone–CO correlations and regression slopes (dO3/dCO from MOZAIC (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft aircraft profiles shows good general agreement. We interpret the observed ozone–CO correlations with the GEOS (Goddard Earth Observing System-Chem chemical transport model to infer constraints on ozone sources. Driving GEOS-Chem with different meteorological fields generally shows consistent ozone–CO correlation patterns, except in some tropical regions where the correlations are strongly sensitive to model transport error associated with deep convection. GEOS-Chem reproduces the general structure of the observed ozone–CO correlations and regression slopes, although there are some large regional discrepancies. We examine the model sensitivity of dO3/dCO to different ozone sources (combustion, biosphere, stratosphere, and lightning NOx by correlating the ozone change from that source to CO from the standard simulation. The model reproduces the observed positive dO3/dCO in the extratropical Northern Hemisphere in spring–summer, driven by combustion sources. Stratospheric influence there is also associated with a positive dO3/dCO because of the interweaving of stratospheric downwelling with continental outflow. The well-known ozone maximum over the tropical South Atlantic is

  2. MyGeoHub: A Collaborative Geospatial Research and Education Platform

    Science.gov (United States)

    Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.

    2017-12-01

    Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.

  3. Human Aspects and Habitat Studies from EuroGeoMars Campaign

    Science.gov (United States)

    Boche-Sauvan, L.; Pletser, V.; Foing, B. H.; Eurogeomars Team

    2009-04-01

    Introduction: In a human space mission, the human factor is one of the dominant aspects, which may strongly influence work results and efficiency. To quantify such a difficult and uncontrollable aspect of space missions, it is necessary to reproduce as exactly as possible the environmental and technical conditions in which astronauts may be confronted: limited re-sources, social interactions in an isolated and cramped area… We will take the benefit of the EuroGeoMars campaign in the Mars Desert Research Station (MDRS, Mars Society) in Utah to observe and measure these characteristics. EuroGeoMars campaign: The EuroGeoMars team aims at assessing the development of scientific protocols and techniques in geology and biology research in planetary conditions. In this framework, MRDS simulation constitutes its main achievement. The scientific investigations conducted in MRDS are expected to provide valuable results, beyond the simple reflection on how managing planetary specific conditions. Nevertheless, the different scientific protocols, even tailored for extreme environmental conditions, require an exhaustive analysis to evaluate how the results and their timing may possibly be affected. MDRS: The MDRS habitat will demand the crew members to work in a cramped environment, surrounded by dust and very limited manpower. Moreover, energy power and communication bandwidth will be limited to the crew members. Human aspects and habitat studies: The crewmember will work in an uncomfortable environment in the habitat: dust, cramping and crowd. Moreover, the sustainibility of the mission will relie on an optimal energy and ressources sharing. This will impose a planification of the different investigating activities. The study of the human aspects and habitat will be performed in terms of impact on scientific and technical tasks rather than in terms of crew's comfort. As any astronaut will previously be aware of the daily condition, we want to improve the working conditions

  4. GeoViQua: quality-aware geospatial data discovery and evaluation

    Science.gov (United States)

    Bigagli, L.; Papeschi, F.; Mazzetti, P.; Nativi, S.

    2012-04-01

    GeoViQua (QUAlity aware VIsualization for the Global Earth Observation System of Systems) is a recently started FP7 project aiming at complementing the Global Earth Observation System of Systems (GEOSS) with rigorous data quality specifications and quality-aware capabilities, in order to improve reliability in scientific studies and policy decision-making. GeoViQua main scientific and technical objective is to enhance the GEOSS Common Infrastructure (GCI) providing the user community with innovative quality-aware search and evaluation tools, which will be integrated in the GEO-Portal, as well as made available to other end-user interfaces. To this end, GeoViQua will promote the extension of the current standard metadata for geographic information with accurate and expressive quality indicators, also contributing to the definition of a quality label (GEOLabel). GeoViQua proposed solutions will be assessed in several pilot case studies covering the whole Earth Observation chain, from remote sensing acquisition to data processing, to applications in the main GEOSS Societal Benefit Areas. This work presents the preliminary results of GeoViQua Work Package 4 "Enhanced geo-search tools" (WP4), started in January 2012. Its major anticipated technical innovations are search and evaluation tools that communicate and exploit data quality information from the GCI. In particular, GeoViQua will investigate a graphical search interface featuring a coherent and meaningful aggregation of statistics and metadata summaries (e.g. in the form of tables, charts), thus enabling end users to leverage quality constraints for data discovery and evaluation. Preparatory work on WP4 requirements indicated that users need the "best" data for their purpose, implying a high degree of subjectivity in judgment. This suggests that the GeoViQua system should exploit a combination of provider-generated metadata (objective indicators such as summary statistics), system-generated metadata (contextual

  5. Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign

    Directory of Open Access Journals (Sweden)

    G. Li

    2011-04-01

    Full Text Available Organic aerosol concentrations are simulated using the WRF-CHEM model in Mexico City during the period from 24 to 29 March in association with the MILAGRO-2006 campaign. Two approaches are employed to predict the variation and spatial distribution of the organic aerosol concentrations: (1 a traditional 2-product secondary organic aerosol (SOA model with non-volatile primary organic aerosols (POA; (2 a non-traditional SOA model including the volatility basis-set modeling method in which primary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA (Mexico City Metropolitan Area 2006 official emission inventory is used in simulations and the POA emissions are modified and distributed by volatility based on dilution experiments for the non-traditional SOA model. The model results are compared to the Aerosol Mass Spectrometry (AMS observations analyzed using the Positive Matrix Factorization (PMF technique at an urban background site (T0 and a suburban background site (T1 in Mexico City. The traditional SOA model frequently underestimates the observed POA concentrations during rush hours and overestimates the observations in the rest of the time in the city. The model also substantially underestimates the observed SOA concentrations, particularly during daytime, and only produces 21% and 25% of the observed SOA mass in the suburban and urban area, respectively. The non-traditional SOA model performs well in simulating the POA variation, but still overestimates during daytime in the urban area. The SOA simulations are significantly improved in the non-traditional SOA model compared to the traditional SOA model and the SOA production is increased by more than 100% in the city. However, the underestimation during daytime is still salient in the urban area and the non-traditional model also fails to reproduce the high level of SOA concentrations in the

  6. GeoFramework: A Modeling Framework for Solid Earth Geophysics

    Science.gov (United States)

    Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.

    2003-12-01

    As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic

  7. New developments on ChemCam laser transmitter and potential applications for other planetology programs

    Science.gov (United States)

    Faure, Benoît; Durand, Eric; Maurice, Sylvestre; Bruneau, Didier; Montmessin, Franck

    2017-11-01

    ChemCam is a LIBS Instrument mounted on the MSL 2011 NASA mission. The laser transmitter of this Instrument has been developed by the French society Thales Optronique (former Thales Laser) with a strong technical support from CNES. The paper will first rapidly present the performance of this laser and will then describe the postChemCam developments realized on and around this laser for new planetology programs.

  8. Operational on-line coupled chemical weather forecasts for Europe with WRF/Chem

    Science.gov (United States)

    Hirtl, Marcus; Mantovani, Simone; Krüger, Bernd C.; Flandorfer, Claudia; Langer, Matthias

    2014-05-01

    Air quality is a key element for the well-being and quality of life of European citizens. Air pollution measurements and modeling tools are essential for the assessment of air quality according to EU legislation. The responsibilities of ZAMG as the national weather service of Austria include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. ZAMG conducts daily Air-Quality forecasts using the on-line coupled model WRF/Chem. Meteorology is simulated simultaneously with the emissions, turbulent mixing, transport, transformation, and fate of trace gases and aerosols. The emphasis of the application is on predicting pollutants over Austria. Two domains are used for the simulations: the mother domain covers Europe with a resolution of 12 km, the inner domain includes the alpine region with a horizontal resolution of 4 km; 45 model levels are used in the vertical direction. The model runs 2 times per day for a period of 72 hours and is initialized with ECMWF forecasts. On-line coupled models allow considering two-way interactions between different atmospheric processes including chemistry (both gases and aerosols), clouds, radiation, boundary layer, emissions, meteorology and climate. In the operational set-up direct-, indirect and semi-direct effects between meteorology and air chemistry are enabled. The model is running on the HPCF (High Performance Computing Facility) of the ZAMG. In the current set-up 1248 CPUs are used. As the simulations need a big amount of computing resources, a method to safe I/O-time was implemented. Every MPI task writes all its output into the shared memory filesystem of the compute nodes. Once the WRF/Chem integration is finished, all split NetCDF-files are merged and saved on the global file system. The merge-routine is based on parallel-NetCDF. With this method the model runs about 30% faster on the SGI

  9. A CNES remote operations center for the MSL ChemCam instrument

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Roger C [Los Alamos National Laboratory; Lafaille, Vivian [CNES; Lorgny, Eric [CNES; Baroukh, Julien [CNES; Gaboriaud, Alain [CNES; Saccoccio, Muriel [CNES; Perez, Rene [CNES; Gasnault, Olivier [CNRS/CESR; Maurice, Sylvestre [CNRS/CESR; Blaney, Diana [JPL

    2010-01-01

    For the first time, a CNES remote operations center in Toulouse will be involved in the tactical operations of a Martian rover in order to operate the ChemCam science instrument in the framework of the NASA MSL (Mars Science Laboratory) mission in 2012. CNES/CESR and LANL have developed and delivered to JPL the ChemCam (Chemistry Camera) instrument located on the top of mast and in the body of the rover. This instrument incorporates a Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI) for determining elemental compositions of rock targets or soil samples at remote distances from the rover (2-7 m). An agreement has been achieved for operating ChemCam, alternatively, from Toulouse (FR) and Los Alamos (NM, USA), through the JPL ground data system in Pasadena (CA, USA) for a complete Martian year (2 years on Earth). After a brief overview of the MSL mission, this paper presents the instrument, the mission operational system and JPL organization requirements for the scientific investigators (PI and Co-Is). This paper emphasizes innovations applied on the ground segment components and on the operational approach to satisfy the requirements and constraints due to these shared and distributed operations over the world.

  10. Strategies GeoCape Intelligent Observation Studies @ GSFC

    Science.gov (United States)

    Cappelaere, Pat; Frye, Stu; Moe, Karen; Mandl, Dan; LeMoigne, Jacqueline; Flatley, Tom; Geist, Alessandro

    2015-01-01

    This presentation provides information a summary of the tradeoff studies conducted for GeoCape by the GSFC team in terms of how to optimize GeoCape observation efficiency. Tradeoffs include total ground scheduling with simple priorities, ground scheduling with cloud forecast, ground scheduling with sub-area forecast, onboard scheduling with onboard cloud detection and smart onboard scheduling and onboard image processing. The tradeoffs considered optimzing cost, downlink bandwidth and total number of images acquired.

  11. Radiation resistance of GeO2-doped silica core optical fibers

    International Nuclear Information System (INIS)

    Shibata, Shuichi; Nakahara, Motohiro; Omori, Yasuharu

    1985-01-01

    Effects of hlogen addition to silica glass on the loss in optical fibers are examined by using halogen-free, chlorine-containing and fluorine-containing GeO 2 -doped silica core optical fibers. Measurements are made for dependence of induced loss in these optical fibers on various factors such as wavelength and total dose of gamma radiation as well as GeO 2 content. Ultraviolet absorption spectra are also observed. In addition, effects of halogens added to pure silica fibers are considered on the basis of Raman spectra of three different optical fibers (pure, F-doped, and F- and GeO 2 -codoped silica core). Thus, it is concluded that (1) addition of halogens (F and Cl) serves to decrease GeO defects and Ge(3) defects in GeO 2 -doped silica optical fibers ; (2) addition of halogens suppresses the increase in loss in GeO 2 -doped silica optical fibers induced by gamma radiation ; and (3) there are close relations between the increase in loss induced by gamma radiation and defects originally existing in the fibers. Effects of halogens added to GeO 2 -doped and pure silica optical fibers can be explained on the basis of the latter relations. (Nogami, K.)

  12. The Features of Geo-Ecological Assessment within the Geo-Eco-Socio-Economic Approach to the Development of Northern Territories

    Directory of Open Access Journals (Sweden)

    Aleksander Ivanovich Semyachkov

    2015-12-01

    Full Text Available In modern conditions, for the purpose of preservation a territory’s ecosystem at its involvement in economic circulation, it is necessary to carry out the anticipatory geo-ecological assessment for indicating the degree of resistance to hypothetical anthropogenic influence. The existing methodological approaches for performing the geo-ecological assessment are unified and can often be equally applied to various types of territories. A new methodical approach for geo-ecological assessment is brought forth in the article. It takes into account the specific character of the Ural region’s northern territories. The approach is based on the point assessment of territory, which is explained by its large area, moreover, the point assessment is proposed to carry out before the development of the territory. This approach makes possible to consider the specific features of the territory’s ecosystem, namely its ability for self-restoration and self-cleaning in the process of economic development and after it. It allows carrying out the choice of economic activity direction on the whole and satisfying the condition of the minimization of the damage from violation the territory’s ecosystem and preservation its resource potential. The research results can be utilized in the studies of experts and students working on the geo-ecological assessment of territory

  13. Research on geo-ontology construction based on spatial affairs

    Science.gov (United States)

    Li, Bin; Liu, Jiping; Shi, Lihong

    2008-12-01

    Geo-ontology, a kind of domain ontology, is used to make the knowledge, information and data of concerned geographical science in the abstract to form a series of single object or entity with common cognition. These single object or entity can compose a specific system in some certain way and can be disposed on conception and given specific definition at the same time. Ultimately, these above-mentioned worked results can be expressed in some manners of formalization. The main aim of constructing geo-ontology is to get the knowledge of the domain of geography, and provide the commonly approbatory vocabularies in the domain, as well as give the definite definition about these geographical vocabularies and mutual relations between them in the mode of formalization at different hiberarchy. Consequently, the modeling tool of conception model of describing geographic Information System at the hiberarchy of semantic meaning and knowledge can be provided to solve the semantic conception of information exchange in geographical space and make them possess the comparatively possible characters of accuracy, maturity and universality, etc. In fact, some experiments have been made to validate geo-ontology. During the course of studying, Geo-ontology oriented to flood can be described and constructed by making the method based on geo-spatial affairs to serve the governmental departments at all levels to deal with flood. Thereinto, intelligent retrieve and service based on geoontology of disaster are main functions known from the traditional manner by using keywords. For instance, the function of dealing with disaster information based on geo-ontology can be provided when a supposed flood happened in a certain city. The correlative officers can input some words, such as "city name, flood", which have been realized semantic label, to get the information they needed when they browse different websites. The information, including basic geographical information and flood distributing

  14. Framework for near-field-communication-based geo-localization and personalization for Android-based smartphones--application in hospital environments.

    Science.gov (United States)

    Meng, Philipp; Fehre, Karsten; Rappelsberger, Andrea; Adlassnig, Klaus-Peter

    2014-01-01

    Various applications using near field communication (NFC) have been developed for the medical sector. As a method of short-range wireless contact-driven data transfer, NFC is a useful tool in medicine. It can be used to transfer data such as blood pressure, control adherence to medication, or transmit in vivo data. The first proposed general framework uses NFC as a mechanism for indoor geo-localization in hospitals. NFC geo-localization is economical compared to classical concepts using indoor GPS or WLAN triangulation, and the granularity of location retrieval can be defined at a tag level. Using this framework, we facilitate the development of medical applications that require exact indoor geo-localization. Multi-user Android systems are addressed in the second framework. Using private NFC tags, users are able to carry on their personal settings for enabled applications. This eliminates the need for multiple user accounts on common Android devices, improves usability, and eases technical administration. Based on the prototypes presented here, we show a novel concept of using NFC-enabled Android devices in hospital environments.

  15. Methanol from TES global observations: retrieval algorithm and seasonal and spatial variability

    Directory of Open Access Journals (Sweden)

    K. E. Cady-Pereira

    2012-09-01

    Full Text Available We present a detailed description of the TES methanol (CH3OH retrieval algorithm, along with initial global results showing the seasonal and spatial distribution of methanol in the lower troposphere. The full development of the TES methanol retrieval is described, including microwindow selection, error analysis, and the utilization of a priori and initial guess information provided by the GEOS-Chem chemical transport model. Retrieval simulations and a sensitivity analysis using the developed retrieval strategy show that TES: (i generally provides less than 1.0 piece of information, (ii is sensitive in the lower troposphere with peak sensitivity typically occurring between ~900–700 hPa (~1–3 km at a vertical resolution of ~5 km, (iii has a limit of detectability between 0.5 and 1.0 ppbv Representative Volume Mixing Ratio (RVMR depending on the atmospheric conditions, corresponding roughly to a profile with a maximum concentration of at least 1 to 2 ppbv, and (iv in a simulation environment has a mean bias of 0.16 ppbv with a standard deviation of 0.34 ppbv. Applying the newly derived TES retrieval globally and comparing the results with corresponding GEOS-Chem output, we find generally consistent large-scale patterns between the two. However, TES often reveals higher methanol concentrations than simulated in the Northern Hemisphere spring, summer and fall. In the Southern Hemisphere, the TES methanol observations indicate a model overestimate over the bulk of South America from December through July, and a model underestimate during the biomass burning season.

  16. ChemNet: A Transferable and Generalizable Deep Neural Network for Small-Molecule Property Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Garrett B.; Siegel, Charles M.; Vishnu, Abhinav; Hodas, Nathan O.

    2017-12-08

    With access to large datasets, deep neural networks through representation learning have been able to identify patterns from raw data, achieving human-level accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and with a multitude of chemical properties of interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with the existing Chemception CNN model, to create a transferable and generalizable deep neural network for small-molecule property prediction. Our latest model, ChemNet learns in a semi-supervised manner from inexpensive labels computed from the ChEMBL database. When fine-tuned to the Tox21, HIV and FreeSolv dataset, which are 3 separate chemical tasks that ChemNet was not originally trained on, we demonstrate that ChemNet exceeds the performance of existing Chemception models, contemporary MLP models that trains on molecular fingerprints, and it matches the performance of the ConvGraph algorithm, the current state-of-the-art. Furthermore, as ChemNet has been pre-trained on a large diverse chemical database, it can be used as a universal “plug-and-play” deep neural network, which accelerates the deployment of deep neural networks for the prediction of novel small-molecule chemical properties.

  17. Influence of inert fillers on shrinkage cracking of meta-kaolin geo-polymers

    International Nuclear Information System (INIS)

    Kuenzel, C.; Boccaccini, A.R.

    2012-01-01

    Geo-polymers contain a network of tetrahedral coordinated aluminate and silicate, and are potential materials to immobilize/encapsulate nuclear wastes. They can exhibit shrinkage cracking when water is removed by drying, and in order to use geo-polymers for waste encapsulation this effect needs to be investigated and controlled. In this study, six different fillers were mixed with meta-kaolin and sodium silicate solution at high pH to form geo-polymers, and the influence of filler addition on mechanical properties has been determined. The fillers used were Fe 2 O 3 , Al 2 O 3 , CaCO 3 , sand, glass and rubber and these do not react during geo-polymerisation reactions. Geo-polymers were prepared containing 30 weight percent of filler. The mechanical properties of the geo-polymers were influenced by the type of filler, with low density fillers increasing mortar viscosity. Geo-polymer samples containing fine filler particles exhibited shrinkage cracking on drying. This was not observed when coarser particles were added and these samples also had significantly improved mechanical properties. (authors)

  18. Oxygen transport and GeO2 stability during thermal oxidation of Ge

    Science.gov (United States)

    da Silva, S. R. M.; Rolim, G. K.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.; Miotti, L.; Freire, F. L.; da Costa, M. E. H. M.; Radtke, C.

    2012-05-01

    Oxygen transport during thermal oxidation of Ge and desorption of the formed Ge oxide are investigated. Higher oxidation temperatures and lower oxygen pressures promote GeO desorption. An appreciable fraction of oxidized Ge desorbs during the growth of a GeO2 layer. The interplay between oxygen desorption and incorporation results in the exchange of O originally present in GeO2 by O from the gas phase throughout the oxide layer. This process is mediated by O vacancies generated at the GeO2/Ge interface. The formation of a substoichiometric oxide is shown to have direct relation with the GeO desorption.

  19. Formulation of caesium based and caesium containing geo-polymers

    Energy Technology Data Exchange (ETDEWEB)

    Berger, S.; Joussot-Dubien, C.; Frizon, F. [CEA Valrho, Dir. de l' Energie Nucleaire, DEN, Decontamination and Conditioning Department, DEN/DTCD/SPDE/L2ED, 30 - Marcoule (France)

    2009-10-15

    Cement encapsulation is widely used as a low- and intermediate level radioactive waste immobilisation process. Among these wastes, caesium ions are poorly immobilised by Portland cement based materials. This work consists of an experimental investigation into the ability of geo-polymers to effectively encapsulate this chemical species and to determine the impact of caesium incorporation on the geo-polymer properties. Geo-polymers were synthesised with several compositions based on the activation of metakaolin with an alkali hydroxide solution containing caesium. The setting time, mineralogy, porosity and mechanical properties of the samples were examined for one month. Leach tests were conducted during the same period to determine the immobilisation efficiency. The results depend to a large extent on the composition of the activation solution in terms of soluble silica content and alkali used. These parameters determine both the degree of condensation and the geo-polymer composition. (authors)

  20. Formulation of caesium based and caesium containing geo-polymers

    International Nuclear Information System (INIS)

    Berger, S.; Joussot-Dubien, C.; Frizon, F.

    2009-01-01

    Cement encapsulation is widely used as a low- and intermediate level radioactive waste immobilisation process. Among these wastes, caesium ions are poorly immobilised by Portland cement based materials. This work consists of an experimental investigation into the ability of geo-polymers to effectively encapsulate this chemical species and to determine the impact of caesium incorporation on the geo-polymer properties. Geo-polymers were synthesised with several compositions based on the activation of metakaolin with an alkali hydroxide solution containing caesium. The setting time, mineralogy, porosity and mechanical properties of the samples were examined for one month. Leach tests were conducted during the same period to determine the immobilisation efficiency. The results depend to a large extent on the composition of the activation solution in terms of soluble silica content and alkali used. These parameters determine both the degree of condensation and the geo-polymer composition. (authors)

  1. The geo-reactor. A link between nuclear fission and geothermal energy?

    International Nuclear Information System (INIS)

    Degueldre, Claude; Fiorina, Carlo

    2013-01-01

    Recent high-precision isotope analysis data suggests the potential occurrence of a geo-reactor. Specific gas isotopes that could have been generated by binary and ternary fissions were identified in volcano emanations or as soluble/associated species in crystalline rocks and semi-quantitatively evaluated as isotopic ratio or estimated amounts. Presently if it is evident that according to the actinide inventory on the Earth, local potential criticality of the geo-system may have been reached, several questions remain such as why, where and when did a geo-reactor be operational? Even if the hypothesis of a geo-reactor operation in the proto-Earth period should be acceptable, it could be difficult to anticipate that a geo-reactor is still operating today. This could be tested in the future by assessing and reconstructing the system by antineutrino detection and tomography through the Earth. The present paper focuses on the geo-reactor conditions including history, spatial extension and regimes. The discussion based on recent calculations involves investigations on the limits in term of fissile inventory, size and power, based on stratification through the gravitational field and the various features through the inner mantel, the boundary with the core, the external part and the inner-core. the reconstruction allows to formulating that from the history point of view there are possibilities that the geo-reactor reached criticality in a proto-Earth period as a thorium/uranium reactor triggered by an under-layer with heavier actinides. The geo-reactor should be a key component of geothermal energy sources. (author)

  2. Geo synthetics in hydraulic and coastal engineering: Filters, revetments and sand filled structures

    International Nuclear Information System (INIS)

    Bezuijen, A.; Pilarczyk, K. W.

