WorldWideScience

Sample records for multiple genome annotation

  1. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor; Kohler, Annegret; Martin, Francis

    2013-03-08

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012 alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.

  2. Genome Context Viewer: visual exploration of multiple annotated genomes using microsynteny.

    Science.gov (United States)

    Cleary, Alan; Farmer, Andrew

    2018-05-01

    The Genome Context Viewer is a visual data-mining tool that allows users to search across multiple providers of genome data for regions with similarly annotated content that may be aligned and visualized at the level of their shared functional elements. By handling ordered sequences of gene family memberships as a unit of search and comparison, the user interface enables quick and intuitive assessment of the degree of gene content divergence and the presence of various types of structural events within syntenic contexts. Insights into functionally significant differences seen at this level of abstraction can then serve to direct the user to more detailed explorations of the underlying data in other interconnected, provider-specific tools. GCV is provided under the GNU General Public License version 3 (GPL-3.0). Source code is available at https://github.com/legumeinfo/lis_context_viewer. adf@ncgr.org. Supplementary data are available at Bioinformatics online.

  3. Annotating individual human genomes.

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A; Topol, Eric J; Schork, Nicholas J

    2011-10-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. ANNOTATING INDIVIDUAL HUMAN GENOMES*

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A.; Topol, Eric J.; Schork, Nicholas J.

    2014-01-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely to amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. PMID:21839162

  5. H2DB: a heritability database across multiple species by annotating trait-associated genomic loci.

    Science.gov (United States)

    Kaminuma, Eli; Fujisawa, Takatomo; Tanizawa, Yasuhiro; Sakamoto, Naoko; Kurata, Nori; Shimizu, Tokurou; Nakamura, Yasukazu

    2013-01-01

    H2DB (http://tga.nig.ac.jp/h2db/), an annotation database of genetic heritability estimates for humans and other species, has been developed as a knowledge database to connect trait-associated genomic loci. Heritability estimates have been investigated for individual species, particularly in human twin studies and plant/animal breeding studies. However, there appears to be no comprehensive heritability database for both humans and other species. Here, we introduce an annotation database for genetic heritabilities of various species that was annotated by manually curating online public resources in PUBMED abstracts and journal contents. The proposed heritability database contains attribute information for trait descriptions, experimental conditions, trait-associated genomic loci and broad- and narrow-sense heritability specifications. Annotated trait-associated genomic loci, for which most are single-nucleotide polymorphisms derived from genome-wide association studies, may be valuable resources for experimental scientists. In addition, we assigned phenotype ontologies to the annotated traits for the purposes of discussing heritability distributions based on phenotypic classifications.

  6. Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies

    Science.gov (United States)

    Zhang, Shujun

    2018-01-01

    Genome-wide association studies (GWASs) have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART). With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study. PMID:29377896

  7. Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Xingjie Hao

    2018-01-01

    Full Text Available Genome-wide association studies (GWASs have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART. With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study.

  8. BEACON: automated tool for Bacterial GEnome Annotation ComparisON.

    Science.gov (United States)

    Kalkatawi, Manal; Alam, Intikhab; Bajic, Vladimir B

    2015-08-18

    Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON's utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27%, while the number of genes without any function assignment is reduced. We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  9. BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal M.

    2015-08-18

    Background Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). Results The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON’s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced. Conclusions We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/

  10. Annotation of selection strengths in viral genomes

    DEFF Research Database (Denmark)

    McCauley, Stephen; de Groot, Saskia; Mailund, Thomas

    2007-01-01

    Motivation: Viral genomes tend to code in overlapping reading frames to maximize information content. This may result in atypical codon bias and particular evolutionary constraints. Due to the fast mutation rate of viruses, there is additional strong evidence for varying selection between intra......- and intergenomic regions. The presence of multiple coding regions complicates the concept of Ka/Ks ratio, and thus begs for an alternative approach when investigating selection strengths. Building on the paper by McCauley & Hein (2006), we develop a method for annotating a viral genome coding in overlapping...... may thus achieve an annotation both of coding regions as well as selection strengths, allowing us to investigate different selection patterns and hypotheses. Results: We illustrate our method by applying it to a multiple alignment of four HIV2 sequences, as well as four Hepatitis B sequences. We...

  11. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species

    Science.gov (United States)

    Genome wide analysis of orthologous clusters is an important component of comparative genomics studies. Identifying the overlap among orthologous clusters can enable us to elucidate the function and evolution of proteins across multiple species. Here, we report a web platform named OrthoVenn that i...

  12. Pipeline to upgrade the genome annotations

    Directory of Open Access Journals (Sweden)

    Lijin K. Gopi

    2017-12-01

    Full Text Available Current era of functional genomics is enriched with good quality draft genomes and annotations for many thousands of species and varieties with the support of the advancements in the next generation sequencing technologies (NGS. Around 25,250 genomes, of the organisms from various kingdoms, are submitted in the NCBI genome resource till date. Each of these genomes was annotated using various tools and knowledge-bases that were available during the period of the annotation. It is obvious that these annotations will be improved if the same genome is annotated using improved tools and knowledge-bases. Here we present a new genome annotation pipeline, strengthened with various tools and knowledge-bases that are capable of producing better quality annotations from the consensus of the predictions from different tools. This resource also perform various additional annotations, apart from the usual gene predictions and functional annotations, which involve SSRs, novel repeats, paralogs, proteins with transmembrane helices, signal peptides etc. This new annotation resource is trained to evaluate and integrate all the predictions together to resolve the overlaps and ambiguities of the boundaries. One of the important highlights of this resource is the capability of predicting the phylogenetic relations of the repeats using the evolutionary trace analysis and orthologous gene clusters. We also present a case study, of the pipeline, in which we upgrade the genome annotation of Nelumbo nucifera (sacred lotus. It is demonstrated that this resource is capable of producing an improved annotation for a better understanding of the biology of various organisms.

  13. WormBase: Annotating many nematode genomes.

    Science.gov (United States)

    Howe, Kevin; Davis, Paul; Paulini, Michael; Tuli, Mary Ann; Williams, Gary; Yook, Karen; Durbin, Richard; Kersey, Paul; Sternberg, Paul W

    2012-01-01

    WormBase (www.wormbase.org) has been serving the scientific community for over 11 years as the central repository for genomic and genetic information for the soil nematode Caenorhabditis elegans. The resource has evolved from its beginnings as a database housing the genomic sequence and genetic and physical maps of a single species, and now represents the breadth and diversity of nematode research, currently serving genome sequence and annotation for around 20 nematodes. In this article, we focus on WormBase's role of genome sequence annotation, describing how we annotate and integrate data from a growing collection of nematode species and strains. We also review our approaches to sequence curation, and discuss the impact on annotation quality of large functional genomics projects such as modENCODE.

  14. Software for computing and annotating genomic ranges.

    Directory of Open Access Journals (Sweden)

    Michael Lawrence

    Full Text Available We describe Bioconductor infrastructure for representing and computing on annotated genomic ranges and integrating genomic data with the statistical computing features of R and its extensions. At the core of the infrastructure are three packages: IRanges, GenomicRanges, and GenomicFeatures. These packages provide scalable data structures for representing annotated ranges on the genome, with special support for transcript structures, read alignments and coverage vectors. Computational facilities include efficient algorithms for overlap and nearest neighbor detection, coverage calculation and other range operations. This infrastructure directly supports more than 80 other Bioconductor packages, including those for sequence analysis, differential expression analysis and visualization.

  15. Software for computing and annotating genomic ranges.

    Science.gov (United States)

    Lawrence, Michael; Huber, Wolfgang; Pagès, Hervé; Aboyoun, Patrick; Carlson, Marc; Gentleman, Robert; Morgan, Martin T; Carey, Vincent J

    2013-01-01

    We describe Bioconductor infrastructure for representing and computing on annotated genomic ranges and integrating genomic data with the statistical computing features of R and its extensions. At the core of the infrastructure are three packages: IRanges, GenomicRanges, and GenomicFeatures. These packages provide scalable data structures for representing annotated ranges on the genome, with special support for transcript structures, read alignments and coverage vectors. Computational facilities include efficient algorithms for overlap and nearest neighbor detection, coverage calculation and other range operations. This infrastructure directly supports more than 80 other Bioconductor packages, including those for sequence analysis, differential expression analysis and visualization.

  16. JGI Plant Genomics Gene Annotation Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David; Hayes, David; Mitros, Therese

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward this aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.

  17. MIPS bacterial genomes functional annotation benchmark dataset.

    Science.gov (United States)

    Tetko, Igor V; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Fobo, Gisela; Ruepp, Andreas; Antonov, Alexey V; Surmeli, Dimitrij; Mewes, Hans-Wernen

    2005-05-15

    Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. BFAB is available at http://mips.gsf.de/proj/bfab

  18. Contributions to In Silico Genome Annotation

    KAUST Repository

    Kalkatawi, Manal M.

    2017-11-30

    Genome annotation is an important topic since it provides information for the foundation of downstream genomic and biological research. It is considered as a way of summarizing part of existing knowledge about the genomic characteristics of an organism. Annotating different regions of a genome sequence is known as structural annotation, while identifying functions of these regions is considered as a functional annotation. In silico approaches can facilitate both tasks that otherwise would be difficult and timeconsuming. This study contributes to genome annotation by introducing several novel bioinformatics methods, some based on machine learning (ML) approaches. First, we present Dragon PolyA Spotter (DPS), a method for accurate identification of the polyadenylation signals (PAS) within human genomic DNA sequences. For this, we derived a novel feature-set able to characterize properties of the genomic region surrounding the PAS, enabling development of high accuracy optimized ML predictive models. DPS considerably outperformed the state-of-the-art results. The second contribution concerns developing generic models for structural annotation, i.e., the recognition of different genomic signals and regions (GSR) within eukaryotic DNA. We developed DeepGSR, a systematic framework that facilitates generating ML models to predict GSR with high accuracy. To the best of our knowledge, no available generic and automated method exists for such task that could facilitate the studies of newly sequenced organisms. The prediction module of DeepGSR uses deep learning algorithms to derive highly abstract features that depend mainly on proper data representation and hyperparameters calibration. DeepGSR, which was evaluated on recognition of PAS and translation initiation sites (TIS) in different organisms, yields a simpler and more precise representation of the problem under study, compared to some other hand-tailored models, while producing high accuracy prediction results. Finally

  19. Combined evidence annotation of transposable elements in genome sequences.

    Directory of Open Access Journals (Sweden)

    Hadi Quesneville

    2005-07-01

    Full Text Available Transposable elements (TEs are mobile, repetitive sequences that make up significant fractions of metazoan genomes. Despite their near ubiquity and importance in genome and chromosome biology, most efforts to annotate TEs in genome sequences rely on the results of a single computational program, RepeatMasker. In contrast, recent advances in gene annotation indicate that high-quality gene models can be produced from combining multiple independent sources of computational evidence. To elevate the quality of TE annotations to a level comparable to that of gene models, we have developed a combined evidence-model TE annotation pipeline, analogous to systems used for gene annotation, by integrating results from multiple homology-based and de novo TE identification methods. As proof of principle, we have annotated "TE models" in Drosophila melanogaster Release 4 genomic sequences using the combined computational evidence derived from RepeatMasker, BLASTER, TBLASTX, all-by-all BLASTN, RECON, TE-HMM and the previous Release 3.1 annotation. Our system is designed for use with the Apollo genome annotation tool, allowing automatic results to be curated manually to produce reliable annotations. The euchromatic TE fraction of D. melanogaster is now estimated at 5.3% (cf. 3.86% in Release 3.1, and we found a substantially higher number of TEs (n = 6,013 than previously identified (n = 1,572. Most of the new TEs derive from small fragments of a few hundred nucleotides long and highly abundant families not previously annotated (e.g., INE-1. We also estimated that 518 TE copies (8.6% are inserted into at least one other TE, forming a nest of elements. The pipeline allows rapid and thorough annotation of even the most complex TE models, including highly deleted and/or nested elements such as those often found in heterochromatic sequences. Our pipeline can be easily adapted to other genome sequences, such as those of the D. melanogaster heterochromatin or other

  20. Annotating the human genome with Disease Ontology

    Science.gov (United States)

    Osborne, John D; Flatow, Jared; Holko, Michelle; Lin, Simon M; Kibbe, Warren A; Zhu, Lihua (Julie); Danila, Maria I; Feng, Gang; Chisholm, Rex L

    2009-01-01

    Background The human genome has been extensively annotated with Gene Ontology for biological functions, but minimally computationally annotated for diseases. Results We used the Unified Medical Language System (UMLS) MetaMap Transfer tool (MMTx) to discover gene-disease relationships from the GeneRIF database. We utilized a comprehensive subset of UMLS, which is disease-focused and structured as a directed acyclic graph (the Disease Ontology), to filter and interpret results from MMTx. The results were validated against the Homayouni gene collection using recall and precision measurements. We compared our results with the widely used Online Mendelian Inheritance in Man (OMIM) annotations. Conclusion The validation data set suggests a 91% recall rate and 97% precision rate of disease annotation using GeneRIF, in contrast with a 22% recall and 98% precision using OMIM. Our thesaurus-based approach allows for comparisons to be made between disease containing databases and allows for increased accuracy in disease identification through synonym matching. The much higher recall rate of our approach demonstrates that annotating human genome with Disease Ontology and GeneRIF for diseases dramatically increases the coverage of the disease annotation of human genome. PMID:19594883

  1. Supplementary Material for: BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal M.; Alam, Intikhab; Bajic, Vladimir B.

    2015-01-01

    Abstract Background Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). Results The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACONâ s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced. Conclusions We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  2. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  3. Towards Viral Genome Annotation Standards, Report from the 2010 NCBI Annotation Workshop.

    Science.gov (United States)

    Brister, James Rodney; Bao, Yiming; Kuiken, Carla; Lefkowitz, Elliot J; Le Mercier, Philippe; Leplae, Raphael; Madupu, Ramana; Scheuermann, Richard H; Schobel, Seth; Seto, Donald; Shrivastava, Susmita; Sterk, Peter; Zeng, Qiandong; Klimke, William; Tatusova, Tatiana

    2010-10-01

    Improvements in DNA sequencing technologies portend a new era in virology and could possibly lead to a giant leap in our understanding of viral evolution and ecology. Yet, as viral genome sequences begin to fill the world's biological databases, it is critically important to recognize that the scientific promise of this era is dependent on consistent and comprehensive genome annotation. With this in mind, the NCBI Genome Annotation Workshop recently hosted a study group tasked with developing sequence, function, and metadata annotation standards for viral genomes. This report describes the issues involved in viral genome annotation and reviews policy recommendations presented at the NCBI Annotation Workshop.

  4. Towards Viral Genome Annotation Standards, Report from the 2010 NCBI Annotation Workshop

    Directory of Open Access Journals (Sweden)

    Qiandong Zeng

    2010-10-01

    Full Text Available Improvements in DNA sequencing technologies portend a new era in virology and could possibly lead to a giant leap in our understanding of viral evolution and ecology. Yet, as viral genome sequences begin to fill the world’s biological databases, it is critically important to recognize that the scientific promise of this era is dependent on consistent and comprehensive genome annotation. With this in mind, the NCBI Genome Annotation Workshop recently hosted a study group tasked with developing sequence, function, and metadata annotation standards for viral genomes. This report describes the issues involved in viral genome annotation and reviews policy recommendations presented at the NCBI Annotation Workshop.

  5. Intra-species sequence comparisons for annotating genomes

    Energy Technology Data Exchange (ETDEWEB)

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  6. Annotating functional RNAs in genomes using Infernal.

    Science.gov (United States)

    Nawrocki, Eric P

    2014-01-01

    Many different types of functional non-coding RNAs participate in a wide range of important cellular functions but the large majority of these RNAs are not routinely annotated in published genomes. Several programs have been developed for identifying RNAs, including specific tools tailored to a particular RNA family as well as more general ones designed to work for any family. Many of these tools utilize covariance models (CMs), statistical models of the conserved sequence, and structure of an RNA family. In this chapter, as an illustrative example, the Infernal software package and CMs from the Rfam database are used to identify RNAs in the genome of the archaeon Methanobrevibacter ruminantium, uncovering some additional RNAs not present in the genome's initial annotation. Analysis of the results and comparison with family-specific methods demonstrate some important strengths and weaknesses of this general approach.

  7. Annotating non-coding regions of the genome.

    Science.gov (United States)

    Alexander, Roger P; Fang, Gang; Rozowsky, Joel; Snyder, Michael; Gerstein, Mark B

    2010-08-01

    Most of the human genome consists of non-protein-coding DNA. Recently, progress has been made in annotating these non-coding regions through the interpretation of functional genomics experiments and comparative sequence analysis. One can conceptualize functional genomics analysis as involving a sequence of steps: turning the output of an experiment into a 'signal' at each base pair of the genome; smoothing this signal and segmenting it into small blocks of initial annotation; and then clustering these small blocks into larger derived annotations and networks. Finally, one can relate functional genomics annotations to conserved units and measures of conservation derived from comparative sequence analysis.

  8. First generation annotations for the fathead minnow (Pimephales promelas) genome

    Science.gov (United States)

    Ab initio gene prediction and evidence alignment were used to produce the first annotations for the fathead minnow SOAPdenovo genome assembly. Additionally, a genome browser hosted at genome.setac.org provides simplified access to the annotation data in context with fathead minno...

  9. Prosecutor: parameter-free inference of gene function for prokaryotes using DNA microarray data, genomic context and multiple gene annotation sources

    Directory of Open Access Journals (Sweden)

    van Hijum Sacha AFT

    2008-10-01

    Full Text Available Abstract Background Despite a plethora of functional genomic efforts, the function of many genes in sequenced genomes remains unknown. The increasing amount of microarray data for many species allows employing the guilt-by-association principle to predict function on a large scale: genes exhibiting similar expression patterns are more likely to participate in shared biological processes. Results We developed Prosecutor, an application that enables researchers to rapidly infer gene function based on available gene expression data and functional annotations. Our parameter-free functional prediction method uses a sensitive algorithm to achieve a high association rate of linking genes with unknown function to annotated genes. Furthermore, Prosecutor utilizes additional biological information such as genomic context and known regulatory mechanisms that are specific for prokaryotes. We analyzed publicly available transcriptome data sets and used literature sources to validate putative functions suggested by Prosecutor. We supply the complete results of our analysis for 11 prokaryotic organisms on a dedicated website. Conclusion The Prosecutor software and supplementary datasets available at http://www.prosecutor.nl allow researchers working on any of the analyzed organisms to quickly identify the putative functions of their genes of interest. A de novo analysis allows new organisms to be studied.

  10. Community annotation and bioinformatics workforce development in concert--Little Skate Genome Annotation Workshops and Jamborees.

    Science.gov (United States)

    Wang, Qinghua; Arighi, Cecilia N; King, Benjamin L; Polson, Shawn W; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F; Page, Shallee T; Rendino, Marc Farnum; Thomas, William Kelley; Udwary, Daniel W; Wu, Cathy H

    2012-01-01

    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome.

  11. Community annotation and bioinformatics workforce development in concert—Little Skate Genome Annotation Workshops and Jamborees

    Science.gov (United States)

    Wang, Qinghua; Arighi, Cecilia N.; King, Benjamin L.; Polson, Shawn W.; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F.; Page, Shallee T.; Farnum Rendino, Marc; Thomas, William Kelley; Udwary, Daniel W.; Wu, Cathy H.

    2012-01-01

    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome. PMID:22434832

  12. Gene calling and bacterial genome annotation with BG7.

    Science.gov (United States)

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).

  13. Evaluation of three automated genome annotations for Halorhabdus utahensis.

    Directory of Open Access Journals (Sweden)

    Peter Bakke

    2009-07-01

    Full Text Available Genome annotations are accumulating rapidly and depend heavily on automated annotation systems. Many genome centers offer annotation systems but no one has compared their output in a systematic way to determine accuracy and inherent errors. Errors in the annotations are routinely deposited in databases such as NCBI and used to validate subsequent annotation errors. We submitted the genome sequence of halophilic archaeon Halorhabdus utahensis to be analyzed by three genome annotation services. We have examined the output from each service in a variety of ways in order to compare the methodology and effectiveness of the annotations, as well as to explore the genes, pathways, and physiology of the previously unannotated genome. The annotation services differ considerably in gene calls, features, and ease of use. We had to manually identify the origin of replication and the species-specific consensus ribosome-binding site. Additionally, we conducted laboratory experiments to test H. utahensis growth and enzyme activity. Current annotation practices need to improve in order to more accurately reflect a genome's biological potential. We make specific recommendations that could improve the quality of microbial annotation projects.

  14. Improving Microbial Genome Annotations in an Integrated Database Context

    Science.gov (United States)

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Anderson, Iain; Mavromatis, Konstantinos; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2013-01-01

    Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/. PMID:23424620

  15. Improving microbial genome annotations in an integrated database context.

    Directory of Open Access Journals (Sweden)

    I-Min A Chen

    Full Text Available Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/.

  16. Annotation-Based Whole Genomic Prediction and Selection

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Do, Duy Ngoc; Janss, Luc

    Genomic selection is widely used in both animal and plant species, however, it is performed with no input from known genomic or biological role of genetic variants and therefore is a black box approach in a genomic era. This study investigated the role of different genomic regions and detected QTLs...... in their contribution to estimated genomic variances and in prediction of genomic breeding values by applying SNP annotation approaches to feed efficiency. Ensembl Variant Predictor (EVP) and Pig QTL database were used as the source of genomic annotation for 60K chip. Genomic prediction was performed using the Bayes...... classes. Predictive accuracy was 0.531, 0.532, 0.302, and 0.344 for DFI, RFI, ADG and BF, respectively. The contribution per SNP to total genomic variance was similar among annotated classes across different traits. Predictive performance of SNP classes did not significantly differ from randomized SNP...

  17. Correction of the Caulobacter crescentus NA1000 genome annotation.

    Directory of Open Access Journals (Sweden)

    Bert Ely

    Full Text Available Bacterial genome annotations are accumulating rapidly in the GenBank database and the use of automated annotation technologies to create these annotations has become the norm. However, these automated methods commonly result in a small, but significant percentage of genome annotation errors. To improve accuracy and reliability, we analyzed the Caulobacter crescentus NA1000 genome utilizing computer programs Artemis and MICheck to manually examine the third codon position GC content, alignment to a third codon position GC frame plot peak, and matches in the GenBank database. We identified 11 new genes, modified the start site of 113 genes, and changed the reading frame of 38 genes that had been incorrectly annotated. Furthermore, our manual method of identifying protein-coding genes allowed us to remove 112 non-coding regions that had been designated as coding regions. The improved NA1000 genome annotation resulted in a reduction in the use of rare codons since noncoding regions with atypical codon usage were removed from the annotation and 49 new coding regions were added to the annotation. Thus, a more accurate codon usage table was generated as well. These results demonstrate that a comparison of the location of peaks third codon position GC content to the location of protein coding regions could be used to verify the annotation of any genome that has a GC content that is greater than 60%.

  18. Ten steps to get started in Genome Assembly and Annotation

    Science.gov (United States)

    Dominguez Del Angel, Victoria; Hjerde, Erik; Sterck, Lieven; Capella-Gutierrez, Salvadors; Notredame, Cederic; Vinnere Pettersson, Olga; Amselem, Joelle; Bouri, Laurent; Bocs, Stephanie; Klopp, Christophe; Gibrat, Jean-Francois; Vlasova, Anna; Leskosek, Brane L.; Soler, Lucile; Binzer-Panchal, Mahesh; Lantz, Henrik

    2018-01-01

    As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted from annotation workflows. The importance of data management is stressed, and we give advice on where to submit data and how to make your results Findable, Accessible, Interoperable, and Reusable (FAIR). PMID:29568489

  19. Annotation of the protein coding regions of the equine genome

    DEFF Research Database (Denmark)

    Hestand, Matthew S.; Kalbfleisch, Theodore S.; Coleman, Stephen J.

    2015-01-01

    Current gene annotation of the horse genome is largely derived from in silico predictions and cross-species alignments. Only a small number of genes are annotated based on equine EST and mRNA sequences. To expand the number of equine genes annotated from equine experimental evidence, we sequenced m...... and appear to be small errors in the equine reference genome, since they are also identified as homozygous variants by genomic DNA resequencing of the reference horse. Taken together, we provide a resource of equine mRNA structures and protein coding variants that will enhance equine and cross...

  20. Roadmap for annotating transposable elements in eukaryote genomes.

    Science.gov (United States)

    Permal, Emmanuelle; Flutre, Timothée; Quesneville, Hadi

    2012-01-01

    Current high-throughput techniques have made it feasible to sequence even the genomes of non-model organisms. However, the annotation process now represents a bottleneck to genome analysis, especially when dealing with transposable elements (TE). Combined approaches, using both de novo and knowledge-based methods to detect TEs, are likely to produce reasonably comprehensive and sensitive results. This chapter provides a roadmap for researchers involved in genome projects to address this issue. At each step of the TE annotation process, from the identification of TE families to the annotation of TE copies, we outline the tools and good practices to be used.

  1. Using Microbial Genome Annotation as a Foundation for Collaborative Student Research

    Science.gov (United States)

    Reed, Kelynne E.; Richardson, John M.

    2013-01-01

    We used the Integrated Microbial Genomes Annotation Collaboration Toolkit as a framework to incorporate microbial genomics research into a microbiology and biochemistry course in a way that promoted student learning of bioinformatics and research skills and emphasized teamwork and collaboration as evidenced through multiple assessment mechanisms.…

  2. BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal M.; Alam, Intikhab; Bajic, Vladimir B.

    2015-01-01

    We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/

  3. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  4. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

    Energy Technology Data Exchange (ETDEWEB)

    Brettin, Thomas; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Shukla, Maulik; Thomason, James A.; Stevens, Rick; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang

    2015-02-10

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.

  5. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes.

    Science.gov (United States)

    Brettin, Thomas; Davis, James J; Disz, Terry; Edwards, Robert A; Gerdes, Svetlana; Olsen, Gary J; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D; Shukla, Maulik; Thomason, James A; Stevens, Rick; Vonstein, Veronika; Wattam, Alice R; Xia, Fangfang

    2015-02-10

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.

  6. An automated annotation tool for genomic DNA sequences using

    Indian Academy of Sciences (India)

    Genomic sequence data are often available well before the annotated sequence is published. We present a method for analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant sequences by BLAST. The routines are used to develop a system for automated ...

  7. Genome sequencing and annotation of Serratia sp. strain TEL.

    Science.gov (United States)

    Lephoto, Tiisetso E; Gray, Vincent M

    2015-12-01

    We present the annotation of the draft genome sequence of Serratia sp. strain TEL (GenBank accession number KP711410). This organism was isolated from entomopathogenic nematode Oscheius sp. strain TEL (GenBank accession number KM492926) collected from grassland soil and has a genome size of 5,000,541 bp and 542 subsystems. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession number LDEG00000000.

  8. Genome sequencing and annotation of Serratia sp. strain TEL

    Directory of Open Access Journals (Sweden)

    Tiisetso E. Lephoto

    2015-12-01

    Full Text Available We present the annotation of the draft genome sequence of Serratia sp. strain TEL (GenBank accession number KP711410. This organism was isolated from entomopathogenic nematode Oscheius sp. strain TEL (GenBank accession number KM492926 collected from grassland soil and has a genome size of 5,000,541 bp and 542 subsystems. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession number LDEG00000000.

  9. Genome sequencing and annotation of Serratia sp. strain TEL

    OpenAIRE

    Lephoto, Tiisetso E.; Gray, Vincent M.

    2015-01-01

    We present the annotation of the draft genome sequence of Serratia sp. strain TEL (GenBank accession number KP711410). This organism was isolated from entomopathogenic nematode Oscheius sp. strain TEL (GenBank accession number KM492926) collected from grassland soil and has a genome size of 5,000,541 bp and 542 subsystems. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession number LDEG00000000.

  10. MIPS: analysis and annotation of genome information in 2007.

    Science.gov (United States)

    Mewes, H W; Dietmann, S; Frishman, D; Gregory, R; Mannhaupt, G; Mayer, K F X; Münsterkötter, M; Ruepp, A; Spannagl, M; Stümpflen, V; Rattei, T

    2008-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) combines automatic processing of large amounts of sequences with manual annotation of selected model genomes. Due to the massive growth of the available data, the depth of annotation varies widely between independent databases. Also, the criteria for the transfer of information from known to orthologous sequences are diverse. To cope with the task of global in-depth genome annotation has become unfeasible. Therefore, our efforts are dedicated to three levels of annotation: (i) the curation of selected genomes, in particular from fungal and plant taxa (e.g. CYGD, MNCDB, MatDB), (ii) the comprehensive, consistent, automatic annotation employing exhaustive methods for the computation of sequence similarities and sequence-related attributes as well as the classification of individual sequences (SIMAP, PEDANT and FunCat) and (iii) the compilation of manually curated databases for protein interactions based on scrutinized information from the literature to serve as an accepted set of reliable annotated interaction data (MPACT, MPPI, CORUM). All databases and tools described as well as the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  11. A framework for annotating human genome in disease context.

    Science.gov (United States)

    Xu, Wei; Wang, Huisong; Cheng, Wenqing; Fu, Dong; Xia, Tian; Kibbe, Warren A; Lin, Simon M

    2012-01-01

    Identification of gene-disease association is crucial to understanding disease mechanism. A rapid increase in biomedical literatures, led by advances of genome-scale technologies, poses challenge for manually-curated-based annotation databases to characterize gene-disease associations effectively and timely. We propose an automatic method-The Disease Ontology Annotation Framework (DOAF) to provide a comprehensive annotation of the human genome using the computable Disease Ontology (DO), the NCBO Annotator service and NCBI Gene Reference Into Function (GeneRIF). DOAF can keep the resulting knowledgebase current by periodically executing automatic pipeline to re-annotate the human genome using the latest DO and GeneRIF releases at any frequency such as daily or monthly. Further, DOAF provides a computable and programmable environment which enables large-scale and integrative analysis by working with external analytic software or online service platforms. A user-friendly web interface (doa.nubic.northwestern.edu) is implemented to allow users to efficiently query, download, and view disease annotations and the underlying evidences.

  12. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    Science.gov (United States)

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. PanCoreGen – profiling, detecting, annotating protein-coding genes in microbial genomes

    Science.gov (United States)

    Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V.

    2015-01-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen – a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars – Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. PMID:26456591

  14. Web Apollo: a web-based genomic annotation editing platform.

    Science.gov (United States)

    Lee, Eduardo; Helt, Gregg A; Reese, Justin T; Munoz-Torres, Monica C; Childers, Chris P; Buels, Robert M; Stein, Lincoln; Holmes, Ian H; Elsik, Christine G; Lewis, Suzanna E

    2013-08-30

    Web Apollo is the first instantaneous, collaborative genomic annotation editor available on the web. One of the natural consequences following from current advances in sequencing technology is that there are more and more researchers sequencing new genomes. These researchers require tools to describe the functional features of their newly sequenced genomes. With Web Apollo researchers can use any of the common browsers (for example, Chrome or Firefox) to jointly analyze and precisely describe the features of a genome in real time, whether they are in the same room or working from opposite sides of the world.

  15. Genome Annotation in a Community College Cell Biology Lab

    Science.gov (United States)

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  16. MUTAGEN: Multi-user tool for annotating GENomes

    DEFF Research Database (Denmark)

    Brugger, K.; Redder, P.; Skovgaard, Marie

    2003-01-01

    MUTAGEN is a free prokaryotic annotation system. It offers the advantages of genome comparison, graphical sequence browsers, search facilities and open-source for user-specific adjustments. The web-interface allows several users to access the system from standard desktop computers. The Sulfolobus...

  17. Annotation of the Clostridium Acetobutylicum Genome

    Energy Technology Data Exchange (ETDEWEB)

    Daly, M. J.

    2004-06-09

    The genome sequence of the solvent producing bacterium Clostridium acetobutylicum ATCC824, has been determined by the shotgun approach. The genome consists of a 3.94 Mb chromosome and a 192 kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases, closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria.

  18. xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud.

    Science.gov (United States)

    Duvick, Jon; Standage, Daniel S; Merchant, Nirav; Brendel, Volker P

    2016-04-01

    Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today's pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant's Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. © 2016 American Society of Plant Biologists. All rights reserved.

  19. Simultaneous gene finding in multiple genomes.

    Science.gov (United States)

    König, Stefanie; Romoth, Lars W; Gerischer, Lizzy; Stanke, Mario

    2016-11-15

    As the tree of life is populated with sequenced genomes ever more densely, the new challenge is the accurate and consistent annotation of entire clades of genomes. We address this problem with a new approach to comparative gene finding that takes a multiple genome alignment of closely related species and simultaneously predicts the location and structure of protein-coding genes in all input genomes, thereby exploiting negative selection and sequence conservation. The model prefers potential gene structures in the different genomes that are in agreement with each other, or-if not-where the exon gains and losses are plausible given the species tree. We formulate the multi-species gene finding problem as a binary labeling problem on a graph. The resulting optimization problem is NP hard, but can be efficiently approximated using a subgradient-based dual decomposition approach. The proposed method was tested on whole-genome alignments of 12 vertebrate and 12 Drosophila species. The accuracy was evaluated for human, mouse and Drosophila melanogaster and compared to competing methods. Results suggest that our method is well-suited for annotation of (a large number of) genomes of closely related species within a clade, in particular, when RNA-Seq data are available for many of the genomes. The transfer of existing annotations from one genome to another via the genome alignment is more accurate than previous approaches that are based on protein-spliced alignments, when the genomes are at close to medium distances. The method is implemented in C ++ as part of Augustus and available open source at http://bioinf.uni-greifswald.de/augustus/ CONTACT: stefaniekoenig@ymail.com or mario.stanke@uni-greifswald.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.

    Science.gov (United States)

    Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L

    2016-01-04

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. GI-POP: a combinational annotation and genomic island prediction pipeline for ongoing microbial genome projects.

    Science.gov (United States)

    Lee, Chi-Ching; Chen, Yi-Ping Phoebe; Yao, Tzu-Jung; Ma, Cheng-Yu; Lo, Wei-Cheng; Lyu, Ping-Chiang; Tang, Chuan Yi

    2013-04-10

    Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Applied bioinformatics: Genome annotation and transcriptome analysis

    DEFF Research Database (Denmark)

    Gupta, Vikas

    agricultural and biological importance. Its capacity to form symbiotic relationships with rhizobia and microrrhizal fungi has fascinated researchers for years. Lotus has a small genome of approximately 470 Mb and a short life cycle of 2 to 3 months, which has made Lotus a model legume plant for many molecular...

  3. MIPS: analysis and annotation of proteins from whole genomes.

    Science.gov (United States)

    Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A

    2004-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  4. MicroScope: a platform for microbial genome annotation and comparative genomics.

    Science.gov (United States)

    Vallenet, D; Engelen, S; Mornico, D; Cruveiller, S; Fleury, L; Lajus, A; Rouy, Z; Roche, D; Salvignol, G; Scarpelli, C; Médigue, C

    2009-01-01

    The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope's rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of

  5. nGASP - the nematode genome annotation assessment project

    Energy Technology Data Exchange (ETDEWEB)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  6. Protein sequence annotation in the genome era: the annotation concept of SWISS-PROT+TREMBL.

    Science.gov (United States)

    Apweiler, R; Gateau, A; Contrino, S; Martin, M J; Junker, V; O'Donovan, C; Lang, F; Mitaritonna, N; Kappus, S; Bairoch, A

    1997-01-01

    SWISS-PROT is a curated protein sequence database which strives to provide a high level of annotation, a minimal level of redundancy and high level of integration with other databases. Ongoing genome sequencing projects have dramatically increased the number of protein sequences to be incorporated into SWISS-PROT. Since we do not want to dilute the quality standards of SWISS-PROT by incorporating sequences without proper sequence analysis and annotation, we cannot speed up the incorporation of new incoming data indefinitely. However, as we also want to make the sequences available as fast as possible, we introduced TREMBL (TRanslation of EMBL nucleotide sequence database), a supplement to SWISS-PROT. TREMBL consists of computer-annotated entries in SWISS-PROT format derived from the translation of all coding sequences (CDS) in the EMBL nucleotide sequence database, except for CDS already included in SWISS-PROT. While TREMBL is already of immense value, its computer-generated annotation does not match the quality of SWISS-PROTs. The main difference is in the protein functional information attached to sequences. With this in mind, we are dedicating substantial effort to develop and apply computer methods to enhance the functional information attached to TREMBL entries.

  7. Annotating the genome by DNA methylation.

    Science.gov (United States)

    Cedar, Howard; Razin, Aharon

    2017-01-01

    DNA methylation plays a prominent role in setting up and stabilizing the molecular design of gene regulation and by understanding this process one gains profound insight into the underlying biology of mammals. In this article, we trace the discoveries that provided the foundations of this field, starting with the mapping of methyl groups in the genome and the experiments that helped clarify how methylation patterns are maintained through cell division. We then address the basic relationship between methyl groups and gene repression, as well as the molecular rules involved in controlling this process during development in vivo. Finally, we describe ongoing work aimed at defining the role of this modification in disease and deciphering how it may serve as a mechanism for sensing the environment.

  8. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects.

    Science.gov (United States)

    Holt, Carson; Yandell, Mark

    2011-12-22

    Second-generation sequencing technologies are precipitating major shifts with regards to what kinds of genomes are being sequenced and how they are annotated. While the first generation of genome projects focused on well-studied model organisms, many of today's projects involve exotic organisms whose genomes are largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-existing 'gold-standard' gene-models with which to train gene-finders. Improvements in genome assembly and the wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published genome annotations. Today's genome projects are thus in need of new genome annotation tools that can meet the challenges and opportunities presented by second-generation sequencing technologies. We present MAKER2, a genome annotation and data management tool designed for second-generation genome projects. MAKER2 is a multi-threaded, parallelized application that can process second-generation datasets of virtually any size. We show that MAKER2 can produce accurate annotations for novel genomes where training-data are limited, of low quality or even non-existent. MAKER2 also provides an easy means to use mRNA-seq data to improve annotation quality; and it can use these data to update legacy annotations, significantly improving their quality. We also show that MAKER2 can evaluate the quality of genome annotations, and identify and prioritize problematic annotations for manual review. MAKER2 is the first annotation engine specifically designed for second-generation genome projects. MAKER2 scales to datasets of any size, requires little in the way of training data, and can use mRNA-seq data to improve annotation quality. It can also update and manage legacy genome annotation datasets.

  9. Sequencing and annotation of mitochondrial genomes from individual parasitic helminths.

    Science.gov (United States)

    Jex, Aaron R; Littlewood, D Timothy; Gasser, Robin B

    2015-01-01

    Mitochondrial (mt) genomics has significant implications in a range of fundamental areas of parasitology, including evolution, systematics, and population genetics as well as explorations of mt biochemistry, physiology, and function. Mt genomes also provide a rich source of markers to aid molecular epidemiological and ecological studies of key parasites. However, there is still a paucity of information on mt genomes for many metazoan organisms, particularly parasitic helminths, which has often related to challenges linked to sequencing from tiny amounts of material. The advent of next-generation sequencing (NGS) technologies has paved the way for low cost, high-throughput mt genomic research, but there have been obstacles, particularly in relation to post-sequencing assembly and analyses of large datasets. In this chapter, we describe protocols for the efficient amplification and sequencing of mt genomes from small portions of individual helminths, and highlight the utility of NGS platforms to expedite mt genomics. In addition, we recommend approaches for manual or semi-automated bioinformatic annotation and analyses to overcome the bioinformatic "bottleneck" to research in this area. Taken together, these approaches have demonstrated applicability to a range of parasites and provide prospects for using complete mt genomic sequence datasets for large-scale molecular systematic and epidemiological studies. In addition, these methods have broader utility and might be readily adapted to a range of other medium-sized molecular regions (i.e., 10-100 kb), including large genomic operons, and other organellar (e.g., plastid) and viral genomes.

  10. Characterizing and annotating the genome using RNA-seq data.

    Science.gov (United States)

    Chen, Geng; Shi, Tieliu; Shi, Leming

    2017-02-01

    Bioinformatics methods for various RNA-seq data analyses are in fast evolution with the improvement of sequencing technologies. However, many challenges still exist in how to efficiently process the RNA-seq data to obtain accurate and comprehensive results. Here we reviewed the strategies for improving diverse transcriptomic studies and the annotation of genetic variants based on RNA-seq data. Mapping RNA-seq reads to the genome and transcriptome represent two distinct methods for quantifying the expression of genes/transcripts. Besides the known genes annotated in current databases, many novel genes/transcripts (especially those long noncoding RNAs) still can be identified on the reference genome using RNA-seq. Moreover, owing to the incompleteness of current reference genomes, some novel genes are missing from them. Genome- guided and de novo transcriptome reconstruction are two effective and complementary strategies for identifying those novel genes/transcripts on or beyond the reference genome. In addition, integrating the genes of distinct databases to conduct transcriptomics and genetics studies can improve the results of corresponding analyses.

  11. Experimental annotation of the human genome using microarray technology.

    Science.gov (United States)

    Shoemaker, D D; Schadt, E E; Armour, C D; He, Y D; Garrett-Engele, P; McDonagh, P D; Loerch, P M; Leonardson, A; Lum, P Y; Cavet, G; Wu, L F; Altschuler, S J; Edwards, S; King, J; Tsang, J S; Schimmack, G; Schelter, J M; Koch, J; Ziman, M; Marton, M J; Li, B; Cundiff, P; Ward, T; Castle, J; Krolewski, M; Meyer, M R; Mao, M; Burchard, J; Kidd, M J; Dai, H; Phillips, J W; Linsley, P S; Stoughton, R; Scherer, S; Boguski, M S

    2001-02-15

    The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.

  12. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs.

    Science.gov (United States)

    Swain, Martin T; Tsai, Isheng J; Assefa, Samual A; Newbold, Chris; Berriman, Matthew; Otto, Thomas D

    2012-06-07

    Genome projects now produce draft assemblies within weeks owing to advanced high-throughput sequencing technologies. For milestone projects such as Escherichia coli or Homo sapiens, teams of scientists were employed to manually curate and finish these genomes to a high standard. Nowadays, this is not feasible for most projects, and the quality of genomes is generally of a much lower standard. This protocol describes software (PAGIT) that is used to improve the quality of draft genomes. It offers flexible functionality to close gaps in scaffolds, correct base errors in the consensus sequence and exploit reference genomes (if available) in order to improve scaffolding and generating annotations. The protocol is most accessible for bacterial and small eukaryotic genomes (up to 300 Mb), such as pathogenic bacteria, malaria and parasitic worms. Applying PAGIT to an E. coli assembly takes ∼24 h: it doubles the average contig size and annotates over 4,300 gene models.

  13. Protein annotation in the era of personal genomics

    DEFF Research Database (Denmark)

    Holberg Blicher, Thomas; Gupta, Ramneek; Wesolowska, Agata

    2010-01-01

    the differences between many individuals of the same species-humans in particular-the focus needs be on the functional impact of individual residue variation. To fulfil the promises of personal genomics, we need to start asking not only what is in a genome but also how millions of small differences between......Protein annotation provides a condensed and systematic view on the function of individual proteins. It has traditionally dealt with sorting proteins into functional categories, which for example has proven to be successful for the comparison of different species. However, if we are to understand...... individual genomes affect protein function and in turn human health. Copyright © 2010 Elsevier Ltd. All rights reserved....

  14. Metingear: a development environment for annotating genome-scale metabolic models.

    Science.gov (United States)

    May, John W; James, A Gordon; Steinbeck, Christoph

    2013-09-01

    Genome-scale metabolic models often lack annotations that would allow them to be used for further analysis. Previous efforts have focused on associating metabolites in the model with a cross reference, but this can be problematic if the reference is not freely available, multiple resources are used or the metabolite is added from a literature review. Associating each metabolite with chemical structure provides unambiguous identification of the components and a more detailed view of the metabolism. We have developed an open-source desktop application that simplifies the process of adding database cross references and chemical structures to genome-scale metabolic models. Annotated models can be exported to the Systems Biology Markup Language open interchange format. Source code, binaries, documentation and tutorials are freely available at http://johnmay.github.com/metingear. The application is implemented in Java with bundles available for MS Windows and Macintosh OS X.

  15. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication.

    Science.gov (United States)

    Tanizawa, Yasuhiro; Fujisawa, Takatomo; Nakamura, Yasukazu

    2018-03-15

    We developed a prokaryotic genome annotation pipeline, DFAST, that also supports genome submission to public sequence databases. DFAST was originally started as an on-line annotation server, and to date, over 7000 jobs have been processed since its first launch in 2016. Here, we present a newly implemented background annotation engine for DFAST, which is also available as a standalone command-line program. The new engine can annotate a typical-sized bacterial genome within 10 min, with rich information such as pseudogenes, translation exceptions and orthologous gene assignment between given reference genomes. In addition, the modular framework of DFAST allows users to customize the annotation workflow easily and will also facilitate extensions for new functions and incorporation of new tools in the future. The software is implemented in Python 3 and runs in both Python 2.7 and 3.4-on Macintosh and Linux systems. It is freely available at https://github.com/nigyta/dfast_core/under the GPLv3 license with external binaries bundled in the software distribution. An on-line version is also available at https://dfast.nig.ac.jp/. yn@nig.ac.jp. Supplementary data are available at Bioinformatics online.

  16. Evidence-based gene models for structural and functional annotations of the oil palm genome.

    Science.gov (United States)

    Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie

    2017-09-08

    biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database ( http://palmxplore.mpob.gov.my ), will provide important resources for studies on the genomes of oil palm and related crops. This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov.

  17. Annotation of the Domestic Pig Genome by Quantitative Proteogenomics.

    Science.gov (United States)

    Marx, Harald; Hahne, Hannes; Ulbrich, Susanne E; Schnieke, Angelika; Rottmann, Oswald; Frishman, Dmitrij; Kuster, Bernhard

    2017-08-04

    The pig is one of the earliest domesticated animals in the history of human civilization and represents one of the most important livestock animals. The recent sequencing of the Sus scrofa genome was a major step toward the comprehensive understanding of porcine biology, evolution, and its utility as a promising large animal model for biomedical and xenotransplantation research. However, the functional and structural annotation of the Sus scrofa genome is far from complete. Here, we present mass spectrometry-based quantitative proteomics data of nine juvenile organs and six embryonic stages between 18 and 39 days after gestation. We found that the data provide evidence for and improve the annotation of 8176 protein-coding genes including 588 novel and 321 refined gene models. The analysis of tissue-specific proteins and the temporal expression profiles of embryonic proteins provides an initial functional characterization of expressed protein interaction networks and modules including as yet uncharacterized proteins. Comparative transcript and protein expression analysis to human organs reveal a moderate conservation of protein translation across species. We anticipate that this resource will facilitate basic and applied research on Sus scrofa as well as its porcine relatives.

  18. Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project : open letter

    NARCIS (Netherlands)

    Archibald, A.L.; Bottema, C.D.; Brauning, R.; Burgess, S.C.; Burt, D.W.; Casas, E.; Cheng, H.H.; Clarke, L.; Couldrey, C.; Dalrymple, B.P.; Elsik, C.G.; Foissac, S.; Giuffra, E.; Groenen, M.A.M.; Hayes, B.J.; Huang, L.S.; Khatib, H.; Kijas, J.W.; Kim, H.; Lunney, J.K.; McCarthy, F.M.; McEwan, J.; Moore, S.; Nanduri, B.; Notredame, C.; Palti, Y.; Plastow, G.S.; Reecy, J.M.; Rohrer, G.; Sarropoulou, E.; Schmidt, C.J.; Silverstein, J.; Tellam, R.L.; Tixier-Boichard, M.; Tosser-klopp, G.; Tuggle, C.K.; Vilkki, J.; White, S.N.; Zhao, S.; Zhou, H.

    2015-01-01

    We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.

  19. Reduce manual curation by combining gene predictions from multiple annotation engines, a case study of start codon prediction.

    Directory of Open Access Journals (Sweden)

    Thomas H A Ederveen

    Full Text Available Nowadays, prokaryotic genomes are sequenced faster than the capacity to manually curate gene annotations. Automated genome annotation engines provide users a straight-forward and complete solution for predicting ORF coordinates and function. For many labs, the use of AGEs is therefore essential to decrease the time necessary for annotating a given prokaryotic genome. However, it is not uncommon for AGEs to provide different and sometimes conflicting predictions. Combining multiple AGEs might allow for more accurate predictions. Here we analyzed the ab initio open reading frame (ORF calling performance of different AGEs based on curated genome annotations of eight strains from different bacterial species with GC% ranging from 35-52%. We present a case study which demonstrates a novel way of comparative genome annotation, using combinations of AGEs in a pre-defined order (or path to predict ORF start codons. The order of AGE combinations is from high to low specificity, where the specificity is based on the eight genome annotations. For each AGE combination we are able to derive a so-called projected confidence value, which is the average specificity of ORF start codon prediction based on the eight genomes. The projected confidence enables estimating likeliness of a correct prediction for a particular ORF start codon by a particular AGE combination, pinpointing ORFs notoriously difficult to predict start codons. We correctly predict start codons for 90.5±4.8% of the genes in a genome (based on the eight genomes with an accuracy of 81.1±7.6%. Our consensus-path methodology allows a marked improvement over majority voting (9.7±4.4% and with an optimal path ORF start prediction sensitivity is gained while maintaining a high specificity.

