WorldWideScience

Sample records for multiple fret acceptors

  1. FRET two-hybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor

    Science.gov (United States)

    Du, Mengyan; Yang, Fangfang; Mai, Zihao; Qu, Wenfeng; Lin, Fangrui; Wei, Lichun; Chen, Tongsheng

    2018-04-01

    We here introduce a fluorescence resonance energy transfer (FRET) two-hybrid assay method to measure the maximal donor(D)- and acceptor(A)-centric FRET efficiency (ED,max and EA,max) of the D-A complex and its stoichiometry by linearly fitting the donor-centric FRET efficiency (ED) to the acceptor-to-donor concentration ratio (RC) and acceptor-centric FRET efficiency (EA) to 1/RC, respectively. We performed this method on a wide-field fluorescence microscope for living HepG2 cells co-expressing FRET tandem constructs and free donor/acceptor and obtained correct ED, EA, and stoichiometry values of those tandem constructs. Evaluation on the binding of Bad with Bcl-XL in Hela cells showed that Bad interacted strongly with Bcl-XL to form a Bad-Bcl-XL complex on mitochondria, and one Bad interacted mainly with one Bcl-XL molecule in healthy cells, while with multiple (maybe 2) Bcl-XL molecules in apoptotic cells.

  2. Intercalating dye as an acceptor in quantum-dot-mediated FRET

    International Nuclear Information System (INIS)

    Lim, Teck Chuan; Bailey, Vasudev J; Wang, T-H; Ho, Y-P

    2008-01-01

    Fluorescence resonance energy transfer (FRET) is a popular tool to study intermolecular distances and characterize structural or conformational changes of biological macromolecules. We investigate a novel inorganic/organic FRET pair with quantum dots (QDs) as donors and DNA intercalating dyes, BOBO-3, as acceptors by using DNA as a linker. Typically, FRET efficiency increases with the number of stained DNA linked to a QD. However, with the use of intercalating dyes, we demonstrate that FRET efficiency at a fixed DNA:QD ratio can be further enhanced by increasing the number of dyes stained to a DNA strand through the use of an increased staining dye/bp ratio. We exploit this flexibility in the staining ratio to maintain a high FRET efficiency of >0.90 despite a sixfold decrease in DNA concentration. Having characterized this new QD-mediated FRET system, we test this system in a cellular environment using nanocomplexes generated by encapsulating DNA with commercial non-viral gene carriers. Using this novel FRET pair, we are able to monitor the configuration changes and fate of the DNA nanocomplexes during intracellular delivery, thereby providing an insight into the mechanistic study of gene delivery

  3. 48-spot single-molecule FRET setup with periodic acceptor excitation

    Science.gov (United States)

    Ingargiola, Antonino; Segal, Maya; Gulinatti, Angelo; Rech, Ivan; Labanca, Ivan; Maccagnani, Piera; Ghioni, Massimo; Weiss, Shimon; Michalet, Xavier

    2018-03-01

    Single-molecule Förster resonance energy transfer (smFRET) allows measuring distances between donor and acceptor fluorophores on the 3-10 nm range. Solution-based smFRET allows measurement of binding-unbinding events or conformational changes of dye-labeled biomolecules without ensemble averaging and free from surface perturbations. When employing dual (or multi) laser excitation, smFRET allows resolving the number of fluorescent labels on each molecule, greatly enhancing the ability to study heterogeneous samples. A major drawback to solution-based smFRET is the low throughput, which renders repetitive measurements expensive and hinders the ability to study kinetic phenomena in real-time. Here we demonstrate a high-throughput smFRET system that multiplexes acquisition by using 48 excitation spots and two 48-pixel single-photon avalanche diode array detectors. The system employs two excitation lasers allowing separation of species with one or two active fluorophores. The performance of the system is demonstrated on a set of doubly labeled double-stranded DNA oligonucleotides with different distances between donor and acceptor dyes along the DNA duplex. We show that the acquisition time for accurate subpopulation identification is reduced from several minutes to seconds, opening the way to high-throughput screening applications and real-time kinetics studies of enzymatic reactions such as DNA transcription by bacterial RNA polymerase.

  4. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    Directory of Open Access Journals (Sweden)

    Adam D Hoppe

    Full Text Available Fluorescence Resonance Energy Transfer (FRET microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.

  5. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    Science.gov (United States)

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2

    NARCIS (Netherlands)

    Mastop, M.; Bindels, D.S.; Shaner, N.C.; Postma, M.; Gadella, T.W.J.; Goedhart, J.

    2017-01-01

    The performance of Förster Resonance Energy Transfer (FRET) biosensors depends on brightness and photostability, which are dependent on the characteristics of the fluorescent proteins that are employed. Yellow fluorescent protein (YFP) is often used as an acceptor but YFP is prone to photobleaching

  7. Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Viviane Devauges

    Full Text Available We present a novel imaging system combining total internal reflection fluorescence (TIRF microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.

  8. A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example.

    Directory of Open Access Journals (Sweden)

    Gerard N M van der Krogt

    Full Text Available We recently reported on CFP-Epac-YFP, an Epac-based single polypeptide FRET reporter to resolve cAMP levels in living cells. In this study, we compared and optimized the fluorescent protein donor/acceptor pairs for use in biosensors such as CFP-Epac-YFP. Our strategy was to prepare a wide range of constructs consisting of different donor and acceptor fluorescent proteins separated by a short linker. Constructs were expressed in HEK293 cells and tested for FRET and other relevant properties. The most promising pairs were subsequently used in an attempt to improve the FRET span of the Epac-based cAMP sensor. The results show significant albeit not perfect correlation between performance in the spacer construct and in the Epac sensor. Finally, this strategy enabled us to identify improved sensors both for detection by sensitized emission and by fluorescent lifetime imaging. The present overview should be helpful in guiding development of future FRET sensors.

  9. FRET structure with non-radiative acceptor provided by dye-linker-glass surface complex and single-molecule photodynamics by TIRFM-polarized imaging

    International Nuclear Information System (INIS)

    Tani, Toshiro; Mashimo, Kei; Suzuki, Tetsu; Horiuchi, Hiromi; Oda, Masaru

    2008-01-01

    We present our recent study of microscopic single-molecule imaging on the artificial complex of tetramethylrhodamine linked with a propyl chain onto silica glass surface, i.e. an asymmetric fluorescence resonance energy transfer (FRET) structure with non-radiative acceptor. In the synthesis of the complex, we used a mixture of two kinds of isomers to introduce rather small photodynamic difference among them. This isomeric structure change will provide more or less a distinctive photophysical change in e.g. non-radiative relaxation rate. Our recent observation at room temperatures, so far, shows that such contributions can be discriminated in the histograms of the fluorescent spot intensities; broad but distinctive multi-components appear. To identify the isomeric difference as a cause of structures, some configurational assumptions are necessary. One such basic prerequisite is that the transition dipoles of the chromophores should be oriented almost parallel to the glass surface. In order to make clear the modeling, we also provide preliminary experiments on the polarization dependence of the imaging under rotating polarization in epi-illumination

  10. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy

    Science.gov (United States)

    Zhao, Ming; Huang, Run; Peng, Leilei

    2012-01-01

    Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535

  11. Study of microbial perchlorate reduction: Considering of multiple pH, electron acceptors and donors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xing [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Gao, Baoyu, E-mail: bygao@sdu.edu.cn [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Jin, Bo [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia); Zhen, Hu [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaoyi [CSIRO Land and Water, Gate 5, Waite Road, Urrbrae, SA 5064 (Australia); Dai, Ming [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia)

    2015-03-21

    Graphical abstract: Schemes of perchlorate reduction in ClO{sub 4}{sup −}/ClO{sub 3}{sup −}–NO{sub 3}{sup −} e{sup −}acceptor systems. - Highlights: • We created a multiple electron acceptor/donor system for ClO{sub 4}{sup −} reduction. • Nitrate reduction was inhibited when using perchlorate-grown Azospira sp. KJ. • Reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}and NO{sub 3}{sup −}. • Oxidation of acetate was inhibited by succinate in acetate–succinate series. - Abstract: Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO{sub 4}{sup −}–ClO{sub 3}{sup −}, ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −},and ClO{sub 4}{sup −}–NO{sub 3}{sup −} acceptor systems, while being completely inhibited by the additional O{sub 2} in the ClO{sub 4}{sup −}–O{sub 2} acceptor system. The reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}, and NO{sub 3}{sup −} in the ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −} system. K{sub S,}v{sub max}, and q{sub max} obtained at different e{sup −} acceptor and donor conditions are calculated as 140.5–190.6 mg/L, 8.7–13.2 mg-perchlorate/L-h, and 0.094–0.16 mg-perchlorate/mg-DW-h, respectively.

  12. Sensitivity-Enhancement of FRET Immunoassays by Multiple-Antibody Conjugation on Quantum Dots.

    Science.gov (United States)

    Annio, Giacomo; Jennings, Travis; Tagit, Oya; Hildebrandt, Niko

    2018-05-23

    Quantum dots (QDs) are not only advantageous for color-tuning, improved brightness, and high stability, but their nanoparticle surfaces also allow for the attachment of many biomolecules. Because IgG antibodies (ABs) are in the same size range of biocompatible QDs and the AB orientation after conjugation to the QD is often random, it is difficult to predict if few or many ABs per QD will lead to an efficient AB-QD conjugate. This is particularly true for homogeneous Förster resonance energy transfer (FRET) sandwich immunoassays, for which the ABs on the QD must bind a biomarker that needs to bind a second AB-FRET-conjugate. Here, we investigate the performance of Tb-to-QD FRET immunoassays against total prostate specific antigen (TPSA) by changing the number of ABs per QD while leaving all the other assay components unchanged. We first characterize the AB-QD conjugation by various spectroscopic, microscopic, and chromatographic techniques and then quantify the TPSA immunoassay performance regarding sensitivity, limit of detection, and dynamic range. Our results show that an increasing conjugation ratio leads to significantly enhanced FRET immunoassays. These findings will be highly important for developing QD-based immunoassays in which the concentrations of both ABs and QDs can significantly influence the assay performance.

  13. A new trend to determine biochemical parameters by quantitative FRET assays.

    Science.gov (United States)

    Liao, Jia-yu; Song, Yang; Liu, Yan

    2015-12-01

    Förster resonance energy transfer (FRET) has been widely used in biological and biomedical research because it can determine molecule or particle interactions within a range of 1-10 nm. The sensitivity and efficiency of FRET strongly depend on the distance between the FRET donor and acceptor. Historically, FRET assays have been used to quantitatively deduce molecular distances. However, another major potential application of the FRET assay has not been fully exploited, that is, the use of FRET signals to quantitatively describe molecular interactive events. In this review, we discuss the use of quantitative FRET assays for the determination of biochemical parameters, such as the protein interaction dissociation constant (K(d)), enzymatic velocity (k(cat)) and K(m). We also describe fluorescent microscopy-based quantitative FRET assays for protein interaction affinity determination in cells as well as fluorimeter-based quantitative FRET assays for protein interaction and enzymatic parameter determination in solution.

  14. Polyfluorophore Excimers and Exciplexes as FRET Donors in DNA

    Science.gov (United States)

    Teo, Yin Nah; Kool, Eric T.

    2009-01-01

    We describe studies aimed at testing whether oligomeric exciplex- and excimer fluorophores conjugated to DNA have the potential to act as donors for energy transfer by the Förster mechanism. Oligodeoxyfluorosides (ODFs) are composed of stacked, electronically interacting fluorophores replacing the bases on a DNA scaffold. The monomer chromophores in the twenty tetramer-length ODFs studied here include pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and a nonfluorescent spacer (S); these are conjugated in varied combinations at the 3’ end of a 14mer DNA probe sequence. In the absence of an acceptor chromophore, many of the ODF-DNAs show broad, unstructured long-wavelength emission peaks characteristic of excimer and exciplex excited states, similar to what has been observed for unconjugated ODFs. Although such delocalized excited states have been widely studied, we know of no prior report of their use in FRET. We tested the ability of the twenty ODFs to donate energy to Cy5 and TAMRA dyes conjugated to a complementary strand of DNA, with these acceptors oriented either at the near or far end of the ODF-conjugated probes. Results showed that a number of the ODF fluorophores exhibited relatively efficient energy transfer characteristic of the Förster mechanism, as judged by drops in donor emission quantum yield and fluorescence lifetime, accompanied by increases in intensity of acceptor emission bands. Excimer/exciplex bands in the donors were selectively quenched while shorter-wavelength monomer emission stayed relatively constant, consistent with the notion that the delocalized excited states, rather than individual fluorophores, are the donors. Interestingly, only specific sequences of ODFs were able to act as donors, while others did not, even though their emission wavelengths were similar. The new FRET donors possess large Stokes shifts, which can be beneficial for multiple applications. In addition, all ODFs can be excited at a single

  15. Correlative FRET: new method improves rigor and reproducibility in determining distances within synaptic nanoscale architecture

    Science.gov (United States)

    Shinogle-Decker, Heather; Martinez-Rivera, Noraida; O'Brien, John; Powell, Richard D.; Joshi, Vishwas N.; Connell, Samuel; Rosa-Molinar, Eduardo

    2018-02-01

    A new correlative Förster Resonance Energy Transfer (FRET) microscopy method using FluoroNanogold™, a fluorescent immunoprobe with a covalently attached Nanogold® particle (1.4nm Au), overcomes resolution limitations in determining distances within synaptic nanoscale architecture. FRET by acceptor photobleaching has long been used as a method to increase fluorescence resolution. The transfer of energy from a donor to an acceptor generally occurs between 10-100Å, which is the relative distance between the donor molecule and the acceptor molecule. For the correlative FRET microscopy method using FluoroNanogold™, we immuno-labeled GFP-tagged-HeLa-expressing Connexin 35 (Cx35) with anti-GFP and with anti-Cx35/36 antibodies, and then photo-bleached the Cx before processing the sample for electron microscopic imaging. Preliminary studies reveal the use of Alexa Fluor® 594 FluoroNanogold™ slightly increases FRET distance to 70Å, in contrast to the 62.5Å using AlexaFluor 594®. Preliminary studies also show that using a FluoroNanogold™ probe inhibits photobleaching. After one photobleaching session, Alexa Fluor 594® fluorescence dropped to 19% of its original fluorescence; in contrast, after one photobleaching session, Alexa Fluor 594® FluoroNanogold™ fluorescence dropped to 53% of its original intensity. This result confirms that Alexa Fluor 594® FluoroNanogold™ is a much better donor probe than is Alexa Fluor 594®. The new method (a) creates a double confirmation method in determining structure and orientation of synaptic architecture, (b) allows development of a two-dimensional in vitro model to be used for precise testing of multiple parameters, and (c) increases throughput. Future work will include development of FluoroNanogold™ probes with different sizes of gold for additional correlative microscopy studies.

  16. The role of FRET in solar concentrator efficiency and color tunability

    Energy Technology Data Exchange (ETDEWEB)

    Balaban, Benjamin, E-mail: bbalaban@ucsc.edu; Doshay, Sage; Osborn, Melissa; Rodriguez, Yvonne; Carter, Sue A., E-mail: sacarter@ucsc.edu

    2014-02-15

    We demonstrate concentration-dependent Förster-type energy transfer in a luminescent solar concentrator (LSC) material containing two high quantum yield laser dyes in a PMMA matrix. FRET heterotransfer is shown to be approximately 50% efficient in the regime of 2×10{sup −3}molal acceptor dye by weight in the host polymer. The two dyes used have been well studied for solar concentrator applications: BASF's Lumogen Red 305, and Exciton Chemical Company's DCM both demonstrate desirable stability, quantum yield, and complementary absorption spectra. We demonstrate how multiple-dye LSC devices employing FRET increase the absorption of air mass 1.5 solar irradiance without affecting the self-absorption properties of the film. Color tunability may be achieved through the addition of additional absorbers while minimizing the impact on waveguide efficiency. -- Highlights: • Förster Resonance Energy Transfer is demonstrated in a two-dye luminescent solar concentrator. • Donor-acceptor pair distance is related to the dye concentration in PMMA. • FRET's benefit to waveguide transport losses and color tunability is discussed.

  17. Probing protein-lipid interactions by FRET between membrane fluorophores

    Science.gov (United States)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  18. Nucleic Acid Base Analog FRET-Pair Facilitating Detailed Structural Measurements in Nucleic Acid Containing Systems

    DEFF Research Database (Denmark)

    Börjesson, Karl; Preus, Søren; El-Sagheer, Afaf

    2009-01-01

    We present the first nucleobase analog fluorescence resonance energy transfer (FRET)-pair. The pair consists of tCO, 1,3-diaza-2-oxophenoxazine, as an energy donor and the newly developed tC(nitro), 7-nitro-1,3-diaza-2-oxophenothiazine, as an energy acceptor. The FRET-pair successfully monitors d...

  19. Understanding and modeling Förster-type resonance energy transfer (FRET)

    CERN Document Server

    Hernández Martínez, Pedro Ludwig; Demir, Hilmi Volkan

    2017-01-01

    This Brief presents a complete study of the generalized theory of Förster-type energy transfer in nanostructures with mixed dimensionality. Here the aim is to obtain a generalized theory of FRET including a comprehensive set of analytical equations for all combinations and configurations of nanostructures and deriving generic expressions for the dimensionality involved. In this brief, the modification of FRET mechanism with respect to the nanostructure serving as the donor vs. the acceptor will be included, focusing on the rate’s distance dependency and the role of the effective dielectric function in FRET, which will be a unique, useful source for those who study and model FRET.

  20. MnO2 nanosheet mediated "DD-A" FRET binary probes for sensitive detection of intracellular mRNA.

    Science.gov (United States)

    Ou, Min; Huang, Jin; Yang, Xiaohai; Quan, Ke; Yang, Yanjing; Xie, Nuli; Wang, Kemin

    2017-01-01

    The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO 2 nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn 2+ ions by intracellular GSH. The results indicated that the MnO 2 nanosheet mediated "DD-A" FRET binary probes are capable of sensitive and selective sensing gene expression and chemical-stimuli changes in gene expression levels in cancer cells. We believe that the MnO 2 nanosheet mediated "DD-A" FRET binary probes have the potential as a simple but powerful tool for basic research and clinical diagnosis.

  1. Roughness Effects on Fretting Fatigue

    Science.gov (United States)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  2. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions.

    Directory of Open Access Journals (Sweden)

    Uhna Sung

    Full Text Available FRET (Förster Resonance Energy Transfer-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms and signal decay (~3 ms. We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP and mRuby2 (acceptor FP to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz.

  3. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.

    Directory of Open Access Journals (Sweden)

    Ruud G J Detert Oude Weme

    Full Text Available Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET. Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM. For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells.

  4. Two-dimensional Forster resonance energy transfer (2-D FRET) and the membrane raft hypothesis

    OpenAIRE

    Acasandrei, Maria; Dale, Robert; VAN DE VEN, Martin; AMELOOT, Marcel

    2006-01-01

    A model for analyzing Forster resonance energy transfer (FRET) data in relation to the cell plasma membrane raft hypothesis is developed to take into account: (a) the distribution of FRET donors and acceptors at the surface of probing antibody fragments specific for a putative raft component; (b) partitioning of the raft component between raft and non-raft areas of the membrane; and (c) the dependence of the raft partition on the expression level of the considered component. Analysis of relev...

  5. SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells.

    Science.gov (United States)

    Fujioka, Mari; Asano, Yumi; Nakada, Shigeyuki; Ohba, Yusuke

    2017-01-01

    Fluorescent proteins (FPs) displaying distinct spectra have shed their light on a wide range of biological functions. Moreover, sophisticated biosensors engineered to contain single or multiple FPs, including Förster resonance energy transfer (FRET)-based biosensors, spatiotemporally reveal the molecular mechanisms underlying a variety of pathophysiological processes. However, their usefulness for applied life sciences has yet to be fully explored. Recently, our research group has begun to expand the potential of FPs from basic biological research to the clinic. Here, we describe a method to evaluate the responsiveness of leukemia cells from patients to tyrosine kinase inhibitors using a biosensor based on FP technology and the principle of FRET. Upon phosphorylation of the tyrosine residue of the biosensor, binding of the SH2 domain to phosphotyrosine induces conformational change of the biosensor and brings the donor and acceptor FPs into close proximity. Therefore, kinase activity and response to kinase inhibitors can be monitored by an increase and a decrease in FRET efficiency, respectively. As in basic research, this biosensor resolves hitherto arduous tasks and may provide innovative technological advances in clinical laboratory examinations. State-of-the-art detection devices that enable such innovation are also introduced.

  6. Simple estimation of Förster Resonance Energy Transfer (FRET) orientation factor distribution in membranes.

    Science.gov (United States)

    Loura, Luís M S

    2012-11-19

    Because of its acute sensitivity to distance in the nanometer scale, Förster resonance energy transfer (FRET) has found a large variety of applications in many fields of chemistry, physics, and biology. One important issue regarding the correct usage of FRET is its dependence on the donor-acceptor relative orientation, expressed as the orientation factor k(2). Different donor/acceptor conformations can lead to k(2) values in the 0 ≤ k(2) ≤ 4 range. Because the characteristic distance for FRET, R(0), is proportional to (k(2))1/6, uncertainties in the orientation factor are reflected in the quality of information that can be retrieved from a FRET experiment. In most cases, the average value of k(2) corresponding to the dynamic isotropic limit ( = 2/3) is used for computation of R(0) and hence donor-acceptor distances and acceptor concentrations. However, this can lead to significant error in unfavorable cases. This issue is more critical in membrane systems, because of their intrinsically anisotropic nature and their reduced fluidity in comparison to most common solvents. Here, a simple numerical simulation method for estimation of the probability density function of k(2) for membrane-embedded donor and acceptor fluorophores in the dynamic regime is presented. In the simplest form, the proposed procedure uses as input the most probable orientations of the donor and acceptor transition dipoles, obtained by experimental (including linear dichroism) or theoretical (such as molecular dynamics simulation) techniques. Optionally, information about the widths of the donor and/or acceptor angular distributions may be incorporated. The methodology is illustrated for special limiting cases and common membrane FRET pairs.

  7. APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy.

    Directory of Open Access Journals (Sweden)

    Heidi J Chial

    2010-08-01

    Full Text Available Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR domain, a central pleckstrin homology (PH domain, and a C-terminal phosphotyrosine binding (PTB domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported.Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species.All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2 and heterotypic (i.e., APPL1-APPL2 manner on curved cell membranes. Furthermore, the results of our experiments

  8. Inferring properties of disordered chains from FRET transfer efficiencies

    Science.gov (United States)

    Zheng, Wenwei; Zerze, Gül H.; Borgia, Alessandro; Mittal, Jeetain; Schuler, Benjamin; Best, Robert B.

    2018-03-01

    Förster resonance energy transfer (FRET) is a powerful tool for elucidating both structural and dynamic properties of unfolded or disordered biomolecules, especially in single-molecule experiments. However, the key observables, namely, the mean transfer efficiency and fluorescence lifetimes of the donor and acceptor chromophores, are averaged over a broad distribution of donor-acceptor distances. The inferred average properties of the ensemble therefore depend on the form of the model distribution chosen to describe the distance, as has been widely recognized. In addition, while the distribution for one type of polymer model may be appropriate for a chain under a given set of physico-chemical conditions, it may not be suitable for the same chain in a different environment so that even an apparently consistent application of the same model over all conditions may distort the apparent changes in chain dimensions with variation of temperature or solution composition. Here, we present an alternative and straightforward approach to determining ensemble properties from FRET data, in which the polymer scaling exponent is allowed to vary with solution conditions. In its simplest form, it requires either the mean FRET efficiency or fluorescence lifetime information. In order to test the accuracy of the method, we have utilized both synthetic FRET data from implicit and explicit solvent simulations for 30 different protein sequences, and experimental single-molecule FRET data for an intrinsically disordered and a denatured protein. In all cases, we find that the inferred radii of gyration are within 10% of the true values, thus providing higher accuracy than simpler polymer models. In addition, the scaling exponents obtained by our procedure are in good agreement with those determined directly from the molecular ensemble. Our approach can in principle be generalized to treating other ensemble-averaged functions of intramolecular distances from experimental data.

  9. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Directory of Open Access Journals (Sweden)

    Kenny F. Chou

    2015-06-01

    Full Text Available Förster (or fluorescence resonance energy transfer amongst semiconductor quantum dots (QDs is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  10. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Science.gov (United States)

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  11. Optical bar code recognition of methyl salicylate (MES) for environmental monitoring using fluorescence resonance energy transfer (FRET) on thin films

    Science.gov (United States)

    Smith, Clint; Tatineni, Balaji; Anderson, John; Tepper, Gary

    2006-10-01

    Fluorescence resonance energy transfer (FRET) is a process in which energy is transferred nonradiatively from one fluorophore (the donor) in an excited electron state to another, the chromophore (the acceptor). FRET is distinctive in its ability to reveal the presence of specific recognition of select targets such as the nerve agent stimulant Methyl Salicylate (MES) upon spectroscopic excitation. We introduce a surface imprinted and non-imprinted thin film that underwent AC-Electrospray ionization for donor-acceptor pair(s) bound to InGaP quantum dots and mesoporous silicate nanoparticles. The donor-acceptor pair used in this investigation included MES (donor) and 6-(fluorescein-5-(and-6)- carboxamido) hexanoic acid, succinimidyl ester bound to InGaP quantum dots (acceptor). MES was then investigated as a donor to various acceptor fluorophore: InGaP: mesoporous silicate nanoparticle layers.

  12. Critical Shell Thickness of Core/Shell Upconversion Luminescence Nanoplatform for FRET Application

    NARCIS (Netherlands)

    Wang, Yu; Liu, Kai; Liu, Xiaomin; Dohnalova, Katerina; Gregorkiewicz, Tom; Kong, Xianggui; Aalders, Maurice C. G.; Buma, Wybren J.; Zhang, Hong

    2011-01-01

    Almost all the luminescence upconversion nanoparticles used for Forster resonant energy transfer (FRET) applications are bare cores based on the consideration that the energy transfer efficiency is optimized because the distance between energy donors and acceptors is minimized. On the other hand, it

  13. Mechanisms of fretting-fatigue of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Antoniou, R A; Radtke, T C [Defence Sci. and Technol. Organ., Melbourne, Vic. (Australia). Aeronautical and Maritime Res. Lab.

    1997-09-30

    The effect of continuous fretting in air at 20 C on fatigue performance has been studied for Ti-17 and Ti-6Al-4V, high strength titanium alloys used for gas-turbine fan and compressor disks and blades, respectively. The effect of fretting was to reduce the fatigue stress limit from 700 MPa for plain fatigue to 200 MPa for fretting-fatigue. A number of models, supported by metallographic and fractographic evidence, are proposed which explain (i) how the cyclic loading of individual asperities results in crack initiation; (ii) the formation of multiple cracks; (iii) the existence of non-propagating cracks; and (iv) how fretting influences crack propagation once fatigue cracks have formed. (orig.) 46 refs.

  14. QD-Based FRET Probes at a Glance

    Directory of Open Access Journals (Sweden)

    Armen Shamirian

    2015-06-01

    Full Text Available The unique optoelectronic properties of quantum dots (QDs give them significant advantages over traditional organic dyes, not only as fluorescent labels for bioimaging, but also as emissive sensing probes. QD sensors that function via manipulation of fluorescent resonance energy transfer (FRET are of special interest due to the multiple response mechanisms that may be utilized, which in turn imparts enhanced flexibility in their design. They may also function as ratiometric, or “color-changing” probes. In this review, we describe the fundamentals of FRET and provide examples of QD-FRET sensors as grouped by their response mechanisms such as link cleavage and structural rearrangement. An overview of early works, recent advances, and various models of QD-FRET sensors for the measurement of pH and oxygen, as well as the presence of metal ions and proteins such as enzymes, are also provided.

  15. Characteristic of fretting damage in metal material

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Zhi, F.

    1988-10-01

    The fretting fatigue experiment of LC4 high strength aluminum alloy is described. An SEM examination of the fractology and morphology of fretting damage is carried out as well as an EDAX analysis of the chemical composition of fretting particles. The results show that many loose oxide particles were produced and accumulated in the fretting damage region. 10 references.

  16. Revisitation of FRET methods to measure intraprotein distances in Human Serum Albumin

    Energy Technology Data Exchange (ETDEWEB)

    Santini, S.; Bizzarri, A.R.; Cannistraro, S., E-mail: cannistr@unitus.it

    2016-11-15

    We revisited the FRET methods to measure the intraprotein distance between Trp-214 (used as donor) of Human Serum Albumin and its Cys-34, labelled with 1.5-Iaedans (used as acceptor). Variation of Trp fluorescence emission in terms of both intensity and lifetime, as well the enhancement of the acceptor fluorescence emission upon Trp excitation, have been monitored. A careful statistical analysis of the fluorescence results from ten independently prepared samples, combined with suitable spectral corrections, provided reproducible distances estimations by each one of the three methods. Even if monitoring of the donor lifetime variation in the presence of the acceptor reproduces at the best the crystallographic data, by allowing even sub-nanometre distance variations to be appreciated, we suggest that a comparative analysis of all the three methods, applied with statistical significance, should be preferred to achieve a better reliability of the FRET technique.