    2014-01-01

    The paper deals with 2 applications of geo textiles in coastal and hydraulic engineering: Geo textiles in filters and revetments; and geo textiles in sand filled structure. Geo textiles are often replacing granular filters. However, they have different properties than a granular filter. For the application of geo textiles in revetments, the consequences of the different properties will be shown: how permeability is influenced by a geo textile and what can be the consequences of the weight differences between granular and geo textile filters. In the other application, the filter properties of geo textiles are only secondary. In geo textile tubes and containers the geo textile is used as wrapping material to create large unties that will not erode during wave attach. the structures with geo textile tubes and containers serve as an alternative for rock based structures. The first of these structures were more or less constructed by trial and error, but research on the shape of the structures, the stability under wave attach and the durability of the used of the used material has given the possibility to use design tools for these structures. Recently also the morphological aspects of these structures have been investigated. This is of importance because regularly structures with geo textile tubes fail due to insufficient toe protection against the scour hole that that develops in front of the structure, leading to undermining of the structure. Recent research in the Dealt Flume of Deltares and the Large Wave Flume in Hannover has led to better understanding what mechanisms determine the stability under wave attach. It is shown that also the degree of filling is of importance and the position of the water level with respect to the tube has a large influence. (Author)

  3. Design, Implementation and Applications of 3d Web-Services in DB4GEO

    Science.gov (United States)

    Breunig, M.; Kuper, P. V.; Dittrich, A.; Wild, P.; Butwilowski, E.; Al-Doori, M.

    2013-09-01

    The object-oriented database architecture DB4GeO was originally designed to support sub-surface applications in the geo-sciences. This is reflected in DB4GeO's geometric data model as well as in its import and export functions. Initially, these functions were designed for communication with 3D geological modeling and visualization tools such as GOCAD or MeshLab. However, it soon became clear that DB4GeO was suitable for a much wider range of applications. Therefore it is natural to move away from a standalone solution and to open the access to DB4GeO data by standardized OGC web-services. Though REST and OGC services seem incompatible at first sight, the implementation in DB4GeO shows that OGC-based implementation of web-services may use parts of the DB4GeO-REST implementation. Starting with initial solutions in the history of DB4GeO, this paper will introduce the design, adaptation (i.e. model transformation), and first steps in the implementation of OGC Web Feature (WFS) and Web Processing Services (WPS), as new interfaces to DB4GeO data and operations. Among its capabilities, DB4GeO can provide data in different data formats like GML, GOCAD, or DB3D XML through a WFS, as well as its ability to run operations like a 3D-to-2D service, or mesh-simplification (Progressive Meshes) through a WPS. We then demonstrate, an Android-based mobile 3D augmented reality viewer for DB4GeO that uses the Web Feature Service to visualize 3D geo-database query results. Finally, we explore future research work considering DB4GeO in the framework of the research group "Computer-Aided Collaborative Subway Track Planning in Multi-Scale 3D City and Building Models".

  4. Geo-Enabled, Mobile Services

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard

    2006-01-01

    We are witnessing the emergence of a global infrastructure that enables the widespread deployment of geo-enabled, mobile services in practice. At the same time, the research community has also paid increasing attention to data management aspects of mobile services. This paper offers me...

  5. Operational forecast products and applications based on WRF/Chem

    Science.gov (United States)

    Hirtl, Marcus; Flandorfer, Claudia; Langer, Matthias; Mantovani, Simone; Olefs, Marc; Schellander-Gorgas, Theresa

    2015-04-01

    The responsibilities of the national weather service of Austria (ZAMG) include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The ZAMG conducts daily Air-Quality forecasts using the on-line coupled model WRF/Chem. The mother domain expands over Europe, North Africa and parts of Russia. The nested domain includes the alpine region and has a horizontal resolution of 4 km. Local emissions (Austria) are used in combination with European inventories (TNO and EMEP) for the simulations. The modeling system is presented and the results from the evaluation of the assimilation of pollutants using the 3D-VAR software GSI is shown. Currently observational data (PM10 and O3) from the Austrian Air-Quality network and from European stations (EEA) are assimilated into the model on an operational basis. In addition PM maps are produced using Aerosol Optical Thickness (AOT) observations from MODIS in combination with model data using machine learning techniques. The modeling system is operationally evaluated with different data sets. The emphasis of the application is on the forecast of pollutants which are compared to the hourly values (PM10, O3 and NO2) of the Austrian Air-Quality network. As the meteorological conditions are important for transport and chemical processes, some parameters like wind and precipitation are automatically evaluated (SAL diagrams, maps, …) with other models (e.g. ECMWF, AROME, …) and ground stations via web interface. The prediction of the AOT is also important for operators of solar power plants. In the past Numerical Weather Prediction (NWP) models were used to predict the AOT based on cloud forecasts at the ZAMG. These models do not consider the spatial and temporal variation of the aerosol distribution in the atmosphere with a consequent impact on the accuracy of forecasts especially during clear-sky days

  6. Tropospheric Ozone Source Attribution in Southern California during Summer 2014 Based on Lidar Measurements and Model Simulations

    Science.gov (United States)

    Granados Munoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry

    2016-01-01

    In the past decades, significant efforts have been made to increase tropospheric ozone long-term monitoring. A large number of ground-based, airborne and space-borne instruments are currently providing valuable data to contribute to better understand tropospheric ozone budget and variability. Nonetheless, most of these instruments provide in-situ surface and column-integrated data, whereas vertically resolved measurements are still scarce. Besides ozonesondes and aircraft, lidar measurements have proven to be valuable tropospheric ozone profilers. Using the measurements from the tropospheric ozone differential absorption lidar (DIAL) located at the JPL Table Mountain Facility, California, and the GEOS-Chem and GEOS-5 model outputs, the impact of the North American monsoon on tropospheric ozone during summer 2014 is investigated. The influence of the Monsoon lightning-induced NOx will be evaluated against other sources (e.g. local anthropogenic emissions and the stratosphere) using also complementary data such as backward-trajectories analysis, coincident water vapor lidar measurements, and surface ozone in-situ measurements.

  7. Penn State geoPebble system: Design,Implementation, and Initial Results

    Science.gov (United States)

    Urbina, J. V.; Anandakrishnan, S.; Bilen, S. G.; Fleishman, A.; Burkett, P.

    2014-12-01

    The Penn State geoPebble system is a new network of wirelessly interconnected seismic and GPS sensor nodes with flexible architecture. This network will be used for studies of ice sheets in Antarctica and Greenland, as well as to investigate mountain glaciers. The network will consist of ˜150 geoPebbles that can be deployed in a user-defined spatial geometry. We present our design methodology, which has enabled us to develop these state-of- the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self- contained, wirelessly connected sensor for collecting seismic measurements and position information. Key elements of each node encompasses a three-component seismic recorder, which includes an amplifier, filter, and 24- bit analog-to-digital converter that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available from GPS measurements and a local precision oscillator that is conditioned by the GPS timing pulses. In addition, we record the carrier-phase measurement of the L1 GPS signal in order to determine location at sub-decimeter accuracy (relative to other geoPebbles within a few kilometers radius). Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (including tilt from accelerometers, absolute orientation from magnetometers and temperature). A novel aspect of the geoPebble is a wireless charging system for the internal battery (using inductive coupling techniques). The geoPebbles include all the sensors (geophones, GPS, microphone), communications (WiFi), and power (battery and charging) internally, so the geoPebble system can operate without any cabling connections (though we do provide an external connector so that different geophones can be used). We report initial field-deployment results and

  8. Assessing the Impact of Oil and Natural Gas Activities on Regional Air Quality in the Colorado Northern Front Range using WRF-Chem

    Science.gov (United States)

    Abdioskouei, M.; Carmichael, G. R.

    2017-12-01

    Recent increases in the Natural Gas (NG) production through hydraulic fracturing have questioned the climate benefit of switching from coal-fired to natural gas-fired power plants. Higher than expected levels of methane, VOCs, and NOx have been observed in areas close to oil and NG (OnG) operation facilities. High uncertainty in the OnG emission inventories and methane budget challenge the assessment of OnG impact on air quality and climate and consequently development of effective mitigation policies and control regulations. In this work, we focus on reducing the uncertainties around the OnG emissions by using high resolution (4x4 km2) WRF-Chem simulations coupled with detailed observation from the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ 2014) field campaign. First, we identified the optimal WRF-Chem configurations in the NFR area. We compared the performance of local and non-local Planetary Boundary Layer (PBL) schemes in predicting the PBL height and vertical mixing in the domain. We evaluated the impact of different meteorological and chemical initial and boundary conditions on the model performance. Next, simulations based on optimal configurations were used to assess the performance of the emission inventory (NEI-2011v2). To evaluate the impact of OnG emission on regional air quality and performance of NEI-2011 we tested the sensitivity of the model to the OnG emission. Comparison between simulated values and ground-based and airborne measurements shows a low bias of OnG emission in NEI-2011. Finally, inverse modeling techniques based on emission sensitivity simulations are being used to optimal scaling the OnG emission from the NEI-2011.

  9. Computer simulation of FT-NMR multiple pulse experiment

    Science.gov (United States)

    Allouche, A.; Pouzard, G.

    1989-04-01

    Using the product operator formalism in its real form, SIMULDENS expands the density matrix of a scalar coupled nuclear spin system and simulates analytically a large variety of FT-NMR multiple pulse experiments. The observable transverse magnetizations are stored and can be combined to represent signal accumulation. The programming language is VAX PASCAL, but a MacIntosh Turbo Pascal Version is also available.

  10. Automation and semantics: the CombeChem experience

    OpenAIRE

    Frey, Jeremy G.

    2004-01-01

    Some of the experiences of the CombeChem e-Science project in relation to both automation and the need for semantics in combining modern computer science techniques and chemistry are discussed. In particular the aspects of the smart laboratory, large scale data handling and the way this impacts on the necessary database technology are discussed. In addition some of the ways in which the grid can enable greater user interaction with services such as the National Crystallography Service and imp...

  11. Benchmarking Ligand-Based Virtual High-Throughput Screening with the PubChem Database

    Directory of Open Access Journals (Sweden)

    Mariusz Butkiewicz

    2013-01-01

    Full Text Available With the rapidly increasing availability of High-Throughput Screening (HTS data in the public domain, such as the PubChem database, methods for ligand-based computer-aided drug discovery (LB-CADD have the potential to accelerate and reduce the cost of probe development and drug discovery efforts in academia. We assemble nine data sets from realistic HTS campaigns representing major families of drug target proteins for benchmarking LB-CADD methods. Each data set is public domain through PubChem and carefully collated through confirmation screens validating active compounds. These data sets provide the foundation for benchmarking a new cheminformatics framework BCL::ChemInfo, which is freely available for non-commercial use. Quantitative structure activity relationship (QSAR models are built using Artificial Neural Networks (ANNs, Support Vector Machines (SVMs, Decision Trees (DTs, and Kohonen networks (KNs. Problem-specific descriptor optimization protocols are assessed including Sequential Feature Forward Selection (SFFS and various information content measures. Measures of predictive power and confidence are evaluated through cross-validation, and a consensus prediction scheme is tested that combines orthogonal machine learning algorithms into a single predictor. Enrichments ranging from 15 to 101 for a TPR cutoff of 25% are observed.

  12. Investigation Antiwear Properties of Lubricants with the Geo-Modifiers of Friction

    Directory of Open Access Journals (Sweden)

    I. Levanov

    2017-09-01

    Full Text Available The article describes the influence of the geo-modifiers of friction on the antiwear properties of lubricants. Geo-modifiers of friction are the fine powders of mineral materials. This work is directed on the investigation the influence of the geo-modifiers of friction in the form of the hard lubricant compositions, which based on a mineral serpentine, on the anti-wear properties of greases and gear oils. This composition is the fine powder serpentine with the addition of components such as chalk, borax, kaolin and talc. We compared the antiwear properties of the greases without geo-modifiers of friction and the antiwear properties of greases containing the geo-modifiers of friction from 0.5 % to 3 %. The Litol-24 and transmission oil TAD-17 was used for testihg. The four-ball machine of friction was used for tests accordance with GOST 9490-75. As geo-modifiers the serpentine was used, the fraction of which has a size from 0.87 microns to 2.2 microns. Such parameter as the wear scar diameter was used for evaluation of the antiwear properties of lubricants. As a result of tests it was established that the antiwear greases properties improved on 26-50 % depending on the concentration of the geo-modifiers of friction based on the pure serpentine.

  13. Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations

    Science.gov (United States)

    Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa

    2017-05-01

    We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.

  14. Effects on Student Achievement in General Chemistry Following Participation in an Online Preparatory Course. ChemPrep, a Voluntary, Self-Paced, Online Introduction to Chemistry

    Science.gov (United States)

    Botch, Beatrice; Day, Roberta; Vining, William; Stewart, Barbara; Rath, Kenneth; Peterfreund, Alan; Hart, David

    2007-03-01

    ChemPrep was developed to be a stand-alone preparatory short-course to help students succeed in general chemistry. It is Web-based and delivered using the OWL system. Students reported that the ChemPrep materials (short information pages, parameterized questions with detailed feedback, tutorials, and answers to questions through the OWL message system) permitted them to work independently without the need for textbook or lecture. On average, students who completed ChemPrep had higher grades in the subsequent GenChem, Nursing, and Honors chemistry courses, with a greater percentage achieving a grade of C- or higher. Participation in ChemPrep was voluntary, and more women than men responded. Students in the Honors course enrolled in ChemPrep in higher percentages than students in GenChem and Nursing. SAT and departmental math placement exam scores were used as proxy measures of prior achievement and ability. Based on these, Honors chemistry ChemPrep users were on par with their peers but performed better in the course than non-users. In GenChem and Nursing chemistry courses, ChemPrep helped students of high prior achievement and ability perform better than their achievement scores would predict. Weaker or less motivated students did not respond to the voluntary offerings of ChemPrep in the same numbers as stronger or more motivated students, and we are seeking alternate ways to reach this population.

  15. A fully distributed geo-routing scheme for wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2013-12-01

    When marrying randomized distributed space-time coding (RDSTC) to beaconless geo-routing, new performance horizons can be created. In order to reach those horizons, however, beaconless geo-routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geo-routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes. © 2013 IEEE.

  16. A fully distributed geo-routing scheme for wireless sensor networks

    KAUST Repository

    Bader, Ahmed; Abed-Meraim, Karim; Alouini, Mohamed-Slim

    2013-01-01

    When marrying randomized distributed space-time coding (RDSTC) to beaconless geo-routing, new performance horizons can be created. In order to reach those horizons, however, beaconless geo-routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geo-routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes. © 2013 IEEE.

  17. Specific Space Transportation Costs to GEO - Past, Present and Future

    Science.gov (United States)

    Koelle, Dietrich E.

    2002-01-01

    The largest share of space missions is going to the Geosynchronous Orbit (GEO); they have the highest commercial importance. The paper first shows the historic trend of specific transportation costs to GEO from 1963 to 2002. It started out with more than 500 000 /kg(2002-value) and has come down to 36 000 /kg. This reduction looks impressive, however, the reason is NOT improved technology or new techniques but solely the growth of GEO payloads`unit mass. The first GEO satellite in 1963 did have a mass of 36 kg mass (BoL) . This has grown to a weight of 1600 kg (average of all GEO satellites) in the year 2000. Mass in GEO after injection is used here instead of GTO mass since the GTO mass depends on the launch site latitude. The specific cost reduction is only due to the "law-of-scale", valid in the whole transportation business: the larger the payload, the lower the specific transportation cost. The paper shows the actual prices of launch services to GTO by the major launch vehicles. Finally the potential GEO transportation costs of future launch systems are evaluated. What is the potential reduction of specific transportation costs if reusable elements are introduced in future systems ? Examples show that cost reductions up to 75 % seem achievable - compared to actual costs - but only with launch systems optimized according to modern principles of cost engineering. 1. 53rd International Astronautical Congress, World Space Congress Houston 2. First Submission 3. Specific Space Transportation Costs to GEO - Past, Present and Future 4. KOELLE, D.E. 5. IAA.1.1 Launch Vehicles' Cost Engineering and Economic Competitiveness 6. D.E. Koelle; A.E. Goldstein 7. One overhead projector and screen 8. Word file attached 9. KOELLE I have approval to attend the Congress. I am not willing to present this paper at the IAC Public Outreach Program.

  18. WRF-Chem model simulations of a dust outbreak over the central Mediterranean and comparison with multi-sensor desert dust observations

    Science.gov (United States)

    Rizza, Umberto; Barnaba, Francesca; Marcello Miglietta, Mario; Mangia, Cristina; Di Liberto, Luca; Dionisi, Davide; Costabile, Francesca; Grasso, Fabio; Gobbi, Gian Paolo

    2017-01-01

    In this study, the Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate an intense Saharan dust outbreak event that took place over the Mediterranean in May 2014. Comparison of a simulation using a physics-based desert dust emission scheme with a numerical experiment using a simplified (minimal) emission scheme is included to highlight the advantages of the former. The model was found to reproduce well the synoptic meteorological conditions driving the dust outbreak: an omega-like pressure configuration associated with a cyclogenesis in the Atlantic coasts of Spain. The model performances in reproducing the atmospheric desert dust load were evaluated using a multi-platform observational dataset of aerosol and desert dust properties, including optical properties from satellite and ground-based sun photometers and lidars, plus in situ particulate matter mass concentration (PM) data. This comparison allowed us to investigate the model ability in reproducing both the horizontal and the vertical displacement of the dust plume, as well as its evolution in time. The comparison with satellite (MODIS-Terra) and sun photometers (AERONET) showed that the model is able to reproduce well the horizontal field of the aerosol optical depth (AOD) and its evolution in time (temporal correlation coefficient with AERONET of 0.85). On the vertical scale, the comparison with lidar data at a single site (Rome, Italy) confirms that the desert dust advection occurs in several, superimposed "pulses" as simulated by the model. Cross-analysis of the modeled AOD and desert dust emission fluxes further allowed for the source regions of the observed plumes to be inferred. The vertical displacement of the modeled dust plume was in rather good agreement with the lidar soundings, with correlation coefficients among aerosol extinction profiles up to 1 and mean discrepancy of about 50 %. The model-measurement comparison for PM10 and PM2.5 showed a

  19. Managing and delivering of 3D geo data across institutions has a web based solution - intermediate results of the project GeoMol.

    Science.gov (United States)

    Gietzel, Jan; Schaeben, Helmut; Gabriel, Paul

    2014-05-01

    The increasing relevance of geological information for policy and economy at transnational level has recently been recognized by the European Commission, who has called for harmonized information related to reserves and resources in the EU Member States. GeoMol's transnational approach responds to that, providing consistent and seamless 3D geological information of the Alpine Foreland Basins based on harmonized data and agreed methodologies. However, until recently no adequate tool existed to ensure full interoperability among the involved GSOs and to distribute the multi-dimensional information of a transnational project facing diverse data policy, data base systems and software solutions. In recent years (open) standards describing 2D spatial data have been developed and implemented in different software systems including production environments for 2D spatial data (like regular 2D-GI-Systems). Easy yet secured access to the data is of upmost importance and thus priority for any spatial data infrastructure. To overcome limitations conditioned by highly sophisticated and platform dependent geo modeling software packages functionalities of a web portals can be utilized. Thus, combining a web portal with a "check-in-check-out" system allows distributed organized editing of data and models but requires standards for the exchange of 3D geological information to ensure interoperability. Another major concern is the management of large models and the ability of 3D tiling into spatially restricted models with refined resolution, especially when creating countrywide models . Using GST ("Geosciences in Space and Time") developed initially at TU Bergakademie Freiberg and continuously extended by the company GiGa infosystems, incorporating these key issues and based on an object-relational data model, it is possible to check out parts or whole models for edits and check in again after modification. GST is the core of GeoMol's web-based collaborative environment designed to

  20. Thallium pollution in China: A geo-environmental perspective.

    Science.gov (United States)

    Xiao, Tangfu; Yang, Fei; Li, Shehong; Zheng, Baoshan; Ning, Zengping

    2012-04-01

    It is well known that thallium (Tl) is a non-essential and toxic metal to human health, but less is known about the geo-environmentally-induced Tl pollution and its associated health impacts. High concentrations of Tl that are primarily associated with the epithermal metallogenesis of sulfide minerals have the potential of producing Tl pollution in the environment, which has been recognized as an emerging pollutant in China. This paper aims to review the research progress in China on Tl pollution in terms of the source, mobility, transportation pathway, and health exposure of Tl and to address the environmental concerns on Tl pollution in a geo-environmental perspective. Tl associated with the epithermal metallogenesis of sulfide minerals has been documented to disperse readily and accumulate through the geo-environmental processes of soil enrichment, water transportation and food crop growth beyond a mineralized zone. The enrichments of Tl in local soil, water, and crops may result in Tl pollution and consequent adverse health effects, e.g. chronic Tl poisoning. Investigation of the baseline Tl in the geo-environment, proper land use and health-related environmental planning and regulation are critical to prevent the Tl pollution. Examination of the human urinary Tl concentration is a quick approach to identify exposure of Tl pollution to humans. The experiences of Tl pollution in China can provide important lessons for many other regions in the world with similar geo-environmental contexts because of the high mobility and toxicity of Tl. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Earth Observations, Models and Geo-Design in Support of SDG Implementation and Monitoring

    Science.gov (United States)

    Plag, H. P.; Jules-Plag, S.

    2016-12-01

    Implementation and Monitoring of the United Nations' Sustainable Development Goals (SDGs) requires support from Earth observation and scientific communities. Applying a goal-based approach to determine the data needs to the Targets and Indicators associated with the SDGs demonstrates that integration of environmental with socio-economic and statistical data is required. Large data gaps exist for the built environment. A Geo-Design platform can provide the infrastructure and conceptual model for the data integration. The development of policies and actions to foster the implementation of SDGs in many cases requires research and the development of tools to answer "what if" questions. Here, agent-based models and model webs combined with a Geo-Design platform are promising avenues. This advanced combined infrastructure can also play a crucial role in the necessary capacity building. We will use the example of SDG 5 (Gender equality) to illustrate these approaches. SDG 11 (Sustainable Cities and Communities) is used to underline the cross-goal linkages and the joint benefits of Earth observations, data integration, and modeling tools for multiple SDGs.