  20. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4).

    Science.gov (United States)

    Huntemann, Marcel; Ivanova, Natalia N; Mavromatis, Konstantinos; Tripp, H James; Paez-Espino, David; Palaniappan, Krishnaveni; Szeto, Ernest; Pillay, Manoj; Chen, I-Min A; Pati, Amrita; Nielsen, Torben; Markowitz, Victor M; Kyrpides, Nikos C

    2015-01-01

    The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNA features, as well as CRISPR elements. Structural annotation is followed by assignment of protein product names and functions.

  1. Evaluation of Three Automated Genome Annotations for Halorhabdus utahensis

    DEFF Research Database (Denmark)

    Bakke, Peter; Carney, Nick; DeLoache, Will

    2009-01-01

    in databases such as NCBI and used to validate subsequent annotation errors. We submitted the genome sequence of halophilic archaeon Halorhabdus utahensis to be analyzed by three genome annotation services. We have examined the output from each service in a variety of ways in order to compare the methodology...

  2. Draft Genome Sequence and Gene Annotation of the Entomopathogenic Fungus Verticillium hemipterigenum

    OpenAIRE

    Horn, Fabian; Habel, Andreas; Scharf, Daniel H.; Dworschak, Jan; Brakhage, Axel A.; Guthke, Reinhard; Hertweck, Christian; Linde, J?rg

    2015-01-01

    Verticillium hemipterigenum (anamorph Torrubiella hemipterigena) is an entomopathogenic fungus and produces a broad range of secondary metabolites. Here, we present the draft genome sequence of the fungus, including gene structure and functional annotation. Genes were predicted incorporating RNA-Seq data and functionally annotated to provide the basis for further genome studies.

  3. Genome annotation in a community college cell biology lab.

    Science.gov (United States)

    Beagley, C Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  4. Expressed Peptide Tags: An additional layer of data for genome annotation

    Energy Technology Data Exchange (ETDEWEB)

    Savidor, Alon [ORNL; Donahoo, Ryan S [ORNL; Hurtado-Gonzales, Oscar [University of Tennessee, Knoxville (UTK); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL

    2006-01-01

    While genome sequencing is becoming ever more routine, genome annotation remains a challenging process. Identification of the coding sequences within the genomic milieu presents a tremendous challenge, especially for eukaryotes with their complex gene architectures. Here we present a method to assist the annotation process through the use of proteomic data and bioinformatics. Mass spectra of digested protein preparations of the organism of interest were acquired and searched against a protein database created by a six frame translation of the genome. The identified peptides were mapped back to the genome, compared to the current annotation, and then categorized as supporting or extending the current genome annotation. We named the classified peptides Expressed Peptide Tags (EPTs). The well annotated bacterium Rhodopseudomonas palustris was used as a control for the method and showed high degree of correlation between EPT mapping and the current annotation, with 86% of the EPTs confirming existing gene calls and less than 1% of the EPTs expanding on the current annotation. The eukaryotic plant pathogens Phytophthora ramorum and Phytophthora sojae, whose genomes have been recently sequenced and are much less well annotated, were also subjected to this method. A series of algorithmic steps were taken to increase the confidence of EPT identification for these organisms, including generation of smaller sub-databases to be searched against, and definition of EPT criteria that accommodates the more complex eukaryotic gene architecture. As expected, the analysis of the Phytophthora species showed less correlation between EPT mapping and their current annotation. While ~77% of Phytophthora EPTs supported the current annotation, a portion of them (7.2% and 12.6% for P. ramorum and P. sojae, respectively) suggested modification to current gene calls or identified novel genes that were missed by the current genome annotation of these organisms.

  5. xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud[OPEN

    Science.gov (United States)

    Merchant, Nirav

    2016-01-01

    Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today’s pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant’s Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. PMID:27020957

  6. The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation.

    Science.gov (United States)

    Mavromatis, Konstantinos; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, Alex; Clum, Alicia; Goodwin, Lynne; Woyke, Tanja; Lapidus, Alla; Klenk, Hans Peter; Cottingham, Robert W; Kyrpides, Nikos C

    2012-01-01

    The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).

  7. Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus.

    Science.gov (United States)

    Carroll, Ronan K; Weiss, Andy; Broach, William H; Wiemels, Richard E; Mogen, Austin B; Rice, Kelly C; Shaw, Lindsey N

    2016-02-09

    In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs) have been identified, yet this class of molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files, and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains (MRSA252, NCTC 8325, and USA300), in which we added annotations for >260 previously identified sRNAs. These files, the first to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sRNAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome annotation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first examination of differential sRNA expression in pathophysiologically relevant conditions. Despite a large number of studies identifying regulatory or small RNA (sRNA) genes in Staphylococcus aureus, their annotation is notably lacking in available genome files. In addition to this, there has been a considerable lack of cross-referencing in the wealth of studies identifying these elements, often leading to the same sRNA being identified multiple times and bearing multiple names. In this work

  8. Ten steps to get started in Genome Assembly and Annotation [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Victoria Dominguez Del Angel

    2018-02-01

    Full Text Available As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted from annotation workflows. The importance of data management is stressed, and we give advice on where to submit data and how to make your results Findable, Accessible, Interoperable, and Reusable (FAIR.

  9. Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    Science.gov (United States)

    Itoh, Takeshi; Tanaka, Tsuyoshi; Barrero, Roberto A.; Yamasaki, Chisato; Fujii, Yasuyuki; Hilton, Phillip B.; Antonio, Baltazar A.; Aono, Hideo; Apweiler, Rolf; Bruskiewich, Richard; Bureau, Thomas; Burr, Frances; Costa de Oliveira, Antonio; Fuks, Galina; Habara, Takuya; Haberer, Georg; Han, Bin; Harada, Erimi; Hiraki, Aiko T.; Hirochika, Hirohiko; Hoen, Douglas; Hokari, Hiroki; Hosokawa, Satomi; Hsing, Yue; Ikawa, Hiroshi; Ikeo, Kazuho; Imanishi, Tadashi; Ito, Yukiyo; Jaiswal, Pankaj; Kanno, Masako; Kawahara, Yoshihiro; Kawamura, Toshiyuki; Kawashima, Hiroaki; Khurana, Jitendra P.; Kikuchi, Shoshi; Komatsu, Setsuko; Koyanagi, Kanako O.; Kubooka, Hiromi; Lieberherr, Damien; Lin, Yao-Cheng; Lonsdale, David; Matsumoto, Takashi; Matsuya, Akihiro; McCombie, W. Richard; Messing, Joachim; Miyao, Akio; Mulder, Nicola; Nagamura, Yoshiaki; Nam, Jongmin; Namiki, Nobukazu; Numa, Hisataka; Nurimoto, Shin; O’Donovan, Claire; Ohyanagi, Hajime; Okido, Toshihisa; OOta, Satoshi; Osato, Naoki; Palmer, Lance E.; Quetier, Francis; Raghuvanshi, Saurabh; Saichi, Naomi; Sakai, Hiroaki; Sakai, Yasumichi; Sakata, Katsumi; Sakurai, Tetsuya; Sato, Fumihiko; Sato, Yoshiharu; Schoof, Heiko; Seki, Motoaki; Shibata, Michie; Shimizu, Yuji; Shinozaki, Kazuo; Shinso, Yuji; Singh, Nagendra K.; Smith-White, Brian; Takeda, Jun-ichi; Tanino, Motohiko; Tatusova, Tatiana; Thongjuea, Supat; Todokoro, Fusano; Tsugane, Mika; Tyagi, Akhilesh K.; Vanavichit, Apichart; Wang, Aihui; Wing, Rod A.; Yamaguchi, Kaori; Yamamoto, Mayu; Yamamoto, Naoyuki; Yu, Yeisoo; Zhang, Hao; Zhao, Qiang; Higo, Kenichi; Burr, Benjamin; Gojobori, Takashi; Sasaki, Takuji

    2007-01-01

    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ∼32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene. PMID:17210932

  10. Experimental-confirmation and functional-annotation of predicted proteins in the chicken genome

    Directory of Open Access Journals (Sweden)

    McCarthy Fiona M

    2007-11-01

    Full Text Available Abstract Background The chicken genome was sequenced because of its phylogenetic position as a non-mammalian vertebrate, its use as a biomedical model especially to study embryology and development, its role as a source of human disease organisms and its importance as the major source of animal derived food protein. However, genomic sequence data is, in itself, of limited value; generally it is not equivalent to understanding biological function. The benefit of having a genome sequence is that it provides a basis for functional genomics. However, the sequence data currently available is poorly structurally and functionally annotated and many genes do not have standard nomenclature assigned. Results We analysed eight chicken tissues and improved the chicken genome structural annotation by providing experimental support for the in vivo expression of 7,809 computationally predicted proteins, including 30 chicken proteins that were only electronically predicted or hypothetical translations in human. To improve functional annotation (based on Gene Ontology, we mapped these identified proteins to their human and mouse orthologs and used this orthology to transfer Gene Ontology (GO functional annotations to the chicken proteins. The 8,213 orthology-based GO annotations that we produced represent an 8% increase in currently available chicken GO annotations. Orthologous chicken products were also assigned standardized nomenclature based on current chicken nomenclature guidelines. Conclusion We demonstrate the utility of high-throughput expression proteomics for rapid experimental structural annotation of a newly sequenced eukaryote genome. These experimentally-supported predicted proteins were further annotated by assigning the proteins with standardized nomenclature and functional annotation. This method is widely applicable to a diverse range of species. Moreover, information from one genome can be used to improve the annotation of other genomes and

  11. Xylella fastidiosa comparative genomic database is an information resource to explore the annotation, genomic features, and biology of different strains

    Directory of Open Access Journals (Sweden)

    Alessandro M. Varani

    2012-01-01

    Full Text Available The Xylella fastidiosa comparative genomic database is a scientific resource with the aim to provide a user-friendly interface for accessing high-quality manually curated genomic annotation and comparative sequence analysis, as well as for identifying and mapping prophage-like elements, a marked feature of Xylella genomes. Here we describe a database and tools for exploring the biology of this important plant pathogen. The hallmarks of this database are the high quality genomic annotation, the functional and comparative genomic analysis and the identification and mapping of prophage-like elements. It is available from web site http://www.xylella.lncc.br.

  12. AGORA : Organellar genome annotation from the amino acid and nucleotide references.

    Science.gov (United States)

    Jung, Jaehee; Kim, Jong Im; Jeong, Young-Sik; Yi, Gangman

    2018-03-29

    Next-generation sequencing (NGS) technologies have led to the accumulation of highthroughput sequence data from various organisms in biology. To apply gene annotation of organellar genomes for various organisms, more optimized tools for functional gene annotation are required. Almost all gene annotation tools are mainly focused on the chloroplast genome of land plants or the mitochondrial genome of animals.We have developed a web application AGORA for the fast, user-friendly, and improved annotations of organellar genomes. AGORA annotates genes based on a BLAST-based homology search and clustering with selected reference sequences from the NCBI database or user-defined uploaded data. AGORA can annotate the functional genes in almost all mitochondrion and plastid genomes of eukaryotes. The gene annotation of a genome with an exon-intron structure within a gene or inverted repeat region is also available. It provides information of start and end positions of each gene, BLAST results compared with the reference sequence, and visualization of gene map by OGDRAW. Users can freely use the software, and the accessible URL is https://bigdata.dongguk.edu/gene_project/AGORA/.The main module of the tool is implemented by the python and php, and the web page is built by the HTML and CSS to support all browsers. gangman@dongguk.edu.

  13. Leveraging Genomic Annotations and Pleiotropic Enrichment for Improved Replication Rates in Schizophrenia GWAS

    DEFF Research Database (Denmark)

    Wang, Yunpeng; Thompson, Wesley K; Schork, Andrew J

    2016-01-01

    Most of the genetic architecture of schizophrenia (SCZ) has not yet been identified. Here, we apply a novel statistical algorithm called Covariate-Modulated Mixture Modeling (CM3), which incorporates auxiliary information (heterozygosity, total linkage disequilibrium, genomic annotations, pleiotr...

  14. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence

    Directory of Open Access Journals (Sweden)

    Dorrell Nick

    2007-06-01

    Full Text Available Abstract Background Campylobacter jejuni is the leading bacterial cause of human gastroenteritis in the developed world. To improve our understanding of this important human pathogen, the C. jejuni NCTC11168 genome was sequenced and published in 2000. The original annotation was a milestone in Campylobacter research, but is outdated. We now describe the complete re-annotation and re-analysis of the C. jejuni NCTC11168 genome using current database information, novel tools and annotation techniques not used during the original annotation. Results Re-annotation was carried out using sequence database searches such as FASTA, along with programs such as TMHMM for additional support. The re-annotation also utilises sequence data from additional Campylobacter strains and species not available during the original annotation. Re-annotation was accompanied by a full literature search that was incorporated into the updated EMBL file [EMBL: AL111168]. The C. jejuni NCTC11168 re-annotation reduced the total number of coding sequences from 1654 to 1643, of which 90.0% have additional information regarding the identification of new motifs and/or relevant literature. Re-annotation has led to 18.2% of coding sequence product functions being revised. Conclusions Major updates were made to genes involved in the biosynthesis of important surface structures such as lipooligosaccharide, capsule and both O- and N-linked glycosylation. This re-annotation will be a key resource for Campylobacter research and will also provide a prototype for the re-annotation and re-interpretation of other bacterial genomes.

  15. BG7: A New Approach for Bacterial Genome Annotation Designed for Next Generation Sequencing Data

    Science.gov (United States)

    Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Pareja, Eduardo; Tobes, Raquel

    2012-01-01

    BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version – which is developed in Java, takes advantage of Amazon Web Services (AWS) cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future. PMID:23185310

  16. BG7: a new approach for bacterial genome annotation designed for next generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Pablo Pareja-Tobes

    Full Text Available BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version - which is developed in Java, takes advantage of Amazon Web Services (AWS cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future.

  17. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  18. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data.

    Science.gov (United States)

    Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu

    2015-05-27

    Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.

  19. Quick Pad Tagger : An Efficient Graphical User Interface for Building Annotated Corpora with Multiple Annotation Layers

    OpenAIRE

    Marc Schreiber; Kai Barkschat; Bodo Kraft; Albert Zundorf

    2015-01-01

    More and more domain specific applications in the internet make use of Natural Language Processing (NLP) tools (e. g. Information Extraction systems). The output quality of these applications relies on the output quality of the used NLP tools. Often, the quality can be increased by annotating a domain specific corpus. However, annotating a corpus is a time consuming and exhaustive task. To reduce the annota tion time we present...

  20. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Vongsangnak, Wanwipa; Olsen, Peter; Hansen, Kim

    2008-01-01

    Background: Since ancient times the filamentous fungus Aspergillus oryzae has been used in the fermentation industry for the production of fermented sauces and the production of industrial enzymes. Recently, the genome sequence of A. oryzae with 12,074 annotated genes was released but the number...... to a genome scale metabolic model of A. oryzae. Results: Our assembled EST sequences we identified 1,046 newly predicted genes in the A. oryzae genome. Furthermore, it was possible to assign putative protein functions to 398 of the newly predicted genes. Noteworthy, our annotation strategy resulted...... model was validated and shown to correctly describe the phenotypic behavior of A. oryzae grown on different carbon sources. Conclusion: A much enhanced annotation of the A. oryzae genome was performed and a genomescale metabolic model of A. oryzae was reconstructed. The model accurately predicted...

  1. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger

    OpenAIRE

    Wright, James C.; Sugden, Deana; Francis-McIntyre, Sue; Riba Garcia, Isabel; Gaskell, Simon J.; Grigoriev, Igor V.; Baker, Scott E.; Beynon, Robert J.; Hubbard, Simon J.

    2009-01-01

    Abstract Background Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI) and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS) were ac...

  2. DFAST and DAGA: web-based integrated genome annotation tools and resources.

    Science.gov (United States)

    Tanizawa, Yasuhiro; Fujisawa, Takatomo; Kaminuma, Eli; Nakamura, Yasukazu; Arita, Masanori

    2016-01-01

    Quality assurance and correct taxonomic affiliation of data submitted to public sequence databases have been an everlasting problem. The DDBJ Fast Annotation and Submission Tool (DFAST) is a newly developed genome annotation pipeline with quality and taxonomy assessment tools. To enable annotation of ready-to-submit quality, we also constructed curated reference protein databases tailored for lactic acid bacteria. DFAST was developed so that all the procedures required for DDBJ submission could be done seamlessly online. The online workspace would be especially useful for users not familiar with bioinformatics skills. In addition, we have developed a genome repository, DFAST Archive of Genome Annotation (DAGA), which currently includes 1,421 genomes covering 179 species and 18 subspecies of two genera, Lactobacillus and Pediococcus , obtained from both DDBJ/ENA/GenBank and Sequence Read Archive (SRA). All the genomes deposited in DAGA were annotated consistently and assessed using DFAST. To assess the taxonomic position based on genomic sequence information, we used the average nucleotide identity (ANI), which showed high discriminative power to determine whether two given genomes belong to the same species. We corrected mislabeled or misidentified genomes in the public database and deposited the curated information in DAGA. The repository will improve the accessibility and reusability of genome resources for lactic acid bacteria. By exploiting the data deposited in DAGA, we found intraspecific subgroups in Lactobacillus gasseri and Lactobacillus jensenii , whose variation between subgroups is larger than the well-accepted ANI threshold of 95% to differentiate species. DFAST and DAGA are freely accessible at https://dfast.nig.ac.jp.

  3. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger.

    Science.gov (United States)

    Wright, James C; Sugden, Deana; Francis-McIntyre, Sue; Riba-Garcia, Isabel; Gaskell, Simon J; Grigoriev, Igor V; Baker, Scott E; Beynon, Robert J; Hubbard, Simon J

    2009-02-04

    Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI) and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS) were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS) and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR). 405 identified peptide sequences were mapped to 214 different A.niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6%) of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models. This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST) data has been. A comparison of the published genome from another strain of A.niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method.

  4. MC-GenomeKey: a multicloud system for the detection and annotation of genomic variants.

    Science.gov (United States)

    Elshazly, Hatem; Souilmi, Yassine; Tonellato, Peter J; Wall, Dennis P; Abouelhoda, Mohamed

    2017-01-20

    Next Generation Genome sequencing techniques became affordable for massive sequencing efforts devoted to clinical characterization of human diseases. However, the cost of providing cloud-based data analysis of the mounting datasets remains a concerning bottleneck for providing cost-effective clinical services. To address this computational problem, it is important to optimize the variant analysis workflow and the used analysis tools to reduce the overall computational processing time, and concomitantly reduce the processing cost. Furthermore, it is important to capitalize on the use of the recent development in the cloud computing market, which have witnessed more providers competing in terms of products and prices. In this paper, we present a new package called MC-GenomeKey (Multi-Cloud GenomeKey) that efficiently executes the variant analysis workflow for detecting and annotating mutations using cloud resources from different commercial cloud providers. Our package supports Amazon, Google, and Azure clouds, as well as, any other cloud platform based on OpenStack. Our package allows different scenarios of execution with different levels of sophistication, up to the one where a workflow can be executed using a cluster whose nodes come from different clouds. MC-GenomeKey also supports scenarios to exploit the spot instance model of Amazon in combination with the use of other cloud platforms to provide significant cost reduction. To the best of our knowledge, this is the first solution that optimizes the execution of the workflow using computational resources from different cloud providers. MC-GenomeKey provides an efficient multicloud based solution to detect and annotate mutations. The package can run in different commercial cloud platforms, which enables the user to seize the best offers. The package also provides a reliable means to make use of the low-cost spot instance model of Amazon, as it provides an efficient solution to the sudden termination of spot

  5. VAT: a computational framework to functionally annotate variants in personal genomes within a cloud-computing environment.

    Science.gov (United States)

    Habegger, Lukas; Balasubramanian, Suganthi; Chen, David Z; Khurana, Ekta; Sboner, Andrea; Harmanci, Arif; Rozowsky, Joel; Clarke, Declan; Snyder, Michael; Gerstein, Mark

    2012-09-01

    The functional annotation of variants obtained through sequencing projects is generally assumed to be a simple intersection of genomic coordinates with genomic features. However, complexities arise for several reasons, including the differential effects of a variant on alternatively spliced transcripts, as well as the difficulty in assessing the impact of small insertions/deletions and large structural variants. Taking these factors into consideration, we developed the Variant Annotation Tool (VAT) to functionally annotate variants from multiple personal genomes at the transcript level as well as obtain summary statistics across genes and individuals. VAT also allows visualization of the effects of different variants, integrates allele frequencies and genotype data from the underlying individuals and facilitates comparative analysis between different groups of individuals. VAT can either be run through a command-line interface or as a web application. Finally, in order to enable on-demand access and to minimize unnecessary transfers of large data files, VAT can be run as a virtual machine in a cloud-computing environment. VAT is implemented in C and PHP. The VAT web service, Amazon Machine Image, source code and detailed documentation are available at vat.gersteinlab.org.

  6. GFFview: A Web Server for Parsing and Visualizing Annotation Information of Eukaryotic Genome.

    Science.gov (United States)

    Deng, Feilong; Chen, Shi-Yi; Wu, Zhou-Lin; Hu, Yongsong; Jia, Xianbo; Lai, Song-Jia

    2017-10-01

    Owing to wide application of RNA sequencing (RNA-seq) technology, more and more eukaryotic genomes have been extensively annotated, such as the gene structure, alternative splicing, and noncoding loci. Annotation information of genome is prevalently stored as plain text in General Feature Format (GFF), which could be hundreds or thousands Mb in size. Therefore, it is a challenge for manipulating GFF file for biologists who have no bioinformatic skill. In this study, we provide a web server (GFFview) for parsing the annotation information of eukaryotic genome and then generating statistical description of six indices for visualization. GFFview is very useful for investigating quality and difference of the de novo assembled transcriptome in RNA-seq studies.

  7. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea.

    Science.gov (United States)

    Han, Joon-Hee; Chon, Jae-Kyung; Ahn, Jong-Hwa; Choi, Ik-Young; Lee, Yong-Hwan; Kim, Kyoung Su

    2016-06-01

    Colletotrichum acutatum is a destructive fungal pathogen which causes anthracnose in a wide range of crops. Here we report the whole genome sequence and annotation of C. acutatum strain KC05, isolated from an infected pepper in Kangwon, South Korea. Genomic DNA from the KC05 strain was used for the whole genome sequencing using a PacBio sequencer and the MiSeq system. The KC05 genome was determined to be 52,190,760 bp in size with a G + C content of 51.73% in 27 scaffolds and to contain 13,559 genes with an average length of 1516 bp. Gene prediction and annotation were performed by incorporating RNA-Seq data. The genome sequence of the KC05 was deposited at DDBJ/ENA/GenBank under the accession number LUXP00000000.

  8. LocusTrack: Integrated visualization of GWAS results and genomic annotation.

    Science.gov (United States)

    Cuellar-Partida, Gabriel; Renteria, Miguel E; MacGregor, Stuart

    2015-01-01

    Genome-wide association studies (GWAS) are an important tool for the mapping of complex traits and diseases. Visual inspection of genomic annotations may be used to generate insights into the biological mechanisms underlying GWAS-identified loci. We developed LocusTrack, a web-based application that annotates and creates plots of regional GWAS results and incorporates user-specified tracks that display annotations such as linkage disequilibrium (LD), phylogenetic conservation, chromatin state, and other genomic and regulatory elements. Currently, LocusTrack can integrate annotation tracks from the UCSC genome-browser as well as from any tracks provided by the user. LocusTrack is an easy-to-use application and can be accessed at the following URL: http://gump.qimr.edu.au/general/gabrieC/LocusTrack/. Users can upload and manage GWAS results and select from and/or provide annotation tracks using simple and intuitive menus. LocusTrack scripts and associated data can be downloaded from the website and run locally.

  9. FIGENIX: Intelligent automation of genomic annotation: expertise integration in a new software platform

    Directory of Open Access Journals (Sweden)

    Pontarotti Pierre

    2005-08-01

    Full Text Available Abstract Background Two of the main objectives of the genomic and post-genomic era are to structurally and functionally annotate genomes which consists of detecting genes' position and structure, and inferring their function (as well as of other features of genomes. Structural and functional annotation both require the complex chaining of numerous different software, algorithms and methods under the supervision of a biologist. The automation of these pipelines is necessary to manage huge amounts of data released by sequencing projects. Several pipelines already automate some of these complex chaining but still necessitate an important contribution of biologists for supervising and controlling the results at various steps. Results Here we propose an innovative automated platform, FIGENIX, which includes an expert system capable to substitute to human expertise at several key steps. FIGENIX currently automates complex pipelines of structural and functional annotation under the supervision of the expert system (which allows for example to make key decisions, check intermediate results or refine the dataset. The quality of the results produced by FIGENIX is comparable to those obtained by expert biologists with a drastic gain in terms of time costs and avoidance of errors due to the human manipulation of data. Conclusion The core engine and expert system of the FIGENIX platform currently handle complex annotation processes of broad interest for the genomic community. They could be easily adapted to new, or more specialized pipelines, such as for example the annotation of miRNAs, the classification of complex multigenic families, annotation of regulatory elements and other genomic features of interest.

  10. Data for constructing insect genome content matrices for phylogenetic analysis and functional annotation

    Directory of Open Access Journals (Sweden)

    Jeffrey Rosenfeld

    2016-03-01

    Full Text Available Twenty one fully sequenced and well annotated insect genomes were used to construct genome content matrices for phylogenetic analysis and functional annotation of insect genomes. To examine the role of e-value cutoff in ortholog determination we used scaled e-value cutoffs and a single linkage clustering approach.. The present communication includes (1 a list of the genomes used to construct the genome content phylogenetic matrices, (2 a nexus file with the data matrices used in phylogenetic analysis, (3 a nexus file with the Newick trees generated by phylogenetic analysis, (4 an excel file listing the Core (CORE genes and Unique (UNI genes found in five insect groups, and (5 a figure showing a plot of consistency index (CI versus percent of unannotated genes that are apomorphies in the data set for gene losses and gains and bar plots of gains and losses for four consistency index (CI cutoffs.

  11. Improved Genome Assembly and Annotation for the Rock Pigeon (Columba livia).

    Science.gov (United States)

    Holt, Carson; Campbell, Michael; Keays, David A; Edelman, Nathaniel; Kapusta, Aurélie; Maclary, Emily; T Domyan, Eric; Suh, Alexander; Warren, Wesley C; Yandell, Mark; Gilbert, M Thomas P; Shapiro, Michael D

    2018-05-04

    The domestic rock pigeon ( Columba livia ) is among the most widely distributed and phenotypically diverse avian species. C. livia is broadly studied in ecology, genetics, physiology, behavior, and evolutionary biology, and has recently emerged as a model for understanding the molecular basis of anatomical diversity, the magnetic sense, and other key aspects of avian biology. Here we report an update to the C. livia genome reference assembly and gene annotation dataset. Greatly increased scaffold lengths in the updated reference assembly, along with an updated annotation set, provide improved tools for evolutionary and functional genetic studies of the pigeon, and for comparative avian genomics in general. Copyright © 2018 Holt et al.

  12. Genome sequencing and annotation of Stenotrophomonas sp. SAM8

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Stenotrophomonas sp. strain SAM8, isolated from environmental water. The draft genome size is 3,665,538 bp with a G + C content of 67.2% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDAV00000000.

  13. Genome sequencing and annotation of Proteus sp. SAS71

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Proteus sp. strain SAS71, isolated from water spring in Aljouf region, Saudi Arabia. The draft genome size is 3,037,704 bp with a G + C content of 39.3% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDIU00000000.

  14. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB PR10 strain

    Directory of Open Access Journals (Sweden)

    Mohd Zakihalani A. Halim

    2016-03-01

    Full Text Available Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10 isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968. Keywords: Mycobacterium tuberculosis, Genome, MDR, Extrapulmonary

  15. Analysis of high-throughput sequencing and annotation strategies for phage genomes.

    Directory of Open Access Journals (Sweden)

    Matthew R Henn

    Full Text Available BACKGROUND: Bacterial viruses (phages play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage. METHODOLOGY/PRINCIPAL FINDINGS: To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles, and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL or of a whole genome shotgun library (WGSL, or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling. CONCLUSIONS/SIGNIFICANCE: These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.

  16. The draft genome sequence and annotation of the desert woodrat Neotoma lepida

    Directory of Open Access Journals (Sweden)

    Michael Campbell

    2016-09-01

    Full Text Available We present the de novo draft genome sequence for a vertebrate mammalian herbivore, the desert woodrat (Neotoma lepida. This species is of ecological and evolutionary interest with respect to ingestion, microbial detoxification and hepatic metabolism of toxic plant secondary compounds from the highly toxic creosote bush (Larrea tridentata and the juniper shrub (Juniperus monosperma. The draft genome sequence and annotation have been deposited at GenBank under the accession LZPO01000000.

  17. The 2008 update of the Aspergillus nidulans genome annotation: A community effort

    DEFF Research Database (Denmark)

    Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita

    2009-01-01

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional ap...

  18. The 2008 update of the Aspergillus nidulans genome annotation : a community effort

    NARCIS (Netherlands)

    Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita; Deegan, Jennifer; Clutterbuck, John; Andersen, Mikael R; Archer, David; Bencina, Mojca; Braus, Gerhard; Coutinho, Pedro; von Döhren, Hans; Doonan, John; Driessen, Arnold J M; Durek, Pawel; Espeso, Eduardo; Fekete, Erzsébet; Flipphi, Michel; Estrada, Carlos Garcia; Geysens, Steven; Goldman, Gustavo; de Groot, Piet W J; Hansen, Kim; Harris, Steven D; Heinekamp, Thorsten; Helmstaedt, Kerstin; Henrissat, Bernard; Hofmann, Gerald; Homan, Tim; Horio, Tetsuya; Horiuchi, Hiroyuki; James, Steve; Jones, Meriel; Karaffa, Levente; Karányi, Zsolt; Kato, Masashi; Keller, Nancy; Kelly, Diane E; Kiel, Jan A K W; Kim, Jung-Mi; van der Klei, Ida J; Klis, Frans M; Kovalchuk, Andriy; Krasevec, Nada; Kubicek, Christian P; Liu, Bo; Maccabe, Andrew; Meyer, Vera; Mirabito, Pete; Miskei, Márton; Mos, Magdalena; Mullins, Jonathan; Nelson, David R; Nielsen, Jens; Oakley, Berl R; Osmani, Stephen A; Pakula, Tiina; Paszewski, Andrzej; Paulsen, Ian; Pilsyk, Sebastian; Pócsi, István; Punt, Peter J; Ram, Arthur F J; Ren, Qinghu; Robellet, Xavier; Robson, Geoff; Seiboth, Bernhard; van Solingen, Piet; Specht, Thomas; Sun, Jibin; Taheri-Talesh, Naimeh; Takeshita, Norio; Ussery, Dave; vanKuyk, Patricia A; Visser, Hans; van de Vondervoort, Peter J I; de Vries, Ronald P; Walton, Jonathan; Xiang, Xin; Xiong, Yi; Zeng, An Ping; Brandt, Bernd W; Cornell, Michael J; van den Hondel, Cees A M J J; Visser, Jacob; Oliver, Stephen G; Turner, Geoffrey

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional

  19. The 2008 update of the Aspergillus nidulans genome annotation : A community effort

    NARCIS (Netherlands)

    Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita; Deegan, Jennifer; Clutterbuck, John; Andersen, Mikael R.; Archer, David; Bencina, Mojca; Braus, Gerhard; Coutinho, Pedro; von Doehren, Hans; Doonan, John; Driessen, Arnold J. M.; Durek, Pawel; Espeso, Eduardo; Fekete, Erzsebet; Flipphi, Michel; Garcia Estrada, Carlos; Geysens, Steven; Goldman, Gustavo; de Groot, Piet W. J.; Hansen, Kim; Harris, Steven D.; Heinekamp, Thorsten; Helmstaedt, Kerstin; Henrissat, Bernard; Hofmann, Gerald; Homan, Tim; Horio, Tetsuya; Horiuchi, Hiroyuki; James, Steve; Jones, Meriel; Karaffa, Levente; Karanyi, Zsolt; Kato, Masashi; Keller, Nancy; Kelly, Diane E.; Kiel, Jan A. K. W.; Kim, Jung-Mi; van der Klei, Ida J.; Klis, Frans M.; Kovalchuk, Andriy; Krasevec, Nada; Kubicek, Christian P.; Liu, Bo; MacCabe, Andrew; Meyer, Vera; Mirabito, Pete; Miskei, Marton; Mos, Magdalena; Mullins, Jonathan; Nelson, David R.; Nielsen, Jens; Oakley, Berl R.; Osmani, Stephen A.; Pakula, Tiina; Paszewski, Andrzej; Paulsen, Ian; Pilsyk, Sebastian; Pocsi, Istvan; Punt, Peter J.; Ram, Arthur F. J.; Ren, Qinghu; Robellet, Xavier; Robson, Geoff; Seiboth, Bernhard; van Solingen, Piet; Specht, Thomas; Sun, Jibin; Taheri-Talesh, Naimeh; Takeshita, Norio; Ussery, Dave; Vankuyk, Patricia A.; Visser, Hans; de Vondervoort, Peter J. I. van; Walton, Jonathan; Xiang, Xin; Xiong, Yi; Zeng, An Ping; Brandt, Bernd W.; Cornell, Michael J.; van den Hondel, Cees A. M. J. J.; Visser, Jacob; Oliver, Stephen G.; Turner, Geoffrey; Kraševec, Nada; Kuyk, Patricia A. van; Döhren, D.H.; van Seilboth, B; de Vries, R.

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional

  20. CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L. methylation filtered genomic genespace sequences

    Directory of Open Access Journals (Sweden)

    Spraggins Thomas A

    2007-04-01

    Full Text Available Abstract Background Cowpea [Vigna unguiculata (L. Walp.] is one of the most important food and forage legumes in the semi-arid tropics because of its ability to tolerate drought and grow on poor soils. It is cultivated mostly by poor farmers in developing countries, with 80% of production taking place in the dry savannah of tropical West and Central Africa. Cowpea is largely an underexploited crop with relatively little genomic information available for use in applied plant breeding. The goal of the Cowpea Genomics Initiative (CGI, funded by the Kirkhouse Trust, a UK-based charitable organization, is to leverage modern molecular genetic tools for gene discovery and cowpea improvement. One aspect of the initiative is the sequencing of the gene-rich region of the cowpea genome (termed the genespace recovered using methylation filtration technology and providing annotation and analysis of the sequence data. Description CGKB, Cowpea Genespace/Genomics Knowledge Base, is an annotation knowledge base developed under the CGI. The database is based on information derived from 298,848 cowpea genespace sequences (GSS isolated by methylation filtering of genomic DNA. The CGKB consists of three knowledge bases: GSS annotation and comparative genomics knowledge base, GSS enzyme and metabolic pathway knowledge base, and GSS simple sequence repeats (SSRs knowledge base for molecular marker discovery. A homology-based approach was applied for annotations of the GSS, mainly using BLASTX against four public FASTA formatted protein databases (NCBI GenBank Proteins, UniProtKB-Swiss-Prot, UniprotKB-PIR (Protein Information Resource, and UniProtKB-TrEMBL. Comparative genome analysis was done by BLASTX searches of the cowpea GSS against four plant proteomes from Arabidopsis thaliana, Oryza sativa, Medicago truncatula, and Populus trichocarpa. The possible exons and introns on each cowpea GSS were predicted using the HMM-based Genscan gene predication program and the

  1. Genome sequencing and annotation of Amycolatopsis azurea DSM 43854T

    Directory of Open Access Journals (Sweden)

    Indu Khatri

    2014-12-01

    Full Text Available We report the 9.2 Mb genome of the azureomycin A and B antibiotic producing strain Amycolatopsis azurea isolated from a Japanese soil sample. The draft genome of strain DSM 43854T consists of 9,223,451 bp with a G + C content of 69.0% and the genome contains 3 rRNA genes (5S–23S–16S and 58 aminoacyl-tRNA synthetase genes. The homology searches revealed that the PKS gene clusters are supposed to be responsible for the biosynthesis of naptomycin, macbecin, rifamycin, mitomycin, maduropeptin enediyne, neocarzinostatin enediyne, C-1027 enediyne, calicheamicin enediyne, landomycin, simocyclinone, medermycin, granaticin, polyketomycin, teicoplanin, balhimycin, vancomycin, staurosporine, rubradirin and complestatin.

  2. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Grigoriev Igor V

    2009-02-01

    Full Text Available Abstract Background Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR. Results 405 identified peptide sequences were mapped to 214 different A.niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6% of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models. Conclusion This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST data has been. A comparison of the published genome from another strain of A.niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method.

  3. Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome.

    Science.gov (United States)

    Wang, Jia; Chen, Dijun; Lei, Yang; Chang, Ji-Wei; Hao, Bao-Hai; Xing, Feng; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Chen, Ling-Ling

    2014-01-01

    Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia), and constructed the Citrus sinensis annotation project (CAP) to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET) evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs) and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  4. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation.

    Science.gov (United States)

    Nowrousian, Minou; Würtz, Christian; Pöggeler, Stefanie; Kück, Ulrich

    2004-03-01

    One of the most challenging parts of large scale sequencing projects is the identification of functional elements encoded in a genome. Recently, studies of genomes of up to six different Saccharomyces species have demonstrated that a comparative analysis of genome sequences from closely related species is a powerful approach to identify open reading frames and other functional regions within genomes [Science 301 (2003) 71, Nature 423 (2003) 241]. Here, we present a comparison of selected sequences from Sordaria macrospora to their corresponding Neurospora crassa orthologous regions. Our analysis indicates that due to the high degree of sequence similarity and conservation of overall genomic organization, S. macrospora sequence information can be used to simplify the annotation of the N. crassa genome.

  5. Weighting sequence variants based on their annotation increases power of whole-genome association studies

    DEFF Research Database (Denmark)

    Sveinbjornsson, Gardar; Albrechtsen, Anders; Zink, Florian

    2016-01-01

    The consensus approach to genome-wide association studies (GWAS) has been to assign equal prior probability of association to all sequence variants tested. However, some sequence variants, such as loss-of-function and missense variants, are more likely than others to affect protein function...... for the family-wise error rate (FWER), using as weights the enrichment of sequence annotations among association signals. We show that this weighted adjustment increases the power to detect association over the standard Bonferroni correction. We use the enrichment of associations by sequence annotation we have...

  6. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations.

    Science.gov (United States)

    Tamborero, David; Rubio-Perez, Carlota; Deu-Pons, Jordi; Schroeder, Michael P; Vivancos, Ana; Rovira, Ana; Tusquets, Ignasi; Albanell, Joan; Rodon, Jordi; Tabernero, Josep; de Torres, Carmen; Dienstmann, Rodrigo; Gonzalez-Perez, Abel; Lopez-Bigas, Nuria

    2018-03-28

    While tumor genome sequencing has become widely available in clinical and research settings, the interpretation of tumor somatic variants remains an important bottleneck. Here we present the Cancer Genome Interpreter, a versatile platform that automates the interpretation of newly sequenced cancer genomes, annotating the potential of alterations detected in tumors to act as drivers and their possible effect on treatment response. The results are organized in different levels of evidence according to current knowledge, which we envision can support a broad range of oncology use cases. The resource is publicly available at http://www.cancergenomeinterpreter.org .

  7. ChIP-Seq-Annotated Heliconius erato Genome Highlights Patterns of cis-Regulatory Evolution in Lepidoptera

    Directory of Open Access Journals (Sweden)

    James J. Lewis

    2016-09-01

    Full Text Available Uncovering phylogenetic patterns of cis-regulatory evolution remains a fundamental goal for evolutionary and developmental biology. Here, we characterize the evolution of regulatory loci in butterflies and moths using chromatin immunoprecipitation sequencing (ChIP-seq annotation of regulatory elements across three stages of head development. In the process we provide a high-quality, functionally annotated genome assembly for the butterfly, Heliconius erato. Comparing cis-regulatory element conservation across six lepidopteran genomes, we find that regulatory sequences evolve at a pace similar to that of protein-coding regions. We also observe that elements active at multiple developmental stages are markedly more conserved than elements with stage-specific activity. Surprisingly, we also find that stage-specific proximal and distal regulatory elements evolve at nearly identical rates. Our study provides a benchmark for genome-wide patterns of regulatory element evolution in insects, and it shows that developmental timing of activity strongly predicts patterns of regulatory sequence evolution.

  8. Functional annotation from the genome sequence of the giant panda

    OpenAIRE

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-01-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided in...

  9. wANNOVAR: annotating genetic variants for personal genomes via the web.

    Science.gov (United States)

    Chang, Xiao; Wang, Kai

    2012-07-01

    High-throughput DNA sequencing platforms have become widely available. As a result, personal genomes are increasingly being sequenced in research and clinical settings. However, the resulting massive amounts of variants data pose significant challenges to the average biologists and clinicians without bioinformatics skills. We developed a web server called wANNOVAR to address the critical needs for functional annotation of genetic variants from personal genomes. The server provides simple and intuitive interface to help users determine the functional significance of variants. These include annotating single nucleotide variants and insertions/deletions for their effects on genes, reporting their conservation levels (such as PhyloP and GERP++ scores), calculating their predicted functional importance scores (such as SIFT and PolyPhen scores), retrieving allele frequencies in public databases (such as the 1000 Genomes Project and NHLBI-ESP 5400 exomes), and implementing a 'variants reduction' protocol to identify a subset of potentially deleterious variants/genes. We illustrated how wANNOVAR can help draw biological insights from sequencing data, by analysing genetic variants generated on two Mendelian diseases. We conclude that wANNOVAR will help biologists and clinicians take advantage of the personal genome information to expedite scientific discoveries. The wANNOVAR server is available at http://wannovar.usc.edu, and will be continuously updated to reflect the latest annotation information.

  10. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression.

    Science.gov (United States)

    Arnaiz, Olivier; Van Dijk, Erwin; Bétermier, Mireille; Lhuillier-Akakpo, Maoussi; de Vanssay, Augustin; Duharcourt, Sandra; Sallet, Erika; Gouzy, Jérôme; Sperling, Linda

    2017-06-26

    The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis

  11. Functional annotation from the genome sequence of the giant panda.

    Science.gov (United States)

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-08-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided into two groups: 20,179 proteins whose functions can be predicted by GeneScan formed the known-function group, whereas 822 proteins whose functions cannot be predicted by GeneScan comprised the unknown-function group. For the known-function group, we further classified the proteins by molecular function, biological process, cellular component, and tissue specificity. For the unknown-function group, we developed a strategy in which the proteins were filtered by cross-Blast to identify panda-specific proteins under the assumption that proteins related to the panda-specific traits in the unknown-function group exist. After this filtering procedure, we identified 32 proteins (2 of which are membrane proteins) specific to the giant panda genome as compared against the dog and horse genomes. Based on their amino acid sequences, these 32 proteins were further analyzed by functional classification using SVM-Prot, motif prediction using MyHits, and interacting protein prediction using the Database of Interacting Proteins. Nineteen proteins were predicted to be zinc-binding proteins, thus affecting the activities of nucleic acids. The 32 panda-specific proteins will be further investigated by structural and functional analysis.

  12. Revised annotation of Plutella xylostella microRNAs and their genome-wide target identification.

    Science.gov (United States)

    Etebari, K; Asgari, S

    2016-12-01

    The diamondback moth, Plutella xylostella, is the most devastating pest of brassica crops worldwide. Although 128 mature microRNAs (miRNAs) have been annotated from this species in miRBase, there is a need to extend and correct the current P. xylostella miRNA repertoire as a result of its recently improved genome assembly and more available small RNA sequence data. We used our new ultra-deep sequence data and bioinformatics to re-annotate the P. xylostella genome for high confidence miRNAs with the correct 5p and 3p arm features. Furthermore, all the P. xylostella annotated genes were also screened to identify potential miRNA binding sites using three target-predicting algorithms. In total, 203 mature miRNAs were annotated, including 33 novel miRNAs. We identified 7691 highly confident binding sites for 160 pxy-miRNAs. The data provided here will facilitate future studies involving functional analyses of P. xylostella miRNAs as a platform to introduce novel approaches for sustainable management of this destructive pest. © 2016 The Royal Entomological Society.

  13. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    Motivation: Detecting genes in viral genomes is a complex task. Due to the biological necessity of them being constrained in length, RNA viruses in particular tend to code in overlapping reading frames. Since one amino acid is encoded by a triplet of nucleic acids, up to three genes may be coded...... allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  14. Expanded microbial genome coverage and improved protein family annotation in the COG database.

    Science.gov (United States)

    Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2015-01-01

    Microbial genome sequencing projects produce numerous sequences of deduced proteins, only a small fraction of which have been or will ever be studied experimentally. This leaves sequence analysis as the only feasible way to annotate these proteins and assign to them tentative functions. The Clusters of Orthologous Groups of proteins (COGs) database (http://www.ncbi.nlm.nih.gov/COG/), first created in 1997, has been a popular tool for functional annotation. Its success was largely based on (i) its reliance on complete microbial genomes, which allowed reliable assignment of orthologs and paralogs for most genes; (ii) orthology-based approach, which used the function(s) of the characterized member(s) of the protein family (COG) to assign function(s) to the entire set of carefully identified orthologs and describe the range of potential functions when there were more than one; and (iii) careful manual curation of the annotation of the COGs, aimed at detailed prediction of the biological function(s) for each COG while avoiding annotation errors and overprediction. Here we present an update of the COGs, the first since 2003, and a comprehensive revision of the COG annotations and expansion of the genome coverage to include representative complete genomes from all bacterial and archaeal lineages down to the genus level. This re-analysis of the COGs shows that the original COG assignments had an error rate below 0.5% and allows an assessment of the progress in functional genomics in the past 12 years. During this time, functions of many previously uncharacterized COGs have been elucidated and tentative functional assignments of many COGs have been validated, either by targeted experiments or through the use of high-throughput methods. A particularly important development is the assignment of functions to several widespread, conserved proteins many of which turned out to participate in translation, in particular rRNA maturation and tRNA modification. The new version of the

  15. Genome sequencing and annotation of Amycolatopsis vancoresmycina strain DSM 44592T

    Directory of Open Access Journals (Sweden)

    Navjot Kaur

    2014-12-01

    Full Text Available We report the 9.0-Mb draft genome of Amycolatopsis vancoresmycina strain DSM 44592T, isolated from Indian soil sample; produces antibiotic vancoresmycin. Draft genome of strain DSM44592T consists of 9,037,069 bp with a G+C content of 71.79% and 8340 predicted protein coding genes and 57 RNAs. RAST annotation indicates that strains Streptomyces sp. AA4 (score 521, Saccharomonospora viridis DSM 43017 (score 400 and Actinosynnema mirum DSM 43827 (score 372 are the closest neighbors of the strain DSM 44592T.

  16. Considerations for creating and annotating the budding yeast Genome Map at SGD: a progress report.

    Science.gov (United States)

    Chan, Esther T; Cherry, J Michael

    2012-01-01

    The Saccharomyces Genome Database (SGD) is compiling and annotating a comprehensive catalogue of functional sequence elements identified in the budding yeast genome. Recent advances in deep sequencing technologies have enabled for example, global analyses of transcription profiling and assembly of maps of transcription factor occupancy and higher order chromatin organization, at nucleotide level resolution. With this growing influx of published genome-scale data, come new challenges for their storage, display, analysis and integration. Here, we describe SGD's progress in the creation of a consolidated resource for genome sequence elements in the budding yeast, the considerations taken in its design and the lessons learned thus far. The data within this collection can be accessed at http://browse.yeastgenome.org and downloaded from http://downloads.yeastgenome.org. DATABASE URL: http://www.yeastgenome.org.