  17. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.

    Science.gov (United States)

    Murakoshi, Hideji; Shibata, Akihiro C E; Nakahata, Yoshihisa; Nabekura, Junichi

    2015-10-15

    Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor.

  18. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells

    Science.gov (United States)

    Goryashchenko, Alexander S.; Khrenova, Maria G.; Savitsky, Alexander P.

    2018-04-01

    Förster resonance energy transfer (FRET) sensors are widely used for the detection of protease activity in vitro and in vivo. Usually they consist of a FRET pair connected with a polypeptide linker containing a specific cleavage site for the relevant protease. Use of the fluorescent proteins as components of the FRET pair allows genetic encoding of such sensors and solves the problem of their delivery into live cells and animals. There are several ways to improve the properties of such sensors, mainly to increase FRET efficiency and therefore the dynamic range. One of the ways to achieve this is to use a non-fluorescent chromoprotein as an acceptor. Molecular dynamic simulations may assist in the construction of linker structures connecting donor and acceptor molecules. Estimation of the orientation factor κ 2 can be obtained by methods based on quantum theory and combined quantum mechanics/molecular mechanics approaches. The linker can be structured by hydrophobic interactions, bringing it into a closed conformation that shortens the distance between donor and acceptor and, consequently, increases FRET efficiency. We analyzed the effects of different linker structures on the detection of caspase-3 activity using a non-fluorescent acceptor. Also we have constructed the Tb3+- TagRFP sensor in which a complex of the terbium ion and terbium-binding peptide is used as a donor. This allowed us to use the unique property of lanthanide ions—fluorescence lifetime up to milliseconds—to perform measurements with time delay and exclude the nanosecond-order fluorescence. Using our systems as a starting point, by changing the recognition site in the linker it is possible to perform imaging of different protease activity in vitro or in vivo.

  19. A dansyl-rhodamine ratiometric fluorescent probe for Hg2+ based on FRET mechanism.

    Science.gov (United States)

    Xie, Puhui; Guo, Fengqi; Wang, Lingyu; Yang, Sen; Yao, Denghui; Yang, Guoyu

    2015-03-01

    Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg(2+) through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg(2+) in a wide pH range. Hg(2+) induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg(2+).

  20. Associative Memory Acceptors.

    Science.gov (United States)

    Card, Roger

    The properties of an associative memory are examined in this paper from the viewpoint of automata theory. A device called an associative memory acceptor is studied under real-time operation. The family "L" of languages accepted by real-time associative memory acceptors is shown to properly contain the family of languages accepted by one-tape,…

  1. Probing nucleic acid interactions and pre-mRNA splicing by Förster resonance energy transfer (FRET) microscopy

    Czech Academy of Sciences Publication Activity Database

    Šimková, Eva; Staněk, David

    2012-01-01

    Roč. 13, č. 11 (2012), s. 14929-14945 E-ISSN 1422-0067 R&D Projects: GA AV ČR KAN200520801 Institutional support: RVO:68378050 Keywords : FRET * FLIM * acceptor photobleaching * RNA interactions * spliceosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.464, year: 2012

  2. Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications.

    Science.gov (United States)

    Tian, Feng; Lyu, Jing; Shi, Jingyu; Yang, Mo

    2017-03-15

    In the past decades, Förster resonance energy transfer (FRET) has been applied in many biological applications to reveal the biological information at the nanoscale. Recently, graphene and graphene-like two-dimensional (2D) nanomaterials started to be used in FRET assays as donors or acceptors including graphene oxide (GO), graphene quantum dot (GQD), graphitic-carbon nitride nanosheets (g-C 3 N 4 ) and transition metal dichalcogenides (e.g. MoS 2 , MnO 2, and WS 2 ). Due to the remarkable properties such as large surface to volume ratio, tunable energy band, photoluminescence and excellent biocompatibility, these 2D nanomaterials based FRET assays have shown great potential in various biological applications. This review summarizes the recent development of graphene and graphene-like 2D nanomaterials based FRET assays in applications of biosensing, bioimaging, and drug delivery monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Parallel multispot smFRET analysis using an 8-pixel SPAD array

    Science.gov (United States)

    Ingargiola, A.; Colyer, R. A.; Kim, D.; Panzeri, F.; Lin, R.; Gulinatti, A.; Rech, I.; Ghioni, M.; Weiss, S.; Michalet, X.

    2012-02-01

    Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for extracting distance information between two fluorophores (a donor and acceptor dye) on a nanometer scale. This method is commonly used to monitor binding interactions or intra- and intermolecular conformations in biomolecules freely diffusing through a focal volume or immobilized on a surface. The diffusing geometry has the advantage to not interfere with the molecules and to give access to fast time scales. However, separating photon bursts from individual molecules requires low sample concentrations. This results in long acquisition time (several minutes to an hour) to obtain sufficient statistics. It also prevents studying dynamic phenomena happening on time scales larger than the burst duration and smaller than the acquisition time. Parallelization of acquisition overcomes this limit by increasing the acquisition rate using the same low concentrations required for individual molecule burst identification. In this work we present a new two-color smFRET approach using multispot excitation and detection. The donor excitation pattern is composed of 4 spots arranged in a linear pattern. The fluorescent emission of donor and acceptor dyes is then collected and refocused on two separate areas of a custom 8-pixel SPAD array. We report smFRET measurements performed on various DNA samples synthesized with various distances between the donor and acceptor fluorophores. We demonstrate that our approach provides identical FRET efficiency values to a conventional single-spot acquisition approach, but with a reduced acquisition time. Our work thus opens the way to high-throughput smFRET analysis on freely diffusing molecules.

  4. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry

    Science.gov (United States)

    Ouadahi, Karima; Sbargoud, Kamal; Allard, Emmanuel; Larpent, Chantal

    2012-01-01

    Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength.Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength. Electronic supplementary information (ESI) available: Experimental details and figures S1-S16 as mentioned in the text. See DOI: 10.1039/c2nr11413e

  5. Ratiometric FRET-based detection of DNA and micro-RNA in solution

    International Nuclear Information System (INIS)

    Matveeva, Evgenia G.; Gryczynski, Zygmunt; Stewart, Donald R.; Gryczynski, Ignacy

    2009-01-01

    A ratiometric method for detecting DNA oligomers in bulk solution based on Foerster resonance energy transfer (FRET) is described. The two fluorescence signals (green and red), originating from Cy3 (donor, green) and Cy5 (acceptor, red) labels, are simultaneously detected from the pre-hybridized Cy3oligomerY:Cy5oligomerX system. The ratio of red to green intensities is sensitive to the presence of the single-stranded complimentary oligomer, which replaces single-stranded Cy3oligomerY in the donor:acceptor complex and perturbs the FRET. The detection scheme is generally applicable to the detection of DNA and RNA, and particularly micro-RNA. The proposed method is applicable to various double-stranded various lengths targets (manipulation of the sample preparation conditions, such as temperature, incubation time, denaturizing agent, may be needed).

  6. FRET-based modified graphene quantum dots for direct trypsin quantification in urine

    Energy Technology Data Exchange (ETDEWEB)

    Poon, Chung-Yan; Li, Qinghua [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Zhang, Jiali; Li, Zhongping [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Dong, Chuan [Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Lee, Albert Wai-Ming; Chan, Wing-Hong [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Li, Hung-Wing, E-mail: hwli@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong)

    2016-04-21

    A versatile nanoprobe was developed for trypsin quantification with fluorescence resonance energy transfer (FRET). Here, fluorescence graphene quantum dot is utilized as a donor while a well-designed coumarin derivative, CMR2, as an acceptor. Moreover, bovine serum albumin (BSA), as a protein model, is not only served as a linker for the FRET pair, but also a fluorescence enhancer of the quantum dots and CMR2. In the presence of trypsin, the FRET system would be destroyed when the BSA is digested by trypsin. Thus, the emission peak of the donor is regenerated and the ratio of emission peak of donor/emission peak of acceptor increased. By the ratiometric measurement of these two emission peaks, trypsin content could be determined. The detection limit of trypsin was found to be 0.7 μg/mL, which is 0.008-fold of the average trypsin level in acute pancreatitis patient's urine suggesting a high potential for fast and low cost clinical screening. - Highlights: • A FRET-based biosensor was developed for direct quantification of trypsin. • Fast and sensitive screening of pancreatic disease was facilitated. • The direct quantification of trypsin in urine samples was demonstrated.

  7. Characterizing single-molecule FRET dynamics with probability distribution analysis.

    Science.gov (United States)

    Santoso, Yusdi; Torella, Joseph P; Kapanidis, Achillefs N

    2010-07-12

    Probability distribution analysis (PDA) is a recently developed statistical tool for predicting the shapes of single-molecule fluorescence resonance energy transfer (smFRET) histograms, which allows the identification of single or multiple static molecular species within a single histogram. We used a generalized PDA method to predict the shapes of FRET histograms for molecules interconverting dynamically between multiple states. This method is tested on a series of model systems, including both static DNA fragments and dynamic DNA hairpins. By fitting the shape of this expected distribution to experimental data, the timescale of hairpin conformational fluctuations can be recovered, in good agreement with earlier published results obtained using different techniques. This method is also applied to studying the conformational fluctuations in the unliganded Klenow fragment (KF) of Escherichia coli DNA polymerase I, which allows both confirmation of the consistency of a simple, two-state kinetic model with the observed smFRET distribution of unliganded KF and extraction of a millisecond fluctuation timescale, in good agreement with rates reported elsewhere. We expect this method to be useful in extracting rates from processes exhibiting dynamic FRET, and in hypothesis-testing models of conformational dynamics against experimental data.

  8. Molecularly imprinted fluorescent probe based on FRET for selective and sensitive detection of doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhifeng, E-mail: 897061147@qq.com [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Deng, Peihong; Li, Junhua [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Xu, Li [Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Tang, Siping [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China)

    2017-04-15

    Highlights: • FRET-based molecularly imprinted probe for detection of doxorubicin was prepared. • The detection limit of the probe was 13.8 nM for doxorubicin. • The FRET-based probe had a higher selectivity for the template than ordinary MIMs. - Abstract: In this work, a new type of fluorescent probe for detection of doxorubicin has been constructed by the combined use of fluorescence resonance energy transfer (FRET) technology and molecular imprinting technique (MIT). Using doxorubicin as the template, the molecularly imprinted polymer thin layer was fabricated on the surfaces of carbon dot (CD) modified silica by sol-gel polymerization. The excitation energy of the fluorescent donor (CDs) could be transferred to the fluorescent acceptor (doxorubicin). The FRET based fluorescent probe demonstrated high sensitivity and selectivity for doxorubicin. The detection limit was 13.8 nM. The fluorescent probe was successfully applied for detecting doxorubicin in doxorubicin-spiked plasmas with a recovery of 96.8–103.8%, a relative standard deviation (RSD) of 1.3–2.8%. The strategy for construction of FRET-based molecularly imprinted materials developed in this work is very promising for analytical applications.

  9. Förster Resonance Energy Transfer (FRET) from Triton X-100 to 4-benzothiazol-2-yl-phenol: Varying FRET efficiency with CMC of the donor (Triton X-100)

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Ganguly, Aniruddha; Karmakar, Saswati; Guchhait, Nikhil

    2013-01-01

    A heterocyclic compound viz., 4-benzothiazol-2-yl-phenol (4B2YP) has been synthesized and its photophysics have been examined through steady-state absorption, emission and time resolved emission spectroscopic techniques, in brief. Then 4B2YP has been exploited as an acceptor in the Förster Resonance Energy Transfer (FRET) process from photoexcited benzene aromatic nucleus of Triton X-100 (TX-100) surfactant. Dependence of the energy transfer efficiency on the donor concentration with respect to its critical micelle concentration (CMC) is clearly reflected in the study. High values of Stern–Volmer constant (K SV ) for quenching of the donor fluorescence in the presence of the acceptor suggest the operation of long-range dipole–dipole interaction in the course of energy transfer process, while the inference is aptly supported from time resolved fluorescence decay results. Experimental results show maximum FRET efficiency at the CMC of the donor (TX-100). -- Highlights: • FRET from neutral surfactant Triton X-100 to chromophore 4-benzothiazol-2-yl-phenol. • Steady state and time resolved spectroscopy. • Long-range dipole–dipole interaction responsible for FRET. • FRET efficiency as a measure of CMC of surfactant

  10. Förster Resonance Energy Transfer (FRET) from Triton X-100 to 4-benzothiazol-2-yl-phenol: Varying FRET efficiency with CMC of the donor (Triton X-100)

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar, E-mail: bijan.paul.chem.cu@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Ganguly, Aniruddha [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Karmakar, Saswati [Department of Chemistry, Sree Chaitanya College, Habra, North 24 Parganas (India); Guchhait, Nikhil, E-mail: nguchhait@yahoo.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India)

    2013-11-15

    A heterocyclic compound viz., 4-benzothiazol-2-yl-phenol (4B2YP) has been synthesized and its photophysics have been examined through steady-state absorption, emission and time resolved emission spectroscopic techniques, in brief. Then 4B2YP has been exploited as an acceptor in the Förster Resonance Energy Transfer (FRET) process from photoexcited benzene aromatic nucleus of Triton X-100 (TX-100) surfactant. Dependence of the energy transfer efficiency on the donor concentration with respect to its critical micelle concentration (CMC) is clearly reflected in the study. High values of Stern–Volmer constant (K{sub SV}) for quenching of the donor fluorescence in the presence of the acceptor suggest the operation of long-range dipole–dipole interaction in the course of energy transfer process, while the inference is aptly supported from time resolved fluorescence decay results. Experimental results show maximum FRET efficiency at the CMC of the donor (TX-100). -- Highlights: • FRET from neutral surfactant Triton X-100 to chromophore 4-benzothiazol-2-yl-phenol. • Steady state and time resolved spectroscopy. • Long-range dipole–dipole interaction responsible for FRET. • FRET efficiency as a measure of CMC of surfactant.

  11. Uncovering Aberrant Mutant PKA Function with Flow Cytometric FRET

    Directory of Open Access Journals (Sweden)

    Shin-Rong Lee

    2016-03-01

    Full Text Available Biology has been revolutionized by tools that allow the detection and characterization of protein-protein interactions (PPIs. Förster resonance energy transfer (FRET-based methods have become particularly attractive as they allow quantitative studies of PPIs within the convenient and relevant context of living cells. We describe here an approach that allows the rapid construction of live-cell FRET-based binding curves using a commercially available flow cytometer. We illustrate a simple method for absolutely calibrating the cytometer, validating our binding assay against the gold standard isothermal calorimetry (ITC, and using flow cytometric FRET to uncover the structural and functional effects of the Cushing-syndrome-causing mutation (L206R on PKA’s catalytic subunit. We discover that this mutation not only differentially affects PKAcat’s binding to its multiple partners but also impacts its rate of catalysis. These findings improve our mechanistic understanding of this disease-causing mutation, while illustrating the simplicity, general applicability, and power of flow cytometric FRET.

  12. Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors

    Directory of Open Access Journals (Sweden)

    Niko Hildebrandt

    2007-01-01

    Full Text Available CdSe/ZnS core/shell quantum dots (QDs are used as efficient Förster Resonance Energy Transfer (FRET acceptors in a time-resolved immunoassays with Tb complexes as donors providing a long-lived luminescence decay. A detailed decay time analysis of the FRET process is presented. QD FRET sensitization is evidenced by a more than 1000-fold increase of the QD luminescence decay time reaching ca. 0.5 milliseconds, the same value to which the Tb donor decay time is quenched due to FRET to the QD acceptors. The FRET system has an extremely large Förster radius of approx. 100 Å and more than 70% FRET efficiency with a mean donor-acceptor distance of ca. 84 Å, confirming the applied biotin-streptavidin binding system. Time-resolved measurement allows for suppression of short-lived emission due to background fluorescence and directly excited QDs. By this means a detection limit of 18 attomol QDs within the immunoassay is accomplished, an improvement of more than two orders of magnitude compared to commercial systems.

  13. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  14. EXPERIMENTAL INVESTIGTION OF THE FRETTING PHENOMENON

    Directory of Open Access Journals (Sweden)

    Ştefan GHIMISI

    2015-12-01

    Full Text Available Fretting is now fully identified as a small amplitude oscilatory motion which induces a harmonic tangential force between two surfaces in contact.It is related to three main loadings, i.e. fretting-wear, fretting-fatigue and fretting corrosion.Fretting regimes were first mapped by Vingsbo. In a similar way, three fretting regimes will be considered: stick regime,slip regime and mixed regime. The mixed regime was made up of initial gross slip followed by partial slip condition after a few hundred cycles. Obviously the partial slip transition develops the highest stress levels which can induce fatigue crack nucleation depending on the fatigue properties of the two contacting first bodies. Therefore prediction of the frontier between partial slip and gross slip is required.

  15. Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

    Directory of Open Access Journals (Sweden)

    Niko Hildebrandt

    2011-10-01

    Full Text Available Förster resonance energy transfer (FRET from luminescent terbium complexes (LTC as donors to semiconductor quantum dots (QDs as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma.

  16. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.

    Science.gov (United States)

    Aissaoui, Nesrine; Moth-Poulsen, Kasper; Käll, Mikael; Johansson, Peter; Wilhelmsson, L Marcus; Albinsson, Bo

    2017-01-05

    Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.

  17. High Performing Ternary Solar Cells through Förster Resonance Energy Transfer between Nonfullerene Acceptors.

    Science.gov (United States)

    Yang, Lei; Gu, Wenxing; Hong, Ling; Mi, Yang; Liu, Feng; Liu, Ming; Yang, Yufei; Sharma, Bigyan; Liu, Xinfeng; Huang, Hui

    2017-08-16

    Nonradiative Förster resonance energy transfer (FRET) is an important mechanism of organic solar cells, which can improve the exciton migration over a long distance, resulting in improvement of efficiency of solar cells. However, the current observations of FRET are very limited, and the efficiencies are less than 9%. In this study, FRET effect was first observed between two nonfullerene acceptors in ternary solar cells, which improved both the absorption range and exciton harvesting, leading to the dramatic enhancement in the short circuit current and power conversion efficiency. Moreover, this strategy is proved to be a versatile platform for conjugated polymers with different bandgaps, resulting in a remarkable efficiency of 10.4%. These results demonstrated a novel method to enhance the efficiency of organic soar cells.

  18. Fluorescence resonance energy transfer (FRET-based subcellular visualization of pathogen-induced host receptor signaling

    Directory of Open Access Journals (Sweden)

    Zimmermann Timo

    2009-11-01

    Full Text Available Abstract Background Bacteria-triggered signaling events in infected host cells are key elements in shaping the host response to pathogens. Within the eukaryotic cell, signaling complexes are spatially organized. However, the investigation of protein-protein interactions triggered by bacterial infection in the cellular context is technically challenging. Here, we provide a methodological approach to exploit fluorescence resonance energy transfer (FRET to visualize pathogen-initiated signaling events in human cells. Results Live-cell microscopy revealed the transient recruitment of the Src family tyrosine kinase Hck upon bacterial engagement of the receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3. In cells expressing a CEACAM3 variant lacking the cytoplasmic domain, the Src homology 2 (SH2 domain of Hck (Hck-SH2 was not recruited, even though bacteria still bound to the receptor. FRET measurements on the basis of whole cell lysates revealed intimate binding between Hck-SH2 (using enhanced yellow fluorescent protein (YPet-Hck-SH2 and the tyrosine-phosphorylated enhanced cyan fluorescent protein-labeled cytoplasmic domain of wild-type CEACAM3 (CEACAM3 WT-CyPet and a flow cytometry-based FRET approach verified this association in intact cells. Using confocal microscopy and acceptor photobleaching, FRET between Hck-SH2 and CEACAM3 was localized to the sites of bacteria-host cell contact. Conclusion These data demonstrate not only the intimate binding of the SH2 domain of Hck to the tyrosine-phosphorylated cytoplasmic domain of CEACAM3 in intact cells, but furthermore, FRET measurements allow the subcellular localization of this process during bacterial infection. FRET-based assays are valuable tools to resolve bacteria-induced protein-protein interactions in the context of the intact host cell.

  19. Standard guide for fretting fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide defines terminology and covers general requirements for conducting fretting fatigue tests and reporting the results. It describes the general types of fretting fatigue tests and provides some suggestions on developing and conducting fretting fatigue test programs. 1.2 Fretting fatigue tests are designed to determine the effects of mechanical and environmental parameters on the fretting fatigue behavior of metallic materials. This guide is not intended to establish preference of one apparatus or specimen design over others, but will establish guidelines for adherence in the design, calibration, and use of fretting fatigue apparatus and recommend the means to collect, record, and reporting of the data. 1.3 The number of cycles to form a fretting fatigue crack is dependent on both the material of the fatigue specimen and fretting pad, the geometry of contact between the two, and the method by which the loading and displacement are imposed. Similar to wear behavior of materials, it is important t...

  20. Quantitative Analysis of Tau-Microtubule Interaction Using FRET

    Directory of Open Access Journals (Sweden)

    Isabelle L. Di Maïo

    2014-08-01

    Full Text Available The interaction between the microtubule associated protein, tau and the microtubules is investigated. A fluorescence resonance energy transfer (FRET assay was used to determine the distance separating tau to the microtubule wall, as well as the binding parameters of the interaction. By using microtubules stabilized with Flutax-2 as donor and tau labeled with rhodamine as acceptor, a donor-to-acceptor distance of 54 ± 1 Å was found. A molecular model is proposed in which Flutax-2 is directly accessible to tau-rhodamine molecules for energy transfer. By titration, we calculated the stoichiometric dissociation constant to be equal to 1.0 ± 0.5 µM. The influence of the C-terminal tails of αβ-tubulin on the tau-microtubule interaction is presented once a procedure to form homogeneous solution of cleaved tubulin has been determined. The results indicate that the C-terminal tails of α- and β-tubulin by electrostatic effects and of recruitment seem to be involved in the binding mechanism of tau.

  1. Maximum likelihood-based analysis of photon arrival trajectories in single-molecule FRET

    Energy Technology Data Exchange (ETDEWEB)

    Waligorska, Marta [Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland); Molski, Andrzej, E-mail: amolski@amu.edu.pl [Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer We study model selection and parameter recovery from single-molecule FRET experiments. Black-Right-Pointing-Pointer We examine the maximum likelihood-based analysis of two-color photon trajectories. Black-Right-Pointing-Pointer The number of observed photons determines the performance of the method. Black-Right-Pointing-Pointer For long trajectories, one can extract mean dwell times that are comparable to inter-photon times. -- Abstract: When two fluorophores (donor and acceptor) are attached to an immobilized biomolecule, anti-correlated fluctuations of the donor and acceptor fluorescence caused by Foerster resonance energy transfer (FRET) report on the conformational kinetics of the molecule. Here we assess the maximum likelihood-based analysis of donor and acceptor photon arrival trajectories as a method for extracting the conformational kinetics. Using computer generated data we quantify the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) in selecting the true kinetic model. We find that the number of observed photons is the key parameter determining parameter estimation and model selection. For long trajectories, one can extract mean dwell times that are comparable to inter-photon times.

  2. Stuy on Fatigue Life of Aluminum Alloy Considering Fretting

    Science.gov (United States)

    Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali

    2018-01-01

    To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.

  3. Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots

    International Nuclear Information System (INIS)

    Zekavati, Roya; Bayat, Mansour; Safi, Shahabeddin; Hashemi, Seyed Jamal; Rahmani-Cherati, Tavoos; Tabatabaei, Meisam; Mohsenifar, Afshin

    2013-01-01

    We report on a competitive immunoassay for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from anti-aflatoxin B1 antibody (immobilized on the shell of CdTe quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The highly specific immuno reaction between the antibody against aflatoxin B1 on the QDs and the labeled-aflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photoexcitation of the QDs. In the absence of unlabeled aflatoxin B1, the antigen-antibody complex is stable, and strong emission resulting from the FRET from QDs to labeled aflatoxin B1 is observed. In the presence of aflatoxin B1, it will compete with the labeled aflatoxin B1-albumin complex for binding to the antibody-QDs conjugate so that FRET will be increasingly suppressed. The reduction in the fluorescence intensity of the acceptor correlates well with the concentration of aflatoxin B1. The feasibility of the method was established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the increased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spike human serum, over the range of 0.1–0.6 μmol·mL −1 . The limit of detection is 2 × 10 −11 M. This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require excessive washing and separation steps. (author)

  4. The Leakage determination on corrosion fretting machine

    International Nuclear Information System (INIS)

    Sriyono; Satmoko, Ari; Hafid, Abdul; Febrianto; Prasetio, Joko; Abtokhi; Sumarno, Edy; Handoyo, Ismu; Hidayati, Nur Rahmah; Histori

    1998-01-01

    Fretting machine is an experimental loop to learn fretting corrosion phenomena wich is caused by loading and vibration. On the steam generator, one of the corrosion process that's occurred, it can be caused by vibration between tubes and bending material. Because of high flow rate inside the tube, the high frequency vibration will appeared so it can make the corrosion on bending material more faster. This process can be simulate by fretting machine. This machine has already damage because of leakage. So it will be repaired by dismantling, radiography testing and redrawing. from the result of radiography, the leakage is caused by cracking on bellows seals of the dynamic main support

  5. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.

    Science.gov (United States)

    Mahajan, Prasad G; Bhopate, Dhanaji P; Kolekar, Govind B; Patil, Shivajirao R

    2016-07-01

    An aqueous suspension of fluorescent nanoparticles (PHNNPs) of naphthol based fluorescent organic compound 1-[(Z)-(2-phenylhydrazinylidene) methyl] naphthalene -2-ol (PHN) were prepared using reprecipitation method shows bathochromically shifted aggregation induced enhanced emission (AIEE) in the spectral region where erythrosine (ETS) food dye absorbs strongly. The average size of 72.6 nm of aqueous suspension of PHNNPs obtained by Dynamic light scattering results shows a narrow particle size distribution. The negative zeta potential of nano probe (-22.6 mV) responsible to adsorb oppositely charged analyte on its surface and further permit to bind nano probe and analyte within the close distance proximity required for efficient fluorescence resonance energy transfer (FRET) to take place from donor (PHNNPs) to acceptor (ETS). Systematic FRET experiments performed by measuring fluorescence quenching of PHNNPs with successive addition of ETS solution exploited the use of the PHNNPs as a novel nano probe for the detection of ETS in aqueous solution with extremely lower limit of detection equal to 3.6 nM (3.1 ng/mL). The estimation of photo kinetic and thermodynamic parameters such as quenching rate constant, enthalpy change (∆H), Gibbs free energy change (∆G) and entropy change (∆S) was obtained by the quenching results obtained at different constant temperatures which were found to fit the well-known Stern-Volmer relation. The mechanism of binding and fluorescence quenching of PHNNPs by ETS food dye is proposed on the basis of results obtained in photophysical studies, thermodynamic parameter, energy transfer efficiency, critical energy transfer distance (R0) and distance of approach between donor-acceptor molecules (r). The proposed FRET method based on fluorescence quenching of PHNNPs was successfully applied to develop an analytical method for estimation of ETS from food stuffs without interference of other complex ingredients. Graphical Abstract A

  6. Understanding and modeling Förster-type resonance energy transfer (FRET) introduction to FRET

    CERN Document Server

    Govorov, Alexander; Demir, Hilmi Volkan

    2016-01-01

    This Brief presents a historical overview of the Förster-type nonradiative energy transfer and a compilation of important progress in FRET research, starting from Förster until today, along with a summary of the current state-of-the-art. Here the objective is to provide the reader with a complete account of important milestones in FRET studies and FRET applications as well as a picture of the current status.

  7. Micro-electromembrane extraction using multiple free liquid membranes and acceptor solutions - Towards selective extractions of analytes based on their acid-base strength

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Seip, K. F.; Gjelstad, A.; Pedersen-Bjergaard, S.

    2016-01-01

    Roč. 943, NOV (2016), s. 64-73 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : multiple phase extraction * electromembrane extraction * plasma Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 4.950, year: 2016

  8. Micro-electromembrane extraction using multiple free liquid membranes and acceptor solutions - Towards selective extractions of analytes based on their acid-base strength

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Seip, K. F.; Gjelstad, A.; Pedersen-Bjergaard, S.

    2016-01-01

    Roč. 943, NOV (2016), s. 64-73 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : multiple phase extraction * electromembrane extraction * plasma Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.950, year: 2016

  9. Nano-scale control of energy transfer in the system 'donor-acceptor'

    International Nuclear Information System (INIS)

    Malyukin, Yu.V.; Yefimova, S.L.; Lebedenko, A.N.; Sorokin, A.V.; Borovoy, I.A.