  2. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    Directory of Open Access Journals (Sweden)

    Stojce Dimov Ilcev

    2013-12-01

    Full Text Available In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC between ships and Coast Earth Station (CES via Geostationary Earth Orbit (GEO or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multipoint mobile satellite users can be solved by using MA technique, such as Frequency Division Multiple Access (FDMA, Time Division Multiple Access (TDMA, Code Division Multiple Access (CDMA, Space Division Multiple Access (SDMA and Random (Packet Division Multiple Access (RDMA. Since the resources of the systems such as the transmitting power and the bandwidth are limited, it is advisable to use the channels with complete charge and to create a different MA to the channel. This generates a problem of summation and separation of signals in the transmission and reception parts, respectively. Deciding this problem consists in the development of orthogonal channels of transmission in order to divide signals from various users unambiguously on the reception part.

  3. Geo synthetic-reinforced Pavement systems; Sistemas de pavimentos reforzados con geosinteticos

    Energy Technology Data Exchange (ETDEWEB)

    Zornberg, J. G.

    2014-02-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  4. GEO Supersites Data Exploitation Platform

    Science.gov (United States)

    Lengert, W.; Popp, H.-J.; Gleyzes, J.-P.

    2012-04-01

    In the framework of the GEO Geohazard Supersite initiative, an international partnership of organizations and scientists involved in the monitoring and assessment of geohazards has been established. The mission is to advance the scientific understanding of geohazards by improving geohazard monitoring through the combination of in-situ and space-based data, and by facilitating the access to data relevant for geohazard research. The stakeholders are: (1) governmental organizations or research institutions responsible for the ground-based monitoring of earthquake and volcanic areas, (2) space agencies and satellite operators providing satellite data, (3) the global geohazard scientific community. The 10.000's of ESA's SAR products are accessible, since beginning 2008, using ESA's "Virtual Archive", a Cloud Computing assets, allowing the global community an utmost downloading performance of these high volume data sets for mass-market costs. In the GEO collaborative context, the management of ESA's "Virtual Archive" and the ordering of these large data sets is being performed by UNAVCO, who is also coordinating the data demand for the several hundreds of co-PIs. ESA is envisaging to provide scientists and developers access to a highly elastic operational e-infrastructure, providing interdisciplinary data on a large scale as well as tools ensuring innovation and a permanent evolution of the products. Consequently, this science environment will help in defining and testing new applications and technologies fostering innovation and new science findings. In Europe, the collaboration between EPOS, "European Plate Observatory System" lead by INGV, and ESA with support of DLR, ASI, and CNES are the main institutional stakeholders for the GEO Supersites contributing also to a unifying e-infrastructure. The overarching objective of the Geohazard Supersites is: "To implement a sustainable Global Earthquake Observation System and a Global Volcano Observation System as part of the

  5. Computer simulation of FT-NMR multiple pulse experiment

    International Nuclear Information System (INIS)

    Allouche, A.; Pouzard, G.

    1989-01-01

    Using the product operator formalism in its real form, SIMULDENS expands the density matrix of a scalar coupled nuclear spin system and simulates analytically a large variety of FT-NMR multiple pulse experiments. The observable transverse magnetizations are stored and can be combined to represent signal accumulation. The programming language is VAX PASCAL, but a MacIntosh Turbo Pascal Version is also available. (orig.)

  6. GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414

    Energy Technology Data Exchange (ETDEWEB)

    Witwer, Keith; Woosley, Steve; Campbell, Brett [Kurion, Inc., GeoMelt Division, 3015 Horn Rapids Road, Richland, Washington (United States); Wong, Martin; Hill, Joanne [AMEC Inc., Birchwood Park, 601 Faraday Street, Birchwood, Warrington, WA3 6GN (United Kingdom)

    2013-07-01

    Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers, plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not

  7. Quantifying the influence of boreal biomass burning emissions on tropospheric oxidant chemistry over the North Atlantic using BORTAS measurements

    Science.gov (United States)

    Parrington, Mark; Palmer, Paul I.; Rickard, Andrew; Young, Jennifer; Lewis, Ally; Lee, James; Henze, Daven; Tarasick, David; Hyer, Edward; Yantosca, Robert; Bowman, Kevin; Worden, John; Griffin, Debora; Franklin, Jonathan; Helmig, Detlev

    2013-04-01

    We use the GEOS-Chem chemistry transport model to quantify the impact of boreal biomass burning on tropospheric oxidant chemistry over the North Atlantic region during summer of 2011. The GEOS-Chem model is used at a spatial resolution of 1/2 degree latitude by 2/3 degree longitude for a domain covering eastern North America, the North Atlantic Ocean and western Europe. We initialise the model with biomass burning emissions from the Fire Locating and Monitoring of Burning Emissions (FLAMBE) inventory and use a modified chemical mechanism providing a detailed description of ozone photochemistry in boreal biomass burning outflow derived from the Master Chemical Mechanism (MCM). We evaluate the 3-D model distribution of ozone and tracers associated with biomass burning against measurements made by the UK FAAM BAe-146 research aircraft, ozonesondes, ground-based and satellite instruments as part of the BORTAS experiment between 12 July and 3 August 2011. We also use the GEOS-Chem model adjoint to fit the model to BORTAS measurements to analyse the sensitivity of the model chemical mechanism and ozone distribution to wildfire emissions in central Canada.

  8. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  9. Designing and implementing a Quality Broker: the GeoViQua experience

    Science.gov (United States)

    Papeschi, Fabrizio; Bigagli, Lorenzo; Masò, Joan; Nativi, Stefano

    2014-05-01

    GeoViQua (QUAlity aware VIsualisation for the Global Earth Observation System of Systems) is an FP7 project aiming at complementing the Global Earth Observation System of Systems (GEOSS) with rigorous data quality specifications and quality-aware capabilities, in order to improve reliability in scientific studies and policy decision-making. GeoViQua main scientific and technical objective is to enhance the GEOSS Common Infrastructure (GCI) providing the user community with innovative quality-aware search and visualization tools, which will be integrated in the GEOPortal, as well as made available to other end-user interfaces. To this end, GeoViQua will promote the extension of the current standard metadata for geographic information with accurate and expressive quality indicators. Employing and extending several ISO standards such as 19115, 19157 and 19139, a common set of data quality indicators has been selected to be used within the project. The resulting work, in the form of a data model, is expressed in XML Schema Language and encoded in XML. Quality information can be stated both by data producers and by data users, actually resulting in two conceptually distinct data models, the Producer Quality model and the User Quality model (or User Feedback model). GeoViQua architecture is built on the brokering approach successfully experimented within the EuroGEOSS project and realized by the GEO DAB (Discovery and Access Broker) which is part of the GCI. The GEO DAB allows for harmonization and distribution in a transparent way for both users and data providers. This way, GeoViQua can effectively complement and extend the GEO DAB obtaining a Quality augmentation Broker (DAB-Q) which plays a central role in ensuring the consistency of the Producer and User quality models. The GeoViQua architecture also includes a Feedback Catalog, a particular service brokered by the DAB-Q which is dedicated to the storage and discovery of user feedbacks. A very important issue

  10. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  11. The live service of video geo-information

    Science.gov (United States)

    Xue, Wu; Zhang, Yongsheng; Yu, Ying; Zhao, Ling

    2016-03-01

    In disaster rescue, emergency response and other occasions, traditional aerial photogrammetry is difficult to meet real-time monitoring and dynamic tracking demands. To achieve the live service of video geo-information, a system is designed and realized—an unmanned helicopter equipped with video sensor, POS, and high-band radio. This paper briefly introduced the concept and design of the system. The workflow of video geo-information live service is listed. Related experiments and some products are shown. In the end, the conclusion and outlook is given.

  12. The GEO Handbook on Biodiversity Observation Networks

    CSIR Research Space (South Africa)

    Walters, Michele

    2017-01-01

    Full Text Available across the planet. I congratulate GEO BON on creating this powerful mechanism and wish the GEO BON community great success in each of its future endeavours. Geneva, Switzerland Barbara J. Ryan Executive Director: Group on Earth Observations viii Foreword... of biodiversity data is the desired goal, it would be hard to achieve except via the mechanism of a network, simply because 6 R.J. Scholes et al. sampling and species identification is more cost-effective and situation-appropriate if conducted using local...

  13. Variable-scale Geo-information

    NARCIS (Netherlands)

    Meijers, B.M.

    2011-01-01

    The use of geo-information is changing by the advent of new mobile devices, such as tablet-pc's that harness a lot of computing power. This type of information is more and more applied in mainstream digital consumer products, in a net-centric environment (i.e. dissemination takes place via the

  14. Encapsulation of Mg-Zr alloy in metakaolin-based geo-polymer

    International Nuclear Information System (INIS)

    Rooses, Adrien; Steins, Prune; Dannoux-Papin, Adeline; Lambertin, David; Poulesquen, Arnaud; Frizon, Fabien

    2013-01-01

    Investigations were carried out to propose a suitable material for the encapsulation of Mg-Zr alloy wastes issued from fuel cladding of the first generation nuclear reactors. Stability over time, good mechanical properties and low gas production are the main requirements that embedding matrices must comply with in order to be suitable for long run storage. One of the main issues encapsulating Mg-Zr alloy in mineral binder is the hydrogen production related to Mg-Zr alloys corrosion and water radiolysis process. In this context, metakaolin geo-polymers offer an interesting outlook: corrosion densities of Mg-Zr alloys are significantly lower than in Portland cement. This work firstly presents the hydrogen production of Mg-Zr alloy embedded in geo-polymers prepared from different the activation solution (NaOH or KOH). The effect of addition of fluorine on the magnesium corrosion in geo-polymer has been investigated too. The results point out that sodium geo-polymer is a suitable binder for Mg-Zr alloy encapsulation with respect to magnesium corrosion resistance. Furthermore the presence of fluorine reduces significantly the hydrogen release. Then, the impact of fluorine on the geo-polymer network formation was studied by rheological, calorimetric and 19 F NMR measurements. No direct effect resulting from the addition of fluorine has been shown on the geo-polymer binder. Secondly, the formulation of the encapsulation matrix has been adjusted to fulfil the expected physical and mechanical properties. Observations, dimensional evolutions and compressive strengths demonstrated that addition of sand to the geo-polymer binder is efficient to meet the storage criteria. Consequently, a matrix formulation compatible with Mg-Zr alloy encapsulation has been proposed. Finally, irradiation tests have been carried out to assess the hydrogen radiolytic yield of the matrix under exposure to γ radiation. (authors)

  15. The optimal approach of detecting stochastic gravitational wave from string cosmology using multiple detectors

    International Nuclear Information System (INIS)

    Fan Xilong; Zhu Zonghong

    2008-01-01

    String cosmology models predict a relic background of gravitational wave produced during the dilaton-driven inflation. It's spectrum is most likely to be detected by ground gravitational wave laser interferometers (IFOs), like LIGO, Virgo, GEO, as the energy density grows rapidly with frequency. We show the certain ranges of the parameters that underlying string cosmology model using two approaches, associated with 5% false alarm and 95% detection rate. The result presents that the approach of combining multiple pairs of IFOs is better than the approach of directly combining the outputs of multiple IFOs for LIGOH, LIGOL, Virgo and GEO

  16. Correction of measured multiplicity distributions by the simulated annealing method

    International Nuclear Information System (INIS)

    Hafidouni, M.

    1993-01-01

    Simulated annealing is a method used to solve combinatorial optimization problems. It is used here for the correction of the observed multiplicity distribution from S-Pb collisions at 200 GeV/c per nucleon. (author) 11 refs., 2 figs

  17. Robust Inventory System Optimization Based on Simulation and Multiple Criteria Decision Making

    Directory of Open Access Journals (Sweden)

    Ahmad Mortazavi

    2014-01-01

    Full Text Available Inventory management in retailers is difficult and complex decision making process which is related to the conflict criteria, also existence of cyclic changes and trend in demand is inevitable in many industries. In this paper, simulation modeling is considered as efficient tool for modeling of retailer multiproduct inventory system. For simulation model optimization, a novel multicriteria and robust surrogate model is designed based on multiple attribute decision making (MADM method, design of experiments (DOE, and principal component analysis (PCA. This approach as a main contribution of this paper, provides a framework for robust multiple criteria decision making under uncertainty.

  18. Effect of Wegener-Bergeron-Findeisen Process to Black Carbon Simulation

    Science.gov (United States)

    Qi, Ling; Li, Qinbin; He, Cenlin; Wang, Xin; Huang, Jianping

    2016-04-01

    We systematically investigated the effect of Wegener-Bergeron-Findeisen (WBF) process to black carbon (BC) simulation by a global 3D chemical transport model GEOS-Chem constrained by measurements of BC scavenging efficiencies, concentration in air, deposition fluxes, concentration in snow and washout ratios. Including effect of WBF process reduces the annual mean BC scavenging efficiencies (the ratio of BC in cloud droplets to total BC) at all altitudes by 43-76% in the Arctic. For mid latitude BC scavenging efficiencies decrease by 8-22%, 23-39%, and 41-50% in lower (0-2 km), middle (2-5 km) and upper troposphere (5-10 km), respectively. Simulated BC in air in the Arctic and at mid altitude (˜4 km) in mid latitude increases by ˜40%, and the discrepancy reduces from -65% to -30%. Simulated median BC in snow decreases from 25.7 to 22.4 ng g-1, by 15% in mid latitude and increases from 8.7 to 11.0 ng g-1, by 26% in the Arctic and the comparison with observations improves. The model overestimates washout ratios (ratio of BC in fresh snow/rain to BC in surface air) at most of the sites by up to a factor of 165. With effect of WBF process included, the discrepancy decreases to a factor of 72. The simulated BC burden increases from 0.22 to 0.35 mg m-2 yr-1 when effect of WBF process is included, partly explains the scaled up of BC burden in Bond et al., 2013. Moreover, burden above 5 km increases from 22% to 27% when WBF process is included, indicating a higher forcing efficiency. We also found that BC simulation is insensitive to the temperature criteria between mixed phase clouds and ice clouds. The simulated BC burden is the same when the temperature is set as -15° C and -25° C. This study also suggests that more observations are needed to better distinguish riming dominated and WBF dominated conditions and better parameterize BC scavenging efficiency under the two conditions.

  19. GeoCEGAS: natural gas distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Lorena C.J. [Companhia de Gas do Ceara (CEGAS), Fortaleza, CE (Brazil); Targa, Fernando O. [Gestao Empresarial e Informatica Ltda. (GEMPI), Sao Paulo, SP (Brazil)

    2009-07-01

    This Technical Paper approach the conception, architecture, design, construction, and implementation of GeoCEGAS, a spatially enabled corporate management information system, oriented to store and provide Web access, to information associated with the natural gas distribution network, owned by CEGAS. This paper reports business processes, business entities and business intelligence approached on the project, as well as an overview of system architecture, applications, and technology used on the implementation of GeoCEGAS. Finally, is presented an introduction to the work methodology used, as well a synopsis of benefits achievements. (author)

  20. Cleanup of metals and hydrocarbons contaminated soils using the ChemTech process

    International Nuclear Information System (INIS)

    Stephenson, R.; Yan, V.; Lim, S.

    1997-01-01

    The ChemTech soil treatment process, an on-site ex-situ system, comprised of a three-phase fluidized bed to scour, emulsify and chemically leach soil contaminants into a process water, was described. The cleaned soils are then removed from the process circuit by means of a hydrodynamic classifier. At this point they are suitable for return to the excavation site. The process was demonstrated on a pilot scale in January 1997 by Klohn-Crippen Consultants at a demonstration program of emerging and innovative technologies sponsored by the Bay Area Defence Conversion Action Team (BADCAT), to assist with the remediation of twelve closing military bases in the San Francisco area. The ChemTest demonstration involved the removal of copper, chromium, lead and zinc from the Hunter Point Naval Reserve, plus treatability tests on a number of other contaminated soil samples. The ChemTech process was selected by federal and state regulatory agencies from 21 proposed technologies on the basis of performance, effectiveness, low cost, and absence of secondary environmental impacts. This paper provides details of the demonstration program, addresses the applicability of the technology to other sites, and provides cost estimates of unit cleanup costs. 3 refs., 4 tabs., 4 figs

  1. Discovery of accessible locations using region-based geo-social data

    KAUST Repository

    Wang, Yan; Li, Jianmin; Zhong, Ying; Zhu, Shunzhi; Guo, Danhuai; Shang, Shuo

    2018-01-01

    Geo-social data plays a significant role in location discovery and recommendation. In this light, we propose and study a novel problem of discovering accessible locations in spatial networks using region-based geo-social data. Given a set Q of query

  2. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    Science.gov (United States)

    Foing, Bernard

    2010-05-01

    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group http://sci.esa.int/ilewg), ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  3. A distributed charge storage with GeO2 nanodots

    International Nuclear Information System (INIS)

    Chang, T.C.; Yan, S.T.; Hsu, C.H.; Tang, M.T.; Lee, J.F.; Tai, Y.H.; Liu, P.T.; Sze, S.M.

    2004-01-01

    In this study, a distributed charge storage with GeO 2 nanodots is demonstrated. The mean size and aerial density of the nanodots embedded in SiO 2 are estimated to be about 5.5 nm and 4.3x10 11 cm -2 , respectively. The composition of the dots is also confirmed to be GeO 2 by x-ray absorption near-edge structure analyses. A significant memory effect is observed through the electrical measurements. Under the low voltage operation of 5 V, the memory window is estimated to ∼0.45 V. Also, a physical model is proposed to demonstrate the charge storage effect through the interfacial traps of GeO 2 nanodots

  4. Towards Geo-spatial Hypermedia: Concepts and Prototype Implementation

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Vestergaard, Peter Posselt; Ørbæk, Peter

    2002-01-01

    This paper combines spatial hypermedia with techniques from Geographical Information Systems and location based services. We describe the Topos 3D Spatial Hypermedia system and how it has been developed to support geo-spatial hypermedia coupling hypermedia information to model representations...... of real world buildings and landscapes. The prototype experiments are primarily aimed at supporting architects and landscape architects in their work on site. Here it is useful to be able to superimpose and add different layers of information to, e.g. a landscape depending on the task being worked on. We...... and indirect navigation. Finally, we conclude with a number of research issues which are central to the future development of geo-spatial hypermedia, including design issues in combining metaphorical and literal hypermedia space, as well as a discussion of the role of spatial parsing in a geo-spatial context....

  5. Study on geo-information modelling

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Dana

    2006-01-01

    Roč. 5, č. 5 (2006), s. 1108-1113 ISSN 1109-2777 Institutional research plan: CEZ:AV0Z10750506 Keywords : control GIS * geo-information modelling * uncertainty * spatial temporal approach Web Services Subject RIV: BC - Control Systems Theory

  6. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.

    2013-01-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  7. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  8. Probe into geo-information science and information science in nuclear and geography science in China

    International Nuclear Information System (INIS)

    Tang Bin

    2001-01-01

    In the past ten years a new science-Geo-Information Science, a branch of Geoscience, developed very fast, which has been valued and paid much attention to. Based on information science, the author analyzes the flow of material, energy, people and information and their relations, presents the place of Geo-Information Science in Geo-science and its content from Geo-Informatics, Geo-Information technology and the application of itself. Finally, the author discusses the main content and problem existed in Geo-Information Science involved in Nuclear and Geography Science

  9. ChemInform Abstract: The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications.

    KAUST Repository

    Ebner, David C.; Bagdanoff, Jeffrey T.; Ferreira, Eric M.; McFadden, Ryan; Caspi, Daniel D.; Trend, Raissa M.; Stoltz, Brian M.

    2010-01-01

    ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.

  10. ChemInform Abstract: The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications.

    KAUST Repository

    Ebner, David C.

    2010-03-30

    ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.

  11. Multi-User GeoGebra for Virtual Math Teams

    Directory of Open Access Journals (Sweden)

    Gerry Stahl

    2010-05-01

    Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams to discuss mathematics. The VMT collaboration environment now includes the dynamic mathematics application, GeoGebra. It offers a multi-user version of GeoGebra, which can be used in concert with VMT’s chat, web browsers, curricula and wiki repository.

  12. Global Remote Sensing Data Subdivision Organization Based on GeoSOT%全球遥感数据剖分组织的 GeoSOT 网格应用

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    At present, there are various data grids to organize data in different department data centers.In order to seek a remote sensing image data organization grid,which is compatible with the existing survey-ing and mapping data,a scheme of remote sensing data organization based on GeoSOT,geographical coordinate subdividing grid with one dimension integer coding on 2 n-tree,is proposed.it theoretically proves that GeoSOT has good isomorphism with National Topographic Map and other grids, such as Worldwind, Google Earth, Google Maps, Bing Maps and Mapworld, which makes GeoSOT gridinherit easily traditional surveying and mapping data and organize global remote sensing data.Under the premise of keeping the existing data organization,a virtual one global grid for global remote sensingdata organ-ization based on GeoSOT and a method of fast generating specification data products by GeoSOT cells aggregation are introduced.The test shows that it is very significantly to prove data integration efficiency with the virtual one global grid for global remote sensingdata organization based on GeoSOT.%针对目前不同部门按自身行业特点采用不同数据组织网格的问题,为寻求更适合于现有测绘数据组织体系兼容的遥感数据组织网格,提出基于GeoSOT网格的遥感数据组织方案,理论证明了Geo-SOT网格与国家地形图图幅和Worldwind、GoogleEarth、GoogleMaps、BingMaps、天地图等网格具有很好的同构性,有利于对传统测绘数据的继承。同时,在不改变现有数据组织体系的前提下,提出基于GeoSOT全球遥感数据“虚拟一张网”的数据组织模型和数据整合方法。通过试验证明,基于GeoSOT遥感影像“虚拟一张网”的数据组织可有效提高遥感数据整合效率。

  13. GeoMod 2014 - Modelling in geoscience

    Science.gov (United States)

    Leever, Karen; Oncken, Onno

    2016-08-01

    GeoMod is a biennial conference to review and discuss latest developments in analogue and numerical modelling of lithospheric and mantle deformation. GeoMod2014 took place at the GFZ German Research Centre for Geosciences in Potsdam, Germany. Its focus was on rheology and deformation at a wide range of temporal and spatial scales: from earthquakes to long-term deformation, from micro-structures to orogens and subduction systems. It also addressed volcanotectonics and the interaction between tectonics and surface processes (Elger et al., 2014). The conference was followed by a 2-day short course on "Constitutive Laws: from Observation to Implementation in Models" and a 1-day hands-on tutorial on the ASPECT numerical modelling software.

  14. Parametric instability in GEO 600 interferometer

    International Nuclear Information System (INIS)

    Gurkovsky, A.G.; Vyatchanin, S.P.