  17. Epigenomic annotation-based interpretation of genomic data: from enrichment analysis to machine learning.

    Science.gov (United States)

    Dozmorov, Mikhail G

    2017-10-15

    One of the goals of functional genomics is to understand the regulatory implications of experimentally obtained genomic regions of interest (ROIs). Most sequencing technologies now generate ROIs distributed across the whole genome. The interpretation of these genome-wide ROIs represents a challenge as the majority of them lie outside of functionally well-defined protein coding regions. Recent efforts by the members of the International Human Epigenome Consortium have generated volumes of functional/regulatory data (reference epigenomic datasets), effectively annotating the genome with epigenomic properties. Consequently, a wide variety of computational tools has been developed utilizing these epigenomic datasets for the interpretation of genomic data. The purpose of this review is to provide a structured overview of practical solutions for the interpretation of ROIs with the help of epigenomic data. Starting with epigenomic enrichment analysis, we discuss leading tools and machine learning methods utilizing epigenomic and 3D genome structure data. The hierarchy of tools and methods reviewed here presents a practical guide for the interpretation of genome-wide ROIs within an epigenomic context. mikhail.dozmorov@vcuhealth.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. PSAT: A web tool to compare genomic neighborhoods of multiple prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Wasnick Michael

    2008-03-01

    Full Text Available Abstract Background The conservation of gene order among prokaryotic genomes can provide valuable insight into gene function, protein interactions, or events by which genomes have evolved. Although some tools are available for visualizing and comparing the order of genes between genomes of study, few support an efficient and organized analysis between large numbers of genomes. The Prokaryotic Sequence homology Analysis Tool (PSAT is a web tool for comparing gene neighborhoods among multiple prokaryotic genomes. Results PSAT utilizes a database that is preloaded with gene annotation, BLAST hit results, and gene-clustering scores designed to help identify regions of conserved gene order. Researchers use the PSAT web interface to find a gene of interest in a reference genome and efficiently retrieve the sequence homologs found in other bacterial genomes. The tool generates a graphic of the genomic neighborhood surrounding the selected gene and the corresponding regions for its homologs in each comparison genome. Homologs in each region are color coded to assist users with analyzing gene order among various genomes. In contrast to common comparative analysis methods that filter sequence homolog data based on alignment score cutoffs, PSAT leverages gene context information for homologs, including those with weak alignment scores, enabling a more sensitive analysis. Features for constraining or ordering results are designed to help researchers browse results from large numbers of comparison genomes in an organized manner. PSAT has been demonstrated to be useful for helping to identify gene orthologs and potential functional gene clusters, and detecting genome modifications that may result in loss of function. Conclusion PSAT allows researchers to investigate the order of genes within local genomic neighborhoods of multiple genomes. A PSAT web server for public use is available for performing analyses on a growing set of reference genomes through any

  19. MIPS: analysis and annotation of proteins from whole genomes in 2005.

    Science.gov (United States)

    Mewes, H W; Frishman, D; Mayer, K F X; Münsterkötter, M; Noubibou, O; Pagel, P; Rattei, T; Oesterheld, M; Ruepp, A; Stümpflen, V

    2006-01-01

    The Munich Information Center for Protein Sequences (MIPS at the GSF), Neuherberg, Germany, provides resources related to genome information. Manually curated databases for several reference organisms are maintained. Several of these databases are described elsewhere in this and other recent NAR database issues. In a complementary effort, a comprehensive set of >400 genomes automatically annotated with the PEDANT system are maintained. The main goal of our current work on creating and maintaining genome databases is to extend gene centered information to information on interactions within a generic comprehensive framework. We have concentrated our efforts along three lines (i) the development of suitable comprehensive data structures and database technology, communication and query tools to include a wide range of different types of information enabling the representation of complex information such as functional modules or networks Genome Research Environment System, (ii) the development of databases covering computable information such as the basic evolutionary relations among all genes, namely SIMAP, the sequence similarity matrix and the CABiNet network analysis framework and (iii) the compilation and manual annotation of information related to interactions such as protein-protein interactions or other types of relations (e.g. MPCDB, MPPI, CYGD). All databases described and the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.gsf.de).

  20. Re-annotation of the genome sequence of Helicobacter pylori 26695

    Directory of Open Access Journals (Sweden)

    Resende Tiago

    2013-12-01

    Full Text Available Helicobacter pylori is a pathogenic bacterium that colonizes the human epithelia, causing duodenal and gastric ulcers, and gastric cancer. The genome of H. pylori 26695 has been previously sequenced and annotated. In addition, two genome-scale metabolic models have been developed. In order to maintain accurate and relevant information on coding sequences (CDS and to retrieve new information, the assignment of new functions to Helicobacter pylori 26695s genes was performed in this work. The use of software tools, on-line databases and an annotation pipeline for inspecting each gene allowed the attribution of validated EC numbers and TC numbers to metabolic genes encoding enzymes and transport proteins, respectively. 1212 genes encoding proteins were identified in this annotation, being 712 metabolic genes and 500 non-metabolic, while 191 new functions were assignment to the CDS of this bacterium. This information provides relevant biological information for the scientific community dealing with this organism and can be used as the basis for a new metabolic model reconstruction.

  1. New genes expressed in human brains: implications for annotating evolving genomes.

    Science.gov (United States)

    Zhang, Yong E; Landback, Patrick; Vibranovski, Maria; Long, Manyuan

    2012-11-01

    New genes have frequently formed and spread to fixation in a wide variety of organisms, constituting abundant sets of lineage-specific genes. It was recently reported that an excess of primate-specific and human-specific genes were upregulated in the brains of fetuses and infants, and especially in the prefrontal cortex, which is involved in cognition. These findings reveal the prevalent addition of new genetic components to the transcriptome of the human brain. More generally, these findings suggest that genomes are continually evolving in both sequence and content, eroding the conservation endowed by common ancestry. Despite increasing recognition of the importance of new genes, we highlight here that these genes are still seriously under-characterized in functional studies and that new gene annotation is inconsistent in current practice. We propose an integrative approach to annotate new genes, taking advantage of functional and evolutionary genomic methods. We finally discuss how the refinement of new gene annotation will be important for the detection of evolutionary forces governing new gene origination. Copyright © 2012 WILEY Periodicals, Inc.

  2. Single Amplified Genomes as Source for Novel Extremozymes: Annotation, Expression and Functional Assessment

    KAUST Repository

    Grötzinger, Stefan

    2017-12-01

    Enzymes, as nature’s catalysts, show remarkable abilities that can revolutionize the chemical, biotechnological, bioremediation, agricultural and pharmaceutical industries. However, the narrow range of stability of the majority of described biocatalysts limits their use for many applications. To overcome these restrictions, extremozymes derived from microorganisms thriving under harsh conditions can be used. Extremophiles living in high salinity are especially interesting as they operate at low water activity, which is similar to conditions used in standard chemical applications. Because only about 0.1 % of all microorganisms can be cultured, the traditional way of culture-based enzyme function determination needs to be overcome. The rise of high-throughput next-generation-sequencing technologies allows for deep insight into nature’s variety. Single amplified genomes (SAGs) specifically allow for whole genome assemblies from small sample volumes with low cell yields, as are typical for extreme environments. Although these technologies have been available for years, the expected boost in biotechnology has held off. One of the main reasons is the lack of reliable functional annotation of the genomic data, which is caused by the low amount (0.15 %) of experimentally described genes. Here, we present a novel annotation algorithm, designed to annotate the enzymatic function of genomes from microorganisms with low homologies to described microorganisms. The algorithm was established on SAGs from the extreme environment of selected hypersaline Red Sea brine pools with 4.3 M salinity and temperatures up to 68°C. Additionally, a novel consensus pattern for the identification of γ-carbonic anhydrases was created and applied in the algorithm. To verify the annotation, selected genes were expressed in the hypersaline expression system Halobacterium salinarum. This expression system was established and optimized in a continuously stirred tank reactor, leading to

  3. Discovery and annotation of small proteins using genomics, proteomics and computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan; Tschaplinski, Timothy J.; Hurst, Gregory B.; Jawdy, Sara; Abraham, Paul E.; Lankford, Patricia K.; Adams, Rachel M.; Shah, Manesh B.; Hettich, Robert L.; Lindquist, Erika; Kalluri, Udaya C.; Gunter, Lee E.; Pennacchio, Christa; Tuskan, Gerald A.

    2011-03-02

    Small proteins (10 200 amino acids aa in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained 2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10 200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) codingpotential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  4. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    Science.gov (United States)

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.

  5. The duplicated genes database: identification and functional annotation of co-localised duplicated genes across genomes.

    Directory of Open Access Journals (Sweden)

    Marion Ouedraogo

    Full Text Available BACKGROUND: There has been a surge in studies linking genome structure and gene expression, with special focus on duplicated genes. Although initially duplicated from the same sequence, duplicated genes can diverge strongly over evolution and take on different functions or regulated expression. However, information on the function and expression of duplicated genes remains sparse. Identifying groups of duplicated genes in different genomes and characterizing their expression and function would therefore be of great interest to the research community. The 'Duplicated Genes Database' (DGD was developed for this purpose. METHODOLOGY: Nine species were included in the DGD. For each species, BLAST analyses were conducted on peptide sequences corresponding to the genes mapped on a same chromosome. Groups of duplicated genes were defined based on these pairwise BLAST comparisons and the genomic location of the genes. For each group, Pearson correlations between gene expression data and semantic similarities between functional GO annotations were also computed when the relevant information was available. CONCLUSIONS: The Duplicated Gene Database provides a list of co-localised and duplicated genes for several species with the available gene co-expression level and semantic similarity value of functional annotation. Adding these data to the groups of duplicated genes provides biological information that can prove useful to gene expression analyses. The Duplicated Gene Database can be freely accessed through the DGD website at http://dgd.genouest.org.

  6. Data on genome sequencing, analysis and annotation of a pathogenic Bacillus cereus 062011msu

    Directory of Open Access Journals (Sweden)

    Rashmi Rathy

    2018-04-01

    Full Text Available Bacillus species 062011 msu is a harmful pathogenic strain responsible for causing abscessation in sheep and goat population studied by Mariappan et al. (2012 [1]. The organism specifically targets the female sheep and goat population and results in the reduction of milk and meat production. In the present study, we have performed the whole genome sequencing of the pathogenic isolate using the Ion Torrent sequencing platform and generated 458,944 raw reads with an average length of 198.2 bp. The genome sequence was assembled, annotated and analysed for the genetic islands, metabolic pathways, orthologous groups, virulence factors and antibiotic resistance genes associated with the pathogen. Simultaneously the 16S rRNA sequencing study and genome sequence comparison data confirmed that the strain belongs to the species Bacillus cereus and exhibits 99% sequence homo;logy with the genomes of B. cereus ATCC 10987 and B. cereus FRI-35. Hence, we have renamed the organism as Bacillus cereus 062011msu. The Whole Genome Shotgun (WGS project has been deposited at DDBJ/ENA/GenBank under the accession NTMF00000000 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA404036(SAMN07629099. Keywords: Bacillus cereus, Genome sequencing, Abscessation, Virulence factors

  7. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    a closely related species. Conclusion The number of different genes represented on microarrays for unfinished genomes can be greatly increased by matching known gene transcript annotations from a closely related species with sequence data from the unfinished genome. Signal intensity on both EST- and genome-derived arrays was highly correlated with probe distance from the 3' UTR, information often missing from ESTs yet present in early-stage genome projects.

  8. Multiple models for Rosaceae genomics.

    Science.gov (United States)

    Shulaev, Vladimir; Korban, Schuyler S; Sosinski, Bryon; Abbott, Albert G; Aldwinckle, Herb S; Folta, Kevin M; Iezzoni, Amy; Main, Dorrie; Arús, Pere; Dandekar, Abhaya M; Lewers, Kim; Brown, Susan K; Davis, Thomas M; Gardiner, Susan E; Potter, Daniel; Veilleux, Richard E

    2008-07-01

    The plant family Rosaceae consists of over 100 genera and 3,000 species that include many important fruit, nut, ornamental, and wood crops. Members of this family provide high-value nutritional foods and contribute desirable aesthetic and industrial products. Most rosaceous crops have been enhanced by human intervention through sexual hybridization, asexual propagation, and genetic improvement since ancient times, 4,000 to 5,000 B.C. Modern breeding programs have contributed to the selection and release of numerous cultivars having significant economic impact on the U.S. and world markets. In recent years, the Rosaceae community, both in the United States and internationally, has benefited from newfound organization and collaboration that have hastened progress in developing genetic and genomic resources for representative crops such as apple (Malus spp.), peach (Prunus spp.), and strawberry (Fragaria spp.). These resources, including expressed sequence tags, bacterial artificial chromosome libraries, physical and genetic maps, and molecular markers, combined with genetic transformation protocols and bioinformatics tools, have rendered various rosaceous crops highly amenable to comparative and functional genomics studies. This report serves as a synopsis of the resources and initiatives of the Rosaceae community, recent developments in Rosaceae genomics, and plans to apply newly accumulated knowledge and resources toward breeding and crop improvement.

  9. PeakAnalyzer: Genome-wide annotation of chromatin binding and modification loci

    Directory of Open Access Journals (Sweden)

    Tammoja Kairi

    2010-08-01

    Full Text Available Abstract Background Functional genomic studies involving high-throughput sequencing and tiling array applications, such as ChIP-seq and ChIP-chip, generate large numbers of experimentally-derived signal peaks across the genome under study. In analyzing these loci to determine their potential regulatory functions, areas of signal enrichment must be considered relative to proximal genes and regulatory elements annotated throughout the target genome Regions of chromatin association by transcriptional regulators should be distinguished as individual binding sites in order to enhance downstream analyses, such as the identification of known and novel consensus motifs. Results PeakAnalyzer is a set of high-performance utilities for the automated processing of experimentally-derived peak regions and annotation of genomic loci. The programs can accurately subdivide multimodal regions of signal enrichment into distinct subpeaks corresponding to binding sites or chromatin modifications, retrieve genomic sequences encompassing the computed subpeak summits, and identify positional features of interest such as intersection with exon/intron gene components, proximity to up- or downstream transcriptional start sites and cis-regulatory elements. The software can be configured to run either as a pipeline component for high-throughput analyses, or as a cross-platform desktop application with an intuitive user interface. Conclusions PeakAnalyzer comprises a number of utilities essential for ChIP-seq and ChIP-chip data analysis. High-performance implementations are provided for Unix pipeline integration along with a GUI version for interactive use. Source code in C++ and Java is provided, as are native binaries for Linux, Mac OS X and Windows systems.

  10. High-throughput proteogenomics of Ruegeria pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade

    Directory of Open Access Journals (Sweden)

    Christie-Oleza Joseph A

    2012-02-01

    Full Text Available Abstract Background The structural and functional annotation of genomes is now heavily based on data obtained using automated pipeline systems. The key for an accurate structural annotation consists of blending similarities between closely related genomes with biochemical evidence of the genome interpretation. In this work we applied high-throughput proteogenomics to Ruegeria pomeroyi, a member of the Roseobacter clade, an abundant group of marine bacteria, as a seed for the annotation of the whole clade. Results A large dataset of peptides from R. pomeroyi was obtained after searching over 1.1 million MS/MS spectra against a six-frame translated genome database. We identified 2006 polypeptides, of which thirty-four were encoded by open reading frames (ORFs that had not previously been annotated. From the pool of 'one-hit-wonders', i.e. those ORFs specified by only one peptide detected by tandem mass spectrometry, we could confirm the probable existence of five additional new genes after proving that the corresponding RNAs were transcribed. We also identified the most-N-terminal peptide of 486 polypeptides, of which sixty-four had originally been wrongly annotated. Conclusions By extending these re-annotations to the other thirty-six Roseobacter isolates sequenced to date (twenty different genera, we propose the correction of the assigned start codons of 1082 homologous genes in the clade. In addition, we also report the presence of novel genes within operons encoding determinants of the important tricarboxylic acid cycle, a feature that seems to be characteristic of some Roseobacter genomes. The detection of their corresponding products in large amounts raises the question of their function. Their discoveries point to a possible theory for protein evolution that will rely on high expression of orphans in bacteria: their putative poor efficiency could be counterbalanced by a higher level of expression. Our proteogenomic analysis will increase

  11. Unified Sequence-Based Association Tests Allowing for Multiple Functional Annotations and Meta-analysis of Noncoding Variation in Metabochip Data.

    Science.gov (United States)

    He, Zihuai; Xu, Bin; Lee, Seunggeun; Ionita-Laza, Iuliana

    2017-09-07

    Substantial progress has been made in the functional annotation of genetic variation in the human genome. Integrative analysis that incorporates such functional annotations into sequencing studies can aid the discovery of disease-associated genetic variants, especially those with unknown function and located outside protein-coding regions. Direct incorporation of one functional annotation as weight in existing dispersion and burden tests can suffer substantial loss of power when the functional annotation is not predictive of the risk status of a variant. Here, we have developed unified tests that can utilize multiple functional annotations simultaneously for integrative association analysis with efficient computational techniques. We show that the proposed tests significantly improve power when variant risk status can be predicted by functional annotations. Importantly, when functional annotations are not predictive of risk status, the proposed tests incur only minimal loss of power in relation to existing dispersion and burden tests, and under certain circumstances they can even have improved power by learning a weight that better approximates the underlying disease model in a data-adaptive manner. The tests can be constructed with summary statistics of existing dispersion and burden tests for sequencing data, therefore allowing meta-analysis of multiple studies without sharing individual-level data. We applied the proposed tests to a meta-analysis of noncoding rare variants in Metabochip data on 12,281 individuals from eight studies for lipid traits. By incorporating the Eigen functional score, we detected significant associations between noncoding rare variants in SLC22A3 and low-density lipoprotein and total cholesterol, associations that are missed by standard dispersion and burden tests. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Modeling multiple time series annotations as noisy distortions of the ground truth: An Expectation-Maximization approach.

    Science.gov (United States)

    Gupta, Rahul; Audhkhasi, Kartik; Jacokes, Zach; Rozga, Agata; Narayanan, Shrikanth

    2018-01-01

    Studies of time-continuous human behavioral phenomena often rely on ratings from multiple annotators. Since the ground truth of the target construct is often latent, the standard practice is to use ad-hoc metrics (such as averaging annotator ratings). Despite being easy to compute, such metrics may not provide accurate representations of the underlying construct. In this paper, we present a novel method for modeling multiple time series annotations over a continuous variable that computes the ground truth by modeling annotator specific distortions. We condition the ground truth on a set of features extracted from the data and further assume that the annotators provide their ratings as modification of the ground truth, with each annotator having specific distortion tendencies. We train the model using an Expectation-Maximization based algorithm and evaluate it on a study involving natural interaction between a child and a psychologist, to predict confidence ratings of the children's smiles. We compare and analyze the model against two baselines where: (i) the ground truth in considered to be framewise mean of ratings from various annotators and, (ii) each annotator is assumed to bear a distinct time delay in annotation and their annotations are aligned before computing the framewise mean.

  13. Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs).

    Science.gov (United States)

    Natale, D A; Shankavaram, U T; Galperin, M Y; Wolf, Y I; Aravind, L; Koonin, E V

    2000-01-01

    Standard archival sequence databases have not been designed as tools for genome annotation and are far from being optimal for this purpose. We used the database of Clusters of Orthologous Groups of proteins (COGs) to reannotate the genomes of two archaea, Aeropyrum pernix, the first member of the Crenarchaea to be sequenced, and Pyrococcus abyssi. A. pernix and P. abyssi proteins were assigned to COGs using the COGNITOR program; the results were verified on a case-by-case basis and augmented by additional database searches using the PSI-BLAST and TBLASTN programs. Functions were predicted for over 300 proteins from A. pernix, which could not be assigned a function using conventional methods with a conservative sequence similarity threshold, an approximately 50% increase compared to the original annotation. A. pernix shares most of the conserved core of proteins that were previously identified in the Euryarchaeota. Cluster analysis or distance matrix tree construction based on the co-occurrence of genomes in COGs showed that A. pernix forms a distinct group within the archaea, although grouping with the two species of Pyrococci, indicative of similar repertoires of conserved genes, was observed. No indication of a specific relationship between Crenarchaeota and eukaryotes was obtained in these analyses. Several proteins that are conserved in Euryarchaeota and most bacteria are unexpectedly missing in A. pernix, including the entire set of de novo purine biosynthesis enzymes, the GTPase FtsZ (a key component of the bacterial and euryarchaeal cell-division machinery), and the tRNA-specific pseudouridine synthase, previously considered universal. A. pernix is represented in 48 COGs that do not contain any euryarchaeal members. Many of these proteins are TCA cycle and electron transport chain enzymes, reflecting the aerobic lifestyle of A. pernix. Special-purpose databases organized on the basis of phylogenetic analysis and carefully curated with respect to known and

  14. G2S: A web-service for annotating genomic variants on 3D protein structures.

    Science.gov (United States)

    Wang, Juexin; Sheridan, Robert; Sumer, S Onur; Schultz, Nikolaus; Xu, Dong; Gao, Jianjiong

    2018-01-27

    Accurately mapping and annotating genomic locations on 3D protein structures is a key step in structure-based analysis of genomic variants detected by recent large-scale sequencing efforts. There are several mapping resources currently available, but none of them provides a web API (Application Programming Interface) that support programmatic access. We present G2S, a real-time web API that provides automated mapping of genomic variants on 3D protein structures. G2S can align genomic locations of variants, protein locations, or protein sequences to protein structures and retrieve the mapped residues from structures. G2S API uses REST-inspired design conception and it can be used by various clients such as web browsers, command terminals, programming languages and other bioinformatics tools for bringing 3D structures into genomic variant analysis. The webserver and source codes are freely available at https://g2s.genomenexus.org. g2s@genomenexus.org. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Updated genome assembly and annotation of Paenibacillus larvae, the agent of American foulbrood disease of honey bees

    Directory of Open Access Journals (Sweden)

    de Graaf Dirk C

    2011-09-01

    Full Text Available Abstract Background As scientists continue to pursue various 'omics-based research, there is a need for high quality data for the most fundamental 'omics of all: genomics. The bacterium Paenibacillus larvae is the causative agent of the honey bee disease American foulbrood. If untreated, it can lead to the demise of an entire hive; the highly social nature of bees also leads to easy disease spread, between both individuals and colonies. Biologists have studied this organism since the early 1900s, and a century later, the molecular mechanism of infection remains elusive. Transcriptomics and proteomics, because of their ability to analyze multiple genes and proteins in a high-throughput manner, may be very helpful to its study. However, the power of these methodologies is severely limited without a complete genome; we undertake to address that deficiency here. Results We used the Illumina GAIIx platform and conventional Sanger sequencing to generate a 182-fold sequence coverage of the P. larvae genome, and assembled the data using ABySS into a total of 388 contigs spanning 4.5 Mbp. Comparative genomics analysis against fully-sequenced soil bacteria P. JDR2 and P. vortex showed that regions of poor conservation may contain putative virulence factors. We used GLIMMER to predict 3568 gene models, and named them based on homology revealed by BLAST searches; proteases, hemolytic factors, toxins, and antibiotic resistance enzymes were identified in this way. Finally, mass spectrometry was used to provide experimental evidence that at least 35% of the genes are expressed at the protein level. Conclusions This update on the genome of P. larvae and annotation represents an immense advancement from what we had previously known about this species. We provide here a reliable resource that can be used to elucidate the mechanism of infection, and by extension, more effective methods to control and cure this widespread honey bee disease.

  16. Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms

    Directory of Open Access Journals (Sweden)

    Meller Jaroslaw

    2007-03-01

    Full Text Available Abstract Background Identifying syntenic regions, i.e., blocks of genes or other markers with evolutionary conserved order, and quantifying evolutionary relatedness between genomes in terms of chromosomal rearrangements is one of the central goals in comparative genomics. However, the analysis of synteny and the resulting assessment of genome rearrangements are sensitive to the choice of a number of arbitrary parameters that affect the detection of synteny blocks. In particular, the choice of a set of markers and the effect of different aggregation strategies, which enable coarse graining of synteny blocks and exclusion of micro-rearrangements, need to be assessed. Therefore, existing tools and resources that facilitate identification, visualization and analysis of synteny need to be further improved to provide a flexible platform for such analysis, especially in the context of multiple genomes. Results We present a new tool, Cinteny, for fast identification and analysis of synteny with different sets of markers and various levels of coarse graining of syntenic blocks. Using Hannenhalli-Pevzner approach and its extensions, Cinteny also enables interactive determination of evolutionary relationships between genomes in terms of the number of rearrangements (the reversal distance. In particular, Cinteny provides: i integration of synteny browsing with assessment of evolutionary distances for multiple genomes; ii flexibility to adjust the parameters and re-compute the results on-the-fly; iii ability to work with user provided data, such as orthologous genes, sequence tags or other conserved markers. In addition, Cinteny provides many annotated mammalian, invertebrate and fungal genomes that are pre-loaded and available for analysis at http://cinteny.cchmc.org. Conclusion Cinteny allows one to automatically compare multiple genomes and perform sensitivity analysis for synteny block detection and for the subsequent computation of reversal distances

  17. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production.

    Science.gov (United States)

    Chowdhary, Nupoor; Selvaraj, Ashok; KrishnaKumaar, Lakshmi; Kumar, Gopal Ramesh

    2015-01-01

    Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2) production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs). Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs), 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach), we strongly suggest that Csac

  18. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production.

    Directory of Open Access Journals (Sweden)

    Nupoor Chowdhary

    Full Text Available Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2 production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs. Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs, 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach, we strongly

  19. Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle.

    Science.gov (United States)

    Mota, R R; Guimarães, S E F; Fortes, M R S; Hayes, B; Silva, F F; Verardo, L L; Kelly, M J; de Campos, C F; Guimarães, J D; Wenceslau, R R; Penitente-Filho, J M; Garcia, J F; Moore, S

    2017-12-01

    We performed a genome-wide mapping for the age at first calving (AFC) with the goal of annotating candidate genes that regulate fertility in Nellore cattle. Phenotypic data from 762 cows and 777k SNP genotypes from 2,992 bulls and cows were used. Single nucleotide polymorphism (SNP) effects based on the single-step GBLUP methodology were blocked into adjacent windows of 1 Megabase (Mb) to explain the genetic variance. SNP windows explaining more than 0.40% of the AFC genetic variance were identified on chromosomes 2, 8, 9, 14, 16 and 17. From these windows, we identified 123 coding protein genes that were used to build gene networks. From the association study and derived gene networks, putative candidate genes (e.g., PAPPA, PREP, FER1L6, TPR, NMNAT1, ACAD10, PCMTD1, CRH, OPKR1, NPBWR1 and NCOA2) and transcription factors (TF) (STAT1, STAT3, RELA, E2F1 and EGR1) were strongly associated with female fertility (e.g., negative regulation of luteinizing hormone secretion, folliculogenesis and establishment of uterine receptivity). Evidence suggests that AFC inheritance is complex and controlled by multiple loci across the genome. As several windows explaining higher proportion of the genetic variance were identified on chromosome 14, further studies investigating the interaction across haplotypes to better understand the molecular architecture behind AFC in Nellore cattle should be undertaken. © 2017 Blackwell Verlag GmbH.

  20. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  1. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture.

    Science.gov (United States)

    Macqueen, Daniel J; Primmer, Craig R; Houston, Ross D; Nowak, Barbara F; Bernatchez, Louis; Bergseth, Steinar; Davidson, William S; Gallardo-Escárate, Cristian; Goldammer, Tom; Guiguen, Yann; Iturra, Patricia; Kijas, James W; Koop, Ben F; Lien, Sigbjørn; Maass, Alejandro; Martin, Samuel A M; McGinnity, Philip; Montecino, Martin; Naish, Kerry A; Nichols, Krista M; Ólafsson, Kristinn; Omholt, Stig W; Palti, Yniv; Plastow, Graham S; Rexroad, Caird E; Rise, Matthew L; Ritchie, Rachael J; Sandve, Simen R; Schulte, Patricia M; Tello, Alfredo; Vidal, Rodrigo; Vik, Jon Olav; Wargelius, Anna; Yáñez, José Manuel

    2017-06-27

    We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.

  2. Emerging applications of read profiles towards the functional annotation of the genome

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Poirazi, Panayiota; Gorodkin, Jan

    2015-01-01

    is typically a result of the protocol designed to address specific research questions. The sequencing results in reads, which when mapped to a reference genome often leads to the formation of distinct patterns (read profiles). Interpretation of these read profiles is essential for their analysis in relation...... to the research question addressed. Several strategies have been employed at varying levels of abstraction ranging from a somewhat ad hoc to a more systematic analysis of read profiles. These include methods which can compare read profiles, e.g., from direct (non-sequence based) alignments to classification...... of patterns into functional groups. In this review, we highlight the emerging applications of read profiles for the annotation of non-coding RNA and cis-regulatory elements (CREs) such as enhancers and promoters. We also discuss the biological rationale behind their formation....

  3. Genomic variant annotation workflow for clinical applications [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Thomas Thurnherr

    2016-10-01

    Full Text Available Annotation and interpretation of DNA aberrations identified through next-generation sequencing is becoming an increasingly important task. Even more so in the context of data analysis pipelines for medical applications, where genomic aberrations are associated with phenotypic and clinical features. Here we describe a workflow to identify potential gene targets in aberrated genes or pathways and their corresponding drugs. To this end, we provide the R/Bioconductor package rDGIdb, an R wrapper to query the drug-gene interaction database (DGIdb. DGIdb accumulates drug-gene interaction data from 15 different resources and allows filtering on different levels. The rDGIdb package makes these resources and tools available to R users. Moreover, rDGIdb queries can be automated through incorporation of the rDGIdb package into NGS sequencing pipelines.

  4. Genomic sequence around butterfly wing development genes: annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Inês C Conceição

    Full Text Available BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes. CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1 the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2 the high

  5. A kingdom-specific protein domain HMM library for improved annotation of fungal genomes

    Directory of Open Access Journals (Sweden)

    Oliver Stephen G

    2007-04-01

    Full Text Available Abstract Background Pfam is a general-purpose database of protein domain alignments and profile Hidden Markov Models (HMMs, which is very popular for the annotation of sequence data produced by genome sequencing projects. Pfam provides models that are often very general in terms of the taxa that they cover and it has previously been suggested that such general models may lack some of the specificity or selectivity that would be provided by kingdom-specific models. Results Here we present a general approach to create domain libraries of HMMs for sub-taxa of a kingdom. Taking fungal species as an example, we construct a domain library of HMMs (called Fungal Pfam or FPfam using sequences from 30 genomes, consisting of 24 species from the ascomycetes group and two basidiomycetes, Ustilago maydis, a fungal pathogen of maize, and the white rot fungus Phanerochaete chrysosporium. In addition, we include the Microsporidion Encephalitozoon cuniculi, an obligate intracellular parasite, and two non-fungal species, the oomycetes Phytophthora sojae and Phytophthora ramorum, both plant pathogens. We evaluate the performance in terms of coverage against the original 30 genomes used in training FPfam and against five more recently sequenced fungal genomes that can be considered as an independent test set. We show that kingdom-specific models such as FPfam can find instances of both novel and well characterized domains, increases overall coverage and detects more domains per sequence with typically higher bitscores than Pfam for the same domain families. An evaluation of the effect of changing E-values on the coverage shows that the performance of FPfam is consistent over the range of E-values applied. Conclusion Kingdom-specific models are shown to provide improved coverage. However, as the models become more specific, some sequences found by Pfam may be missed by the models in FPfam and some of the families represented in the test set are not present in FPfam

  6. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS.

    Science.gov (United States)

    Hoff, Katharina J; Lange, Simone; Lomsadze, Alexandre; Borodovsky, Mark; Stanke, Mario

    2016-03-01

    Gene finding in eukaryotic genomes is notoriously difficult to automate. The task is to design a work flow with a minimal set of tools that would reach state-of-the-art performance across a wide range of species. GeneMark-ET is a gene prediction tool that incorporates RNA-Seq data into unsupervised training and subsequently generates ab initio gene predictions. AUGUSTUS is a gene finder that usually requires supervised training and uses information from RNA-Seq reads in the prediction step. Complementary strengths of GeneMark-ET and AUGUSTUS provided motivation for designing a new combined tool for automatic gene prediction. We present BRAKER1, a pipeline for unsupervised RNA-Seq-based genome annotation that combines the advantages of GeneMark-ET and AUGUSTUS. As input, BRAKER1 requires a genome assembly file and a file in bam-format with spliced alignments of RNA-Seq reads to the genome. First, GeneMark-ET performs iterative training and generates initial gene structures. Second, AUGUSTUS uses predicted genes for training and then integrates RNA-Seq read information into final gene predictions. In our experiments, we observed that BRAKER1 was more accurate than MAKER2 when it is using RNA-Seq as sole source for training and prediction. BRAKER1 does not require pre-trained parameters or a separate expert-prepared training step. BRAKER1 is available for download at http://bioinf.uni-greifswald.de/bioinf/braker/ and http://exon.gatech.edu/GeneMark/ katharina.hoff@uni-greifswald.de or borodovsky@gatech.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Prokaryotic Phylogenies Inferred from Whole-Genome Sequence and Annotation Data

    Directory of Open Access Journals (Sweden)

    Wei Du

    2013-01-01

    Full Text Available Phylogenetic trees are used to represent the evolutionary relationship among various groups of species. In this paper, a novel method for inferring prokaryotic phylogenies using multiple genomic information is proposed. The method is called CGCPhy and based on the distance matrix of orthologous gene clusters between whole-genome pairs. CGCPhy comprises four main steps. First, orthologous genes are determined by sequence similarity, genomic function, and genomic structure information. Second, genes involving potential HGT events are eliminated, since such genes are considered to be the highly conserved genes across different species and the genes located on fragments with abnormal genome barcode. Third, we calculate the distance of the orthologous gene clusters between each genome pair in terms of the number of orthologous genes in conserved clusters. Finally, the neighbor-joining method is employed to construct phylogenetic trees across different species. CGCPhy has been examined on different datasets from 617 complete single-chromosome prokaryotic genomes and achieved applicative accuracies on different species sets in agreement with Bergey's taxonomy in quartet topologies. Simulation results show that CGCPhy achieves high average accuracy and has a low standard deviation on different datasets, so it has an applicative potential for phylogenetic analysis.

  8. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen [University of Chicago

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  9. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Damte, Dereje; Suh, Joo-Won; Lee, Seung-Jin; Yohannes, Sileshi Belew; Hossain, Md Akil; Park, Seung-Chun

    2013-07-01

    In the present study, a computational comparative and subtractive genomic/proteomic analysis aimed at the identification of putative therapeutic target and vaccine candidate proteins from Kyoto Encyclopedia of Genes and Genomes (KEGG) annotated metabolic pathways of Mycoplasma hyopneumoniae was performed for drug design and vaccine production pipelines against M.hyopneumoniae. The employed comparative genomic and metabolic pathway analysis with a predefined computational systemic workflow extracted a total of 41 annotated metabolic pathways from KEGG among which five were unique to M. hyopneumoniae. A total of 234 proteins were identified to be involved in these metabolic pathways. Although 125 non homologous and predicted essential proteins were found from the total that could serve as potential drug targets and vaccine candidates, additional prioritizing parameters characterize 21 proteins as vaccine candidate while druggability of each of the identified proteins evaluated by the DrugBank database prioritized 42 proteins suitable for drug targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

    Science.gov (United States)

    Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).

  11. MSeqDR mvTool: A mitochondrial DNA Web and API resource for comprehensive variant annotation, universal nomenclature collation, and reference genome conversion.

    Science.gov (United States)

    Shen, Lishuang; Attimonelli, Marcella; Bai, Renkui; Lott, Marie T; Wallace, Douglas C; Falk, Marni J; Gai, Xiaowu

    2018-06-01

    Accurate mitochondrial DNA (mtDNA) variant annotation is essential for the clinical diagnosis of diverse human diseases. Substantial challenges to this process include the inconsistency in mtDNA nomenclatures, the existence of multiple reference genomes, and a lack of reference population frequency data. Clinicians need a simple bioinformatics tool that is user-friendly, and bioinformaticians need a powerful informatics resource for programmatic usage. Here, we report the development and functionality of the MSeqDR mtDNA Variant Tool set (mvTool), a one-stop mtDNA variant annotation and analysis Web service. mvTool is built upon the MSeqDR infrastructure (https://mseqdr.org), with contributions of expert curated data from MITOMAP (https://www.mitomap.org) and HmtDB (https://www.hmtdb.uniba.it/hmdb). mvTool supports all mtDNA nomenclatures, converts variants to standard rCRS- and HGVS-based nomenclatures, and annotates novel mtDNA variants. Besides generic annotations from dbNSFP and Variant Effect Predictor (VEP), mvTool provides allele frequencies in more than 47,000 germline mitogenomes, and disease and pathogenicity classifications from MSeqDR, Mitomap, HmtDB and ClinVar (Landrum et al., 2013). mvTools also provides mtDNA somatic variants annotations. "mvTool API" is implemented for programmatic access using inputs in VCF, HGVS, or classical mtDNA variant nomenclatures. The results are reported as hyperlinked html tables, JSON, Excel, and VCF formats. MSeqDR mvTool is freely accessible at https://mseqdr.org/mvtool.php. © 2018 Wiley Periodicals, Inc.

  12. The Vigna Genome Server, 'VigGS': A Genomic Knowledge Base of the Genus Vigna Based on High-Quality, Annotated Genome Sequence of the Azuki Bean, Vigna angularis (Willd.) Ohwi & Ohashi.

    Science.gov (United States)

    Sakai, Hiroaki; Naito, Ken; Takahashi, Yu; Sato, Toshiyuki; Yamamoto, Toshiya; Muto, Isamu; Itoh, Takeshi; Tomooka, Norihiko

    2016-01-01

    The genus Vigna includes legume crops such as cowpea, mungbean and azuki bean, as well as >100 wild species. A number of the wild species are highly tolerant to severe environmental conditions including high-salinity, acid or alkaline soil; drought; flooding; and pests and diseases. These features of the genus Vigna make it a good target for investigation of genetic diversity in adaptation to stressful environments; however, a lack of genomic information has hindered such research in this genus. Here, we present a genome database of the genus Vigna, Vigna Genome Server ('VigGS', http://viggs.dna.affrc.go.jp), based on the recently sequenced azuki bean genome, which incorporates annotated exon-intron structures, along with evidence for transcripts and proteins, visualized in GBrowse. VigGS also facilitates user construction of multiple alignments between azuki bean genes and those of six related dicot species. In addition, the database displays sequence polymorphisms between azuki bean and its wild relatives and enables users to design primer sequences targeting any variant site. VigGS offers a simple keyword search in addition to sequence similarity searches using BLAST and BLAT. To incorporate up to date genomic information, VigGS automatically receives newly deposited mRNA sequences of pre-set species from the public database once a week. Users can refer to not only gene structures mapped on the azuki bean genome on GBrowse but also relevant literature of the genes. VigGS will contribute to genomic research into plant biotic and abiotic stresses and to the future development of new stress-tolerant crops. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3.

    Science.gov (United States)

    Han, Mira V; Thomas, Gregg W C; Lugo-Martinez, Jose; Hahn, Matthew W

    2013-08-01

    Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.

  14. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  15. Integrative analysis of functional genomic annotations and sequencing data to identify rare causal variants via hierarchical modeling

    Directory of Open Access Journals (Sweden)

    Marinela eCapanu

    2015-05-01

    Full Text Available Identifying the small number of rare causal variants contributing to disease has beena major focus of investigation in recent years, but represents a formidable statisticalchallenge due to the rare frequencies with which these variants are observed. In thiscommentary we draw attention to a formal statistical framework, namely hierarchicalmodeling, to combine functional genomic annotations with sequencing data with theobjective of enhancing our ability to identify rare causal variants. Using simulations weshow that in all configurations studied, the hierarchical modeling approach has superiordiscriminatory ability compared to a recently proposed aggregate measure of deleteriousness,the Combined Annotation-Dependent Depletion (CADD score, supportingour premise that aggregate functional genomic measures can more accurately identifycausal variants when used in conjunction with sequencing data through a hierarchicalmodeling approach

  16. Evaluation of relational and NoSQL database architectures to manage genomic annotations.

    Science.gov (United States)

    Schulz, Wade L; Nelson, Brent G; Felker, Donn K; Durant, Thomas J S; Torres, Richard

    2016-12-01

    While the adoption of next generation sequencing has rapidly expanded, the informatics infrastructure used to manage the data generated by this technology has not kept pace. Historically, relational databases have provided much of the framework for data storage and retrieval. Newer technologies based on NoSQL architectures may provide significant advantages in storage and query efficiency, thereby reducing the cost of data management. But their relative advantage when applied to biomedical data sets, such as genetic data, has not been characterized. To this end, we compared the storage, indexing, and query efficiency of a common relational database (MySQL), a document-oriented NoSQL database (MongoDB), and a relational database with NoSQL support (PostgreSQL). When used to store genomic annotations from the dbSNP database, we found the NoSQL architectures to outperform traditional, relational models for speed of data storage, indexing, and query retrieval in nearly every operation. These findings strongly support the use of novel database technologies to improve the efficiency of data management within the biological sciences. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models

    Science.gov (United States)

    Real, Fernando; Vidal, Ramon Oliveira; Carazzolle, Marcelo Falsarella; Mondego, Jorge Maurício Costa; Costa, Gustavo Gilson Lacerda; Herai, Roberto Hirochi; Würtele, Martin; de Carvalho, Lucas Miguel; e Ferreira, Renata Carmona; Mortara, Renato Arruda; Barbiéri, Clara Lucia; Mieczkowski, Piotr; da Silveira, José Franco; Briones, Marcelo Ribeiro da Silva; Pereira, Gonçalo Amarante Guimarães; Bahia, Diana

    2013-01-01

    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment. PMID:23857904

  18. Swine transcriptome characterization by combined Iso-Seq and RNA-seq for annotating the emerging long read-based reference genome

    Science.gov (United States)

    PacBio long-read sequencing technology is increasingly popular in genome sequence assembly and transcriptome cataloguing. Recently, a new-generation pig reference genome was assembled based on long reads from this technology. To finely annotate this genome assembly, transcriptomes of nine tissues fr...

  19. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants.

    Science.gov (United States)

    Pilkington, Sarah M; Crowhurst, Ross; Hilario, Elena; Nardozza, Simona; Fraser, Lena; Peng, Yongyan; Gunaseelan, Kularajathevan; Simpson, Robert; Tahir, Jibran; Deroles, Simon C; Templeton, Kerry; Luo, Zhiwei; Davy, Marcus; Cheng, Canhong; McNeilage, Mark; Scaglione, Davide; Liu, Yifei; Zhang, Qiong; Datson, Paul; De Silva, Nihal; Gardiner, Susan E; Bassett, Heather; Chagné, David; McCallum, John; Dzierzon, Helge; Deng, Cecilia; Wang, Yen-Yi; Barron, Lorna; Manako, Kelvina; Bowen, Judith; Foster, Toshi M; Erridge, Zoe A; Tiffin, Heather; Waite, Chethi N; Davies, Kevin M; Grierson, Ella P; Laing, William A; Kirk, Rebecca; Chen, Xiuyin; Wood, Marion; Montefiori, Mirco; Brummell, David A; Schwinn, Kathy E; Catanach, Andrew; Fullerton, Christina; Li, Dawei; Meiyalaghan, Sathiyamoorthy; Nieuwenhuizen, Niels; Read, Nicola; Prakash, Roneel; Hunter, Don; Zhang, Huaibi; McKenzie, Marian; Knäbel, Mareike; Harris, Alastair; Allan, Andrew C; Gleave, Andrew; Chen, Angela; Janssen, Bart J; Plunkett, Blue; Ampomah-Dwamena, Charles; Voogd, Charlotte; Leif, Davin; Lafferty, Declan; Souleyre, Edwige J F; Varkonyi-Gasic, Erika; Gambi, Francesco; Hanley, Jenny; Yao, Jia-Long; Cheung, Joey; David, Karine M; Warren, Ben; Marsh, Ken; Snowden, Kimberley C; Lin-Wang, Kui; Brian, Lara; Martinez-Sanchez, Marcela; Wang, Mindy; Ileperuma, Nadeesha; Macnee, Nikolai; Campin, Robert; McAtee, Peter; Drummond, Revel S M; Espley, Richard V; Ireland, Hilary S; Wu, Rongmei; Atkinson, Ross G; Karunairetnam, Sakuntala; Bulley, Sean; Chunkath, Shayhan; Hanley, Zac; Storey, Roy; Thrimawithana, Amali H; Thomson, Susan; David, Charles; Testolin, Raffaele; Huang, Hongwen; Hellens, Roger P; Schaffer, Robert J

    2018-04-16

    Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and

  20. M-GCAT: interactively and efficiently constructing large-scale multiple genome comparison frameworks in closely related species

    Directory of Open Access Journals (Sweden)

    Messeguer Xavier

    2006-10-01

    Full Text Available Abstract Background Due to recent advances in whole genome shotgun sequencing and assembly technologies, the financial cost of decoding an organism's DNA has been drastically reduced, resulting in a recent explosion of genomic sequencing projects. This increase in related genomic data will allow for in depth studies of evolution in closely related species through multiple whole genome comparisons. Results To facilitate such comparisons, we present an interactive multiple genome comparison and alignment tool, M-GCAT, that can efficiently construct multiple genome comparison frameworks in closely related species. M-GCAT is able to compare and identify highly conserved regions in up to 20 closely related bacterial species in minutes on a standard computer, and as many as 90 (containing 75 cloned genomes from a set of 15 published enterobacterial genomes in an hour. M-GCAT also incorporates a novel comparative genomics data visualization interface allowing the user to globally and locally examine and inspect the conserved regions and gene annotations. Conclusion M-GCAT is an interactive comparative genomics tool well suited for quickly generating multiple genome comparisons frameworks and alignments among closely related species. M-GCAT is freely available for download for academic and non-commercial use at: http://alggen.lsi.upc.es/recerca/align/mgcat/intro-mgcat.html.

  1. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Science.gov (United States)

    2012-01-01

    Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920

  2. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-12-01

    Full Text Available Abstract Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas.

  3. Homology-based annotation of non-coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Santana Clara

    2009-10-01

    Full Text Available Abstract Background Schistosomes are trematode parasites of the phylum Platyhelminthes. They are considered the most important of the human helminth parasites in terms of morbidity and mortality. Draft genome sequences are now available for Schistosoma mansoni and Schistosoma japonicum. Non-coding RNA (ncRNA plays a crucial role in gene expression regulation, cellular function and defense, homeostasis, and pathogenesis. The genome-wide annotation of ncRNAs is a non-trivial task unless well-annotated genomes of closely related species are already available. Results A homology search for structured ncRNA in the genome of S. mansoni resulted in 23 types of ncRNAs with conserved primary and secondary structure. Among these, we identified rRNA, snRNA, SL RNA, SRP, tRNAs and RNase P, and also possibly MRP and 7SK RNAs. In addition, we confirmed five miRNAs that have recently been reported in S. japonicum and found two additional homologs of known miRNAs. The tRNA complement of S. mansoni is comparable to that of the free-living planarian Schmidtea mediterranea, although for some amino acids differences of more than a factor of two are observed: Leu, Ser, and His are overrepresented, while Cys, Meth, and Ile are underrepresented in S. mansoni. On the other hand, the number of tRNAs in the genome of S. japonicum is reduced by more than a factor of four. Both schistosomes have a complete set of minor spliceosomal snRNAs. Several ncRNAs that are expected to exist in the S. mansoni genome were not found, among them the telomerase RNA, vault RNAs, and Y RNAs. Conclusion The ncRNA sequences and structures presented here represent the most complete dataset of ncRNA from any lophotrochozoan reported so far. This data set provides an important reference for further analysis of the genomes of schistosomes and indeed eukaryotic genomes at large.

  4. Multiple reference genomes and transcriptomes for Arabidopsis thaliana

    KAUST Repository

    Gan, Xiangchao

    2011-08-28

    Genetic differences between Arabidopsis thaliana accessions underlie the plants extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions. ©2011 Macmillan Publishers Limited. All rights reserved.

  5. Multiple reference genomes and transcriptomes for Arabidopsis thaliana

    KAUST Repository

    Gan, Xiangchao; Stegle, Oliver; Behr, Jonas; Steffen, Joshua G.; Drewe, Philipp; Hildebrand, Katie L.; Lyngsoe, Rune; Schultheiss, Sebastian J.; Osborne, Edward J.; Sreedharan, Vipin T.; Kahles, André ; Bohnert, Regina; Jean, Gé raldine; Derwent, Paul; Kersey, Paul; Belfield, Eric J.; Harberd, Nicholas P.; Kemen, Eric; Toomajian, Christopher; Kover, Paula X.; Clark, Richard M.; Rä tsch, Gunnar; Mott, Richard

    2011-01-01

    Genetic differences between Arabidopsis thaliana accessions underlie the plants extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions. ©2011 Macmillan Publishers Limited. All rights reserved.

  6. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.

    Science.gov (United States)

    Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario

    2011-01-01

    Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.

  7. Computational prediction of over-annotated protein-coding genes in the genome of Agrobacterium tumefaciens strain C58

    Science.gov (United States)

    Yu, Jia-Feng; Sui, Tian-Xiang; Wang, Hong-Mei; Wang, Chun-Ling; Jing, Li; Wang, Ji-Hua

    2015-12-01

    Agrobacterium tumefaciens strain C58 is a type of pathogen that can cause tumors in some dicotyledonous plants. Ever since the genome of A. tumefaciens strain C58 was sequenced, the quality of annotation of its protein-coding genes has been queried continually, because the annotation varies greatly among different databases. In this paper, the questionable hypothetical genes were re-predicted by integrating the TN curve and Z curve methods. As a result, 30 genes originally annotated as “hypothetical” were discriminated as being non-coding sequences. By testing the re-prediction program 10 times on data sets composed of the function-known genes, the mean accuracy of 99.99% and mean Matthews correlation coefficient value of 0.9999 were obtained. Further sequence analysis and COG analysis showed that the re-annotation results were very reliable. This work can provide an efficient tool and data resources for future studies of A. tumefaciens strain C58. Project supported by the National Natural Science Foundation of China (Grant Nos. 61302186 and 61271378) and the Funding from the State Key Laboratory of Bioelectronics of Southeast University.