    2005-01-01

    Fluorescence resonance energy transfer (FRET) in a cascade scheme between three amphiphilic dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiOC 18 (3), donor), 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC 18 (3), acceptor/donor) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiIC 18 (5), acceptor) has been investigated at low dye concentration (10 -5 mol/l) in water-micellar solutions due to a forced assembling of dyes in nanoscale volume. The experimental data have revealed that sodium dodecyl sulfate (SDS) micelles solubilize dye molecules such that their hydrophilic heads are in contact with water, while hydrophobic tails are embedded into the hydrocarbon core of the micelle. FRET efficiency has been found to depend on the concentration of dyes in micelles and the most effective when each SDS micelle contains 1 donor (DiOC 18 (3)), 2 acceptor/donor (DiIC 18 (3)) and 4 acceptor (DiIC 18 (5)) molecules

  10. Les vicissitudes du fret ferroviaire

    OpenAIRE

    DABLANC, L

    2010-01-01

    Dans beaucoup de pays européens, et plus encore en Amérique du Nord et en Asie, le transport de marchandises par le train a augmenté depuis dix ans. Cette activité réduit la part des marchandises acheminées par la route et contribue ainsi au développement durable : un camion émet 8 à 30 fois plus de dioxyde de carbone que le train, pour une distance et une quantité transportée équivalentes. Pourtant, la France a raté ce renouveau. Filiale du groupe public SNCF, la Société Fret SNCF, qui assur...

  11. A FRET-Based Approach for Quantitative Evaluation of Forskolin-Induced Pendrin Trafficking at the Plasma Membrane in Bronchial NCI H292 Cells

    Directory of Open Access Journals (Sweden)

    Grazia Tamma

    2013-12-01

    Full Text Available Background: Human pendrin (SLC26A4, PDS is an integral membrane protein acting as an electroneutral anion exchanger. Loss of function mutations in pendrin protein cause Pendred syndrome, a disorder characterized by sensorineural deafness and a partial iodide organification defect that may lead to thyroid goiter. Additionally, pendrin up-regulation could play a role in the pathogenesis of several diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD. Therefore, monitoring the plasma membrane abundance and trafficking of pendrin in the context of a living cell is crucially important. Methods: Trafficking of pendrin to the plasma membrane was monitored by fluorescence resonance energy transfer (FRET, a physical phenomenon occurring between two fluorophores (the FRET donor and acceptor located in close spatial proximity. Because the efficiency of the energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, FRET is extremely sensitive to small changes in distance between the donor and acceptor and is therefore a powerful tool to determine protein-protein interactions. Results: FRET studies revealed that forskolin-induced cAMP production is associated with a significant increase of pendrin expression at plasma membrane, which is paralleled by a decrease in intracellular pH. Pendrin transposition to the membrane is accompanied with a partial depolymerization of actin cytoskeleton via Rho-GTPase inhibition. Conclusion: Trafficking to the plasma membrane is critical in the regulation of pendrin activity. Therefore, reliable tools for monitoring and quantifying this phenomenon are highly desirable.

  12. A FRET-based approach for quantitative evaluation of forskolin-induced pendrin trafficking at the plasma membrane in bronchial NCI H292 cells.

    Science.gov (United States)

    Tamma, Grazia; Ranieri, Marianna; Dossena, Silvia; Di Mise, Annarita; Nofziger, Charity; Svelto, Maria; Paulmichl, Markus; Valenti, Giovanna

    2013-01-01

    Human pendrin (SLC26A4, PDS) is an integral membrane protein acting as an electroneutral anion exchanger. Loss of function mutations in pendrin protein cause Pendred syndrome, a disorder characterized by sensorineural deafness and a partial iodide organification defect that may lead to thyroid goiter. Additionally, pendrin up-regulation could play a role in the pathogenesis of several diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD). Therefore, monitoring the plasma membrane abundance and trafficking of pendrin in the context of a living cell is crucially important. Trafficking of pendrin to the plasma membrane was monitored by fluorescence resonance energy transfer (FRET), a physical phenomenon occurring between two fluorophores (the FRET donor and acceptor) located in close spatial proximity. Because the efficiency of the energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, FRET is extremely sensitive to small changes in distance between the donor and acceptor and is therefore a powerful tool to determine protein-protein interactions. FRET studies revealed that forskolin-induced cAMP production is associated with a significant increase of pendrin expression at plasma membrane, which is paralleled by a decrease in intracellular pH. Pendrin transposition to the membrane is accompanied with a partial depolymerization of actin cytoskeleton via Rho-GTPase inhibition. Trafficking to the plasma membrane is critical in the regulation of pendrin activity. Therefore, reliable tools for monitoring and quantifying this phenomenon are highly desirable. © 2014 S. Karger AG, Basel.

  13. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor–Acceptor Assembly

    Directory of Open Access Journals (Sweden)

    Lauren D. Field

    2015-12-01

    Full Text Available Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD donor -mCherry acceptor platform that is engineered to self-assemble in situ wherein the protein acceptor is expressed via transient transfection and the QD donor is microinjected into the cell. QD-protein assembly is driven by metal-affinity interactions where a terminal polyhistidine tag on the protein binds to the QD surface. Using this system, we show the ability to modulate the efficiency of the donor–acceptor energy transfer process by controllably altering either the ligand coating on the QD surface or the precise location where the QD-protein assembly process occurs. Intracellularly, a short, zwitterionic ligand mediates more efficient FRET relative to longer ligand species that are based on the solubilizing polymer, poly(ethylene glycol. We further show that a greater FRET efficiency is achieved when the QD-protein assembly occurs free in the cytosol compared to when the mCherry acceptor is expressed tethered to the inner leaflet of the plasma membrane. In the latter case, the lower FRET efficiency is likely attributable to a lower expression level of the mCherry acceptor at the membrane combined with steric hindrance. Our work points to some of the design considerations that one must be mindful of when developing FRET-based sensing schemes for use in intracellular sensing.

  14. The use of Fluorescence Resonance Energy Transfer (FRET peptidesfor measurement of clinically important proteolytic enzymes

    Directory of Open Access Journals (Sweden)

    Adriana K. Carmona

    2009-09-01

    Full Text Available Proteolytic enzymes have a fundamental role in many biological processes and are associated with multiple pathological conditions. Therefore, targeting these enzymes may be important for a better understanding of their function and development of therapeutic inhibitors. Fluorescence Resonance Energy Transfer (FRET peptides are convenient tools for the study of peptidases specificity as they allow monitoring of the reaction on a continuous basis, providing a rapid method for the determination of enzymatic activity. Hydrolysis of a peptide bond between the donor/acceptor pair generates fluorescence that permits the measurement of the activity of nanomolar concentrations of the enzyme. The assays can be performed directly in a cuvette of the fluorimeter or adapted for determinations in a 96-well fluorescence plate reader. The synthesis of FRET peptides containing ortho-aminobenzoic acid (Abz as fluorescent group and 2, 4-dinitrophenyl (Dnp or N-(2, 4-dinitrophenylethylenediamine (EDDnp as quencher was optimized by our group and became an important line of research at the Department of Biophysics of the Federal University of São Paulo. Recently, Abz/Dnp FRET peptide libraries were developed allowing high-throughput screening of peptidases substrate specificity. This review presents the consolidation of our research activities undertaken between 1993 and 2008 on the synthesis of peptides and study of peptidases specificities.As enzimas proteolíticas têm um papel fundamental em muitos processos biológicos e estão associadas a vários estados patológicos. Por isso, o estudo da especificidade das peptidases pode ser importante para uma melhor compreensão da função destas enzimas e para o desenvolvimento de inibidores. Os substratos com supressão intramolecular de fluorescência constituem uma excelente ferramenta, pois permitem o monitoramento da reação de forma contínua, proporcionando um método prático e rápido para a determinação da

  15. Simultaneous measurement of quantum yield ratio and absorption ratio between acceptor and donor by linearly unmixing excitation-emission spectra.

    Science.gov (United States)

    Zhang, C; Lin, F; DU, M; Qu, W; Mai, Z; Qu, J; Chen, T

    2018-02-13

    Quantum yield ratio (Q A /Q D ) and absorption ratio (K A /K D ) in all excitation wavelengths used between acceptor and donor are indispensable to quantitative fluorescence resonance energy transfer (FRET) measurement based on linearly unmixing excitation-emission spectra (ExEm-spFRET). We here describe an approach to simultaneously measure Q A /Q D and K A /K D values by linearly unmixing the excitation-emission spectra of at least two different donor-acceptor tandem constructs with unknown FRET efficiency. To measure the Q A /Q D and K A /K D values of Venus (V) to Cerulean (C), we used a wide-field fluorescence microscope to image living HepG2 cells separately expressing each of four different C-V tandem constructs at different emission wavelengths with 435 nm and 470 nm excitation respectively to obtain the corresponding excitation-emission spectrum (S DA ). Every S DA was linearly unmixed into the contributions (weights) of three excitation-emission spectra of donor (W D ) and acceptor (W A ) as well as donor-acceptor sensitisation (W S ). Plot of W S /W D versus W A /W D for the four C-V plasmids from at least 40 cells indicated a linear relationship with 1.865 of absolute intercept (Q A /Q D ) and 0.273 of the reciprocal of slope (K A /K D ), which was validated by quantitative FRET measurements adopting 1.865 of Q A /Q D and 0.273 of K A /K D for C32V, C5V, CVC and VCV constructs respectively in living HepG2 cells. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  16. FRET microscopy autologous tumor lysate processing in mature dendritic cell vaccine therapy

    Directory of Open Access Journals (Sweden)

    Ridolfi Ruggero

    2010-06-01

    Full Text Available Abstract Background Antigen processing by dendritic cells (DC exposed to specific stimuli has been well characterized in biological studies. Nonetheless, the question of whether autologous whole tumor lysates (as used in clinical trials are similarly processed by these cells has not yet been resolved. Methods In this study, we examined the transfer of peptides from whole tumor lysates to major histocompatibility complex class II molecules (MHC II in mature dendritic cells (mDC from a patient with advanced melanoma. Tumor antigenic peptides-MHC II proximity was revealed by Förster Resonance Energy Transfer (FRET measurements, which effectively extends the application of fluorescence microscopy to the molecular level ( Results We detected significant energy transfer between donor and acceptor-labelled antibodies against HLA-DR at the membrane surface of mDC. FRET data indicated that fluorescent peptide-loaded MHC II molecules start to accumulate on mDC membranes at 16 hr from the maturation stimulus, steeply increasing at 22 hr with sustained higher FRET detected up to 46 hr. Conclusions The results obtained imply that the patient mDC correctly processed the tumor specific antigens and their display on the mDC surface may be effective for several days. These observations support the rationale for immunogenic efficacy of autologous tumor lysates.

  17. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    Science.gov (United States)

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  18. Directed Evolution to Engineer Monobody for FRET Biosensor Assembly and Imaging at Live-Cell Surface.

    Science.gov (United States)

    Limsakul, Praopim; Peng, Qin; Wu, Yiqian; Allen, Molly E; Liang, Jing; Remacle, Albert G; Lopez, Tyler; Ge, Xin; Kay, Brian K; Zhao, Huimin; Strongin, Alex Y; Yang, Xiang-Lei; Lu, Shaoying; Wang, Yingxiao

    2018-04-19

    Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein.

    Science.gov (United States)

    Chung, Hoi Sung; Gopich, Irina V; McHale, Kevin; Cellmer, Troy; Louis, John M; Eaton, William A

    2011-04-28

    Recently developed statistical methods by Gopich and Szabo were used to extract folding and unfolding rate coefficients from single-molecule Förster resonance energy transfer (FRET) data for proteins with kinetics too fast to measure waiting time distributions. Two types of experiments and two different analyses were performed. In one experiment bursts of photons were collected from donor and acceptor fluorophores attached to a 73-residue protein, α(3)D, freely diffusing through the illuminated volume of a confocal microscope system. In the second, the protein was immobilized by linkage to a surface, and photons were collected until one of the fluorophores bleached. Folding and unfolding rate coefficients and mean FRET efficiencies for the folded and unfolded subpopulations were obtained from a photon by photon analysis of the trajectories using a maximum likelihood method. The ability of the method to describe the data in terms of a two-state model was checked by recoloring the photon trajectories with the extracted parameters and comparing the calculated FRET efficiency histograms with the measured histograms. The sum of the rate coefficients for the two-state model agreed to within 30% with the relaxation rate obtained from the decay of the donor-acceptor cross-correlation function, confirming the high accuracy of the method. Interestingly, apparently reliable rate coefficients could be extracted using the maximum likelihood method, even at low (rate coefficients and mean FRET efficiencies were also obtained in an approximate procedure by simply fitting the FRET efficiency histograms, calculated by binning the donor and acceptor photons, with a sum of three-Gaussian functions. The kinetics are exposed in these histograms by the growth of a FRET efficiency peak at values intermediate between the folded and unfolded peaks as the bin size increases, a phenomenon with similarities to NMR exchange broadening. When comparable populations of folded and unfolded

  20. Medical diagnosis and remote sensing at fiber-tip: picosecond resolved FRET sensor

    Science.gov (United States)

    Polley, Nabarun; Pal, Samir Kumar

    2016-03-01

    Förster Resonance Energy Transfer (FRET) strategy in popular in fiber-optic sensing. However, the steady state emission quenching of the donor is inadequate to conclude FRET. The resonance type energy transfer from one molecule (donor) to other (acceptor) should meet few key properties including donor to acceptor energy migration in non-radiative way. In the present study, we have coupled the evanescent field of an optical fiber to the covalently attached donor (dansyl) molecules at the fiber tip. By using picosecond resolved time correlated single photon counting (TCSPC) we have demonstrated that dansyl at the fiber tip transfers energy to a well known DNA-intercalating dye ethidium. Our ultrafast detection scheme selectively distinguishes the probe (dansyl) emission from the intrinsic emission of the fiber. We have also used the setup for the remote sensing of the dielectric constant (polarity) of an environment. We have finally implemented the detection mechanism to detect an industrial synthetic dye methylene blue (MB) in water.

  1. FRET-based localization of fluorescent protein insertions within the ryanodine receptor type 1.

    Directory of Open Access Journals (Sweden)

    Shweta A Raina

    Full Text Available Fluorescent protein (FP insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET measurements were used to localize green fluorescent protein (GFP insertions within the ryanodine receptor type 1 (RyR1, a large intracellular Ca(2+ release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.

  2. Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots

    KAUST Repository

    Long, Yuchen

    2018-05-15

    Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living multicellular organism at single-cell resolution and under native condition is still difficult to achieve. Here we describe the optimization of the labeling conditions to detect FRET-FLIM in living plants. This study exemplifies optimization procedure involving the identification of the optimal position for the labels either at the N or C terminal region and the selection of the bright and suitable, fluorescent proteins as donor and acceptor labels for the FRET study. With an effective optimization strategy, we were able to detect the interaction between the stem cell regulators SHORT-ROOT and SCARECROW at endogenous expression levels in the root pole of living Arabidopsis embryos and developing lateral roots by FRET-FLIM. Using this approach we show that the spatial profile of interaction between two transcription factors can be highly modulated in reoccurring and structurally resembling organs, thus providing new information on the dynamic redistribution of nuclear protein complex configurations in different developmental stages. In principle, our optimization procedure for transcription factor complexes is applicable to any biological system.

  3. A Novel Water-soluble Ratiometric Fluorescent Probe Based on FRET for Sensing Lysosomal pH.

    Science.gov (United States)

    Song, Guang-Jie; Bai, Su-Yun; Luo, Jing; Cao, Xiao-Qun; Zhao, Bao-Xiang

    2016-11-01

    A new ratiometric fluorescent probe based on Förster resonance energy transfer (FRET) for sensing lysosomal pH has been developed. The probe (RMPM) was composed of imidazo[1,5-α]pyridine quaternary ammonium salt fluorophore as the FRET donor and the rhodamine moiety as the FRET acceptor. It's the first time to report that imidazo[1,5-α]pyridine quaternary ammonium salt acts as the FRET donor. The ratio of fluorescence intensity of the probe at two wavelengths (I 424 /I 581 ) changed significantly and responded linearly toward minor pH changes in the range of 5.4-6.6. It should be noted that it's rare to report that a ratiometric pH probe could detect so weak acidic pH with pKa = 6.31. In addition, probe RMPM exhibited excellent water-solubility, fast-response, all-right selectivity and brilliant reversibility. Moreover, RMPM has been successfully applied to sensing lysosomal pH in HeLa cells and has low cytotoxicity.

  4. Characterization of Nucleobase Analogue FRET Acceptor tCnitro

    DEFF Research Database (Denmark)

    Preus, Søren; Börjesson, Karl; Kilså, Kristine

    2010-01-01

    , the UV-vis absorption of tCnitro is monitored in a broad pH range and the neutral form is found to be totally predominant under physiological conditions with a pKa of 11.1. The structure and electronic spectrum of tCnitrois further characterized by density functional theory calculations....

  5. Ratiometric Fluorescent Detection of Pb2+ by FRET-Based Phthalocyanine-Porphyrin Dyads.

    Science.gov (United States)

    Zhang, Dongli; Zhu, Mengliang; Zhao, Luyang; Zhang, Jinghui; Wang, Kang; Qi, Dongdong; Zhou, Yang; Bian, Yongzhong; Jiang, Jianzhuang

    2017-12-04

    Sensitive and selective detection of Pb 2+ is a very worthwhile endeavor in terms of both human health and environmental protection, as the heavy metal is fairly ubiquitous and highly toxic. In this study, we designed phthalocyanine-porphyrin (Pc-Por) heterodyads, namely, H 2 Pc-α-ZnPor (1) and H 2 Pc-β-ZnPor (2), by connecting a zinc(II) porphyrin moiety to the nonperipheral (α) or peripheral (β) position of a metal-free phthalocyanine moiety. Upon excitation at the porphyrin Soret region (420 nm), both of the dyads exhibited not only a porphyrin emission (605 nm) but also a phthalocyanine emission (ca. 700 nm), indicating the occurrence of intramolecular fluorescence resonance energy transfer (FRET) processes from the porphyrin donor to the phthalocyanine acceptor. The dyads can selectively bind Pb 2+ in the phthalocyanine core leading to a red shift of the phthalocyanine absorption and thus a decrease of spectral overlap between the porphyrin emission and phthalocyanine absorption, which in turn suppresses the intramolecular FRET. In addition, the binding of Pb 2+ can highly quench the emission of phthalocyanine by heavy-metal ion effects. The synergistic coupled functions endow the dyads with remarkable ratiometric fluorescent responses at two distinct wavelengths (F 605 /F 703 for 1 and F 605 /F 700 for 2). The emission intensity ratio increased as a linear function to the concentration of Pb 2+ in the range of 0-4.0 μM, whereas the detection limits were determined to be 3.4 × 10 -9 and 2.2 × 10 -8 M for 1 and 2, respectively. Furthermore, by comparative study of 1 and 2, the effects of distance and relative orientation between Pc and ZnPor fluorophores on the FRET efficiency and sensing performance were highlighted, which is helpful for further optimizing such FRET systems.

  6. One-step synthesis of DNA functionalized cadmium-free quantum dots and its application in FRET-based protein sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cuiling, E-mail: clzhang@chem.ecnu.edu.cn [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Ding, Caiping [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Zhou, Guohua [School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048 (China); Xue, Qin [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Xian, Yuezhong, E-mail: yzxian@chem.ecnu.edu.cn [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China)

    2017-03-08

    DNA functionalized quantum dots (QDs) are promising nanoprobes for the fluorescence resonance energy transfer (FRET)-based biosensing. Herein, cadmium-free DNA functionalized Mn-doped ZnS (DNA-ZnS:Mn{sup 2+}) QDs were successfully synthesized by one-step route. As-synthesized QDs show excellent photo-stability with the help of PAA and DNA. Then, we constructed a novel FRET model based on the QDs and WS{sub 2} nanosheets as the energy donor-acceptor pairs, which was successfully applied for the protein detection through the terminal protection of small molecule-linked DNA assay. This work not only explores the potential bioapplication of the DNA-ZnS:Mn{sup 2+} QDs, but also provides a platform for the investigation of small molecule-protein interaction. - Highlights: • The stable and cadmium-free DNA functionalized ZnS:Mn{sup 2+} QDs were successfully synthesized through a facile one-step route. • We constructed a novel FRET system based on one-step synthesized DNA-ZnS:Mn{sup 2+} QDs (donor) and WS{sub 2} nanosheets (acceptor). • The FRET-based strategy was applied for the detection of streptavidin and folate receptor by combining TPSMLD and Exo III.

  7. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency.

    Directory of Open Access Journals (Sweden)

    Bram Wallace

    Full Text Available Förster resonance energy transfer (FRET is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. However, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. We investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion of fluorophores, separation diffusion of fluorophores, and non-emitting quenching.

  8. Interaction and energy transfer studies between bovine serum albumin and CdTe quantum dots conjugates: CdTe QDs as energy acceptor probes.

    Science.gov (United States)

    Kotresh, M G; Inamdar, L S; Shivkumar, M A; Adarsh, K S; Jagatap, B N; Mulimani, B G; Advirao, G M; Inamdar, S R

    2017-06-01

    In this paper, a systematic investigation of the interaction of bovine serum albumin (BSA) with water-soluble CdTe quantum dots (QDs) of two different sizes capped with carboxylic thiols is presented based on steady-state and time-resolved fluorescence measurements. Efficient Förster resonance energy transfer (FRET) was observed to occur from BSA donor to CdTe acceptor as noted from reduction in the fluorescence of BSA and enhanced fluorescence from CdTe QDs. FRET parameters such as Förster distance, spectral overlap integral, FRET rate constant and efficiency were determined. The quenching of BSA fluorescence in aqueous solution observed in the presence of CdTe QDs infers that fluorescence resonance energy transfer is primarily responsible for the quenching phenomenon. Bimolecular quenching constant (k q ) determined at different temperatures and the time-resolved fluorescence data provide additional evidence for this. The binding stoichiometry and various thermodynamic parameters are evaluated by using the van 't Hoff equation. The analysis of the results suggests that the interaction between BSA and CdTe QDs is entropy driven and hydrophobic forces play a key role in the interaction. Binding of QDs significantly shortened the fluorescence lifetime of BSA which is one of the hallmarks of FRET. The effect of size of the QDs on the FRET parameters are discussed in the light of FRET parameters obtained. Copyright © 2016 John Wiley & Sons, Ltd.

  9. A New Generation of FRET Sensors for Robust Measurement of Gαi1, Gαi2 and Gαi3 Activation Kinetics in Single Cells.

    Directory of Open Access Journals (Sweden)

    Jakobus van Unen

    Full Text Available G-protein coupled receptors (GPCRs can activate a heterotrimeric G-protein complex with subsecond kinetics. Genetically encoded biosensors based on Förster resonance energy transfer (FRET are ideally suited for the study of such fast signaling events in single living cells. Here we report on the construction and characterization of three FRET biosensors for the measurement of Gαi1, Gαi2 and Gαi3 activation. To enable quantitative long-term imaging of FRET biosensors with high dynamic range, fluorescent proteins with enhanced photophysical properties are required. Therefore, we use the currently brightest and most photostable CFP variant, mTurquoise2, as donor fused to Gαi subunit, and cp173Venus fused to the Gγ2 subunit as acceptor. The Gαi FRET biosensors constructs are expressed together with Gβ1 from a single plasmid, providing preferred relative expression levels with reduced variation in mammalian cells. The Gαi FRET sensors showed a robust response to activation of endogenous or over-expressed alpha-2A-adrenergic receptors, which was inhibited by pertussis toxin. Moreover, we observed activation of the Gαi FRET sensor in single cells upon stimulation of several GPCRs, including the LPA2, M3 and BK2 receptor. Furthermore, we show that the sensors are well suited to extract kinetic parameters from fast measurements in the millisecond time range. This new generation of FRET biosensors for Gαi1, Gαi2 and Gαi3 activation will be valuable for live-cell measurements that probe Gαi activation.

  10. Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET of Dihydropyridine Receptor (DHPR β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes.

    Directory of Open Access Journals (Sweden)

    Dipankar Bhattacharya

    Full Text Available The dihydropyridine receptor (DHPR β1a subunit is essential for skeletal muscle excitation-contraction coupling, but the structural organization of β1a as part of the macromolecular DHPR-ryanodine receptor type I (RyR1 complex is still debatable. We used fluorescence resonance energy transfer (FRET to probe proximity relationships within the β1a subunit in cultured skeletal myotubes lacking or expressing RyR1. The fluorescein biarsenical reagent FlAsH was used as the FRET acceptor, which exhibits fluorescence upon binding to specific tetracysteine motifs, and enhanced cyan fluorescent protein (CFP was used as the FRET donor. Ten β1a reporter constructs were generated by inserting the CCPGCC FlAsH binding motif into five positions probing the five domains of β1a with either carboxyl or amino terminal fused CFP. FRET efficiency was largest when CCPGCC was positioned next to CFP, and significant intramolecular FRET was observed for all constructs suggesting that in situ the β1a subunit has a relatively compact conformation in which the carboxyl and amino termini are not extended. Comparison of the FRET efficiency in wild type to that in dyspedic (lacking RyR1 myotubes revealed that in only one construct (H458 CCPGCC β1a -CFP FRET efficiency was specifically altered by the presence of RyR1. The present study reveals that the C-terminal of the β1a subunit changes conformation in the presence of RyR1 consistent with an interaction between the C-terminal of β1a and RyR1 in resting myotubes.

  11. Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP.

    Science.gov (United States)

    Murakoshi, Hideji; Lee, Seok-Jin; Yasuda, Ryohei

    2008-08-01

    Two-photon fluorescence lifetime imaging microscopy (TPFLIM) enables the quantitative measurements of fluorescence resonance energy transfer (FRET) in small subcellular compartments in light scattering tissue. We evaluated and optimized the FRET pair of mEGFP (monomeric EGFP with the A206K mutation) and REACh (non-radiative YFP variants) for TPFLIM. We characterized several mutants of REACh in terms of their "darkness," and their ability to act as a FRET acceptor for mEGFP in HeLa cells and hippocampal neurons. Since the commonly used monomeric mutation A206K increases the brightness of REACh, we introduced a different monomeric mutation (F223R) which does not affect the brightness. Also, we found that the folding efficiency of original REACh, as measured by the fluorescence lifetime of a mEGFP-REACh tandem dimer, was low and variable from cell to cell. Introducing two folding mutations (F46L, Q69M) into REACh increased the folding efficiency by approximately 50%, and reduced the variability of FRET signal. Pairing mEGFP with the new REACh (super-REACh, or sREACh) improved the signal-to-noise ratio compared to the mEGFP-mRFP or mEGFP-original REACh pair by approximately 50%. Using this new pair, we demonstrated that the fraction of actin monomers in filamentous and globular forms in single dendritic spines can be quantitatively measured with high sensitivity. Thus, the mEGFP-sREACh pair is suited for quantitative FRET measurement by TPFLIM, and enables us to measure protein-protein interactions in individual dendritic spines in brain slices with high sensitivity.

  12. Acceptors in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D., E-mail: mattmcc@wsu.edu; Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Walter, Eric D. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Norton, M. Grant; Harrison, Kale W. [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 (United States); Ha, Su [Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164-6515 (United States)

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  13. Prediction of fretting fatigue behavior under elastic-plastic conditions

    International Nuclear Information System (INIS)

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  14. Hyperspectral imaging for simultaneous measurements of two FRET biosensors in pancreatic β-cells.

    Science.gov (United States)

    Elliott, Amicia D; Bedard, Noah; Ustione, Alessandro; Baird, Michelle A; Davidson, Michael W; Tkaczyk, Tomasz; Piston, David W

    2017-01-01

    Fluorescent protein (FP) biosensors based on Förster resonance energy transfer (FRET) are commonly used to study molecular processes in living cells. There are FP-FRET biosensors for many cellular molecules, but it remains difficult to perform simultaneous measurements of multiple biosensors. The overlapping emission spectra of the commonly used FPs, including CFP/YFP and GFP/RFP make dual FRET measurements challenging. In addition, a snapshot imaging modality is required for simultaneous imaging. The Image Mapping Spectrometer (IMS) is a snapshot hyperspectral imaging system that collects high resolution spectral data and can be used to overcome these challenges. We have previously demonstrated the IMS's capabilities for simultaneously imaging GFP and CFP/YFP-based biosensors in pancreatic β-cells. Here, we demonstrate a further capability of the IMS to image simultaneously two FRET biosensors with a single excitation band, one for cAMP and the other for Caspase-3. We use these measurements to measure simultaneously cAMP signaling and Caspase-3 activation in pancreatic β-cells during oxidative stress and hyperglycemia, which are essential components in the pathology of diabetes.