    2007-01-01

    We present analysis of undesirable effect of parametric instability in signal recycled GEO 600 interferometer. The basis for this effect is provided by excitation of additional (Stokes) optical mode, having frequency ω 1 , and mirror elastic mode, having frequency ω m , when the optical energy stored in the main FP cavity mode, having frequency ω 0 , exceeds a certain threshold and detuning Δ=ω 0 -ω 1 -ω m is small. We discuss the potential of observing parametric instability and its precursors in GEO 600 interferometer. This approach provides the best option to get familiar with this phenomenon, to develop experimental methods to depress it and to test the effectiveness of these methods in situ

  15. The German-Chinese research collaboration YANGTZE-GEO: Assessing the geo-risks in the Three Gorges Reservoir area

    Science.gov (United States)

    Schönbrodt, S.; Behrens, T.; Bieger, K.; Ehret, D.; Frei, M.; Hörmann, G.; Seeber, C.; Schleier, M.; Schmalz, B.; Fohrer, N.; Kaufmann, H.; King, L.; Rohn, J.; Subklew, G.; Xiang, W.

    2012-04-01

    The river impoundment by The Three Gorges Dam leads to resettlement and land reclamation on steep slopes. As a consequence, ecosystem changes such as soil erosion, mass movements, and diffuse sediment and matter fluxes are widely expected to increase rapidly. In order to assess and analyse those ecosystem changes, the German-Chinese joint research project YANGTZE-GEO was set up in 2008. Within the framework of YANGTZE-GEO five German universities (Tuebingen, Erlangen, Giessen, Kiel, Potsdam) conducted studies on soil erosion, mass movements, diffuse matter inputs, and land use change and vulnerability in close collaboration with Chinese scientists. The Chinese partners and institutions are according to their alphabetic order of hometown the Chinese Research Academy of Environmental Sciences (CRAES; Beijing), the Standing Office of the State Council Three Gorges Project Construction Committee (Beijing), the National Climate Centre (NCC) of the China Meteorological Administration (CMA; Beijing), the Aero Geophysical Survey and Remote Sensing for Land and Resources (AES; Beijing), the Nanjing University, the CAS Institute of Soil Science (Nanjing), the Nanjing Institute of Geography and Limnology at CAS (NIGLAS; Nanjing), the China University of Geosciences (CUG; Wuhan), the CAS Institute of Hydrobiology (Wuhan), and the China Three Gorges University (Yichang). The overall aim of YANGTZE-GEO is the development of a risk assessment and forecasting system to locate high risk areas using GIS-based erosion modelling, data mining tools for terrace condition analysis and landslide recognition, eco-hydrological modelling for diffuse matter inputs, and state-of-the-art remote sensing to assess the landscape's vulnerability. Furthermore, the project aims at the recommendation of sustainable land management systems. YANGTZE-GEO showed the relevance of such research and crucially contributes to the understanding of the dimension and dynamics of the ecological consequences of

  16. Multiple Constraints Based Robust Matching of Poor-Texture Close-Range Images for Monitoring a Simulated Landslide

    Directory of Open Access Journals (Sweden)

    Gang Qiao

    2016-05-01

    Full Text Available Landslides are one of the most destructive geo-hazards that can bring about great threats to both human lives and infrastructures. Landslide monitoring has been always a research hotspot. In particular, landslide simulation experimentation is an effective tool in landslide research to obtain critical parameters that help understand the mechanism and evaluate the triggering and controlling factors of slope failure. Compared with other traditional geotechnical monitoring approaches, the close-range photogrammetry technique shows potential in tracking and recording the 3D surface deformation and failure processes. In such cases, image matching usually plays a critical role in stereo image processing for the 3D geometric reconstruction. However, the complex imaging conditions such as rainfall, mass movement, illumination, and ponding will reduce the texture quality of the stereo images, bringing about difficulties in the image matching process and resulting in very sparse matches. To address this problem, this paper presents a multiple-constraints based robust image matching approach for poor-texture close-range images particularly useful in monitoring a simulated landslide. The Scale Invariant Feature Transform (SIFT algorithm was first applied to the stereo images for generation of scale-invariate feature points, followed by a two-step matching process: feature-based image matching and area-based image matching. In the first feature-based matching step, the triangulation process was performed based on the SIFT matches filtered by the Fundamental Matrix (FM and a robust checking procedure, to serve as the basic constraints for feature-based iterated matching of all the non-matched SIFT-derived feature points inside each triangle. In the following area-based image-matching step, the corresponding points of the non-matched features in each triangle of the master image were predicted in the homologous triangle of the searching image by using geometric

  17. Pre-Service Mathematics Teachers' Views about GeoGebra and Its Use

    Science.gov (United States)

    Horzum, Tugba; Ünlü, Melihan

    2017-01-01

    The purpose of this study was to determine the views of pre-service Mathematics teachers' (PMTs) about GeoGebra and its use after being exposed to GeoGebra activities designing processes. This is a case study which was conducted with 36 PMTs. Three open-ended questions were used, after the completion of the 14-week process of GeoGebra training and…

  18. ChemSession'09 - 6. Warsaw Seminar of the PhD Students in Chemistry - Abstracts; ChemSession'09 - 6. Warszawskie Seminarium Doktorantow Chemikow - Streszczenia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Book of Abstracts contains short descriptions of presentations 3 lectures and 105 posters presented during ChemSession'09 - 6{sup th} Warsaw Seminar of the PhD Students in Chemistry. Several posters were devoted to the radiochemistry, radiochemical analysis, radiation chemistry and radiobiology. Some posters on the material science dealing with materials important to nuclear sciences can be also found.

  19. ChemSession'08 - 5. Warsaw Seminar of the PhD Students in Chemistry - Abstracts; ChemSession'08 - 5. Warszawskie Seminarium Doktorantow Chemikow - Streszczenia

    Energy Technology Data Exchange (ETDEWEB)

    Madura, I [ed.

    2008-07-01

    Book of Abstracts consists of short descriptions of presentations: 5 lectures and 127 posters presented during ChemSession'08 - 5{sup th} Warsaw Seminar of the PhD Students in Chemistry. Several posters were devoted to the radiochemistry, radiochemical analysis, radiation chemistry and radiobiology. Some posters on the material science dealing with materials important to nuclear sciences can be also found.

  20. The semantics of Chemical Markup Language (CML for computational chemistry : CompChem

    Directory of Open Access Journals (Sweden)

    Phadungsukanan Weerapong

    2012-08-01

    Full Text Available Abstract This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  1. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    Science.gov (United States)

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  2. FID GEO: Digital transformation and Open Access in Germany's geoscience research community

    Science.gov (United States)

    Hübner, Andreas; Martinson, Guntars; Bertelmann, Roland; Elger, Kirsten; Pfurr, Norbert; Schüler, Mechthild

    2017-04-01

    The 'Specialized Information Service for Solid Earth Sciences' (FID GEO) supports Germany's geoscience research community in 1) electronic publishing of i) institutional and "grey" literature not released in publishing houses and ii) pre- and postprints of research articles 2) digitising geoscience literature and maps and 3) addressing the publication of research data associated with peer-reviewed research articles (data supplements). Established in 2016, FID GEO is funded by the German Research Foundation (DFG) and is run by the Göttingen State and University Library (SUB Göttingen) and the GFZ German Research Centre for Geosciences. Here we present recent success stories and lessons learned. With regard to digitisation, FID GEO received a request from one of the most prestigious geoscience societies in Germany to digitise back-issues of its journals that are so far only available in print. Aims are to ensure long-term availability in Open Access and high visibility by DOI-referenced electronic publication via the FID GEO repository. While digitisation will be financed by FID GEO funds, major challenges are to identify the copyright holders (journals date back to 1924) and negotiate digitisation and publication rights. With respect to research data publishing, we present how we target scientists to integrate the publication of research data into their workflows and institutions to promote the topic. For the latter, we successfully take advantage of existing networks as entry points to the community, like the research network Geo.X in the Berlin-Brandenburg area, individual learned societies as well as their overarching structures DV Geo and GeoUnion. FID GEO promotes the Statement of Commitment of the Coalition for Publishing Data in the Earth and Space Sciences (COPDESS) as well as the FAIR Data Principles in presentations to the above-mentioned groups and institutions. Our aim is to eventually transfer the positive feedback from the geoscience community into

  3. GeoSpark SQL: An Effective Framework Enabling Spatial Queries on Spark

    Directory of Open Access Journals (Sweden)

    Zhou Huang

    2017-09-01

    Full Text Available In the era of big data, Internet-based geospatial information services such as various LBS apps are deployed everywhere, followed by an increasing number of queries against the massive spatial data. As a result, the traditional relational spatial database (e.g., PostgreSQL with PostGIS and Oracle Spatial cannot adapt well to the needs of large-scale spatial query processing. Spark is an emerging outstanding distributed computing framework in the Hadoop ecosystem. This paper aims to address the increasingly large-scale spatial query-processing requirement in the era of big data, and proposes an effective framework GeoSpark SQL, which enables spatial queries on Spark. On the one hand, GeoSpark SQL provides a convenient SQL interface; on the other hand, GeoSpark SQL achieves both efficient storage management and high-performance parallel computing through integrating Hive and Spark. In this study, the following key issues are discussed and addressed: (1 storage management methods under the GeoSpark SQL framework, (2 the spatial operator implementation approach in the Spark environment, and (3 spatial query optimization methods under Spark. Experimental evaluation is also performed and the results show that GeoSpark SQL is able to achieve real-time query processing. It should be noted that Spark is not a panacea. It is observed that the traditional spatial database PostGIS/PostgreSQL performs better than GeoSpark SQL in some query scenarios, especially for the spatial queries with high selectivity, such as the point query and the window query. In general, GeoSpark SQL performs better when dealing with compute-intensive spatial queries such as the kNN query and the spatial join query.

  4. The GEO-3 Scenarios 2002-2032. Quantification and Analysis of Environmental Impacts

    International Nuclear Information System (INIS)

    Bakkes, J.; Potting, J.; Kemp-Benedict, E.; Raskin, P.; Masui, T.; Rana, A.; Nellemann, C.; Rothman, D.

    2004-01-01

    The four contrasting visions of the world's next three decades as presented in the third Global Environment Outlook (GEO-3) have many implications for policy - from hunger to climate change and from freshwater issues to biodiversity. The four scenarios analysed are Markets First, Policy First, Security First, Sustainability First. Presenting a deeper analysis than the original GEO-3 report, this Technical Report quantifies the impacts of the scenarios for all 19 GEO 'sub-regions', such as Eastern Africa and Central Europe. Regional impacts are discussed in the context of sustainable development. The report summary compares the impacts of the four scenarios across regions - and for the world as a whole - in the light of internationally agreed targets including those in the Millennium Declaration where applicable. It provides an account of the analytical methods, key assumptions, models and other tools, along with the approaches used in the analyses. Based on the methods and results, the report looks back on the process of producing the forward-looking analysis for GEO-3. Were all analytical centres on the same track? Did the approach adopted for GEO-3 contribute to the overall GEO objective of strengthening global-regional involvement and linkages?

  5. Geo-communication and web-based geospatial infrastructure

    DEFF Research Database (Denmark)

    Brodersen, Lars; Nielsen, Anders

    2005-01-01

    The introduction of web-services as index-portals based on geoinformation has changed the conditions for both content and form of geocommunication. A high number of players and interactions (as well as a very high number of all kinds of information and combinations of these) characterize web-services......, where maps are only a part of the whole. These new conditions demand new ways of modelling the processes leading to geo-communication. One new aspect is the fact that the service providers have become a part of the geo-communication process with influence on the content. Another aspect...

  6. Geo-referenced modelling of metal concentrations in river basins at the catchment scale

    Science.gov (United States)

    Hüffmeyer, N.; Berlekamp, J.; Klasmeier, J.

    2009-04-01

    1. Introduction The European Water Framework Directive demands the good ecological and chemical state of surface waters [1]. This implies the reduction of unwanted metal concentrations in surface waters. To define reasonable environmental target values and to develop promising mitigation strategies a detailed exposure assessment is required. This includes the identification of emission sources and the evaluation of their effect on local and regional surface water concentrations. Point source emissions via municipal or industrial wastewater that collect metal loads from a wide variety of applications and products are important anthropogenic pathways into receiving waters. Natural background and historical influences from ore-mining activities may be another important factor. Non-point emissions occur via surface runoff and erosion from drained land area. Besides deposition metals can be deposited by fertilizer application or the use of metal products such as wires or metal fences. Surface water concentrations vary according to the emission strength of sources located nearby and upstream of the considered location. A direct link between specific emission sources and pathways on the one hand and observed concentrations can hardly be established by monitoring alone. Geo-referenced models such as GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) deliver spatially resolved concentrations in a whole river basin and allow for evaluating the causal relationship between specific emissions and resulting concentrations. This study summarizes the results of investigations for the metals zinc and copper in three German catchments. 2. The model GREAT-ER The geo-referenced model GREAT-ER has originally been developed to simulate and assess chemical burden of European river systems from multiple emission sources [2]. Emission loads from private households and rainwater runoff are individually estimated based on average consumption figures, runoff rates

  7. ORAC: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level.

    Science.gov (United States)

    Marsili, Simone; Signorini, Giorgio Federico; Chelli, Riccardo; Marchi, Massimo; Procacci, Piero

    2010-04-15

    We present the new release of the ORAC engine (Procacci et al., Comput Chem 1997, 18, 1834), a FORTRAN suite to simulate complex biosystems at the atomistic level. The previous release of the ORAC code included multiple time steps integration, smooth particle mesh Ewald method, constant pressure and constant temperature simulations. The present release has been supplemented with the most advanced techniques for enhanced sampling in atomistic systems including replica exchange with solute tempering, metadynamics and steered molecular dynamics. All these computational technologies have been implemented for parallel architectures using the standard MPI communication protocol. ORAC is an open-source program distributed free of charge under the GNU general public license (GPL) at http://www.chim.unifi.it/orac. 2009 Wiley Periodicals, Inc.

  8. Geo-communication and information design

    DEFF Research Database (Denmark)

    Brodersen, Lars

    2009-01-01

    of processes, procedures, factors, relations etc., all forming parts of a theory on geo-communication and information design. How do we decide whether to transmit content A or content B to another person? We make a decision. Making decisions does not normally give rise to difficulties, although a great deal......This article is an abstract of the book 'Geo-communication and information design'. The work involved in the book was inspired by the author's sense of wonder that there were apparently no existing theories, models etc. capable of identifying and choosing the content of information in systematic...... of debate might occur during the decision-making process. But if the question is extended to include a demand for systematics and consciousness (control) in the procedure adopted, the whole issue becomes more complex. How do we decide to transmit content A or content B to another person on a systematic...

  9. Atmospheric Constituents in GEOS-5: Components for an Earth System Model

    Science.gov (United States)

    Pawson, Steven; Douglass, Anne; Duncan, Bryan; Nielsen, Eric; Ott, Leslie; Strode, Sarah

    2011-01-01

    The GEOS-S model is being developed for weather and climate processes, including the implementation of "Earth System" components. While the stratospheric chemistry capabilities are mature, we are presently extending this to include predictions of the tropospheric composition and chemistry - this includes CO2, CH4, CO, nitrogen species, etc. (Aerosols are also implemented, but are beyond the scope of this paper.) This work will give an overview of our chemistry modules, the approaches taken to represent surface emissions and uptake of chemical species, and some studies of the sensitivity of the atmospheric circulation to changes in atmospheric composition. Results are obtained through focused experiments and multi-decadal simulations.

  10. Mathematical and Computational Aspects Related to Soil Modeling and Simulation

    Science.gov (United States)

    2017-09-26

    and simulation challenges at the interface of applied math (homogenization, handling of discontinuous behavior, discrete vs. continuum representations...topics: a) Visco-elasto-plastic continuum models of geo-surface materials b) Discrete models of geo-surface materials (rocks/gravel/sand) c) Mixed...continuum- discrete representations. Coarse-graining and fine-graining mathematical formulations d) Multi-physics aspects related to the modeling of

  11. Interactive Gaussian Graphical Models for Discovering Depth Trends in ChemCam Data

    Science.gov (United States)

    Oyen, D. A.; Komurlu, C.; Lanza, N. L.

    2018-04-01

    Interactive Gaussian graphical models discover surface compositional features on rocks in ChemCam targets. Our approach visualizes shot-to-shot relationships among LIBS observations, and identifies the wavelengths involved in the trend.

  12. Photometric Studies of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  13. Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone

    Directory of Open Access Journals (Sweden)

    B. Sauvage

    2007-01-01

    Full Text Available We use a global chemical transport model (GEOS-Chem to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O3, NO2, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS satellite instruments, profiles of O3, CO, and relative humidity from the MOZAIC aircraft program, and profiles of O3 from the SHADOZ ozonesonde network. We interpret these multiple data sources with our model to better understand what controls tropical tropospheric ozone. Tropical tropospheric ozone is mainly affected by lightning NOx and convection in the upper troposphere and by surface emissions in the lower troposphere. Scaling the spatial distribution of lightning in the model to the observed flashes improves the simulation of O3 in the upper troposphere by 5–20 ppbv versus in situ observations and by 1–4 Dobson Units versus GOME retrievals of tropospheric O3 columns. A lightning source strength of 6±2 Tg N/yr best represents in situ observations from aircraft and ozonesonde. Tropospheric NO2 and HCHO columns from GOME are applied to provide top-down constraints on emission inventories of NOx (biomass burning and soils and VOCs (biomass burning. The top-down biomass burning inventory is larger than the bottom-up inventory by a factor of 2 for HCHO and alkenes, and by a factor of 2.6 for NOx over northern equatorial Africa. These emissions increase lower tropospheric O3 by 5–20 ppbv, improving the simulation versus aircraft observations, and by 4 Dobson Units versus GOME observations of tropospheric O3 columns. Emission factors in the a posteriori inventory are more consistent with a recent compilation from in situ measurements. The ozone simulation using two different dynamical schemes (GEOS-3 and GEOS-4 is evaluated versus observations; GEOS-4 better represents O3 observations by 5–15 ppbv

  14. Virtual geotechnical laboratory experiments using a simulator

    Science.gov (United States)

    Penumadu, Dayakar; Zhao, Rongda; Frost, David

    2000-04-01

    The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.

  15. Geo-social media as a proxy for hydrometeorological data for streamflow estimation and to improve flood monitoring

    Science.gov (United States)

    Restrepo-Estrada, Camilo; de Andrade, Sidgley Camargo; Abe, Narumi; Fava, Maria Clara; Mendiondo, Eduardo Mario; de Albuquerque, João Porto

    2018-02-01

    Floods are one of the most devastating types of worldwide disasters in terms of human, economic, and social losses. If authoritative data is scarce, or unavailable for some periods, other sources of information are required to improve streamflow estimation and early flood warnings. Georeferenced social media messages are increasingly being regarded as an alternative source of information for coping with flood risks. However, existing studies have mostly concentrated on the links between geo-social media activity and flooded areas. Thus, there is still a gap in research with regard to the use of social media as a proxy for rainfall-runoff estimations and flood forecasting. To address this, we propose using a transformation function that creates a proxy variable for rainfall by analysing geo-social media messages and rainfall measurements from authoritative sources, which are later incorporated within a hydrological model for streamflow estimation. We found that the combined use of official rainfall values with the social media proxy variable as input for the Probability Distributed Model (PDM), improved streamflow simulations for flood monitoring. The combination of authoritative sources and transformed geo-social media data during flood events achieved a 71% degree of accuracy and a 29% underestimation rate in a comparison made with real streamflow measurements. This is a significant improvement on the respective values of 39% and 58%, achieved when only authoritative data were used for the modelling. This result is clear evidence of the potential use of derived geo-social media data as a proxy for environmental variables for improving flood early-warning systems.

  16. GeoXp : An R Package for Exploratory Spatial Data Analysis

    Directory of Open Access Journals (Sweden)

    Thibault Laurent

    2012-04-01

    Full Text Available We present GeoXp, an R package implementing interactive graphics for exploratory spatial data analysis. We use a data set concerning public schools of the French MidiPyrenees region to illustrate the use of these exploratory techniques based on the coupling between a statistical graph and a map. Besides elementary plots like boxplots,histograms or simple scatterplots, GeoXp also couples maps with Moran scatterplots, variogram clouds, Lorenz curves and other graphical tools. In order to make the most of the multidimensionality of the data, GeoXp includes dimension reduction techniques such as principal components analysis and cluster analysis whose results are also linked to the map.

  17. Why new tools were developed for the 'GeoPortalNetwork : Liberty United" project

    NARCIS (Netherlands)

    Vanmeulebrouk, B.; Van Swol, R.; Kuyper, M.; Bulens, J.; Zevenbergen, J.A.

    2009-01-01

    As part of the national innovation co-funding scheme “Space for Geo-information” the project “GeoPortal Network: Liberty United” ran from late 2005 till the end of 2008. Purpose of the project was to promote access to geo-spatial information via web services. To achieve this goal, a network of

  18. Synthesis of organic liquids/geo-polymer composites for the immobilization of nuclear wastes

    International Nuclear Information System (INIS)

    Cantarel, Vincent

    2016-01-01

    This work is included in the management of radioactive organic liquids research field. The process is based on an emulsification of organic liquid in an alkali silicate solution allowing the synthesis of a geo-polymer matrix. The first part of this work consists in carrying out a screening on different organic liquids. A model system representative of the various oils and a geo-polymer reference formulation are then defined. The second part deals with the structuration of the organic liquid/geo-polymer structuration, from the mixture of the reactants to the final material. It aims at determining the phenomena allowing the synthesis of a homogeneous composite. The last two parts aim at characterizing the composite by studying its structure (chemical structure, porosity of the geo-polymer and dispersion of the oil) and its properties with respect to the application to the immobilization of radioactive waste. Unlike calcium silicate-based cementitious matrices, the structure of the geo-polymer is not affected by the chemical nature of the organic liquids. Only acid oils inhibit or slow down the geo-polymerization reaction. In order to obtain a homogeneous material, the presence of surfactant molecules is necessary. The emulsion stabilization mechanism at the base of the process is relying on a synergy between the surfactant molecules and the aluminosilicate particles present in the geo-polymer paste. The kinetics (chemical and mechanical) of the geo-polymerization are not impacted by the presence of oil or surfactants. Only an increase in the viscoelastic moduli and the elastic character of the pastes can be observed. This difference in rheological behavior is mainly due to the presence of surfactant. The structure of the matrix is identical to that of a pure geo-polymer of the same formulation. The organic liquid is dispersed in spherical inclusions whose radius is between 5 and 15 μm. These droplets are separated from each other, and from the environment by the

  19. West Bank Gaza Geo-MIS System

    Data.gov (United States)

    US Agency for International Development — The Geo-MIS System is USAID/West Bank and Gaza's primary system for capturing and managing projectrelated information. Its purpose is to assist USAID and its...