  8. Computational prediction of over-annotated protein-coding genes in the genome of Agrobacterium tumefaciens strain C58

    International Nuclear Information System (INIS)

    Yu Jia-Feng; Sui Tian-Xiang; Wang Ji-Hua; Wang Hong-Mei; Wang Chun-Ling; Jing Li

    2015-01-01

    Agrobacterium tumefaciens strain C58 is a type of pathogen that can cause tumors in some dicotyledonous plants. Ever since the genome of A. tumefaciens strain C58 was sequenced, the quality of annotation of its protein-coding genes has been queried continually, because the annotation varies greatly among different databases. In this paper, the questionable hypothetical genes were re-predicted by integrating the TN curve and Z curve methods. As a result, 30 genes originally annotated as “hypothetical” were discriminated as being non-coding sequences. By testing the re-prediction program 10 times on data sets composed of the function-known genes, the mean accuracy of 99.99% and mean Matthews correlation coefficient value of 0.9999 were obtained. Further sequence analysis and COG analysis showed that the re-annotation results were very reliable. This work can provide an efficient tool and data resources for future studies of A. tumefaciens strain C58. (special topic)

  9. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps.

    Science.gov (United States)

    Georges, Arthur; Li, Qiye; Lian, Jinmin; O'Meally, Denis; Deakin, Janine; Wang, Zongji; Zhang, Pei; Fujita, Matthew; Patel, Hardip R; Holleley, Clare E; Zhou, Yang; Zhang, Xiuwen; Matsubara, Kazumi; Waters, Paul; Graves, Jennifer A Marshall; Sarre, Stephen D; Zhang, Guojie

    2015-01-01

    The lizards of the family Agamidae are one of the most prominent elements of the Australian reptile fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon Pogona vitticeps. The genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp (179X raw read depth) from 13 insert libraries ranging from 250 bp to 40 kbp. After filtering for low-quality and duplicated reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85 % of single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4 % of reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome. Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300 bp), the longest being 14.68 Mbp. N50 was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis, Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406 protein-coding genes in the assembly, 63 % of which had intact open reading frames. Our assembly captured 99 % (246 of 248) of core CEGMA genes, with 93 % (231) being complete. The quality of the P. vitticeps assembly is comparable or superior to that of other published squamate genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at https://genomics.canberra.edu.au.

  10. Multiple Whole Genome Alignments Without a Reference Organism

    Energy Technology Data Exchange (ETDEWEB)

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  11. Annotation of a hybrid partial genome of the Coffee Rust (Hemileia vastatrix contributes to the gene repertoire catalogue of the Pucciniales

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Cristancho

    2014-10-01

    Full Text Available Coffee leaf rust caused by the fungus Hemileia vastatrix is the most damaging disease to coffee worldwide. The pathogen has recently appeared in multiple outbreaks in coffee producing countries resulting in significant yield losses and increases in costs related to its control. New races/isolates are constantly emerging as evidenced by the presence of the fungus in plants that were previously resistant. Genomic studies are opening new avenues for the study of the evolution of pathogens, the detailed description of plant-pathogen interactions and the development of molecular techniques for the identification of individual isolates. For this purpose we sequenced 8 different H. vastatrix isolates using NGS technologies and gathered partial genome assemblies due to the large repetitive content in the coffee rust hybrid genome; 74.4% of the assembled contigs harbor repetitive sequences. A hybrid assembly of 333Mb was built based on the 8 isolates; this assembly was used for subsequent analyses.Analysis of the conserved gene space showed that the hybrid H. vastatrix genome, though highly fragmented, had a satisfactory level of completion with 91.94% of core protein-coding orthologous genes present. RNA-Seq from urediniospores was used to guide the de novo annotation of the H. vastatrix gene complement. In total, 14,445 genes organized in 3,921 families were uncovered; a considerable proportion of the predicted proteins (73.8% were homologous to other Pucciniales species genomes. Several gene families related to the fungal lifestyle were identified, particularly 483 predicted secreted proteins that represent candidate effector genes and will provide interesting hints to decipher virulence in the coffee rust fungus. The genome sequence of Hva will serve as a template to understand the molecular mechanisms used by this fungus to attack the coffee plant, to study the diversity of this species and for the development of molecular markers to distinguish

  12. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis.

    Science.gov (United States)

    Sharma, Anupma; Wai, Ching Man; Ming, Ray; Yu, Qingyi

    2017-09-01

    Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. WGSSAT: A High-Throughput Computational Pipeline for Mining and Annotation of SSR Markers From Whole Genomes.

    Science.gov (United States)

    Pandey, Manmohan; Kumar, Ravindra; Srivastava, Prachi; Agarwal, Suyash; Srivastava, Shreya; Nagpure, Naresh S; Jena, Joy K; Kushwaha, Basdeo

    2018-03-16

    Mining and characterization of Simple Sequence Repeat (SSR) markers from whole genomes provide valuable information about biological significance of SSR distribution and also facilitate development of markers for genetic analysis. Whole genome sequencing (WGS)-SSR Annotation Tool (WGSSAT) is a graphical user interface pipeline developed using Java Netbeans and Perl scripts which facilitates in simplifying the process of SSR mining and characterization. WGSSAT takes input in FASTA format and automates the prediction of genes, noncoding RNA (ncRNA), core genes, repeats and SSRs from whole genomes followed by mapping of the predicted SSRs onto a genome (classified according to genes, ncRNA, repeats, exonic, intronic, and core gene region) along with primer identification and mining of cross-species markers. The program also generates a detailed statistical report along with visualization of mapped SSRs, genes, core genes, and RNAs. The features of WGSSAT were demonstrated using Takifugu rubripes data. This yielded a total of 139 057 SSR, out of which 113 703 SSR primer pairs were uniquely amplified in silico onto a T. rubripes (fugu) genome. Out of 113 703 mined SSRs, 81 463 were from coding region (including 4286 exonic and 77 177 intronic), 7 from RNA, 267 from core genes of fugu, whereas 105 641 SSR and 601 SSR primer pairs were uniquely mapped onto the medaka genome. WGSSAT is tested under Ubuntu Linux. The source code, documentation, user manual, example dataset and scripts are available online at https://sourceforge.net/projects/wgssat-nbfgr.

  14. Facilitating functional annotation of chicken microarray data

    Directory of Open Access Journals (Sweden)

    Gresham Cathy R

    2009-10-01

    Full Text Available Abstract Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO. However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and

  15. Comprehensive transcriptome and improved genome annotation of Bacillus licheniformis WX-02.

    Science.gov (United States)

    Guo, Jing; Cheng, Gang; Gou, Xiang-Yong; Xing, Feng; Li, Sen; Han, Yi-Chao; Wang, Long; Song, Jia-Ming; Shu, Cheng-Cheng; Chen, Shou-Wen; Chen, Ling-Ling

    2015-08-19

    The updated genome of Bacillus licheniformis WX-02 comprises a circular chromosome of 4286821 base-pairs containing 4512 protein-coding genes. We applied strand-specific RNA-sequencing to explore the transcriptome profiles of B. licheniformis WX-02 under normal and high-salt conditions (NaCl 6%). We identified 2381 co-expressed gene pairs constituting 871 operon structures. In addition, 1169 antisense transcripts and 90 small RNAs were detected. Systematic comparison of differentially expressed genes under different conditions revealed that genes involved in multiple functions were significantly repressed in long-term high salt adaptation process. Genes related to promotion of glutamic acid synthesis were activated by 6% NaCl, potentially explaining the high yield of γ-PGA under salt condition. This study will be useful for the optimization of crucial metabolic activities in this bacterium. Copyright © 2015. Published by Elsevier B.V.

  16. The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from the fables of Jean de la Fontaine?

    Science.gov (United States)

    Arensburger, Peter; Piégu, Benoît; Bigot, Yves

    2016-01-01

    Transposable element (TE) science has been significantly influenced by the pioneering ideas of David Finnegan near the end of the last century, as well as by the classification systems that were subsequently developed. Today, whole genome TE annotation is mostly done using tools that were developed to aid gene annotation rather than to specifically study TEs. We argue that further progress in the TE field is impeded both by current TE classification schemes and by a failure to recognize that TE biology is fundamentally different from that of multicellular organisms. Novel genome wide TE annotation methods are helping to redefine our understanding of TE sequence origins and evolution. We briefly discuss some of these new methods as well as ideas for possible alternative classification schemes. Our hope is to encourage the formation of a society to organize a larger debate on these questions and to promote the adoption of standards for annotation and an improved TE classification.

  17. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species.

    Science.gov (United States)

    Salzberg, Steven L; Dunning Hotopp, Julie C; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C

    2005-01-01

    The Trace Archive is a repository for the raw, unanalyzed data generated by large-scale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank.

  18. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Qiongshi Lu

    2017-07-01

    Full Text Available Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer's disease (LOAD. Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson's disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline.

  19. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer's disease.

    Science.gov (United States)

    Lu, Qiongshi; Powles, Ryan L; Abdallah, Sarah; Ou, Derek; Wang, Qian; Hu, Yiming; Lu, Yisi; Liu, Wei; Li, Boyang; Mukherjee, Shubhabrata; Crane, Paul K; Zhao, Hongyu

    2017-07-01

    Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system) increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells) provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer's disease (LOAD). Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson's disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline.

  20. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer’s disease

    Science.gov (United States)

    Abdallah, Sarah; Ou, Derek; Wang, Qian; Hu, Yiming; Lu, Yisi; Liu, Wei; Li, Boyang; Mukherjee, Shubhabrata; Crane, Paul K.; Zhao, Hongyu

    2017-01-01

    Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system) increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells) provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer’s disease (LOAD). Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson’s disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline. PMID:28742084

  1. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Peters, Brian M; Li, Bing; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2016-09-01

    Lactobacillus acetotolerans is a hard-to-culture beer-spoilage bacterium capable of entering into the viable putative nonculturable (VPNC) state. As part of an initial strategy to investigate the phenotypic behavior of L. acetotolerans, draft genome sequencing was performed. Results demonstrated a total of 1824 predicted annotated genes, with several potential VPNC- and beer-spoilage-associated genes identified. Importantly, this is the first genome sequence of L. acetotolerans as beer-spoilage bacteria and it may aid in further analysis of L. acetotolerans and other beer-spoilage bacteria, with direct implications for food safety control in the beer brewing industry. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Roz Laing

    Full Text Available The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid

  3. Multiple Genome Sequences of Lactobacillus plantarum Strains

    OpenAIRE

    Kafka, Thomas A.; Geissler, Andreas J.; Vogel, Rudi F.

    2017-01-01

    ABSTRACT We report here the genome sequences of four Lactobacillus plantarum strains which vary in surface hydrophobicity. Bioinformatic analysis, using additional genomes of Lactobacillus plantarum strains, revealed a possible correlation between the cell wall teichoic acid-type and cell surface hydrophobicity and provide the basis for consecutive analyses.

  4. Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Deng Jixin

    2009-02-01

    Full Text Available Abstract Background Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 http://www.broad.mit.edu/annotation/genome/magnaporthe_grisea/MultiDownloads.html. However, a comprehensive manual curation remains to be performed. Gene Ontology (GO annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly. Methods A similarity-based (i.e., computational GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked. Results In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO. In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57% being annotated with 1,957 distinct and specific GO terms. Unannotated proteins

  5. Annotation Of Novel And Conserved MicroRNA Genes In The Build 10 Sus scrofa Reference Genome And Determination Of Their Expression Levels In Ten Different Tissues

    DEFF Research Database (Denmark)

    Thomsen, Bo; Nielsen, Mathilde; Hedegaard, Jakob

    The DNA template used in the pig genome sequencing project was provided by a Duroc pig named TJ Tabasco. In an effort to annotate microRNA (miRNA) genes in the reference genome we have conducted deep sequencing to determine the miRNA transcriptomes in ten different tissues isolated from Pinky......, a genetically identical clone of TJ Tabasco. The purpose was to generate miRNA sequences that are highly homologous to the reference genome sequence, which along with computational prediction will improve confidence in the genomic annotation of miRNA genes. Based on homology searches of the sequence data...... against miRBase, we identified more than 600 conserved known miRNA/miRNA*, which is a significant increase relative to the 211 porcine miRNA/miRNA* deposited in the current version of miRBase. Furthermore, the genome-wide transcript profiles provided important information on the relative abundance...

  6. TU-CD-BRB-07: Identification of Associations Between Radiologist-Annotated Imaging Features and Genomic Alterations in Breast Invasive Carcinoma, a TCGA Phenotype Research Group Study

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A; Net, J [University of Miami, Miami, Florida (United States); Brandt, K [Mayo Clinic, Rochester, Minnesota (United States); Huang, E [National Cancer Institute, NIH, Bethesda, MD (United States); Freymann, J; Kirby, J [Leidos Biomedical Research Inc., Frederick, MD (United States); Burnside, E [University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (United States); Morris, E; Sutton, E [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Bonaccio, E [Roswell Park Cancer Institute, Buffalo, NY (United States); Giger, M; Jaffe, C [Univ Chicago, Chicago, IL (United States); Ganott, M; Zuley, M [University of Pittsburgh Medical Center - Magee Womens Hospital, Pittsburgh, Pennsylvania (United States); Le-Petross, H [MD Anderson Cancer Center, Houston, TX (United States); Dogan, B [UT MDACC, Houston, TX (United States); Whitman, G [UTMDACC, Houston, TX (United States)

    2015-06-15

    Purpose: To determine associations between radiologist-annotated MRI features and genomic measurements in breast invasive carcinoma (BRCA) from the Cancer Genome Atlas (TCGA). Methods: 98 TCGA patients with BRCA were assessed by a panel of radiologists (TCGA Breast Phenotype Research Group) based on a variety of mass and non-mass features according to the Breast Imaging Reporting and Data System (BI-RADS). Batch corrected gene expression data was obtained from the TCGA Data Portal. The Kruskal-Wallis test was used to assess correlations between categorical image features and tumor-derived genomic features (such as gene pathway activity, copy number and mutation characteristics). Image-derived features were also correlated with estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) status. Multiple hypothesis correction was done using Benjamini-Hochberg FDR. Associations at an FDR of 0.1 were selected for interpretation. Results: ER status was associated with rim enhancement and peritumoral edema. PR status was associated with internal enhancement. Several components of the PI3K/Akt pathway were associated with rim enhancement as well as heterogeneity. In addition, several components of cell cycle regulation and cell division were associated with imaging characteristics.TP53 and GATA3 mutations were associated with lesion size. MRI features associated with TP53 mutation status were rim enhancement and peritumoral edema. Rim enhancement was associated with activity of RB1, PIK3R1, MAP3K1, AKT1,PI3K, and PIK3CA. Margin status was associated with HIF1A/ARNT, Ras/ GTP/PI3K, KRAS, and GADD45A. Axillary lymphadenopathy was associated with RB1 and BCL2L1. Peritumoral edema was associated with Aurora A/GADD45A, BCL2L1, CCNE1, and FOXA1. Heterogeneous internal nonmass enhancement was associated with EGFR, PI3K, AKT1, HF/MET, and EGFR/Erbb4/neuregulin 1. Diffuse nonmass enhancement was associated with HGF/MET/MUC20/SHIP

  7. Automated update, revision, and quality control of the maize genome annotations using MAKER-P improves the B73 RefGen_v3 gene models and identifies new genes

    Science.gov (United States)

    The large size and relative complexity of many plant genomes make creation, quality control, and dissemination of high-quality gene structure annotations challenging. In response, we have developed MAKER-P, a fast and easy-to-use genome annotation engine for plants. Here, we report the use of MAKER-...

  8. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis.

    Science.gov (United States)

    Castro, Juan C; Maddox, J Dylan; Cobos, Marianela; Requena, David; Zimic, Mirko; Bombarely, Aureliano; Imán, Sixto A; Cerdeira, Luis A; Medina, Andersson E

    2015-11-24

    Myrciaria dubia is an Amazonian fruit shrub that produces numerous bioactive phytochemicals, but is best known by its high L-ascorbic acid (AsA) content in fruits. Pronounced variation in AsA content has been observed both within and among individuals, but the genetic factors responsible for this variation are largely unknown. The goals of this research, therefore, were to assemble, characterize, and annotate the fruit transcriptome of M. dubia in order to reconstruct metabolic pathways and determine if multiple pathways contribute to AsA biosynthesis. In total 24,551,882 high-quality sequence reads were de novo assembled into 70,048 unigenes (mean length = 1150 bp, N50 = 1775 bp). Assembled sequences were annotated using BLASTX against public databases such as TAIR, GR-protein, FB, MGI, RGD, ZFIN, SGN, WB, TIGR_CMR, and JCVI-CMR with 75.2 % of unigenes having annotations. Of the three core GO annotation categories, biological processes comprised 53.6 % of the total assigned annotations, whereas cellular components and molecular functions comprised 23.3 and 23.1 %, respectively. Based on the KEGG pathway assignment of the functionally annotated transcripts, five metabolic pathways for AsA biosynthesis were identified: animal-like pathway, myo-inositol pathway, L-gulose pathway, D-mannose/L-galactose pathway, and uronic acid pathway. All transcripts coding enzymes involved in the ascorbate-glutathione cycle were also identified. Finally, we used the assembly to identified 6314 genic microsatellites and 23,481 high quality SNPs. This study describes the first next-generation sequencing effort and transcriptome annotation of a non-model Amazonian plant that is relevant for AsA production and other bioactive phytochemicals. Genes encoding key enzymes were successfully identified and metabolic pathways involved in biosynthesis of AsA, anthocyanins, and other metabolic pathways have been reconstructed. The identification of these genes and pathways is in agreement with

  9. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations

    LENUS (Irish Health Repository)

    2011-08-30

    Abstract Background Lactobacillus ruminis is a poorly characterized member of the Lactobacillus salivarius clade that is part of the intestinal microbiota of pigs, humans and other mammals. Its variable abundance in human and animals may be linked to historical changes over time and geographical differences in dietary intake of complex carbohydrates. Results In this study, we investigated the ability of nine L. ruminis strains of human and bovine origin to utilize fifty carbohydrates including simple sugars, oligosaccharides, and prebiotic polysaccharides. The growth patterns were compared with metabolic pathways predicted by annotation of a high quality draft genome sequence of ATCC 25644 (human isolate) and the complete genome of ATCC 27782 (bovine isolate). All of the strains tested utilized prebiotics including fructooligosaccharides (FOS), soybean-oligosaccharides (SOS) and 1,3:1,4-β-D-gluco-oligosaccharides to varying degrees. Six strains isolated from humans utilized FOS-enriched inulin, as well as FOS. In contrast, three strains isolated from cows grew poorly in FOS-supplemented medium. In general, carbohydrate utilisation patterns were strain-dependent and also varied depending on the degree of polymerisation or complexity of structure. Six putative operons were identified in the genome of the human isolate ATCC 25644 for the transport and utilisation of the prebiotics FOS, galacto-oligosaccharides (GOS), SOS, and 1,3:1,4-β-D-Gluco-oligosaccharides. One of these comprised a novel FOS utilisation operon with predicted capacity to degrade chicory-derived FOS. However, only three of these operons were identified in the ATCC 27782 genome that might account for the utilisation of only SOS and 1,3:1,4-β-D-Gluco-oligosaccharides. Conclusions This study has provided definitive genome-based evidence to support the fermentation patterns of nine strains of Lactobacillus ruminis, and has linked it to gene distribution patterns in strains from different sources

  10. The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation

    Directory of Open Access Journals (Sweden)

    King Nichole L

    2009-02-01

    Full Text Available Abstract Background Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments. Results In this manuscript, we present the Drosophila melanogaster PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal http://www.drosophila-peptideatlas.org allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s in which it was observed. Conclusion PeptideAtlas is an open access database for the Drosophila community that has several features and applications that support (1 reduction of the complexity inherently associated with performing targeted proteomic studies, (2 designing and accelerating shotgun proteomics experiments, (3 confirming or questioning gene models, and (4 adjusting gene models such that they are in line with observed Drosophila peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert.

  11. IW-Scoring: an Integrative Weighted Scoring framework for annotating and prioritizing genetic variations in the noncoding genome.

    Science.gov (United States)

    Wang, Jun; Dayem Ullah, Abu Z; Chelala, Claude

    2018-01-30

    The vast majority of germline and somatic variations occur in the noncoding part of the genome, only a small fraction of which are believed to be functional. From the tens of thousands of noncoding variations detectable in each genome, identifying and prioritizing driver candidates with putative functional significance is challenging. To address this, we implemented IW-Scoring, a new Integrative Weighted Scoring model to annotate and prioritise functionally relevant noncoding variations. We evaluate 11 scoring methods, and apply an unsupervised spectral approach for subsequent selective integration into two linear weighted functional scoring schemas for known and novel variations. IW-Scoring produces stable high-quality performance as the best predictors for three independent data sets. We demonstrate the robustness of IW-Scoring in identifying recurrent functional mutations in the TERT promoter, as well as disease SNPs in proximity to consensus motifs and with gene regulatory effects. Using follicular lymphoma as a paradigmatic cancer model, we apply IW-Scoring to locate 11 recurrently mutated noncoding regions in 14 follicular lymphoma genomes, and validate 9 of these regions in an extension cohort, including the promoter and enhancer regions of PAX5. Overall, IW-Scoring demonstrates greater versatility in identifying trait- and disease-associated noncoding variants. Scores from IW-Scoring as well as other methods are freely available from http://www.snp-nexus.org/IW-Scoring/. © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Multiple Models for Rosaceae Genomics[OA

    Science.gov (United States)

    Shulaev, Vladimir; Korban, Schuyler S.; Sosinski, Bryon; Abbott, Albert G.; Aldwinckle, Herb S.; Folta, Kevin M.; Iezzoni, Amy; Main, Dorrie; Arús, Pere; Dandekar, Abhaya M.; Lewers, Kim; Brown, Susan K.; Davis, Thomas M.; Gardiner, Susan E.; Potter, Daniel; Veilleux, Richard E.

    2008-01-01

    The plant family Rosaceae consists of over 100 genera and 3,000 species that include many important fruit, nut, ornamental, and wood crops. Members of this family provide high-value nutritional foods and contribute desirable aesthetic and industrial products. Most rosaceous crops have been enhanced by human intervention through sexual hybridization, asexual propagation, and genetic improvement since ancient times, 4,000 to 5,000 B.C. Modern breeding programs have contributed to the selection and release of numerous cultivars having significant economic impact on the U.S. and world markets. In recent years, the Rosaceae community, both in the United States and internationally, has benefited from newfound organization and collaboration that have hastened progress in developing genetic and genomic resources for representative crops such as apple (Malus spp.), peach (Prunus spp.), and strawberry (Fragaria spp.). These resources, including expressed sequence tags, bacterial artificial chromosome libraries, physical and genetic maps, and molecular markers, combined with genetic transformation protocols and bioinformatics tools, have rendered various rosaceous crops highly amenable to comparative and functional genomics studies. This report serves as a synopsis of the resources and initiatives of the Rosaceae community, recent developments in Rosaceae genomics, and plans to apply newly accumulated knowledge and resources toward breeding and crop improvement. PMID:18487361

  13. Functional annotation of the genome unravels probiotic potential of Bacillus coagulans HS243.

    Science.gov (United States)

    Kapse, N G; Engineer, A S; Gowdaman, V; Wagh, S; Dhakephalkar, P K

    2018-05-30

    Spore forming Bacillus species are widely used as probiotics for human dietary supplements and in animal feeds. However, information on genetic basis of their probiotic action is obscure. Therefore, the present investigation was undertaken to elucidate probiotic traits of B. coagulans HS243 through its genome analysis. Genome mining revealed the presence of an arsenal of marker genes attributed to genuine probiotic traits. In silico analysis of HS243 genome revealed the presence of multi subunit ATPases, ADI pathway genes, chologlycine hydrolase, adhesion proteins for surviving and colonizing harsh gastric transit. HS243 genome harbored vitamin and essential amino acid biosynthetic genes, suggesting the use of HS243 as a nutrient supplement. Bacteriocin producing genes highlighted the disease preventing potential of HS243. Thus, this work established that HS243 possessed the genetic repertoire required for surviving harsh gastric transit and conferring health benefits to the host which were further validated by wet lab evidences. Copyright © 2018. Published by Elsevier Inc.

  14. Genome sequencing and annotation of Acinetobacter gerneri strain MTCC 9824T

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Singh

    2014-12-01

    Full Text Available The genus Acinetobacter consists of 31 validly published species ubiquitously distributed in nature and primarily associated with nosocomial infection. We report the 4.4 Mb genome of Acinetobacter gerneri strain MTCC 9824T. The genome has a G + C content of 38.0% and includes 3 rRNA genes (5S, 23S16S and 64 aminoacyl-tRNA synthetase genes.

  15. Genome sequencing and annotation of Acinetobacter gyllenbergii strain MTCC 11365T

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Singh

    2014-12-01

    Full Text Available The genus Acinetobacter consists of 31 validly published species ubiquitously distributed in nature and primarily associated with nosocomial infection. We report 4.3 Mb genome of the Acinetobacter gyllenbergii strain MTCC 11365T. The draft genome of A. gyllenbergii has a G + C content of 41.0% and includes 3 rRNA genes (5S, 23S, 16S and 67 aminoacyl-tRNA synthetase genes.

  16. Fish the ChIPs: a pipeline for automated genomic annotation of ChIP-Seq data

    Directory of Open Access Journals (Sweden)

    Minucci Saverio

    2011-10-01

    Full Text Available Abstract Background High-throughput sequencing is generating massive amounts of data at a pace that largely exceeds the throughput of data analysis routines. Here we introduce Fish the ChIPs (FC, a computational pipeline aimed at a broad public of users and designed to perform complete ChIP-Seq data analysis of an unlimited number of samples, thus increasing throughput, reproducibility and saving time. Results Starting from short read sequences, FC performs the following steps: 1 quality controls, 2 alignment to a reference genome, 3 peak calling, 4 genomic annotation, 5 generation of raw signal tracks for visualization on the UCSC and IGV genome browsers. FC exploits some of the fastest and most effective tools today available. Installation on a Mac platform requires very basic computational skills while configuration and usage are supported by a user-friendly graphic user interface. Alternatively, FC can be compiled from the source code on any Unix machine and then run with the possibility of customizing each single parameter through a simple configuration text file that can be generated using a dedicated user-friendly web-form. Considering the execution time, FC can be run on a desktop machine, even though the use of a computer cluster is recommended for analyses of large batches of data. FC is perfectly suited to work with data coming from Illumina Solexa Genome Analyzers or ABI SOLiD and its usage can potentially be extended to any sequencing platform. Conclusions Compared to existing tools, FC has two main advantages that make it suitable for a broad range of users. First of all, it can be installed and run by wet biologists on a Mac machine. Besides it can handle an unlimited number of samples, being convenient for large analyses. In this context, computational biologists can increase reproducibility of their ChIP-Seq data analyses while saving time for downstream analyses. Reviewers This article was reviewed by Gavin Huttley, George

  17. Analysis of Multiple Genomic Sequence Alignments: A Web Resource, Online Tools, and Lessons Learned From Analysis of Mammalian SCL Loci

    Science.gov (United States)

    Chapman, Michael A.; Donaldson, Ian J.; Gilbert, James; Grafham, Darren; Rogers, Jane; Green, Anthony R.; Göttgens, Berthold

    2004-01-01

    Comparative analysis of genomic sequences is becoming a standard technique for studying gene regulation. However, only a limited number of tools are currently available for the analysis of multiple genomic sequences. An extensive data set for the testing and training of such tools is provided by the SCL gene locus. Here we have expanded the data set to eight vertebrate species by sequencing the dog SCL locus and by annotating the dog and rat SCL loci. To provide a resource for the bioinformatics community, all SCL sequences and functional annotations, comprising a collation of the extensive experimental evidence pertaining to SCL regulation, have been made available via a Web server. A Web interface to new tools specifically designed for the display and analysis of multiple sequence alignments was also implemented. The unique SCL data set and new sequence comparison tools allowed us to perform a rigorous examination of the true benefits of multiple sequence comparisons. We demonstrate that multiple sequence alignments are, overall, superior to pairwise alignments for identification of mammalian regulatory regions. In the search for individual transcription factor binding sites, multiple alignments markedly increase the signal-to-noise ratio compared to pairwise alignments. PMID:14718377

  18. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus.

    Science.gov (United States)

    Gao, Jian; Li, Qiye; Wang, Zongji; Zhou, Yang; Martelli, Paolo; Li, Fang; Xiong, Zijun; Wang, Jian; Yang, Huanming; Zhang, Guojie

    2017-07-01

    The Chinese crocodile lizard, Shinisaurus crocodilurus, is the only living representative of the monotypic family Shinisauridae under the order Squamata. It is an obligate semi-aquatic, viviparous, diurnal species restricted to specific portions of mountainous locations in southwestern China and northeastern Vietnam. However, in the past several decades, this species has undergone a rapid decrease in population size due to illegal poaching and habitat disruption, making this unique reptile species endangered and listed in the Convention on International Trade in Endangered Species of Wild Fauna and Flora Appendix II since 1990. A proposal to uplist it to Appendix I was passed at the Convention on International Trade in Endangered Species of Wild Fauna and Flora Seventeenth meeting of the Conference of the Parties in 2016. To promote the conservation of this species, we sequenced the genome of a male Chinese crocodile lizard using a whole-genome shotgun strategy on the Illumina HiSeq 2000 platform. In total, we generated ∼291 Gb of raw sequencing data (×149 depth) from 13 libraries with insert sizes ranging from 250 bp to 40 kb. After filtering for polymerase chain reaction-duplicated and low-quality reads, ∼137 Gb of clean data (×70 depth) were obtained for genome assembly. We yielded a draft genome assembly with a total length of 2.24 Gb and an N50 scaffold size of 1.47 Mb. The assembled genome was predicted to contain 20 150 protein-coding genes and up to 1114 Mb (49.6%) of repetitive elements. The genomic resource of the Chinese crocodile lizard will contribute to deciphering the biology of this organism and provides an essential tool for conservation efforts. It also provides a valuable resource for future study of squamate evolution. © The Authors 2017. Published by Oxford University Press.

  19. Whole genome sequences and annotation of Micrococcus luteus SUBG006, a novel phytopathogen of mango.

    Science.gov (United States)

    Rakhashiya, Purvi M; Patel, Pooja P; Thaker, Vrinda S

    2015-12-01

    Actinobaceria, Micrococcus luteus SUBG006 was isolated from infected leaves of Mangifera indica L. vr. Nylon in Rajkot, (22.30°N, 70.78°E), Gujarat, India. The genome size is 3.86 Mb with G + C content of 69.80% and contains 112 rRNA sequences (5S, 16S and 23S). The whole genome sequencing has been deposited in DDBJ/EMBL/GenBank under the accession number JOKP00000000.

  20. Genome sequencing and annotation of Acinetobacter guillouiae strain MSP 4-18

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Singh

    2014-12-01

    Full Text Available The genus Acinetobacter consists of 31 validly published species ubiquitously distributed in nature and primarily associated with nosocomial infection. We report the 4.8 Mb genome of Acinetobacter guillouiae MSP 4-18, isolated from a mangrove soil sample from Parangipettai (11°30′N, 79°47′E, Tamil Nadu, India. The draft genome of A. guillouiae MSP 4-18 has a G + C content of 38.0% and includes 3 rRNA genes (5S, 23S, 16S and 69 aminoacyl-tRNA synthetase genes.

  1. Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives.

    Science.gov (United States)

    Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S S; Kudrna, David A; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A; Luo, Meizhong

    2013-11-01

    Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.

  2. Completed sequence and corrected annotation of the genome of maize Iranian mosaic virus.

    Science.gov (United States)

    Ghorbani, Abozar; Izadpanah, Keramatollah; Dietzgen, Ralf G

    2018-03-01

    Maize Iranian mosaic virus (MIMV) is a negative-sense single-stranded RNA virus that is classified in the genus Nucleorhabdovirus, family Rhabdoviridae. The MIMV genome contains six open reading frames (ORFs) that encode in 3΄ to 5΄ order the nucleocapsid protein (N), phosphoprotein (P), putative movement protein (P3), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). In this study, we determined the first complete genome sequence of MIMV using Illumina RNA-Seq and 3'/5' RACE. MIMV genome ('Fars' isolate) is 12,426 nucleotides in length. Unexpectedly, the predicted N gene ORF of this isolate and of four other Iranian isolates is 143 nucleotides shorter than that of the MIMV coding-complete reference isolate 'Shiraz 1' (Genbank NC_011542), possibly due to a minor error in the previous sequence. Genetic variability among the N, P, P3 and G ORFs of Iranian MIMV isolates was limited, but highest in the G gene ORF. Phylogenetic analysis of complete nucleorhabdovirus genomes demonstrated a close evolutionary relationship between MIMV, maize mosaic virus and taro vein chlorosis virus.

  3. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    NARCIS (Netherlands)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Acha, Moshe Ray; Newton-Cheh, Christopher; Pfeufer, Arne; Lyneh, Stacey N.; Olesen, Soren-Peter; Brunak, Soren; Ellinor, Patrick T.; Jukema, J. Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Ikea W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I. W.; Lage, Kasper; Olsen, Jesper V.

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes

  4. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Science.gov (United States)

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  5. Mapping and annotating obesity-related genes in pig and human genomes.

    Science.gov (United States)

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  6. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    DEFF Research Database (Denmark)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes...... involved in the Mendelian disorder long QT syndrome (LOTS). We integrated the LOTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LOTS protein...... network to filter weak GWAS signals by identifying single-nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy...

  7. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    Science.gov (United States)

    2012-11-15

    development of such an algal model system for basic discovery, we sequenced the genome and two sets of transcriptomes of N. oceanica CCMP1779, assembled...CCMP1779 has a gene encoding a highly conserved violax- anthin de-epoxidase ( VDE ) protein like that found in plants (Table S9). In Arabidopsis, VDE is...HLA3 or LCI1 were present. This result suggests that CCMP1779 might have a plastid Ci transport system similar to that of Chlamydomonas, but a distinct

  8. Integrative Annotation of Variants from 1092 Humans: Application to Cancer Genomics

    DEFF Research Database (Denmark)

    Khurana, Ekta; Fu, Yao; Colonna, Vincenza

    2013-01-01

    Identifying Important Identifiers Each of us has millions of sequence variations in our genomes. Signatures of purifying or negative selection should help identify which of those variations is functionally important. Khurana et al. (1235587) used sequence polymorphisms from 1092 humans across 14...... sites tended to occur in network hub promoters. Many recurrent somatic cancer variants occurred in noncoding regulatory regions and thus might indicate mutations that drive cancer....

  9. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    Full Text Available Abstract Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS were predicted by in silico analysis of the grapevine (Vitis vinifera genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information

  10. Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation

    Directory of Open Access Journals (Sweden)

    Wincker Patrick

    2009-12-01

    , 5'UTRs being strongly reduced, these signals can be used to ensure the accurate prediction of translation initiation codons for microsporidian genes and to improve microsporidian genome annotation.

  11. “Controlled, cross-species dataset for exploring biases in genome annotation and modification profiles”

    Directory of Open Access Journals (Sweden)

    Alison McAfee

    2015-12-01

    Full Text Available Since the sequencing of the honey bee genome, proteomics by mass spectrometry has become increasingly popular for biological analyses of this insect; but we have observed that the number of honey bee protein identifications is consistently low compared to other organisms [1]. In this dataset, we use nanoelectrospray ionization-coupled liquid chromatography–tandem mass spectrometry (nLC–MS/MS to systematically investigate the root cause of low honey bee proteome coverage. To this end, we present here data from three key experiments: a controlled, cross-species analyses of samples from Apis mellifera, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Mus musculus and Homo sapiens; a proteomic analysis of an individual honey bee whose genome was also sequenced; and a cross-tissue honey bee proteome comparison. The cross-species dataset was interrogated to determine relative proteome coverages between species, and the other two datasets were used to search for polymorphic sequences and to compare protein cleavage profiles, respectively.

  12. FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation.

    Science.gov (United States)

    Bolleman, Jerven T; Mungall, Christopher J; Strozzi, Francesco; Baran, Joachim; Dumontier, Michel; Bonnal, Raoul J P; Buels, Robert; Hoehndorf, Robert; Fujisawa, Takatomo; Katayama, Toshiaki; Cock, Peter J A

    2016-06-13

    Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned "omics" areas. Using the same data format to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe - and potentially merge - sequence annotations from multiple sources. Data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.

  13. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes.

    Directory of Open Access Journals (Sweden)

    Adam Alexander Thil Smith

    2012-05-01

    Full Text Available Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes, a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short. The first step locates "genomic metabolons", i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12.

  14. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection.

    Science.gov (United States)

    Bencke-Malato, Marta; Cabreira, Caroline; Wiebke-Strohm, Beatriz; Bücker-Neto, Lauro; Mancini, Estefania; Osorio, Marina B; Homrich, Milena S; Turchetto-Zolet, Andreia Carina; De Carvalho, Mayra C C G; Stolf, Renata; Weber, Ricardo L M; Westergaard, Gastón; Castagnaro, Atílio P; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C; Margis-Pinheiro, Márcia; Bodanese-Zanettini, Maria Helena

    2014-09-10

    Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus. The number of WRKY genes already annotated in soybean genome was underrepresented. In the present study, a genome-wide annotation of the soybean WRKY family was carried out and members involved in the response to P. pachyrhizi were identified. As a result of a soybean genomic databases search, 182 WRKY-encoding genes were annotated and 33 putative pseudogenes identified. Genes involved in the response to P. pachyrhizi infection were identified using superSAGE, RNA-Seq of microdissected lesions and microarray experiments. Seventy-five genes were differentially expressed during fungal infection. The expression of eight WRKY genes was validated by RT-qPCR. The expression of these genes in a resistant genotype was earlier and/or stronger compared with a susceptible genotype in response to P. pachyrhizi infection. Soybean somatic embryos were transformed in order to overexpress or silence WRKY genes. Embryos overexpressing a WRKY gene were obtained, but they were unable to convert into plants. When infected with P. pachyrhizi, the leaves of the silenced transgenic line showed a higher number of lesions than the wild-type plants. The present study reports a genome-wide annotation of soybean WRKY family. The participation of some members in response to P. pachyrhizi infection was demonstrated. The results contribute to the elucidation of gene function and suggest the manipulation of WRKYs as a strategy to increase fungal resistance in soybean plants.

  15. Rapid high resolution genotyping of Francisella tularensis by whole genome sequence comparison of annotated genes ("MLST+".

    Directory of Open Access Journals (Sweden)

    Markus H Antwerpen

    Full Text Available The zoonotic disease tularemia is caused by the bacterium Francisella tularensis. This pathogen is considered as a category A select agent with potential to be misused in bioterrorism. Molecular typing based on DNA-sequence like canSNP-typing or MLVA has become the accepted standard for this organism. Due to the organism's highly clonal nature, the current typing methods have reached their limit of discrimination for classifying closely related subpopulations within the subspecies F. tularensis ssp. holarctica. We introduce a new gene-by-gene approach, MLST+, based on whole genome data of 15 sequenced F. tularensis ssp. holarctica strains and apply this approach to investigate an epidemic of lethal tularemia among non-human primates in two animal facilities in Germany. Due to the high resolution of MLST+ we are able to demonstrate that three independent clones of this highly infectious pathogen were responsible for these spatially and temporally restricted outbreaks.

  16. The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes.

    Science.gov (United States)

    Kapopoulou, Adamandia; Lew, Jocelyne M; Cole, Stewart T

    2011-01-01

    In this paper, we present the MycoBrowser portal (http://mycobrowser.epfl.ch/), a resource that provides both in silico generated and manually reviewed information within databases dedicated to the complete genomes of Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium marinum and Mycobacterium smegmatis. A central component of MycoBrowser is TubercuList (http://tuberculist.epfl.ch), which has recently benefited from a new data management system and web interface. These improvements were extended to all MycoBrowser databases. We provide an overview of the functionalities available and the different ways of interrogating the data then discuss how both the new information and the latest features are helping the mycobacterial research communities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    NARCIS (Netherlands)

    M.J. Falk (Marni J.); L. Shen (Lishuang); M. Gonzalez (Michael); J. Leipzig (Jeremy); M.T. Lott (Marie T.); A.P.M. Stassen (Alphons P.M.); M.A. Diroma (Maria Angela); D. Navarro-Gomez (Daniel); P. Yeske (Philip); R. Bai (Renkui); R.G. Boles (Richard G.); V. Brilhante (Virginia); D. Ralph (David); J.T. DaRe (Jeana T.); R. Shelton (Robert); S.F. Terry (Sharon); Z. Zhang (Zhe); W.C. Copeland (William C.); M. van Oven (Mannis); H. Prokisch (Holger); D.C. Wallace; M. Attimonelli (Marcella); D. Krotoski (Danuta); S. Zuchner (Stephan); X. Gai (Xiaowu); S. Bale (Sherri); J. Bedoyan (Jirair); D.M. Behar (Doron); P. Bonnen (Penelope); L. Brooks (Lisa); C. Calabrese (Claudia); S. Calvo (Sarah); P.F. Chinnery (Patrick); J. Christodoulou (John); D. Church (Deanna); R. Clima (Rosanna); B.H. Cohen (Bruce H.); R.G.H. Cotton (Richard); I.F.M. de Coo (René); O. Derbenevoa (Olga); J.T. den Dunnen (Johan); D. Dimmock (David); G. Enns (Gregory); G. Gasparre (Giuseppe); A. Goldstein (Amy); I. Gonzalez (Iris); K. Gwinn (Katrina); S. Hahn (Sihoun); R.H. Haas (Richard H.); H. Hakonarson (Hakon); M. Hirano (Michio); D. Kerr (Douglas); D. Li (Dong); M. Lvova (Maria); F. Macrae (Finley); D. Maglott (Donna); E. McCormick (Elizabeth); G. Mitchell (Grant); V.K. Mootha (Vamsi K.); Y. Okazaki (Yasushi); A. Pujol (Aurora); M. Parisi (Melissa); J.C. Perin (Juan Carlos); E.A. Pierce (Eric A.); V. Procaccio (Vincent); S. Rahman (Shamima); H. Reddi (Honey); H. Rehm (Heidi); E. Riggs (Erin); R.J.T. Rodenburg (Richard); Y. Rubinstein (Yaffa); R. Saneto (Russell); M. Santorsola (Mariangela); C. Scharfe (Curt); C. Sheldon (Claire); E.A. Shoubridge (Eric); D. Simone (Domenico); B. Smeets (Bert); J.A.M. Smeitink (Jan); C. Stanley (Christine); A. Suomalainen (Anu); M.A. Tarnopolsky (Mark); I. Thiffault (Isabelle); D.R. Thorburn (David R.); J.V. Hove (Johan Van); L. Wolfe (Lynne); L.-J. Wong (Lee-Jun)

    2015-01-01

    textabstractSuccess rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires

  18. Genomic multiple sequence alignments: refinement using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Lefkowitz Elliot J

    2005-08-01

    Full Text Available Abstract Background Genomic sequence data cannot be fully appreciated in isolation. Comparative genomics – the practice of comparing genomic sequences from different species – plays an increasingly important role in understanding the genotypic differences between species that result in phenotypic differences as well as in revealing patterns of evolutionary relationships. One of the major challenges in comparative genomics is producing a high-quality alignment between two or more related genomic sequences. In recent years, a number of tools have been developed for aligning large genomic sequences. Most utilize heuristic strategies to identify a series of strong sequence similarities, which are then used as anchors to align the regions between the anchor points. The resulting alignment is globally correct, but in many cases is suboptimal locally. We describe a new program, GenAlignRefine, which improves the overall quality of global multiple alignments by using a genetic algorithm to improve local regions of alignment. Regions of low quality are identified, realigned using the program T-Coffee, and then refined using a genetic algorithm. Because a better COFFEE (Consistency based Objective Function For alignmEnt Evaluation score generally reflects greater alignment quality, the algorithm searches for an alignment that yields a better COFFEE score. To improve the intrinsic slowness of the genetic algorithm, GenAlignRefine was implemented as a parallel, cluster-based program. Results We tested the GenAlignRefine algorithm by running it on a Linux cluster to refine sequences from a simulation, as well as refine a multiple alignment of 15 Orthopoxvirus genomic sequences approximately 260,000 nucleotides in length that initially had been aligned by Multi-LAGAN. It took approximately 150 minutes for a 40-processor Linux cluster to optimize some 200 fuzzy (poorly aligned regions of the orthopoxvirus alignment. Overall sequence identity increased only

  19. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    Science.gov (United States)

    Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Goncalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Borringer, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex SF; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian’an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Perry, John RB; Platou, Carl GP; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth JF; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin NA; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O’Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672

  20. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea

    OpenAIRE

    Wolf Yuri I; Novichkov Pavel S; Sorokin Alexander V; Makarova Kira S; Koonin Eugene V

    2007-01-01

    Abstract Background An evolutionary classification of genes from sequenced genomes that distinguishes between orthologs and paralogs is indispensable for genome annotation and evolutionary reconstruction. Shortly after multiple genome sequences of bacteria, archaea, and unicellular eukaryotes became available, an attempt on such a classification was implemented in Clusters of Orthologous Groups of proteins (COGs). Rapid accumulation of genome sequences creates opportunities for refining COGs ...

  1. Evidence-based annotation of the malaria parasite's genome using comparative expression profiling.

    Directory of Open Access Journals (Sweden)

    Yingyao Zhou

    2008-02-01

    Full Text Available A fundamental problem in systems biology and whole genome sequence analysis is how to infer functions for the many uncharacterized proteins that are identified, whether they are conserved across organisms of different phyla or are phylum-specific. This problem is especially acute in pathogens, such as malaria parasites, where genetic and biochemical investigations are likely to be more difficult. Here we perform comparative expression analysis on Plasmodium parasite life cycle data derived from P. falciparum blood, sporozoite, zygote and ookinete stages, and P. yoelii mosquito oocyst and salivary gland sporozoites, blood and liver stages and show that type II fatty acid biosynthesis genes are upregulated in liver and insect stages relative to asexual blood stages. We also show that some universally uncharacterized genes with orthologs in Plasmodium species, Saccharomyces cerevisiae and humans show coordinated transcription patterns in large collections of human and yeast expression data and that the function of the uncharacterized genes can sometimes be predicted based on the expression patterns across these diverse organisms. We also use a comprehensive and unbiased literature mining method to predict which uncharacterized parasite-specific genes are likely to have roles in processes such as gliding motility, host-cell interactions, sporozoite stage, or rhoptry function. These analyses, together with protein-protein interaction data, provide probabilistic models that predict the function of 926 uncharacterized malaria genes and also suggest that malaria parasites may provide a simple model system for the study of some human processes. These data also provide a foundation for further studies of transcriptional regulation in malaria parasites.

  2. Inconsistencies of genome annotations in apicomplexan parasites revealed by 5'-end-one-pass and full-length sequences of oligo-capped cDNAs

    Directory of Open Access Journals (Sweden)

    Sugano Sumio

    2009-07-01

    Full Text Available Abstract Background Apicomplexan parasites are causative agents of various diseases including malaria and have been targets of extensive genomic sequencing. We generated 5'-EST collections for six apicomplexa parasites using our full-length oligo-capping cDNA library method. To improve upon the current genome annotations, as well as to validate the importance for physical cDNA clone resources, we generated a large-scale collection of full-length cDNAs for several apicomplexa parasites. Results In this study, we used a total of 61,056 5'-end-single-pass cDNA sequences from Plasmodium falciparum, P. vivax, P. yoelii, P. berghei, Cryptosporidium parvum, and Toxoplasma gondii. We compared these partially sequenced cDNA sequences with the currently annotated gene models and observed significant inconsistencies between the two datasets. In particular, we found that on average 14% of the exons in the current gene models were not supported by any cDNA evidence, and that 16% of the current gene models may contain at least one mis-annotation and should be re-evaluated. We also identified a large number of transcripts that had been previously unidentified. For 732 cDNAs in T. gondii, the entire sequences were determined in order to evaluate the annotated gene models at the complete full-length transcript level. We found that 41% of the T. gondii gene models contained at least one inconsistency. We also identified and confirmed by RT-PCR 140 previously unidentified transcripts found in the intergenic regions of the current gene annotations. We show that the majority of these discrepancies are due to questionable predictions of one or two extra exons in the upstream or downstream regions of the genes. Conclusion Our data indicates that the current gene models are likely to still be incomplete and have much room for improvement. Our unique full-length cDNA information is especially useful for further refinement of the annotations for the genomes of

  3. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma

    DEFF Research Database (Denmark)

    Mitchell, Jonathan S; Li, Ni; Weinhold, Niels

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a ...