  15. Ratiometric FRET-based detection of DNA and micro-RNA on the surface using TIRF detection

    International Nuclear Information System (INIS)

    Matveeva, Evgenia G.; Gryczynski, Zygmunt; Stewart, Donald R.; Gryczynski, Ignacy

    2010-01-01

    A new FRET-based method for the ratiometric detection of DNA oligomers on a surface using TIRF detection mode is reported. The dual-labeled system consisting of two hybridized oligomers, Cy3oligoY:Cy5oligoX was immobilized on the surface, and the total internal reflection fluorescence (TIRF) was used to detect emission signals from the surface. Two signals, green and red, which originated from the green donor Cy3 and the red acceptor Cy5, have been simultaneously detected. When the target single-stranded complimentary oligomer was present in the solution, this oligomer replaced the Cy3oligoY in the donor:acceptor complex on the surface and the ratio of red-to-green signal was dramatically changed. This detection scheme is generally applicable to the detection of DNA or RNA on a surface.

  16. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift.

    Science.gov (United States)

    Şen, Esra; Meral, Kadem; Atılgan, Serdar

    2016-01-11

    The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor-acceptor system. In this respect, a series of donor-acceptor architectures of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor-acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation-induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo-Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non-emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy-transfer processes, namely, FRET and DRET, in one polarity-sensitive donor-acceptor pair system. The accuracy of the dark-emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2010-01-01

    A multiplexed solid-phase assay for the detection of nucleic acid hybridization was developed on the basis of a single color of immobilized CdSe/ZnS quantum dot (QD) as a donor in fluorescence resonance energy transfer (FRET). This work demonstrated that two channels of detection did not necessitate two different QD donors. Two probe oligonucleotides were coimmobilized on optical fibers modified with QDs, and a sandwich assay was used to associate the acceptor dyes with interfacial hybridization events without target labeling. FRET-sensitized acceptor emission provided an analytical signal that was concentration dependent down to 10 nM. Changes in the ratio of coimmobilized probe oligonucleotides were found to yield linear changes in the relative amounts of acceptor emission. These changes were compared to previous studies that used mixed films of two QD donors for two detection channels. The analysis indicated that probe dilution effects were primarily driven by changes in acceptor number density and that QD dilution effects or changes in mean donor-acceptor distance were secondary. Hybridization kinetics were found to be consistent between different ratios of coimmobilized probes, suggesting that hybridization in this type of system occurred via the accepted model for solid-phase hybridization, where adsorption and then diffusion at the solid interface drove hybridization.

  18. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET.

    Science.gov (United States)

    Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue

    2014-07-15

    A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe(3+) based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe(3+) to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe(3+). The association constant was estimated to be 2.72×10(3) M(-1) according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET

    Science.gov (United States)

    Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue

    2014-07-01

    A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe3+ based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe3+ to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe3+. The association constant was estimated to be 2.72 × 103 M-1 according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field.

  20. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor

    Directory of Open Access Journals (Sweden)

    Potzkei Janko

    2012-03-01

    Full Text Available Abstract Background Molecular oxygen (O2 is one of the key metabolites of all obligate and facultative aerobic pro- and eukaryotes. It plays a fundamental role in energy homeostasis whereas oxygen deprivation, in turn, broadly affects various physiological and pathophysiological processes. Therefore, real-time monitoring of cellular oxygen levels is basically a prerequisite for the analysis of hypoxia-induced processes in living cells and tissues. Results We developed a genetically encoded Förster resonance energy transfer (FRET-based biosensor allowing the observation of changing molecular oxygen concentrations inside living cells. This biosensor named FluBO (fluorescent protein-based biosensor for oxygen consists of the yellow fluorescent protein (YFP that is sensitive towards oxygen depletion and the hypoxia-tolerant flavin-binding fluorescent protein (FbFP. Since O2 is essential for the formation of the YFP chromophore, efficient FRET from the FbFP donor domain to the YFP acceptor domain only occurs in the presence but not in the absence of oxygen. The oxygen biosensor was used for continuous real-time monitoring of temporal changes of O2 levels in the cytoplasm of Escherichia coli cells during batch cultivation. Conclusions FluBO represents a unique FRET-based oxygen biosensor which allows the non-invasive ratiometric readout of cellular oxygen. Thus, FluBO can serve as a novel and powerful probe for investigating the occurrence of hypoxia and its effects on a variety of (pathophysiological processes in living cells.

  1. CONSIDERATIONS REGARDING THE FRETTING PHENOMENON USING LEAF SPRINGS

    Directory of Open Access Journals (Sweden)

    Stefan GHIMIȘI

    2015-05-01

    Full Text Available The fretting phenomenon represents particulary and complex form of wear who is; generaly, and/or weary of fretting who is produced on the load contact in a relative oscialatory movement lay small amplitude.A simultaneoustly applied tangential force and normal into contact appears a adhesion force

  2. Wave propagation in coated cylinders with reference to fretting fatigue

    Indian Academy of Sciences (India)

    is to study stress wave propagation in cylinders with reference to high frequency fretting. ... The motivation for studying of fretting fatigue at higher frequency is to investigate the ... Hence focus in this work is given to thin rods and cylinders. The.

  3. A rhodamine–dansyl conjugate as a FRET based sensor for Fe{sup 3+} in the red spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Puhui, E-mail: pxie2007@yahoo.com.cn [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China); Guo, Fengqi, E-mail: fqguo@zzu.edu.cn [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Xia, Ruirui; Wang, Yao [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China); Yao, Denghui [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Yang, Guoyu; Xie, Lixia [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China)

    2014-01-15

    A new fluorescent resonance energy transfer (FRET) based fluorescent probe (compound 1) containing a dansyl unit as a donor and rhodamine 101 as an acceptor was developed to detect Fe{sup 3+} from other transition metal ions through ratiometric sensing in organic-aqueous solutions. Fe{sup 3+} induced a ring-opening reaction of the spirolactam rhodamine moiety of 1 resulting in the formation of a fluorescent derivative that can serve as the FRET acceptor. Ratiometric sensing of Fe{sup 3+} was accomplished by plotting the fluorescence intensity ratio at 605 nm and 515 nm versus ferric ion concentration. The probe displayed a linear response to Fe{sup 3+} in the range of 5.5–25 μM with a detection limit of 0.64 μM. A 1:1 stoichiometry for the 1–Fe{sup 3+} complex was formed with an association constant of 1.74×10{sup 4} M{sup −1}. The probe also exhibited a large Stokes shift (225 nm) which can eliminate backscattering effects of excitation light. -- Highlights: • A new colorimetric and fluorescent “off–on” chemosensor for Fe{sup 3+} was synthesized. • It can respond to Fe{sup 3+} in the red spectral region based on a FRET mechanism. • Its ratiometric sensing for Fe{sup 3+} can be accomplished with a signal to noise ratio of 214. • The large Stokes shift (225 nm) can rule out the excitation backscattering effects.

  4. Towards understanding the E. coli PNP binding mechanism and FRET absence between E. coli PNP and formycin A.

    Science.gov (United States)

    Prokopowicz, Małgorzata; Greń, Bartosz; Cieśla, Joanna; Kierdaszuk, Borys

    2017-11-01

    The aim of this study is threefold: (1) augmentation of the knowledge of the E. coli PNP binding mechanism; (2) explanation of the previously observed 'lack of FRET' phenomenon and (3) an introduction of the correction (modified method) for FRET efficiency calculation in the PNP-FA complexes. We present fluorescence studies of the two E. coli PNP mutants (F159Y and F159A) with formycin A (FA), that indicate that the aromatic amino acid is indispensable in the nucleotide binding, additional hydroxyl group at position 159 probably enhances the strength of binding and that the amino acids pair 159-160 has a great impact on the spectroscopic properties of the enzyme. The experiments were carried out in hepes and phosphate buffers, at pH7 and 8.3. Two methods, a conventional and a modified one, that utilizes the dissociation constant, for calculations of the energy transfer efficiency (E) and the acceptor-to-donor distance (r) between FA and the Tyr (energy donor) were employed. Total difference spectra were calculated for emission spectra (λ ex 280nm, 295nm, 305nm and 313nm) for all studied systems. Time-resolved techniques allowed to conclude the existence of a specific structure formed by amino acids at positions 159 and 160. The results showed an unexpected pattern change of FRET in the mutants, when compared to the wild type enzyme and a probable presence of a structure created between 159 and 160 residue, that might influence the binding efficiency. Additionally, we confirmed the indispensable role of the modification of the FRET efficiency (E) calculation on the fraction of enzyme saturation in PNP-FA systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nuclear Fuel Fretting Mechanisms in a Room Temperature Unlubricated Condition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Recently, efforts for evaluating the fretting wear mechanism have been carried out by many researchers in various conditions. In an unlubricated condition, especially, effects of a wear debris and/or its layer on the fretting wear behavior were proposed that the formation of a well-developed glaze layer has a beneficial effect for decreasing a friction coefficient. Otherwise, a wear rate was accelerated by a third-body abrasion. At this time, it is well known that wear debris behaviors are affected by test variables such as a temperature, environment, material characteristics, etc. In a nuclear fuel fretting, however, its contact condition is quite different when compared with general fretting wear studies and could be summarized as the following; first, a fuel rod is supported by spacer grid springs and dimples that were elastically deformable. This results in a unique friction loop and a different fretting mechanism when a fuel rod is vibrated due to a flow-induced vibration (FIV). Next, it is possible that some region of the wear scar area with a specific spring shape condition could be hidden due to different wear debris behavior. So, some of the wear debris layers could be found on the worn surfaces in previous studies even though fretting wear tests were performed in a water lubricated condition. Finally, initial contact condition could be changed both an actual operating condition in power plants (i.e. high temperature and pressurized water (HTHP) under severe irradiation conditions) and the fretting wear tests for evaluating the wear resistant spring in lab conditions (i.e. from room temperature to HTHP without irradiation conditions) due to material degradations and the formation of the wear scar, respectively. In summary, the spring shape effect and the variation of the contact condition with increasing fretting cycle should be evaluated in order to improve the wear resistance of the spacer grid spring. So, in this study, fretting wear tests have been

  6. Development of FRET biosensors for mammalian and plant systems

    NARCIS (Netherlands)

    Hamers, D.; van Voorst Vader, L.; Borst, J.W.; Goedhart, J.

    2014-01-01

    Genetically encoded biosensors are increasingly used in visualising signalling processes in different organisms. Sensors based on green fluorescent protein technology are providing a great opportunity for using Forster resonance energy transfer (FRET) as a tool that allows for monitoring dynamic

  7. Fluorescence resonance energy transfer (FRET) in chemistry and ...

    Indian Academy of Sciences (India)

    Förster distance dependence of the FRET rate. SANGEETA SAINI,1 HARJINDER SINGH2 and BIMAN BAGCHI1,*. 1Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012. 2Permanent address: Department of ...

  8. Fluorescence lifetime FRET imaging of receptor-ligand complexes in tumor cells in vitro and in vivo

    Science.gov (United States)

    Rudkouskaya, Alena; Sinsuebphon, Nattawut; Intes, Xavier; Mazurkiewicz, Joseph E.; Barroso, Margarida

    2017-02-01

    To guide the development of targeted therapies with improved efficacy and accelerated clinical acceptance, novel imaging methodologies need to be established. Toward this goal, fluorescence lifetime Förster resonance energy transfer (FLIM-FRET) imaging assays capitalize on the ability of antibodies or protein ligands to bind dimerized membrane bound receptors to measure their target engagement levels in cancer cells. Conventional FLIM FRET microscopy has been widely applied at visible wavelengths to detect protein-protein interactions in vitro. However, operation at these wavelengths restricts imaging quality and ability to quantitate lifetime changes in in vivo small animal optical imaging due to high auto-fluorescence and light scattering. Here, we have analyzed the uptake of iron-bound transferrin (Tf) probes into human breast cancer cells using FLIM-FRET microscopy in the visible and near-infrared (NIR) range. The development of NIR FLIM FRET microscopy allows for the use of quantitative lifetime-based molecular assays to measure drug-target engagement levels at multiple scales: from in vitro microscopy to in vivo small animal optical imaging (macroscopy). This novel approach can be extended to other receptors, currently targeted in oncology. Hence, lifetime-based molecular imaging can find numerous applications in drug delivery and targeted therapy assessment and optimization.

  9. a Study on the Fretting Fatigue Life of Zircaloy Alloys

    Science.gov (United States)

    Kwon, Jae-Do; Park, Dae-Kyu; Woo, Seung-Wan; Chai, Young-Suck

    Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr, and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.

  10. Fuel bundle to pressure tube fretting in Bruce and Darlington

    Energy Technology Data Exchange (ETDEWEB)

    Norsworthy, A G; Ditschun, A [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs.

  11. Fuel bundle to pressure tube fretting in Bruce and Darlington

    International Nuclear Information System (INIS)

    Norsworthy, A.G.; Ditschun, A.

    1995-01-01

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs

  12. FRET measurements of kinesin neck orientation reveal a structural basis for processivity and asymmetry.

    Science.gov (United States)

    Martin, Douglas S; Fathi, Reza; Mitchison, Timothy J; Gelles, Jeff

    2010-03-23

    As the smallest and simplest motor enzymes, kinesins have served as the prototype for understanding the relationship between protein structure and mechanochemical function of enzymes in this class. Conventional kinesin (kinesin-1) is a motor enzyme that transports cargo toward the plus end of microtubules by a processive, asymmetric hand-over-hand mechanism. The coiled-coil neck domain, which connects the two kinesin motor domains, contributes to kinesin processivity (the ability to take many steps in a row) and is proposed to be a key determinant of the asymmetry in the kinesin mechanism. While previous studies have defined the orientation and position of microtubule-bound kinesin motor domains, the disposition of the neck coiled-coil remains uncertain. We determined the neck coiled-coil orientation using a multidonor fluorescence resonance energy transfer (FRET) technique to measure distances between microtubules and bound kinesin molecules. Microtubules were labeled with a new fluorescent taxol donor, TAMRA-X-taxol, and kinesin derivatives with an acceptor fluorophore attached at positions on the motor and neck coiled-coil domains were used to reconstruct the positions and orientations of the domains. FRET measurements to positions on the motor domain were largely consistent with the domain orientation determined in previous studies, validating the technique. Measurements to positions on the neck coiled-coil were inconsistent with a radial orientation and instead demonstrated that the neck coiled-coil is parallel to the microtubule surface. The measured orientation provides a structural explanation for how neck surface residues enhance processivity and suggests a simple hypothesis for the origin of kinesin step asymmetry and "limping."

  13. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair

    International Nuclear Information System (INIS)

    Hsu, Y.-Y.; Liu, Y.-N.; Wang Wenyen; Kao, Fu-Jen; Kung, S.-H.

    2007-01-01

    An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP 2 )-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2A pro ) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2A pro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research

  14. COMPARISON OF ACCEPTOR PROPERTIES FOR INTERACTION ...

    African Journals Online (AJOL)

    Preferred Customer

    determined by UV-Vis titration method for the adducts. Surprisingly, the ... Interaction of. TCNE and DDQ as π-acceptors with hydrocarbon donors such as cycloalkanes, alkenes, ... obtained from a Shimadzu GC-MS model QP5050 instrument.

  15. Sub-ensemble monitoring of DNA strand displacement using multiparameter single-molecule FRET

    OpenAIRE

    Baltierra Jasso, Laura; Morten, Michael; Magennis, Steven William

    2018-01-01

    Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constan...

  16. Broadband Light-Harvesting Molecular Triads with High FRET Efficiency Based on the Coumarin-Rhodamine-BODIPY Platform.

    Science.gov (United States)

    He, Longwei; Zhu, Sasa; Liu, Yong; Xie, Yinan; Xu, Qiuyan; Wei, Haipeng; Lin, Weiying

    2015-08-17

    Broadband capturing and FRET-based light-harvesting molecular triads, CRBs, based on the coumarin-rhodamine-BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue-green to yellow-orange regions (330-610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one-step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two-step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Intonation and compensation of fretted string instruments

    Science.gov (United States)

    Varieschi, Gabriele; Gower, Christina

    2011-04-01

    We discuss theoretical and physical models that are useful for analyzing the intonation of musical instruments such as guitars and mandolins and can be used to improve the tuning on these instruments. The placement of frets on the fingerboard is designed according to mathematical rules and the assumption of an ideal string. The analysis becomes more complicated when we include the effects of deformation of the string and inharmonicity due to other string characteristics. As a consequence, perfect intonation of all the notes on the instrument cannot be achieved, but complex compensation procedures can be introduced to minimize the problem. To test the validity of these procedures, we performed extensive measurements using standard monochord sonometers and other acoustical devices, confirming the correctness of our theoretical models. These experimental activities can be integrated into acoustics courses and laboratories and can become a more advanced version of basic experiments with monochords and sonometers. This work was supported by a grant from the Frank R. Seaver College of Science and Engineering, Loyola Marymount University.

  18. Assessment of fretting wear in Hanaro fuel

    International Nuclear Information System (INIS)

    Chae, Hee Taek; Lim, Kyeong Hwan; Kim, Hark Rho

    1999-06-01

    Since the first fuel loading on Feb. 1995, various zero-power tests were performed in HANARO and power ascending tests followed. After the initial fuel loading, Hanaro operation staffs inspected only two fuel bundles which were evaluated to have the highest power at the end of each cycle and they did not recognize anything peculiar in the inspected bundles. At the end of 1996, Hanaro staffs found severe wear damages in the fuel components. After that, the 4th cycle core was re-arranged with fresh fuels only to investigate wear phenomena on the fuel components. The fuel inspections have been performed 25 times periodically since the core re-configuration. In this report, fretting wear characteristics of the fuel assemblies were evaluated and summarized. Wear damages of the improved fuel assembly to resolve the wear problem were compared with those of the original fuel assembly. Based on the results of the fuel inspections, we suggest that fuel inspection need not be done for the first 60 pump operation days in order to reduce the potential of damage by a fuel handling error and an operator's burden of the fuel inspection. (author). 6 refs., 10 tabs., 5 figs

  19. Expectation-maximization of the potential of mean force and diffusion coefficient in Langevin dynamics from single molecule FRET data photon by photon.

    Science.gov (United States)

    Haas, Kevin R; Yang, Haw; Chu, Jhih-Wei

    2013-12-12

    The dynamics of a protein along a well-defined coordinate can be formally projected onto the form of an overdamped Lagevin equation. Here, we present a comprehensive statistical-learning framework for simultaneously quantifying the deterministic force (the potential of mean force, PMF) and the stochastic force (characterized by the diffusion coefficient, D) from single-molecule Förster-type resonance energy transfer (smFRET) experiments. The likelihood functional of the Langevin parameters, PMF and D, is expressed by a path integral of the latent smFRET distance that follows Langevin dynamics and realized by the donor and the acceptor photon emissions. The solution is made possible by an eigen decomposition of the time-symmetrized form of the corresponding Fokker-Planck equation coupled with photon statistics. To extract the Langevin parameters from photon arrival time data, we advance the expectation-maximization algorithm in statistical learning, originally developed for and mostly used in discrete-state systems, to a general form in the continuous space that allows for a variational calculus on the continuous PMF function. We also introduce the regularization of the solution space in this Bayesian inference based on a maximum trajectory-entropy principle. We use a highly nontrivial example with realistically simulated smFRET data to illustrate the application of this new method.

  20. Applicability of out-of-pile fretting wear tests to in-reactor fretting wear-induced failure time prediction

    Science.gov (United States)

    Kim, Kyu-Tae

    2013-02-01

    In order to investigate whether or not the grid-to-rod fretting wear-induced fuel failure will occur for newly developed spacer grid spring designs for the fuel lifetime, out-of-pile fretting wear tests with one or two fuel assemblies are to be performed. In this study, the out-of-pile fretting wear tests were performed in order to compare the potential for wear-induced fuel failure in two newly-developed, Korean PWR spacer grid designs. Lasting 20 days, the tests simulated maximum grid-to-rod gap conditions and the worst flow induced vibration effects that might take place over the fuel life time. The fuel rod perforation times calculated from the out-of-pile tests are greater than 1933 days for 2 μm oxidized fuel rods with a 100 μm grid-to-rod gap, whereas those estimated from in-reactor fretting wear failure database may be about in the range of between 60 and 100 days. This large discrepancy in fuel rod perforation may occur due to irradiation-induced cladding oxide microstructure changes on the one hand and a temperature gradient-induced hydrogen content profile across the cladding metal region on the other hand, which may accelerate brittleness in the grid-contacting cladding oxide and metal regions during the reactor operation. A three-phase grid-to-rod fretting wear model is proposed to simulate in-reactor fretting wear progress into the cladding, considering the microstructure changes of the cladding oxide and the hydrogen content profile across the cladding metal region combined with the temperature gradient. The out-of-pile tests cannot be directly applicable to the prediction of in-reactor fretting wear-induced cladding perforations but they can be used only for evaluating a relative wear resistance of one grid design against the other grid design.

  1. Influence of Fretting on Flexural Fatigue of 304 Stainless Steel and Mild Steel

    National Research Council Canada - National Science Library

    Bill, Robert

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural-fatigue test arrangement with bolted-on fretting pads have demonstrated that fatigue life is reduced by at least a factor...

  2. Application of Influence Function Method to the Fretting Wear Problems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck [Yeungnam University, Gyongsan (Korea, Republic of)

    2006-07-01

    Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems.

  3. Application of Influence Function Method to the Fretting Wear Problems

    International Nuclear Information System (INIS)

    Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck

    2006-01-01

    Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems

  4. Stabilization of Nucleosomes by Histone Tails and by FACT Revealed by spFRET Microscopy

    Directory of Open Access Journals (Sweden)

    Maria E. Valieva

    2017-01-01

    Full Text Available A correct chromatin structure is important for cell viability and is tightly regulated by numerous factors. Human protein complex FACT (facilitates chromatin transcription is an essential factor involved in chromatin transcription and cancer development. Here FACT-dependent changes in the structure of single nucleosomes were studied with single-particle Förster resonance energy transfer (spFRET microscopy using nucleosomes labeled with a donor-acceptor pair of fluorophores, which were attached to the adjacent gyres of DNA near the contact between H2A-H2B dimers. Human FACT and its version without the C-terminal domain (CTD and the high mobility group (HMG domain of the structure-specific recognition protein 1 (SSRP1 subunit did not change the structure of the nucleosomes, while FACT without the acidic C-terminal domains of the suppressor of Ty 16 (Spt16 and the SSRP1 subunits caused nucleosome aggregation. Proteolytic removal of histone tails significantly disturbed the nucleosome structure, inducing partial unwrapping of nucleosomal DNA. Human FACT reduced DNA unwrapping and stabilized the structure of tailless nucleosomes. CTD and/or HMG domains of SSRP1 are required for this FACT activity. In contrast, previously it has been shown that yeast FACT unfolds (reorganizes nucleosomes using the CTD domain of SSRP1-like Pol I-binding protein 3 subunit (Pob3. Thus, yeast and human FACT complexes likely utilize the same domains for nucleosome reorganization and stabilization, respectively, and these processes are mechanistically similar.

  5. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    Science.gov (United States)

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. Copyright © 2016. Published by Elsevier B.V.

  6. Syntheses of donor-acceptor-functionalized dihydroazulenes

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk; Jevric, Martyn; Bond, Andrew

    2014-01-01

    The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine-tuning of opt......The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine...

  7. Application of FRET probes in the analysis of neuronal plasticity

    Directory of Open Access Journals (Sweden)

    Yoshibumi eUeda

    2013-10-01

    Full Text Available Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since GFP was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET, which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.

  8. Approximate stresses in 2-D flat elastic contact fretting problems

    Science.gov (United States)

    Urban, Michael Rene

    Fatigue results from the cyclic loading of a solid body. If the body subject to fatigue is in contact with another body and relative sliding motion occurs between these two bodies, then rubbing surface damage can accelerate fatigue failure. The acceleration of fatigue failure is especially important if the relative motion between the two bodies results in surface damage without excessive surface removal via wear. The situation just described is referred to as fretting fatigue. Understanding of fretting fatigue is greatly enhanced if the stress state associated with fretting can be characterized. For Hertzian contact, this can readily be done. Unfortunately, simple stress formulae are not available for flat body contact. The primary result of the present research is the development of a new, reasonably accurate, approximate closed form expression for 2-dimensional contact stresses which has been verified using finite element modeling. This expression is also combined with fracture mechanics to provide a simple method of determining when a crack is long enough to no longer be affected by the contact stress field. Lower bounds on fatigue life can then easily be calculated using fracture mechanics. This closed form expression can also be used to calculate crack propagation within the contact stress field. The problem of determining the cycles required to generate an initial crack and what to choose as an initial crack size is unresolved as it is in non-fretting fatigue.

  9. Rational design of FRET-based sensor proteins

    NARCIS (Netherlands)

    Merkx, M.

    2008-01-01

    Real-time imaging of molecular events inside living cells is important for understanding the basis of physiological processes and diseases. Genetically encoded sensors that use fluorescence resonance energy transfer (FRET) between two fluorescent proteins are attractive in this respect because they

  10. Sterilisation: characteristics of vasectomy acceptors in Delhi.

    Science.gov (United States)

    Sarkar, N N

    1993-01-01

    The place of vasectomy within the sterilisation programme in Delhi over the period 1983-88 is reviewed and data on vasectomy acceptance and characteristics of acceptors are analysed. Findings suggest a need to improve the strategy for the promotion of vasectomy within the metropolis.

  11. Electron Donor Acceptor Interactions. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States)

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  12. FRET Response of a Modified Ribose Receptor Expressed in the Diatom Thalassiosira pseudonana

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Hanna

    2011-08-26

    The ability to insert complex proteins into silica has many applications including biosensing. Previous research has demonstrated how to direct proteins to the biosilica of diatoms [1]. Here, we show that a complex fusion protein that includes an enzyme, a bacterial ribose periplasmic binding protein, flanked by fluorescent proteins constituting a FRET pair can remain functional in the frustules of living diatoms. A Sil3 tag is attached to the N-terminal end to localize the fusion protein to frustules of the diatom Thalassiosira pseudonana. When ribose was applied, a larger decrease in FRET response was seen in transformed cells than in untransformed cells. Multiple forms of the expression vector were tested to find the optimal system; specifically, a one-vector system was compared to a two-vector system and the gDNA version of the Sil3 localization tag was compared to the cDNA version. The optimal system was found to be a one-vector system with the genomic version of the Sil3 tag to direct the protein to the frustules. Localization of the enzyme to the frustules was further confirmed through cell fluorescence imaging.

  13. Development of a pan-Babesia FRET-qPCR and a survey of livestock from five Caribbean islands.

    Science.gov (United States)

    Li, Jing; Kelly, Patrick; Zhang, Jilei; Xu, Chuanling; Wang, Chengming

    2015-09-30

    Babesia spp. are tick-borne protozoan hemoparasites and the second most common blood-borne parasites of mammals, in particular domestic animals. We used the Clustal Multiple Alignment program and 18S rRNA gene sequences of 22 Babesia species from GenBank to develop a PCR that could detect a wide variety of Babesia spp. in a single reaction. The pan-Babesia FRET-qPCR we developed reliably detected B. gibsoni, B. canis, B. vogeli, B. microti, B. bovis, and B. divergens under controlled conditions but did not react with closely related species, mainly Hepatozoon americanum, Theileria equi, and Toxoplasma gondii. When we tested the pan-Babesia FRET-qPCR on DNA of whole blood from 752 cattle, sheep, goats, donkeys and horses from five Caribbean islands, we detected Babesia spp. expected to be present in the animals, mainly B. bovis and B. bigemina in cattle and B. caballi in horses and donkeys. Further, we found that animals were not uncommonly infected with species of Babesia usually associated with other hosts, mainly B. vogeli and B. gibsoni in cattle, sheep and goats, B. rossi in goats, and B. caballi in goats and sheep. Finally, the pan-Babesia FRET-qPCR enabled us to identify unknown species of Babesia in cattle, goats, sheep and donkeys. Overall, 70 % (525/752) of the animals we tested were positive confirming earlier limited studies that infections with Babesia spp. are common in livestock in the Caribbean.

  14. rFRET: A comprehensive, Matlab-based program for analyzing intensity-based ratiometric microscopic FRET experiments.

    Science.gov (United States)

    Nagy, Peter; Szabó, Ágnes; Váradi, Tímea; Kovács, Tamás; Batta, Gyula; Szöllősi, János

    2016-04-01

    Fluorescence or Förster resonance energy transfer (FRET) remains one of the most widely used methods for assessing protein clustering and conformation. Although it is a method with solid physical foundations, many applications of FRET fall short of providing quantitative results due to inappropriate calibration and controls. This shortcoming is especially valid for microscopy where currently available tools have limited or no capability at all to display parameter distributions or to perform gating. Since users of multiparameter flow cytometry usually apply these tools, the absence of these features in applications developed for microscopic FRET analysis is a significant limitation. Therefore, we developed a graphical user interface-controlled Matlab application for the evaluation of ratiometric, intensity-based microscopic FRET measurements. The program can calculate all the necessary overspill and spectroscopic correction factors and the FRET efficiency and it displays the results on histograms and dot plots. Gating on plots and mask images can be used to limit the calculation to certain parts of the image. It is an important feature of the program that the calculated parameters can be determined by regression methods, maximum likelihood estimation (MLE) and from summed intensities in addition to pixel-by-pixel evaluation. The confidence interval of calculated parameters can be estimated using parameter simulations if the approximate average number of detected photons is known. The program is not only user-friendly, but it provides rich output, it gives the user freedom to choose from different calculation modes and it gives insight into the reliability and distribution of the calculated parameters. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  15. Lateral distribution of NBD-PC fluorescent lipid analogs in membranes probed by molecular dynamics-assisted analysis of Förster Resonance Energy Transfer (FRET) and fluorescence quenching.