  20. Single and Multiple UAV Cyber-Attack Simulation and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Ahmad Y. Javaid

    2015-02-01

    Full Text Available Usage of ground, air and underwater unmanned vehicles (UGV, UAV and UUV has increased exponentially in the recent past with industries producing thousands of these unmanned vehicles every year.With the ongoing discussion of integration of UAVs in the US National Airspace, the need of a cost-effective way to verify the security and resilience of a group of communicating UAVs under attack has become very important. The answer to this need is a simulation testbed which can be used to simulate the UAV Network (UAVNet. One of these attempts is - UAVSim (Unmanned Aerial Vehicle Simulation testbed developed at the University of Toledo. It has the capability of simulating large UAV networks as well as small UAV networks with large number of attack nodes. In this paper, we analyse the performance of the simulation testbed for two attacks, targeting single and multiple UAVs. Traditional and generic computing resource available in a regular computer laboratory was used. Various evaluation results have been presented and analysed which suggest the suitability of UAVSim for UAVNet attack and swarm simulation applications.

  1. Using GeoRePORT to report socio-economic potential for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R.; Levine, Aaron

    2018-07-01

    The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT, http://en.openei.org/wiki/GeoRePORT) was developed for reporting resource grades and project readiness levels, providing the U.S. Department of Energy a consistent and comprehensible means of evaluating projects. The tool helps funding organizations (1) quantitatively identify barriers, (2) develop measureable goals, (3) objectively evaluate proposals, including contribution to goals, (4) monitor progress, and (5) report portfolio performance. GeoRePORT assesses three categories: geological, technical, and socio-economic. Here, we describe GeoRePORT, then focus on the socio-economic assessment and its applications for assessing deployment potential in the U.S. Socio-economic attributes include land access, permitting, transmission, and market.

  2. The Spatio-Temporal Evolution of Geo-Economic Relationships between China and ASEAN Countries: Competition or Cooperation?

    Directory of Open Access Journals (Sweden)

    Shufang Wang

    2017-06-01

    Full Text Available In the last 30 years, China’s economic power has experienced great changes and has brought about a profound impact on the world economy. This led us to ask a question: do changes in China’s economic power shift the geo-economic relationships between China and its neighboring countries? To answer this question, we researched the evolution of geo-economic relationships between China and the Association of Southeast Asian Nations (ASEAN countries. Using the Euclidean distance method, we explored the changes in these geo-economic relationships between China and ASEAN countries from 1980 to 2014. Our findings resulted in five conclusions: (1 Over time, geo-economic relationships between China and ASEAN countries remained relatively stable. (2 Geographically, the main geo-economic relationships between China and continental ASEAN countries were complementary, while the main geo-economic relationships between China and island ASEAN countries were competitive. (3 Geopolitics and geo-culture were attributed to the changes in geo-economic relationships. (4 The evolution of geo-economic relationships was characterized by path dependence. (5 Geo-economic relationships between China and ASEAN countries could be classified into four types: game type, with high cooperation and competition; complementary type, with high cooperation and low competition; fight type, with low cooperation and high competition; and loose type, with low cooperation and competition. Our findings contribute to improving the understanding of geo-economic relationships.

  3. The GEO-3 Scenarios 2002-2032. Quantification and Analysis of Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Bakkes, J.; Potting, J. (eds.) [National Institute for Public Health and the Environment RIVM, Bilthoven (Netherlands); Henrichs, T. [Center for Environmental Systems Research CESR, University of Kassel, Kassel (Germany); Kemp-Benedict, E.; Raskin, P. [Stockholm Environment Institute SEI, Boston, MA (United States); Masui, T.; Rana, A. [National Institute for Environmental Studies NIES, Ibaraki (Japan); Nellemann, C. [United Nations Environment Programme UNEP, GRID Global and Regional Integrated Data centres Arendal, Lillehammer (Norway); Rothman, D. [International Centre for Integrative Studies ICIS, Maastricht University, Maastricht (Netherlands)

    2004-07-01

    The four contrasting visions of the world's next three decades as presented in the third Global Environment Outlook (GEO-3) have many implications for policy - from hunger to climate change and from freshwater issues to biodiversity. The four scenarios analysed are Markets First, Policy First, Security First, Sustainability First. Presenting a deeper analysis than the original GEO-3 report, this Technical Report quantifies the impacts of the scenarios for all 19 GEO 'sub-regions', such as Eastern Africa and Central Europe. Regional impacts are discussed in the context of sustainable development. The report summary compares the impacts of the four scenarios across regions - and for the world as a whole - in the light of internationally agreed targets including those in the Millennium Declaration where applicable. It provides an account of the analytical methods, key assumptions, models and other tools, along with the approaches used in the analyses. Based on the methods and results, the report looks back on the process of producing the forward-looking analysis for GEO-3. Were all analytical centres on the same track? Did the approach adopted for GEO-3 contribute to the overall GEO objective of strengthening global-regional involvement and linkages?.

  4. Diagenetic Features Analyzed by ChemCam/Curiosity at Pahrump Hills, Gale Crater, Mars

    Science.gov (United States)

    Nachon, M.; Mangold, N.; Cousin, A.; Forni, O.; Anderson, R. B.; Blank, J. G.; Calef, F.; Clegg, S.; Fabre, C.; Fisk, M.; hide

    2015-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of targets and (2) a Remote Micro Imager (RMI), which provides imaging context for the LIBS. The LIBS/ChemCam performs analysis typically of spot sizes 350-550 micrometers in diameter, up to 7 meters from the rover. Within Gale crater, Curiosity traveled from Bradbury Landing toward the base of Mount Sharp, reaching Pahrump Hills outcrop circa sol 750. This region, as seen from orbit, represents the first exposures of lower Mount Sharp. In this abstract we focus on two types of features present within the Pahrump Hills outcrop: concretion features and light-toned veins.

  5. Design challenges of a tunable laser interrogator for geo-stationary communication satellites

    Science.gov (United States)

    Ibrahim, Selwan K.; Honniball, Arthur; McCue, Raymond; Todd, Michael; O'Dowd, John A.; Sheils, David; Voudouris, Liberis; Farnan, Martin; Hurni, Andreas; Putzer, Philipp; Lemke, Norbert; Roner, Markus

    2017-09-01

    Recently optical sensing solutions based on fiber Bragg grating (FBG) technology have been proposed for temperature monitoring in telecommunication satellite platforms with an operational life time beyond 15 years in geo-stationary orbit. Developing radiation hardened optical interrogators designed to be used with FBG sensors inscribed in radiation tolerant fibers offer the capabilities of multiplexing multiple sensors on the same fiber and reducing the overall weight by removing the copper wiring harnesses associated with electrical sensors. Here we propose the use of a tunable laser based optical interrogator that uses a semiconductor MG-Y type laser that has no moving parts and sweeps across the C-band wavelength range providing optical power to FBG sensors and optical wavelength references such as athermal Etalons and Gas Cells to guarantee stable operation of the interrogator over its targeted life time in radiation exposed environments. The MG-Y laser was calibrated so it remains in a stable operation mode which ensures that no mode hops occur due to aging of the laser, and/or thermal or radiation effects. The key optical components including tunable laser, references and FBGs were tested for radiation tolerances by emulating the conditions on a geo-stationary satellite including a Total Ionizing Dose (TID) radiation level of up to 100 krad for interrogator components and 25 Mrad for FBGs. Different tunable laser control, and signal processing algorithms have been designed and developed to fit within specific available radiation hardened FPGAs to guarantee operation of a single interrogator module providing at least 1 sample per second measurement capability across engineering model system developed in the frame of an ESA-ARTES program and is planned to be deployed as a flight demonstrator on-board the German Heinrich Hertz geo-stationary satellite.

  6. Geo-neutrinos and earth's interior

    International Nuclear Information System (INIS)

    Fiorentini, Gianni; Lissia, Marcello; Mantovani, Fabio

    2007-01-01

    The deepest hole that has ever been dug is about 12 km deep. Geochemists analyze samples from the Earth's crust and from the top of the mantle. Seismology can reconstruct the density profile throughout all Earth, but not its composition. In this respect, our planet is mainly unexplored. Geo-neutrinos, the antineutrinos from the progenies of U, Th and 40 K decays in the Earth, bring to the surface information from the whole planet, concerning its content of natural radioactive elements. Their detection can shed light on the sources of the terrestrial heat flow, on the present composition, and on the origins of the Earth. Geo-neutrinos represent a new probe of our planet, which can be exploited as a consequence of two fundamental advances that occurred in the last few years: the development of extremely low background neutrino detectors and the progress on understanding neutrino propagation. We review the status and the prospects of the field

  7. Encoding of Geological knowledge in the GeoPiemonte Map Data Base

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia

    2017-04-01

    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled

  8. East–West GEO Satellite Station-Keeping with Degraded Thruster Response

    Directory of Open Access Journals (Sweden)

    Stoian Borissov

    2015-09-01

    Full Text Available The higher harmonic terms of Earth’s gravitational potential slowly modify the nominal longitude of geostationary Earth orbit (GEO satellites, while the third-body presence (Moon and Sun mainly affects their latitude. For this reason, GEO satellites periodically need to perform station-keeping maneuvers, namely, east–west and north–south maneuvers to compensate for longitudinal and latitudinal variations, respectively. During the operational lifetime of GEO satellites, the thrusters’ response when commanded to perform these maneuvers slowly departs from the original nominal impulsive behavior. This paper addresses the practical problem of how to perform reliable east–west station-keeping maneuvers when thruster response is degraded. The need for contingency intervention from ground-based satellite operators is reduced by breaking apart the scheduled automatic station-keeping maneuvers into smaller maneuvers. Orbital alignment and attitude are tracked on-board during and in between sub-maneuvers, and any off nominal variations are corrected for with subsequent maneuvers. These corrections are particularly important near the end of the lifetime of GEO satellites, where thruster response is farthest from nominal performance.

  9. An integrated risk sensing system for geo-structural safety

    Institute of Scientific and Technical Information of China (English)

    H.W. Huang; D.M. Zhang; B.M. Ayyub

    2017-01-01

    Over the last decades, geo-structures are experiencing a rapid development in China. The potential risks inherent in the huge amount of construction and asset operation projects in China were well managed in the major project, i.e. the project of Shanghai Yangtze tunnel in 2002. Since then, risk assessment of geo-structures has been gradually developed from a qualitative manner to a quantitative manner. However, the current practices of risk management have been paid considerable attention to the assessment, but little on risk control. As a result, the responses to risks occurrences after a comprehensive assessment are basically too late. In this paper, a smart system for risk sensing incorporating the wireless sensor network (WSN) on-site visualization techniques and the resilience-based repair strategy was proposed. The merit of this system is the real-time monitoring for geo-structural performance and dynamic pre-warning for safety of on-site workers. The sectional convergence, joint opening, and seepage of segmental lining of shield tunnel were monitored by the micro-electro-mechanical systems (MEMS) based sensors. The light emitting diode (LED) coupling with the above WSN system was used to indicate different risk levels on site. By sensing the risks and telling the risks in real time, the geo-risks could be controlled and the safety of geo-structures could be assured to a certain degree. Finally, a resilience-based analysis model was proposed for designing the repair strategy by using the measured data from the WSN system. The application and efficiency of this system have been validated by two cases including Shanghai metro tunnel and underwater road tunnel.

  10. Geo-communication and Web-based Spatial Data Infrastructure

    DEFF Research Database (Denmark)

    Brodersen, Lars; Nielsen, Anders

    2006-01-01

    -services. This paper discusses the relations between the different components of SDI and geo-communication as well as the impacts thereof. Discussed is also a model for the organization of the passive components of the infrastructure; i.e. legislation, collaboration, standards, models, specifications, web......! Therefore there is a strong need for theories and models that can describe this complex web in the SDI and geo-communication consisting of active components, passive components, users and information in order to make it possible to handle the complexity and to give the necessary framework....

  11. Observation of GEO Satellite Above Thailand’s Sky

    Science.gov (United States)

    Kasonsuwan, K.; Wannawichian, S.; Kirdkao, T.

    2017-09-01

    The direct observations of Geostationary Orbit (GEO) satellites above Thailand’s sky by 0.7-meters telescope were proceeded at Inthanon Mt., Chiang Mai, Thailand. The observation took place at night with Sidereal Stare Mode (SSM). With this observing mode, the moving object will appear as a streak. The star identification for image calibration is based on (1) a star catalogue, (2) the streak detection of the satellite using the software and (3) the extraction of the celestial coordinate of the satellite as a predicted position. Finally, the orbital elements for GEO satellites were calculated.

  12. Teaching Plate Tectonic Concepts using GeoMapApp Learning Activities

    Science.gov (United States)

    Goodwillie, A. M.; Kluge, S.

    2012-12-01

    GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) can help educators to expose undergraduate students to a range of earth science concepts using high-quality data sets in an easy-to-use map-based interface called GeoMapApp. GeoMapApp Learning Activities require students to interact with and analyse research-quality geoscience data as a means to explore and enhance their understanding of underlying content and concepts. Each activity is freely available through the SERC-Carleton web site and offers step-by-step student instructions and answer sheets. Also provided are annotated educator versions of the worksheets that include teaching tips, additional content and suggestions for further work. The activities can be used "off-the-shelf". Or, since the educator may require flexibility to tailor the activities, the documents are provided in Word format for easy modification. Examples of activities include one on the concept of seafloor spreading that requires students to analyse global seafloor crustal age data to calculate spreading rates in different ocean basins. Another activity has students explore hot spots using radiometric age dating of rocks along the Hawaiian-Emperor seamount chain. A third focusses upon the interactive use of contours and profiles to help students visualise 3-D topography on 2-D computer screens. A fourth activity provides a study of mass wasting as revealed through geomorphological evidence. The step-by-step instructions and guided inquiry approach reduce the need for teacher intervention whilst boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities are funded through the NSF GeoEd program and are aimed at students in the introductory undergraduate, community college and high school levels. The activities are

  13. Update on the NASA GEOS-5 Aerosol Forecasting and Data Assimilation System

    Science.gov (United States)

    Colarco, Peter; da Silva, Arlindo; Aquila, Valentina; Bian, Huisheng; Buchard, Virginie; Castellanos, Patricia; Darmenov, Anton; Follette-Cook, Melanie; Govindaraju, Ravi; Keller, Christoph; hide

    2017-01-01

    GEOS-5 is the Goddard Earth Observing System model. GEOS-5 is maintained by the NASA Global Modeling and Assimilation Office. Core development is within GMAO,Goddard Atmospheric Chemistry and Dynamics Laboratory, and with external partners. Primary GEOS-5 functions: Earth system model for studying climate variability and change, provide research quality reanalyses for supporting NASA instrument teams and scientific community, provide near-real time forecasts of meteorology,aerosols, and other atmospheric constituents to support NASA airborne campaigns.

  14. Geo-electric measurements – internal state of historic masonry

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    A geophysical resistivity measuring device was modified to perform automatic monitoring of historical masonry structures before, during and after grout injection for consolidation purposes. The obtained image is called a geo-electrical tomography. The technique was used to evaluate the deteriorated masonry of the recently partly collapsed Maagdentoren in Zichem,(B). Geo-electric measuring techniques have been adapted from application in geology to be used as a non-destructive technique for t...

  15. National Geo-Database for Biofuel Simulations and Regional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies; (2) model biomass productivity and associated environmental impacts of annual cellulosic feedstocks; (3) simulate production of perennial biomass feedstocks grown on marginal lands; and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. We used the EPIC (Environmental Policy Integrated Climate) model to simulate biomass productivity and environmental impacts of annual and perennial cellulosic feedstocks across much of the USA on both croplands and marginal lands. We used data from LTER and eddy-covariance experiments within the study region to test the

  16. Geo3DML: A standard-based exchange format for 3D geological models

    Science.gov (United States)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Wang, Xianghong

    2018-01-01

    A geological model (geomodel) in three-dimensional (3D) space is a digital representation of the Earth's subsurface, recognized by geologists and stored in resultant geological data (geodata). The increasing demand for data management and interoperable applications of geomodelscan be addressed by developing standard-based exchange formats for the representation of not only a single geological object, but also holistic geomodels. However, current standards such as GeoSciML cannot incorporate all the geomodel-related information. This paper presents Geo3DML for the exchange of 3D geomodels based on the existing Open Geospatial Consortium (OGC) standards. Geo3DML is based on a unified and formal representation of structural models, attribute models and hierarchical structures of interpreted resultant geodata in different dimensional views, including drills, cross-sections/geomaps and 3D models, which is compatible with the conceptual model of GeoSciML. Geo3DML aims to encode all geomodel-related information integrally in one framework, including the semantic and geometric information of geoobjects and their relationships, as well as visual information. At present, Geo3DML and some supporting tools have been released as a data-exchange standard by the China Geological Survey (CGS).

  17. Geoscience Diversity Experiential Simulations (GeoDES) Workshop Report

    Science.gov (United States)

    Houlton, H. R.; Chen, J.; Brown, B.; Samuels, D.; Brinkworth, C.

    2017-12-01

    The geosciences have to solve increasingly complex problems relating to earth and society, as resources become limited, natural hazards and changes in climate impact larger communities, and as people interacting with Earth become more interconnected. However, the profession has dismally low representation from geoscientists who are from diverse racial, ethnic, or socioeconomic backgrounds, as well as women in leadership roles. This underrepresentation also includes individuals whose gender identity/expression is non-binary or gender-conforming, or those who have physical, cognitive, or emotional disabilities. This lack of diversity ultimately impacts our profession's ability to produce our best science and work with the communities that we strive to protect and serve as stewards of the earth. As part of the NSF GOLD solicitation, we developed a project (Geoscience Diversity Experiential Simulations) to train 30 faculty and administrators to be "champions for diversity" and combat the hostile climates in geoscience departments. We hosted a 3-day workshop in November that used virtual simulations to give participants experience in building the skills to react to situations regarding bias, discrimination, microaggressions, or bullying often cited in geoscience culture. Participants interacted with avatars on screen, who responded to participants' actions and choices, given certain scenarios. The scenarios are framed within a geoscience perspective; we integrated qualitative interview data from informants who experienced inequitable judgement, bias, discrimination, or harassment during their geoscience careers. The simulations gave learners a safe environment to practice and build self-efficacy in how to professionally and productively engage peers in difficult conversations. In addition, we obtained pre-workshop survey data about participants' understanding regarding Diversity, Equity, and Inclusion practices, as well as observation data of participants' responses

  18. GeoSciML version 3: A GML application for geologic information

    Science.gov (United States)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred

  19. The ChemChar process

    International Nuclear Information System (INIS)

    Manahan, S.E.; Kinner, L.L.; Larsen, D.W.

    1992-01-01

    This paper reports on reverse-burn gasification is a thermochemical process that offers a number of advantages over conventional incineration for the treatment of a variety of waste materials. Patented as the ChemChar Process, reverse-burn gasification can treat wastes in the forms of solids, liquids, sludges, and soils. Waste constituents are destroyed by conversion to a combustible gas and to a dry, inert, carbonaceous solid which is either non-hazardous or can be readily mixed with cement to prevent leaching of the radioactive, toxic, or heavy metal constituents that are retained in the char residue or ash. In this way, reverse-burn gasification can be a very effective method for treating organic waste sludges containing heavy metals and mixed wastes consisting of hazardous chemicals contaminated with radioactive substances. As with any gasification waste treatment process, reverse-burn gasification offers inherent advantages in the areas of destruction efficiency and emissions control. This is because, instead of an exhaust gas that must treated to control emissions, gasification produces a combustible gas that is burned. Trace levels of contaminants are destroyed in burning the gas, and a catalyst may be employed, if necessary

  20. Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...

  1. 3D visualization of geo-scientific data for research and development purposes

    International Nuclear Information System (INIS)

    Mangeot, A.; Tabani, P.; Yven, B.; Dewonck, S.; Napier, B.; Waston, C.J.; Baker, G.R.; Shaw, R.P.

    2012-01-01

    Document available in extended abstract form only. In recent years national geoscience organizations have increasingly utilized 3D model data as an output to the stakeholder community. Advances in both software and hardware have led to an increasing use of 3D depictions of geoscience data alongside the standard 2D data formats such as maps and GIS data. By characterizing geoscience data in 3D, knowledge transfer between geo-scientists and stakeholders is improved as the mindset and thought processes are communicated more effectively in a 3D model than in a 2D flat file format. 3D models allow the user to understand the conceptual basis of the 2D data and aids the decision making process at local, regional and national scales. In April 29 2009 a Memorandum of Understanding has been signed between BGS and Andra in order to provide an improved mechanism for technical cooperation and collaboration in the Earth sciences. A specific agreement was signed the 1 December 2009 to evaluate the capacity of a 3D software called GeoVisionary to represent the Underground research Laboratory and its environment. GeoVisionary is the result of collaboration between Virtalis and the British Geological Survey. Combining a powerful data engine with a virtual geological tool-kit enables geo-scientists to visualize, analyze and share large datasets seamlessly in an immersive, real time environment A typical GeoVisionary environment contains one or more the following: 3D terrain files, Aerial photography, Bitmap overlays of specialized data, Vector shapes and outlines, 3D object Models. The key benefits are: Continuously stream geometry and photography in real time, Visualise 2D GIS data in immersive 3D stereo, Diverse datasets in a single environment, 'Fly' to any part of the data in seconds, Infinitely scalable, Prepare and evaluate before you begin fieldwork, Enhance team-working and increased efficiency of field operations, Clearer communication of results. Now, the 3D model has been

  2. The GeoSteiner software package for computing Steiner trees in the plane

    DEFF Research Database (Denmark)

    Juhl, Daniel; Warme, David M.; Winter, Pawel

    The GeoSteiner software package has for more than 10 years been the fastest (publicly available) program for computing exact solutions to Steiner tree problems in the plane. The computational study by Warme, Winter and Zachariasen, published in 2000, documented the performance of the GeoSteiner...... approach --- allowing the exact solution of Steiner tree problems with more than a thousand terminals. Since then, a number of algorithmic enhancements have improved the performance of the software package significantly. In this computational study we run the current code on the largest problem instances...... from the 2000-study, and on a number of larger problem instances. The computational study is performed using both the publicly available GeoSteiner 3.1 code base, and the commercial GeoSteiner 4.0 code base....

  3. GEO activities towards improved Geophysical monitoring. A key input to Disaster Risk Reduction.

    Science.gov (United States)

    Achache, J.; Rum, G.