  4. ATLAS (Automatic Tool for Local Assembly Structures) - A Comprehensive Infrastructure for Assembly, Annotation, and Genomic Binning of Metagenomic and Metaranscripomic Data

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard A.; Brown, Joseph M.; Colby, Sean M.; Overall, Christopher C.; Lee, Joon-Yong; Zucker, Jeremy D.; Glaesemann, Kurt R.; Jansson, Georg C.; Jansson, Janet K.

    2017-03-02

    ATLAS (Automatic Tool for Local Assembly Structures) is a comprehensive multiomics data analysis pipeline that is massively parallel and scalable. ATLAS contains a modular analysis pipeline for assembly, annotation, quantification and genome binning of metagenomics and metatranscriptomics data and a framework for reference metaproteomic database construction. ATLAS transforms raw sequence data into functional and taxonomic data at the microbial population level and provides genome-centric resolution through genome binning. ATLAS provides robust taxonomy based on majority voting of protein coding open reading frames rolled-up at the contig level using modified lowest common ancestor (LCA) analysis. ATLAS provides robust taxonomy based on majority voting of protein coding open reading frames rolled-up at the contig level using modified lowest common ancestor (LCA) analysis. ATLAS is user-friendly, easy install through bioconda maintained as open-source on GitHub, and is implemented in Snakemake for modular customizable workflows.

  5. GenPlay Multi-Genome, a tool to compare and analyze multiple human genomes in a graphical interface.

    Science.gov (United States)

    Lajugie, Julien; Fourel, Nicolas; Bouhassira, Eric E

    2015-01-01

    Parallel visualization of multiple individual human genomes is a complex endeavor that is rapidly gaining importance with the increasing number of personal, phased and cancer genomes that are being generated. It requires the display of variants such as SNPs, indels and structural variants that are unique to specific genomes and the introduction of multiple overlapping gaps in the reference sequence. Here, we describe GenPlay Multi-Genome, an application specifically written to visualize and analyze multiple human genomes in parallel. GenPlay Multi-Genome is ideally suited for the comparison of allele-specific expression and functional genomic data obtained from multiple phased genomes in a graphical interface with access to multiple-track operation. It also allows the analysis of data that have been aligned to custom genomes rather than to a standard reference and can be used as a variant calling format file browser and as a tool to compare different genome assembly, such as hg19 and hg38. GenPlay is available under the GNU public license (GPL-3) from http://genplay.einstein.yu.edu. The source code is available at https://github.com/JulienLajugie/GenPlay. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Multiple Whole Genome Alignments and Novel Biomedical Applicationsat the VISTA Portal

    Energy Technology Data Exchange (ETDEWEB)

    Brudno, Michael; Poliakov, Alexander; Minovitsky, Simon; Ratnere,Igor; Dubchak, Inna

    2007-02-01

    The VISTA portal for comparative genomics is designed togive biomedical scientists a unified set of tools to lead them from theraw DNA sequences through the alignment and annotation to thevisualization of the results. The VISTA portal also hosts alignments of anumber of genomes computed by our group, allowing users to study regionsof their interest without having to manually download the individualsequences. Here we describe various algorithmic and functionalimprovements implemented in the VISTA portal over the last two years. TheVISTA Portal is accessible at http://genome.lbl.gov/vista.

  7. Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains.

    Science.gov (United States)

    Harrison, Robert L; Rowley, Daniel L; Keena, Melody A

    2016-06-01

    Isolates of the baculovirus species Lymantria dispar multiple nucleopolyhedrovirus have been formulated and applied to suppress outbreaks of the gypsy moth, L. dispar. To evaluate the genetic diversity in this species at the genomic level, the genomes of three isolates from Massachusetts, USA (LdMNPV-Ab-a624), Spain (LdMNPV-3054), and Japan (LdMNPV-3041) were sequenced and compared with four previously determined LdMNPV genome sequences. The LdMNPV genome sequences were collinear and contained the same homologous repeats (hrs) and clusters of baculovirus repeat orf (bro) gene family members in the same relative positions in their genomes, although sequence identities in these regions were low. Of 146 non-bro ORFs annotated in the genome of the representative isolate LdMNPV 5-6, 135 ORFs were found in every other LdMNPV genome, including the 37 core genes of Baculoviridae and other genes conserved in genus Alphabaculovirus. Phylogenetic inference with an alignment of the core gene nucleotide sequences grouped isolates 3041 (Japan) and 2161 (Korea) separately from a cluster containing isolates from Europe, North America, and Russia. To examine phenotypic diversity, bioassays were carried out with a selection of isolates against neonate larvae from three European gypsy moth (Lymantria dispar dispar) and three Asian gypsy moth (Lymantria dispar asiatica and Lymantria dispar japonica) colonies. LdMNPV isolates 2161 (Korea), 3029 (Russia), and 3041 (Japan) exhibited a greater degree of pathogenicity against all L. dispar strains than LdMNPV from a sample of Gypchek. This study provides additional information on the genetic diversity of LdMNPV isolates and their activity against the Asian gypsy moth, a potential invasive pest of North American trees and forests. Published by Elsevier Inc.

  8. Re-annotation of the physical map of Glycine max for polyploid-like regions by BAC end sequence driven whole genome shotgun read assembly

    Directory of Open Access Journals (Sweden)

    Shultz Jeffry

    2008-07-01

    Full Text Available Abstract Background Many of the world's most important food crops have either polyploid genomes or homeologous regions derived from segmental shuffling following polyploid formation. The soybean (Glycine max genome has been shown to be composed of approximately four thousand short interspersed homeologous regions with 1, 2 or 4 copies per haploid genome by RFLP analysis, microsatellite anchors to BACs and by contigs formed from BAC fingerprints. Despite these similar regions,, the genome has been sequenced by whole genome shotgun sequence (WGS. Here the aim was to use BAC end sequences (BES derived from three minimum tile paths (MTP to examine the extent and homogeneity of polyploid-like regions within contigs and the extent of correlation between the polyploid-like regions inferred from fingerprinting and the polyploid-like sequences inferred from WGS matches. Results Results show that when sequence divergence was 1–10%, the copy number of homeologous regions could be identified from sequence variation in WGS reads overlapping BES. Homeolog sequence variants (HSVs were single nucleotide polymorphisms (SNPs; 89% and single nucleotide indels (SNIs 10%. Larger indels were rare but present (1%. Simulations that had predicted fingerprints of homeologous regions could be separated when divergence exceeded 2% were shown to be false. We show that a 5–10% sequence divergence is necessary to separate homeologs by fingerprinting. BES compared to WGS traces showed polyploid-like regions with less than 1% sequence divergence exist at 2.3% of the locations assayed. Conclusion The use of HSVs like SNPs and SNIs to characterize BACs wil improve contig building methods. The implications for bioinformatic and functional annotation of polyploid and paleopolyploid genomes show that a combined approach of BAC fingerprint based physical maps, WGS sequence and HSV-based partitioning of BAC clones from homeologous regions to separate contigs will allow reliable de

  9. HBVRegDB: Annotation, comparison, detection and visualization of regulatory elements in hepatitis B virus sequences

    Directory of Open Access Journals (Sweden)

    Firth Andrew E

    2007-12-01

    Full Text Available Abstract Background The many Hepadnaviridae sequences available have widely varied functional annotation. The genomes are very compact (~3.2 kb but contain multiple layers of functional regulatory elements in addition to coding regions. Key regions are subject to purifying selection, as mutations in these regions will produce non-functional viruses. Results These genomic sequences have been organized into a structured database to facilitate research at the molecular level. HBVRegDB is a comparative genomic analysis tool with an integrated underlying sequence database. The database contains genomic sequence data from representative viruses. In addition to INSDC and RefSeq annotation, HBVRegDB also contains expert and systematically calculated annotations (e.g. promoters and comparative genome analysis results (e.g. blastn, tblastx. It also contains analyses based on curated HBV alignments. Information about conserved regions – including primary conservation (e.g. CDS-Plotcon and RNA secondary structure predictions (e.g. Alidot – is integrated into the database. A large amount of data is graphically presented using the GBrowse (Generic Genome Browser adapted for analysis of viral genomes. Flexible query access is provided based on any annotated genomic feature. Novel regulatory motifs can be found by analysing the annotated sequences. Conclusion HBVRegDB serves as a knowledge database and as a comparative genomic analysis tool for molecular biologists investigating HBV. It is publicly available and complementary to other viral and HBV focused datasets and tools http://hbvregdb.otago.ac.nz. The availability of multiple and highly annotated sequences of viral genomes in one database combined with comparative analysis tools facilitates detection of novel genomic elements.

  10. COGNATE: comparative gene annotation characterizer.

    Science.gov (United States)

    Wilbrandt, Jeanne; Misof, Bernhard; Niehuis, Oliver

    2017-07-17

    The comparison of gene and genome structures across species has the potential to reveal major trends of genome evolution. However, such a comparative approach is currently hampered by a lack of standardization (e.g., Elliott TA, Gregory TR, Philos Trans Royal Soc B: Biol Sci 370:20140331, 2015). For example, testing the hypothesis that the total amount of coding sequences is a reliable measure of potential proteome diversity (Wang M, Kurland CG, Caetano-Anollés G, PNAS 108:11954, 2011) requires the application of standardized definitions of coding sequence and genes to create both comparable and comprehensive data sets and corresponding summary statistics. However, such standard definitions either do not exist or are not consistently applied. These circumstances call for a standard at the descriptive level using a minimum of parameters as well as an undeviating use of standardized terms, and for software that infers the required data under these strict definitions. The acquisition of a comprehensive, descriptive, and standardized set of parameters and summary statistics for genome publications and further analyses can thus greatly benefit from the availability of an easy to use standard tool. We developed a new open-source command-line tool, COGNATE (Comparative Gene Annotation Characterizer), which uses a given genome assembly and its annotation of protein-coding genes for a detailed description of the respective gene and genome structure parameters. Additionally, we revised the standard definitions of gene and genome structures and provide the definitions used by COGNATE as a working draft suggestion for further reference. Complete parameter lists and summary statistics are inferred using this set of definitions to allow down-stream analyses and to provide an overview of the genome and gene repertoire characteristics. COGNATE is written in Perl and freely available at the ZFMK homepage ( https://www.zfmk.de/en/COGNATE ) and on github ( https

  11. Genome diversity and divergence in Drosophila mauritiana: multiple signatures of faster X evolution.

    Science.gov (United States)

    Garrigan, Daniel; Kingan, Sarah B; Geneva, Anthony J; Vedanayagam, Jeffrey P; Presgraves, Daven C

    2014-09-04

    Drosophila mauritiana is an Indian Ocean island endemic species that diverged from its two sister species, Drosophila simulans and Drosophila sechellia, approximately 240,000 years ago. Multiple forms of incomplete reproductive isolation have evolved among these species, including sexual, gametic, ecological, and intrinsic postzygotic barriers, with crosses among all three species conforming to Haldane's rule: F(1) hybrid males are sterile and F(1) hybrid females are fertile. Extensive genetic resources and the fertility of hybrid females have made D. mauritiana, in particular, an important model for speciation genetics. Analyses between D. mauritiana and both of its siblings have shown that the X chromosome makes a disproportionate contribution to hybrid male sterility. But why the X plays a special role in the evolution of hybrid sterility in these, and other, species remains an unsolved problem. To complement functional genetic analyses, we have investigated the population genomics of D. mauritiana, giving special attention to differences between the X and the autosomes. We present a de novo genome assembly of D. mauritiana annotated with RNAseq data and a whole-genome analysis of polymorphism and divergence from ten individuals. Our analyses show that, relative to the autosomes, the X chromosome has reduced nucleotide diversity but elevated nucleotide divergence; an excess of recurrent adaptive evolution at its protein-coding genes; an excess of recent, strong selective sweeps; and a large excess of satellite DNA. Interestingly, one of two centimorgan-scale selective sweeps on the D. mauritiana X chromosome spans a region containing two sex-ratio meiotic drive elements and a high concentration of satellite DNA. Furthermore, genes with roles in reproduction and chromosome biology are enriched among genes that have histories of recurrent adaptive protein evolution. Together, these genome-wide analyses suggest that genetic conflict and frequent positive natural

  12. Functional annotation of rheumatoid arthritis and osteoarthritis associated genes by integrative genome-wide gene expression profiling analysis.

    Directory of Open Access Journals (Sweden)

    Zhan-Chun Li

    Full Text Available BACKGROUND: Rheumatoid arthritis (RA and osteoarthritis (OA are two major types of joint diseases that share multiple common symptoms. However, their pathological mechanism remains largely unknown. The aim of our study is to identify RA and OA related-genes and gain an insight into the underlying genetic basis of these diseases. METHODS: We collected 11 whole genome-wide expression profiling datasets from RA and OA cohorts and performed a meta-analysis to comprehensively investigate their expression signatures. This method can avoid some pitfalls of single dataset analyses. RESULTS AND CONCLUSION: We found that several biological pathways (i.e., the immunity, inflammation and apoptosis related pathways are commonly involved in the development of both RA and OA. Whereas several other pathways (i.e., vasopressin-related pathway, regulation of autophagy, endocytosis, calcium transport and endoplasmic reticulum stress related pathways present significant difference between RA and OA. This study provides novel insights into the molecular mechanisms underlying this disease, thereby aiding the diagnosis and treatment of the disease.

  13. Algal Functional Annotation Tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data

    Directory of Open Access Journals (Sweden)

    Merchant Sabeeha S

    2011-07-01

    Full Text Available Abstract Background Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. Description The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of

  14. Murasaki: a fast, parallelizable algorithm to find anchors from multiple genomes.

    Directory of Open Access Journals (Sweden)

    Kris Popendorf

    Full Text Available BACKGROUND: With the number of available genome sequences increasing rapidly, the magnitude of sequence data required for multiple-genome analyses is a challenging problem. When large-scale rearrangements break the collinearity of gene orders among genomes, genome comparison algorithms must first identify sets of short well-conserved sequences present in each genome, termed anchors. Previously, anchor identification among multiple genomes has been achieved using pairwise alignment tools like BLASTZ through progressive alignment tools like TBA, but the computational requirements for sequence comparisons of multiple genomes quickly becomes a limiting factor as the number and scale of genomes grows. METHODOLOGY/PRINCIPAL FINDINGS: Our algorithm, named Murasaki, makes it possible to identify anchors within multiple large sequences on the scale of several hundred megabases in few minutes using a single CPU. Two advanced features of Murasaki are (1 adaptive hash function generation, which enables efficient use of arbitrary mismatch patterns (spaced seeds and therefore the comparison of multiple mammalian genomes in a practical amount of computation time, and (2 parallelizable execution that decreases the required wall-clock and CPU times. Murasaki can perform a sensitive anchoring of eight mammalian genomes (human, chimp, rhesus, orangutan, mouse, rat, dog, and cow in 21 hours CPU time (42 minutes wall time. This is the first single-pass in-core anchoring of multiple mammalian genomes. We evaluated Murasaki by comparing it with the genome alignment programs BLASTZ and TBA. We show that Murasaki can anchor multiple genomes in near linear time, compared to the quadratic time requirements of BLASTZ and TBA, while improving overall accuracy. CONCLUSIONS/SIGNIFICANCE: Murasaki provides an open source platform to take advantage of long patterns, cluster computing, and novel hash algorithms to produce accurate anchors across multiple genomes with

  15. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    Science.gov (United States)

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  16. De novo genome assembly and annotation of Australia's largest freshwater fish, the Murray cod (Maccullochella peelii), from Illumina and Nanopore sequencing read.

    Science.gov (United States)

    Austin, Christopher M; Tan, Mun Hua; Harrisson, Katherine A; Lee, Yin Peng; Croft, Laurence J; Sunnucks, Paul; Pavlova, Alexandra; Gan, Han Ming

    2017-08-01

    One of the most iconic Australian fish is the Murray cod, Maccullochella peelii (Mitchell 1838), a freshwater species that can grow to ∼1.8 metres in length and live to age ≥48 years. The Murray cod is of a conservation concern as a result of strong population contractions, but it is also popular for recreational fishing and is of growing aquaculture interest. In this study, we report the whole genome sequence of the Murray cod to support ongoing population genetics, conservation, and management research, as well as to better understand the evolutionary ecology and history of the species. A draft Murray cod genome of 633 Mbp (N50 = 109 974bp; BUSCO and CEGMA completeness of 94.2% and 91.9%, respectively) with an estimated 148 Mbp of putative repetitive sequences was assembled from the combined sequencing data of 2 fish individuals with an identical maternal lineage; 47.2 Gb of Illumina HiSeq data and 804 Mb of Nanopore data were generated from the first individual while 23.2 Gb of Illumina MiSeq data were generated from the second individual. The inclusion of Nanopore reads for scaffolding followed by subsequent gap-closing using Illumina data led to a 29% reduction in the number of scaffolds and a 55% and 54% increase in the scaffold and contig N50, respectively. We also report the first transcriptome of Murray cod that was subsequently used to annotate the Murray cod genome, leading to the identification of 26 539 protein-coding genes. We present the whole genome of the Murray cod and anticipate this will be a catalyst for a range of genetic, genomic, and phylogenetic studies of the Murray cod and more generally other fish species of the Percichthydae family. © The Authors 2017. Published by Oxford University Press.

  17. Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems

    Science.gov (United States)

    Montesinos-López, Osval A.; Montesinos-López, Abelardo; Crossa, José; Montesinos-López, José C.; Mota-Sanchez, David; Estrada-González, Fermín; Gillberg, Jussi; Singh, Ravi; Mondal, Suchismita; Juliana, Philomin

    2018-01-01

    In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in environments is difficult because the available information is generally sparse and usually has low correlations between traits. In current genomic selection, although researchers have a large amount of information and appropriate statistical models to process it, there is still limited computing efficiency to do so. Although some statistical models are usually mathematically elegant, many of them are also computationally inefficient, and they are impractical for many traits, lines, environments, and years because they need to sample from huge normal multivariate distributions. For these reasons, this study explores two recommender systems: item-based collaborative filtering (IBCF) and the matrix factorization algorithm (MF) in the context of multiple traits and multiple environments. The IBCF and MF methods were compared with two conventional methods on simulated and real data. Results of the simulated and real data sets show that the IBCF technique was slightly better in terms of prediction accuracy than the two conventional methods and the MF method when the correlation was moderately high. The IBCF technique is very attractive because it produces good predictions when there is high correlation between items (environment–trait combinations) and its implementation is computationally feasible, which can be useful for plant breeders who deal with very large data sets. PMID:29097376

  18. Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems.

    Science.gov (United States)

    Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; Montesinos-López, José C; Mota-Sanchez, David; Estrada-González, Fermín; Gillberg, Jussi; Singh, Ravi; Mondal, Suchismita; Juliana, Philomin

    2018-01-04

    In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in environments is difficult because the available information is generally sparse and usually has low correlations between traits. In current genomic selection, although researchers have a large amount of information and appropriate statistical models to process it, there is still limited computing efficiency to do so. Although some statistical models are usually mathematically elegant, many of them are also computationally inefficient, and they are impractical for many traits, lines, environments, and years because they need to sample from huge normal multivariate distributions. For these reasons, this study explores two recommender systems: item-based collaborative filtering (IBCF) and the matrix factorization algorithm (MF) in the context of multiple traits and multiple environments. The IBCF and MF methods were compared with two conventional methods on simulated and real data. Results of the simulated and real data sets show that the IBCF technique was slightly better in terms of prediction accuracy than the two conventional methods and the MF method when the correlation was moderately high. The IBCF technique is very attractive because it produces good predictions when there is high correlation between items (environment-trait combinations) and its implementation is computationally feasible, which can be useful for plant breeders who deal with very large data sets. Copyright © 2018 Montesinos-Lopez et al.

  19. Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems

    Directory of Open Access Journals (Sweden)

    Osval A. Montesinos-López

    2018-01-01

    Full Text Available In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in environments is difficult because the available information is generally sparse and usually has low correlations between traits. In current genomic selection, although researchers have a large amount of information and appropriate statistical models to process it, there is still limited computing efficiency to do so. Although some statistical models are usually mathematically elegant, many of them are also computationally inefficient, and they are impractical for many traits, lines, environments, and years because they need to sample from huge normal multivariate distributions. For these reasons, this study explores two recommender systems: item-based collaborative filtering (IBCF and the matrix factorization algorithm (MF in the context of multiple traits and multiple environments. The IBCF and MF methods were compared with two conventional methods on simulated and real data. Results of the simulated and real data sets show that the IBCF technique was slightly better in terms of prediction accuracy than the two conventional methods and the MF method when the correlation was moderately high. The IBCF technique is very attractive because it produces good predictions when there is high correlation between items (environment–trait combinations and its implementation is computationally feasible, which can be useful for plant breeders who deal with very large data sets.

  20. All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs

    DEFF Research Database (Denmark)

    Schork, Andrew J; Thompson, Wesley K; Pham, Phillip

    2013-01-01

    Recent results indicate that genome-wide association studies (GWAS) have the potential to explain much of the heritability of common complex phenotypes, but methods are lacking to reliably identify the remaining associated single nucleotide polymorphisms (SNPs). We applied stratified False...... Discovery Rate (sFDR) methods to leverage genic enrichment in GWAS summary statistics data to uncover new loci likely to replicate in independent samples. Specifically, we use linkage disequilibrium-weighted annotations for each SNP in combination with nominal p-values to estimate the True Discovery Rate...... in introns, and negative enrichment for intergenic SNPs. Stratified enrichment directly leads to increased TDR for a given p-value, mirrored by increased replication rates in independent samples. We show this in independent Crohn's disease GWAS, where we find a hundredfold variation in replication rate...

  1. Functional annotation by sequence-weighted structure alignments: statistical analysis and case studies from the Protein 3000 structural genomics project in Japan.

    Science.gov (United States)

    Standley, Daron M; Toh, Hiroyuki; Nakamura, Haruki

    2008-09-01

    A method to functionally annotate structural genomics targets, based on a novel structural alignment scoring function, is proposed. In the proposed score, position-specific scoring matrices are used to weight structurally aligned residue pairs to highlight evolutionarily conserved motifs. The functional form of the score is first optimized for discriminating domains belonging to the same Pfam family from domains belonging to different families but the same CATH or SCOP superfamily. In the optimization stage, we consider four standard weighting functions as well as our own, the "maximum substitution probability," and combinations of these functions. The optimized score achieves an area of 0.87 under the receiver-operating characteristic curve with respect to identifying Pfam families within a sequence-unique benchmark set of domain pairs. Confidence measures are then derived from the benchmark distribution of true-positive scores. The alignment method is next applied to the task of functionally annotating 230 query proteins released to the public as part of the Protein 3000 structural genomics project in Japan. Of these queries, 78 were found to align to templates with the same Pfam family as the query or had sequence identities > or = 30%. Another 49 queries were found to match more distantly related templates. Within this group, the template predicted by our method to be the closest functional relative was often not the most structurally similar. Several nontrivial cases are discussed in detail. Finally, 103 queries matched templates at the fold level, but not the family or superfamily level, and remain functionally uncharacterized. 2008 Wiley-Liss, Inc.

  2. De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti).

    Science.gov (United States)

    Goubert, Clément; Modolo, Laurent; Vieira, Cristina; ValienteMoro, Claire; Mavingui, Patrick; Boulesteix, Matthieu

    2015-03-11

    Repetitive DNA, including transposable elements (TEs), is found throughout eukaryotic genomes. Annotating and assembling the "repeatome" during genome-wide analysis often poses a challenge. To address this problem, we present dnaPipeTE-a new bioinformatics pipeline that uses a sample of raw genomic reads. It produces precise estimates of repeated DNA content and TE consensus sequences, as well as the relative ages of TE families. We shows that dnaPipeTE performs well using very low coverage sequencing in different genomes, losing accuracy only with old TE families. We applied this pipeline to the genome of the Asian tiger mosquito Aedes albopictus, an invasive species of human health interest, for which the genome size is estimated to be over 1 Gbp. Using dnaPipeTE, we showed that this species harbors a large (50% of the genome) and potentially active repeatome with an overall TE class and order composition similar to that of Aedes aegypti, the yellow fever mosquito. However, intraorder dynamics show clear distinctions between the two species, with differences at the TE family level. Our pipeline's ability to manage the repeatome annotation problem will make it helpful for new or ongoing assembly projects, and our results will benefit future genomic studies of A. albopictus. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling.

    Directory of Open Access Journals (Sweden)

    Wei Li

    2008-01-01

    Full Text Available Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub ligases. We have annotated approximately 617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein - two transmembrane domains mediate its localization to the organelle's outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULAN's downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-kappaB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.

  4. ODMSummary: A Tool for Automatic Structured Comparison of Multiple Medical Forms Based on Semantic Annotation with the Unified Medical Language System.

    Science.gov (United States)

    Storck, Michael; Krumm, Rainer; Dugas, Martin

    2016-01-01

    Medical documentation is applied in various settings including patient care and clinical research. Since procedures of medical documentation are heterogeneous and developed further, secondary use of medical data is complicated. Development of medical forms, merging of data from different sources and meta-analyses of different data sets are currently a predominantly manual process and therefore difficult and cumbersome. Available applications to automate these processes are limited. In particular, tools to compare multiple documentation forms are missing. The objective of this work is to design, implement and evaluate the new system ODMSummary for comparison of multiple forms with a high number of semantically annotated data elements and a high level of usability. System requirements are the capability to summarize and compare a set of forms, enable to estimate the documentation effort, track changes in different versions of forms and find comparable items in different forms. Forms are provided in Operational Data Model format with semantic annotations from the Unified Medical Language System. 12 medical experts were invited to participate in a 3-phase evaluation of the tool regarding usability. ODMSummary (available at https://odmtoolbox.uni-muenster.de/summary/summary.html) provides a structured overview of multiple forms and their documentation fields. This comparison enables medical experts to assess multiple forms or whole datasets for secondary use. System usability was optimized based on expert feedback. The evaluation demonstrates that feedback from domain experts is needed to identify usability issues. In conclusion, this work shows that automatic comparison of multiple forms is feasible and the results are usable for medical experts.

  5. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    Energy Technology Data Exchange (ETDEWEB)

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  6. AutoFACT: An Automatic Functional Annotation and Classification Tool

    Directory of Open Access Journals (Sweden)

    Lang B Franz

    2005-06-01

    Full Text Available Abstract Background Assignment of function to new molecular sequence data is an essential step in genomics projects. The usual process involves similarity searches of a given sequence against one or more databases, an arduous process for large datasets. Results We present AutoFACT, a fully automated and customizable annotation tool that assigns biologically informative functions to a sequence. Key features of this tool are that it (1 analyzes nucleotide and protein sequence data; (2 determines the most informative functional description by combining multiple BLAST reports from several user-selected databases; (3 assigns putative metabolic pathways, functional classes, enzyme classes, GeneOntology terms and locus names; and (4 generates output in HTML, text and GFF formats for the user's convenience. We have compared AutoFACT to four well-established annotation pipelines. The error rate of functional annotation is estimated to be only between 1–2%. Comparison of AutoFACT to the traditional top-BLAST-hit annotation method shows that our procedure increases the number of functionally informative annotations by approximately 50%. Conclusion AutoFACT will serve as a useful annotation tool for smaller sequencing groups lacking dedicated bioinformatics staff. It is implemented in PERL and runs on LINUX/UNIX platforms. AutoFACT is available at http://megasun.bch.umontreal.ca/Software/AutoFACT.htm.

  7. The red deer Cervus elaphus genome CerEla1.0: sequencing, annotating, genes, and chromosomes.

    Science.gov (United States)

    Bana, Nóra Á; Nyiri, Anna; Nagy, János; Frank, Krisztián; Nagy, Tibor; Stéger, Viktor; Schiller, Mátyás; Lakatos, Péter; Sugár, László; Horn, Péter; Barta, Endre; Orosz, László

    2018-01-02

    We present here the de novo genome assembly CerEla1.0 for the red deer, Cervus elaphus, an emblematic member of the natural megafauna of the Northern Hemisphere. Humans spread the species in the South. Today, the red deer is also a farm-bred animal and is becoming a model animal in biomedical and population studies. Stag DNA was sequenced at 74× coverage by Illumina technology. The ALLPATHS-LG assembly of the reads resulted in 34.7 × 10 3 scaffolds, 26.1 × 10 3 of which were utilized in Cer.Ela1.0. The assembly spans 3.4 Gbp. For building the red deer pseudochromosomes, a pre-established genetic map was used for main anchor points. A nearly complete co-linearity was found between the mapmarker sequences of the deer genetic map and the order and orientation of the orthologous sequences in the syntenic bovine regions. Syntenies were also conserved at the in-scaffold level. The cM distances corresponded to 1.34 Mbp uniformly along the deer genome. Chromosomal rearrangements between deer and cattle were demonstrated. 2.8 × 10 6 SNPs, 365 × 10 3 indels and 19368 protein-coding genes were identified in CerEla1.0, along with positions for centromerons. CerEla1.0 demonstrates the utilization of dual references, i.e., when a target genome (here C. elaphus) already has a pre-established genetic map, and is combined with the well-established whole genome sequence of a closely related species (here Bos taurus). Genome-wide association studies (GWAS) that CerEla1.0 (NCBI, MKHE00000000) could serve for are discussed.

  8. Multiple roles of genome-attached bacteriophage terminal proteins

    International Nuclear Information System (INIS)

    Redrejo-Rodríguez, Modesto; Salas, Margarita

    2014-01-01

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer

  9. Multiple roles of genome-attached bacteriophage terminal proteins

    Energy Technology Data Exchange (ETDEWEB)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.

  10. Multiple-trait genetic evaluation using genomic matrix

    African Journals Online (AJOL)

    Jane

    2011-07-06

    Jul 6, 2011 ... relationships was estimated through computer simulation and was compared with the accuracy of ... programs, detect animals with superior genetic and select ... genomic matrices in the mixed model equations of BLUP.

  11. Analysis and functional annotation of expressed sequence tags (ESTs from multiple tissues of oil palm (Elaeis guineensis Jacq.

    Directory of Open Access Journals (Sweden)

    Lee Weng-Wah

    2007-10-01

    Full Text Available Abstract Background Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST analysis on oil palm. Results In this study, six cDNA libraries from oil palm zygotic embryos, suspension cells, shoot apical meristems, young flowers, mature flowers and roots, were constructed. We have generated a total of 14537 expressed sequence tags (ESTs from these libraries, from which 6464 tentative unique contigs (TUCs and 2129 singletons were obtained. Approximately 6008 of these tentative unique genes (TUGs have significant matches to the non-redundant protein database, from which 2361 were assigned to one or more Gene Ontology categories. Predominant transcripts and differentially expressed genes were identified in multiple oil palm tissues. Homologues of genes involved in many aspects of flower development were also identified among the EST collection, such as CONSTANS-like, AGAMOUS-like (AGL2, AGL20, LFY-like, SQUAMOSA, SQUAMOSA binding protein (SBP etc. Majority of them are the first representatives in oil palm, providing opportunities to explore the cause of epigenetic homeotic flowering abnormality in oil palm, given the importance of flowering in fruit production. The transcript levels of two flowering-related genes, EgSBP and EgSEP were analysed in the flower tissues of various developmental stages. Gene homologues for enzymes involved in oil biosynthesis, utilization of nitrogen sources, and scavenging of oxygen radicals, were also uncovered among the oil palm ESTs. Conclusion The EST sequences generated will allow comparative genomic studies between oil palm and other monocotyledonous and dicotyledonous plants, development of gene-targeted markers for the reference genetic map

  12. Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation

    Science.gov (United States)

    2013-01-01

    Background The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. Results The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in

  13. Simultaneous Structural Variation Discovery in Multiple Paired-End Sequenced Genomes

    Science.gov (United States)

    Hormozdiari, Fereydoun; Hajirasouliha, Iman; McPherson, Andrew; Eichler, Evan E.; Sahinalp, S. Cenk

    Next generation sequencing technologies have been decreasing the costs and increasing the world-wide capacity for sequence production at an unprecedented rate, making the initiation of large scale projects aiming to sequence almost 2000 genomes [1]. Structural variation detection promises to be one of the key diagnostic tools for cancer and other diseases with genomic origin. In this paper, we study the problem of detecting structural variation events in two or more sequenced genomes through high throughput sequencing . We propose to move from the current model of (1) detecting genomic variations in single next generation sequenced (NGS) donor genomes independently, and (2) checking whether two or more donor genomes indeed agree or disagree on the variations (in this paper we name this framework Independent Structural Variation Discovery and Merging - ISV&M), to a new model in which we detect structural variation events among multiple genomes simultaneously.

  14. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines

    NARCIS (Netherlands)

    Ellrott, Kyle; Bailey, Matthew H.; Saksena, Gordon; Covington, Kyle R.; Kandoth, Cyriac; Stewart, Chip; Hess, Julian; Ma, Singer; Chiotti, Kami E.; McLellan, Michael; Sofia, Heidi J.; Hutter, Carolyn M.; Getz, Gad; Wheeler, David A.; Ding, Li; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz

    2018-01-01

    The Cancer Genome Atlas (TCGA) cancer genomics dataset includes over 10,000 tumor-normal exome pairs across 33 different cancer types, in total >400 TB of raw data files requiring analysis. Here we describe the Multi-Center Mutation Calling in Multiple Cancers project, our effort to generate a

  15. Annotated Draft Genome Assemblies for the Northern Bobwhite (Colinus virginianus and the Scaled Quail (Callipepla squamata Reveal Disparate Estimates of Modern Genome Diversity and Historic Effective Population Size

    Directory of Open Access Journals (Sweden)

    David L. Oldeschulte

    2017-09-01

    Full Text Available Northern bobwhite (Colinus virginianus; hereafter bobwhite and scaled quail (Callipepla squamata populations have suffered precipitous declines across most of their US ranges. Illumina-based first- (v1.0 and second- (v2.0 generation draft genome assemblies for the scaled quail and the bobwhite produced N50 scaffold sizes of 1.035 and 2.042 Mb, thereby producing a 45-fold improvement in contiguity over the existing bobwhite assembly, and ≥90% of the assembled genomes were captured within 1313 and 8990 scaffolds, respectively. The scaled quail assembly (v1.0 = 1.045 Gb was ∼20% smaller than the bobwhite (v2.0 = 1.254 Gb, which was supported by kmer-based estimates of genome size. Nevertheless, estimates of GC content (41.72%; 42.66%, genome-wide repetitive content (10.40%; 10.43%, and MAKER-predicted protein coding genes (17,131; 17,165 were similar for the scaled quail (v1.0 and bobwhite (v2.0 assemblies, respectively. BUSCO analyses utilizing 3023 single-copy orthologs revealed a high level of assembly completeness for the scaled quail (v1.0; 84.8% and the bobwhite (v2.0; 82.5%, as verified by comparison with well-established avian genomes. We also detected 273 putative segmental duplications in the scaled quail genome (v1.0, and 711 in the bobwhite genome (v2.0, including some that were shared among both species. Autosomal variant prediction revealed ∼2.48 and 4.17 heterozygous variants per kilobase within the scaled quail (v1.0 and bobwhite (v2.0 genomes, respectively, and estimates of historic effective population size were uniformly higher for the bobwhite across all time points in a coalescent model. However, large-scale declines were predicted for both species beginning ∼15–20 KYA.

  16. Annotated Draft Genome Assemblies for the Northern Bobwhite (Colinus virginianus) and the Scaled Quail (Callipepla squamata) Reveal Disparate Estimates of Modern Genome Diversity and Historic Effective Population Size.

    Science.gov (United States)

    Oldeschulte, David L; Halley, Yvette A; Wilson, Miranda L; Bhattarai, Eric K; Brashear, Wesley; Hill, Joshua; Metz, Richard P; Johnson, Charles D; Rollins, Dale; Peterson, Markus J; Bickhart, Derek M; Decker, Jared E; Sewell, John F; Seabury, Christopher M

    2017-09-07

    Northern bobwhite ( Colinus virginianus ; hereafter bobwhite) and scaled quail ( Callipepla squamata ) populations have suffered precipitous declines across most of their US ranges. Illumina-based first- (v1.0) and second- (v2.0) generation draft genome assemblies for the scaled quail and the bobwhite produced N50 scaffold sizes of 1.035 and 2.042 Mb, thereby producing a 45-fold improvement in contiguity over the existing bobwhite assembly, and ≥90% of the assembled genomes were captured within 1313 and 8990 scaffolds, respectively. The scaled quail assembly (v1.0 = 1.045 Gb) was ∼20% smaller than the bobwhite (v2.0 = 1.254 Gb), which was supported by kmer-based estimates of genome size. Nevertheless, estimates of GC content (41.72%; 42.66%), genome-wide repetitive content (10.40%; 10.43%), and MAKER-predicted protein coding genes (17,131; 17,165) were similar for the scaled quail (v1.0) and bobwhite (v2.0) assemblies, respectively. BUSCO analyses utilizing 3023 single-copy orthologs revealed a high level of assembly completeness for the scaled quail (v1.0; 84.8%) and the bobwhite (v2.0; 82.5%), as verified by comparison with well-established avian genomes. We also detected 273 putative segmental duplications in the scaled quail genome (v1.0), and 711 in the bobwhite genome (v2.0), including some that were shared among both species. Autosomal variant prediction revealed ∼2.48 and 4.17 heterozygous variants per kilobase within the scaled quail (v1.0) and bobwhite (v2.0) genomes, respectively, and estimates of historic effective population size were uniformly higher for the bobwhite across all time points in a coalescent model. However, large-scale declines were predicted for both species beginning ∼15-20 KYA. Copyright © 2017 Oldeschulte et al.

  17. An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community

    KAUST Repository

    Wang, Yong; Gao, Zhaoming; Xu, Ying; Li, Guangyu; He, Lisheng; Qian, Peiyuan

    2016-01-01

    -generation-sequencing technology. Using a synthetic bacterial community, the amplification efficiency of the Multiple Annealing and Looping Based Amplification Cycles (MALBAC) kit that is originally developed to amplify the single-cell genomic DNA of mammalian organisms

  18. Analysis of the genetic variation in Mycobacterium tuberculosis strains by multiple genome alignments

    Directory of Open Access Journals (Sweden)

    Morales Juan

    2008-11-01

    Full Text Available Abstract Background The recent determination of the complete nucleotide sequence of several Mycobacterium tuberculosis (MTB genomes allows the use of comparative genomics as a tool for dissecting the nature and consequence of genetic variability within this species. The multiple alignment of the genomes of clinical strains (CDC1551, F11, Haarlem and C, along with the genomes of laboratory strains (H37Rv and H37Ra, provides new insights on the mechanisms of adaptation of this bacterium to the human host. Findings The genetic variation found in six M. tuberculosis strains does not involve significant genomic rearrangements. Most of the variation results from deletion and transposition events preferentially associated with insertion sequences and genes of the PE/PPE family but not with genes implicated in virulence. Using a Perl-based software islandsanalyser, which creates a representation of the genetic variation in the genome, we identified differences in the patterns of distribution and frequency of the polymorphisms across the genome. The identification of genes displaying strain-specific polymorphisms and the extrapolation of the number of strain-specific polymorphisms to an unlimited number of genomes indicates that the different strains contain a limited number of unique polymorphisms. Conclusion The comparison of multiple genomes demonstrates that the M. tuberculosis genome is currently undergoing an active process of gene decay, analogous to the adaptation process of obligate bacterial symbionts. This observation opens new perspectives into the evolution and the understanding of the pathogenesis of this bacterium.

  19. Genomic resources for multiple species in the Drosophila ananassae species group.

    Science.gov (United States)

    Signor, Sarah; Seher, Thaddeus; Kopp, Artyom

    2013-01-01

    The development of genomic resources in non-model taxa is essential for understanding the genetic basis of biological diversity. Although the genomes of many Drosophila species have been sequenced, most of the phenotypic diversity in this genus remains to be explored. To facilitate the genetic analysis of interspecific and intraspecific variation, we have generated new genomic resources for seven species and subspecies in the D. ananassae species subgroup. We have generated large amounts of transcriptome sequence data for D. ercepeae, D. merina, D. bipectinata, D. malerkotliana malerkotliana, D. m. pallens, D. pseudoananassae pseudoananassae, and D. p. nigrens. de novo assembly resulted in contigs covering more than half of the predicted transcriptome and matching an average of 59% of annotated genes in the complete genome of D. ananassae. Most contigs, corresponding to an average of 49% of D. ananassae genes, contain sequence polymorphisms that can be used as genetic markers. Subsets of these markers were validated by genotyping the progeny of inter- and intraspecific crosses. The ananassae subgroup is an excellent model system for examining the molecular basis of speciation and phenotypic evolution. The new genomic resources will facilitate the genetic analysis of inter- and intraspecific differences in this lineage. Transcriptome sequencing provides a simple and cost-effective way to identify molecular markers at nearly single-gene density, and is equally applicable to any non-model taxa.

  20. Annotated ESTs from various tissues of the brown planthopper Nilaparvata lugens: a genomic resource for studying agricultural pests.

    Science.gov (United States)

    Noda, Hiroaki; Kawai, Sawako; Koizumi, Yoko; Matsui, Kageaki; Zhang, Qiang; Furukawa, Shigetoyo; Shimomura, Michihiko; Mita, Kazuei

    2008-03-03

    The brown planthopper (BPH), Nilaparvata lugens (Hemiptera, Delphacidae), is a serious insect pests of rice plants. Major means of BPH control are application of agricultural chemicals and cultivation of BPH resistant rice varieties. Nevertheless, BPH strains that are resistant to agricultural chemicals have developed, and BPH strains have appeared that are virulent against the resistant rice varieties. Expressed sequence tag (EST) analysis and related applications are useful to elucidate the mechanisms of resistance and virulence and to reveal physiological aspects of this non-model insect, with its poorly understood genetic background. More than 37,000 high-quality ESTs, excluding sequences of mitochondrial genome, microbial genomes, and rDNA, have been produced from 18 libraries of various BPH tissues and stages. About 10,200 clusters have been made from whole EST sequences, with average EST size of 627 bp. Among the top ten most abundantly expressed genes, three are unique and show no homology in BLAST searches. The actin gene was highly expressed in BPH, especially in the thorax. Tissue-specifically expressed genes were extracted based on the expression frequency among the libraries. An EST database is available at our web site. The EST library will provide useful information for transcriptional analyses, proteomic analyses, and gene functional analyses of BPH. Moreover, specific genes for hemimetabolous insects will be identified. The microarray fabricated based on the EST information will be useful for finding genes related to agricultural and biological problems related to this pest.

  1. Annotated ESTs from various tissues of the brown planthopper Nilaparvata lugens: A genomic resource for studying agricultural pests

    Directory of Open Access Journals (Sweden)

    Zhang Qiang

    2008-03-01

    Full Text Available Abstract Background The brown planthopper (BPH, Nilaparvata lugens (Hemiptera, Delphacidae, is a serious insect pests of rice plants. Major means of BPH control are application of agricultural chemicals and cultivation of BPH resistant rice varieties. Nevertheless, BPH strains that are resistant to agricultural chemicals have developed, and BPH strains have appeared that are virulent against the resistant rice varieties. Expressed sequence tag (EST analysis and related applications are useful to elucidate the mechanisms of resistance and virulence and to reveal physiological aspects of this non-model insect, with its poorly understood genetic background. Results More than 37,000 high-quality ESTs, excluding sequences of mitochondrial genome, microbial genomes, and rDNA, have been produced from 18 libraries of various BPH tissues and stages. About 10,200 clusters have been made from whole EST sequences, with average EST size of 627 bp. Among the top ten most abundantly expressed genes, three are unique and show no homology in BLAST searches. The actin gene was highly expressed in BPH, especially in the thorax. Tissue-specifically expressed genes were extracted based on the expression frequency among the libraries. An EST database is available at our web site. Conclusion The EST library will provide useful information for transcriptional analyses, proteomic analyses, and gene functional analyses of BPH. Moreover, specific genes for hemimetabolous insects will be identified. The microarray fabricated based on the EST information will be useful for finding genes related to agricultural and biological problems related to this pest.

  2. Annotation of differentially expressed genes in the somatic embryogenesis of musa and their location in the banana genome.

    Science.gov (United States)

    Maldonado-Borges, Josefina Ines; Ku-Cauich, José Roberto; Escobedo-Graciamedrano, Rosa Maria

    2013-01-01

    Analysis of cDNA-AFLP was used to study the genes expressed in zygotic and somatic embryogenesis of Musa acuminata Colla ssp. malaccensis, and a comparison was made between their differential transcribed fragments (TDFs) and the sequenced genome of the double haploid- (DH-) Pahang of the malaccensis subspecies that is available in the network. A total of 253 transcript-derived fragments (TDFs) were detected with apparent size of 100-4000 bp using 5 pairs of AFLP primers, of which 21 were differentially expressed during the different stages of banana embryogenesis; 15 of the sequences have matched DH-Pahang chromosomes, with 7 of them being homologous to gene sequences encoding either known or putative protein domains of higher plants. Four TDF sequences were located in all Musa chromosomes, while the rest were located in one or two chromosomes. Their putative individual function is briefly reviewed based on published information, and the potential roles of these genes in embryo development are discussed. Thus the availability of the genome of Musa and the information of TDFs sequences presented here opens new possibilities for an in-depth study of the molecular and biochemical research of zygotic and somatic embryogenesis of Musa.

  3. Functional genomics tools applied to plant metabolism: a survey on plant respiration, its connections and the annotation of complex gene functions

    Directory of Open Access Journals (Sweden)

    Wagner L. Araújo

    2012-09-01

    Full Text Available The application of post-genomic techniques in plant respiration studies has greatly improved our ability to assign functions to gene products. In addition it has also revealed previously unappreciated interactions between distal elements of metabolism. Such results have reinforced the need to consider plant respiratory metabolism as part of a complex network and making sense of such interactions will ultimately require the construction of predictive and mechanistic models. Transcriptomics, proteomics, metabolomics and the quantification of metabolic flux will be of great value in creating such models both by facilitating the annotation of complex gene function, determining their structure and by furnishing the quantitative data required to test them. In this review we highlight how these experimental approaches have contributed to our current understanding of plant respiratory metabolism and its interplay with associated process (e.g. photosynthesis, photorespiration and nitrogen metabolism. We also discuss how data from these techniques may be integrated, with the ultimate aim of identifying mechanisms that control and regulate plant respiration and discovering novel gene functions with potential biotechnological implications.

  4. Ascaris phylogeny based on multiple whole mtDNA genomes

    DEFF Research Database (Denmark)

    Nejsum, Peter; Hawash, Mohamed B F; Betson, Martha

    2016-01-01

    and C) of human and pig Ascaris based on partial cox1 sequences. In the present study, we selected major haplotypes from these different clusters to characterize their whole mitochondrial genomes for phylogenetic analysis. We also undertook coalescent simulations to investigate the evolutionary history...

  5. mpscan: Fast Localisation of Multiple Reads in Genomes

    Science.gov (United States)

    Rivals, Eric; Salmela, Leena; Kiiskinen, Petteri; Kalsi, Petri; Tarhio, Jorma

    With Next Generation Sequencers, sequence based transcriptomic or epigenomic assays yield millions of short sequence reads that need to be mapped back on a reference genome. The upcoming versions of these sequencers promise even higher sequencing capacities; this may turn the read mapping task into a bottleneck for which alternative pattern matching approaches must be experimented. We present an algorithm and its implementation, called mpscan, which uses a sophisticated filtration scheme to match a set of patterns/reads exactly on a sequence. mpscan can search for millions of reads in a single pass through the genome without indexing its sequence. Moreover, we show that mpscan offers an optimal average time complexity, which is sublinear in the text length, meaning that it does not need to examine all sequence positions. Comparisons with BLAT-like tools and with six specialised read mapping programs (like bowtie or zoom) demonstrate that mpscan also is the fastest algorithm in practice for exact matching. Our accuracy and scalability comparisons reveal that some tools are inappropriate for read mapping. Moreover, we provide evidence suggesting that exact matching may be a valuable solution in some read mapping applications. As most read mapping programs somehow rely on exact matching procedures to perform approximate pattern mapping, the filtration scheme we experimented may reveal useful in the design of future algorithms. The absence of genome index gives mpscan its low memory requirement and flexibility that let it run on a desktop computer and avoids a time-consuming genome preprocessing.

  6. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae : Implications for the microbial "pan-genome"

    NARCIS (Netherlands)

    Tettelin, H; Masignani, [No Value; Cieslewicz, MJ; Donati, C; Medini, D; Ward, NL; Angiuoli, SV; Crabtree, J; Jones, AL; Durkin, AS; DeBoy, RT; Davidsen, TM; Mora, M; Scarselli, M; Ros, IMY; Peterson, JD; Hauser, CR; Sundaram, JP; Nelson, WC; Madupu, R; Brinkac, LM; Dodson, RJ; Rosovitz, MJ; Sullivan, SA; Daugherty, SC; Haft, DH; Selengut, J; Gwinn, ML; Zhou, LW; Zafar, N; Khouri, H; Radune, D; Dimitrov, G; Watkins, K; O'Connor, KJB; Smith, S; Utterback, TR; White, O; Rubens, CE; Grandi, G; Madoff, LC; Kasper, DL; Telford, JL; Wessels, MR; Rappuoli, R; Fraser, CM

    2005-01-01

    The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and

  7. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.