    Science.gov (United States)

    Loura, Luís M S

    2012-11-08

    Förster resonance energy transfer (FRET) is a powerful tool used for many problems in membrane biophysics, including characterization of the lateral distribution of lipid components and other species of interest. However, quantitative analysis of FRET data with a topological model requires adequate choices for the values of several input parameters, some of which are difficult to obtain experimentally in an independent manner. For this purpose, atomistic molecular dynamics (MD) simulations can be potentially useful as they provide direct detailed information on transverse probe localization, relative probe orientation, and membrane surface area, all of which are required for analysis of FRET data. This is illustrated here for the FRET pairs involving 1,6-diphenylhexatriene (DPH) as donor and either 1-palmitoyl,2-(6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] hexanoyl)- sn-glycero-3-phosphocholine (C6-NBD-PC) or 1-palmitoyl,2-(12-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]dodecanoyl)-sn-glycero-3-phosphocholine (C12-NBD-PC) as acceptors, in fluid vesicles of 1,2-dipalmitoyl-sn-3-glycerophosphocholine (DPPC, 50 °C). Incorporation of results from MD simulations improves the statistical quality of model fitting to the experimental FRET data. Furthermore, the decay of DPH in the presence of moderate amounts of C12-NBD-PC (>0.4 mol%) is consistent with non-random lateral distribution of the latter, at variance with C6-NBD-PC, for which aggregation is ruled out up to 2.5 mol% concentration. These conclusions are supported by analysis of NBD-PC fluorescence self-quenching. Implications regarding the relative utility of these probes in membrane studies are discussed.

  16. Non-fullerene electron acceptors for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  17. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    International Nuclear Information System (INIS)

    Park, Young Woo; Ramesh Bapu, G.N.K.; Lee, Kang Yong

    2009-01-01

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at ±25 μm displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 ± 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  18. Comparison of acceptor properties for interaction of TCNE and DDQ ...

    African Journals Online (AJOL)

    ... with tetracyanoethylene and 2,3-dichloro-5,6-dicyanobezoquinone as acceptors result in charge-transfer adducts of composition 2:1 of acceptor to donor, [(acceptor)2(donor)]. Formation constants, K, as well as the thermodynamic parameters, ΔH°, ΔS°, and ΔG° were determined by UV-Vis titration method for the adducts.

  19. Burst pressure and leak rate from fretted SG tubes

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Jung, Man Kyo; Kim, Hong Pyo; Kim, Joung Soo

    2005-01-01

    Steam generator(SG) tubes of a pressurized water reactor(PWR) have suffered from various types of corrosion, such as pitting, wastage and stress corrosion cracking (SCC) on both the primary and secondary side. Recently, fretting/wear degradation at the tube support region has been reported in some Korean nuclear power plants. In order to prevent the primary coolant from leaking to the secondary side, the tubes are repaired by a sleeving or plugging. It is important to establish the repair criteria to assure a reactor integrity and yet maintain the plugging ratio within the limits needed for an efficient operation. The objective of the burst test is to obtain a relationship between the burst/leak rate and the shape of the fretted flaws machined with an electro discharge machining (EDM)

  20. NIR FRET Fluorophores for Use as an Implantable Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Majed DWEIK

    2008-12-01

    Full Text Available Development of an in vivo optical sensor requires the utilization of Near Infra Red (NIR fluorophores due to their ability to operate within the biological tissue window. Alexa Fluor 750 (AF750 and Alexa Fluor 680 (AF680 were examined as potential NIR fluorophores for an in vivo fluorescence resonance energy transfer (FRET glucose biosensor. AF680 and AF750 found to be a FRET pair and percent energy transfer was calculated. Next, the tested dye pair was utilized in a competitive binding assay in order to detect glucose. Concanavalin A (Con A and dextran have binding affinity, but in the presence of glucose, glucose displaces dextran due to its higher affinity to Con A than dextran. Finally, the percent signal transfer through porcine skin was examined. The results showed with approximately 4.0 mm porcine skin thickness, 1.98 % of the fluorescence was transmitted and captured by the detector.

  1. Photodegradation in multiple-dye luminescent solar concentrators

    International Nuclear Information System (INIS)

    Mooney, Alex M.; Warner, Kathryn E.; Fontecchio, Paul J.; Zhang, Yu-Zhong; Wittmershaus, Bruce P.

    2013-01-01

    Combining multiple organic dyes to form a fluorescence resonance energy transfer (FRET) network is a useful strategy for extending the spectral range of sunlight absorbed by a luminescent solar concentrator (LSC). Excitation transfer out of the higher energy level dyes in the transfer series competes effectively with their photodegradation rates. Improvements in photostability up to a factor of 18 are observed for the first dye in the FRET series. FRET networks are shown to be a viable means of decreasing the rate of photodegradation of organic dyes used in LSCs. This comes at the expense of the final dye in the network; the depository of most of the excitations created by absorbing sunlight. The photostability and performance of an efficient FRET LSC rest heavily on the photostability and fluorescence quantum yield of the final dye. -- Highlights: • Photodegradation kinetics of multiple-dye FRET LSCs are reported. • The FRET network decreased the first dye's photodegradation rate by a factor of 18. • The final dye in the FRET LSC protects other dyes at its own expense. • The final dye must have excellent photostability and fluorescence quantum yield

  2. NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System

    Directory of Open Access Journals (Sweden)

    Doris E. Ramírez-Herrera

    2018-04-01

    Full Text Available In the present work, we synthesize Near Infrared (NIR-emitting alloyed mercaptopropionic acid (MPA-capped CdTeSe quantum dots (QDs in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608–750 nm by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5 dye as an energy acceptor with efficiency (E up to 95%. The distance between the QDs and dye (r, the Förster distance (R0, and the binding constant (K are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications.

  3. Surveillance of siRNA integrity by FRET imaging

    Science.gov (United States)

    Järve, Anne; Müller, Julius; Kim, Il-Han; Rohr, Karl; MacLean, Caroline; Fricker, Gert; Massing, Ulrich; Eberle, Florian; Dalpke, Alexander; Fischer, Roger; Trendelenburg, Michael F.; Helm, Mark

    2007-01-01

    Techniques for investigation of exogenous small interfering RNA (siRNA) after penetration of the cell are of substantial interest to the development of efficient transfection methods as well as to potential medical formulations of siRNA. A FRET-based visualization method including the commonplace dye labels fluorescein and tetramethylrhodamin (TMR) on opposing strands of siRNA was found compatible with RNA interference (RNAi). Investigation of spectral properties of three labelled siRNAs with differential FRET efficiencies in the cuvette, including pH dependence and FRET efficiency in lipophilic environments, identified the ratio of red and green fluorescence (R/G-ratio) as a sensitive parameter, which reliably identifies samples containing >90% un-degraded siRNA. Spectral imaging of siRNAs microinjected into cells showed emission spectra indistinguishable from those measured in the cuvette. These were used to establish a calibration curve for assessing the degradation state of siRNA in volume elements inside cells. An algorithm, applied to fluorescence images recorded in standard green and red fluorescence channels, produces R/G-ratio images of high spatial resolution, identifying volume elements in the cell with high populations of intact siRNA with high fidelity. To demonstrate the usefulness of this technique, the movement of intact siRNA molecules are observed after introduction into the cytosol by microinjection, standard transfection and lipofection with liposomes. PMID:17890733

  4. Experimental fretting-wear studies of steam generator materials

    International Nuclear Information System (INIS)

    Fisher, N.J.; Chow, A.B.; Weckwerth, M.K.

    1994-01-01

    Flow-induced vibration of steam generator tubes results in fretting-wear damage due to impacting and rubbing of the tubes against their supports. This damage can be predicted by computing tube response to flow-induced excitation forces using analytical techniques, and then relating this response to resultant wear damage using experimentally-derived wear coefficients. Fretting-wear of steam generator materials has been studied experimentally at Chalk River Laboratories for two decades. Tests are conducted in machines that simulate steam generator environmental conditions and tube-to-support dynamic interactions. Different tube and support materials, tube-to-support clearances and tube support geometries have been studied. As well, the effect of environmental conditions, such as temperature, oxygen content, pH and chemistry control additive, have been investigated. Early studies showed that damage was related to contact force as long as other parameters, such as geometry and motion were held constant. Later studies have shown that damage is related to a parameter called work-rate, which combines both contact force and sliding distance. Results of short- and long-term fretting-wear tests for CANDU steam generator materials at realistic environmental conditions are presented. These results demonstrate that work-rate is appropriate correlating parameter for impact-sliding interaction

  5. Aspects of fretting wear of sprayed cermet coatings

    International Nuclear Information System (INIS)

    Chivers, T.C.

    1985-01-01

    Two experimental fretting programmes which investigated aspects of fretting wear of sprayed cermet coatings are reviewed. These programmes were conducted in support of components used in the advanced gas-cooled reactor. It is speculated that the results from these programmes are compatible with a simple two-stage wear model. This model assumes that an initial wear process occurs which is dominated by an interlocking and removal of asperities. Such a phase will be dependent on the superficial contact areas and possibly the interfacial load, but the latter aspect is not considered. This initial wear is of very short duration and is followed by a mild, oxidative, wear mode. Coatings data are also compared with those for structural steels. In short-term low temperature tests it appears that structural steels have comparable performance with the cermet coatings but it is argued that this is an artefact of the wear process. However, at high temperatures (600 0 C) wear of stainless steel could not be determined, the specimens showing a net weight gain. It is concluded that for in-reactor fretting applications cermet coatings will have advantages over structural steels at low temperatures. Even in high temperature regions some operation at low temperatures is experienced and consequently cermet coatings may be useful here also. (orig.)

  6. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    International Nuclear Information System (INIS)

    Cole, Steven E.; Garner, Norman L.; Lippert, Hans-Joachim; Graebert, Rüdiger; Mollard, Pierre; Hahn, Gregory C.

    2014-01-01

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  7. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules.

    Directory of Open Access Journals (Sweden)

    Antonino Ingargiola

    Full Text Available We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions.

  8. Fretting and wear of stainless and ferritic steels in LMFBR steam generators

    International Nuclear Information System (INIS)

    Lewis, M.W.J.; Campbell, C.S.

    1981-01-01

    Steam generators for LMFBR's may be subject to both fretting wear as a result of flow-induced vibrations and to wear from larger amplitude sliding movements from thermal changes. Results of tests simulating the latter are given for stainless and ferritic steels. For the assessment of fretting wear damage, vibration assessments must be combined with data on specific wear rates. Test mechanisms used to study fretting in sodium covering impact, impact-slide and pure rubbing are described and results presented. (author)

  9. Conjugated donor-acceptor-acceptor (D-A-A) molecule for organic nonvolatile resistor memory.

    Science.gov (United States)

    Dong, Lei; Li, Guangwu; Yu, An-Dih; Bo, Zhishan; Liu, Cheng-Liang; Chen, Wen-Chang

    2014-12-01

    A new donor-acceptor-acceptor (D-A-A) type of conjugated molecule, N-(4-(N',N'-diphenyl)phenylamine)-4-(4'-(2,2-dicyanovinyl)phenyl) naphthalene-1,8-dicarboxylic monoimide (TPA-NI-DCN), consisting of triphenylamine (TPA) donors and naphthalimide (NI)/dicyanovinylene (DCN) acceptors was synthesized and characterized. In conjunction with previously reported D-A based materials, the additional DCN moiety attached as end group in the D-A-A configuration can result in a stable charge transfer (CT) and charge-separated state to maintain the ON state current. The vacuum-deposited TPA-NI-DCN device fabricated as an active memory layer was demonstrated to exhibit write-once-read-many (WORM) switching characteristics of organic nonvolatile memory due to the strong polarity of the TPA-NI-DCN moiety. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Prediction of pressure tube fretting-wear damage due to fuel vibration

    International Nuclear Information System (INIS)

    Yetisir, M.; Fisher, N.J.

    1997-01-01

    Fretting marks between fuel bundle bearing pads and pressure tubes have been observed at the inlet end of some Darlington Nuclear Generating Station (NGS) and Bruce NGS fuel channels. The excitation mechanisms that lead to fretting are not fully understood. In this paper, the possibility of bearing pad-to-pressure tube fretting due to turbulence-induced motion of the fuel element is investigated. Numerical simulations indicate that this mechanism by itself is not likely to cause the level of fretting experienced in Darlington and Bruce NGSs. (orig.)

  11. Characteristics of CANDU fuel bundles that caused pressure tube fretting at the bundle midplane

    Energy Technology Data Exchange (ETDEWEB)

    Dennier, D; Manzer, A M [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Koehn, E [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    Detailed measurements on new bundles, and those that caused fretting during in- and out-reactor tests, have given insight into the factors responsible for fretting at the midplane of the inlet bundle. Bottom fuel elements that were attached near radial endplate spokes and had inboard bearing pads in the rolled joint cavity produced a significant portion of the observed fret marks. These elements are influenced by several driving forces that deflect the centre bearing pads towards the pressure tube surface. The evidence suggests that slight changes in bundle design may be possible to reduce pressure tube fretting. (author). 4 refs., 3 tabs., 8 figs.

  12. Roughness Influence on Initiation of Fretting Fatigue Scar of Ti-6Al-4V Alloy

    Science.gov (United States)

    Capitanu, L.; Badita, L. L.; Florescu, V.; Tiganesteanu, C.

    2018-01-01

    This paper reports on the experimental studies undertaken to detect the early stage when appears the fretting wear of the Ti-6Al-4V alloy used for the hip prostheses. Wear is a critical aspect for estimating the fretting fatigue. Studies were performed on samples of special shape, in order to be able to study the influence of in contact surfaces roughness on the durability to fretting. Fretting buffers, with roughnesses Ra of the contact surface of 0.015 and 0.045 μm, and Ti-6Al-4V samples with roughnesses Ra = 0.045 μm, Ra = 0.075 μm and Ra = 0.19 μm, were used. Testing periods of 3 seconds, 1 minute and 5 minutes were selected to capture the moment of the fretting scar appearance, long before these initiate the eventual fretting cracking. Simultaneously with fretting wear of the surface, the friction coefficient was also measured. From the in time evolution determinations of the fretting wear, it resulted that, under the experimental conditions used, the minimum wear occurs at a certain value of the roughness and not at the minimum roughness. Surprisingly, the minimum friction coefficient does not coincide with the minimum fretting wear.

  13. Prediction of pressure tube fretting-wear damage due to fuel vibration

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M; Fisher, N J [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    Fretting marks between fuel bundle bearing pads and pressure tubes have been observed at the inlet end of some Darlington NGS (nuclear generating station) and Bruce NGS fuel channels. The excitation mechanisms that lead to fretting are not fully understood. In this paper, the possibility of bearing pad-to-pressure tube fretting due to turbulence-induced motion of the fuel element is investigated. Numerical simulations indicate that this mechanism by itself is not likely to cause the level of fretting experienced in Darlington and Bruce NGS`s (nuclear generating stations). (author). 12 refs., 2 tabs., 11 figs.

  14. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanonetworks refer to a group of nanosized machines with very basic operational capabilities communicating to each other in order to accomplish more complex tasks such as in-body drug delivery, or chemical defense. Realizing reliable and high-rate communication between these nanomachines is a fundamental problem for the practicality of these nanonetworks. Recently, we have proposed a molecular communication method based on Förster Resonance Energy Transfer (FRET) which is a nonradiative excited state energy transfer phenomenon observed among fluorescent molecules, i.e., fluorophores. We have modeled the FRET-based communication channel considering the fluorophores as single-molecular immobile nanomachines, and shown its reliability at high rates, and practicality at the current stage of nanotechnology. In this study, for the first time in the literature, we investigate the network of mobile nanomachines communicating through FRET. We introduce two novel mobile molecular nanonetworks: FRET-based mobile molecular sensor/actor nanonetwork (FRET-MSAN) which is a distributed system of mobile fluorophores acting as sensor or actor node; and FRET-based mobile ad hoc molecular nanonetwork (FRET-MAMNET) which consists of fluorophore-based nanotransmitter, nanoreceivers and nanorelays. We model the single message propagation based on birth-death processes with continuous time Markov chains. We evaluate the performance of FRET-MSAN and FRET-MAMNET in terms of successful transmission probability and mean extinction time of the messages, system throughput, channel capacity and achievable communication rates.

  15. Time-resolved homo-FRET studies of biotin-streptavidin complexes.

    Science.gov (United States)

    Andreoni, Alessandra; Nardo, Luca; Rigler, Rudolf

    2016-09-01

    Förster resonance energy transfer is a mechanism of fluorescence quenching that is notably useful for characterizing properties of biomolecules and/or their interactions. Here we study water-solutions of Biotin-Streptavidin complexes, in which Biotin is labeled with a rigidly-bound fluorophore that can interact by Förster resonance energy transfer with the fluorophores labeling the other, up to three, Biotins of the same complex. The fluorophore, Atto550, is a Rhodamine analogue. We detect the time-resolved fluorescence decay of the fluorophores with an apparatus endowed with single-photon sensitivity and temporal resolution of ~30ps. The decay profiles we observe for samples containing constant Biotin-Atto550 conjugates and varying Streptavidin concentrations are multi-exponential. Each decay component can be associated with the rate of quenching exerted on each donor by each of the acceptors that label the other Biotin molecules, depending on the binding site they occupy. The main features that lead to this result are that (i) the transition dipole moments of the up-to-four Atto550 fluorophores that label the complexes are fixed as to both relative positions and mutual orientations; (ii) the fluorophores are identical and the role of donor in each Biotin-Streptavidin complex is randomly attributed to the one that has absorbed the excitation light (homo-FRET). Obviously the high-temporal resolution of the excitation-detection apparatus is necessary to discriminate among the fluorescence decay components. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Determination of cDNA encoding BCR/ABL fusion gene in patients with chronic myelogenous leukemia using a novel FRET-based quantum dots-DNA nanosensor.

    Science.gov (United States)

    Shamsipur, Mojtaba; Nasirian, Vahid; Barati, Ali; Mansouri, Kamran; Vaisi-Raygani, Asad; Kashanian, Soheila

    2017-05-08

    In the present study, we developed a sensitive method based on fluorescence resonance energy transfer (FRET) for the determination of the BCR/ABL fusion gene, which is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). For this purpose, CdTe quantum dots (QDs) were conjugated to amino-modified 18-mer oligonucleotide ((N)DNA) to form the QDs-(N)DNA nanosensor. In the presence of methylene blue (MB) as an intercalator, the hybridization of QDs-(N)DNA with the target BCR/ABL fusion gene (complementary DNA), brings the MB (acceptor) at close proximity of the QDs (donor), leading to FRET upon photoexcitation of the QDs. The enhancement in the emission intensity of MB was used to follow up the hybridization, which was linearly proportional to concentration of the target complementary DNA in a range from 1.0 × 10 -9 to 1.25 × 10 -7  M. The detection limit of the proposed method was obtained to be 1.5 × 10 -10  M. Finally, the feasibility and selectivity of the proposed nanosensor was evaluated by the analysis of derived nucleotides from both mismatched sequences and clinical samples of patients with leukemia as real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mining the Sinorhizobium meliloti transportome to develop FRET biosensors for sugars, dicarboxylates and cyclic polyols.

    Directory of Open Access Journals (Sweden)

    Alexandre Bourdès

    Full Text Available Förster resonance energy transfer (FRET biosensors are powerful tools to detect biologically important ligands in real time. Currently FRET bisosensors are available for twenty-two compounds distributed in eight classes of chemicals (two pentoses, two hexoses, two disaccharides, four amino acids, one nucleobase, two nucleotides, six ions and three phytoestrogens. To expand the number of available FRET biosensors we used the induction profile of the Sinorhizobium meliloti transportome to systematically screen for new FRET biosensors.Two new vectors were developed for cloning genes for solute-binding proteins (SBPs between those encoding FRET partner fluorescent proteins. In addition to a vector with the widely used cyan and yellow fluorescent protein FRET partners, we developed a vector using orange (mOrange2 and red fluorescent protein (mKate2 FRET partners. From the sixty-nine SBPs tested, seven gave a detectable FRET signal change on binding substrate, resulting in biosensors for D-quinic acid, myo-inositol, L-rhamnose, L-fucose, β-diglucosides (cellobiose and gentiobiose, D-galactose and C4-dicarboxylates (malate, succinate, oxaloacetate and fumarate. To our knowledge, we describe the first two FRET biosensor constructs based on SBPs from Tripartite ATP-independent periplasmic (TRAP transport systems.FRET based on orange (mOrange2 and red fluorescent protein (mKate2 partners allows the use of longer wavelength light, enabling deeper penetration of samples at lower energy and increased resolution with reduced back-ground auto-fluorescence. The FRET biosensors described in this paper for four new classes of compounds; (i cyclic polyols, (ii L-deoxy sugars, (iii β-linked disaccharides and (iv C4-dicarboxylates could be developed to study metabolism in vivo.

  18. Highly solvatochromic emission of electron donor-acceptor compounds containing propanedioato boron electron acceptors

    NARCIS (Netherlands)

    Brouwer, A.M.; Bakker, N.A.C.; Wiering, P.G.; Verhoeven, J.W.

    1991-01-01

    Light-induced electron transfer occurs in bifunctional compounds consisting of 1,3-diphenylpropanedioato boron oxalate or fluoride electron acceptors and simple aromatic electron-donor groups, linked by a methylene bridge; fluorescence from the highly polar charge-transfer excited state is

  19. A study of acceptors and non-acceptors of family planning methods among three tribal communities.

    Science.gov (United States)

    Mutharayappa, R

    1995-03-01

    Primary data were collected from 399 currently married women of the Marati, Malekudiya, and Koraga tribes in the Dakshina Kannada district of Karnataka State in this study of the implementation of family planning programs in tribal areas. The Marati, Malekudiya, and Koraga tribes are three different endogamous tribal populations living in similar ecological conditions. Higher levels of literacy and a high rate of acceptance of family planning methods, however, have been observed among these tribes compared to the rest of the tribal population in the state. 46.4% of currently married women aged 15-49 years in the tribes were acceptors of family planning methods, having a mean 3.7 children. The majority of acceptors opted for tubectomy and vasectomy. The adoption of spacing methods is less common among tribal people. Most acceptors received their operations through government health facilities. They were motivated mainly by female health workers and received both cash and other incentives to accept family planning. The main reason for non-acceptance of family planning among non-acceptors was the desire to conceive and bear more children. The data indicate that most of the tribal households are nuclear families with household size more or less similar to that of the general population. They have a higher literacy rate than the rest of the tribal population in the state, with literacy levels between males and females and between the three tribes being quite different; the school enrollment ratio is relatively higher for both boys and girls.

  20. Effects of fretting fatigue on the residual stress of shot peened Ti-6Al-4V samples

    International Nuclear Information System (INIS)

    Martinez, S.A.; Sathish, S.; Blodgett, M.P.; Mall, S.; Namjoshi, S.

    2005-01-01

    X-ray diffraction residual stress measurement has been utilized as nondestructive tool for the characterization of fretting fatigue damage in shot peened samples of Ti-6Al-4V. Prior to fretting fatigue damage, compressive residual stresses were found to be uniform over the entire face of the sample and independent of the measurement direction. After fretting fatigue, inside and in the vicinity of the fretting damage zone large relaxation of compressive residual stress was observed. An anisotropic residual stress distribution has been observed in the fretting fatigue damaged region. Residual stress measurements in interrupted fretting fatigue experiments showed that the relaxation of residual stress increases as the number of fretting fatigue cycles increase. The results are discussed in the light of their importance in establishing X-ray diffraction residual stress measurement technique as a nondestructive tool to characterize fretting fatigue damage

  1. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting

    OpenAIRE

    Bajar, Bryce T.; Wang, Emily S.; Lam, Amy J.; Kim, Bongjae B.; Jacobs, Conor L.; Howe, Elizabeth S.; Davidson, Michael W.; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Many genetically encoded biosensors use F?rster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intra...

  2. Multi step FRET among three laser dyes Pyrene, Acriflavine and Rhodamine B

    International Nuclear Information System (INIS)

    Saha, Jaba; Dey, Dibyendu; Roy, Arpan Datta; Bhattacharjee, D.; Hussain, Syed Arshad

    2016-01-01

    Fluorescence Resonance Energy Transfer (FRET) system using three dyes has been demonstrated. It has been observed that multi step energy transfer occurred from Pyrene to Rhodamine B via Acriflavine. Here Acriflavine acts as an antenna to receive energy from Pyrene and transfer the same to Rhodamine B. This multi step FRET system is advantageous compared to the conventional FRET as this can be used to study molecular level interaction beyond conventional FRET distance (1–10 nm) as well as studying multi-branched macromolecules. The introduction of clay enhances the FRET efficiencies among the dye pair, which is an advantage to make the multi step system more useful. Similar approach can be used for increasing FRET efficiencies by using other dyes. - Highlights: • Multi-step FRET occurred from Pyrene (Py) to Rhodamine B (RhB) via Acriflavine (Acf). • Acf acts as an antenna to receive energy from Py and to transfer energy to RhB. • Multi-step FRET can be used to study molecular level interaction beyond 1–10 nm. • Incorporation of nanoclay laponite enhances the energy transfer efficiency.

  3. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    International Nuclear Information System (INIS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-01-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  4. Tumor specific lung cancer diagnostics with multiplexed FRET immunoassays

    Science.gov (United States)

    Geißler, D.; Hill, D.; Löhmannsröben, H.-G.; Thomas, E.; Lavigne, A.; Darbouret, B.; Bois, E.; Charbonnière, L. J.; Ziessel, R. F.; Hildebrandt, N.

    2010-02-01

    An optical multiplexed homogeneous (liquid phase) immunoassay based on FRET from a terbium complex to eight different fluorescent dyes is presented. We achieved highly sensitive parallel detection of four different lung cancer specific tumor markers (CEA, NSE, SCC and CYFRA21-1) within a single assay and show a proof-of-principle for 5- fold multiplexing. The method is well suited for fast and low-cost miniaturized point-of-care testing as well as for highthroughput screening in a broad range of in-vitro diagnostic applications.

  5. Electrophoresis- and FRET-Based Measures of Serpin Polymerization.

    Science.gov (United States)

    Faull, Sarah V; Brown, Anwen E; Haq, Imran; Irving, James A

    2017-01-01

    Many serpinopathies, including alpha-1 antitrypsin (A1AT) deficiency, are associated with the formation of unbranched polymer chains of mutant serpins. In vivo, this deficiency is the result of mutations that cause kinetic or thermodynamic destabilization of the molecule. However, polymerization can also be induced in vitro from mutant or wild-type serpins under destabilizing conditions. The characteristics of the resulting polymers are dependent upon induction conditions. Due to their relationship to disease, serpin polymers, mainly those formed from A1AT, have been widely studied. Here, we describe Förster resonance energy transfer (FRET) and gel-based approaches for their characterization.

  6. Physics of positronium acceptor complex formation reactions

    International Nuclear Information System (INIS)

    Gangopadhyay, Debarshi; Ganguly, Bichitra Nandi; Mukherjee, Tapas; Dutta-Roy, Binayak

    2002-01-01

    Positronium (P s ) reaction rates (κ) with weak Acceptors (Ac) leading to the formation of Ps-Ac complexes show several interesting features: non-monotonic temperature dependence of κ(departing from the usual Arrhenius behaviour), considerable variability of κ with respect to different solvents, and anomalies in response to external pressure at ambient temperature. The object of this work is to explain all these phenomena using a remarkably simple bubble model (the widely used model for the pick-off component of ortho-positronium decay in liquids), which has been revisited several times in the context and as a result smooth diffuse boundary of the bubble was suggested that yields reasonable agreement of the experimental data. The contractile force on the bubble relies much on the surface tension of the liquid, through our calculation the notion of critical surface tension emerges and enables us to explain the experimental observations satisfactorily. (author)

  7. Quantum computing with acceptor spins in silicon.

    Science.gov (United States)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  8. Studying DNA looping by single-molecule FRET.

    Science.gov (United States)

    Le, Tung T; Kim, Harold D

    2014-06-28

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.