    2007-05-01

    GEO has been established in 2005 with the main objective to put in place a Global, Coordinated, Comprehensive and Sustained System of Observing Systems (GEOSS) to serve 9 Social Benefit Areas, among which Disaster Risk Reduction. The paper will first set up the reference GEO framework, through a brief description of GEOSS key features, architectural functions and capacity building, and then will recall the value of the Geophysical observations, coming both from in situ and remote (satellite) systems, and, even more important, of their integration. GEO activities related to Geophysical monitoring and the use of related observation to foster social benefits in the Disaster Risk Reduction area will then be shortly described, together with the on-going key actions, including specific examples on key scientific/technical and data sharing aspects associated to GEOSS implementation. Special attention will be devoted on how Capacity Building strategy and activities are addressed through GEOSS development, building on infrastructure and programs under consolidation within GEO framework, such as the GEOSS Information collection and dissemination systems under development (GEONETCast, GEO Web Portal, GEO Clearinghouse) and the UN programs such as SPIDER (SPace based Information for Disaster management and Emergency Response) and UNOSAT. The paper will provide recommendations on the way forward for the implementation of Disaster Risk Management provisions as an integral part of sustainable development, also with the objective of creating within GEO a supporting framework to UNDP and World Bank activities on Risk Identification and Assessment.

  4. Designing human centered GeoVisualization application--the SanaViz--for telehealth users: a case study.

    Science.gov (United States)

    Joshi, Ashish; de Araujo Novaes, Magdala; Machiavelli, Josiane; Iyengar, Sriram; Vogler, Robert; Johnson, Craig; Zhang, Jiajie; Hsu, Chiehwen E

    2012-01-01

    Public health data is typically organized by geospatial unit. GeoVisualization (GeoVis) allows users to see information visually on a map. Examine telehealth users' perceptions towards existing public health GeoVis applications and obtains users' feedback about features important for the design and development of Human Centered GeoVis application "the SanaViz". We employed a cross sectional study design using mixed methods approach for this pilot study. Twenty users involved with the NUTES telehealth center at Federal University of Pernambuco (UFPE), Recife, Brazil were enrolled. Open and closed ended questionnaires were used to gather data. We performed audio recording for the interviews. Information gathered included socio-demographics, prior spatial skills and perception towards use of GeoVis to evaluate telehealth services. Card sorting and sketching methods were employed. Univariate analysis was performed for the continuous and categorical variables. Qualitative analysis was performed for open ended questions. Existing Public Health GeoVis applications were difficult to use. Results found interaction features zooming, linking and brushing and representation features Google maps, tables and bar chart as most preferred GeoVis features. Early involvement of users is essential to identify features necessary to be part of the human centered GeoVis application "the SanaViz".

  5. The Intention to Use GeoGebra in the Teaching of Mathematics among Malaysian Teachers

    Science.gov (United States)

    Belgheis, Soheila; Kamalludeen, Rosemaliza

    2018-01-01

    This quantitative study examined Malaysian teachers' perception towards using GeoGebra in mathematics teaching. The relationship between teachers' Perceived Current Competencies (PCC) of GeoGebra, and Intention to Use (IU) it as well as the difference between male and female teachers and between users and non-users of GeoGebra were investigated.…

  6. A Divide and Conquer Strategy for Scaling Weather Simulations with Multiple Regions of Interest

    Directory of Open Access Journals (Sweden)

    Preeti Malakar

    2013-01-01

    Full Text Available Accurate and timely prediction of weather phenomena, such as hurricanes and flash floods, require high-fidelity compute intensive simulations of multiple finer regions of interest within a coarse simulation domain. Current weather applications execute these nested simulations sequentially using all the available processors, which is sub-optimal due to their sub-linear scalability. In this work, we present a strategy for parallel execution of multiple nested domain simulations based on partitioning the 2-D processor grid into disjoint rectangular regions associated with each domain. We propose a novel combination of performance prediction, processor allocation methods and topology-aware mapping of the regions on torus interconnects. Experiments on IBM Blue Gene systems using WRF show that the proposed strategies result in performance improvement of up to 33% with topology-oblivious mapping and up to additional 7% with topology-aware mapping over the default sequential strategy.

  7. Dust modeling over East Asia during the summer of 2010 using the WRF-Chem model

    Science.gov (United States)

    Zhang, B.; Huang, J.; Chen, S.

    2017-12-01

    An intense summer dust storm over East Asia during June 24-27, 2010, was systematically analyzed using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and a variety of in situ measurements and satellite retrievals. The results showed that the WRF-Chem model captured the spatial and temporal distributions of meteorological factors and dust aerosols over East Asia. This summer dust storm was initiated by the approach of a transverse trough in the northwestern Xinjiang. Because of the passage of the cutoff-low, a large amount of cold air was transported southward and further enhanced in the narrow valleys of the Altai and Tianshan Mountains, which resulted in higher wind speeds and huge dust emissions over the Taklimakan Desert (TD). Dust emission fluxes over the TD were as high as 54 μg m-2 s-1 on June 25th. The dust aerosols from the TD then swept across Inner Mongolia, Ningxia and Mongolia, and some were also transported eastward to Beijing, Tianjin, the Hebei region, and even South Korea and Japan. The simulations further showed that summer dust over East Asia exerts an important influence on the radiation budget in the Earth-atmosphere system. Dust heat the atmosphere at a maximum heating rate of 0.14 k day-1, effectively changing the vertical stability of the atmosphere and affecting climate change at regional and even global scales. The dust event-averaged direct radiative forcing induced by dust particles over the TD at all-sky was -6.0, -16.8 and 10.8 W m-2 at the top of the atmosphere, the surface, and in the atmosphere, respectively.

  8. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    Science.gov (United States)

    Payré, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R. C.; Forni, O.; Gasnault, O.; Mangold, N.; Meslin, P.-Y.; Lasue, J.; Ollila, A.; Rapin, W.; Maurice, S.; Nachon, M.; Le Deit, L.; Lanza, N.; Clegg, S.

    2017-03-01

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantifications of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. These observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.

  9. GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality

    Science.gov (United States)

    Lush, Victoria; Nüst, Daniel; Bastin, Lucy; Masó, Joan; Lumsden, Jo

    2014-05-01

    We present demonstrations of the GEO label Web services and their integration into a prototype extension of the GEOSS portal (http://scgeoviqua.sapienzaconsulting.com/web/guest/geo_home), the GMU portal (http://gis.csiss.gmu.edu/GADMFS/) and a GeoNetwork catalog application (http://uncertdata.aston.ac.uk:8080/geonetwork/srv/eng/main.home). The GEO label is designed to communicate, and facilitate interrogation of, geospatial quality information with a view to supporting efficient and effective dataset selection on the basis of quality, trustworthiness and fitness for use. The GEO label which we propose was developed and evaluated according to a user-centred design (UCD) approach in order to maximise the likelihood of user acceptance once deployed. The resulting label is dynamically generated from producer metadata in ISO or FDGC format, and incorporates user feedback on dataset usage, ratings and discovered issues, in order to supply a highly informative summary of metadata completeness and quality. The label was easily incorporated into a community portal as part of the GEO Architecture Implementation Programme (AIP-6) and has been successfully integrated into a prototype extension of the GEOSS portal, as well as the popular metadata catalog and editor, GeoNetwork. The design of the GEO label was based on 4 user studies conducted to: (1) elicit initial user requirements; (2) investigate initial user views on the concept of a GEO label and its potential role; (3) evaluate prototype label visualizations; and (4) evaluate and validate physical GEO label prototypes. The results of these studies indicated that users and producers support the concept of a label with drill-down interrogation facility, combining eight geospatial data informational aspects, namely: producer profile, producer comments, lineage information, standards compliance, quality information, user feedback, expert reviews, and citations information. These are delivered as eight facets of a wheel

  10. Fundamental Limitations for Imaging GEO Satellites

    Science.gov (United States)

    2015-10-18

    Fundamental limitations for imaging GEO satellites D. Mozurkewich Seabrook Engineering , Seabrook, MD 20706 USA H. R. Schmitt, J. T. Armstrong Naval...higher spatial frequency. Send correspondence to David Mozurkewich, Seabrook Engineering , 9310 Dubarry Ave., Seabrook MD 20706 E-mail: dave

  11. Influence of ZnO encapsulation on the luminescence property of GeO2 nanowires

    International Nuclear Information System (INIS)

    Kim, Hyunsu; Jin, Changhyun; Park, Sunghoon; Lee, Chongmu; Kwon, Youngjae; Lee, Sangmin

    2012-01-01

    GeO 2 -core/ZnO-shell nanowires were synthesized on (100) Si substrates by thermal evaporation of Ge powders, followed by atomic layer deposition of ZnO. X-ray diffraction, scanning electron microscopy and transmission electron microscopy analyses showed that the mean diameter and lengths of the core-shell nanowires were approximately 100 nm and from a few tens to a few hundreds of micrometers, respectively. Photoluminescence measurements showed that pure GeO 2 nanowires had a violet emission band centered at approximately 430 nm. In contrast, GeO 2 -core/ZnO-shell nanowires had both a sharp near-band edge (NBE) emission band centered at approximately 380 nm and a broad deep-level (DL) emission band centered at approximately 590 nm, which is characteristic of ZnO. GeO 2 -core/ZnO-shell nanowires showed a higher intensity ratio of NBE emission to DL emission than either GeO 2 or ZnO nanowires. In addition, the origin of the enhancement of luminescence in GeO 2 nanowires by ZnO encapsulation is discussed.

  12. Leveraging GeoTIFF Compatibility for Visualizing a New EASE-Grid 2.0 Global Satellite Passive Microwave Climate Record

    Science.gov (United States)

    Paget, A. C.; Brodzik, M. J.; Long, D. G.; Hardman, M.

    2016-02-01

    The historical record of satellite-derived passive microwave brightness temperatures comprises data from multiple imaging radiometers (SMMR, SSM/I-SSMIS, AMSR-E), spanning nearly 40 years of Earth observations from 1978 to the present. Passive microwave data are used to monitor time series of many climatological variables, including ocean wind speeds, cloud liquid water and sea ice concentrations and ice velocity. Gridded versions of passive microwave data have been produced using various map projections (polar stereographic, Lambert azimuthal equal-area, cylindrical equal-area, quarter-degree Platte-Carree) and data formats (flat binary, HDF). However, none of the currently available versions can be rendered in the common visualization standard, geoTIFF, without requiring cartographic reprojection. Furthermore, the reprojection details are complicated and often require expert knowledge of obscure software package options. We are producing a consistently calibrated, completely reprocessed data set of this valuable multi-sensor satellite record, using EASE-Grid 2.0, an improved equal-area projection definition that will require no reprojection for translation into geoTIFF. Our approach has been twofold: 1) define the projection ellipsoid to match the reference datum of the satellite data, and 2) include required file-level metadata for standard projection software to correctly render the data in the geoTIFF standard. The Calibrated, Enhanced Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR), leverages image reconstruction techniques to enhance gridded spatial resolution to 3 km and uses newly available intersensor calibrations to improve the quality of derived geophysical products. We expect that our attention to easy geoTIFF compatibility will foster higher-quality analysis with the CETB product by enabling easy and correct intercomparison with other gridded and in situ data.

  13. Nitrogen Dioxide Observations from the Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTaso) Airborne Instrument: Retrieval Algorithm and Measurements During DISCOVER-AQ Texas 2013

    Science.gov (United States)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; hide

    2016-01-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  14. GeoSciML v3.0 - a significant upgrade of the CGI-IUGS geoscience data model

    Science.gov (United States)

    Raymond, O.; Duclaux, G.; Boisvert, E.; Cipolloni, C.; Cox, S.; Laxton, J.; Letourneau, F.; Richard, S.; Ritchie, A.; Sen, M.; Serrano, J.-J.; Simons, B.; Vuollo, J.

    2012-04-01

    GeoSciML version 3.0 (http://www.geosciml.org), released in late 2011, is the latest version of the CGI-IUGS* Interoperability Working Group geoscience data interchange standard. The new version is a significant upgrade and refactoring of GeoSciML v2 which was released in 2008. GeoSciML v3 has already been adopted by several major international interoperability initiatives, including OneGeology, the EU INSPIRE program, and the US Geoscience Information Network, as their standard data exchange format for geoscience data. GeoSciML v3 makes use of recently upgraded versions of several Open Geospatial Consortium (OGC) and ISO data transfer standards, including GML v3.2, SWE Common v2.0, and Observations and Measurements v2 (ISO 19156). The GeoSciML v3 data model has been refactored from a single large application schema with many packages, into a number of smaller, but related, application schema modules with individual namespaces. This refactoring allows the use and future development of modules of GeoSciML (eg; GeologicUnit, GeologicStructure, GeologicAge, Borehole) in smaller, more manageable units. As a result of this refactoring and the integration with new OGC and ISO standards, GeoSciML v3 is not backwardly compatible with previous GeoSciML versions. The scope of GeoSciML has been extended in version 3.0 to include new models for geomorphological data (a Geomorphology application schema), and for geological specimens, geochronological interpretations, and metadata for geochemical and geochronological analyses (a LaboratoryAnalysis-Specimen application schema). In addition, there is better support for borehole data, and the PhysicalProperties model now supports a wider range of petrophysical measurements. The previously used CGI_Value data type has been superseded in favour of externally governed data types provided by OGC's SWE Common v2 and GML v3.2 data standards. The GeoSciML v3 release includes worked examples of best practice in delivering geochemical

  15. Learning fraction comparison by using a dynamic mathematics software - GeoGebra

    Science.gov (United States)

    Poon, Kin Keung

    2018-04-01

    GeoGebra is a mathematics software system that can serve as a tool for inquiry-based learning. This paper deals with the application of a fraction comparison software, which is constructed by GeoGebra, for use in a dynamic mathematics environment. The corresponding teaching and learning issues have also been discussed.

  16. Learning Fraction Comparison by Using a Dynamic Mathematics Software--GeoGebra

    Science.gov (United States)

    Poon, Kin Keung

    2018-01-01

    GeoGebra is a mathematics software system that can serve as a tool for inquiry-based learning. This paper deals with the application of a fraction comparison software, which is constructed by GeoGebra, for use in a dynamic mathematics environment. The corresponding teaching and learning issues have also been discussed.

  17. Constructions, geo-materials and interactions

    International Nuclear Information System (INIS)

    Petit, C.; Pijaudier-Cabot, G.; Reynouard, J.M.

    1998-01-01

    The development of methods for the evaluation of the functioning safety of buildings and structures during all their service life represents one of the major research goals in civil engineering. The energy production, the industrial development and the management of wastes have led to new safety research problems to ensure the environment and populations protection. The mechanics of geo-materials (soils, concretes, rocks) is the central part of the predictive tools developed to satisfy these socio-economical stakes. The functioning analysis of buildings cover huge size and time scales, from the micro-meter to the kilometer and from the second to the century, and requires various relevant models and multi-subject methods. This volume is divided in 3 parts dealing with: the in-service safety of buildings, the accidental situations, and the behaviour of geo-materials. Five papers dealing with the long-term, seismic and thermal behaviour of concretes were selected for INIS and one paper dealing with the effect of time on a natural clay and on the behaviour of a dam foundations was selected for ETDE. (J.S.)

  18. GeoInquiries: Addressing a Grand Challenge for Teaching with GIS in Schools

    Science.gov (United States)

    DiBiase, D.; Baker, T.

    2016-12-01

    According to the National Research Council (2006), geographic information systems (GIS) is a powerful tool for expanding students' abilities to think spatially, a critical skill for future STEM professionals. However, educators in mainstream subjects in U.S. education have struggled for decades to use GIS effectively in classrooms. GeoInquiries are no cost, standards-based (NGSS or AP), Creative Commons-licensed instructional activities that guide inquiry around map-based concepts found in key subjects like Earth and environmental science. Web maps developed for GeoInquiries expand upon printed maps in leading textbooks by taking advantage of 21st GIS capabilities. GeoInquiry collections consist of 15 activities, each chosen to offer a map-based activity every few weeks throughout the school year. GeoInquiries use a common inquiry instructional framework, learned by many educators during their teacher preparation coursework. GeoInquiries are instructionally flexible - acting as much like building blocks for crafting custom activities as finished instructional materials. Over a half million geoinquiries will be accessed in the next twelve months - serving an anticipated 15 million students. After a generation of outreach to the educators, GIS is finally finding its way the mainstream.

  19. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China

    Science.gov (United States)

    Wei, Wei; Lv, Zhao Feng; Li, Yue; Wang, Li Tao; Cheng, Shuiyuan; Liu, Huan

    2018-02-01

    In China, petro-chemical manufacturing plants generally gather in the particular industrial zone defined as PIZ in some cities, and distinctly influence the air quality of these cities for their massive VOCs emissions. This study aims to quantify the local and regional impacts of PIZ VOCs emission and its relevant reduction policy on the surface ozone based on WRF-Chem model, through the case study of Beijing. Firstly, the model simulation under the actual precursors' emissions over Beijing region for July 2010 is conducted and evaluated, which meteorological and chemical predictions both within the thresholds for satisfactory model performance. Then, according to simulated H2O2/HNO3 ratio, the nature of photochemical ozone formation over Beijing is decided, the VOCs-sensitive regime over the urban areas, NOx-sensitive regime over the northern and western rural areas, and both VOCssbnd and NOx-mixed sensitive regime over the southern and eastern rural areas. Finally, a 30% VOCs reduction scenario (RS) and a 100% VOCs reduction scenario (ZS) for Beijing PIZ are additional simulated by WRF-Chem. The sensitivity simulations imply that the current 30% reduction policy would bring about an O3 increase in the southern and western areas (by +4.7 ppb at PIZ site and +2.1 ppb at LLH station), and an O3 decrease in the urban center (by -1.7 ppb at GY station and -2.5 ppb at DS station) and in the northern and eastern areas (by -1.2 ppb at MYX station), mainly through interfering with the circulation of atmospheric HOx radicals. While the contribution of the total VOCs emission of PIZ to ozone is greatly prominent in the PIZ and its surrounding areas along south-north direction (12.7% at PIZ site on average), but slight in the other areas of Beijing (<3% in other four stations on average).

  20. Simulation of hadron multiple production by cosmic-ray protons in the incident energy region of 1015 eV

    International Nuclear Information System (INIS)

    Takatsuka, Ichiro

    1984-01-01

    The simulation studies of the unusual cosmic ray families found by the experiment at Mt. Chacaltaya were performed. Those families have a larger number of hadrons than the normal families, or are the families with big transverse extension. The former is called Centauro or Mini-centauro, and the latter is called Binocular and Chiron. In the first simulation, the process was calculated, in which the Lorentz transformation of π-meson multiple production (C-jet) in the energy region of 10 14 eV was made, and the jet with raised energy was combined, and the families were formed. The second simulation was made for the energy region more than 300 TeV, in which the nucleon-antinucleon multiple production with large transverse momentum and the B particle multiple production with larger transverse momentum were assumed. The data used were the C-jet data observed at Mt. Chacaltaya. For the simulation, all the primary particles were considered to be protons. The results of the present simulation study showed that the families with strong hadron components observed at Mt. Chacaltaya might be the new type hadron multiple production such as nucleon-antinucleon multiple production or B-particle multiple production. The total energy of all the families increased with the energy of the primary particles. There are a few families having the same extent of energy and spread as the Chiron. (Kato, T.)

  1. Teaching helix and problems connected with helix using GeoGebra

    Science.gov (United States)

    Bímová, Daniela

    2017-12-01

    The contribution presents the dynamic applets created in GeoGebra that show the origin and main properties of a helix and it also presents some constructive problems connected with the helix. There are created the step by step algorithms of some constructions in the chosen applets. Three-dimensional applets include illustrative helix samples and spatial animations that help students better see problems concerning the helix spatially. There is mentioned the website in the contribution on which there is situated GeoGebra book dedicated to the topic "Helix" and containing the mentioned applets. The created applets and materials of the GeoGebra book "Helix" help in teaching and studying the course Constructive Geometry determined for the students of the Faculty of Mechanical Engineering of the Technical University of Liberec.

  2. Model driven geo-information systems development

    NARCIS (Netherlands)

    Morales Guarin, J.M.; Ferreira Pires, Luis; van Sinderen, Marten J.; Williams, A.D.

    Continuous change of user requirements has become a constant for geo-information systems. Designing systems that can adapt to such changes requires an appropriate design methodology that supports abstraction, modularity and other mechanisms to capture the essence of the system and help controlling

  3. Introduction of damage in an elasto-plastic model for unsaturated geo-materials

    International Nuclear Information System (INIS)

    Le Pense, S.; Pouya, A.; Gatmiri, B.

    2012-01-01

    Document available in extended abstract form only. During the excavation of nuclear waste repository galleries, the surrounding soil is suspected to undergo structural changes as well as modification of its stress state. The desaturation due to ventilation of galleries during this stage makes it necessary to consider the unsaturated state of the host geo-material. The decompression occurring after the excavation leads to a modification of the stress state. The purpose of our work is to develop a mechanical model to simulate the non-linear stress-strain behaviour of geo-materials which will have to contain radioactivity of nuclear waste for a very long time. Two irreversible phenomena can explain the non-linear behaviour of geo-materials. Plasticity leads to irrecoverable strains. Damage, linked to the appearance and extension of microcracks, results in a deterioration of elastic and hydraulic properties. We will present here the bases of a new model coupling damage and plasticity for the stress-strain behaviour of unsaturated geo-materials. This model should be thermodynamically consistent and use only a reasonable number of parameters. Based on the work of Houlsby, (Houlsby 1997), we choose to use as constitutive variables for unsaturated soils Bishop's stress and suction. This choice as the advantage to allow for continuity at the transition between saturated and unsaturated states. Damage is taken into account by defining a damaged constitutive stress, which is similar to the effective stress principle defined by Kachanov (Kachanov 1958). A simple damage criterion is proposed and an associative flow rule is assumed. We choose to follow the principle of strain equivalence defined by Lemaitre (Lemaitre 1996). This leads to the following elasticity law giving the damaged constitutive stress as a function of elastic strain. If non-linear elasticity is considered, a pressure-dependent bulk modulus and a constant shear modulus can be chosen in order to fit

  4. How Can TOLNet Help to Better Understand Tropospheric Ozone? A Satellite Perspective

    Science.gov (United States)

    Johnson, Matthew S.