    Science.gov (United States)

    Cingolani, Pablo; Platts, Adrian; Wang, Le Lily; Coon, Melissa; Nguyen, Tung; Wang, Luan; Land, Susan J; Lu, Xiangyi; Ruden, Douglas M

    2012-01-01

    We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.

  8. Chado controller: advanced annotation management with a community annotation system.

    Science.gov (United States)

    Guignon, Valentin; Droc, Gaëtan; Alaux, Michael; Baurens, Franc-Christophe; Garsmeur, Olivier; Poiron, Claire; Carver, Tim; Rouard, Mathieu; Bocs, Stéphanie

    2012-04-01

    We developed a controller that is compliant with the Chado database schema, GBrowse and genome annotation-editing tools such as Artemis and Apollo. It enables the management of public and private data, monitors manual annotation (with controlled vocabularies, structural and functional annotation controls) and stores versions of annotation for all modified features. The Chado controller uses PostgreSQL and Perl. The Chado Controller package is available for download at http://www.gnpannot.org/content/chado-controller and runs on any Unix-like operating system, and documentation is available at http://www.gnpannot.org/content/chado-controller-doc The system can be tested using the GNPAnnot Sandbox at http://www.gnpannot.org/content/gnpannot-sandbox-form valentin.guignon@cirad.fr; stephanie.sidibe-bocs@cirad.fr Supplementary data are available at Bioinformatics online.

  9. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    Science.gov (United States)

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  10. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  11. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  12. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    Directory of Open Access Journals (Sweden)

    Lehlohonolo Benedict Qhanya

    Full Text Available Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s, heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence. Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea, Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala, revealed the presence of numerous putative P450s ranging from 267 (A. mellea to 14 (M. osmundae. Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  13. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling

    Science.gov (United States)

    Sato, Yukuto; Tsukamoto, Katsumi; Nishida, Mutsumi

    2015-01-01

    Whole-genome duplication (WGD) is believed to be a significant source of major evolutionary innovation. Redundant genes resulting from WGD are thought to be lost or acquire new functions. However, the rates of gene loss and thus temporal process of genome reshaping after WGD remain unclear. The WGD shared by all teleost fish, one-half of all jawed vertebrates, was more recent than the two ancient WGDs that occurred before the origin of jawed vertebrates, and thus lends itself to analysis of gene loss and genome reshaping. Using a newly developed orthology identification pipeline, we inferred the post–teleost-specific WGD evolutionary histories of 6,892 protein-coding genes from nine phylogenetically representative teleost genomes on a time-calibrated tree. We found that rapid gene loss did occur in the first 60 My, with a loss of more than 70–80% of duplicated genes, and produced similar genomic gene arrangements within teleosts in that relatively short time. Mathematical modeling suggests that rapid gene loss occurred mainly by events involving simultaneous loss of multiple genes. We found that the subsequent 250 My were characterized by slow and steady loss of individual genes. Our pipeline also identified about 1,100 shared single-copy genes that are inferred to have become singletons before the divergence of clupeocephalan teleosts. Therefore, our comparative genome analysis suggests that rapid gene loss just after the WGD reshaped teleost genomes before the major divergence, and provides a useful set of marker genes for future phylogenetic analysis. PMID:26578810

  14. MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.

    Science.gov (United States)

    Wang, Julia; Al-Ouran, Rami; Hu, Yanhui; Kim, Seon-Young; Wan, Ying-Wooi; Wangler, Michael F; Yamamoto, Shinya; Chao, Hsiao-Tuan; Comjean, Aram; Mohr, Stephanie E; Perrimon, Norbert; Liu, Zhandong; Bellen, Hugo J

    2017-06-01

    One major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Multiple-Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy

    Science.gov (United States)

    Jia, Yi; Jannink, Jean-Luc

    2012-01-01

    Genetic correlations between quantitative traits measured in many breeding programs are pervasive. These correlations indicate that measurements of one trait carry information on other traits. Current single-trait (univariate) genomic selection does not take advantage of this information. Multivariate genomic selection on multiple traits could accomplish this but has been little explored and tested in practical breeding programs. In this study, three multivariate linear models (i.e., GBLUP, BayesA, and BayesCπ) were presented and compared to univariate models using simulated and real quantitative traits controlled by different genetic architectures. We also extended BayesA with fixed hyperparameters to a full hierarchical model that estimated hyperparameters and BayesCπ to impute missing phenotypes. We found that optimal marker-effect variance priors depended on the genetic architecture of the trait so that estimating them was beneficial. We showed that the prediction accuracy for a low-heritability trait could be significantly increased by multivariate genomic selection when a correlated high-heritability trait was available. Further, multiple-trait genomic selection had higher prediction accuracy than single-trait genomic selection when phenotypes are not available on all individuals and traits. Additional factors affecting the performance of multiple-trait genomic selection were explored. PMID:23086217

  16. PSP: rapid identification of orthologous coding genes under positive selection across multiple closely related prokaryotic genomes.

    Science.gov (United States)

    Su, Fei; Ou, Hong-Yu; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2013-12-27

    With genomic sequences of many closely related bacterial strains made available by deep sequencing, it is now possible to investigate trends in prokaryotic microevolution. Positive selection is a sub-process of microevolution, in which a particular mutation is favored, causing the allele frequency to continuously shift in one direction. Wide scanning of prokaryotic genomes has shown that positive selection at the molecular level is much more frequent than expected. Genes with significant positive selection may play key roles in bacterial adaption to different environmental pressures. However, selection pressure analyses are computationally intensive and awkward to configure. Here we describe an open access web server, which is designated as PSP (Positive Selection analysis for Prokaryotic genomes) for performing evolutionary analysis on orthologous coding genes, specially designed for rapid comparison of dozens of closely related prokaryotic genomes. Remarkably, PSP facilitates functional exploration at the multiple levels by assignments and enrichments of KO, GO or COG terms. To illustrate this user-friendly tool, we analyzed Escherichia coli and Bacillus cereus genomes and found that several genes, which play key roles in human infection and antibiotic resistance, show significant evidence of positive selection. PSP is freely available to all users without any login requirement at: http://db-mml.sjtu.edu.cn/PSP/. PSP ultimately allows researchers to do genome-scale analysis for evolutionary selection across multiple prokaryotic genomes rapidly and easily, and identify the genes undergoing positive selection, which may play key roles in the interactions of host-pathogen and/or environmental adaptation.

  17. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2008-10-27

    Hypothetical and conserved hypothetical genes account for>30percent of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved hypothetical (9.5percent) along with 887 hypothetical genes (24.4percent). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 hypothetical and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. 1212 of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.

  18. Transcript-level annotation of Affymetrix probesets improves the interpretation of gene expression data

    Directory of Open Access Journals (Sweden)

    Tu Kang

    2007-06-01

    Full Text Available Abstract Background The wide use of Affymetrix microarray in broadened fields of biological research has made the probeset annotation an important issue. Standard Affymetrix probeset annotation is at gene level, i.e. a probeset is precisely linked to a gene, and probeset intensity is interpreted as gene expression. The increased knowledge that one gene may have multiple transcript variants clearly brings up the necessity of updating this gene-level annotation to a refined transcript-level. Results Through performing rigorous alignments of the Affymetrix probe sequences against a comprehensive pool of currently available transcript sequences, and further linking the probesets to the International Protein Index, we generated transcript-level or protein-level annotation tables for two popular Affymetrix expression arrays, Mouse Genome 430A 2.0 Array and Human Genome U133A Array. Application of our new annotations in re-examining existing expression data sets shows increased expression consistency among synonymous probesets and strengthened expression correlation between interacting proteins. Conclusion By refining the standard Affymetrix annotation of microarray probesets from the gene level to the transcript level and protein level, one can achieve a more reliable interpretation of their experimental data, which may lead to discovery of more profound regulatory mechanism.

  19. ATGC database and ATGC-COGs: an updated resource for micro- and macro-evolutionary studies of prokaryotic genomes and protein family annotation.

    Science.gov (United States)

    Kristensen, David M; Wolf, Yuri I; Koonin, Eugene V

    2017-01-04

    The Alignable Tight Genomic Clusters (ATGCs) database is a collection of closely related bacterial and archaeal genomes that provides several tools to aid research into evolutionary processes in the microbial world. Each ATGC is a taxonomy-independent cluster of 2 or more completely sequenced genomes that meet the objective criteria of a high degree of local gene order (synteny) and a small number of synonymous substitutions in the protein-coding genes. As such, each ATGC is suited for analysis of microevolutionary variations within a cohesive group of organisms (e.g. species), whereas the entire collection of ATGCs is useful for macroevolutionary studies. The ATGC database includes many forms of pre-computed data, in particular ATGC-COGs (Clusters of Orthologous Genes), multiple sequence alignments, a set of 'index' orthologs representing the most well-conserved members of each ATGC-COG, the phylogenetic tree of the organisms within each ATGC, etc. Although the ATGC database contains several million proteins from thousands of genomes organized into hundreds of clusters (roughly a 4-fold increase since the last version of the ATGC database), it is now built with completely automated methods and will be regularly updated following new releases of the NCBI RefSeq database. The ATGC database is hosted jointly at the University of Iowa at dmk-brain.ecn.uiowa.edu/ATGC/ and the NCBI at ftp.ncbi.nlm.nih.gov/pub/kristensen/ATGC/atgc_home.html. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Annotated bibliography

    International Nuclear Information System (INIS)

    1997-08-01

    Under a cooperative agreement with the U.S. Department of Energy's Office of Science and Technology, Waste Policy Institute (WPI) is conducting a five-year research project to develop a research-based approach for integrating communication products in stakeholder involvement related to innovative technology. As part of the research, WPI developed this annotated bibliography which contains almost 100 citations of articles/books/resources involving topics related to communication and public involvement aspects of deploying innovative cleanup technology. To compile the bibliography, WPI performed on-line literature searches (e.g., Dialog, International Association of Business Communicators Public Relations Society of America, Chemical Manufacturers Association, etc.), consulted past years proceedings of major environmental waste cleanup conferences (e.g., Waste Management), networked with professional colleagues and DOE sites to gather reports or case studies, and received input during the August 1996 Research Design Team meeting held to discuss the project's research methodology. Articles were selected for annotation based upon their perceived usefulness to the broad range of public involvement and communication practitioners

  1. The Saccharomyces Genome Database Variant Viewer.

    Science.gov (United States)

    Sheppard, Travis K; Hitz, Benjamin C; Engel, Stacia R; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla S; Demeter, Janos; Hellerstedt, Sage T; Karra, Kalpana; Nash, Robert S; Paskov, Kelley M; Skrzypek, Marek S; Weng, Shuai; Wong, Edith D; Cherry, J Michael

    2016-01-04

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Genomic Physics. Multiple Laser Beam Treatment of Alzheimer's Disease

    Science.gov (United States)

    Stefan, V. Alexander

    2014-03-01

    The synapses affected by Alzheimer's disease can be rejuvenated by the multiple ultrashort wavelength laser beams.[2] The guiding lasers scan the whole area to detect the amyloid plaques based on the laser scattering technique. The scanning lasers pinpoint the areas with plaques and eliminate them. Laser interaction is highly efficient, because of the focusing capabilities and possibility for the identification of the damaging proteins by matching the protein oscillation eigen-frequency with laser frequency.[3] Supported by Nikola Tesla Labs, La Jolla, California, USA.

  3. HAL: a hierarchical format for storing and analyzing multiple genome alignments.

    Science.gov (United States)

    Hickey, Glenn; Paten, Benedict; Earl, Dent; Zerbino, Daniel; Haussler, David

    2013-05-15

    Large multiple genome alignments and inferred ancestral genomes are ideal resources for comparative studies of molecular evolution, and advances in sequencing and computing technology are making them increasingly obtainable. These structures can provide a rich understanding of the genetic relationships between all subsets of species they contain. Current formats for storing genomic alignments, such as XMFA and MAF, are all indexed or ordered using a single reference genome, however, which limits the information that can be queried with respect to other species and clades. This loss of information grows with the number of species under comparison, as well as their phylogenetic distance. We present HAL, a compressed, graph-based hierarchical alignment format for storing multiple genome alignments and ancestral reconstructions. HAL graphs are indexed on all genomes they contain. Furthermore, they are organized phylogenetically, which allows for modular and parallel access to arbitrary subclades without fragmentation because of rearrangements that have occurred in other lineages. HAL graphs can be created or read with a comprehensive C++ API. A set of tools is also provided to perform basic operations, such as importing and exporting data, identifying mutations and coordinate mapping (liftover). All documentation and source code for the HAL API and tools are freely available at http://github.com/glennhickey/hal. hickey@soe.ucsc.edu or haussler@soe.ucsc.edu Supplementary data are available at Bioinformatics online.

  4. Imputation and quality control steps for combining multiple genome-wide datasets

    Directory of Open Access Journals (Sweden)

    Shefali S Verma

    2014-12-01

    Full Text Available The electronic MEdical Records and GEnomics (eMERGE network brings together DNA biobanks linked to electronic health records (EHRs from multiple institutions. Approximately 52,000 DNA samples from distinct individuals have been genotyped using genome-wide SNP arrays across the nine sites of the network. The eMERGE Coordinating Center and the Genomics Workgroup developed a pipeline to impute and merge genomic data across the different SNP arrays to maximize sample size and power to detect associations with a variety of clinical endpoints. The 1000 Genomes cosmopolitan reference panel was used for imputation. Imputation results were evaluated using the following metrics: accuracy of imputation, allelic R2 (estimated correlation between the imputed and true genotypes, and the relationship between allelic R2 and minor allele frequency. Computation time and memory resources required by two different software packages (BEAGLE and IMPUTE2 were also evaluated. A number of challenges were encountered due to the complexity of using two different imputation software packages, multiple ancestral populations, and many different genotyping platforms. We present lessons learned and describe the pipeline implemented here to impute and merge genomic data sets. The eMERGE imputed dataset will serve as a valuable resource for discovery, leveraging the clinical data that can be mined from the EHR.

  5. Phylogenetic molecular function annotation

    International Nuclear Information System (INIS)

    Engelhardt, Barbara E; Jordan, Michael I; Repo, Susanna T; Brenner, Steven E

    2009-01-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called 'phylogenomics') is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods.

  6. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets.

    Science.gov (United States)

    Khan, Aziz; Mathelier, Anthony

    2017-05-31

    A common task for scientists relies on comparing lists of genes or genomic regions derived from high-throughput sequencing experiments. While several tools exist to intersect and visualize sets of genes, similar tools dedicated to the visualization of genomic region sets are currently limited. To address this gap, we have developed the Intervene tool, which provides an easy and automated interface for the effective intersection and visualization of genomic region or list sets, thus facilitating their analysis and interpretation. Intervene contains three modules: venn to generate Venn diagrams of up to six sets, upset to generate UpSet plots of multiple sets, and pairwise to compute and visualize intersections of multiple sets as clustered heat maps. Intervene, and its interactive web ShinyApp companion, generate publication-quality figures for the interpretation of genomic region and list sets. Intervene and its web application companion provide an easy command line and an interactive web interface to compute intersections of multiple genomic and list sets. They have the capacity to plot intersections using easy-to-interpret visual approaches. Intervene is developed and designed to meet the needs of both computer scientists and biologists. The source code is freely available at https://bitbucket.org/CBGR/intervene , with the web application available at https://asntech.shinyapps.io/intervene .

  7. Automated whole-genome multiple alignment of rat, mouse, and human

    Energy Technology Data Exchange (ETDEWEB)

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  8. Visual Comparison of Multiple Gene Expression Datasets in a Genomic Context

    Directory of Open Access Journals (Sweden)

    Borowski Krzysztof

    2008-06-01

    Full Text Available The need for novel methods of visualizing microarray data is growing. New perspectives are beneficial to finding patterns in expression data. The Bluejay genome browser provides an integrative way of visualizing gene expression datasets in a genomic context. We have now developed the functionality to display multiple microarray datasets simultaneously in Bluejay, in order to provide researchers with a comprehensive view of their datasets linked to a graphical representation of gene function. This will enable biologists to obtain valuable insights on expression patterns, by allowing them to analyze the expression values in relation to the gene locations as well as to compare expression profiles of related genomes or of di erent experiments for the same genome.

  9. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop.

    Science.gov (United States)

    Hatakeyama, Masaomi; Aluri, Sirisha; Balachadran, Mathi Thumilan; Sivarajan, Sajeevan Radha; Patrignani, Andrea; Grüter, Simon; Poveda, Lucy; Shimizu-Inatsugi, Rie; Baeten, John; Francoijs, Kees-Jan; Nataraja, Karaba N; Reddy, Yellodu A Nanja; Phadnis, Shamprasad; Ravikumar, Ramapura L; Schlapbach, Ralph; Sreeman, Sheshshayee M; Shimizu, Kentaro K

    2017-09-05

    Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  10. BioAnnote: a software platform for annotating biomedical documents with application in medical learning environments.

    Science.gov (United States)

    López-Fernández, H; Reboiro-Jato, M; Glez-Peña, D; Aparicio, F; Gachet, D; Buenaga, M; Fdez-Riverola, F

    2013-07-01

    Automatic term annotation from biomedical documents and external information linking are becoming a necessary prerequisite in modern computer-aided medical learning systems. In this context, this paper presents BioAnnote, a flexible and extensible open-source platform for automatically annotating biomedical resources. Apart from other valuable features, the software platform includes (i) a rich client enabling users to annotate multiple documents in a user friendly environment, (ii) an extensible and embeddable annotation meta-server allowing for the annotation of documents with local or remote vocabularies and (iii) a simple client/server protocol which facilitates the use of our meta-server from any other third-party application. In addition, BioAnnote implements a powerful scripting engine able to perform advanced batch annotations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing.

    Science.gov (United States)

    Gupta, Vikas; Estrada, April D; Blakley, Ivory; Reid, Rob; Patel, Ketan; Meyer, Mason D; Andersen, Stig Uggerhøj; Brown, Allan F; Lila, Mary Ann; Loraine, Ann E

    2015-01-01

    Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3' end formation. We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry.

  12. Analysis of antisense expression by whole genome tiling microarrays and siRNAs suggests mis-annotation of Arabidopsis orphan protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Casey R Richardson

    2010-05-01

    Full Text Available MicroRNAs (miRNAs and trans-acting small-interfering RNAs (tasi-RNAs are small (20-22 nt long RNAs (smRNAs generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery.We explored rice (Oryza sativa sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis 'orphan' hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the "ancient" (deeply conserved class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for "new" rapidly-evolving MIRNA genes.Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other

  13. Multiple-integrations of HPV16 genome and altered transcription of viral oncogenes and cellular genes are associated with the development of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Xulian Lu

    Full Text Available The constitutive expression of the high-risk HPV E6 and E7 viral oncogenes is the major cause of cervical cancer. To comprehensively explore the composition of HPV16 early transcripts and their genomic annotation, cervical squamous epithelial tissues from 40 HPV16-infected patients were collected for analysis of papillomavirus oncogene transcripts (APOT. We observed different transcription patterns of HPV16 oncogenes in progression of cervical lesions to cervical cancer and identified one novel transcript. Multiple-integration events in the tissues of cervical carcinoma (CxCa are significantly more often than those of low-grade squamous intraepithelial lesions (LSIL and high-grade squamous intraepithelial lesions (HSIL. Moreover, most cellular genes within or near these integration sites are cancer-associated genes. Taken together, this study suggests that the multiple-integrations of HPV genome during persistent viral infection, which thereby alters the expression patterns of viral oncogenes and integration-related cellular genes, play a crucial role in progression of cervical lesions to cervix cancer.

  14. Lynx web services for annotations and systems analysis of multi-gene disorders.

    Science.gov (United States)

    Sulakhe, Dinanath; Taylor, Andrew; Balasubramanian, Sandhya; Feng, Bo; Xie, Bingqing; Börnigen, Daniela; Dave, Utpal J; Foster, Ian T; Gilliam, T Conrad; Maltsev, Natalia

    2014-07-01

    Lynx is a web-based integrated systems biology platform that supports annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Lynx has integrated multiple classes of biomedical data (genomic, proteomic, pathways, phenotypic, toxicogenomic, contextual and others) from various public databases as well as manually curated data from our group and collaborators (LynxKB). Lynx provides tools for gene list enrichment analysis using multiple functional annotations and network-based gene prioritization. Lynx provides access to the integrated database and the analytical tools via REST based Web Services (http://lynx.ci.uchicago.edu/webservices.html). This comprises data retrieval services for specific functional annotations, services to search across the complete LynxKB (powered by Lucene), and services to access the analytical tools built within the Lynx platform. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Comparative genomic mapping of the bovine Fragile Histidine Triad (FHIT tumour suppressor gene: characterization of a 2 Mb BAC contig covering the locus, complete annotation of the gene, analysis of cDNA and of physiological expression profiles

    Directory of Open Access Journals (Sweden)

    Boussaha Mekki

    2006-05-01

    Full Text Available Abstract Background The Fragile Histidine Triad gene (FHIT is an oncosuppressor implicated in many human cancers, including vesical tumors. FHIT is frequently hit by deletions caused by fragility at FRA3B, the most active of human common fragile sites, where FHIT lays. Vesical tumors affect also cattle, including animals grazing in the wild on bracken fern; compounds released by the fern are known to induce chromosome fragility and may trigger cancer with the interplay of latent Papilloma virus. Results The bovine FHIT was characterized by assembling a contig of 78 BACs. Sequence tags were designed on human exons and introns and used directly to select bovine BACs, or compared with sequence data in the bovine genome database or in the trace archive of the bovine genome sequencing project, and adapted before use. FHIT is split in ten exons like in man, with exons 5 to 9 coding for a 149 amino acids protein. VISTA global alignments between bovine genomic contigs retrieved from the bovine genome database and the human FHIT region were performed. Conservation was extremely high over a 2 Mb region spanning the whole FHIT locus, including the size of introns. Thus, the bovine FHIT covers about 1.6 Mb compared to 1.5 Mb in man. Expression was analyzed by RT-PCR and Northern blot, and was found to be ubiquitous. Four cDNA isoforms were isolated and sequenced, that originate from an alternative usage of three variants of exon 4, revealing a size very close to the major human FHIT cDNAs. Conclusion A comparative genomic approach allowed to assemble a contig of 78 BACs and to completely annotate a 1.6 Mb region spanning the bovine FHIT gene. The findings confirmed the very high level of conservation between human and bovine genomes and the importance of comparative mapping to speed the annotation process of the recently sequenced bovine genome. The detailed knowledge of the genomic FHIT region will allow to study the role of FHIT in bovine cancerogenesis

  16. Comparative genomic mapping of the bovine Fragile Histidine Triad (FHIT) tumour suppressor gene: characterization of a 2 Mb BAC contig covering the locus, complete annotation of the gene, analysis of cDNA and of physiological expression profiles.

    Science.gov (United States)

    Uboldi, Cristina; Guidi, Elena; Roperto, Sante; Russo, Valeria; Roperto, Franco; Di Meo, Giulia Pia; Iannuzzi, Leopoldo; Floriot, Sandrine; Boussaha, Mekki; Eggen, André; Ferretti, Luca

    2006-05-23

    The Fragile Histidine Triad gene (FHIT) is an oncosuppressor implicated in many human cancers, including vesical tumors. FHIT is frequently hit by deletions caused by fragility at FRA3B, the most active of human common fragile sites, where FHIT lays. Vesical tumors affect also cattle, including animals grazing in the wild on bracken fern; compounds released by the fern are known to induce chromosome fragility and may trigger cancer with the interplay of latent Papilloma virus. The bovine FHIT was characterized by assembling a contig of 78 BACs. Sequence tags were designed on human exons and introns and used directly to select bovine BACs, or compared with sequence data in the bovine genome database or in the trace archive of the bovine genome sequencing project, and adapted before use. FHIT is split in ten exons like in man, with exons 5 to 9 coding for a 149 amino acids protein. VISTA global alignments between bovine genomic contigs retrieved from the bovine genome database and the human FHIT region were performed. Conservation was extremely high over a 2 Mb region spanning the whole FHIT locus, including the size of introns. Thus, the bovine FHIT covers about 1.6 Mb compared to 1.5 Mb in man. Expression was analyzed by RT-PCR and Northern blot, and was found to be ubiquitous. Four cDNA isoforms were isolated and sequenced, that originate from an alternative usage of three variants of exon 4, revealing a size very close to the major human FHIT cDNAs. A comparative genomic approach allowed to assemble a contig of 78 BACs and to completely annotate a 1.6 Mb region spanning the bovine FHIT gene. The findings confirmed the very high level of conservation between human and bovine genomes and the importance of comparative mapping to speed the annotation process of the recently sequenced bovine genome. The detailed knowledge of the genomic FHIT region will allow to study the role of FHIT in bovine cancerogenesis, especially of vesical papillomavirus-associated cancers of

  17. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    Science.gov (United States)

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  18. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans.

    Science.gov (United States)

    Hansen, M T

    1978-01-01

    The complexity of the genome of Micrococcus radiodurans was determined to be (2.0 +/- 0.3) X 10(9) daltons by DNA renaturation kinetics. The number of genome equivalents of DNA per cell was calculated from the complexity and the content of DNA. A lower limit of four genome equivalents per cell was approached with decreasing growth rate. Thus, no haploid stage appeared to be realized in this organism. The replication time was estimated from the kinetics and amount of residual DNA synthesis after inhibiting initiation of new rounds of replication. From this, the redundancy of terminal genetic markers was calculated to vary with growth rate from four to approximately eight copies per cell. All genetic material, including the least abundant, is thus multiply represented in each cell. The potential significance of the maintenance in each cell of multiple gene copies is discussed in relation to the extreme radiation resistance of M. radiodurans. PMID:649572

  19. Multiple recent horizontal transfers of a large genomic region in cheese making fungi.

    Science.gov (United States)

    Cheeseman, Kevin; Ropars, Jeanne; Renault, Pierre; Dupont, Joëlle; Gouzy, Jérôme; Branca, Antoine; Abraham, Anne-Laure; Ceppi, Maurizio; Conseiller, Emmanuel; Debuchy, Robert; Malagnac, Fabienne; Goarin, Anne; Silar, Philippe; Lacoste, Sandrine; Sallet, Erika; Bensimon, Aaron; Giraud, Tatiana; Brygoo, Yves

    2014-01-01

    While the extent and impact of horizontal transfers in prokaryotes are widely acknowledged, their importance to the eukaryotic kingdom is unclear and thought by many to be anecdotal. Here we report multiple recent transfers of a huge genomic island between Penicillium spp. found in the food environment. Sequencing of the two leading filamentous fungi used in cheese making, P. roqueforti and P. camemberti, and comparison with the penicillin producer P. rubens reveals a 575 kb long genomic island in P. roqueforti--called Wallaby--present as identical fragments at non-homologous loci in P. camemberti and P. rubens. Wallaby is detected in Penicillium collections exclusively in strains from food environments. Wallaby encompasses about 250 predicted genes, some of which are probably involved in competition with microorganisms. The occurrence of multiple recent eukaryotic transfers in the food environment provides strong evidence for the importance of this understudied and probably underestimated phenomenon in eukaryotes.

  20. Comparative genomic survey, exon-intron annotation and phylogenetic analysis of NAT-homologous sequences in archaea, protists, fungi, viruses, and invertebrates

    Science.gov (United States)

    We have previously published extensive genomic surveys [1-3], reporting NAT-homologous sequences in hundreds of sequenced bacterial, fungal and vertebrate genomes. We present here the results of our latest search of 2445 genomes, representing 1532 (70 archaeal, 1210 bacterial, 43 protist, 97 fungal,...

  1. An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community

    KAUST Repository

    Wang, Yong

    2016-02-23

    The low biomass in environmental samples is a major challenge for microbial metagenomic studies. The amplification of a genomic DNA was frequently applied to meeting the minimum requirement of the DNA for a high-throughput next-generation-sequencing technology. Using a synthetic bacterial community, the amplification efficiency of the Multiple Annealing and Looping Based Amplification Cycles (MALBAC) kit that is originally developed to amplify the single-cell genomic DNA of mammalian organisms is examined. The DNA template of 10 pg in each reaction of the MALBAC amplification may generate enough DNA for Illumina sequencing. Using 10 pg and 100 pg templates for each reaction set, the MALBAC kit shows a stable and homogeneous amplification as indicated by the highly consistent coverage of the reads from the two amplified samples on the contigs assembled by the original unamplified sample. Although GenomePlex whole genome amplification kit allows one to generate enough DNA using 100 pg of template in each reaction, the minority of the mixed bacterial species is not linearly amplified. For both of the kits, the GC-rich regions of the genomic DNA are not efficiently amplified as suggested by the low coverage of the contigs with the high GC content. The high efficiency of the MALBAC kit is supported for the amplification of environmental microbial DNA samples, and the concerns on its application are also raised to bacterial species with the high GC content.

  2. Dictionary-driven protein annotation.

    Science.gov (United States)

    Rigoutsos, Isidore; Huynh, Tien; Floratos, Aris; Parida, Laxmi; Platt, Daniel

    2002-09-01

    Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/ bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were

  3. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome.

    Science.gov (United States)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui; Kim, Su Yeon; Korneliussen, Thorfinn; Vinckenbosch, Nicolas; Tian, Geng; Huerta-Sanchez, Emilia; Feder, Alison F; Grarup, Niels; Jørgensen, Torben; Jiang, Tao; Witte, Daniel R; Sandbæk, Annelli; Hellmann, Ines; Lauritzen, Torsten; Hansen, Torben; Pedersen, Oluf; Wang, Jun; Nielsen, Rasmus

    2011-10-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations.

  4. MEETING: Chlamydomonas Annotation Jamboree - October 2003

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Arthur R

    2007-04-13

    Shotgun sequencing of the nuclear genome of Chlamydomonas reinhardtii (Chlamydomonas throughout) was performed at an approximate 10X coverage by JGI. Roughly half of the genome is now contained on 26 scaffolds, all of which are at least 1.6 Mb, and the coverage of the genome is ~95%. There are now over 200,000 cDNA sequence reads that we have generated as part of the Chlamydomonas genome project (Grossman, 2003; Shrager et al., 2003; Grossman et al. 2007; Merchant et al., 2007); other sequences have also been generated by the Kasuza sequence group (Asamizu et al., 1999; Asamizu et al., 2000) or individual laboratories that have focused on specific genes. Shrager et al. (2003) placed the reads into distinct contigs (an assemblage of reads with overlapping nucleotide sequences), and contigs that group together as part of the same genes have been designated ACEs (assembly of contigs generated from EST information). All of the reads have also been mapped to the Chlamydomonas nuclear genome and the cDNAs and their corresponding genomic sequences have been reassembled, and the resulting assemblage is called an ACEG (an Assembly of contiguous EST sequences supported by genomic sequence) (Jain et al., 2007). Most of the unique genes or ACEGs are also represented by gene models that have been generated by the Joint Genome Institute (JGI, Walnut Creek, CA). These gene models have been placed onto the DNA scaffolds and are presented as a track on the Chlamydomonas genome browser associated with the genome portal (http://genome.jgi-psf.org/Chlre3/Chlre3.home.html). Ultimately, the meeting grant awarded by DOE has helped enormously in the development of an annotation pipeline (a set of guidelines used in the annotation of genes) and resulted in high quality annotation of over 4,000 genes; the annotators were from both Europe and the USA. Some of the people who led the annotation initiative were Arthur Grossman, Olivier Vallon, and Sabeeha Merchant (with many individual

  5. Partial replicas of uv-irradiated bacteriophage T4 genomes and their role in multiplicity reactivation

    International Nuclear Information System (INIS)

    Rayssiguier, C.; Kozinski, A.W.; Doermann, A.H.

    1980-01-01

    A physicochemical study was made of the replication and transmission of uv-irradiated T4 genomes. The data presented in this paper justify the following conclusions. (i) For both low and high multiplicity of infection there was abundant replication from uv-irradiated parental templates. It exceeded by far the efficiency predicted by the hypothesis that a single lethal hit completely prevents replication of the killed phage DNA: i.e., some dead phage particles must replicate parts of their DNA. (ii) Replication of the uv-irradiated DNA was repetitive as shown by density reversal experiments. (iii) Newly synthesized progeny DNA originating from uv-irradiated templates appeared as significantly shorter segments of the genomes than progeny DNA produced from non-uv-irradiated templates. A good correlation existed between the number of uv hits and the number of random cuts that would be needed to reduce replication fragments to the length observed. (iv) The contribution of uv-irradiated parental DNA among progeny phage in multiplicity reactivation was disposed in shorter subunits than was the DNA from unirradiated parental phage. It is important to emphasize that it was mainly in the form of replicative hybrid. These conclusions appear to justify excluding interparental recombination as a prerequisite for multiplicity reactivation. They lead directly to some form of partial replica hypothesis for multiplicity reactivation

  6. annot8r: GO, EC and KEGG annotation of EST datasets

    Directory of Open Access Journals (Sweden)

    Schmid Ralf

    2008-04-01

    Full Text Available Abstract Background The expressed sequence tag (EST methodology is an attractive option for the generation of sequence data for species for which no completely sequenced genome is available. The annotation and comparative analysis of such datasets poses a formidable challenge for research groups that do not have the bioinformatics infrastructure of major genome sequencing centres. Therefore, there is a need for user-friendly tools to facilitate the annotation of non-model species EST datasets with well-defined ontologies that enable meaningful cross-species comparisons. To address this, we have developed annot8r, a platform for the rapid annotation of EST datasets with GO-terms, EC-numbers and KEGG-pathways. Results annot8r automatically downloads all files relevant for the annotation process and generates a reference database that stores UniProt entries, their associated Gene Ontology (GO, Enzyme Commission (EC and Kyoto Encyclopaedia of Genes and Genomes (KEGG annotation and additional relevant data. For each of GO, EC and KEGG, annot8r extracts a specific sequence subset from the UniProt dataset based on the information stored in the reference database. These three subsets are then formatted for BLAST searches. The user provides the protein or nucleotide sequences to be annotated and annot8r runs BLAST searches against these three subsets. The BLAST results are parsed and the corresponding annotations retrieved from the reference database. The annotations are saved both as flat files and also in a relational postgreSQL results database to facilitate more advanced searches within the results. annot8r is integrated with the PartiGene suite of EST analysis tools. Conclusion annot8r is a tool that assigns GO, EC and KEGG annotations for data sets resulting from EST sequencing projects both rapidly and efficiently. The benefits of an underlying relational database, flexibility and the ease of use of the program make it ideally suited for non

  7. Image annotation under X Windows

    Science.gov (United States)

    Pothier, Steven

    1991-08-01

    A mechanism for attaching graphic and overlay annotation to multiple bits/pixel imagery while providing levels of performance approaching that of native mode graphics systems is presented. This mechanism isolates programming complexity from the application programmer through software encapsulation under the X Window System. It ensures display accuracy throughout operations on the imagery and annotation including zooms, pans, and modifications of the annotation. Trade-offs that affect speed of display, consumption of memory, and system functionality are explored. The use of resource files to tune the display system is discussed. The mechanism makes use of an abstraction consisting of four parts; a graphics overlay, a dithered overlay, an image overly, and a physical display window. Data structures are maintained that retain the distinction between the four parts so that they can be modified independently, providing system flexibility. A unique technique for associating user color preferences with annotation is introduced. An interface that allows interactive modification of the mapping between image value and color is discussed. A procedure that provides for the colorization of imagery on 8-bit display systems using pixel dithering is explained. Finally, the application of annotation mechanisms to various applications is discussed.

  8. Nanoliter reactors improve multiple displacement amplification of genomes from single cells.

    Directory of Open Access Journals (Sweden)

    Yann Marcy

    2007-09-01

    Full Text Available Since only a small fraction of environmental bacteria are amenable to laboratory culture, there is great interest in genomic sequencing directly from single cells. Sufficient DNA for sequencing can be obtained from one cell by the Multiple Displacement Amplification (MDA method, thereby eliminating the need to develop culture methods. Here we used a microfluidic device to isolate individual Escherichia coli and amplify genomic DNA by MDA in 60-nl reactions. Our results confirm a report that reduced MDA reaction volume lowers nonspecific synthesis that can result from contaminant DNA templates and unfavourable interaction between primers. The quality of the genome amplification was assessed by qPCR and compared favourably to single-cell amplifications performed in standard 50-microl volumes. Amplification bias was greatly reduced in nanoliter volumes, thereby providing a more even representation of all sequences. Single-cell amplicons from both microliter and nanoliter volumes provided high-quality sequence data by high-throughput pyrosequencing, thereby demonstrating a straightforward route to sequencing genomes from single cells.

  9. An evolvable oestrogen receptor activity sensor: development of a modular system for integrating multiple genes into the yeast genome

    NARCIS (Netherlands)

    Fox, J.E.; Bridgham, J.T.; Bovee, T.F.H.; Thornton, J.W.

    2007-01-01

    To study a gene interaction network, we developed a gene-targeting strategy that allows efficient and stable genomic integration of multiple genetic constructs at distinct target loci in the yeast genome. This gene-targeting strategy uses a modular plasmid with a recyclable selectable marker and a

  10. Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization

    Science.gov (United States)

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2012-01-01

    Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods. PMID:23272092

  11. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles.

    Science.gov (United States)

    Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba Alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B

    2013-01-01

    The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.

  12. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles.

    Directory of Open Access Journals (Sweden)

    Intikhab Alam

    Full Text Available The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes.We developed a data warehouse system (INDIGO that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments.We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.

  13. Discovering gene annotations in biomedical text databases

    Directory of Open Access Journals (Sweden)

    Ozsoyoglu Gultekin

    2008-03-01

    Full Text Available Abstract Background Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. Results In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. Conclusion GEANN is useful for two distinct purposes: (i automating the annotation of genomic entities with Gene Ontology concepts, and (ii providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate

  14. Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification.

    Science.gov (United States)

    de Miguel, Marina; Cabezas, José-Antonio; de María, Nuria; Sánchez-Gómez, David; Guevara, María-Ángeles; Vélez, María-Dolores; Sáez-Laguna, Enrique; Díaz, Luis-Manuel; Mancha, Jose-Antonio; Barbero, María-Carmen; Collada, Carmen; Díaz-Sala, Carmen; Aranda, Ismael; Cervera, María-Teresa

    2014-06-12

    Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought. High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area. The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.

  15. Multiple displacement amplification of whole genomic DNA from urediospores of Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Zhang, R; Ma, Z H; Wu, B M

    2015-05-01

    Biotrophic fungi, such as Puccinia striiformis f. sp. tritici, because they cannot be cultured on nutrient media, to obtain adequate quantity of DNA for molecular genetic analysis, are usually propagated on living hosts, wheat plants in case of P. striiformis f. sp. tritici. The propagation process is time-, space- and labor-consuming and has been a bottleneck to molecular genetic analysis of this pathogen. In this study we evaluated multiple displacement amplification (MDA) of pathogen genomic DNA from urediospores as an alternative approach to traditional propagation of urediospores followed by DNA extraction. The quantities of pathogen genomic DNA in the products were further determined via real-time PCR with a pair of primers specific for the β-tubulin gene of P. striiformis f. sp. tritici. The amplified fragment length polymorphism (AFLP) fingerprints were also compared between the DNA products. The results demonstrated that adequate genomic DNA at fragment size larger than 23 Kb could be amplified from 20 to 30 urediospores via MDA method. The real-time PCR results suggested that although fresh urediospores collected from diseased leaves were the best, spores picked from diseased leaves stored for a prolonged period could also be used for amplification. AFLP fingerprints exhibited no significant differences between amplified DNA and DNA extracted with CTAB method, suggesting amplified DNA can represent the pathogen's genomic DNA very well. Therefore, MDA could be used to obtain genomic DNA from small precious samples (dozens of spores) for molecular genetic analysis of wheat stripe rust pathogen, and other fungi that are difficult to propagate.

  16. A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits

    Directory of Open Access Journals (Sweden)

    Hayashi Takeshi

    2013-01-01

    Full Text Available Abstract Background Genomic selection is an effective tool for animal and plant breeding, allowing effective individual selection without phenotypic records through the prediction of genomic breeding value (GBV. To date, genomic selection has focused on a single trait. However, actual breeding often targets multiple correlated traits, and, therefore, joint analysis taking into consideration the correlation between traits, which might result in more accurate GBV prediction than analyzing each trait separately, is suitable for multi-trait genomic selection. This would require an extension of the prediction model for single-trait GBV to multi-trait case. As the computational burden of multi-trait analysis is even higher than that of single-trait analysis, an effective computational method for constructing a multi-trait prediction model is also needed. Results We described a Bayesian regression model incorporating variable selection for jointly predicting GBVs of multiple traits and devised both an MCMC iteration and variational approximation for Bayesian estimation of parameters in this multi-trait model. The proposed Bayesian procedures with MCMC iteration and variational approximation were referred to as MCBayes and varBayes, respectively. Using simulated datasets of SNP genotypes and phenotypes for three traits with high and low heritabilities, we compared the accuracy in predicting GBVs between multi-trait and single-trait analyses as well as between MCBayes and varBayes. The results showed that, compared to single-trait analysis, multi-trait analysis enabled much more accurate GBV prediction for low-heritability traits correlated with high-heritability traits, by utilizing the correlation structure between traits, while the prediction accuracy for uncorrelated low-heritability traits was comparable or less with multi-trait analysis in comparison with single-trait analysis depending on the setting for prior probability that a SNP has zero

  17. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Henrik [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Cantor, Michael [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Dusheyko, Serge [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Hua, Susan [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Poliakov, Alexander [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Shabalov, Igor [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Smirnova, Tatyana [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Grigoriev, Igor V. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Dubchak, Inna [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2013-11-12

    The U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a national user facility, serves the diverse scientific community by providing integrated high-throughput sequencing and computational analysis to enable system-based scientific approaches in support of DOE missions related to clean energy generation and environmental characterization. The JGI Genome Portal (http://genome.jgi.doe.gov) provides unified access to all JGI genomic databases and analytical tools. The JGI maintains extensive data management systems and specialized analytical capabilities to manage and interpret complex genomic data. A user can search, download and explore multiple data sets available for all DOE JGI sequencing projects including their status, assemblies and annotations of sequenced genomes. In this paper, we describe major updates of the Genome Portal in the past 2 years with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI.

  18. Annotation and Curation of Uncharacterized proteins- Challenges

    Directory of Open Access Journals (Sweden)

    Johny eIjaq

    2015-03-01

    Full Text Available Hypothetical Proteins are the proteins that are predicted to be expressed from an open reading frame (ORF, constituting a substantial fraction of proteomes in both prokaryotes and eukaryotes. Genome projects have led to the identification of many therapeutic targets, the putative function of the protein and their interactions. In this review we have enlisted various methods. Annotation linked to structural and functional prediction of hypothetical proteins assist in the discovery of new structures and functions serving as markers and pharmacological targets for drug designing, discovery and screening. Mass spectrometry is an analytical technique for validating protein characterisation. Matrix-assisted laser desorption ionization–mass spectrometry (MALDI-MS is an efficient analytical method. Microarrays and Protein expression profiles help understanding the biological systems through a systems-wide study of proteins and their interactions with other proteins and non-proteinaceous molecules to control complex processes in cells and tissues and even whole organism. Next generation sequencing technology accelerates multiple areas of genomics research.

  19. Digital Droplet Multiple Displacement Amplification (ddMDA for Whole Genome Sequencing of Limited DNA Samples.

    Directory of Open Access Journals (Sweden)

    Minsoung Rhee

    Full Text Available Multiple displacement amplification (MDA is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet, ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.

  20. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    Science.gov (United States)

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis

    DEFF Research Database (Denmark)

    Mechelli, Rosella; Umeton, Renato; Policano, Claudia

    2013-01-01

    of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge......, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate...... immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated...

  2. Visualization for genomics: the Microbial Genome Viewer.

    NARCIS (Netherlands)

    Kerkhoven, R.; Enckevort, F.H.J. van; Boekhorst, J.; Molenaar, D; Siezen, R.J.

    2004-01-01

    SUMMARY: A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a

  3. AnnoLnc: a web server for systematically annotating novel human lncRNAs.

    Science.gov (United States)

    Hou, Mei; Tang, Xing; Tian, Feng; Shi, Fangyuan; Liu, Fenglin; Gao, Ge

    2016-11-16

    Long noncoding RNAs (lncRNAs) have been shown to play essential roles in almost every important biological process through multiple mechanisms. Although the repertoire of human lncRNAs has rapidly expanded, their biological function and regulation remain largely elusive, calling for a systematic and integrative annotation tool. Here we present AnnoLnc ( http://annolnc.cbi.pku.edu.cn ), a one-stop portal for systematically annotating novel human lncRNAs. Based on more than 700 data sources and various tool chains, AnnoLnc enables a systematic annotation covering genomic location, secondary structure, expression patterns, transcriptional regulation, miRNA interaction, protein interaction, genetic association and evolution. An intuitive web interface is available for interactive analysis through both desktops and mobile devices, and programmers can further integrate AnnoLnc into their pipeline through standard JSON-based Web Service APIs. To the best of our knowledge, AnnoLnc is the only web server to provide on-the-fly and systematic annotation for newly identified human lncRNAs. Compared with similar tools, the annotation generated by AnnoLnc covers a much wider spectrum with intuitive visualization. Case studies demonstrate the power of AnnoLnc in not only rediscovering known functions of human lncRNAs but also inspiring novel hypotheses.

  4. The Arabidopsis thaliana homolog of the helicase RTEL1 plays multiple roles in preserving genome stability.

    Science.gov (United States)

    Recker, Julia; Knoll, Alexander; Puchta, Holger

    2014-12-01

    In humans, mutations in the DNA helicase Regulator of Telomere Elongation Helicase1 (RTEL1) lead to Hoyeraal-Hreidarsson syndrome, a severe, multisystem disorder. Here, we demonstrate that the RTEL1 homolog in Arabidopsis thaliana plays multiple roles in preserving genome stability. RTEL1 suppresses homologous recombination in a pathway parallel to that of the DNA translocase FANCM. Cytological analyses of root meristems indicate that RTEL1 is involved in processing DNA replication intermediates independently from FANCM and the nuclease MUS81. Moreover, RTEL1 is involved in interstrand and intrastrand DNA cross-link repair independently from FANCM and (in intrastrand cross-link repair) parallel to MUS81. RTEL1 contributes to telomere homeostasis; the concurrent loss of RTEL1 and the telomerase TERT leads to rapid, severe telomere shortening, which occurs much more rapidly than it does in the single-mutant line tert, resulting in developmental arrest after four generations. The double mutant rtel1-1 recq4A-4 exhibits massive growth defects, indicating that this RecQ family helicase, which is also involved in the suppression of homologous recombination and the repair of DNA lesions, can partially replace RTEL1 in the processing of DNA intermediates. The requirement for RTEL1 in multiple pathways to preserve genome stability in plants can be explained by its putative role in the destabilization of DNA loop structures, such as D-loops and T-loops. © 2014 American Society of Plant Biologists. All rights reserved.

  5. Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.

    Science.gov (United States)

    Shi, Hongbo; Zhang, Guangde; Zhou, Meng; Cheng, Liang; Yang, Haixiu; Wang, Jing; Sun, Jie; Wang, Zhenzhen

    2016-01-01

    MicroRNAs (miRNAs) play an important role in the development and progression of human diseases. The identification of disease-associated miRNAs will be helpful for understanding the molecular mechanisms of diseases at the post-transcriptional level. Based on different types of genomic data sources, computational methods for miRNA-disease association prediction have been proposed. However, individual source of genomic data tends to be incomplete and noisy; therefore, the integration of various types of genomic data for inferring reliable miRNA-disease associations is urgently needed. In this study, we present a computational framework, CHNmiRD, for identifying miRNA-disease associations by integrating multiple genomic and phenotype data, including protein-protein interaction data, gene ontology data, experimentally verified miRNA-target relationships, disease phenotype information and known miRNA-disease connections. The performance of CHNmiRD was evaluated by experimentally verified miRNA-disease associations, which achieved an area under the ROC curve (AUC) of 0.834 for 5-fold cross-validation. In particular, CHNmiRD displayed excellent performance for diseases without any known related miRNAs. The results of case studies for three human diseases (glioblastoma, myocardial infarction and type 1 diabetes) showed that all of the top 10 ranked miRNAs having no known associations with these three diseases in existing miRNA-disease databases were directly or indirectly confirmed by our latest literature mining. All these results demonstrated the reliability and efficiency of CHNmiRD, and it is anticipated that CHNmiRD will serve as a powerful bioinformatics method for mining novel disease-related miRNAs and providing a new perspective into molecular mechanisms underlying human diseases at the post-transcriptional level. CHNmiRD is freely available at http://www.bio-bigdata.com/CHNmiRD.

  6. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).

    Science.gov (United States)

    Auinger, Hans-Jürgen; Schönleben, Manfred; Lehermeier, Christina; Schmidt, Malthe; Korzun, Viktor; Geiger, Hartwig H; Piepho, Hans-Peter; Gordillo, Andres; Wilde, Peer; Bauer, Eva; Schön, Chris-Carolin

    2016-11-01

    Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S 2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S 2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS  = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.