  9. Simulation of FRET dyes allows quantitative comparison against experimental data

    Science.gov (United States)

    Reinartz, Ines; Sinner, Claude; Nettels, Daniel; Stucki-Buchli, Brigitte; Stockmar, Florian; Panek, Pawel T.; Jacob, Christoph R.; Nienhaus, Gerd Ulrich; Schuler, Benjamin; Schug, Alexander

    2018-03-01

    Fully understanding biomolecular function requires detailed insight into the systems' structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.

  10. Modeling charge transfer at organic donor-acceptor semiconductor interfaces

    NARCIS (Netherlands)

    Cakir, Deniz; Bokdam, Menno; de Jong, Machiel Pieter; Fahlman, M.; Brocks, G.

    2012-01-01

    We develop an integer charge transfer model for the potential steps observed at interfaces between donor and acceptor molecular semiconductors. The potential step can be expressed as the difference between the Fermi energy pinning levels of electrons on the acceptor material and holes on the donor

  11. Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor-Acceptor-Acceptor Molecules.

    Science.gov (United States)

    Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J

    2017-08-02

    We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C 70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.

  12. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    Spectroscopic, energetic and structural information obtained by DFT and G3-type computational studies demonstrates that charged proton donors can form moderately strong hydrogen bonds to simple alkyl radicals. The presence of these bonds stabilizes the adducts and modifies their structure......, and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...... acceptors than formaldehyde molecules, while propyl radicals are as good as H2O. The hydrogen bond strength appears to depend on the proton affinity of the proton donor and on the ionization energy of the acceptor alkyl radical, not on the donor-acceptor proton affinity difference, reflecting...

  13. Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

    Directory of Open Access Journals (Sweden)

    Yusuke Niino

    Full Text Available Fluorescence resonance energy transfer (FRET between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca(2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.

  14. A Study on Fretting Behavior in Room Temperature for Inconel Alloy 690

    Science.gov (United States)

    Kwon, Jae Do; Chai, Young Suck; Bae, Yong Tak; Choi, Sung Jong

    The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.

  15. Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions

    Institute of Scientific and Technical Information of China (English)

    Zhen-Bing Cai; Jin-Fang Peng; Hao Qian; Li-Chen Tang; Min-Hao Zhu

    2017-01-01

    The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibration,and it will take potential hazards to the service of the equipment.However,the present study focuses on the tangential fretting wear of alloy 690 tubes.Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent.Therefore,impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated.Deionized water is used to simulate the flow environment of the equipment,and the dry environment is used for comparison.Varied analytical techniques are employed to characterize the wear and tribochemical behavior during impact fretting wear.Characterization results indicate that cracks occur at high impact load in both water and dry equipment;however,the water as a medium can significantly delay the cracking time.The crack propagation behavior shows a jagged shape in the water,but crack extended disorderly in dry equipment because the water changed the stress distribution and retarded the friction heat during the wear process.The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatigue wear and friction oxidation.The effect of medium(water) on fretting wear is revealed,which plays a potential and promising role in the service of nuclear power device and other flow equipments.

  16. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    Science.gov (United States)

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  17. MIL-L-87177 and CLT:X-10 Lubricants Improve Electrical Connector Fretting Corrosion Behavior

    International Nuclear Information System (INIS)

    AUKLAND, NEIL R.; HANLON, JAMES T.

    1999-01-01

    We have conducted a fretting research project using MIL-L-87177 and CLT: X-10 lubricants on Nano-miniature connectors. When they were fretted without lubricant, individual connectors first exceeded our 0.5 ohm failure criteria from 2,341 to 45,238 fretting cycles. With additional fretting, their contact resistance increased to more than 100,000 ohms. Unmodified MIL-L-87177 lubricant delayed the onset of first failure to between 430,000 and over 20,000,000 fretting cycles. MIL-L-87177 modified by addition of Teflon powder delayed first failure to beyond 5 million fretting cycles. Best results were obtained when Teflon was used and also when both the straight and modified lubricants were poured into and then out of the connector. CLT: X-10 lubricant delayed the onset of first failure to beyond 55 million cycles in one test where a failure was actually observed and to beyond 20 million cycles in another that was terminated without failure. CLT: X-10 recovered an unlubricated connector driven deeply into failure, with six failed pins recovering immediately and four more recovering during an additional 420 thousand fretting cycles. MIL-L-87177 was not able to recover a connector under similar conditions

  18. Barbiturate End-Capped Non-Fullerene Acceptors for Organic Solar Cells: Tuning Acceptor Energetics to Suppress Geminate Recombination Losses

    KAUST Repository

    Tan, Ching-Hong

    2018-01-10

    We report the synthesis of two barbiturate end-capped non-fullerene acceptors and demonstrate their efficient function in high voltage output organic solar cells. The acceptor with the lower LUMO level is shown to exhibit suppressed geminate recombination losses, resulting in enhanced photocurrent generation and higher overall device efficiency.

  19. Barbiturate End-Capped Non-Fullerene Acceptors for Organic Solar Cells: Tuning Acceptor Energetics to Suppress Geminate Recombination Losses

    KAUST Repository

    Tan, Ching-Hong; Gorman, Jeffrey; Wadsworth, Andrew; Holliday, Sarah; Subramaniyan, Selvam; Jenekhe, Samson A.; Baran, Derya; McCulloch, Iain; Durrant, James

    2018-01-01

    We report the synthesis of two barbiturate end-capped non-fullerene acceptors and demonstrate their efficient function in high voltage output organic solar cells. The acceptor with the lower LUMO level is shown to exhibit suppressed geminate recombination losses, resulting in enhanced photocurrent generation and higher overall device efficiency.

  20. Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chang-bin, E-mail: tcbtop@126.com [School of Metallurgy and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055 (China); Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Liu, Dao-xin, E-mail: liudaox@nwpu.edu.cn [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Tang, Bin [Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024 (China); Zhang, Xiao-hua [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Qin, Lin [Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024 (China); Liu, Cheng-song [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2016-12-30

    Highlights: • Plasma molybdenizing increases FW resistance of Ti6Al4V, but reduces its FF life. • Shot-peened plasmamolybdenizing surface enhances FW and FF resistance of Ti6Al4V. • Combined treatment yields low surface-roughness & high hardness gradient distribution. • Combined treatment yields beneficial residual compressive stress & good toughness. • Anti-wear & -fatigue performance improvements for surface engineering applications. - Abstract: Effect of plasma molybdenizing and shot-peening on fretting wear and fretting fatigue behaviors of Ti6Al4V alloy was investigated. The plasma molybdenized layer composed of a dense molybdenum deposition layer and a Mo–Ti solid–solution layer can increase surface hardness by 2.8 times and cause its volume loss by fretting wear to decrease to 1/14 compared with that of the substrate. Plasma molybdenized treatment results in a significant decrease in resistance of the substrate to fretting fatigue. It is ascribed that the molybdenized layer with high hardness yields a low toughness, and its high surface roughness leads to a micro-notched effect. However, proper combination plasma molybdenizing and subsequent shot-peening may enhance the simultaneous fretting fatigue and fretting wear resistance of Ti6Al4V significantly, which can decrease the fretting wear volume loss to 1/27, and may increase the fretting fatigue life by more than 69 times. A synergistic improvement in fretting fatigue of the titanium alloy by combining surface alloying with shot-peening can be achieved. The results indicate that a beneficial residual compressive stress distribution, high surface hardness with suitable hardness gradient distribution, good apparent toughness, relatively low surface roughness, and excellent surface integrity are achieved.

  1. An overview of the Canadian program to investigate vibration and fretting in nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Oldaker, I.E.; Lane, A.D.; Forrest, C.F.

    The development of a model that would allow the fuel designer to predict the occurrence of fretting could materially reduce the amount of development testing of a new fuel design. To achieve this, we are working in several areas: to identify and measure the phenomena that excite fuel to vibrate, and to study their relation to reactor design features; to predict the vibratory response of a fuel assembly as a function of its design and environment, and; to study the relationship between vibration and fretting to determine when vibration results in fretting. (author)

  2. Fretting wear damage of HexTOOL{sup TM} composite depending on the different fibre orientations

    Energy Technology Data Exchange (ETDEWEB)

    Terekhina, S; Salvia, M; Fouvry, S [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS ECL ENISE ENSMSE 5513, Ecole Centrale de Lyon, 69134 Ecully cedex (France); Malysheva, G; Tarasova, T, E-mail: svetlana.terekhina@ec-lyon.fr, E-mail: svetlanaterekhina@yandex.ru [Bauman Moscow State Technical University, 105005 Moscow, 5, 2nd Baumanskaya str (Russian Federation)

    2009-09-15

    The composites have drawn considerable interest in the mould processes. The vibrations and fatigue stresses induced in the moulds made evident to characterize the composite HexTOOL{sup TM} under fretting conditions. Fretting is a small-amplitude oscillatory motion between contacting surfaces. The running conditions fretting maps (RCFM) of composite at ambient conditions were established. The influence of different fiber orientations of HexTOOL{sup TM} composite on the wear kinetics was shown. An energy wear approach was developed. According to results of dynamic mechanical analysis (DMA), the viscoelastic properties of composite material were obtained.

  3. Turbulence induced Fretting-wear characteristics of steam generator helical tubes

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull; Kim, Hho Jung; Yune, Young Gill; Yu, Seon Oh

    2005-01-01

    This study addresses safety assessment of the potential for fretting-wear damages on steam generator helical tubes due to turbulence-induced vibration in operating nuclear power plants. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Special emphases are put on the effects of coil diameter and the number of turns on the modal and fretting wear characteristics of tubes. Also, investigated are the effects of external pressure on the tube modal characteristics as well as the effects of turbulence induced vibration on the fretting-wear characteristics of tubes

  4. Efficient Förster resonance energy transfer in 1,2,3-triazole linked BODIPY-Zn(II) meso-tetraphenylporphyrin donor-acceptor arrays.

    Science.gov (United States)

    Leonardi, Matthew J; Topka, Michael R; Dinolfo, Peter H

    2012-12-17

    Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reactivity was successfully employed to synthesize three donor-acceptor energy transfer (EnT) arrays that contain one (Dyad), three (Tetrad) and four (Pentad) 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) donors connected to a Zn-tetraphenylporphyrin acceptor via 1,2,3-triazole linkages. The photophysical properties of the three arrays, along with individual donor and acceptor chromophores, were investigated by UV-vis absorption and emission spectroscopy, fluorescence lifetimes, and density functional theory (DFT) electronic structure modeling. Comparison of the UV-vis absorption spectra and frontier molecular orbitals from DFT calculations of the three arrays with ZnTPP, ZnTTrzlP, and Trzl-BODIPY shows that the electronic structure of the chromophores is essentially unperturbed by the 1,2,3-triazole linkage. Time-dependent DFT (TDDFT) calculations on the Dyad reproduce the absorption spectra in THF and show no evidence of excited state mixing of the donor and acceptor. The BODIPY singlet excited state emission is significantly quenched in all three arrays, consistent with EnT to the porphyrin core, with efficiencies of 95.8, 97.5, and 97.2% for the Dyad, Tetrad, and Pentad, respectively. Fluorescence excitation spectra of the three arrays, measured at the porphyrin emission, mirror the absorption profile of both the porphyrin and BODIPY chromophores and are consistent with the Förster resonance energy transfer (FRET) mechanism. Applying Förster theory to the spectroscopic data of the chromophores gives EnT efficiency estimates that are in close agreement with experimental values, suggesting that the through-space mechanism plays a dominant role in the three arrays.

  5. Failure of fretted steam generator tubes under accident conditions

    International Nuclear Information System (INIS)

    Forrest, C.F.

    1996-10-01

    Tests were carried out with a bank of tubes in a water tunnel to determine the tolerance of flawed nuclear reactor steam generator tubes to accident conditions which would result in high cross-flow velocities. Fourteen specimen tubes were tested, each having one or two types of defect machined into the surface simulating fretting-wear type scars found in some operating steam generators. The tubes were tested at flow velocities sufficient to induce high fluid elastic-type vibrations. Seven of the tubes failed near the thinnest section of the defects during the one-hour tests, due to impacting and/or rubbing between the tube and the support. Strain gauges, displacement transducers, force gauges and an accelerometer were used on the target tube and/or the tube immediately downstream of it to measure their vibrational characteristics

  6. Characteristics of ovulation method acceptors: a cross-cultural assessment.

    Science.gov (United States)

    Klaus, H; Labbok, M; Barker, D

    1988-01-01

    Five programs of instruction in the ovulation method (OM) in diverse geographic and cultural settings are described, and characteristics of approximately 200 consecutive OM acceptors in each program are examined. Major findings include: the religious background and family size of acceptors are variable, as is the level of previous contraceptive use. Acceptors are drawn from a wide range of socioeconomic and religious backgrounds; however, family planning intention was similarly distributed in all five countries. In sum, the ovulation method is accepted by persons from a variety of backgrounds within and between cultural setting.

  7. Fretting friction and wear characteristics of magnetorheological fluid under different magnetic field strengths

    International Nuclear Information System (INIS)

    Zhang, P.; Lee, K.H.; Lee, C.H.

    2017-01-01

    A magnetorheological fluid (MRF) performs differently under different magnetic field strength. This study examined the fretting friction and wear characteristics of MRFs under a range of magnetic field strengths and oscillation frequencies. The fretting friction and wear behaviors of MRF are investigated using a fretting friction and wear tester. The surfaces of specimen are examined by optical microscopy and 3D surface profilometer before and after the tests and wear surface profiles, the wear volume loss and wear coefficient for each magnetic field strength are evaluated. The results show that the friction and wear properties of MRF change according to the magnetic field strength and oscillation frequency. - Highlights: • Fretting friction and wear characteristics of MRF is examined. • The friction coefficients increased with increasing magnetic field strength. • The coefficient of friction decreased with increasing oscillation frequency. • Wear volume and coefficient become worse with increasing magnetic field strength.

  8. FLIM-FRET image analysis of tryptophan in prostate cancer cells

    Science.gov (United States)

    Periasamy, Ammasi; Alam, Shagufta R.; Svindrych, Zdenek; Wallrabe, Horst

    2017-07-01

    A region of interest (ROI) based quantitative FLIM-FRET image analysis is developed to quantitate the autofluorescence signals of the essential amino acid tryptophan as a biomarker to investigate the metabolism in prostate cancer cells.

  9. Dichotomy Boundary at Aeolis Mensae, Mars: Fretted Terrain Developed in a Sedimentary Deposit

    Science.gov (United States)

    Irwin, R. P., III; Watters, T. R.; Howard, A. D.; Maxwell, T. A.; Craddock, R. A.

    2003-03-01

    Fretted terrain in Aeolis Mensae, Mars, developed in a sedimentary deposit. A thick, massive unit with a capping layer or duricrust overlies a more durable layered sequence. Wind, collapse, and minor fluvial activity contributed to degradation.

  10. Methodological considerations for global analysis of cellular FLIM/FRET measurements

    Science.gov (United States)

    Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.

    2012-02-01

    Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.

  11. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Directory of Open Access Journals (Sweden)

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  12. Single-molecule three-color FRET with both negligible spectral overlap and long observation time.

    Directory of Open Access Journals (Sweden)

    Sanghwa Lee

    Full Text Available Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF microscopy.

  13. Fretting corrosion tests on orthopedic plates and screws made of ASTM F138 stainless steel

    OpenAIRE

    Santos,Claudio Teodoro dos; Barbosa,Cássio; Monteiro,Maurício de Jesus; Abud,Ibrahim de Cerqueira; Caminha,Ieda Maria Vieira; Roesler,Carlos Rodrigo de Mello

    2015-01-01

    Introduction Although there has been significant progress in the design of implants for osteosynthesis, the occurrence of failures in these medical devices are still frequent. These implants are prone to suffer from fretting corrosion due to micromotion that takes place between the screw heads and plate holes. Consequently, fretting corrosion has been the subject of research in order to understand its influence on the structural integrity of osteosynthesis implants. The aim of this paper is t...

  14. An experimental study on the key fretting variables for flexible marine risers

    OpenAIRE

    O’Halloran, S.M.; Harte, A.M.; Shipway, P.H.; Leen, S.B.

    2018-01-01

    This paper presents an experimental investigation into the effects of contact conformity, contact pressure and displacement amplitude on the gross-slip fretting behaviour grease-lubricated cylinder-on-flat contacts in the context of flexible marine riser pressure armour wire, and compares behaviour with that observed in unlubricated conditions. Characterisation of friction and wear is critical to fretting fatigue life prediction in flexible risers since friction directly controls trailing-edg...

  15. EXPERIMENTAL INVESTIGTION OF THE FRETTING PHENOMENON-DEPENDENCE OF NUMBERS CYCLES

    Directory of Open Access Journals (Sweden)

    Ştefan GHIMISI

    2014-12-01

    Full Text Available The present paper argues that adhesion forces and elastic deformation in the contact zone may contribute significantly to the relative displacement during fretting of metals. A simultaneously applied tangential force and normal into contact appears a adhesion force. A tangential force whose magnitude is less equal on greater than the force of limiting friction will not give rise on give rise to a sliding motion.It is determined the energy loss dissipated per fretting cycle.

  16. profile of intrauterine contraceptive device acceptors at the university

    African Journals Online (AJOL)

    ANNALS

    Conclusion: The acceptors of intrauterine contraceptive devices in our center were ... Conclusion: Les accepteurs de la contraception de substances médicamentenses dans notre centre .... sterilization due to cultural reasons is very low,13 the.

  17. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    OpenAIRE

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-01-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affiniti...

  18. A copper-relates shallow acceptor in quenched germanium

    International Nuclear Information System (INIS)

    Kamiura, Yoichi; Hashimoto, Fumio; Sugiyama, Hazime; Yoneyama, Shin-ichiro

    1982-01-01

    The temperature variation of hole density was measured in the range 5-200 K after successive annealings at 320sup(o)C. It was found that a shallow acceptor at Esub(v) + 9 meV disappears on annealing, being replaced by a just equal additional density of substitutional copper. This provides experimental proof that the shallow acceptor is a defect complex containing at least one copper atom. (author)

  19. Fluorescent and Colorimetric Molecular Recognition Probe for Hydrogen Bond Acceptors

    OpenAIRE

    Pike, Sarah Jane; Hunter, Christopher Alexander

    2018-01-01

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish sel...

  20. Fretting wear characteristic tests of X2-GEN midgrid for SMART under a FIV rod trace

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Lee, Kang Hee; Kim, Jae Yong; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    The KEPCO Nuclear Fuel Co. requested the fretting wear characteristic tests of a X2-GEN midgrid under a FIV rod trace at room temperature air. The following results were obtained for the fretting wear test. {center_dot} Fretting wear tests under a FIV rod trace Based on the result of the fretting wear tests of the X2-GEN and 17ACE7 1x1 mid-grid under a FIV rod trace, X2-GEN mid-grid showed a slightly severe wear volume rather than 17ACE7 spring. But, maximum wear depth shows an opposite behavior. This is due to spring shape effect. The fretting wear mechanisms at each mid-grid were influenced by each spring shape, that are depended on the different impacting behavior under a FIV rod motion. Up to 5x105 cycles, wear characteristics of each mid-grid shows a relatively similar wear rate. Consequently, it is necessary to further study for examining exact fretting wear behavior under a FIV rod tra

  1. Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

    Science.gov (United States)

    Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections. © 2016 Society for Laboratory Automation and Screening.

  2. Standard test method for damage to contacting solid surfaces under fretting conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the studying or ranking the susceptibility of candidate materials to fretting corrosion or fretting wear for the purposes of material selection for applications where fretting corrosion or fretting wear can limit serviceability. 1.2 This test method uses a tribological bench test apparatus with a mechanism or device that will produce the necessary relative motion between a contacting hemispherical rider and a flat counterface. The rider is pressed against the flat counterface with a loading mass. The test method is intended for use in room temperature air, but future editions could include fretting in the presence of lubricants or other environments. 1.3 The purpose of this test method is to rub two solid surfaces together under controlled fretting conditions and to quantify the damage to both surfaces in units of volume loss for the test method. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5...

  3. Development of Polymer Acceptors for Organic Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Yujeong Kim

    2014-02-01

    Full Text Available This review provides a current status report of the various n-type polymer acceptors for use as active materials in organic photovoltaic cells (OPVs. The polymer acceptors are divided into four categories. The first section of this review focuses on rylene diimide-based polymers, including perylene diimide, naphthalene diimide, and dithienocoronene diimide-based polymers. The high electron mobility and good stability of rylene diimides make them suitable for use as polymer acceptors in OPVs. The second section deals with fluorene and benzothiadiazole-based polymers such as poly(9,9’-dioctylfluorene-co-benzothiadiazole, and the ensuing section focuses on the cyano-substituted polymer acceptors. Cyano-poly(phenylenevinylene and poly(3-cyano-4-hexylthiophene have been used as acceptors in OPVs and exhibit high electron affinity arising from the electron-withdrawing cyano groups in the vinylene group of poly(phenylenevinylene or the thiophene ring of polythiophene. Lastly, a number of other electron-deficient groups such as thiazole, diketopyrrolopyrrole, and oxadiazole have also been introduced onto polymer backbones to induce n-type characteristics in the polymer. Since the first report on all-polymer solar cells in 1995, the best power conversion efficiency obtained with these devices to date has been 3.45%. The overall trend in the development of n-type polymer acceptors is presented in this review.

  4. Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors.

    Science.gov (United States)

    Pike, Sarah J; Hunter, Christopher A

    2017-11-22

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish self-consistent H-bond acceptor parameters (β) for benzoate, azide, chloride, thiocyanate anions, a series of phosphine oxides, phosphate ester, sulfoxide and a tertiary amide. The results demonstrate both the transferability of H-bond parameters between different solvents and the utility of the naphthol-based dual molecular recognition probe to exploit orthogonal spectroscopic techniques to determine the HBA properties of neutral and charged solutes. The benzoate anion is the strongest HBA studied with a β parameter of 15.4, and the neutral tertiary amide is the weakest H-bond acceptor investigated with a β parameter of 8.5. The H-bond acceptor strength of the azide anion is higher than that of chloride (12.8 and 12.2 respectively), and the thiocyanate anion has a β value of 10.8 and thus is a significantly weaker H-bond acceptor than both the azide and chloride anions.

  5. Sub-Ensemble Monitoring of DNA Strand Displacement Using Multiparameter Single-Molecule FRET.

    Science.gov (United States)

    Baltierra-Jasso, Laura E; Morten, Michael J; Magennis, Steven W

    2018-03-05

    Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here, we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constant of 10 m -1  s -1 . We also followed the displacement from a DNA three-way junction (3WJ) by ssDNA. The presence of three internal mismatched bases in the middle of the invading strand did not prevent displacement from the 3WJ, but reduced the second-order rate constant by about 50 %. We attribute strand exchange in the dsDNA and 3WJ to a zero-toehold pathway from the blunt-ended duplex arms. The single-molecule approach demonstrated here will be useful for studying complex DNA networks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cocrystals of 6-methyl-2-thiouracil: presence of the acceptor-donor-acceptor/donor-acceptor-donor synthon.

    Science.gov (United States)

    Hützler, Wilhelm Maximilian; Egert, Ernst

    2015-03-01

    The results of seven cocrystallization experiments of the antithyroid drug 6-methyl-2-thiouracil (MTU), C(5)H(6)N(2)OS, with 2,4-diaminopyrimidine, 2,4,6-triaminopyrimidine and 6-amino-3H-isocytosine (viz. 2,6-diamino-3H-pyrimidin-4-one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen-bonding site, while the three coformers show complementary DAD hydrogen-bonding sites and therefore should be capable of forming an ADA/DAD N-H...O/N-H...N/N-H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6-methyl-2-thiouracil-2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1/2), C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(5)H(9)NO, (I), 6-methyl-2-thiouracil-2,4-diaminopyrimidine (1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4), (II), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylacetamide (2/1/2), 2C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(4)H(9)NO, (III), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylformamide (2/1/2), C(5)H(6)N(2)OS·0.5C(4)H(6)N(4)·C(3)H(7)NO, (IV), 2,4,6-triaminopyrimidinium 6-methyl-2-thiouracilate-6-methyl-2-thiouracil-N,N-dimethylformamide (1/1/2), C(4)H(8)N(5)(+)·C(5)H(5)N(2)OS(-)·C(5)H(6)N(2)OS·2C(3)H(7)NO, (V), 6-methyl-2-thiouracil-6-amino-3H-isocytosine-N,N-dimethylformamide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(3)H(7)NO, (VI), and 6-methyl-2-thiouracil-6-amino-3H-isocytosine-dimethyl sulfoxide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(2)H(6)OS, (VII). Whereas in cocrystal (I) an R(2)(2)(8) interaction similar to the Watson-Crick adenine/uracil base pair is formed and a two-dimensional hydrogen-bonding network is observed, the cocrystals (II)-(VII) contain the triply hydrogen-bonded ADA/DAD N-H...O/N-H...N/N-H...S synthon and show a one-dimensional hydrogen-bonding network. Although 2,4-diaminopyrimidine possesses only one DAD hydrogen-bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).

  7. A combined wear-fatigue design methodology for fretting in the pressure armour layer of flexible marine risers

    OpenAIRE

    O'Halloran, S.M.; Shipway, P.H.; Connaire, A.D.; Leen, Sean B.; Harte, A.M.

    2017-01-01

    This paper presents a combined experimental and computational methodology for fretting wear-fatigue prediction of pressure armour wire in flexible marine risers. Fretting wear, friction and fatigue parameters of pressure armour material have been characterised experimentally. A combined fretting wear-fatigue finite element model has been developed using an adaptive meshing technique and the effect of bending-induced tangential slip has been characterised. It has been shown that a surface dama...

  8. Near infrared organic light-emitting diodes based on acceptor-donor-acceptor (ADA) using novel conjugated isatin Schiff bases

    International Nuclear Information System (INIS)

    Taghi Sharbati, Mohammad; Soltani Rad, Mohammad Navid; Behrouz, Somayeh; Gharavi, Alireza; Emami, Farzin

    2011-01-01

    Fabrications of a single layer organic light emitting diodes (OLEDs) based on two conjugated acceptor-donor-acceptor (ADA) isatin Schiff bases are described. The electroluminescent spectra of these materials range from 630 to 700 nm and their band gaps were measured between 1.97 and 1.77 eV. The measured maximum external quantum efficiencies (EQE) for fabricated OLEDs are 0.0515% and 0.054% for two acceptor-donor-acceptor chromophores. The Commission International De L'Eclairage (CIE) (1931) coordinates of these two compounds were attained and found to be (0.4077, 0.4128) and (0.4411, 0.4126) for two used acceptor-donor-acceptor chromophores. The measured I-V curves demonstrated the apparent diode behavior of two ADA chromophores. The turn-on voltages in these OLEDs are directly dependent on the thickness. These results have demonstrated that ADA isatin Schiff bases could be considered as promising electroluminescence-emitting materials for fabrication of OLEDs.

  9. Residual stress relaxation due to fretting fatigue in shot peened surfaces of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Martinez, S.A.; Blodgett, M.P.; Mall, S.; Sathish, S.; Namjoshi, S.

    2003-01-01

    Fretting fatigue occurs at locations where the materials are sliding against each other under load. In order to enhance the fatigue life under fretting conditions the surface of the component is shot peened. In general, the shot peening process produces a compressive stress on the surface of the material, thereby increasing the resistance of the material to crack initiation. This paper presents the relaxation of residual stress caused during fretting fatigue. X-ray diffraction has been utilized as the method to measure residual stress in fretting fatigued samples of Ti-6Al-4V

  10. Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET with Fluorescent Materials

    Directory of Open Access Journals (Sweden)

    Hongyan Xia

    2017-12-01

    Full Text Available Studies on the following were reviewed: (1 the structure of spiropyrans and spirooxazines (two kinds of spiro compounds under external stimuli and (2 the construction and applications of composite systems based on fluorescence resonance energy transfer (FRET with fluorescent materials. When treated with different stimuli (light, acids and bases, solvents, metal ions, temperature, redox potential, and so on, spiropyrans/spirooxazines undergo transformations between the ring-closed form (SP, the ring-opened merocyanine (MC form, and the protonated ring-opened form (MCH. This is due to the breakage of the spiro C–O bond and the protonation of MC, along with a color change. Various novel, multifunctional materials based on photochromic spiropyrans and spirooxazines have been successfully developed because of the vastly differently physiochemical properties posssed by the SP, MC and MCH forms. Among the three different structural forms, the MC form has been studied most extensively. The MC form not only gives complexes with various inorganic particles, biological molecules, and organic chemicals but also acts as the energy acceptor (of energy from fluorescent molecules during energy transfer processes that take place under proper conditions. Furthermore, spiropyran and spirooxazine compounds exhibit reversible physicochemical property changes under proper stimuli; this provides more advantages compared with other photochromic compounds. Additionally, the molecular structures of spiropyrans and spirooxazines can be easily modified and extended, so better compounds can be obtained to expand the scope of already known applications. Described in detail are: (1 the structural properties of spiropyrans and spirooxazines and related photochromic mechanisms; (2 composite systems based on spiropyrans and spirooxazines, and (3 fluorescent materials which have potential applications in sensing, probing, and a variety of optical elements.