    2018-01-01

    Potential sources of a priori ozone (O3) profiles for use in Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite tropospheric O3 retrievals are evaluated with observations from multiple Tropospheric Ozone Lidar Network (TOLNet) systems in North America. An O3 profile climatology (tropopause-based O3 climatology (TB-Clim), currently proposed for use in the TEMPO O3 retrieval algorithm) derived from ozonesonde observations and O3 profiles from three separate models (operational Goddard Earth Observing System (GEOS-5) Forward Processing (FP) product, reanalysis product from Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2), and the GEOS-Chem chemical transport model (CTM)) were: 1) evaluated with TOLNet measurements on various temporal scales (seasonally, daily, hourly) and 2) implemented as a priori information in theoretical TEMPO tropospheric O3 retrievals in order to determine how each a priori impacts the accuracy of retrieved tropospheric (0-10 km) and lowermost tropospheric (LMT, 0-2 km) O3 columns. We found that all sources of a priori O3 profiles evaluated in this study generally reproduced the vertical structure of summer-averaged observations. However, larger differences between the a priori profiles and lidar observations were observed when evaluating inter-daily and diurnal variability of tropospheric O3. The TB-Clim O3 profile climatology was unable to replicate observed inter-daily and diurnal variability of O3 while model products, in particular GEOS-Chem simulations, displayed more skill in reproducing these features. Due to the ability of models, primarily the CTM used in this study, on average to capture the inter-daily and diurnal variability of tropospheric and LMT O3 columns, using a priori profiles from CTM simulations resulted in TEMPO retrievals with the best statistical comparison with lidar observations. Furthermore, important from an air quality perspective, when high LMT O3 values were

  5. Boundary layer and free-tropospheric dimethyl sulfide in the Arctic spring and summer

    Science.gov (United States)

    Ghahremaninezhad, Roghayeh; Norman, Ann-Lise; Croft, Betty; Martin, Randall V.; Pierce, Jeffrey R.; Burkart, Julia; Rempillo, Ofelia; Bozem, Heiko; Kunkel, Daniel; Thomas, Jennie L.; Aliabadi, Amir A.; Wentworth, Gregory R.; Levasseur, Maurice; Staebler, Ralf M.; Sharma, Sangeeta; Leaitch, W. Richard

    2017-07-01

    Vertical distributions of atmospheric dimethyl sulfide (DMS(g)) were sampled aboard the research aircraft Polar 6 near Lancaster Sound, Nunavut, Canada, in July 2014 and on pan-Arctic flights in April 2015 that started from Longyearbyen, Spitzbergen, and passed through Alert and Eureka, Nunavut, and Inuvik, Northwest Territories. Larger mean DMS(g) mixing ratios were present during April 2015 (campaign mean of 116 ± 8 pptv) compared to July 2014 (campaign mean of 20 ± 6 pptv). During July 2014, the largest mixing ratios were found near the surface over the ice edge and open water. DMS(g) mixing ratios decreased with altitude up to about 3 km. During April 2015, profiles of DMS(g) were more uniform with height and some profiles showed an increase with altitude. DMS reached as high as 100 pptv near 2500 m. Relative to the observation averages, GEOS-Chem (www.geos-chem.org) chemical transport model simulations were higher during July and lower during April. Based on the simulations, more than 90 % of the July DMS(g) below 2 km and more than 90 % of the April DMS(g) originated from Arctic seawater (north of 66° N). During April, 60 % of the DMS(g), between 500 and 3000 m originated from Arctic seawater. During July 2014, FLEXPART (FLEXible PARTicle dispersion model) simulations locate the sampled air mass over Baffin Bay and the Canadian Arctic Archipelago 4 days back from the observations. During April 2015, the locations of the air masses 4 days back from sampling were varied: Baffin Bay/Canadian Archipelago, the Arctic Ocean, Greenland and the Pacific Ocean. Our results highlight the role of open water below the flight as the source of DMS(g) during July 2014 and the influence of long-range transport (LRT) of DMS(g) from further afield in the Arctic above 2500 m during April 2015.

  6. GeoMel Technologies. Providing technology solutions to environmental hazardous waste problems

    International Nuclear Information System (INIS)

    2003-01-01

    AMEC's GeoMelt technologies offer a unique and highly effective means of destroying organic pollutants while permanently immobilizing radioactive contaminants and heavy metals. The GeoMelt technologies use electricity to melt contaminated soil and waste at temperatures that can reach 2,000 deg. C (3,600 degrees Fahrenheit). The process destroys organic contaminants through pyrolysis and catalytic reactions, while permanently immobilizing hazardous inorganic contaminants and radionuclides in a glassy, rock-like mass. The obsidian-like mass produced by GeoMelt is 10 times stronger than concrete, effectively safeguarding groundwater from contamination for tens of thousands of years. The vitrified mass is unaffected by wet/dry and freeze/thaw cycles and is unsurpassed in leach resistance. Corrosion tests have shown that the GeoMelt product is more durable than granite or marble. Almost Anywhere and Almost Everything GeoMelt equipment is easily transported to site by truck and can be used for in-situ treatment or in an above-ground batch plant. The process accommodates a wide range of mixed wastes and debris, which minimizes the need for handling, sorting and size-reduction activities. Virtually all types of debris can be accommodated, including drums, scrap metal, concrete, boulders, asphalt, wood, tires and plastic. All classes of contaminants are treated by the process, including organics, heavy metals and radioactive materials. GeoMelt has been used to successfully treat a wide range of contaminants, including polychlorinated biphenyls (PCBs), dioxines, pesticides, herbicides, mixed transuranics (TRUs), and a variety of heavy metals. The U.S. Department of Energy spent hundreds of millions of dollars developing vitrification processes for its waste treatment and site remediation needs. The GeoMelt process, originally developed for the DOE by Battelle Memorial Institute, was one result of this undertaking. The process already has been used to treat more than 25

  7. Photometric Studies of GEO Orbital Debris

    Science.gov (United States)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  8. Geo-scientific database for research and development purposes

    International Nuclear Information System (INIS)

    Tabani, P.; Mangeot, A.; Crabol, V.; Delage, P.; Dewonck, S.; Auriere, C.

    2012-01-01

    Document available in extended abstract form only. The Research and Development Division must manage, secure and reliable manner, a large number of data from scientific disciplines and diverse means of acquisition (observations, measurements, experiments, etc.). This management is particularly important for the Underground research Laboratory, the source of many recording continuous measurements. Thus, from its conception, Andra has implemented two management tools of scientific information, the 'Acquisition System and Data Management' [SAGD] and GEO database with its associated applications. Beyond its own needs, Andra wants to share its achievements with the scientific community, and it therefore provides the data stored in its databases or samples of rock or water when they are available. Acquisition and Data Management (SAGD) This system manages data from sensors installed at several sites. Some sites are on the surface (piezometric, atmospheric and environmental stations), the other are in the Underground Research Laboratory. This system also incorporates data from experiments in which Andra participates in Mont Terri Laboratory in Switzerland. S.A.G.D fulfils these objectives by: - Make available in real time on a single system, with scientists from Andra but also different partners or providers who need it, all experimental data from measurement points - Displaying the recorded data on temporal windows and specific time step, - Allowing remote control of the experimentations, - Ensuring the traceability of all recorded information, - Ensuring data storage in a data base. S.A.G.D has been deployed in the first experimental drift at -445 m in November 2004. It was subsequently extended to the underground Mont Terri laboratory in Switzerland in 2005, to the entire surface logging network of the Meuse / Haute-Marne Center in 2008 and to the environmental network in 2011. All information is acquired, stored and manage by a software called Geoscope. This software

  9. SPEEDES - A multiple-synchronization environment for parallel discrete-event simulation

    Science.gov (United States)

    Steinman, Jeff S.

    1992-01-01

    Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) is a unified parallel simulation environment. It supports multiple-synchronization protocols without requiring users to recompile their code. When a SPEEDES simulation runs on one node, all the extra parallel overhead is removed automatically at run time. When the same executable runs in parallel, the user preselects the synchronization algorithm from a list of options. SPEEDES currently runs on UNIX networks and on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. SPEEDES also supports interactive simulations. Featured in the SPEEDES environment is a new parallel synchronization approach called Breathing Time Buckets. This algorithm uses some of the conservative techniques found in Time Bucket synchronization, along with the optimism that characterizes the Time Warp approach. A mathematical model derived from first principles predicts the performance of Breathing Time Buckets. Along with the Breathing Time Buckets algorithm, this paper discusses the rules for processing events in SPEEDES, describes the implementation of various other synchronization protocols supported by SPEEDES, describes some new ones for the future, discusses interactive simulations, and then gives some performance results.

  10. Geostationary Coastal and Air Pollution Events (GeoCAPE) Filter Radiometer (FR)

    Science.gov (United States)

    Kotecki, Carl; Chu, Martha; Wilson, Mark; Clark, Mike; Nanan, Bobby; Matson, Liz; McBirney, Dick; Smith, Jay; Earle, Paul; Choi, Mike; hide

    2014-01-01

    The GeoCAPE Filter Radiometer (FR) Study is a different instrument type than all of the previous IDL GeoCape studies. The customer primary goals are to keep mass, volume and cost to a minimum while meeting the science objectives and maximizing flight opportunities by fitting on the largest number of GEO accommodations possible. Minimize total mission costs by riding on a commercial GEO satellite. For this instrument type, the coverage rate, km 2 min, was significantly increased while reducing the nadir ground sample size to 250m. This was accomplished by analyzing a large 2d area for each integration period. The field of view will be imaged on a 4k x 4k detector array of 15 micrometer pixels. Each ground pixel is spread over 2 x 2 detector pixels so the instantaneous field of view (IFOV) is 2048 X 2048 ground pixels. The baseline is, for each field of view 50 sequential snapshot images are taken, each with a different filter, before indexing the scan mirror to the next IFOV. A delta would be to add additional filters.

  11. Geo-environmental mapping tool applied to pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Karina de S.; Calle, Jose A.; Gil, Euzebio J. [Geomecanica S/A Tecnologia de Solo Rochas e Materiais, Rio de Janeiro, RJ (Brazil); Sare, Alexandre R. [Geomechanics International Inc., Houston, TX (United States); Soares, Ana Cecilia [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The Geo-Environmental Mapping is an improvement of the Geological-Geotechnical Mapping used for basic pipeline designs. The main purpose is to assembly the environmental, geotechnical and geological concepts in a methodological tool capable to predict constrains and reduce the pipeline impact to the environment. The Geo-Environmental mapping was built to stress the influence of soil/structure interaction, related to the physical effect that comes from the contact between structures and soil or rock. A Geological-Geotechnical-Environmental strip (chart) was presented to emphasize the pipeline operational constrains and its influence to the environment. The mapping was developed to clearly show the occurrence and properties of geological materials divided into geotechnical domain units (zones). The strips present construction natural properties, such as: excavability, stability of the excavation and soil re-use capability. Also, the environmental constrains were added to the geological-geotechnical mapping. The Geo-Environmental Mapping model helps the planning of the geotechnical and environmental inquiries to be carried out during executive design, the discussion on the types of equipment to be employed during construction and the analysis of the geological risks and environmental impacts to be faced during the built of the pipeline. (author)

  12. Long afterglow properties of Eu2+/Mn2+ doped Zn2GeO4

    International Nuclear Information System (INIS)

    Wan, Minhua; Wang, Yinhai; Wang, Xiansheng; Zhao, Hui; Li, Hailing; Wang, Cheng

    2014-01-01

    Zn 2 GeO 4 :Eu 2+ 0.01 and Zn 2 GeO 4 :Mn 2+ 0.01 long afterglow phosphors were synthesized via a high temperature solid state reaction. X-ray diffraction (XRD), afterglow spectra, decay curves and thermoluminescence curves were utilized to characterize the samples. The X-ray diffraction phases indicate that the doping of small amount of transition metal ions or rare earth ions has no significant influence on the crystal structure of Zn 2 GeO 4 . According to the afterglow spectra, we found that the Zn 2 GeO 4 :Eu 2+ 0.01 exhibits a broad band emission with a peak at 474 nm, which could be ascribed to Eu 2+ transition between 4f 6 5d 1 and 4f 7 electron configurations. The Zn 2 GeO 4 :Mn 2+ 0.01 shows a narrow band emission peaking at 532 nm corresponding to the characteristic transition of Mn 2+ ( 4 T 1 → 6 A 1 ). The thermoluminescence (TL) curves above room temperature are employed for the discussion of the origin of the traps and the mechanism of the persistent luminescence. The results indicate that Zn 2 GeO 4 may be an excellent host material for the rare earth ions or transition metal ions long afterglows. -- Highlights: • Zn 2 GeO 4 :Eu 2+ 0.01 and Zn 2 GeO 4 :Mn 2+ 0.01 long afterglow phosphors were synthesized. • Found that these phosphors possess a persistent luminescence property. • The long afterglow spectra were measured. • Found that these phosphors possess a trap level by thermoluminescence

  13. High-pressure EXAFS study of vitreous GeO2 up to 44 GPa

    International Nuclear Information System (INIS)

    Baldini, M.; Aquilanti, G.; Mao, H-k.; Yang, W.; Shen, G.; Pascarelli, S.; Mao, W. L.

    2010-01-01

    High-pressure extended x-ray absorption fine-structure measurements were performed on amorphous GeO 2 over increasing and decreasing pressure cycles at pressures up to 44 GPa. Several structural models based on crystalline phases with fourfold, fivefold, and sixfold coordination were used to fit the Ge-O first shell. The Ge-O bond lengths gradually increased up to 30 GPa. Three different pressure regimes were identified in the pressure evolution of the Ge-O bond distances. Below 13 GPa, the local structure was well described by a fourfold 'quartzlike' model whereas a disordered region formed by a mixture of four- and five-coordinated germanium-centered polyhedra was observed in the intermediate pressure range between 13 and 30 GPa. Above 30 GPa the structural transition to the maximum coordination could be considered complete. The present results shed light on the GeO 2 densification process and on the nature of the amorphous-amorphous transition, suggesting that the transition is more gradual and continuous than what has been previously reported.

  14. Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology.

    Science.gov (United States)

    VoPham, Trang; Hart, Jaime E; Laden, Francine; Chiang, Yao-Yi

    2018-04-17

    Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a commonly used approach to conduct exposure assessment to determine the distribution of exposures in study populations. geoAI technologies provide important advantages for exposure modeling in environmental epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental exposures across different geographic areas. The objectives of this commentary are to provide an overview of key concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for geoAI in environmental epidemiology.

  15. Effect of aging and alkali activator on the porous structure of a geo-polymer

    International Nuclear Information System (INIS)

    Steins, Prune; Poulesquen, Arnaud; Frizon, Fabien; Lambertin, David; Jestin, Jacques; Rossignol, Sylvie

    2014-01-01

    Nitrogen sorption and small- and wide-angle X-ray and neutron scattering techniques were used to study the porous structure of geo-polymers, inorganic polymers synthesized by reaction of a strongly alkaline solution and an aluminosilicate source (metakaolin). The effects of aging and the use of alkali activators (Na"+, K"+) of different sizes were investigated at room temperature. The influence of aging time on the microstructure of both geo-polymer matrixes was verified in terms of pore volume and specific surface area. The results suggested a refinement of the porosity and therefore a reduction in the pore volume over time. Regardless of the age considered, some characteristics of the porous network such as pore size, shape and distribution depend on the alkali activator used. Whatever the technique considered, the potassium geo-polymer has a greater specific surface area than the sodium geo-polymer. According to the scattering results, the refinement of the porosity can be associated with, first, a densification of the solid network and, secondly, a partial closure of the porosity at the nanometer scale. The kinetics are much slower for the sodium geo-polymer than for the potassium geo-polymer in the six months of observation. (authors)

  16. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    International Nuclear Information System (INIS)

    Payre, Valerie; Fabre, Cecile; Cousin, Agnes; Sautter, Violaine; Wiens, Roger Craig

    2017-01-01

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantifications of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. Here, these observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.

  17. Performance Tests of Snow-Related Variables Over the Tibetan Plateau and Himalayas Using a New Version of NASA GEOS-5 Land Surface Model that Includes the Snow Darkening Effect

    Science.gov (United States)

    Yasunari, Tppei J.; Lau, K.-U.; Koster, Randal D.; Suarez, Max; Mahanama, Sarith; Dasilva, Arlindo M.; Colarco, Peter R.

    2011-01-01

    The snow darkening effect, i.e. the reduction of snow albedo, is caused by absorption of solar radiation by absorbing aerosols (dust, black carbon, and organic carbon) deposited on the snow surface. This process is probably important over Himalayan and Tibetan glaciers due to the transport of highly polluted Atmospheric Brown Cloud (ABC) from the Indo-Gangetic Plain (IGP). This effect has been incorporated into the NASA Goddard Earth Observing System model, version 5 (GEOS-5) atmospheric transport model. The Catchment land surface model (LSM) used in GEOS-5 considers 3 snow layers. Code was developed to track the mass concentration of aerosols in the three layers, taking into account such processes as the flushing of the compounds as liquid water percolates through the snowpack. In GEOS-5, aerosol emissions, transports, and depositions are well simulated in the Goddard Chemistry Aerosol Radiation and Transport (GO CART) module; we recently made the connection between GOCART and the GEOS-5 system fitted with the revised LSM. Preliminary simulations were performed with this new system in "replay" mode (i.e., with atmospheric dynamics guided by reanalysis) at 2x2.5 degree horizontal resolution, covering the period 1 November 2005 - 31 December 2009; we consider the final three years of simulation here. The three simulations used the following variants of the LSM: (1) the original Catchment LSM with a fixed fresh snowfall density of 150 kg m-3 ; (2) the LSM fitted with the new snow albedo code, used here without aerosol deposition but with changes in density formulation and melting water effect on snow specific surface area, (3) the LSM fitted with the new snow albedo code as same as (2) but with fixed aerosol deposition rates (computed from GOCART values averaged over the Tibetan Plateau domain [Ion.: 60-120E; lat.: 20-50N] during March-May 2008) applied to all grid points at every time step. For (2) and (3), the same setting on the fresh snowfall density as in (1

  18. HExpoChem: a systems biology resource to explore human exposure to chemicals

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Jacobsen, Ulrik Plesner; Kalhauge, Christian Gram

    2013-01-01

    of computational biology approaches are needed to assess the health risks of chemical exposure. Here we present HExpoChem, a tool based on environmental chemicals and their bioactivities on human proteins with the objective of aiding the qualitative exploration of human exposure to chemicals. The chemical...

  19. The performance of the 'CentrifiChem' parallel fast analyser using packaged reagents.

    Science.gov (United States)

    Henry, P; Saunders, R A

    1975-05-01

    The CentrifiChem system was used with packaged reagent kits for the following determinations: albumin, alanine and aspartate aminotransferases, creatinine, glucose, and alpha-hydroxybutyrate and lactate dehydrogenases. The linearity obtainable for each assay was investigated, and particular attention was paid to finding the most suitable instrument settings.

  20. Systemic determinants of modern gravitational processes in the geo-economic space

    Directory of Open Access Journals (Sweden)

    Zoryana Lutsyshyn

    2015-12-01

    Full Text Available From the compositional point of view, research on this topic has revealed two main directions: (1 an analysis of global development asymmetry that has activated gravitational processes in geo-economic space; and (2 a direction that focuses on the profound study of the causes for heterogeneity in geo-economic space and divergence in global development under the influence of gravitational factors of nature on the endogenousexogenous axis. Systemic determinants of gravitational processes are revealed in geo- economic space and the asymmetry of global activate ravitional processes in geo-economic space are observed, and methodological interconnectedness coinfluence of two complementary determinants of global development – convergence and divergence and the contradiction between them are examined, which at the same time underlie the inevitable internal contradictions of the process, creating conditions for further configuration of the «new globalization community», which is built on the principles of nonlinear dynamics and logic gravitational processes in geo-economic space.Taking into account the relevant uncertainties, the attention is focused on the isolation of several myths around which the debate that has important methodological significance in the context of the current global inter-system transformations is held. Geostrategic matrix divergence of global development is produced,which is based on techniques which incorporated cluster analysisthat are built on linguistic variables and integrated analysis of the key trends of country and global development geostrategic position of Ukraine in geo-economic space in the projection on the issues of global inter-system transformations isoutlined .It is proved that the level of gravity load increases in the deepening of the global asymmetries , and that the current global transformation is not yet complete, and polycentric new architecture geospace is not formed. In the near future we should

  1. Geo-Spatial Social Network Analysis of Social Media to Mitigate Disasters

    Science.gov (United States)

    Carley, K. M.

    2017-12-01

    Understanding the spatial layout of human activity can afford a better understanding many phenomena - such as local cultural, the spread of ideas, and the scope of a disaster. Today, social media is one of the key sensors for acquiring information on socio-cultural activity, some with cues as to the geo-location. We ask, What can be learned by putting such data on maps? For example, are people who chat on line more likely to be near each other? Can Twitter data support disaster planning or early warning? In this talk, such issues are examined using data collected via Twitter and analyzed using ORA. ORA is a network analysis and visualization system. It supports not just social networks (who is interacting with whom), but also high dimensional networks with many types of nodes (e.g. people, organizations, resources, activities …) and relations, geo-spatial network analysis, dynamic network analysis, & geo-temporal analysis. Using ORA lessons learned from five case studies are considered: Arab Spring, Tsunami warning in Padang Indonesia, Twitter around Fukushima in Japan, Typhoon Haiyan (Yolanda), & regional conflict. Using Padang Indonesia data, we characterize the strengths and limitations of social media data to support disaster planning & early warning, identify at risk areas & issues of concern, and estimate where people are and which areas are impacted. Using Fukushima Japanese data, social media is used to estimate geo-spatial regularities in movement and communication that can inform disaster response and risk estimation. Using Arab Spring data, we find that the spread of bots & extremists varies by country and time, to the extent that using twitter to understand who is important or what ideas are critical can be compromised. Bots and extremists can exploit disaster messaging to create havoc and facilitate criminal activity e.g. human trafficking. Event discovery mechanisms support isolating geo-epi-centers for key events become crucial. Spatial inference

  2. Evaluate transport processes in MERRA driven chemical transport models using updated 222Rn emission inventories and global observations

    Science.gov (United States)

    Zhang, B.; Liu, H.; Crawford, J. H.; Fairlie, T. D.; Chen, G.; Chambers, S. D.; Kang, C. H.; Williams, A. G.; Zhang, K.; Considine, D. B.; Payer Sulprizio, M.; Yantosca, R.

    2015-12-01

    Convective and synoptic processes play a major role in determining the transport and distribution of trace gases and aerosols in the troposphere. The representation of these processes in global models (at ~100-1000 km horizontal resolution) is challenging, because convection is a sub-grid process and needs to be parameterized, while synoptic processes are close to the grid scale. Depending on the parameterization schemes used in climate models, the role of convection in transporting trace gases and aerosols may vary from model to model. 222Rn is a chemically inert and radioactive gas constantly emitted from soil and has a half-life (3.8 days) comparable to synoptic timescale, which makes it an effective tracer for convective and synoptic transport. In this study, we evaluate the convective and synoptic transport in two chemical transport models (GMI and GEOS-Chem), both driven by the NASA's MERRA reanalysis. Considering the uncertainties in 222Rn emissions, we incorporate two more recent scenarios with regionally varying 222Rn emissions into GEOS-Chem/MERRA and compare the simulation results with those using the relatively uniform 222Rn emissions in the standard model. We evaluate the global distribution and seasonality of 222Rn concentrations simulated by the two models against an extended collection of 222Rn observations from 1970s to 2010s. The intercomparison will improve our understanding of the spatial variability in global 222Rn emissions, including the suspected excessive 222Rn emissions in East Asia, and provide useful feedbacks on 222Rn emission models. We will assess 222Rn vertical distributions at different latitudes in the models using observations at surface sites and in the upper troposphere and lower stratosphere. Results will be compared with previous models driven by other meteorological fields (e.g., fvGCM and GEOS4). Since the decay of 222Rn is the source of 210Pb, a useful radionuclide tracer attached to submicron aerosols, improved

  3. Documentation of Heritage Structures Through Geo-Crowdsourcing and Web-Mapping

    Science.gov (United States)

    Dhonju, H. K.; Xiao, W.; Shakya, B.; Mills, J. P.; Sarhosis, V.