  7. Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.

    Directory of Open Access Journals (Sweden)

    Hongbo Shi

    Full Text Available MicroRNAs (miRNAs play an important role in the development and progression of human diseases. The identification of disease-associated miRNAs will be helpful for understanding the molecular mechanisms of diseases at the post-transcriptional level. Based on different types of genomic data sources, computational methods for miRNA-disease association prediction have been proposed. However, individual source of genomic data tends to be incomplete and noisy; therefore, the integration of various types of genomic data for inferring reliable miRNA-disease associations is urgently needed. In this study, we present a computational framework, CHNmiRD, for identifying miRNA-disease associations by integrating multiple genomic and phenotype data, including protein-protein interaction data, gene ontology data, experimentally verified miRNA-target relationships, disease phenotype information and known miRNA-disease connections. The performance of CHNmiRD was evaluated by experimentally verified miRNA-disease associations, which achieved an area under the ROC curve (AUC of 0.834 for 5-fold cross-validation. In particular, CHNmiRD displayed excellent performance for diseases without any known related miRNAs. The results of case studies for three human diseases (glioblastoma, myocardial infarction and type 1 diabetes showed that all of the top 10 ranked miRNAs having no known associations with these three diseases in existing miRNA-disease databases were directly or indirectly confirmed by our latest literature mining. All these results demonstrated the reliability and efficiency of CHNmiRD, and it is anticipated that CHNmiRD will serve as a powerful bioinformatics method for mining novel disease-related miRNAs and providing a new perspective into molecular mechanisms underlying human diseases at the post-transcriptional level. CHNmiRD is freely available at http://www.bio-bigdata.com/CHNmiRD.

  8. A Thousand Fly Genomes: An Expanded Drosophila Genome Nexus.

    Science.gov (United States)

    Lack, Justin B; Lange, Jeremy D; Tang, Alison D; Corbett-Detig, Russell B; Pool, John E

    2016-12-01

    The Drosophila Genome Nexus is a population genomic resource that provides D. melanogaster genomes from multiple sources. To facilitate comparisons across data sets, genomes are aligned using a common reference alignment pipeline which involves two rounds of mapping. Regions of residual heterozygosity, identity-by-descent, and recent population admixture are annotated to enable data filtering based on the user's needs. Here, we present a significant expansion of the Drosophila Genome Nexus, which brings the current data object to a total of 1,121 wild-derived genomes. New additions include 305 previously unpublished genomes from inbred lines representing six population samples in Egypt, Ethiopia, France, and South Africa, along with another 193 genomes added from recently-published data sets. We also provide an aligned D. simulans genome to facilitate divergence comparisons. This improved resource will broaden the range of population genomic questions that can addressed from multi-population allele frequencies and haplotypes in this model species. The larger set of genomes will also enhance the discovery of functionally relevant natural variation that exists within and between populations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database

    International Nuclear Information System (INIS)

    Kobayashi, Naohiro; Harano, Yoko; Tochio, Naoya; Nakatani, Eiichi; Kigawa, Takanori; Yokoyama, Shigeyuki; Mading, Steve; Ulrich, Eldon L.; Markley, John L.; Akutsu, Hideo; Fujiwara, Toshimichi

    2012-01-01

    Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including 1 H, 13 C and 15 N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001–2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies.

  10. Snap: an integrated SNP annotation platform

    DEFF Research Database (Denmark)

    Li, Shengting; Ma, Lijia; Li, Heng

    2007-01-01

    Snap (Single Nucleotide Polymorphism Annotation Platform) is a server designed to comprehensively analyze single genes and relationships between genes basing on SNPs in the human genome. The aim of the platform is to facilitate the study of SNP finding and analysis within the framework of medical...

  11. INDIGO – INtegrated Data Warehouse of MIcrobial GenOmes with Examples from the Red Sea Extremophiles

    Science.gov (United States)

    Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B.

    2013-01-01

    Background The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. Results We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. Conclusions We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo. PMID

  12. All SNPs are not created equal: Genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs

    NARCIS (Netherlands)

    Schork, A.J.; Thompson, W.K.; Pham, P.; Torkamani, A.; Roddey, J.C.; Sullivan, P.F.; Kelsoe, J.; O'Donovan, M.C.; Furberg, H.; Absher, D.; Agudo, A.; Almgren, P.; Ardissino, D.; Assimes, T.L.; Bandinelli, S.; Barzan, L.; Bencko, V.; Benhamou, S.; Benjamin, E.J.; Bernardinelli, L.; Bis, J.; Boehnke, M.; Boerwinkle, E.; Boomsma, D.I.; Brennan, P.; Canova, C.; Castellsagué, X.; Chanock, S.; Chasman, D.I.; Conway, D.I.; Dackor, J.; de Geus, E.J.C.; Duan, J.; Elosua, R.; Everett, B.; Fabianova, E.; Ferrucci, L.; Foretova, L.; Fortmann, S.P.; Franceschini, N.; Frayling, T.M.; Furberg, C.; Gejman, P.V.; Groop, L.; Gu, F.; Guralnik, J.; Hankinson, S.E.; Haritunians, T.; Healy, C.; Hofman, A.; Holcátová, I.; Hunter, D.J.; Hwang, S.J.; Ioannidis, J.P.A.; Iribarren, C.; Jackson, A.U.; Janout, V.; Kaprio, J.; Kim, Y.; Kjaerheim, K.; Knowles, J.W.; Kraft, P.; Ladenvall, C.; Lagiou, P.; Lanthrop, M.; Lerman, C.; Levinson, D.F.; Levy, D.; Li, M.D.; Lin, D.Y.; Lips, E.H.; Lissowska, J.; Lowry, R.B.; Lucas, G.; Macfarlane, T.V.; Maes, H.H.M.; Mannucci, P.M.; Mates, D.; Mauri, F.; McGovern, J.A.; McKay, J.D.; McKnight, B.; Melander, O.; Merlini, P.A.; Milaneschi, Y.; Mohlke, K.L.; O'Donnell, C.J.; Pare, G.; Penninx, B.W.J.H.; Perry, J.R.B.; Posthuma, D.; Preis, S.R.; Psaty, B.; Quertermous, T.; Ramachandran, V.S.; Richiardi, L.; Ridker, P.M.; Rose, J.; Rudnai, P.; Salomaa, V.; Sanders, A.R.; Schwartz, S.M.; Shi, J.; Smit, J.H.; Stringham, H.M.; Szeszenia-Dabrowska, N.; Tanaka, T.; Taylor, K.; Thacker, E.E.; Thornton, L.; Tiemeier, H.; Tuomilehto, J.; Uitterlinden, A.G.; van Duijn, C.M.; Vink, J.M.; Vogelzangs, N.; Voight, B.F.; Walter, S.; Willemsen, G.; Zaridze, D.; Znaor, A.; Akil, H.; Anjorin, A.; Backlund, L.; Badner, J.A.; Barchas, J.D.; Barrett, T.; Bass, N.; Bauer, M.; Bellivier, F.; Bergen, S.E.; Berrettini, W.; Blackwood, D.; Bloss, C.S.; Breen, G.; Breuer, R.; Bunner, W.E.; Burmeister, M.; Byerley, W. F.; Caesar, S.; Chambert, K.; Cichon, S.; St Clair, D.; Collier, D.A.; Corvin, A.; Coryell, W.H.; Craddock, N.; Craig, D.W.; Daly, M.; Day, R.; Degenhardt, F.; Djurovic, S.; Dudbridge, F.; Edenberg, H.J.; Elkin, A.; Etain, B.; Farmer, A.E.; Ferreira, M.A.; Ferrier, I.; Flickinger, M.; Foroud, T.; Frank, J.; Fraser, C.; Frisén, L.; Gershon, E.S.; Gill, M.; Gordon-Smith, K.; Green, E.K.; Greenwood, T.A.; Grozeva, D.; Guan, W.; Gurling, H.; Gustafsson, O.; Hamshere, M.L.; Hautzinger, M.; Herms, S.; Hipolito, M.; Holmans, P.A.; Hultman, C. M.; Jamain, S.; Jones, E.G.; Jones, I.; Jones, L.; Kandaswamy, R.; Kennedy, J.L.; Kirov, G. K.; Koller, D.L.; Kwan, P.; Landén, M.; Langstrom, N.; Lathrop, M.; Lawrence, J.; Lawson, W.B.; Leboyer, M.; Lee, P.H.; Li, J.; Lichtenstein, P.; Lin, D.; Liu, C.; Lohoff, F.W.; Lucae, S.; Mahon, P.B.; Maier, W.; Martin, N.G.; Mattheisen, M.; Matthews, K.; Mattingsdal, M.; McGhee, K.A.; McGuffin, P.; McInnis, M.G.; McIntosh, A.; McKinney, R.; McLean, A.W.; McMahon, F.J.; McQuillin, A.; Meier, S.; Melle, I.; Meng, F.; Mitchell, P.B.; Montgomery, G.W.; Moran, J.; Morken, G.; Morris, D.W.; Moskvina, V.; Muglia, P.; Mühleisen, T.W.; Muir, W.J.; Müller-Myhsok, B.; Myers, R.M.; Nievergelt, C.M.; Nikolov, I.; Nimgaonkar, V.L.; Nöthen, M.M.; Nurnberger, J.I.; Nwulia, E.A.; O'Dushlaine, C.; Osby, U.; Óskarsson, H.; Owen, M.J.; Petursson, H.; Pickard, B.S.; Porgeirsson, P.; Potash, J.B.; Propping, P.; Purcell, S.M.; Quinn, E.; Raychaudhuri, S.; Rice, J.; Rietschel, M.; Ruderfer, D.; Schalling, M.; Schatzberg, A.F.; Scheftner, W.A.; Schofield, P.R.; Schulze, T.G.; Schumacher, J.; Schwarz, M.M.; Scolnick, E.; Scott, L.J.; Shilling, P.D.; Sigurdsson, E.; Sklar, P.; Smith, E.N.; Stefansson, H.; Stefansson, K.; Steffens, M; Steinberg, S.; Strauss, J.; Strohmaier, J.; Szelinger, S.; Thompson, R.C.; Tozzi, F.; Treutlein, J.; Vincent, J.B.; Watson, S.J.; Wienker, T.F.; Williamson, R.; Witt, S.H.; Wright, A.; Xu, W.; Young, A.H.; Zandi, P.P.; Zhang, P.; Zöllner, S.; Agartz, I.; Albus, M.; Alexander, M.; Amdur, R. L.; Amin, F.; Bitter, I.; Black, D.W.; Børglum, A.D.; Brown, M.A.; Bruggeman, R.; Buccola, N.G.; Cahn, W.; Cantor, R.M.; Carr, V.J.; Catts, S. V.; Choudhury, K.; Cloninger, C. R.; Cormican, P.; Danoy, P. A.; Datta, S.; DeHert, M.; Demontis, D.; Dikeos, D.; Donnelly, P.; Donohoe, G.; Duong, L.; Dwyer, S.; Fanous, A.; Fink-Jensen, A.; Freedman, R.; Freimer, N.B.; Friedl, M.; Georgieva, L.; Giegling, I.; Glenthoj, B.; Godard, S.; Golimbet, V.; de Haan, L.; Hansen, M.; Hansen, T.; Hartmann, A.M.; Henskens, F. A.; Hougaard, D. M.; Ingason, A.; Jablensky, A. V.; Jakobsen, K.D.; Jay, M.; Jönsson, E.G.; Jürgens, G.; Kahn, R.S.; Keller, M.C.; Kendler, K.S.; Kenis, G.; Kenny, E.; Konnerth, H.; Konte, B.; Krabbendam, L.; Krasucki, R.; Lasseter, V. K.; Laurent, C.; Lencz, T.; Lerer, F. B.; Liang, K. Y.; Lieberman, J. A.; Linszen, D.H.; Lönnqvist, J.; Loughland, C. M.; Maclean, A. W.; Maher, B.S.; Malhotra, A.K.; Mallet, J.; Malloy, P.; McGrath, J. J.; McLean, D. E.; Michie, P. T.; Milanova, V.; Mors, O.; Mortensen, P.B.; Mowry, B. J.; Myin-Germeys, I.; Neale, B.; Nertney, D. A.; Nestadt, G.; Nielsen, J.; Nordentoft, M.; Norton, N.; O'Neill, F.; Olincy, A.; Olsen, L.; Ophoff, R.A.; Orntoft, T. F.; van Os, J.; Pantelis, C.; Papadimitriou, G.; Pato, C.N.; Peltonen, L.; Pickard, B.; Pietilainen, O.P.; Pimm, J.; Pulver, A. E.; Puri, V.; Quested, D.; Rasmussen, H.B.; Rethelyi, J.M.; Ribble, R.; Riley, B.P.; Rossin, L.; Ruggeri, M.; Rujescu, D.; Schall, U.; Schwab, S. G.; Scott, R.J.; Silverman, J.M.; Spencer, C. C.; Strange, A.; Strengman, E.; Stroup, T.S.; Suvisaari, J.; Terenius, L.; Thirumalai, S.; Timm, S.; Toncheva, D.; Tosato, S.; van den Oord, E.J.; Veldink, J.; Visscher, P.M.; Walsh, D.; Wang, A. G.; Werge, T.; Wiersma, D.; Wildenauer, D. B.; Williams, H.J.; Williams, N.M.; van Winkel, R.; Wormley, B.; Zammit, S.; Schork, N.J.; Andreassen, O.A.; Dale, A.M.

    2013-01-01

    Recent results indicate that genome-wide association studies (GWAS) have the potential to explain much of the heritability of common complex phenotypes, but methods are lacking to reliably identify the remaining associated single nucleotide polymorphisms (SNPs). We applied stratified False Discovery

  13. All SNPs Are Not Created Equal: Genome-Wide Association Studies Reveal a Consistent Pattern of Enrichment among Functionally Annotated SNPs

    NARCIS (Netherlands)

    Schork, Andrew J.; Thompson, Wesley K.; Pham, Phillip; Torkamani, Ali; Roddey, J. Cooper; Sullivan, Patrick F.; Kelsoe, John R.; O'Donovan, Michael C.; Furberg, Helena; Schork, Nicholas J.; Andreassen, Ole A.; Dale, Anders M.; Absher, Devin; Agudo, Antonio; Almgren, Peter; Ardissino, Diego; Assimes, Themistocles L.; Bandinelli, Stephania; Barzan, Luigi; Bencko, Vladimir; Benhamou, Simone; Benjamin, Emelia J.; Bernardinelli, Luisa; Bis, Joshua; Boehnke, Michael; Boerwinkle, Eric; Boomsma, Dorret I.; Brennan, Paul; Canova, Cristina; Castellsagué, Xavier; Chanock, Stephen; Chasman, Daniel; Conway, David I.; Dackor, Jennifer; de Geus, Eco J. C.; Duan, Jubao; Elosua, Roberto; Everett, Brendan; Fabianova, Eleonora; Ferrucci, Luigi; Foretova, Lenka; Fortmann, Stephen P.; Franceschini, Nora; Frayling, Timothy; Furberg, Curt; Gejman, Pablo V.; Groop, Leif; Gu, Fangyi; de Haan, Lieuwe; Linszen, Don H.

    2013-01-01

    Recent results indicate that genome-wide association studies (GWAS) have the potential to explain much of the heritability of common complex phenotypes, but methods are lacking to reliably identify the remaining associated single nucleotide polymorphisms (SNPs). We applied stratified False Discovery

  14. Ubiquitous Annotation Systems

    DEFF Research Database (Denmark)

    Hansen, Frank Allan

    2006-01-01

    Ubiquitous annotation systems allow users to annotate physical places, objects, and persons with digital information. Especially in the field of location based information systems much work has been done to implement adaptive and context-aware systems, but few efforts have focused on the general...... requirements for linking information to objects in both physical and digital space. This paper surveys annotation techniques from open hypermedia systems, Web based annotation systems, and mobile and augmented reality systems to illustrate different approaches to four central challenges ubiquitous annotation...... systems have to deal with: anchoring, structuring, presentation, and authoring. Through a number of examples each challenge is discussed and HyCon, a context-aware hypermedia framework developed at the University of Aarhus, Denmark, is used to illustrate an integrated approach to ubiquitous annotations...

  15. Origin of multiple periodicities in the Fourier power spectra of the Plasmodium falciparum genome

    Directory of Open Access Journals (Sweden)

    Nunes Miriam CS

    2011-12-01

    Full Text Available Abstract Background Fourier transforms and their associated power spectra are used for detecting periodicities and protein-coding genes and is generally regarded as a well established technique. Many of the periodicities which have been found with this method are quite well understood such as the periodicity of 3 nt which is associated to codon usage. But what is the origin of the peculiar frequency multiples k/21 which were reported for a tiny section of chromosome 2 in P. falciparum? Are these present in other chromosomes and perhaps in related organisms? And how should we interpret fractional periodicities in genomes? Results We applied the binary indicator power spectrum to all chromosomes of P. falciparum, and found that the frequency overtones k/21 are present only in non-coding sections. We did not find such frequency overtones in any other related genomes. Furthermore, the frequency overtones were identified as artifacts of the way the genome is encoded into a numerical sequence, that is, they are frequency aliases. By choosing a different way to encode the sequence the overtones do not appear. In view of these results, we revisited early applications of this technique to proteins where frequency overtones were reported. Conclusions Some authors hinted recently at the possibility of mapping artifacts and frequency aliases in power spectra. However, in the case of P. falciparum the frequency aliases are particularly strong and can mask the 1/3 frequency which is used for gene detecting. This shows that albeit being a well known technique, with a long history of application in proteins, few researchers seem to be aware of the problems represented by frequency aliases.

  16. Annotate-it: a Swiss-knife approach to annotation, analysis and interpretation of single nucleotide variation in human disease.

    Science.gov (United States)

    Sifrim, Alejandro; Van Houdt, Jeroen Kj; Tranchevent, Leon-Charles; Nowakowska, Beata; Sakai, Ryo; Pavlopoulos, Georgios A; Devriendt, Koen; Vermeesch, Joris R; Moreau, Yves; Aerts, Jan

    2012-01-01

    The increasing size and complexity of exome/genome sequencing data requires new tools for clinical geneticists to discover disease-causing variants. Bottlenecks in identifying the causative variation include poor cross-sample querying, constantly changing functional annotation and not considering existing knowledge concerning the phenotype. We describe a methodology that facilitates exploration of patient sequencing data towards identification of causal variants under different genetic hypotheses. Annotate-it facilitates handling, analysis and interpretation of high-throughput single nucleotide variant data. We demonstrate our strategy using three case studies. Annotate-it is freely available and test data are accessible to all users at http://www.annotate-it.org.

  17. The GATO gene annotation tool for research laboratories

    Directory of Open Access Journals (Sweden)

    A. Fujita

    2005-11-01

    Full Text Available Large-scale genome projects have generated a rapidly increasing number of DNA sequences. Therefore, development of computational methods to rapidly analyze these sequences is essential for progress in genomic research. Here we present an automatic annotation system for preliminary analysis of DNA sequences. The gene annotation tool (GATO is a Bioinformatics pipeline designed to facilitate routine functional annotation and easy access to annotated genes. It was designed in view of the frequent need of genomic researchers to access data pertaining to a common set of genes. In the GATO system, annotation is generated by querying some of the Web-accessible resources and the information is stored in a local database, which keeps a record of all previous annotation results. GATO may be accessed from everywhere through the internet or may be run locally if a large number of sequences are going to be annotated. It is implemented in PHP and Perl and may be run on any suitable Web server. Usually, installation and application of annotation systems require experience and are time consuming, but GATO is simple and practical, allowing anyone with basic skills in informatics to access it without any special training. GATO can be downloaded at [http://mariwork.iq.usp.br/gato/]. Minimum computer free space required is 2 MB.

  18. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Directory of Open Access Journals (Sweden)

    Scott Cukras

    Full Text Available Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  19. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Science.gov (United States)

    Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon

    2014-01-01

    Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  20. webMGR: an online tool for the multiple genome rearrangement problem.

    Science.gov (United States)

    Lin, Chi Ho; Zhao, Hao; Lowcay, Sean Harry; Shahab, Atif; Bourque, Guillaume

    2010-02-01

    The algorithm MGR enables the reconstruction of rearrangement phylogenies based on gene or synteny block order in multiple genomes. Although MGR has been successfully applied to study the evolution of different sets of species, its utilization has been hampered by the prohibitive running time for some applications. In the current work, we have designed new heuristics that significantly speed up the tool without compromising its accuracy. Moreover, we have developed a web server (webMGR) that includes elaborate web output to facilitate navigation through the results. webMGR can be accessed via http://www.gis.a-star.edu.sg/~bourque. The source code of the improved standalone version of MGR is also freely available from the web site. Supplementary data are available at Bioinformatics online.

  1. Biosynthesis of Akaeolide and Lorneic Acids and Annotation of Type I Polyketide Synthase Gene Clusters in the Genome of Streptomyces sp. NPS554

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2015-01-01

    Full Text Available The incorporation pattern of biosynthetic precursors into two structurally unique polyketides, akaeolide and lorneic acid A, was elucidated by feeding experiments with 13C-labeled precursors. In addition, the draft genome sequence of the producer, Streptomyces sp. NPS554, was performed and the biosynthetic gene clusters for these polyketides were identified. The putative gene clusters contain all the polyketide synthase (PKS domains necessary for assembly of the carbon skeletons. Combined with the 13C-labeling results, gene function prediction enabled us to propose biosynthetic pathways involving unusual carbon-carbon bond formation reactions. Genome analysis also indicated the presence of at least ten orphan type I PKS gene clusters that might be responsible for the production of new polyketides.

  2. On the representability of complete genomes by multiple competing finite-context (Markov models.

    Directory of Open Access Journals (Sweden)

    Armando J Pinho

    Full Text Available A finite-context (Markov model of order k yields the probability distribution of the next symbol in a sequence of symbols, given the recent past up to depth k. Markov modeling has long been applied to DNA sequences, for example to find gene-coding regions. With the first studies came the discovery that DNA sequences are non-stationary: distinct regions require distinct model orders. Since then, Markov and hidden Markov models have been extensively used to describe the gene structure of prokaryotes and eukaryotes. However, to our knowledge, a comprehensive study about the potential of Markov models to describe complete genomes is still lacking. We address this gap in this paper. Our approach relies on (i multiple competing Markov models of different orders (ii careful programming techniques that allow orders as large as sixteen (iii adequate inverted repeat handling (iv probability estimates suited to the wide range of context depths used. To measure how well a model fits the data at a particular position in the sequence we use the negative logarithm of the probability estimate at that position. The measure yields information profiles of the sequence, which are of independent interest. The average over the entire sequence, which amounts to the average number of bits per base needed to describe the sequence, is used as a global performance measure. Our main conclusion is that, from the probabilistic or information theoretic point of view and according to this performance measure, multiple competing Markov models explain entire genomes almost as well or even better than state-of-the-art DNA compression methods, such as XM, which rely on very different statistical models. This is surprising, because Markov models are local (short-range, contrasting with the statistical models underlying other methods, where the extensive data repetitions in DNA sequences is explored, and therefore have a non-local character.

  3. Construction of coffee transcriptome networks based on gene annotation semantics

    Directory of Open Access Journals (Sweden)

    Castillo Luis F.

    2012-12-01

    Full Text Available Gene annotation is a process that encompasses multiple approaches on the analysis of nucleic acids or protein sequences in order to assign structural and functional characteristics to gene models. When thousands of gene models are being described in an organism genome, construction and visualization of gene networks impose novel challenges in the understanding of complex expression patterns and the generation of new knowledge in genomics research. In order to take advantage of accumulated text data after conventional gene sequence analysis, this work applied semantics in combination with visualization tools to build transcriptome networks from a set of coffee gene annotations. A set of selected coffee transcriptome sequences, chosen by the quality of the sequence comparison reported by Basic Local Alignment Search Tool (BLAST and Interproscan, were filtered out by coverage, identity, length of the query, and e-values. Meanwhile, term descriptors for molecular biology and biochemistry were obtained along the Wordnet dictionary in order to construct a Resource Description Framework (RDF using Ruby scripts and Methontology to find associations between concepts. Relationships between sequence annotations and semantic concepts were graphically represented through a total of 6845 oriented vectors, which were reduced to 745 non-redundant associations. A large gene network connecting transcripts by way of relational concepts was created where detailed connections remain to be validated for biological significance based on current biochemical and genetics frameworks. Besides reusing text information in the generation of gene connections and for data mining purposes, this tool development opens the possibility to visualize complex and abundant transcriptome data, and triggers the formulation of new hypotheses in metabolic pathways analysis.

  4. Syntenic block overlap multiplicities with a panel of reference genomes provide a signature of ancient polyploidization events.

    Science.gov (United States)

    Zheng, Chunfang; Santos Muñoz, Daniella; Albert, Victor A; Sankoff, David

    2015-01-01

    Following whole genome duplication (WGD), there is a compact distribution of gene similarities within the genome reflecting duplicate pairs of all the genes in the genome. With time, the distribution broadens and loses volume due to variable decay of duplicate gene similarity and to the process of duplicate gene loss. If there are two WGD, the older one becomes so reduced and broad that it merges with the tail of the distributions resulting from more recent events, and it becomes difficult to distinguish them. The goal of this paper is to advance statistical methods of identifying, or at least counting, the WGD events in the lineage of a given genome. For a set of 15 angiosperm genomes, we analyze all 15 × 14 = 210 ordered pairs of target genome versus reference genome, using SynMap to find syntenic blocks. We consider all sets of B ≥ 2 syntenic blocks in the target genome that overlap in the reference genome as evidence of WGD activity in the target, whether it be one event or several. We hypothesize that in fitting an exponential function to the tail of the empirical distribution f (B) of block multiplicities, the size of the exponent will reflect the amount of WGD in the history of the target genome. By amalgamating the results from all reference genomes, a range of values of SynMap parameters, and alternative cutoff points for the tail, we find a clear pattern whereby multiple-WGD core eudicots have the smallest (negative) exponents, followed by core eudicots with only the single "γ" triplication in their history, followed by a non-core eudicot with a single WGD, followed by the monocots, with a basal angiosperm, the WGD-free Amborella having the largest exponent. The hypothesis that the exponent of the fit to the tail of the multiplicity distribution is a signature of the amount of WGD is verified, but there is also a clear complicating factor in the monocot clade, where a history of multiple WGD is not reflected in a small exponent.

  5. Genome-wide comparative analysis of four Indian Drosophila species.

    Science.gov (United States)

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  6. A computational genomics pipeline for prokaryotic sequencing projects.

    Science.gov (United States)

    Kislyuk, Andrey O; Katz, Lee S; Agrawal, Sonia; Hagen, Matthew S; Conley, Andrew B; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C; Sammons, Scott A; Govil, Dhwani; Mair, Raydel D; Tatti, Kathleen M; Tondella, Maria L; Harcourt, Brian H; Mayer, Leonard W; Jordan, I King

    2010-08-01

    New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems.

  7. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.

    Science.gov (United States)

    Wang, Xiaobo; Wu, Jian; Liang, Jianli; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The Brassica database (BRAD) was built initially to assist users apply Brassica rapa and Arabidopsis thaliana genomic data efficiently to their research. However, many Brassicaceae genomes have been sequenced and released after its construction. These genomes are rich resources for comparative genomics, gene annotation and functional evolutionary studies of Brassica crops. Therefore, we have updated BRAD to version 2.0 (V2.0). In BRAD V2.0, 11 more Brassicaceae genomes have been integrated into the database, namely those of Arabidopsis lyrata, Aethionema arabicum, Brassica oleracea, Brassica napus, Camelina sativa, Capsella rubella, Leavenworthia alabamica, Sisymbrium irio and three extremophiles Schrenkiella parvula, Thellungiella halophila and Thellungiella salsuginea. BRAD V2.0 provides plots of syntenic genomic fragments between pairs of Brassicaceae species, from the level of chromosomes to genomic blocks. The Generic Synteny Browser (GBrowse_syn), a module of the Genome Browser (GBrowse), is used to show syntenic relationships between multiple genomes. Search functions for retrieving syntenic and non-syntenic orthologs, as well as their annotation and sequences are also provided. Furthermore, genome and annotation information have been imported into GBrowse so that all functional elements can be visualized in one frame. We plan to continually update BRAD by integrating more Brassicaceae genomes into the database. Database URL: http://brassicadb.org/brad/. © The Author(s) 2015. Published by Oxford University Press.

  8. Experiments with crowdsourced re-annotation of a POS tagging data set

    DEFF Research Database (Denmark)

    Hovy, Dirk; Plank, Barbara; Søgaard, Anders

    2014-01-01

    Crowdsourcing lets us collect multiple annotations for an item from several annotators. Typically, these are annotations for non-sequential classification tasks. While there has been some work on crowdsourcing named entity annotations, researchers have assumed that syntactic tasks such as part......-of-speech (POS) tagging cannot be crowdsourced. This paper shows that workers can actually annotate sequential data almost as well as experts. Further, we show that the models learned from crowdsourced annotations fare as well as the models learned from expert annotations in downstream tasks....

  9. Systematically profiling and annotating long intergenic non-coding RNAs in human embryonic stem cell.

    Science.gov (United States)

    Tang, Xing; Hou, Mei; Ding, Yang; Li, Zhaohui; Ren, Lichen; Gao, Ge

    2013-01-01

    While more and more long intergenic non-coding RNAs (lincRNAs) were identified to take important roles in both maintaining pluripotency and regulating differentiation, how these lincRNAs may define and drive cell fate decisions on a global scale are still mostly elusive. Systematical profiling and comprehensive annotation of embryonic stem cells lincRNAs may not only bring a clearer big picture of these novel regulators but also shed light on their functionalities. Based on multiple RNA-Seq datasets, we systematically identified 300 human embryonic stem cell lincRNAs (hES lincRNAs). Of which, one forth (78 out of 300) hES lincRNAs were further identified to be biasedly expressed in human ES cells. Functional analysis showed that they were preferentially involved in several early-development related biological processes. Comparative genomics analysis further suggested that around half of the identified hES lincRNAs were conserved in mouse. To facilitate further investigation of these hES lincRNAs, we constructed an online portal for biologists to access all their sequences and annotations interactively. In addition to navigation through a genome browse interface, users can also locate lincRNAs through an advanced query interface based on both keywords and expression profiles, and analyze results through multiple tools. By integrating multiple RNA-Seq datasets, we systematically characterized and annotated 300 hES lincRNAs. A full functional web portal is available freely at http://scbrowse.cbi.pku.edu.cn. As the first global profiling and annotating of human embryonic stem cell lincRNAs, this work aims to provide a valuable resource for both experimental biologists and bioinformaticians.

  10. Ion torrent personal genome machine sequencing for genomic typing of Neisseria meningitidis for rapid determination of multiple layers of typing information.

    Science.gov (United States)

    Vogel, Ulrich; Szczepanowski, Rafael; Claus, Heike; Jünemann, Sebastian; Prior, Karola; Harmsen, Dag

    2012-06-01

    Neisseria meningitidis causes invasive meningococcal disease in infants, toddlers, and adolescents worldwide. DNA sequence-based typing, including multilocus sequence typing, analysis of genetic determinants of antibiotic resistance, and sequence typing of vaccine antigens, has become the standard for molecular epidemiology of the organism. However, PCR of multiple targets and consecutive Sanger sequencing provide logistic constraints to reference laboratories. Taking advantage of the recent development of benchtop next-generation sequencers (NGSs) and of BIGSdb, a database accommodating and analyzing genome sequence data, we therefore explored the feasibility and accuracy of Ion Torrent Personal Genome Machine (PGM) sequencing for genomic typing of meningococci. Three strains from a previous meningococcus serogroup B community outbreak were selected to compare conventional typing results with data generated by semiconductor chip-based sequencing. In addition, sequencing of the meningococcal type strain MC58 provided information about the general performance of the technology. The PGM technology generated sequence information for all target genes addressed. The results were 100% concordant with conventional typing results, with no further editing being necessary. In addition, the amount of typing information, i.e., nucleotides and target genes analyzed, could be substantially increased by the combined use of genome sequencing and BIGSdb compared to conventional methods. In the near future, affordable and fast benchtop NGS machines like the PGM might enable reference laboratories to switch to genomic typing on a routine basis. This will reduce workloads and rapidly provide information for laboratory surveillance, outbreak investigation, assessment of vaccine preventability, and antibiotic resistance gene monitoring.

  11. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  12. Genomic screening for dissection of a complex disease: The multiple sclerosis phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.L.; Bazyk, A.; Gusella, J.F. [Massachusetts General Hospital, Boston, MA (United States)] [and others

    1994-09-01

    Application of positional cloning to diseases with a complex etiology is fraught with problems. These include undefined modes of inheritance, heterogeneity, and epistasis. Although microsatellite markers now make genotyping the genome a straightforward task, no single analytical method is available to efficiently and accurately use these data for a complex disease. We have developed a multi-stage genomic screening strategy which uses a combination of non-parametric approaches (Affected Pedigree Member (APM) linkage analysis and robust sib pair analysis (SP)), and the parametric lod score approach (using four different genetic models). To warrant follow-up, a marker must have two or more of: a nominal P value of 0.05 or less on the non-parametric tests, or a lod score greater than 1.0 for any model. Two adjacent markers each fulfilling one criterion are also considered for follow-up. These criteria were determined both by simulation studies and our empirical experience in screening a large number of other disorders. We applied this approach to multiple sclerosis (MS), a complex neurological disorder with a strong but ill-defined genetic component. Analysis of the first 91 markers from our screen of 55 multiplex families found 5 markers which met the SP criteria, 13 markers which met the APM criteria, and 8 markers which met the lod score criteria. Five regions (on chromosomes 2, 4, 7, 14, and 19) met our overall criteria. However, no single method identified all of these regions, suggesting that each method is sensitive to various (unknown) influences. The chromosome 14 results were not supported by follow-up typing and analysis of markers in that region, but the chromosome 19 results remain well supported. Updated screening results will be presented.

  13. Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance

    Directory of Open Access Journals (Sweden)

    Haque Kashif A

    2005-09-01

    Full Text Available Abstract Background Whole genome amplification (WGA promises to eliminate practical molecular genetic analysis limitations associated with genomic DNA (gDNA quantity. We evaluated the performance of multiple displacement amplification (MDA WGA using gDNA extracted from lymphoblastoid cell lines (N = 27 with a range of starting gDNA input of 1–200 ng into the WGA reaction. Yield and composition analysis of whole genome amplified DNA (wgaDNA was performed using three DNA quantification methods (OD, PicoGreen® and RT-PCR. Two panels of N = 15 STR (using the AmpFlSTR® Identifiler® panel and N = 49 SNP (TaqMan® genotyping assays were performed on each gDNA and wgaDNA sample in duplicate. gDNA and wgaDNA masses of 1, 4 and 20 ng were used in the SNP assays to evaluate the effects of DNA mass on SNP genotyping assay performance. A total of N = 6,880 STR and N = 56,448 SNP genotype attempts provided adequate power to detect differences in STR and SNP genotyping performance between gDNA and wgaDNA, and among wgaDNA produced from a range of gDNA templates inputs. Results The proportion of double-stranded wgaDNA and human-specific PCR amplifiable wgaDNA increased with increased gDNA input into the WGA reaction. Increased amounts of gDNA input into the WGA reaction improved wgaDNA genotyping performance. Genotype completion or genotype concordance rates of wgaDNA produced from all gDNA input levels were observed to be reduced compared to gDNA, although the reduction was not always statistically significant. Reduced wgaDNA genotyping performance was primarily due to the increased variance of allelic amplification, resulting in loss of heterozygosity or increased undetermined genotypes. MDA WGA produces wgaDNA from no template control samples; such samples exhibited substantial false-positive genotyping rates. Conclusion The amount of gDNA input into the MDA WGA reaction is a critical determinant of genotyping performance of wgaDNA. At least 10 ng of

  14. A Novel Bifunctional Amino Acid Racemase With Multiple Substrate Specificity, MalY From Lactobacillus sakei LT-13: Genome-Based Identification and Enzymological Characterization

    Directory of Open Access Journals (Sweden)

    Shiro Kato

    2018-03-01

    Full Text Available The Lactobacillus sakei strain LK-145 isolated from Moto, a starter of sake, produces potentially large amounts of three D-amino acids, D-Ala, D-Glu, and D-Asp, in a medium containing amylase-digested rice as a carbon source. The comparison of metabolic pathways deduced from the complete genome sequence of strain LK-145 to the type culture strain of Lactobacillus sakei strain LT-13 showed that the L- and D-amino acid metabolic pathways are similar between the two strains. However, a marked difference was observed in the putative cysteine/methionine metabolic pathways of strain LK-145 and LT-13. The cystathionine β-lyase homolog gene malY was annotated only in the genome of strain LT-13. Cystathionine β-lyase is an important enzyme in the cysteine/methionine metabolic pathway that catalyzes the conversion of L-cystathionine into L-homocysteine. In addition to malY, most genome-sequenced strains of L. sakei including LT-13 lacked the homologous genes encoding other putative enzymes in this pathway. Accordingly, the cysteine/methionine metabolic pathway likely does not function well in almost all strains of L. sakei. We succeeded in cloning and expressing the malY gene from strain LT-13 (Ls-malY in the cells of Escherichia coli BL21 (DE3 and characterized the enzymological properties of Ls-MalY. Spectral analysis of purified Ls-MalY showed that Ls-MalY contained a pyridoxal 5′-phosphate (PLP as a cofactor, and this observation agreed well with the prediction based on its primary structure. Ls-MalY showed amino acid racemase activity and cystathionine β-lyase activity. Ls-MalY showed amino acid racemase activities in various amino acids, such as Ala, Arg, Asn, Glu, Gln, His, Leu, Lys, Met, Ser, Thr, Trp, and Val. Mutational analysis revealed that the -amino group of Lys233 in the primary structure of Ls-MalY likely bound to PLP, and Lys233 was an essential residue for Ls-MalY to catalyze both the amino acid racemase and β-lyase reactions. In

  15. Genome-Wide Association Identifies Multiple Genomic Regions Associated with Susceptibility to and Control of Ovine Lentivirus

    Science.gov (United States)

    2012-10-17

    to varying degrees of dyspnea (respiratory distress), cachexia (body condition wasting), mastitis , arthritis, and/or encephalitis [5,6]. One of the...General Transcription Factor IIH, polypeptide 5), the gene order does not agree with other mammal genomes including cow , human, dog, and mouse, and it may

  16. Genome organization of the SARS-CoV

    DEFF Research Database (Denmark)

    Xu, Jing; Hu, Jianfei; Wang, Jing

    2003-01-01

    Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or devel......Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available...

  17. Evaluation of multiple approaches to identify genome-wide polymorphisms in closely related genotypes of sweet cherry (Prunus avium L.

    Directory of Open Access Journals (Sweden)

    Seanna Hewitt

    Full Text Available Identification of genetic polymorphisms and subsequent development of molecular markers is important for marker assisted breeding of superior cultivars of economically important species. Sweet cherry (Prunus avium L. is an economically important non-climacteric tree fruit crop in the Rosaceae family and has undergone a genetic bottleneck due to breeding, resulting in limited genetic diversity in the germplasm that is utilized for breeding new cultivars. Therefore, it is critical to recognize the best platforms for identifying genome-wide polymorphisms that can help identify, and consequently preserve, the diversity in a genetically constrained species. For the identification of polymorphisms in five closely related genotypes of sweet cherry, a gel-based approach (TRAP, reduced representation sequencing (TRAPseq, a 6k cherry SNParray, and whole genome sequencing (WGS approaches were evaluated in the identification of genome-wide polymorphisms in sweet cherry cultivars. All platforms facilitated detection of polymorphisms among the genotypes with variable efficiency. In assessing multiple SNP detection platforms, this study has demonstrated that a combination of appropriate approaches is necessary for efficient polymorphism identification, especially between closely related cultivars of a species. The information generated in this study provides a valuable resource for future genetic and genomic studies in sweet cherry, and the insights gained from the evaluation of multiple approaches can be utilized for other closely related species with limited genetic diversity in the breeding germplasm. Keywords: Polymorphisms, Prunus avium, Next-generation sequencing, Target region amplification polymorphism (TRAP, Genetic diversity, SNParray, Reduced representation sequencing, Whole genome sequencing (WGS

  18. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  20. ACID: annotation of cassette and integron data

    Directory of Open Access Journals (Sweden)

    Stokes Harold W

    2009-04-01

    Full Text Available Abstract Background Although integrons and their associated gene cassettes are present in ~10% of bacteria and can represent up to 3% of the genome in which they are found, very few have been properly identified and annotated in public databases. These genetic elements have been overlooked in comparison to other vectors that facilitate lateral gene transfer between microorganisms. Description By automating the identification of integron integrase genes and of the non-coding cassette-associated attC recombination sites, we were able to assemble a database containing all publicly available sequence information regarding these genetic elements. Specialists manually curated the database and this information was used to improve the automated detection and annotation of integrons and their encoded gene cassettes. ACID (annotation of cassette and integron data can be searched using a range of queries and the data can be downloaded in a number of formats. Users can readily annotate their own data and integrate it into ACID using the tools provided. Conclusion ACID is a community resource providing easy access to annotations of integrons and making tools available to detect them in novel sequence data. ACID also hosts a forum to prompt integron-related discussion, which can hopefully lead to a more universal definition of this genetic element.

  1. Identification of multiple sites suitable for insertion of foreign genes in herpes simplex virus genomes.

    Science.gov (United States)

    Morimoto, Tomomi; Arii, Jun; Akashi, Hiroomi; Kawaguchi, Yasushi

    2009-03-01

    Information on sites in HSV genomes at which foreign gene(s) can be inserted without disrupting viral genes or affecting properties of the parental virus are important for basic research on HSV and development of HSV-based vectors for human therapy. The intergenic region between HSV-1 UL3 and UL4 genes has been reported to satisfy the requirements for such an insertion site. The UL3 and UL4 genes are oriented toward the intergenic region and, therefore, insertion of a foreign gene(s) into the region between the UL3 and UL4 polyadenylation signals should not disrupt any viral genes or transcriptional units. HSV-1 and HSV-2 each have more than 10 additional regions structurally similar to the intergenic region between UL3 and UL4. In the studies reported here, it has been demonstrated that insertion of a reporter gene expression cassette into several of the HSV-1 and HSV-2 intergenic regions has no effect on viral growth in cell culture or virulence in mice, suggesting that these multiple intergenic regions may be suitable HSV sites for insertion of foreign genes.

  2. The use of semantic similarity measures for optimally integrating heterogeneous Gene Ontology data from large scale annotation pipelines

    Directory of Open Access Journals (Sweden)

    Gaston K Mazandu

    2014-08-01

    Full Text Available With the advancement of new high throughput sequencing technologies, there has been an increase in the number of genome sequencing projects worldwide, which has yielded complete genome sequences of human, animals and plants. Subsequently, several labs have focused on genome annotation, consisting of assigning functions to gene products, mostly using Gene Ontology (GO terms. As a consequence, there is an increased heterogeneity in annotations across genomes due to different approaches used by different pipelines to infer these annotations and also due to the nature of the GO structure itself. This makes a curator's task difficult, even if they adhere to the established guidelines for assessing these protein annotations. Here we develop a genome-scale approach for integrating GO annotations from different pipelines using semantic similarity measures. We used this approach to identify inconsistencies and similarities in functional annotations between orthologs of human and Drosophila melanogaster, to assess the quality of GO annotations derived from InterPro2GO mappings compared to manually annotated GO annotations for the Drosophila melanogaster proteome from a FlyBase dataset and human, and to filter GO annotation data for these proteomes. Results obtained indicate that an efficient integration of GO annotations eliminates redundancy up to 27.08 and 22.32% in the Drosophila melanogaster and human GO annotation datasets, respectively. Furthermore, we identified lack of and missing annotations for some orthologs, and annotation mismatches between InterPro2GO and manual pipelines in these two proteomes, thus requiring further curation. This simplifies and facilitates tasks of curators in assessing protein annotations, reduces redundancy and eliminates inconsistencies in large annotation datasets for ease of comparative functional genomics.

  3. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides.

    Science.gov (United States)

    Egan, Jan B; Shi, Chang-Xin; Tembe, Waibhav; Christoforides, Alexis; Kurdoglu, Ahmet; Sinari, Shripad; Middha, Sumit; Asmann, Yan; Schmidt, Jessica; Braggio, Esteban; Keats, Jonathan J; Fonseca, Rafael; Bergsagel, P Leif; Craig, David W; Carpten, John D; Stewart, A Keith

    2012-08-02

    The longitudinal evolution of a myeloma genome from diagnosis to plasma cell leukemia has not previously been reported. We used whole-genome sequencing (WGS) on 4 purified tumor samples and patient germline DNA drawn over a 5-year period in a t(4;14) multiple myeloma patient. Tumor samples were acquired at diagnosis, first relapse, second relapse, and end-stage secondary plasma cell leukemia (sPCL). In addition to the t(4;14), all tumor time points also shared 10 common single-nucleotide variants (SNVs) on WGS comprising shared initiating events. Interestingly, we observed genomic sequence variants that waxed and waned with time in progressive tumors, suggesting the presence of multiple independent, yet related, clones at diagnosis that rose and fell in dominance. Five newly acquired SNVs, including truncating mutations of RB1 and ZKSCAN3, were observed only in the final sPCL sample suggesting leukemic transformation events. This longitudinal WGS characterization of the natural history of a high-risk myeloma patient demonstrated tumor heterogeneity at diagnosis with shifting dominance of tumor clones over time and has also identified potential mutations contributing to myelomagenesis as well as transformation from myeloma to overt extramedullary disease such as sPCL.

  4. Protein Annotators' Assistant: A Novel Application of Information Retrieval Techniques.

    Science.gov (United States)

    Wise, Michael J.

    2000-01-01

    Protein Annotators' Assistant (PAA) is a software system which assists protein annotators in assigning functions to newly sequenced proteins. PAA employs a number of information retrieval techniques in a novel setting and is thus related to text categorization, where multiple categories may be suggested, except that in this case none of the…

  5. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation

    DEFF Research Database (Denmark)

    Zhang, Han; Yohe, Tanner; Huang, Le

    2018-01-01

    of plant and plant-associated microbial genomes and metagenomes being sequenced, there is an urgent need of automatic tools for genomic data mining of CAZymes. We developed the dbCAN web server in 2012 to provide a public service for automated CAZyme annotation for newly sequenced genomes. Here, dbCAN2...... (http://cys.bios.niu.edu/dbCAN2) is presented as an updated meta server, which integrates three state-of-the-art tools for CAZome (all CAZymes of a genome) annotation: (i) HMMER search against the dbCAN HMM (hidden Markov model) database; (ii) DIAMOND search against the CAZy pre-annotated CAZyme...

  6. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes

    DEFF Research Database (Denmark)

    Albertsen, Mads; Hugenholtz, Philip; Skarshewski, Adam

    2013-01-01

    Reference genomes are required to understand the diverse roles of microorganisms in ecology, evolution, human and animal health, but most species remain uncultured. Here we present a sequence composition–independent approach to recover high-quality microbial genomes from deeply sequenced metageno......Reference genomes are required to understand the diverse roles of microorganisms in ecology, evolution, human and animal health, but most species remain uncultured. Here we present a sequence composition–independent approach to recover high-quality microbial genomes from deeply sequenced...

  7. Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals

    DEFF Research Database (Denmark)

    Hellmann, Ines; Mang, Yuan; Gu, Zhiping

    2008-01-01

    We introduce a simple, broadly applicable method for obtaining estimates of nucleotide diversity from genomic shotgun sequencing data. The method takes into account the special nature of these data: random sampling of genomic segments from one or more individuals and a relatively high error rate...... for individual reads. Applying this method to data from the Celera human genome sequencing and SNP discovery project, we obtain estimates of nucleotide diversity in windows spanning the human genome and show that the diversity to divergence ratio is reduced in regions of low recombination. Furthermore, we show...

  8. Definition of the zebrafish genome using flow cytometry and cytogenetic mapping

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2007-06-01

    Full Text Available Abstract Background The zebrafish (Danio rerio is an important vertebrate model organism system for biomedical research. The syntenic conservation between the zebrafish and human genome allows one to investigate the function of human genes using the zebrafish model. To facilitate analysis of the zebrafish genome, genetic maps have been constructed and sequence annotation of a reference zebrafish genome is ongoing. However, the duplicative nature of teleost genomes, including the zebrafish, complicates accurate assembly and annotation of a representative genome sequence. Cytogenetic approaches provide "anchors" that can be integrated with accumulating genomic data. Results Here, we cytogenetically define the zebrafish genome by first estimating the size of each linkage group (LG chromosome using flow cytometry, followed by the cytogenetic mapping of 575 bacterial artificial chromosome (BAC clones onto metaphase chromosomes. Of the 575 BAC clones, 544 clones localized to apparently unique chromosomal locations. 93.8% of these clones were assigned to a specific LG chromosome location using fluorescence in situ hybridization (FISH and compared to the LG chromosome assignment reported in the zebrafish genome databases. Thirty-one BAC clones localized to multiple chromosomal locations in several different hybridization patterns. From these data, a refined second generation probe panel for each LG chromosome was also constructed. Conclusion The chromosomal mapping of the 575 large-insert DNA clones allows for these clones to be integrated into existing zebrafish mapping data. An accurately annotated zebrafish reference genome serves as a valuable resource for investigating the molecular basis of human diseases using zebrafish mutant models.