  11. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    Science.gov (United States)

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Steam generator fretting-wear damage: A summary of recent findings

    International Nuclear Information System (INIS)

    Guerout, F.M.; Fisher, N.J.

    1999-01-01

    Flow-induced vibration of steam generator (SG) tubes may sometimes result in fretting-wear damage at the tube-to-support locations. Fretting-wear damage predictions are largely based on experimental data obtained at representative test conditions. Fretting-wear of SG materials has been studied at the Chalk River Laboratories for two decades. Tests are conducted in fretting-wear test machines that simulate SG environmental conditions and tube-to-support dynamic interactions. A new high-temperature force and displacement measuring system was developed to monitor tube-to-support interaction (i.e., work-rate) at operating conditions. This improvement in experimental fretting-wear technology was used to perform a comprehensive study of the effect of various environment and design parameters on SG tube wear damage. This paper summarizes the results of tests performed over the past 4 yr to study the effect of temperature, water chemistry, support geometry, and tube material on fretting-wear. The results show a significant effect of temperature on tube wear damage. Therefore, fretting-wear tests must be performed at operating temperatures in order to be relevant. No significant effect of the type of water treatment on tube wear damage was observed. For predominantly impacting motion, the wear of SG tubes in contact with 410 stainless steel is similar regardless of whether Alloy 690 or Alloy 800 is used as tubing material or whether lattice bars or broached hole supports are used. Based on results presented in this paper, an average wear coefficient value is recommended that is used for the prediction of SG tube wear depth versus time

  13. Determination of a Wear Initiation Cycle by using a Contact Resistance Measurement in Nuclear Fuel Fretting

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu

    2008-01-01

    In nuclear fuel fretting, the improving of the contact condition with a modified spring shape is a useful method for increasing the wear resistance of the nuclear fuel rod. This is because the fretting wear resistance between the fuel rod and grid spring is mainly affected by the grid spring shape rather than the environment, the contact modes, etc. In addition, the wear resistance is affected by the wear debris behavior between contact surfaces. So, it is expected that the wear initiation of each spring shape should be determined in order to evaluate a wear resistance. However, it is almost impossible to measure the wear behavior in contact surfaces on a real time basis because the contact surfaces are always hidden. Besides, the results of the worn surface observation after the fretting wear tests are restricted to archive the information on the wear debris behavior and the formation mechanism of the wear scar. In order to evaluate the wear behavior during the fretting wear tests, it is proposed that the contact resistance measurement is a useful method for examining the wear initiation cycle and modes. Generally, fretting wear damages are rapidly progressed by a localized plastic deformation between the contact surfaces, crack initiation and fracture of the deformed surface with a strain hardening difference between a surface and a subsurface and finally a detachment of wear debris. After this, wear debris is easily oxidized by frictional heat, test environment, etc. At this time, a small amount of electric current applied between the contact surfaces will be influenced by the wear debris, which could be an obstacle to an electric current flow. So, it is possible to archive the information on the wear behavior by measuring the contact resistance. In order to determine the wear initiation cycle during the fretting wear tests, in this study, fretting wear tests have been performed by applying a constant electric current in room temperature air

  14. Effect of mixed alloy combinations on fretting corrosion performance of spinal screw and rod implants.

    Science.gov (United States)

    Mali, Sachin A; Singh, Vaneet; Gilbert, Jeremy L

    2017-07-01

    Spinal implants are made from a variety of materials to meet the unique mechanical demands of each application. However, the medical device community has raised concern about mixing dissimilar metals in an implant because of fear of inducing corrosion. There is a lack of systematic studies on the effects of mixing metals on performance of spinal implants, especially in fretting corrosion conditions. Hence, the goal was to determine whether mixing stainless steel (SS316L), titanium alloy (Ti6Al4V) and cobalt chromium (CoCrMo) alloy components in a spinal implant leads to any increased risk of corrosion degradation. Spinal constructs consisting of single assembly screw-connector-rod components were tested using a novel short-term cyclic fretting corrosion test method. A total of 17 alloy component combinations (comprised of SS316L, Ti6Al4V-anodized and CoCrMo alloy for rod, screws and connectors) were tested under three anatomic orientations. Spinal constructs having all SS316L were most susceptible to fretting-initiated crevice corrosion attack and showed higher average fretting currents (∼25 - 30 µA), whereas constructs containing all Ti6Al4V components were less susceptible to fretting corrosion with average fretting currents in the range of 1 - 6 µA. Mixed groups showed evidence of fretting corrosion but they were not as severe as all SS316L group. SEM results showed evidence of severe corrosion attack in constructs having SS316L components. There also did not appear to be any galvanic effects of combining alloys together. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1169-1177, 2017. © 2016 Wiley Periodicals, Inc.

  15. Fretting and Corrosion Damage in Taper Adapter Sleeves for Ceramic Heads: A Retrieval Study.

    Science.gov (United States)

    MacDonald, Daniel W; Chen, Antonia F; Lee, Gwo-Chin; Klein, Gregg R; Mont, Michael A; Kurtz, Steven M; Cates, Harold E; Kraay, Matthew J; Rimnac, Clare M

    2017-09-01

    During revision surgery with a well-fixed stem, a titanium sleeve can be used in conjunction with a ceramic head to achieve better stress distribution across the taper surface. In vitro testing suggests that corrosion is not a concern in sleeved ceramic heads; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads in retrieved total hip arthroplasties. Thirty-seven sleeved ceramic heads were collected during revision. The femoral heads and sleeves were implanted 0.0-3.3 years. The implants were revised predominantly for instability, infection, and loosening. Fifty percent of the retrievals were implanted during a primary surgery. Fretting corrosion was assessed using the Goldberg-Higgs semiquantitative scoring system. Mild-to-moderate fretting corrosion scores (score = 2-3) were observed in 92% of internal tapers, 19% of external tapers, and 78% of the stems. Severe fretting corrosion was observed in 1 stem trunnion that was previously retained during revision surgery and none of the retrieved sleeves. There was no difference in corrosion damage of sleeves used in primary or revision surgery. The fretting corrosion scores in this study were predominantly mild and lower than reported fretting scores of cobalt-chrome heads in metal-on-polyethylene bearings. Although intended for use in revisions, we found that the short-term in vivo corrosion behavior of the sleeves was similar in both primary and revision surgery applications. From an in vivo corrosion perspective, sleeves are a reasonable solution for restoring the stem taper during revision surgery. Copyright © 2017. Published by Elsevier Inc.

  16. A Study on Surface Modification of Al7075-T6 Alloy against Fretting Fatigue Phenomenon

    Directory of Open Access Journals (Sweden)

    E. Mohseni

    2014-01-01

    Full Text Available Aircraft engines, fuselage, automobile parts, and energy saving strategies in general have promoted the interest and research in the field of lightweight materials, typically on alloys based on aluminum. Aluminum alloy itself does not have suitable wear resistance; therefore, it is necessary to enhance surface properties for practical applications, particularly when aluminum is in contact with other parts. Fretting fatigue phenomenon occurs when two surfaces are in contact with each other and one or both parts are subjected to cyclic load. Fretting drastically decreases the fatigue life of materials. Therefore, investigating the fretting fatigue life of materials is an important subject. Applying surface modification methods is anticipated to be a supreme solution to gradually decreasing fretting damage. In this paper, the authors would like to review methods employed so far to diminish the effect of fretting on the fatigue life of Al7075-T6 alloy. The methods include deep rolling, shot peening, laser shock peening, and thin film hard coatings. The surface coatings techniques are comprising physical vapor deposition (PVD, hard anodizing, ion-beam-enhanced deposition (IBED, and nitriding.

  17. Experimental facility design for study of fretting in steam generator tubes

    International Nuclear Information System (INIS)

    Balbiani, J.P.; Bergant, M.; Yawny, A.

    2012-01-01

    The design of an experimental facility for fretting wear testing of steam generator tubes under pressurized water up to 340 o C, is presented. The main component of the device consists in an autoclave which permits to recreate steam generator operating conditions. CAD CATIA V5R18, CAE ABAQUS and ASME Sec. VII Div. 1 (Rules for Construction of Pressure Vessels) were used along the design process. The design of the autoclave included the pressure vessel itself and the necessary flanges and nozzles. In addition, an axial dynamic sealing system was designed to allow for actuation from outside the pressure boundary. Complementary, typical tube - support contact conditions were analyzed and the principal variables affecting their mutual interaction determined. In addition, a simple device which allows performing fretting wear testing on steam generator tubes in air at room temperature was fabricated and the feasibility of a quantitative assessment of different aspects related with the fretting induced damage was explored. Characterization techniques available at Centro Atomico Bariloche, like light microscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX) and surface damage analysis by optic profilometry were shown to be appropriate for this aim. The designed facility will allow evaluating fretting damage of tubes - support combinations that might be used on the steam generator of the prototype reactor CAREM-25. It is also expected it could be applied to characterize fretting severity in other applications (nuclear fuel elements) (author)

  18. In Situ Probing Intracellular Drug Release from Redox-Responsive Micelles by United FRET and AIE.

    Science.gov (United States)

    Wang, Xuelin; Li, Juanjuan; Yan, Qi; Chen, Yanrui; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-03-01

    Redox-responsive micelles are versatile nanoplatforms for on-demand drug delivery, but the in situ evaluation of drug release is challenging. Fluorescence resonance energy transfer (FRET) technique shows potential for addressing this, while the aggregation-caused quenching effect limits the assay sensitivity. The aim of the current work is to combine aggregation-induced emission (AIE) probe with FRET to realize drug release assessment from micelles. Tetraphenylethene (TPE) is selected as AIE dye and curcumin (Cur) is chosen as the model drug as well as FRET receptor. The drug is covalently linked to a block copolymer via the disulfide bond linker and TPE is also chemically linked to the polymer via an amide bond; the obtained amphiphilic polymer conjugate self-assembles into micelles with a hydrodynamic size of ≈125 nm. Upon the supplement of glutathione or tris(2-carboxyethyl)phosphine) trigger (10 × 10 -3 m), the drug release induces the fluorescence increase of both TPE and Cur. Accompanied with the FRET decay, absorption enhancement and particle size increase are observed. The same phenomenon is observed in MCF-7 cells. The FRET-AIE approach can be a useful addition to the spectrum of available methods for monitoring drug release from stimuli-responsive nanomedicine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers.

    Science.gov (United States)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N V; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-31

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  20. An overview of molecular acceptors for organic solar cells

    Directory of Open Access Journals (Sweden)

    Hudhomme Piétrick

    2013-07-01

    Full Text Available Organic solar cells (OSCs have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  1. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  2. Acceptors in cadmium telluride. Identification and electronic structure

    International Nuclear Information System (INIS)

    Molva, E.

    1983-11-01

    It is shown that electronic properties of CdTe are determined by impurities more than by intrinsic defects like vacancies or interstitials in Cd or Te contrary to classical theories. These results are based on annealing, diffusion, implantation and electron irradiation at 4 K. Centers appearing in treated samples are accurately identified by photoluminescence, cathodoluminescence infra-red absorption, electrical measurements and magneto-optic properties. Acceptors identified are Li, Na, Cu, Ag and Au impurities in Cd and N, P and As in Te. Energy levels of all acceptors and fine structure of excitons are determined [fr

  3. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    Directory of Open Access Journals (Sweden)

    Norio Maruyama, Sachiko Hiromoto, Eiji Akiyama and Morihiko Nakamura

    2013-01-01

    Full Text Available Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-. For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR both in air and in PBS(-. A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR. The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  4. Branched DNA nanostructures efficiently stabilised and monitored by novel pyrene-perylene 2'-α-l-amino-LNA FRET pairs

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Santhosh Kumar, T; Campbell, Meghan A

    2013-01-01

    Novel pyrene-perylene α-l-LNA FRET pairs described herein effectively detect assembly of 2- and 3-way branched DNA nanostructures prepared by postsynthetic microwave-assisted CuAAC click chemistry. The fluorescent signalling of assembly by internally positioned FRET pairs is achieved with low...

  5. Fluorophores, environments, and quantification techniques in the analysis of transmembrane helix interaction using FRET.

    Science.gov (United States)

    Khadria, Ambalika S; Senes, Alessandro

    2015-07-01

    Förster resonance energy transfer (FRET) has been widely used as a spectroscopic tool in vitro to study the interactions between transmembrane (TM) helices in detergent and lipid environments. This technique has been instrumental to many studies that have greatly contributed to quantitative understanding of the physical principles that govern helix-helix interactions in the membrane. These studies have also improved our understanding of the biological role of oligomerization in membrane proteins. In this review, we focus on the combinations of fluorophores used, the membrane mimetic environments, and measurement techniques that have been applied to study model systems as well as biological oligomeric complexes in vitro. We highlight the different formalisms used to calculate FRET efficiency and the challenges associated with accurate quantification. The goal is to provide the reader with a comparative summary of the relevant literature for planning and designing FRET experiments aimed at measuring TM helix-helix associations. © 2015 Wiley Periodicals, Inc.

  6. Calculated and experimental research of WWER-1000 assembly vibration and fretting damage

    International Nuclear Information System (INIS)

    Drozdov, Y.; Afanasyev, A.; Makarov, V.; Tutnov, A.; Tutnov, A.; Alekseev, E.

    2008-01-01

    The report covers the methods and results of the latest analytical and experimental studies of fretting corrosion and natural vibrations of a WWER-1000 reactor fuel assemblies (FA). The process of fretting-corrosion was investigated using a multi-specimen facility that simulated fragments of fuel rod-to-spacer grid and lower support grid mating units. A computational model was developed for vibrations in the mechanical system of a fuel rod fragment and a spacer grid fragment. A calculational and experimental modal analysis of a FA was performed. Natural frequencies, modes and decrements of FA vibrations were determined and a satisfactory coincidence of analytical and experimental results was obtained. The assessment of fretting-corrosion process dynamics was made and its dependences on operational factors were obtained. (authors)

  7. Fretting Wear Behaviors of Aluminum Cable Steel Reinforced (ACSR Conductors in High-Voltage Transmission Line

    Directory of Open Access Journals (Sweden)

    Xingchi Ma

    2017-09-01

    Full Text Available This work reports the fretting wear behavior of aluminum cable steel reinforced (ACSR conductors for use in high-voltage transmission line. Fretting wear tests of Al wires were conducted on a servo-controlled fatigue testing machine with self-made assistant apparatus, and their fretting process characteristics, friction force, wear damage, and wear surface morphology were detailed analyzed. The results show that the running regime of Al wires changes from a gross slip regime to a mixed regime more quickly as increasing contact load. With increasing amplitudes, gross slip regimes are more dominant under contact loads of lower than 30 N. The maximum friction force is relatively smaller in the NaCl solution than in a dry friction environment. The primary wear mechanisms in dry friction environments are abrasive wear and adhesive wear whereas abrasive wear and fatigue damage are dominant in NaCl solution.

  8. Fuel-element vibration and bearing pad to pressure tube fretting

    International Nuclear Information System (INIS)

    Fisher, N.J.; Taylor, C.E.; Pettigrew, M.J.

    1990-08-01

    Fuel channel operation under boiling condition results in increased flow velocities, which may lead to unacceptable fuel-element vibration and bearing pad to pressure tube fretting. The existing endurance test database does not fully cover the range of future channel operating conditions. In particular, after refuelling, some channels for future designs may operate with two-phase flow conditions outside the range of endurance test conditions. Full-scale endurance testing at realistic steam-water conditions involves substantial energy costs. Therefore, fundamental laboratory investigations were conducted to define and endurance test matrix which adequately envelops the future range of operating conditions while minimizing both the number of tests and the energy requirement of individual tests. The main focus of the laboratory investigations was to establish the relationships between: fuel channel flow conditions and fuel-element vibration; and fuel-element vibration and bearing pad to pressure tube fretting. The vibration response of a single fuel element was measured over a wide range of operating conditions covering realistic fuel channel conditions and simulated endurance testing conditions. For higher void fractions, the vibration amplitudes measured in air/water were much higher than in steam/water, while for low void fractions, the amplitudes were similar. The measured amplitudes in steam/water varied very little over the range of temperature and pressure investigated. The effects of temperature, pressure tube oxide thickness, vibration amplitude and bearing pad manufacturer on pressure tube fretting were investigated. The fretting rate is extremely temperature dependent. For vibration amplitudes about three or four times greater than expected in-reactor conditions, peak fretting rates were observed in the 225 to 286 degrees C temperature range. Fretting rates were seven times less at the higher temperatures of 300 and 315 degrees C, and the lower temperatures

  9. Uzawa algorithm to solve elastic and elastic-plastic fretting wear problems within the bipotential framework

    Science.gov (United States)

    Ning, Po; Feng, Zhi-Qiang; Quintero, Juan Antonio Rojas; Zhou, Yang-Jing; Peng, Lei

    2018-03-01

    This paper deals with elastic and elastic-plastic fretting problems. The wear gap is taken into account along with the initial contact distance to obtain the Signorini conditions. Both the Signorini conditions and the Coulomb friction laws are written in a compact form. Within the bipotential framework, an augmented Lagrangian method is applied to calculate the contact forces. The Archard wear law is then used to calculate the wear gap at the contact surface. The local fretting problems are solved via the Uzawa algorithm. Numerical examples are performed to show the efficiency and accuracy of the proposed approach. The influence of plasticity has been discussed.

  10. Fretting fatigue behavior of high-strength steel monostrands under bending load

    DEFF Research Database (Denmark)

    Winkler, Jan; Georgakis, Christos T.; Fischer, Gregor

    2015-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. To measure the local deformations on the strands, a novel method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires...... along the length of the monostrand. Information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of a monostrand undergoing flexural deformations is provided. From the series of dynamic fatigue tests, a fretting fatigue spectrum is derived...

  11. Fretting wear damage of steam generator tubes and its prediction modeling

    International Nuclear Information System (INIS)

    Che Honglong; Lei Mingkai

    2013-01-01

    The steam generator is the key equipment used for the energy transition in nuclear power plant. Since the high-temperature and high-pressure fluid flows with high speed, the steam generator tubes will be excited and vibrate, leading to the tremendous fretting wear problem on the tubes, sometimes even leading to tube cracking. This paper introduces typical fretting wear cases, the result of corresponding simulation wear experiment and damage mechanism which combining mechanical wear and erosion-corrosion. Work rate model could give a reasonable life prediction about the steam generator tube, and this predictive model has been used in nuclear power plant safety assessment. (authors)

  12. Theoretical-experimental analysis of the fretting/impact wear in fuel rods

    International Nuclear Information System (INIS)

    Pecos, Luis F.

    2001-01-01

    Nuclear power plant fuel elements are subjected to flow induced vibrations. A consequence of these vibrations is impact/fretting wear in fuel rods or sliding shoes. Because of the difficulties to assert the mechanism of impact/fretting wear phenomenon it is necessary to use semiempirical formulations in order to predict the wear rate of the components. The results of a series of experiments with Zr-4 specimens are presented in this work. A parameter called 'work-rate' was used to normalize the wear rates and interpret the results in terms of wear coefficient. (author) [es

  13. An overview of electron acceptors in microbial fuel cells

    DEFF Research Database (Denmark)

    Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini

    2017-01-01

    Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at t...... acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators....

  14. Acceptors in II-IV Semiconductors - Incorporation and Complex Formation

    CERN Multimedia

    2002-01-01

    A strong effort is currently devoted to the investigation of defects and the electrical activation of dopant atoms in II-VI semiconductors. In particular, the knowledge about the behaviour of acceptors, prerequisite for the fabrication of p-type semiconductors, is rather limited. The perturbed $\\,{\\gamma\\gamma}$ -angular correlation technique (PAC) and the photoluminescence spectroscopy (PL) using the radioactive isotopes $^{77}\\!$Br and $^{111}\\!$Ag will be applied for investigating the behaviour of acceptor dopant atoms and their interactions with defects in II-VI semiconductors. The main topic will be the identification of the technical conditions for the incorporation of electrically active acceptors in the II-VI semiconductors ~ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe with particular emphasis on the compounds~ CdTe, ZnSe, and ZnTe. The investigations will be supplemented by first exploratory PL experiments with the group V acceptors $^{71}\\!$As and $^{121}\\!$Sb. With help of the probe $^{111}\\!$Ag, the pos...

  15. The Necessity of a New Type Test Rig for the Development of an Evaluation Method in Grid Fretting Problems

    International Nuclear Information System (INIS)

    Lee, Young-Ho; Kim, Hyung-Kyu

    2007-01-01

    A grid fretting problem is recognized as one of the most important degradation mechanisms even though the examination results of fretting experiments could be applied to the development and design of spacer grid structures. This is because it is difficult to develop a fretting wear model for a grid fretting problem due to the various wear mechanisms involved according to the mechanical and environmental variables, the contact condition with a spring/dimple and the material properties. A number of spring shapes has been developed in KAERI and their performance tests such as fretting wear, flow-induced vibration (FIV) tests, etc. have been carried out from a part unit to a full assembly scale. From the unit part fretting test results, one of the noticeable results is that the contacting force (normal load) was gradually decreased with increasing number of fretting cycles due to a depth increase and this behavior was closely related to the contacting spring shape. When considering the actual contact condition between a fuel rod and a spring/dimple, if a fretting wear progresses due to a FIV under a specific normal load exerted on the fuel rod by an elastic deformation of the spring, the contacting force between the fuel rod and dimple that are located in the opposite side should be decreased. Consequently, an evaluation of developed spacer grids against fretting wear damage should be performed with the results of 1x1 cell unit experiments because a contacting force is one of the most important variables that influences a fretting wear mechanism. The discussion was focused on the development procedure of a new test rig and its performance by using a 1x1 cell unit test rig. (authors)

  16. Synthesis and X-ray crystal structure of the first tetrathiafulvalene-based acceptor-donor-acceptor sandwich

    DEFF Research Database (Denmark)

    Simonsen, Klaus B.; Thorup, Niels; Cava, Michael P.

    1998-01-01

    The synthesis and characterization of a bis-macrocyclic A-D-A sandwich produced in a simple one-pot reaction is reported. Only one acceptor unit participates in charge-transfer interactions with the TTF unit in the solid state....

  17. Bond of donor-acceptor interaction in metal-ligand system with energies of Fermi electrons

    International Nuclear Information System (INIS)

    Vlasov, Yu.V.; Khentov, V.Ya.; Velikanova, L.N.; Semchenko, V.V.

    1993-01-01

    Role of quantum nature of metal (W, Mo and others) in donor-acceptor interaction of metal salicylalaniline - aprotic solvent was discussed. The dependence of dissolution rate and activation energy of donor-acceptor interaction on electron energy was established

  18. Fretting wear simulation of press-fitted shaft with finite element analysis and influence function method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hyong; Kwon, Seok Jin [Korea Railroad Research Institute, Uiwang (Korea, Republic of); Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan University, Suwon (Korea, Republic of)

    2008-01-15

    In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge wear compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits.

  19. Fretting wear simulation of press-fitted shaft with finite element analysis and influence function method

    International Nuclear Information System (INIS)

    Lee, Dong Hyong; Kwon, Seok Jin; Choi, Jae Boong; Kim, Young Jin

    2008-01-01

    In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge wear compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits

  20. Chemical synthesis of dual labeled proteins via differently protected alkynes enables intramolecular FRET analysis.

    Science.gov (United States)

    Hayashi, Gosuke; Kamo, Naoki; Okamoto, Akimitsu

    2017-05-30

    We report a novel method for multisite protein conjugation by setting differently silyl-protected alkynes as conjugation handles, which can remain intact through the whole synthetic procedure and provide sequential and orthogonal conjugation. This strategy enables efficient preparation of a dual dye-labeled protein and structural analysis via an intramolecular FRET mechanism.

  1. On the geometry of the fuel rod supports concerning a fretting wear failure

    International Nuclear Information System (INIS)

    Kim, Hyung-Kyu; Lee, Young-Ho; Lee, Kang-Hee

    2008-01-01

    Geometrical conditions of spacer grid springs and dimples of a light water reactor fuel assembly are studied in this paper concerning a fuel rod's fretting wear failure. In this framework, the springs/dimples are categorized from the aspects of their orientation with respect to the fuel axis and the contact types. Possible motions on the contacts between the springs/dimples and fuel rods are estimated by conducting a flow-induced vibration test. Features of the wear scar and depth are investigated by independent fretting wear tests carried out with spring and dimple specimens of typical contact geometries. It is also attempted here to apply the contact mechanics theory to a fuel fretting wear analysis such as the prediction of a wear depth profile and its rate, which is influenced by the contact shape of the springs/dimples. It is shown that the theory can be applied to a dimensional control of a coining for the springs/dimples, which is usually carried out in a thin plate fabrication. From the results, the necessary conditions for a spring/dimple geometry for restraining a fretting wear failure are discussed

  2. An ad-hoc fretting wear tribotester design for thin steel wires

    Directory of Open Access Journals (Sweden)

    Llavori Iñigo

    2018-01-01

    Full Text Available Steel wire ropes experience fretting wear damage when the rope runs over a sheave promoting an oscillatory motion between the wires. Consequently, wear scars appear between the contacting wires leading to an increase of the stress field and the following rupture of the wires due to fatigue. That is why the understanding and prediction of the fretting wear phenomena of thin wires is fundamental in order to improve the performance of steel wire ropes. The present research deals with the design of an ad-hoc fretting wear test machine for thin wires. The test apparatus is designed for testing thin wires with a maximum diameter of 1.0 mm, at slip amplitudes ranging from 5 to 300 μm, crossing angle between 0-90°, and contacting force ranging from 0,5 to 5 N. The working principle of displacement amplitude and contacting force as well as the crossing angle between the wires are described. Preliminary studies for understanding the fretting wear characteristics are presented, analysing 0.45 mm diameter cold-drawn eutectoid carbon steel (0.8% C wires (tensile strength higher than 3000 MPa.

  3. Homo-FRET imaging as a tool to quantify protein and lipid clustering.

    Science.gov (United States)

    Bader, Arjen N; Hoetzl, Sandra; Hofman, Erik G; Voortman, Jarno; van Bergen en Henegouwen, Paul M P; van Meer, Gerrit; Gerritsen, Hans C

    2011-02-25

    Homo-FRET, Förster resonance energy transfer between identical fluorophores, can be conveniently measured by observing its effect on the fluorescence anisotropy. This review aims to summarize the possibilities of fluorescence anisotropy imaging techniques to investigate clustering of identical proteins and lipids. Homo-FRET imaging has the ability to determine distances between fluorophores. In addition it can be employed to quantify cluster sizes as well as cluster size distributions. The interpretation of homo-FRET signals is complicated by the fact that both the mutual orientations of the fluorophores and the number of fluorophores per cluster affect the fluorescence anisotropy in a similar way. The properties of the fluorescence probes are very important. Taking these properties into account is critical for the correct interpretation of homo-FRET signals in protein- and lipid-clustering studies. This is be exemplified by studies on the clustering of the lipid raft markers GPI and K-ras, as well as for EGF receptor clustering in the plasma membrane. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Homo-FRET Imaging as a tool to quantify protein and lipid clustering

    NARCIS (Netherlands)

    Bader, A.N.; Hoetzl, S.; Hofman, E.G.; Voortman, J.; van Bergen en Henegouwen, P.M.P.; van Meer, G.; Gerritsen, H.C.

    2010-01-01

    Homo-FRET, Förster resonance energy transfer between identical fluorophores, can be conveniently measured by observing its effect on the fluorescence anisotropy. This review aims to summarize the possibilities of fluorescence anisotropy imaging techniques to investigate clustering of identical

  5. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET

    NARCIS (Netherlands)

    Hohlbein, J.; Kapanidis, A.N.

    2016-01-01

    Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open

  6. Positronium Inhibition and Quenching by Organic Electron Acceptors and Charge Transfer Complexes

    DEFF Research Database (Denmark)

    Jansen, P.; Eldrup, Morten Mostgaard; Jensen, Bror Skytte

    1975-01-01

    Positron lifetime measurements were performed on a series of organic electron acceptors and charge-transfer complexes in solution. The acceptors cause both positronium (Ps) inhibition (with maybe one exception) and quenching, but when an acceptor takes part in a charge-transfer complex...... in terms of the spur reaction model of Ps formation. Correlation was also made to gas phase reaction between electron acceptors and free electron, as well as to pulse radiolysis data....

  7. 2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012

    Energy Technology Data Exchange (ETDEWEB)

    McCusker, James [Michigan State Univ., East Lansing, MI (United States)

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  8. Effect of anneal and quench on the nature of the dominant acceptors in ZnTe

    International Nuclear Information System (INIS)

    Bensahel, D.; Magnea, N.; Pautrat, J.L.; Pfister, J.C.; Revoil, L.