    2017-09-01

    Heritage documentation has become increasingly urgent due to both natural impacts and human influences. The documentation of countless heritage sites around the globe is a massive project that requires significant amounts of financial and labour resources. With the concepts of volunteered geographic information (VGI) and citizen science, heritage data such as digital photographs can be collected through online crowd participation. Whilst photographs are not strictly geographic data, they can be geo-tagged by the participants. They can also be automatically geo-referenced into a global coordinate system if collected via mobile phones which are now ubiquitous. With the assistance of web-mapping, an online geo-crowdsourcing platform has been developed to collect and display heritage structure photographs. Details of platform development are presented in this paper. The prototype is demonstrated with several heritage examples. Potential applications and advancements are discussed.

  4. The fuel cell model of abiogenesis: a new approach to origin-of-life simulations.

    Science.gov (United States)

    Barge, Laura M; Kee, Terence P; Doloboff, Ivria J; Hampton, Joshua M P; Ismail, Mohammed; Pourkashanian, Mohamed; Zeytounian, John; Baum, Marc M; Moss, John A; Lin, Chung-Kuang; Kidd, Richard D; Kanik, Isik

    2014-03-01

    In this paper, we discuss how prebiotic geo-electrochemical systems can be modeled as a fuel cell and how laboratory simulations of the origin of life in general can benefit from this systems-led approach. As a specific example, the components of what we have termed the "prebiotic fuel cell" (PFC) that operates at a putative Hadean hydrothermal vent are detailed, and we used electrochemical analysis techniques and proton exchange membrane (PEM) fuel cell components to test the properties of this PFC and other geo-electrochemical systems, the results of which are reported here. The modular nature of fuel cells makes them ideal for creating geo-electrochemical reactors with which to simulate hydrothermal systems on wet rocky planets and characterize the energetic properties of the seafloor/hydrothermal interface. That electrochemical techniques should be applied to simulating the origin of life follows from the recognition of the fuel cell-like properties of prebiotic chemical systems and the earliest metabolisms. Conducting this type of laboratory simulation of the emergence of bioenergetics will not only be informative in the context of the origin of life on Earth but may help in understanding whether life might emerge in similar environments on other worlds.

  5. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    Science.gov (United States)

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.; Su, Hui; Yu, Nanpeng; Zhao, Chun; Qian, Yun; Zhao, Bin; Liou, Kuo-Nan; Choi, Yong-Sang

    2018-04-01

    A version of the WRF-Chem model with fully coupled aerosol-meteorology-snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol-radiation interaction (ARI), aerosol-snow interaction (ASI), and aerosol-cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34-42° N, 117-124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about -0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation

  6. File Specification for GEOS-5 FP-IT (Forward Processing for Instrument Teams)

    Science.gov (United States)

    Lucchesi, R.

    2013-01-01

    The GEOS-5 FP-IT Atmospheric Data Assimilation System (GEOS-5 ADAS) uses an analysis developed jointly with NOAA's National Centers for Environmental Prediction (NCEP), which allows the Global Modeling and Assimilation Office (GMAO) to take advantage of the developments at NCEP and the Joint Center for Satellite Data Assimilation (JCSDA). The GEOS-5 AGCM uses the finite-volume dynamics (Lin, 2004) integrated with various physics packages (e.g, Bacmeister et al., 2006), under the Earth System Modeling Framework (ESMF) including the Catchment Land Surface Model (CLSM) (e.g., Koster et al., 2000). The GSI analysis is a three-dimensional variational (3DVar) analysis applied in grid-point space to facilitate the implementation of anisotropic, inhomogeneous covariances (e.g., Wu et al., 2002; Derber et al., 2003). The GSI implementation for GEOS-5 FP-IT incorporates a set of recursive filters that produce approximately Gaussian smoothing kernels and isotropic correlation functions. The GEOS-5 ADAS is documented in Rienecker et al. (2008). More recent updates to the model are presented in Molod et al. (2011). The GEOS-5 system actively assimilates roughly 2 × 10(exp 6) observations for each analysis, including about 7.5 × 10(exp 5) AIRS radiance data. The input stream is roughly twice this volume, but because of the large volume, the data are thinned commensurate with the analysis grid to reduce the computational burden. Data are also rejected from the analysis through quality control procedures designed to detect, for example, the presence of cloud. To minimize the spurious periodic perturbations of the analysis, GEOS-5 FP-IT uses the Incremental Analysis Update (IAU) technique developed by Bloom et al. (1996). More details of this procedure are given in Appendix A. The analysis is performed at a horizontal resolution of 0.625-degree longitude by 0.5-degree latitude and at 72 levels, extending to 0.01 hPa. All products are generated at the native resolution of the

  7. Insights for the third Global Environment Outlook from related global scenario anlayses. Working paper for GEO-3

    OpenAIRE

    Bakkes JA; Goldewijk CGM; Meijer JR; Rothman DS; Vries HJM de; Woerden JW van; United Nations Environment Programme (UNEP); MNV

    2001-01-01

    This report relates to the ongoing development of scenarios for the third Global Environment Outlook (GEO-3) of UNEP. It illustrates the scale and type of environmental impacts that GEO-3 needs to consider. It does so by quantifying impacts using existing, recent studies whose scenarios come closest to the current tentative global storylines for GEO-3. With a view to GEO-3;s envisaged role as input for the Rio+10 Earth Summit in 2002, this report suggests a focus for the GEO-3 scenario analys...

  8. Accelerating simulation for the multiple-point statistics algorithm using vector quantization

    Science.gov (United States)

    Zuo, Chen; Pan, Zhibin; Liang, Hao

    2018-03-01

    Multiple-point statistics (MPS) is a prominent algorithm to simulate categorical variables based on a sequential simulation procedure. Assuming training images (TIs) as prior conceptual models, MPS extracts patterns from TIs using a template and records their occurrences in a database. However, complex patterns increase the size of the database and require considerable time to retrieve the desired elements. In order to speed up simulation and improve simulation quality over state-of-the-art MPS methods, we propose an accelerating simulation for MPS using vector quantization (VQ), called VQ-MPS. First, a variable representation is presented to make categorical variables applicable for vector quantization. Second, we adopt a tree-structured VQ to compress the database so that stationary simulations are realized. Finally, a transformed template and classified VQ are used to address nonstationarity. A two-dimensional (2D) stationary channelized reservoir image is used to validate the proposed VQ-MPS. In comparison with several existing MPS programs, our method exhibits significantly better performance in terms of computational time, pattern reproductions, and spatial uncertainty. Further demonstrations consist of a 2D four facies simulation, two 2D nonstationary channel simulations, and a three-dimensional (3D) rock simulation. The results reveal that our proposed method is also capable of solving multifacies, nonstationarity, and 3D simulations based on 2D TIs.

  9. Geo-Seas - building a unified e-infrastructure for marine geoscientific data management in Europe

    Science.gov (United States)

    Glaves, H.; Schaap, D.

    2012-04-01

    A significant barrier to marine geoscientific research in Europe is the lack of standardised marine geological and geophysical data and data products which could potentially facilitate multidisciplinary marine research extending across national and international boundaries. Although there are large volumes of geological and geophysical data available for the marine environment it is currently very difficult to use these datasets in an integrated way due to different nomenclatures, formats, scales and coordinate systems being used within different organisations as well as between countries. This makes the direct use of primary data very difficult and also hampers use of the data to produce integrated multidisciplinary data products and services. The Geo-Seas project, an EU Framework 7 funded initiative, is developing a unified e-infrastructure to facilitate the sharing of marine geoscientific data within Europe. This e-infrastructure is providing on-line access to both discovery metadata and the associated federated data sets from 26 European data centres via a dedicated portal. The implementation of the Geo-Seas portal is allowing a range of end users to locate, assess and access standardised geoscientific data from multiple sources which is interoperable with other marine data types. Geo-Seas is building on the work already done by the existing SeaDataNet project which currently provides a data management e-infrastructure for oceanographic data which allows users to locate and access federated oceanographic data sets. By adopting and adapting the SeaDataNet methodologies and technologies the Geo-Seas project has not only avoid unnecessary duplication of effort by reusing existing and proven technologies but also contributed to the development of a multidisciplinary approach to ocean science across Europe through the creation of a joint infrastructure for both marine geoscientific and oceanographic data. This approach is also leading to the development of

  10. Radiative effects of black carbon aerosols on Indian monsoon: a study using WRF-Chem model

    Science.gov (United States)

    Soni, Pramod; Tripathi, Sachchida Nand; Srivastava, Rajesh

    2018-04-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.

  11. Photometrical research geostationary satellite "SBIRS GEO-2"

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P; Sukhov, K. P; Kudak, V. I.

    The multicolor photometrical observations GSS "Sbirs Geo-2" were carried in B,V,R filters out during the autumn equinox 2014 and spring 2015 y. Periodic appearance of many light curves and dips of mirror reflections suggests that the GSS was not in orbit in a static position, predetermined three-axis orientation and in dynamic motion. On the basis of computer modeling suggests the following dynamics GSS "Sbirs Geo-2" in orbit. Helically scanning the visible Earth's surface infrared satellite sensors come with period P1 = 15.66 sec. and the rocking of the GSS about the direction of the motion vector of the satellite in orbit with P2 = 62.64 sec., most likely with the purpose to survey the greatest possible portion of the earth's surface.

  12. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests

    International Nuclear Information System (INIS)

    Wiens, Roger C.; Barraclough, Bruce; Barkley, Walter C.; Bender, Steve; Bernardin, John; Bultman, Nathan; Clanton, Robert C.; Clegg, Samuel; Delapp, Dorothea; Dingler, Robert; Enemark, Don; Flores, Mike; Hale, Thomas; Lanza, Nina; Lasue, Jeremie; Latino, Joseph; Little, Cynthia; Morrison, Leland; Nelson, Tony; Romero, Frank; Salazar, Steven; Stiglich, Ralph; Storms, Steven; Trujillo, Tanner; Ulibarri, Mike; Vaniman, David; Whitaker, Robert; Witt, James; Maurice, Sylvestre; Bouye, Marc; Cousin, Agnes; Cros, Alain; D'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Kouach, Driss; Lasue, Jeremie; Pares, Laurent; Poitrasson, Franck; Striebig, Nicolas; Thocaven, Jean-Jacques; Saccoccio, Muriel; Perez, Rene; Bell, James F. III; Hays, Charles; Blaney, Diana; DeFlores, Lauren; Elliott, Tom; Kan, Ed; Limonadi, Daniel; Lindensmith, Chris; Miller, Ed; Reiter, Joseph W.; Roberts, Tom; Simmonds, John J.; Warner, Noah; Blank, Jennifer; Bridges, Nathan; Cais, Phillippe; Clark, Benton; Cremers, David; Dyar, M. Darby; Fabre, Cecile; Herkenhoff, Ken; Kirkland, Laurel; Landis, David; Langevin, Yves; Lanza, Nina; Newsom, Horton; Ollila, Ann; LaRocca, Frank; Ott, Melanie; Mangold, Nicolas; Manhes, Gerard; Mauchien, Patrick; Blank, Jennifer; McKay, Christopher; Mooney, Joe; Provost, Cheryl; Morris, Richard V.; Sautter, Violaine; Sautter, Violaine; Waterbury, Rob; Wong-Swanson, Belinda; Barraclough, Bruce; Bender, Steve; Vaniman, David

    2012-01-01

    The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover Curiosity provides remote compositional information using the first laser-induced breakdown spectrometer (LIBS) on a planetary mission, and provides sample texture and morphology data using a remote micro-imager (RMI). Overall, ChemCam supports MSL with five capabilities: remote classification of rock and soil characteristics; quantitative elemental compositions including light elements like hydrogen and some elements to which LIBS is uniquely sensitive (e.g., Li, Be, Rb, Sr, Ba); remote removal of surface dust and depth profiling through surface coatings; context imaging; and passive spectroscopy over the 240-905 nm range. ChemCam is built in two sections: The mast unit, consisting of a laser, telescope, RMI, and associated electronics, resides on the rover's mast, and is described in a companion paper. ChemCam's body unit, which is mounted in the body of the rover, comprises an optical de-multiplexer, three spectrometers, detectors, their coolers, and associated electronics and data handling logic. Additional instrument components include a 6 m optical fiber which transfers the LIBS light from the telescope to the body unit, and a set of onboard calibration targets. ChemCam was integrated and tested at Los Alamos National Laboratory where it also underwent LIBS calibration with 69 geological standards prior to integration with the rover. Post-integration testing used coordinated mast and instrument commands, including LIBS line scans on rock targets during system-level thermal-vacuum tests. In this paper we describe the body unit, optical fiber, and calibration targets, and the assembly, testing, and verification of the instrument prior to launch. (authors)

  13. Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants

    Science.gov (United States)

    Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo

    2017-10-01

    Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.

  14. Geoscientific (GEO) database of the Andra Meuse / Haute-Marne research center

    International Nuclear Information System (INIS)

    Tabani, P.; Hemet, P.; Hermand, G.; Delay, J.; Auriere, C.

    2010-01-01

    Document available in extended abstract form only. The GEO database (geo-scientific database of the Meuse/Haute-Marne Center) is a tool developed by Andra, with a view to group in a secured computer form all data related to the acquisition of in situ and laboratory measurements made on solid and fluid samples. This database has three main functions: - Acquisition and management of data and computer files related to geological, geomechanical, hydrogeological and geochemical measurements on solid and fluid samples and in situ measurements (logging, on sample measurements, geological logs, etc). - Available consultation by the staff on Andra's intranet network for selective viewing of data linked to a borehole and/or a sample and for making computations and graphs on sets of laboratory measurements related to a sample. - Physical management of fluid and solid samples stored in a 'core library' in order to localize a sample, follow-up its movement out of the 'core library' to an organization, and carry out regular inventories. The GEO database is a relational Oracle data base. It is installed on a data server which stores information and manages the users' transactions. The users can consult, download and exploit data from any computer connected to the Andra network or Internet. Management of the access rights is made through a login/ password. Four geo-scientific explanations are linked to the Geo database, they are: - The Geosciences portal: The Geosciences portal is a web Intranet application accessible from the ANDRA network. It does not require a particular installation from the client and is accessible through the Internet navigator. A SQL Server Express database manages the users and access rights to the application. This application is used for the acquisition of hydrogeological and geochemical data collected on the field and on fluid samples, as well as data related to scientific work carried out at surface level or in drifts

  15. Geoscience data visualization and analysis using GeoMapApp

    Science.gov (United States)

    Ferrini, Vicki; Carbotte, Suzanne; Ryan, William; Chan, Samantha

    2013-04-01

    Increased availability of geoscience data resources has resulted in new opportunities for developing visualization and analysis tools that not only promote data integration and synthesis, but also facilitate quantitative cross-disciplinary access to data. Interdisciplinary investigations, in particular, frequently require visualizations and quantitative access to specialized data resources across disciplines, which has historically required specialist knowledge of data formats and software tools. GeoMapApp (www.geomapapp.org) is a free online data visualization and analysis tool that provides direct quantitative access to a wide variety of geoscience data for a broad international interdisciplinary user community. While GeoMapApp provides access to online data resources, it can also be packaged to work offline through the deployment of a small portable hard drive. This mode of operation can be particularly useful during field programs to provide functionality and direct access to data when a network connection is not possible. Hundreds of data sets from a variety of repositories are directly accessible in GeoMapApp, without the need for the user to understand the specifics of file formats or data reduction procedures. Available data include global and regional gridded data, images, as well as tabular and vector datasets. In addition to basic visualization and data discovery functionality, users are provided with simple tools for creating customized maps and visualizations and to quantitatively interrogate data. Specialized data portals with advanced functionality are also provided for power users to further analyze data resources and access underlying component datasets. Users may import and analyze their own geospatial datasets by loading local versions of geospatial data and can access content made available through Web Feature Services (WFS) and Web Map Services (WMS). Once data are loaded in GeoMapApp, a variety options are provided to export data and/or 2D/3D

  16. Density-driven structural transformations in network forming glasses: a high-pressure neutron diffraction study of GeO2 glass up to 17.5 GPa

    International Nuclear Information System (INIS)

    Salmon, Philip S; Drewitt, James W E; Whittaker, Dean A J; Zeidler, Anita; Wezka, Kamil; Bull, Craig L; Tucker, Matthew G; Wilding, Martin C; Guthrie, Malcolm; Marrocchelli, Dario

    2012-01-01

    The structure of GeO 2 glass was investigated at pressures up to 17.5(5) GPa using in situ time-of-flight neutron diffraction with a Paris-Edinburgh press employing sintered diamond anvils. A new methodology and data correction procedure were developed, enabling a reliable measurement of structure factors that are largely free from diamond Bragg peaks. Calibration curves, which are important for neutron diffraction work on disordered materials, were constructed for pressure as a function of applied load for both single and double toroid anvil geometries. The diffraction data are compared to new molecular-dynamics simulations made using transferrable interaction potentials that include dipole-polarization effects. The results, when taken together with those from other experimental methods, are consistent with four densification mechanisms. The first, at pressures up to ≃ 5 GPa, is associated with a reorganization of GeO 4 units. The second, extending over the range from ≃ 5 to 10 GPa, corresponds to a regime where GeO 4 units are replaced predominantly by GeO 5 units. In the third, as the pressure increases beyond ∼10 GPa, appreciable concentrations of GeO 6 units begin to form and there is a decrease in the rate of change of the intermediate-range order as measured by the pressure dependence of the position of the first sharp diffraction peak. In the fourth, at about 30 GPa, the transformation to a predominantly octahedral glass is achieved and further densification proceeds via compression of the Ge-O bonds. The observed changes in the measured diffraction patterns for GeO 2 occur at similar dimensionless number densities to those found for SiO 2 , indicating similar densification mechanisms for both glasses. This implies a regime from about 15 to 24 GPa where SiO 4 units are replaced predominantly by SiO 5 units, and a regime beyond ∼24 GPa where appreciable concentrations of SiO 6 units begin to form.

  17. Synthesis and characterization of gold cubic nanoshells using water-soluble GeO2 templates

    Science.gov (United States)

    Wang, Cen; Tang, Peisong; Ge, Mingyuan; Xu, Xiaobin; Cao, Feng; Jiang, J. Z.

    2011-04-01

    Size-tunable GeO2 nanocubes were initially prepared by a modified sono-assisted reverse micelle method and then functionalized with an amino-terminated silanizing agent. Subsequently, gold decorated GeO2 nanocomposites were prepared at pH ≈ 7 and 80 °C. It was found that well-dispersed gold nanoparticles on GeO2 nanocubes could be obtained only if gold salt is abundant to favor simultaneous, homogeneous nucleation of gold particles. Additional gold ions were reduced onto these attached 'seed' particles accompanied by synchronous dissolution of water-soluble GeO2 cores, resulting in gold hollow cubic shells. The GeO2 nanocubes and Au/GeO2 nanocomposites as well as gold hollow cubic shells were characterized by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and UV-visible spectroscopy. In particular, gold hollow cubic shells feature a plasmon resonance peak at above 900 nm, which renders it quite promising in biochemical applications.

  18. Synthesis and characterization of gold cubic nanoshells using water-soluble GeO2 templates

    International Nuclear Information System (INIS)

    Wang Cen; Ge Mingyuan; Xu Xiaobin; Jiang, J Z; Tang Peisong; Cao Feng

    2011-01-01

    Size-tunable GeO 2 nanocubes were initially prepared by a modified sono-assisted reverse micelle method and then functionalized with an amino-terminated silanizing agent. Subsequently, gold decorated GeO 2 nanocomposites were prepared at pH ∼ 7 and 80 deg. C. It was found that well-dispersed gold nanoparticles on GeO 2 nanocubes could be obtained only if gold salt is abundant to favor simultaneous, homogeneous nucleation of gold particles. Additional gold ions were reduced onto these attached 'seed' particles accompanied by synchronous dissolution of water-soluble GeO 2 cores, resulting in gold hollow cubic shells. The GeO 2 nanocubes and Au/GeO 2 nanocomposites as well as gold hollow cubic shells were characterized by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and UV-visible spectroscopy. In particular, gold hollow cubic shells feature a plasmon resonance peak at above 900 nm, which renders it quite promising in biochemical applications.

  19. High compressive resistance drainage geo composites; Geocompuestos de drenaje de alta resistencia a compresion

    Energy Technology Data Exchange (ETDEWEB)

    Castelo Nolla, J.; Gutierrez Cuevas, J.

    2014-02-01

    There are several typologies of drainage geo composites available in the market which can be classified according to their structures as: cus pated, mono filaments, geo nets and those products formed by the combination of a draining blanket with a series of mini-pipes. Each one of them has its own range of compressive resistances. There are applications, such as are the new cells of landfills or mines and roads or railways over large embankments, where the pressure exerted on the geo composite exceeds the compressive resistance of the majority of these typologies. For all this applications, besides providing and adequate flow capacity, it must be ensured that the chosen typology is able to withstand the required loading without collapsing and guaranteeing an adequate factor of safety. This article will expose that, currently, the only typology of drainage geo composites that can bear these loadings while maintaining its drainage properties is the tri-planar geo net. (Author)

  20. Assessment of Aerosol Distributions from GEOS-5 Using the CALIPSO Feature Mask

    Science.gov (United States)

    Welton, Ellsworth

    2010-01-01

    A-train sensors such as MODIS, MISR, and CALIPSO are used to determine aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important for climate assessment, air quality applications, and for comparisons and analysis with aerosol transport models. The Aerosols-Clouds-Ecosystems (ACE) satellite mission proposed in the NRC Decadal Survey describes a next generation aerosol and cloud suite similar to the current A-train, including a lidar. The future ACE lidar must be able to determine aerosol type effectively in conjunction with modeling activities to achieve ACE objectives. Here we examine the current capabilities of CALIPSO and the NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-5), to place future ACE needs in context. The CALIPSO level 2 feature mask includes vertical profiles of aerosol layers classified by type. GEOS-5 provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures and extinction profiles along the CALIPSO orbit track. In previous work, initial comparisons between GEOS-5 derived aerosol mixtures and CALIPSO derived aerosol types were presented for July 2007. In general, the results showed that model and lidar derived aerosol types did not agree well in the boundary layer. Agreement was poor over Europe, where CALIPSO indicated the presence of dust and pollution mixtures yet GEOS-5 was dominated by pollution with little dust. Over the ocean in the tropics, the model appeared to contain less sea salt than detected by CALIPSO, yet at high latitudes the situation was reserved. Agreement between CALIPSO and GEOS-5, aerosol types improved above the boundary layer, primarily in dust and smoke dominated regions. At higher altitudes (> 5 km), the model contained aerosol layers not detected