  9. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome.

    Science.gov (United States)

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-02-24

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts.

  10. Identification of an Arabidopsis thaliana protein that binds to tomato mosaic virus genomic RNA and inhibits its multiplication

    International Nuclear Information System (INIS)

    Fujisaki, Koki; Ishikawa, Masayuki

    2008-01-01

    The genomic RNAs of positive-strand RNA viruses carry RNA elements that play positive, or in some cases, negative roles in virus multiplication by interacting with viral and cellular proteins. In this study, we purified Arabidopsis thaliana proteins that specifically bind to 5' or 3' terminal regions of tomato mosaic virus (ToMV) genomic RNA, which contain important regulatory elements for translation and RNA replication, and identified these proteins by mass spectrometry analyses. One of these host proteins, named BTR1, harbored three heterogeneous nuclear ribonucleoprotein K-homology RNA-binding domains and preferentially bound to RNA fragments that contained a sequence around the initiation codon of the 130K and 180K replication protein genes. The knockout and overexpression of BTR1 specifically enhanced and inhibited, respectively, ToMV multiplication in inoculated A. thaliana leaves, while such effect was hardly detectable in protoplasts. These results suggest that BTR1 negatively regulates the local spread of ToMV

  11. EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Maury, Jerome; Germann, Susanne Manuela; Jacobsen, Simo Abdessamad

    2016-01-01

    Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred...... of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci...... and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP...

  12. GWIS: Genome-Wide Inferred Statistics for Functions of Multiple Phenotypes

    NARCIS (Netherlands)

    Nieuwboer, H.A.; Pool, R.; Dolan, C.V.; Boomsma, D.I.; Nivard, M.G.

    2016-01-01

    Here we present a method of genome-wide inferred study (GWIS) that provides an approximation of genome-wide association study (GWAS) summary statistics for a variable that is a function of phenotypes for which GWAS summary statistics, phenotypic means, and covariances are available. A GWIS can be

  13. ABrowse--a customizable next-generation genome browser framework.

    Science.gov (United States)

    Kong, Lei; Wang, Jun; Zhao, Shuqi; Gu, Xiaocheng; Luo, Jingchu; Gao, Ge

    2012-01-05

    With the rapid growth of genome sequencing projects, genome browser is becoming indispensable, not only as a visualization system but also as an interactive platform to support open data access and collaborative work. Thus a customizable genome browser framework with rich functions and flexible configuration is needed to facilitate various genome research projects. Based on next-generation web technologies, we have developed a general-purpose genome browser framework ABrowse which provides interactive browsing experience, open data access and collaborative work support. By supporting Google-map-like smooth navigation, ABrowse offers end users highly interactive browsing experience. To facilitate further data analysis, multiple data access approaches are supported for external platforms to retrieve data from ABrowse. To promote collaborative work, an online user-space is provided for end users to create, store and share comments, annotations and landmarks. For data providers, ABrowse is highly customizable and configurable. The framework provides a set of utilities to import annotation data conveniently. To build ABrowse on existing annotation databases, data providers could specify SQL statements according to database schema. And customized pages for detailed information display of annotation entries could be easily plugged in. For developers, new drawing strategies could be integrated into ABrowse for new types of annotation data. In addition, standard web service is provided for data retrieval remotely, providing underlying machine-oriented programming interface for open data access. ABrowse framework is valuable for end users, data providers and developers by providing rich user functions and flexible customization approaches. The source code is published under GNU Lesser General Public License v3.0 and is accessible at http://www.abrowse.org/. To demonstrate all the features of ABrowse, a live demo for Arabidopsis thaliana genome has been built at http://arabidopsis.cbi.edu.cn/.

  14. ABrowse - a customizable next-generation genome browser framework

    Science.gov (United States)

    2012-01-01

    Background With the rapid growth of genome sequencing projects, genome browser is becoming indispensable, not only as a visualization system but also as an interactive platform to support open data access and collaborative work. Thus a customizable genome browser framework with rich functions and flexible configuration is needed to facilitate various genome research projects. Results Based on next-generation web technologies, we have developed a general-purpose genome browser framework ABrowse which provides interactive browsing experience, open data access and collaborative work support. By supporting Google-map-like smooth navigation, ABrowse offers end users highly interactive browsing experience. To facilitate further data analysis, multiple data access approaches are supported for external platforms to retrieve data from ABrowse. To promote collaborative work, an online user-space is provided for end users to create, store and share comments, annotations and landmarks. For data providers, ABrowse is highly customizable and configurable. The framework provides a set of utilities to import annotation data conveniently. To build ABrowse on existing annotation databases, data providers could specify SQL statements according to database schema. And customized pages for detailed information display of annotation entries could be easily plugged in. For developers, new drawing strategies could be integrated into ABrowse for new types of annotation data. In addition, standard web service is provided for data retrieval remotely, providing underlying machine-oriented programming interface for open data access. Conclusions ABrowse framework is valuable for end users, data providers and developers by providing rich user functions and flexible customization approaches. The source code is published under GNU Lesser General Public License v3.0 and is accessible at http://www.abrowse.org/. To demonstrate all the features of ABrowse, a live demo for Arabidopsis thaliana genome

  15. ABrowse - a customizable next-generation genome browser framework

    Directory of Open Access Journals (Sweden)

    Kong Lei

    2012-01-01

    Full Text Available Abstract Background With the rapid growth of genome sequencing projects, genome browser is becoming indispensable, not only as a visualization system but also as an interactive platform to support open data access and collaborative work. Thus a customizable genome browser framework with rich functions and flexible configuration is needed to facilitate various genome research projects. Results Based on next-generation web technologies, we have developed a general-purpose genome browser framework ABrowse which provides interactive browsing experience, open data access and collaborative work support. By supporting Google-map-like smooth navigation, ABrowse offers end users highly interactive browsing experience. To facilitate further data analysis, multiple data access approaches are supported for external platforms to retrieve data from ABrowse. To promote collaborative work, an online user-space is provided for end users to create, store and share comments, annotations and landmarks. For data providers, ABrowse is highly customizable and configurable. The framework provides a set of utilities to import annotation data conveniently. To build ABrowse on existing annotation databases, data providers could specify SQL statements according to database schema. And customized pages for detailed information display of annotation entries could be easily plugged in. For developers, new drawing strategies could be integrated into ABrowse for new types of annotation data. In addition, standard web service is provided for data retrieval remotely, providing underlying machine-oriented programming interface for open data access. Conclusions ABrowse framework is valuable for end users, data providers and developers by providing rich user functions and flexible customization approaches. The source code is published under GNU Lesser General Public License v3.0 and is accessible at http://www.abrowse.org/. To demonstrate all the features of ABrowse, a live demo for

  16. The UCSC Genome Browser Database: update 2006

    DEFF Research Database (Denmark)

    Hinrichs, A S; Karolchik, D; Baertsch, R

    2006-01-01

    The University of California Santa Cruz Genome Browser Database (GBD) contains sequence and annotation data for the genomes of about a dozen vertebrate species and several major model organisms. Genome annotations typically include assembly data, sequence composition, genes and gene predictions, ...

  17. The UCSC genome browser database: update 2007

    DEFF Research Database (Denmark)

    Kuhn, R M; Karolchik, D; Zweig, A S

    2006-01-01

    The University of California, Santa Cruz Genome Browser Database contains, as of September 2006, sequence and annotation data for the genomes of 13 vertebrate and 19 invertebrate species. The Genome Browser displays a wide variety of annotations at all scales from the single nucleotide level up t...

  18. saSNP Approach for Scalable SNP Analyses of Multiple Bacterial or Viral Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Shea [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Slezak, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-07-27

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs. The method is fast to compute, finding SNPs and building a SNP phylogeny in seconds to hours. We use it to identify thousands of putative SNPs from all publicly available Filoviridae, Poxviridae, foot-and-mouth disease virus, Bacillus, and Escherichia coli genomes and plasmids. The SNP-based trees that result are consistent with known taxonomy and trees determined in other studies. The approach we describe can handle as input hundreds of gigabases of sequence in a single run. The algorithm is based on k-mer analysis using a suffix array, so we call it saSNP.

  19. Analysis of the genome-wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2006-09-01

    Full Text Available Abstract Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c, 54 (Dixon, 83 (Ann1 and 9 (Temecula-1. A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes

  20. mEBT: multiple-matching Evidence-based Translator of Murine Genomic Responses for Human Immunity Studies.

    Science.gov (United States)

    Tae, Donghyun; Seok, Junhee

    2018-05-29

    In this paper, we introduce multiple-matching Evidence-based Translator (mEBT) to discover genomic responses from murine expression data for human immune studies, which are significant in the given condition of mice and likely have similar responses in the corresponding condition of human. mEBT is evaluated over multiple data sets and shows improved inter-species agreement. mEBT is expected to be useful for research groups who use murine models to study human immunity. http://cdal.korea.ac.kr/mebt/. jseok14@korea.ac.kr. Supplementary data are available at Bioinformatics online.

  1. A Resource of Quantitative Functional Annotation for Homo sapiens Genes.

    Science.gov (United States)

    Taşan, Murat; Drabkin, Harold J; Beaver, John E; Chua, Hon Nian; Dunham, Julie; Tian, Weidong; Blake, Judith A; Roth, Frederick P

    2012-02-01

    The body of human genomic and proteomic evidence continues to grow at ever-increasing rates, while annotation efforts struggle to keep pace. A surprisingly small fraction of human genes have clear, documented associations with specific functions, and new functions continue to be found for characterized genes. Here we assembled an integrated collection of diverse genomic and proteomic data for 21,341 human genes and make quantitative associations of each to 4333 Gene Ontology terms. We combined guilt-by-profiling and guilt-by-association approaches to exploit features unique to the data types. Performance was evaluated by cross-validation, prospective validation, and by manual evaluation with the biological literature. Functional-linkage networks were also constructed, and their utility was demonstrated by identifying candidate genes related to a glioma FLN using a seed network from genome-wide association studies. Our annotations are presented-alongside existing validated annotations-in a publicly accessible and searchable web interface.

  2. GSV Annotated Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Randy S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pope, Paul A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jiang, Ming [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trucano, Timothy G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aragon, Cecilia R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ni, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wei, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Chilton, Lawrence K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bakel, Alan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-09-14

    The following annotated bibliography was developed as part of the geospatial algorithm verification and validation (GSV) project for the Simulation, Algorithms and Modeling program of NA-22. Verification and Validation of geospatial image analysis algorithms covers a wide range of technologies. Papers in the bibliography are thus organized into the following five topic areas: Image processing and analysis, usability and validation of geospatial image analysis algorithms, image distance measures, scene modeling and image rendering, and transportation simulation models. Many other papers were studied during the course of the investigation including. The annotations for these articles can be found in the paper "On the verification and validation of geospatial image analysis algorithms".

  3. Genome-wide association identifies multiple genomic regions associated with susceptibility to and control of ovine lentivirus.

    Directory of Open Access Journals (Sweden)

    Stephen N White

    Full Text Available BACKGROUND: Like human immunodeficiency virus (HIV, ovine lentivirus (OvLV is macrophage-tropic and causes lifelong infection. OvLV infects one quarter of U.S. sheep and induces pneumonia and body condition wasting. There is no vaccine to prevent OvLV infection and no cost-effective treatment for infected animals. However, breed differences in prevalence and proviral concentration have indicated a genetic basis for susceptibility to OvLV. A recent study identified TMEM154 variants in OvLV susceptibility. The objective here was to identify additional loci associated with odds and/or control of OvLV infection. METHODOLOGY/PRINCIPAL FINDINGS: This genome-wide association study (GWAS included 964 sheep from Rambouillet, Polypay, and Columbia breeds with serological status and proviral concentration phenotypes. Analytic models accounted for breed and age, as well as genotype. This approach identified TMEM154 (nominal P=9.2×10(-7; empirical P=0.13, provided 12 additional genomic regions associated with odds of infection, and provided 13 regions associated with control of infection (all nominal P<1 × 10(-5. Rapid decline of linkage disequilibrium with distance suggested many regions included few genes each. Genes in regions associated with odds of infection included DPPA2/DPPA4 (empirical P=0.006, and SYTL3 (P=0.051. Genes in regions associated with control of infection included a zinc finger cluster (ZNF192, ZSCAN16, ZNF389, and ZNF165; P=0.001, C19orf42/TMEM38A (P=0.047, and DLGAP1 (P=0.092. CONCLUSIONS/SIGNIFICANCE: These associations provide targets for mutation discovery in sheep susceptibility to OvLV. Aside from TMEM154, these genes have not been associated previously with lentiviral infection in any species, to our knowledge. Further, data from other species suggest functional hypotheses for future testing of these genes in OvLV and other lentiviral infections. Specifically, SYTL3 binds and may regulate RAB27A, which is required for enveloped

  4. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination...... and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...

  5. Prostate cancer risk locus at 8q24 as a regulatory hub by physical interactions with multiple genomic loci across the genome.

    Science.gov (United States)

    Du, Meijun; Yuan, Tiezheng; Schilter, Kala F; Dittmar, Rachel L; Mackinnon, Alexander; Huang, Xiaoyi; Tschannen, Michael; Worthey, Elizabeth; Jacob, Howard; Xia, Shu; Gao, Jianzhong; Tillmans, Lori; Lu, Yan; Liu, Pengyuan; Thibodeau, Stephen N; Wang, Liang

    2015-01-01

    Chromosome 8q24 locus contains regulatory variants that modulate genetic risk to various cancers including prostate cancer (PC). However, the biological mechanism underlying this regulation is not well understood. Here, we developed a chromosome conformation capture (3C)-based multi-target sequencing technology and systematically examined three PC risk regions at the 8q24 locus and their potential regulatory targets across human genome in six cell lines. We observed frequent physical contacts of this risk locus with multiple genomic regions, in particular, inter-chromosomal interaction with CD96 at 3q13 and intra-chromosomal interaction with MYC at 8q24. We identified at least five interaction hot spots within the predicted functional regulatory elements at the 8q24 risk locus. We also found intra-chromosomal interaction genes PVT1, FAM84B and GSDMC and inter-chromosomal interaction gene CXorf36 in most of the six cell lines. Other gene regions appeared to be cell line-specific, such as RRP12 in LNCaP, USP14 in DU-145 and SMIN3 in lymphoblastoid cell line. We further found that the 8q24 functional domains more likely interacted with genomic regions containing genes enriched in critical pathways such as Wnt signaling and promoter motifs such as E2F1 and TCF3. This result suggests that the risk locus may function as a regulatory hub by physical interactions with multiple genes important for prostate carcinogenesis. Further understanding genetic effect and biological mechanism of these chromatin interactions will shed light on the newly discovered regulatory role of the risk locus in PC etiology and progression. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Species-independent identification of known and novel recurrent genomic entities in multiple cancer patients

    DEFF Research Database (Denmark)

    Friis-Nielsen, Jens; Gonzalez-Izarzugaza, Jose Maria; Brunak, Søren

    2016-01-01

    Here we present a new method for the identification of recurrent genomic entities that play a causative role in the onset of disease. Our approach is particularly amenable for the analyses highthroughput sequencing data.......Here we present a new method for the identification of recurrent genomic entities that play a causative role in the onset of disease. Our approach is particularly amenable for the analyses highthroughput sequencing data....

  7. An Integrative Bioinformatics Framework for Genome-scale Multiple Level Network Reconstruction of Rice

    Directory of Open Access Journals (Sweden)

    Liu Lili

    2013-06-01

    Full Text Available Understanding how metabolic reactions translate the genome of an organism into its phenotype is a grand challenge in biology. Genome-wide association studies (GWAS statistically connect genotypes to phenotypes, without any recourse to known molecular interactions, whereas a molecular mechanistic description ties gene function to phenotype through gene regulatory networks (GRNs, protein-protein interactions (PPIs and molecular pathways. Integration of different regulatory information levels of an organism is expected to provide a good way for mapping genotypes to phenotypes. However, the lack of curated metabolic model of rice is blocking the exploration of genome-scale multi-level network reconstruction. Here, we have merged GRNs, PPIs and genome-scale metabolic networks (GSMNs approaches into a single framework for rice via omics’ regulatory information reconstruction and integration. Firstly, we reconstructed a genome-scale metabolic model, containing 4,462 function genes, 2,986 metabolites involved in 3,316 reactions, and compartmentalized into ten subcellular locations. Furthermore, 90,358 pairs of protein-protein interactions, 662,936 pairs of gene regulations and 1,763 microRNA-target interactions were integrated into the metabolic model. Eventually, a database was developped for systematically storing and retrieving the genome-scale multi-level network of rice. This provides a reference for understanding genotype-phenotype relationship of rice, and for analysis of its molecular regulatory network.

  8. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    Directory of Open Access Journals (Sweden)

    Emmanouil A Trantas

    2015-08-01

    Full Text Available The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor and P. mediterranea (Pmed, are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for commercially significant chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of a type III secretion system and of known type III effectors from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes.

  9. Novel and rare functional genomic variants in multiple autoimmune syndrome and Sjögren's syndrome.

    Science.gov (United States)

    Johar, Angad S; Mastronardi, Claudio; Rojas-Villarraga, Adriana; Patel, Hardip R; Chuah, Aaron; Peng, Kaiman; Higgins, Angela; Milburn, Peter; Palmer, Stephanie; Silva-Lara, Maria Fernanda; Velez, Jorge I; Andrews, Dan; Field, Matthew; Huttley, Gavin; Goodnow, Chris; Anaya, Juan-Manuel; Arcos-Burgos, Mauricio

    2015-06-02

    Multiple autoimmune syndrome (MAS), an extreme phenotype of autoimmune disorders, is a very well suited trait to tackle genomic variants of these conditions. Whole exome sequencing (WES) is a widely used strategy for detection of protein coding and splicing variants associated with inherited diseases. The DNA of eight patients affected by MAS [all of whom presenting with Sjögren's syndrome (SS)], four patients affected by SS alone and 38 unaffected individuals, were subject to WES. Filters to identify novel and rare functional (pathogenic-deleterious) homozygous and/or compound heterozygous variants in these patients and controls were applied. Bioinformatics tools such as the Human gene connectome as well as pathway and network analysis were applied to test overrepresentation of genes harbouring these variants in critical pathways and networks involved in autoimmunity. Eleven novel and rare functional variants were identified in cases but not in controls, harboured in: MACF1, KIAA0754, DUSP12, ICA1, CELA1, LRP1/STAT6, GRIN3B, ANKLE1, TMEM161A, and FKRP. These were subsequently subject to network analysis and their functional relatedness to genes already associated with autoimmunity was evaluated. Notably, the LRP1/STAT6 novel mutation was homozygous in one MAS affected patient and heterozygous in another. LRP1/STAT6 disclosed the strongest plausibility for autoimmunity. LRP1/STAT6 are involved in extracellular and intracellular anti-inflammatory pathways that play key roles in maintaining the homeostasis of the immune system. Further; networks, pathways, and interaction analyses showed that LRP1 is functionally related to the HLA-B and IL10 genes and it has a substantial impact within immunological pathways and/or reaction to bacterial and other foreign proteins (phagocytosis, regulation of phospholipase A2 activity, negative regulation of apoptosis and response to lipopolysaccharides). Further, ICA1 and STAT6 were also closely related to AIRE and IRF5, two very

  10. A Novel Quality Measure and Correction Procedure for the Annotation of Microbial Translation Initiation Sites.

    Directory of Open Access Journals (Sweden)

    Lex Overmars

    Full Text Available The identification of translation initiation sites (TISs constitutes an important aspect of sequence-based genome analysis. An erroneous TIS annotation can impair the identification of regulatory elements and N-terminal signal peptides, and also may flaw the determination of descent, for any particular gene. We have formulated a reference-free method to score the TIS annotation quality. The method is based on a comparison of the observed and expected distribution of all TISs in a particular genome given prior gene-calling. We have assessed the TIS annotations for all available NCBI RefSeq microbial genomes and found that approximately 87% is of appropriate quality, whereas 13% needs substantial improvement. We have analyzed a number of factors that could affect TIS annotation quality such as GC-content, taxonomy, the fraction of genes with a Shine-Dalgarno sequence and the year of publication. The analysis showed that only the first factor has a clear effect. We have then formulated a straightforward Principle Component Analysis-based TIS identification strategy to self-organize and score potential TISs. The strategy is independent of reference data and a priori calculations. A representative set of 277 genomes was subjected to the analysis and we found a clear increase in TIS annotation quality for the genomes with a low quality score. The PCA-based annotation was also compared with annotation with the current tool of reference, Prodigal. The comparison for the model genome of Escherichia coli K12 showed that both methods supplement each other and that prediction agreement can be used as an indicator of a correct TIS annotation. Importantly, the data suggest that the addition of a PCA-based strategy to a Prodigal prediction can be used to 'flag' TIS annotations for re-evaluation and in addition can be used to evaluate a given annotation in case a Prodigal annotation is lacking.

  11. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Science.gov (United States)

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  12. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yajun He

    Full Text Available WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related

  13. Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification.

    Science.gov (United States)

    Arakaki, Atsushi; Shibusawa, Mie; Hosokawa, Masahito; Matsunaga, Tadashi

    2010-03-01

    Magnetotactic bacteria comprise a phylogenetically diverse group that is capable of synthesizing intracellular magnetic particles. Although various morphotypes of magnetotactic bacteria have been observed in the environment, bacterial strains available in pure culture are currently limited to a few genera due to difficulties in their enrichment and cultivation. In order to obtain genetic information from uncultured magnetotactic bacteria, a genome preparation method that involves magnetic separation of cells, flow cytometry, and multiple displacement amplification (MDA) using phi29 polymerase was used in this study. The conditions for the MDA reaction using samples containing 1 to 100 cells were evaluated using a pure-culture magnetotactic bacterium, "Magnetospirillum magneticum AMB-1," whose complete genome sequence is available. Uniform gene amplification was confirmed by quantitative PCR (Q-PCR) when 100 cells were used as a template. This method was then applied for genome preparation of uncultured magnetotactic bacteria from complex bacterial communities in an aquatic environment. A sample containing 100 cells of the uncultured magnetotactic coccus was prepared by magnetic cell separation and flow cytometry and used as an MDA template. 16S rRNA sequence analysis of the MDA product from these 100 cells revealed that the amplified genomic DNA was from a single species of magnetotactic bacterium that was phylogenetically affiliated with magnetotactic cocci in the Alphaproteobacteria. The combined use of magnetic separation, flow cytometry, and MDA provides a new strategy to access individual genetic information from magnetotactic bacteria in environmental samples.

  14. Annotation: The Savant Syndrome

    Science.gov (United States)

    Heaton, Pamela; Wallace, Gregory L.

    2004-01-01

    Background: Whilst interest has focused on the origin and nature of the savant syndrome for over a century, it is only within the past two decades that empirical group studies have been carried out. Methods: The following annotation briefly reviews relevant research and also attempts to address outstanding issues in this research area.…

  15. Annotating Emotions in Meetings

    NARCIS (Netherlands)

    Reidsma, Dennis; Heylen, Dirk K.J.; Ordelman, Roeland J.F.

    We present the results of two trials testing procedures for the annotation of emotion and mental state of the AMI corpus. The first procedure is an adaptation of the FeelTrace method, focusing on a continuous labelling of emotion dimensions. The second method is centered around more discrete

  16. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    Science.gov (United States)

    Trantas, Emmanouil A.; Licciardello, Grazia; Almeida, Nalvo F.; Witek, Kamil; Strano, Cinzia P.; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E.; Jones, Jonathan D. G.; Guttman, David S.; Catara, Vittoria; Sarris, Panagiotis F.

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes. PMID:26300874

  17. Jannovar: a java library for exome annotation.

    Science.gov (United States)

    Jäger, Marten; Wang, Kai; Bauer, Sebastian; Smedley, Damian; Krawitz, Peter; Robinson, Peter N

    2014-05-01

    Transcript-based annotation and pedigree analysis are two basic steps in the computational analysis of whole-exome sequencing experiments in genetic diagnostics and disease-gene discovery projects. Here, we present Jannovar, a stand-alone Java application as well as a Java library designed to be used in larger software frameworks for exome and genome analysis. Jannovar uses an interval tree to identify all transcripts affected by a given variant, and provides Human Genome Variation Society-compliant annotations both for variants affecting coding sequences and splice junctions as well as untranslated regions and noncoding RNA transcripts. Jannovar can also perform family-based pedigree analysis with Variant Call Format (VCF) files with data from members of a family segregating a Mendelian disorder. Using a desktop computer, Jannovar requires a few seconds to annotate a typical VCF file with exome data. Jannovar is freely available under the BSD2 license. Source code as well as the Java application and library file can be downloaded from http://compbio.charite.de (with tutorial) and https://github.com/charite/jannovar. © 2014 WILEY PERIODICALS, INC.

  18. Reasoning with Annotations of Texts

    OpenAIRE

    Ma , Yue; Lévy , François; Ghimire , Sudeep

    2011-01-01

    International audience; Linguistic and semantic annotations are important features for text-based applications. However, achieving and maintaining a good quality of a set of annotations is known to be a complex task. Many ad hoc approaches have been developed to produce various types of annotations, while comparing those annotations to improve their quality is still rare. In this paper, we propose a framework in which both linguistic and domain information can cooperate to reason with annotat...

  19. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    Science.gov (United States)

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  20. ComPath: comparative enzyme analysis and annotation in pathway/subsystem contexts

    Directory of Open Access Journals (Sweden)

    Kim Sun

    2008-03-01

    Full Text Available Abstract Background Once a new genome is sequenced, one of the important questions is to determine the presence and absence of biological pathways. Analysis of biological pathways in a genome is a complicated task since a number of biological entities are involved in pathways and biological pathways in different organisms are not identical. Computational pathway identification and analysis thus involves a number of computational tools and databases and typically done in comparison with pathways in other organisms. This computational requirement is much beyond the capability of biologists, so information systems for reconstructing, annotating, and analyzing biological pathways are much needed. We introduce a new comparative pathway analysis workbench, ComPath, which integrates various resources and computational tools using an interactive spreadsheet-style web interface for reliable pathway analyses. Results ComPath allows users to compare biological pathways in multiple genomes using a spreadsheet style web interface where various sequence-based analysis can be performed either to compare enzymes (e.g. sequence clustering and pathways (e.g. pathway hole identification, to search a genome for de novo prediction of enzymes, or to annotate a genome in comparison with reference genomes of choice. To fill in pathway holes or make de novo enzyme predictions, multiple computational methods such as FASTA, Whole-HMM, CSR-HMM (a method of our own introduced in this paper, and PDB-domain search are integrated in ComPath. Our experiments show that FASTA and CSR-HMM search methods generally outperform Whole-HMM and PDB-domain search methods in terms of sensitivity, but FASTA search performs poorly in terms of specificity, detecting more false positive as E-value cutoff increases. Overall, CSR-HMM search method performs best in terms of both sensitivity and specificity. Gene neighborhood and pathway neighborhood (global network visualization tools can be used

  1. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-11-01

    Full Text Available Abstract Background An evolutionary classification of genes from sequenced genomes that distinguishes between orthologs and paralogs is indispensable for genome annotation and evolutionary reconstruction. Shortly after multiple genome sequences of bacteria, archaea, and unicellular eukaryotes became available, an attempt on such a classification was implemented in Clusters of Orthologous Groups of proteins (COGs. Rapid accumulation of genome sequences creates opportunities for refining COGs but also represents a challenge because of error amplification. One of the practical strategies involves construction of refined COGs for phylogenetically compact subsets of genomes. Results New Archaeal Clusters of Orthologous Genes (arCOGs were constructed for 41 archaeal genomes (13 Crenarchaeota, 27 Euryarchaeota and one Nanoarchaeon using an improved procedure that employs a similarity tree between smaller, group-specific clusters, semi-automatically partitions orthology domains in multidomain proteins, and uses profile searches for identification of remote orthologs. The annotation of arCOGs is a consensus between three assignments based on the COGs, the CDD database, and the annotations of homologs in the NR database. The 7538 arCOGs, on average, cover ~88% of the genes in a genome compared to a ~76% coverage in COGs. The finer granularity of ortholog identification in the arCOGs is apparent from the fact that 4538 arCOGs correspond to 2362 COGs; ~40% of the arCOGs are new. The archaeal gene core (protein-coding genes found in all 41 genome consists of 166 arCOGs. The arCOGs were used to reconstruct gene loss and gene gain events during archaeal evolution and gene sets of ancestral forms. The Last Archaeal Common Ancestor (LACA is conservatively estimated to possess 996 genes compared to 1245 and 1335 genes for the last common ancestors of Crenarchaeota and Euryarchaeota, respectively. It is inferred that LACA was a chemoautotrophic hyperthermophile

  2. GFVO: the Genomic Feature and Variation Ontology

    KAUST Repository

    Baran, Joachim

    2015-05-05

    Falling costs in genomic laboratory experiments have led to a steady increase of genomic feature and variation data. Multiple genomic data formats exist for sharing these data, and whilst they are similar, they are addressing slightly different data viewpoints and are consequently not fully compatible with each other. The fragmentation of data format specifications makes it hard to integrate and interpret data for further analysis with information from multiple data providers. As a solution, a new ontology is presented here for annotating and representing genomic feature and variation dataset contents. The Genomic Feature and Variation Ontology (GFVO) specifically addresses genomic data as it is regularly shared using the GFF3 (incl. FASTA), GTF, GVF and VCF file formats. GFVO simplifies data integration and enables linking of genomic annotations across datasets through common semantics of genomic types and relations. Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology’s GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations); examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0) and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use.

  3. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    Energy Technology Data Exchange (ETDEWEB)

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  4. Integrating genome-wide association study and expression quantitative trait loci data identifies multiple genes and gene set associated with neuroticism.

    Science.gov (United States)

    Fan, Qianrui; Wang, Wenyu; Hao, Jingcan; He, Awen; Wen, Yan; Guo, Xiong; Wu, Cuiyan; Ning, Yujie; Wang, Xi; Wang, Sen; Zhang, Feng

    2017-08-01

    Neuroticism is a fundamental personality trait with significant genetic determinant. To identify novel susceptibility genes for neuroticism, we conducted an integrative analysis of genomic and transcriptomic data of genome wide association study (GWAS) and expression quantitative trait locus (eQTL) study. GWAS summary data was driven from published studies of neuroticism, totally involving 170,906 subjects. eQTL dataset containing 927,753 eQTLs were obtained from an eQTL meta-analysis of 5311 samples. Integrative analysis of GWAS and eQTL data was conducted by summary data-based Mendelian randomization (SMR) analysis software. To identify neuroticism associated gene sets, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). The gene set annotation dataset (containing 13,311 annotated gene sets) of GSEA Molecular Signatures Database was used. SMR single gene analysis identified 6 significant genes for neuroticism, including MSRA (p value=2.27×10 -10 ), MGC57346 (p value=6.92×10 -7 ), BLK (p value=1.01×10 -6 ), XKR6 (p value=1.11×10 -6 ), C17ORF69 (p value=1.12×10 -6 ) and KIAA1267 (p value=4.00×10 -6 ). Gene set enrichment analysis observed significant association for Chr8p23 gene set (false discovery rate=0.033). Our results provide novel clues for the genetic mechanism studies of neuroticism. Copyright © 2017. Published by Elsevier Inc.

  5. Sharing Map Annotations in Small Groups: X Marks the Spot

    Science.gov (United States)

    Congleton, Ben; Cerretani, Jacqueline; Newman, Mark W.; Ackerman, Mark S.

    Advances in location-sensing technology, coupled with an increasingly pervasive wireless Internet, have made it possible (and increasingly easy) to access and share information with context of one’s geospatial location. We conducted a four-phase study, with 27 students, to explore the practices surrounding the creation, interpretation and sharing of map annotations in specific social contexts. We found that annotation authors consider multiple factors when deciding how to annotate maps, including the perceived utility to the audience and how their contributions will reflect on the image they project to others. Consumers of annotations value the novelty of information, but must be convinced of the author’s credibility. In this paper we describe our study, present the results, and discuss implications for the design of software for sharing map annotations.

  6. The Nostoc punctiforme Genome

    Energy Technology Data Exchange (ETDEWEB)

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

  7. Genome-wide meta-analyses identify multiple loci associated with smoking behavior

    NARCIS (Netherlands)

    H. Furberg (Helena); Y. Kim (Yunjung); J. Dackor (Jennifer); E.A. Boerwinkle (Eric); N. Franceschini (Nora); D. Ardissino (Diego); L. Bernardinelli (Luisa); P.M. Mannucci (Pier); F. Mauri (Francesco); P.A. Merlini (Piera); D. Absher (Devin); T.L. Assimes (Themistocles); S.P. Fortmann (Stephen); C. Iribarren (Carlos); J.W. Knowles (Joshua); T. Quertermous (Thomas); L. Ferrucci (Luigi); T. Tanaka (Toshiko); J.C. Bis (Joshua); T. Haritunians (Talin); B. McKnight (Barbara); B.M. Psaty (Bruce); K.D. Taylor (Kent); E.L. Thacker (Evan); P. Almgren (Peter); L. Groop (Leif); C. Ladenvall (Claes); M. Boehnke (Michael); A.U. Jackson (Anne); K.L. Mohlke (Karen); H.M. Stringham (Heather); J. Tuomilehto (Jaakko); E.J. Benjamin (Emelia); S.J. Hwang; D. Levy (Daniel); S.R. Preis; R.S. Vasan (Ramachandran Srini); J. Duan (Jubao); P.V. Gejman (Pablo); D.F. Levinson (Douglas); A.R. Sanders (Alan); J. Shi (Jianxin); E.H. Lips (Esther); J.D. McKay (James); A. Agudo (Antonio); L. Barzan (Luigi); V. Bencko (Vladimir); S. Benhamou (Simone); X. Castellsagué (Xavier); C. Canova (Cristina); D.I. Conway (David); E. Fabianova (Eleonora); L. Foretova (Lenka); V. Janout (Vladimir); C.M. Healy (Claire); I. Holcátová (Ivana); K. Kjaerheim (Kristina); P. Lagiou; J. Lissowska (Jolanta); R. Lowry (Ray); T.V. MacFarlane (Tatiana); D. Mates (Dana); L. Richiardi (Lorenzo); P. Rudnai (Peter); N. Szeszenia-Dabrowska (Neonilia); D. Zaridze; A. Znaor (Ariana); M. Lathrop (Mark); P. Brennan (Paul); S. Bandinelli (Stefania); T.M. Frayling (Timothy); J.M. Guralnik (Jack); Y. Milaneschi (Yuri); J.R.B. Perry (John); D. Altshuler (David); R. Elosua (Roberto); S. Kathiresan (Sekar); G. Lucas (Gavin); O. Melander (Olle); V. Salomaa (Veikko); S.M. Schwartz (Stephen); B.F. Voight (Benjamin); B.W.J.H. Penninx (Brenda); J.H. Smit (Johannes); N. Vogelzangs (Nicole); D.I. Boomsma (Dorret); E.J.C. de Geus (Eco); J.M. Vink (Jacqueline); G.A.H.M. Willemsen (Gonneke); S.J. Chanock (Stephen); F. Gu (Fangyi); S.E. Hankinson (Susan); D. Hunter (David); A. Hofman (Albert); H.W. Tiemeier (Henning); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); S. Walter (Stefan); D.I. Chasman (Daniel); B.M. Everett (Brendan); G. Pare (Guillaume); P.M. Ridker (Paul); M.D. Li (Ming); H.H. Maes (Hermine); J. Audrain-Mcgovern (Janet); D. Posthuma (Danielle); L.M. Thornton (Laura); C. Lerman (Caryn); J. Kaprio (Jaakko); J.E. Rose (Jed); J.P.A. Ioannidis (John); P. Kraft (Peter); D.Y. Lin (Dan); P.F. Sullivan (Patrick); C.J. O'Donnell (Christopher)

    2010-01-01

    textabstractConsistent but indirect evidence has implicated genetic factors in smoking behavior. We report meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics Consortium (n = 74,053). We also partnered with the European Network of Genetic and Genomic Epidemiology

  8. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    NARCIS (Netherlands)

    Berndt, Sonja I; Camp, Nicola J; Skibola, Christine F; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S; Smedby, Karin E; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S; Lan, Qing; Teras, Lauren R; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R; Hartge, Patricia; Purdue, Mark P; Birmann, Brenda M; Vajdic, Claire M; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G; Shanafelt, Tait D; Novak, Anne J; Kay, Neil E; Liebow, Mark; Cunningham, Julie M; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A; Diver, W Ryan; Link, Brian K; Weiner, George J; Conde, Lucia; Bracci, Paige M; Riby, Jacques; Arnett, Donna K; Zhi, Degui; Leach, Justin M; Holly, Elizabeth A; Jackson, Rebecca D; Tinker, Lesley F; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G; Achenbach, Sara J; Vachon, Celine M; Goldin, Lynn R; Strom, Sara S; Leis, Jose F; Weinberg, J Brice; Caporaso, Neil E; Norman, Aaron D; De Roos, Anneclaire J; Morton, Lindsay M; Severson, Richard K; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María-Dolores; Vermeulen, Roel C H|info:eu-repo/dai/nl/216532620; Travis, Ruth C; Southey, Melissa C; Milne, Roger L; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R; Villano, Danylo J; Maria, Ann; Spinelli, John J; Gascoyne, Randy D; Connors, Joseph M; Bertrand, Kimberly A; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E; Snowden, John A; Wright, Josh; Fraumeni, Joseph F; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R; Chanock, Stephen J; Rothman, Nathaniel; Slager, Susan L

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and

  9. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility

    NARCIS (Netherlands)

    Yin, Xianyong; Low, Hui Qi; Wang, Ling; Li, Yonghong; Ellinghaus, Eva; Han, Jiali; Estivill, Xavier; Sun, Liangdan; Zuo, Xianbo; Shen, Changbing; Zhu, Caihong; Zhang, Anping; Sanchez, Fabio; Padyukov, Leonid; Catanese, Joseph J; Krueger, Gerald G; Duffin, Kristina Callis; Mucha, Sören; Weichenthal, Michael; Weidinger, Stephan; Lieb, Wolfgang; Foo, Jia Nee; Li, Yi; Sim, Karseng; Liany, Herty; Irwan, Ishak; Teo, Yikying; Theng, Colin T S; Gupta, Rashmi; Bowcock, Anne; De Jager, Philip L; Qureshi, Abrar A; de Bakker, Paul I W; Seielstad, Mark; Liao, Wilson; Ståhle, Mona; Franke, Andre; Zhang, Xuejun; Liu, Jianjun

    2015-01-01

    Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We

  10. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma

    NARCIS (Netherlands)

    Cerhan, James R.; Berndt, Sonja I.; Vijai, Joseph; Ghesquières, Hervé; McKay, James; Wang, Sophia S.; Wang, Zhaoming; Yeager, Meredith; Conde, Lucia; De Bakker, Paul I W; Nieters, Alexandra; Cox, David; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R.; De Roos, Anneclaire J.; Brooks-Wilson, Angela R.; Lan, Qing; Severi, Gianluca; Melbye, Mads; Gu, Jian; Jackson, Rebecca D.; Kane, Eleanor; Teras, Lauren R.; Purdue, Mark P.; Vajdic, Claire M.; Spinelli, John J.; Giles, Graham G.; Albanes, Demetrius; Kelly, Rachel S.; Zucca, Mariagrazia; Bertrand, Kimberly A.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M.; Link, Brian K.; Novak, Anne J.; Dogan, Ahmet; Asmann, Yan W.; Liebow, Mark; Thompson, Carrie A.; Ansell, Stephen M.; Witzig, Thomas E.; Weiner, George J.; Veron, Amelie S.; Zelenika, Diana; Tilly, Hervé; Haioun, Corinne; Molina, Thierry Jo; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans Olov; Bracci, Paige M.; Riby, Jacques; Smith, Martyn T.; Holly, Elizabeth A.; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M.; Severson, Richard K.; Tinker, Lesley F.; North, Kari E.; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W. Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J.; Villano, Danylo J.; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R.; Kricker, Anne; Turner, Jenny; Southey, Melissa C.; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Trichopoulos, Dimitrios; Vermeulen, Roel C H; Boeing, Heiner; Tjonneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; Birmann, Brenda M.; Laden, Francine; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Sampson, Joshua; Liang, Liming; Park, Ju Hyun; Chung, Charles C.; Weisenburger, Dennis D.; Chatterjee, Nilanjan; Fraumeni, Joseph F.; Slager, Susan L.; Wu, Xifeng; De Sanjose, Silvia; Smedby, Karin E.; Salles, Gilles; Skibola, Christine F.; Rothman, Nathaniel; Chanock, Stephen J.

    2014-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of

  11. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function

    NARCIS (Netherlands)

    D.B. Hancock (Dana); M. Eijgelsheim (Mark); J.B. Wilk (Jemma); S.A. Gharib (Sina); L.R. Loehr (Laura); K. Marciante (Kristin); N. Franceschini (Nora); Y.M.T.A. van Durme; T.H. Chen; R.G. Barr (Graham); M.B. Schabath (Matthew); D.J. Couper (David); G.G. Brusselle (Guy); B.M. Psaty (Bruce); P. Tikka-Kleemola (Päivi); J.I. Rotter (Jerome); A.G. Uitterlinden (André); A. Hofman (Albert); N.M. Punjabi (Naresh); F. Rivadeneira Ramirez (Fernando); A.C. Morrison (Alanna); P.L. Enright (Paul); K.E. North (Kari); S.R. Heckbert (Susan); T. Lumley (Thomas); B.H.Ch. Stricker (Bruno); G.T. O'Connor (George); S.J. London (Stephanie)

    2010-01-01

    textabstractSpirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV1) and

  12. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes.

    Science.gov (United States)

    Belyi, Vladimir A; Levine, Arnold J; Skalka, Anna Marie

    2010-07-29

    Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected), later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important biological

  13. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Vladimir A Belyi

    2010-07-01

    Full Text Available Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected, later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important

  14. Annotation-based enrichment of Digital Objects using open-source frameworks

    Directory of Open Access Journals (Sweden)

    Marcus Emmanuel Barnes

    2017-07-01

    Full Text Available The W3C Web Annotation Data Model, Protocol, and Vocabulary unify approaches to annotations across the web, enabling their aggregation, discovery and persistence over time. In addition, new javascript libraries provide the ability for users to annotate multi-format content. In this paper, we describe how we have leveraged these developments to provide annotation features alongside Islandora’s existing preservation, access, and management capabilities. We also discuss our experience developing with the Web Annotation Model as an open web architecture standard, as well as our approach to integrating mature external annotation libraries. The resulting software (the Web Annotation Utility Module for Islandora accommodates annotation across multiple formats. This solution can be used in various digital scholarship contexts.

  15. Insights on Genomic and Molecular Alterations in Multiple Myeloma and Their Incorporation towards Risk-Adapted Treatment Strategy: Concise Clinical Review

    Directory of Open Access Journals (Sweden)

    Taiga Nishihori

    2017-01-01

    Full Text Available Although recent advances in novel treatment approaches and therapeutics have shifted the treatment landscape of multiple myeloma, it remains an incurable plasma cell malignancy. Growing knowledge of the genome and expressed genomic information characterizing the biologic behavior of multiple myeloma continues to accumulate. However, translation and incorporation of vast molecular understanding of complex tumor biology to deliver personalized and precision treatment to cure multiple myeloma have not been successful to date. Our review focuses on current evidence and understanding of myeloma biology with characterization in the context of genomic and molecular alterations. We also discuss future clinical application of the genomic and molecular knowledge, and more translational research is needed to benefit our myeloma patients.

  16. GSV Annotated Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Randy S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pope, Paul A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jiang, Ming [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trucano, Timothy G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aragon, Cecilia R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ni, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wei, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Chilton, Lawrence K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bakel, Alan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2011-06-14

    The following annotated bibliography was developed as part of the Geospatial Algorithm Veri cation and Validation (GSV) project for the Simulation, Algorithms and Modeling program of NA-22. Veri cation and Validation of geospatial image analysis algorithms covers a wide range of technologies. Papers in the bibliography are thus organized into the following ve topic areas: Image processing and analysis, usability and validation of geospatial image analysis algorithms, image distance measures, scene modeling and image rendering, and transportation simulation models.

  17. Diverse Image Annotation

    KAUST Repository

    Wu, Baoyuan

    2017-11-09

    In this work we study the task of image annotation, of which the goal is to describe an image using a few tags. Instead of predicting the full list of tags, here we target for providing a short list of tags under a limited number (e.g., 3), to cover as much information as possible of the image. The tags in such a short list should be representative and diverse. It means they are required to be not only corresponding to the contents of the image, but also be different to each other. To this end, we treat the image annotation as a subset selection problem based on the conditional determinantal point process (DPP) model, which formulates the representation and diversity jointly. We further explore the semantic hierarchy and synonyms among the candidate tags, and require that two tags in a semantic hierarchy or in a pair of synonyms should not be selected simultaneously. This requirement is then embedded into the sampling algorithm according to the learned conditional DPP model. Besides, we find that traditional metrics for image annotation (e.g., precision, recall and F1 score) only consider the representation, but ignore the diversity. Thus we propose new metrics to evaluate the quality of the selected subset (i.e., the tag list), based on the semantic hierarchy and synonyms. Human study through Amazon Mechanical Turk verifies that the proposed metrics are more close to the humans judgment than traditional metrics. Experiments on two benchmark datasets show that the proposed method can produce more representative and diverse tags, compared with existing image annotation methods.

  18. Diverse Image Annotation

    KAUST Repository

    Wu, Baoyuan; Jia, Fan; Liu, Wei; Ghanem, Bernard

    2017-01-01

    In this work we study the task of image annotation, of which the goal is to describe an image using a few tags. Instead of predicting the full list of tags, here we target for providing a short list of tags under a limited number (e.g., 3), to cover as much information as possible of the image. The tags in such a short list should be representative and diverse. It means they are required to be not only corresponding to the contents of the image, but also be different to each other. To this end, we treat the image annotation as a subset selection problem based on the conditional determinantal point process (DPP) model, which formulates the representation and diversity jointly. We further explore the semantic hierarchy and synonyms among the candidate tags, and require that two tags in a semantic hierarchy or in a pair of synonyms should not be selected simultaneously. This requirement is then embedded into the sampling algorithm according to the learned conditional DPP model. Besides, we find that traditional metrics for image annotation (e.g., precision, recall and F1 score) only consider the representation, but ignore the diversity. Thus we propose new metrics to evaluate the quality of the selected subset (i.e., the tag list), based on the semantic hierarchy and synonyms. Human study through Amazon Mechanical Turk verifies that the proposed metrics are more close to the humans judgment than traditional metrics. Experiments on two benchmark datasets show that the proposed method can produce more representative and diverse tags, compared with existing image annotation methods.

  19. Genome-wide SNP identification in multiple morphotypes of allohexaploid tall fescue (Festuca arundinacea Schreb

    Directory of Open Access Journals (Sweden)

    Hand Melanie L

    2012-06-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs provide essential tools for the advancement of research in plant genomics, and the development of SNP resources for many species has been accelerated by the capabilities of second-generation sequencing technologies. The current study aimed to develop and use a novel bioinformatic pipeline to generate a comprehensive collection of SNP markers within the agriculturally important pasture grass tall fescue; an outbreeding allopolyploid species displaying three distinct morphotypes: Continental, Mediterranean and rhizomatous. Results A bioinformatic pipeline was developed that successfully identified SNPs within genotypes from distinct tall fescue morphotypes, following the sequencing of 414 polymerase chain reaction (PCR – generated amplicons using 454 GS FLX technology. Equivalent amplicon sets were derived from representative genotypes of each morphotype, including six Continental, five Mediterranean and one rhizomatous. A total of 8,584 and 2,292 SNPs were identified with high confidence within the Continental and Mediterranean morphotypes respectively. The success of the bioinformatic approach was demonstrated through validation (at a rate of 70% of a subset of 141 SNPs using both SNaPshot™ and GoldenGate™ assay chemistries. Furthermore, the quantitative genotyping capability of the GoldenGate™ assay revealed that approximately 30% of the putative SNPs were accessible to co-dominant scoring, despite the hexaploid genome structure. The sub-genome-specific origin of each SNP validated from Continental tall fescue was predicted using a phylogenetic approach based on comparison with orthologous sequences from predicted progenitor species. Conclusions Using the appropriate bioinformatic approach, amplicon resequencing based on 454 GS FLX technology is an effective method for the identification of polymorphic SNPs within the genomes of Continental and Mediterranean tall fescue. The

  20. Complete genome sequence of an attenuated Sparfloxacin-resistant Streptococcus agalactiae strain 138spar

    Science.gov (United States)

    The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...