    1978-01-01

    Anneal and quench studies on high purity ZnTe have shown the dominant role of impurities and their solubilities as functions of stoichiometrical conditions. The role of 'b' acceptor, related to lithium, 'g' acceptor, related to silver, and 'a' acceptor of unknown nature is reported

  9. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Jana, Subhashis; Pradhan, Manoj Kumar

    2016-08-15

    The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO-LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor-acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor-acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Using Three-color Single-molecule FRET to Study the Correlation of Protein Interactions.

    Science.gov (United States)

    Götz, Markus; Wortmann, Philipp; Schmid, Sonja; Hugel, Thorsten

    2018-01-30

    Single-molecule Förster resonance energy transfer (smFRET) has become a widely used biophysical technique to study the dynamics of biomolecules. For many molecular machines in a cell proteins have to act together with interaction partners in a functional cycle to fulfill their task. The extension of two-color to multi-color smFRET makes it possible to simultaneously probe more than one interaction or conformational change. This not only adds a new dimension to smFRET experiments but it also offers the unique possibility to directly study the sequence of events and to detect correlated interactions when using an immobilized sample and a total internal reflection fluorescence microscope (TIRFM). Therefore, multi-color smFRET is a versatile tool for studying biomolecular complexes in a quantitative manner and in a previously unachievable detail. Here, we demonstrate how to overcome the special challenges of multi-color smFRET experiments on proteins. We present detailed protocols for obtaining the data and for extracting kinetic information. This includes trace selection criteria, state separation, and the recovery of state trajectories from the noisy data using a 3D ensemble Hidden Markov Model (HMM). Compared to other methods, the kinetic information is not recovered from dwell time histograms but directly from the HMM. The maximum likelihood framework allows us to critically evaluate the kinetic model and to provide meaningful uncertainties for the rates. By applying our method to the heat shock protein 90 (Hsp90), we are able to disentangle the nucleotide binding and the global conformational changes of the protein. This allows us to directly observe the cooperativity between the two nucleotide binding pockets of the Hsp90 dimer.

  11. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  12. Interface effects on acceptor qubits in silicon and germanium

    International Nuclear Information System (INIS)

    Abadillo-Uriel, J C; Calderón, M J

    2016-01-01

    Dopant-based quantum computing implementations often require the dopants to be situated close to an interface to facilitate qubit manipulation with local gates. Interfaces not only modify the energies of the bound states but also affect their symmetry. Making use of the successful effective mass theory we study the energy spectra of acceptors in Si or Ge taking into account the quantum confinement, the dielectric mismatch and the central cell effects. The presence of an interface puts constraints to the allowed symmetries and leads to the splitting of the ground state in two Kramers doublets (Mol et al 2015 Appl. Phys. Lett. 106 203110). Inversion symmetry breaking also implies parity mixing which affects the allowed optical transitions. Consequences for acceptor qubits are discussed. (paper)

  13. Positively charged phosphorus as a hydrogen bond acceptor

    DEFF Research Database (Denmark)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik Grum

    2014-01-01

    Phosphorus (P) is an element that is essential to the life of all organisms, and the atmospheric detection of phosphine suggests the existence of a volatile biogeochemical P cycle. Here, we investigate the ability of P to participate in the formation of OH···P hydrogen bonds. Three bimolecular......-stretching frequency red shifts and quantum chemical calculations, we find that P is an acceptor atom similar in strength to O and S and that all three P, O, and S atoms are weaker acceptors than N. The quantum chemical calculations show that both H and P in the OH···P hydrogen bond have partial positive charges......, as expected from their electronegativities. However, the electrostatic potentials show a negative potential area on the electron density surface around P that facilitates formation of hydrogen bonds....

  14. Triplet Tellurophene-Based Acceptors for Organic Solar Cells.

    Science.gov (United States)

    Yang, Lei; Gu, Wenxing; Lv, Lei; Chen, Yusheng; Yang, Yufei; Ye, Pan; Wu, Jianfei; Hong, Ling; Peng, Aidong; Huang, Hui

    2018-01-22

    Triplet materials have been employed to achieve high-performing organic solar cells (OSCs) by extending the exciton lifetime and diffusion distances, while the triplet non-fullerene acceptor materials have never been reported for bulk heterojunction OSCs. Herein, for the first time, three triplet molecular acceptors based on tellurophene with different degrees of ring fusing were designed and synthesized for OSCs. Significantly, these molecules have long exciton lifetime and diffusion lengths, leading to efficient power conversion efficiency (7.52 %), which is the highest value for tellurophene-based OSCs. The influence of the extent of ring fusing on molecular geometry and OSCs performance was investigated to show the power conversion efficiencies (PCEs) continuously increased along with increasing the extent of ring fusing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  16. Electroporation and microinjection successfully deliver single-stranded and duplex DNA into live cells as detected by FRET measurements.

    Directory of Open Access Journals (Sweden)

    Rosemary A Bamford

    Full Text Available Förster resonance energy transfer (FRET technology relies on the close proximity of two compatible fluorophores for energy transfer. Tagged (Cy3 and Cy5 complementary DNA strands forming a stable duplex and a doubly-tagged single strand were shown to demonstrate FRET outside of a cellular environment. FRET was also observed after transfecting these DNA strands into fixed and live cells using methods such as microinjection and electroporation, but not when using lipid based transfection reagents, unless in the presence of the endosomal acidification inhibitor bafilomycin. Avoiding the endocytosis pathway is essential for efficient delivery of intact DNA probes into cells.

  17. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Selection of electron acceptors and strategies for in situ bioremediation

    International Nuclear Information System (INIS)

    Norris, R.D.

    1995-01-01

    The most critical aspect of designing in situ bioremediation systems is, typically, the selection and method of delivery of the electron acceptor. Nitrate, sulfate, and several forms of oxygen can be introduced, depending on the contaminants and the site conditions. Oxygen can be added as air, pure oxygen, hydrogen peroxide, or an oxygen release compound. Simplistic cost calculations can illustrate the advantages of some methods over others, providing technical requirements can be met

  19. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  20. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2014-04-01

    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  1. Methods for the synthesis of donor-acceptor cyclopropanes

    Science.gov (United States)

    Tomilov, Yu V.; Menchikov, L. G.; Novikov, R. A.; Ivanova, O. A.; Trushkov, I. V.

    2018-03-01

    The interest in cyclopropane derivatives is caused by the facts that, first, the three-carbon ring is present in quite a few natural and biologically active compounds and, second, compounds with this ring are convenient building blocks for the synthesis of diverse molecules (acyclic, alicyclic and heterocyclic). The carbon–carbon bonds in cyclopropane are kinetically rather inert; hence, they need to be activated to be involved in reactions. An efficient way of activation is to introduce vicinal electron-donating and electron-withdrawing substituents into the ring; these substrates are usually referred to as donor-acceptor cyclopropanes. This review gives a systematic account of the key methods for the synthesis of donor-acceptor cyclopropanes. The most important among them are reactions of nucleophilic alkenes with diazo compounds and iodonium ylides and approaches based on reactions of electrophilic alkenes with sulfur ylides (the Corey–Chaykovsky reaction). Among other methods used for this purpose, noteworthy are cycloalkylation of CH-acids, addition of α-halocarbonyl compounds to alkenes, cyclization via 1,3-elimination, reactions of alkenes with halocarbenes followed by reduction, the Simmons–Smith reaction and some other. The scope of applicability and prospects of various methods for the synthesis of donor-acceptor cyclopropanes are discussed. The bibliography includes 530 references.

  2. Virtual screening of electron acceptor materials for organic photovoltaic applications

    International Nuclear Information System (INIS)

    D Halls, Mathew; Giesen, David J; Goldberg, Alexander; Djurovich, Peter J; Sommer, Jonathan; McAnally, Eric; Thompson, Mark E

    2013-01-01

    Virtual screening involves the generation of structure libraries, automated analysis to predict properties related to application performance and subsequent screening to identify lead systems and estimate critical structure–property limits across a targeted chemical design space. This approach holds great promise for informing experimental discovery and development efforts for next-generation materials, such as organic semiconductors. In this work, the virtual screening approach is illustrated for nitrogen-substituted pentacene molecules to identify systems for development as electron acceptor materials for use in organic photovoltaic (OPV) devices. A structure library of tetra-azapentacenes (TAPs) was generated by substituting four nitrogens for CH at 12 sites on the pentacene molecular framework. Molecular properties (e.g. E LUMO , E g and μ) were computed for each candidate structure using hybrid DFT at the B3LYP/6-311G** level of theory. The resulting TAPs library was then analyzed with respect to intrinsic properties associated with OPV acceptor performance. Marcus reorganization energies for charge transport for the most favorable TAP candidates were then calculated to further determine suitability as OPV electron acceptors. The synthesis, characterization and OPV device testing of TAP materials is underway, guided by these results. (paper)

  3. Non-fullerene acceptors for organic solar cells

    Science.gov (United States)

    Yan, Cenqi; Barlow, Stephen; Wang, Zhaohui; Yan, He; Jen, Alex K.-Y.; Marder, Seth R.; Zhan, Xiaowei

    2018-03-01

    Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure-property relationships, donor-acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.

  4. Ultrafast Photoinduced Electron Transfer in Bimolecular Donor-Acceptor Systems

    KAUST Repository

    Alsulami, Qana A.

    2016-11-30

    The efficiency of photoconversion systems, such as organic photovoltaic (OPV) cells, is largely controlled by a series of fundamental photophysical processes occurring at the interface before carrier collection. A profound understanding of ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) is the key determinant to improving the overall performances of photovoltaic devices. The discussion in this dissertation primarily focuses on the relevant parameters that are involved in photon absorption, exciton separation, carrier transport, carrier recombination and carrier collection in organic photovoltaic devices. A combination of steady-state and femtosecond broadband transient spectroscopies was used to investigate the photoinduced charge carrier dynamics in various donor-acceptor systems. Furthermore, this study was extended to investigate some important factors that influence charge transfer in donor-acceptor systems, such as the morphology, energy band alignment, electronic properties and chemical structure. Interestingly, clear correlations among the steady-state measurements, time-resolved spectroscopy results, grain alignment of the electron transporting layer (ETL), carrier mobility, and device performance are found. In this thesis, we explored the significant impacts of ultrafast charge separation and charge recombination at donor/acceptor (D/A) interfaces on the performance of a conjugated polymer PTB7-Th device with three fullerene acceptors: PC71BM, PC61BM and IC60BA. Time-resolved laser spectroscopy and high-resolution electron microscopy can illustrate the basis for fabricating solar cell devices with improved performances. In addition, we studied the effects of the incorporation of heavy metals into π-conjugated chromophores on electron transfer by monitoring the triplet state lifetime of the oligomer using transient absorption spectroscopy, as understanding the mechanisms controlling intersystem crossing and

  5. Charge Carrier Dynamics at Silver Nanocluster-Molecular Acceptor Interfaces

    KAUST Repository

    Almansaf, Abdulkhaleq

    2017-07-01

    A fundamental understanding of interfacial charge transfer at donor-acceptor interfaces is very crucial as it is considered among the most important dynamical processes for optimizing performance in many light harvesting systems, including photovoltaics and photo-catalysis. In general, the photo-generated singlet excitons in photoactive materials exhibit very short lifetimes because of their dipole-allowed spin radiative decay and short diffusion lengths. In contrast, the radiative decay of triplet excitons is dipole forbidden; therefore, their lifetimes are considerably longer. The discussion in this thesis primarily focuses on the relevant parameters that are involved in charge separation (CS), charge transfer (CT), intersystem crossing (ISC) rate, triplet state lifetime, and carrier recombination (CR) at silver nanocluster (NCs) molecular-acceptors interfaces. A combination of steady-state and femto- and nanosecond broadband transient absorption spectroscopies were used to investigate the charge carrier dynamics in various donor-acceptor systems. Additionally, this thesis was prolonged to investigate some important factors that influence the charge carrier dynamics in Ag29 silver NCs donor-acceptor systems, such as the metal doping and chemical structure of the nanocluster and molecular acceptors. Interestingly, clear correlations between the steady-state measurements and timeresolved spectroscopy results are found. In the first study, we have investigated the interfacial charge transfer dynamics in positively charged meso units of 5, 10, 15, 20-tetra (1- methyl-4-pyridino)-porphyrin tetra (p-toluene sulfonate) (TMPyP) and neutral charged 5, 10, 15, 20-tetra (4-pyridyl)-porphyrin (TPyP), with negatively charged undoped and gold (Au)- doped silver Ag29 NCs. Moreover, this study showed the impact of Au doping on the charge carrier dynamics of the system. In the second study, we have investigated the interfacial charge transfer dynamics in [Pt2 Ag23 Cl7 (PPh3

  6. The effect of intramolecular donor–acceptor moieties with donor–π-bridge–acceptor structure on the solar photovoltaic performance

    Directory of Open Access Journals (Sweden)

    T. L. Wang

    2015-10-01

    Full Text Available A series of intramolecular donor–acceptor polymers containing different contents of (E-1-(2-ethylhexyl-6,9-dioctyl-2-(2-(thiophen-3-ylvinyl-1H-phenanthro[9,10-d]imidazole (thiophene-DOPI moiety and 4,4-diethylhexylcyclopenta[ 2,1-b:3,4-b']dithiophene (CPDT unit was synthesized via Grignard metathesis (GRIM polymerization. The synthesized random copolymers and homopolymer of thiophene-DOPI contain the donor–π-bridge–acceptor conjugated structure to tune the absorption spectra and energy levels of the resultant polymers. UV-vis spectra of the three polymer films exhibit panchromatic absorptions ranging from 300 to 1100 nm and low band gaps from 1.38 to 1.51 eV. It is found that more thiophene-DOPI moieties result in the decrease of band gap and lower the highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO values of polymers. Photovoltaic performance results indicate that if the content of the intramolecular donor–acceptor moiety is high enough, the copolymer structure may be better than homopolymer due to more light-harvesting afforded by both monomer units.

  7. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, L.P., E-mail: lev.putilov@gmail.com; Tsidilkovski, V.I.

    2017-03-15

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔH{sub ox} of oxide is determined by the energy ε{sub A} of acceptor-bound states along with the formation energy E{sub V} of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of ε{sub A} and E{sub V} values corresponding to the positive or negative ΔH{sub ox} are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth ε{sub A}: it becomes negligible at ε{sub A} less than a certain value (at which the acceptor levels are still deep). With increasing ε{sub A}, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO{sub 3} as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the ε{sub A} magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.

  8. Derivation of Elastic Stress Concentration Factor Equations for Debris Fretting Flaws in Pressure Tubes of Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Oh, Young Jin

    2014-01-01

    If volumetric flaws such as bearing pad fretting flaws and debris fretting flaws are detected in the pressure tubes of pressurized heavy water reactors during in-service inspection, the initiation of fatigue cracks and delayed hydrogen cracking from the detected volumetric flaws shall be assessed by using elastic stress concentration factors in accordance with CSA N285.8-05. The CSA N285.8-05 presents only an approximate formula based on linear elastic fracture mechanics for the debris fretting flaw. In this study, an engineering formula considering the geometric characteristics of the debris fretting flaw in detail was derived using two-dimensional finite element analysis and Kinectrics, Inc.'s engineering procedure with slight modifications. Comparing the application results obtained using the derived formula with the three-dimensional finite element analysis results, it is found that the results obtained using the derived formula agree well with the results of the finite element analysis

  9. Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots

    KAUST Repository

    Long, Yuchen; Stahl, Yvonne; Weidtkamp-Peters, Stefanie; Smet, Wouter; Du, Yujuan; Gadella, Theodorus W. J.; Goedhart, Joachim; Scheres, Ben; Blilou, Ikram

    2018-01-01

    Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living

  10. Unlubricated Gross Slip Fretting Wear of Metallic Plasma Sprayed Coatings for Ti6A14V Surfaces

    National Research Council Canada - National Science Library

    Hager, Jr., Carl H; Sanders, Jeffrey H; Sharma, Shashi K

    2006-01-01

    ... to simulate cold engine startup. Alternative coatings such as plasma sprayed molybdenum and nickel were also evaluated because of their potential for reducing fretting wear under certain simulated engine conditions...

  11. Investigation of fretting behaviour in pressure armour layers of flexible pipes

    Science.gov (United States)

    Don Rasika Perera, Solangarachchige

    The incidence of fretting damage in the pressure armour wires of flexible pipes used in offshore oil explorations has been investigated. A novel experimental facility which is capable of simulating nub and valley contact conditions of interlocking wire winding with dynamic slip, representative of actual pipe loading, has been developed. The test set-up is equipped with a state of the art data acquisition system and a controller with transducers to measure and control the normal load, slip amplitude and friction force at the contact, in addition to the hoop stress in the wire. Tests were performed with selected loading and the fretted regions were examined using optical microscopy techniques. Results show that the magnitude of contact loading and the slip amplitude have a distinct influence on surface damage. Surface cracks originated from a fretting scar were observed at high contact loads in mixed slip sliding while surface damage predominantly due to wear was observed under gross slip. The position of surface cracks and the wear profile have been related to the contact pressure distribution. The evolution of friction force and surface damage under different slip and normal pressure conditions has been analysed. A fracture mechanics based numerical procedure has been developed to analyse the fretting damage behaviour. A severity parameter is proposed in order to ascertain whether the crack growth is in mode I or mode II cracking. The analysis show the influence of mode II cracking in the early stages of crack growth following which the crack deviates in the mode I direction making mode I the dominant crack propagation mechanism. The crack path determined by the numerical procedure correlates well with the experimental results. A numerical analysis was carried out for the fretting fatigue condition where a cyclic bulk stress superimposes with the friction force. The analysis correlates well with short crack growth behaviour. The analysis confirms that fretting is a

  12. Fretting-corrosion behavior in hip implant modular junctions: The influence of friction energy and pH variation.

    Science.gov (United States)

    Royhman, Dmitry; Patel, Megha; Runa, Maria J; Wimmer, Markus A; Jacobs, Joshua J; Hallab, Nadim J; Mathew, Mathew T

    2016-09-01

    Recently, there has been increasing concern in the orthopedic community over the use of hip implant modular devices due to an increasing number of reports of early failure, failure that has been attributed to fretting-corrosion at modular interfaces. Much is still unknown about the electrochemical and mechanical degradation mechanisms associated with the use of such devices. Accordingly, the purpose of our study was to develop a methodology for testing the fretting-corrosion behavior of modular junctions. A fretting-corrosion apparatus was used to simulate the fretting-corrosion conditions of a CoCrMo hip implant head on a Ti6Al4V hip implant stem. The device features two perpendicularly-loaded CoCrMo pins that articulated against a Ti6Al4V rod. A sinusoidal fretting motion was applied to the rod at various displacement amplitudes (25, 50, 100, 150 and 200μm) at a constant load of 200N. Bovine calf serum at two different pH levels (3.0 and 7.6) was used to simulate the fluid environment around the joint. Experiments were conducted in two modes of electrochemical control - free-potential and potentiostatic. Electrochemical impedance spectroscopy tests were done before and after the fretting motion to assess changes in corrosion kinetics. In free potential mode, differences were seen in change in potential as a function of displacement amplitude. In general, VDrop (the drop in potential at the onset of fretting), VFretting, (the average potential during fretting), ΔVFretting (the change in potential from the onset of fretting to its termination) and VRecovery (the change in potential from the termination of fretting until stabilization) appeared linear at both pH levels, but showed drastic deviation from linearity at 100μm displacement amplitude. Subsequent EDS analysis revealed a large number of Ti deposits on the CoCrMo pin surfaces. Potentiostatic tests at both pH levels generally showed increasing current with increasing displacement amplitude. Electrochemical

  13. In vitro simulation of fretting-corrosion in hip implant modular junctions: The influence of pH.

    Science.gov (United States)

    Royhman, Dmitry; Patel, Megha; Jacobs, Joshua J; Wimmer, Markus A; Hallab, Nadim J; Mathew, Mathew T

    2018-02-01

    The fretting-corrosion behavior of mixed metal contacts is affected by various mechanical and electrochemical parameters. Crevice conditions at the junction and patient-specific pathologies can affect the pH of the prosthetic environment. The main objective of this study is to understand the effect of pH variation at the stem/head junction of the hip implant under fretting corrosion exposure. We hypothesized that pH will have a significant influence on the fretting-corrosion behavior hip implant modular junctions. A custom-made setup was used to evaluate the fretting corrosion behavior of hip implant modular junctions. A Newborn calf serum solution (30 g/L protein content) was used to simulate the synovial fluid environment. A sinusoidal fretting motion, with a displacement amplitude of +50 µm, was applied to the Ti alloy rod. The effects of pathology driven, periprosthetic pH variation were simulated at four different pH levels (3.0, 4.5, 6.0 and 7.6). Electrochemical and mechanical properties were evaluated before, during, and after the applied fretting motion. The impedance of the system was increased in response to the fretting motion. The hysteresis tangential load/displacement behavior was not affected by pH level. The worn surfaces of CoCrMo pins exhibited the presence of tribolayer or organic deposits, in the pH 4.5 group, which may explain the lower drop in potential and mass loss observed in that group. Mechanically dominated wear mechanisms, namely, adhesive wear was shown in the pH 7.6 group, which may account for a higher potential drop and metal content loss. This study suggests that the fretting-corrosion mechanisms in hip implant are affected by the pH levels of the surrounding environment and patient-specific factors. Copyright © 2017. Published by Elsevier Ltd.

  14. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors.

    Science.gov (United States)

    Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L

    2018-01-01

    Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP + oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.

  15. Experimental and Numerical Investigations of Fretting Fatigue Behavior for Steel Q235 Single-Lap Bolted Joints

    Directory of Open Access Journals (Sweden)

    Yazhou Xu

    2016-01-01

    Full Text Available This work aims to investigate the fretting fatigue life and failure mode of steel Q235B plates in single-lap bolted joints. Ten specimens were prepared and tested to fit the S-N curve. SEM (scanning electron microscope was then employed to observe fatigue crack surfaces and identify crack initiation, crack propagation, and transient fracture zones. Moreover, a FEM model was established to simulate the stress and displacement fields. The normal contact stress, tangential contact stress, and relative slipping displacement at the critical fretting zone were used to calculate FFD values and assess fretting fatigue crack initiation sites, which were in good agreement with SEM observations. Experimental results confirmed the fretting fatigue failure mode for these specimens. It was found that the crack initiation resulted from wear regions at the contact surfaces between plates, and fretting fatigue cracks occurred at a certain distance away from hole edges. The proposed FFD-N relationship is an alternative approach to evaluate fretting fatigue life of steel plates in bolted joints.

  16. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting.

    Science.gov (United States)

    Bajar, Bryce T; Wang, Emily S; Lam, Amy J; Kim, Bongjae B; Jacobs, Conor L; Howe, Elizabeth S; Davidson, Michael W; Lin, Michael Z; Chu, Jun

    2016-02-16

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude.

  17. Extraction of information on macromolecular interactions from fluorescence micro-spectroscopy measurements in the presence and absence of FRET

    Science.gov (United States)

    Raicu, Valerică

    2018-06-01

    Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information.

  18. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    Science.gov (United States)

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be

  19. Effect of different atmospheres on the electrical contact performance of electronic components under fretting wear

    Science.gov (United States)

    Liu, Xin-Long; Cai, Zhen-Bing; Cui, Ye; Liu, Shan-Bang; Xu, Xiao-Jun; Zhu, Min-Hao

    2018-04-01

    The effects of oxide etch on the surface morphology of metals for industrial application is a common cause of electrical contacts failure, and it has becomes a more severe problem with the miniaturization of modern electronic devices. This study investigated the effects of electrical contact resistance on the contactor under three different atmospheres (oxygen, air, and nitrogen) based on 99.9% copper/pogo pins contacts through fretting experiments. The results showed the minimum and stable electrical contact resistance value when shrouded in the nitrogen environment and with high friction coefficient. The rich oxygen environment promotes the formation of cuprous oxide, thereby the electrical contact resistance increases. Scanning electron microscope microscopy and electron probe microanalysis were used to analyze the morphology and distribution of elements of the wear area, respectively. The surface product between contacts was investigated by x-ray photoelectron spectroscopy analysis to explain the different electrical contact properties of the three tested samples during fretting.

  20. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    Science.gov (United States)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  1. Fretting wear of steam generator tubes: high-temperature tests on AECL rig

    International Nuclear Information System (INIS)

    Guerout, F.; Zbinden, M.

    1993-07-01

    The R and DD has undertaken the study of fretting-wear of Alloy 600 S.G. tubes which occurs by contact with migrating items. The test series was performed in Canada at AECL Research (Atomic Energy of Canada Limited) as part of an exchange program. Four types of configuration were envisaged: a tube-to-drilled hole support contact which provides reference results and three types of tube-to-support contacts which simulate the tube fretting-wear induced by a welding rod, a threaded rod and a knife-edge rod support. This programme is completed by the study of the contact between a S.G. tube and a neighbouring S.G. tube which has been broken after plugging. (authors). 1 tab., 3 refs

  2. Electrolytic formation of technetium complexes with π-acceptor ligands

    International Nuclear Information System (INIS)

    Cerda, F.; Kremer, C.; Gambino, D.; Kremer, E.

    1994-01-01

    Electrolytic reduction of pertechnetate was performed in aqueous solution containing π-acceptor ligands. Cyanide and 1,10-phenanthroline were the selected ligands. In both cases, electrolyses produced a cathodic TcO 2 deposit and soluble Tc complexes. When cyanide was the ligand, the complexes formed were [Tc(CN) 6 ] 5- and [TcO 2 (CN) 4 ] 3- . When working with the amine, [Tc(phen) 3 ] 2+ and another positively charged species were found after reaction. Results are compared with previous studies with amines, and the usefulness of the electrolytic route to obtain Tc complexes is evaluated. (author) 11 refs.; 2 figs.; 1 tab

  3. Acceptors in ZnO nanocrystals: A reinterpretation

    Science.gov (United States)

    Gehlhoff, W.; Hoffmann, A.

    2012-12-01

    In a recent article, Teklemichael et al. reported on the identification of an uncompensated acceptor in ZnO nanocrystals using infrared spectroscopy and electron paramagnetic resonance (EPR) in the dark and under illumination. Most of their conclusions, interpretations, and suggestions turned out to be erroneous. The observed EPR signals were interpreted to originate from axial and nonaxial VZn-H defects. We show that the given interpretation of the EPR results is based on misinterpretations of EPR spectra arising from defects in nanocrystals. The explanation of the infrared absorption lines is in conflict with recent results of valence band ordering and valence band splitting.

  4. Fretting wear of ZrN and Zr(21% Hf)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Atar, E. [Gebze Inst. of Tech., Material Science and Engineering Dept., Kocaeli (Turkey); Cimenoglu, H.; Kayali, E.S. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Engineering, Istanbul (Turkey)

    2004-07-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  5. Fretting wear of ZrN and Zr(21% Hf)N coatings

    International Nuclear Information System (INIS)

    Atar, E.; Cimenoglu, H.; Kayali, E.S.

    2004-01-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  6. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET

    Energy Technology Data Exchange (ETDEWEB)

    Gopich, Irina V. [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-21

    Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when the FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated.

  7. Effects of Contact Load on the Fretting Fatigue Behavior of IN-100 at Elevated Temperature

    Science.gov (United States)

    2009-03-01

    Effect of contact pressure on fretting fatigue of austenitic stainless steel ,” Tribology International, vol. 36, pp. 79-85, 2003. 155 [56] N.K. Naidu...austenitic stainless steel was presented. Like the studies in the previous section, this study investigated how a variably increased contact load...that their stainless steel specimens acted much in the same manner as the aluminum specimens presented in the previous section. It was observed

  8. Fluorescent protein pair emit intracellular FRET signal suitable for FACS screening

    International Nuclear Information System (INIS)

    Johansson, Daniel X.; Brismar, Hjalmar; Persson, Mats A.A.

    2007-01-01

    The fluorescent proteins ECFP and HcRed were shown to give an easily resolved FRET-signal when expressed as a fusion inside mammalian cells. HeLa-tat cells expressing ECFP, pHcRed, or the fusion protein pHcRed-ECFP were analyzed by flow cytometry after excitation of ECFP. Cells expressing HcRed-ECFP, or ECFP and HcRed, were mixed and FACS-sorted for FRET positive cells: HcRed-ECFP cells were greatly enriched (72 times). Next, cloned human antibodies were fused with ECFP and expressed anchored to the ER membrane. Their cognate antigens (HIV-1 gp120 or gp41) were fused to HcRed and co-expressed in the ER. An increase of 13.5 ± 1.5% (mean ± SEM) and 8.0 ± 0.7% in ECFP fluorescence for the specific antibodies reacting with gp120 or gp41, respectively, was noted after photobleaching. A positive control (HcRed-ECFP) gave a 14.8 ± 2.6% increase. Surprisingly, the unspecific antibody (anti-TT) showed 12.1 ± 1.1% increase, possibly because overexpression in the limited ER compartment gave false FRET signals

  9. Experimental Simulation of Flow-Induced Vibration for Developing a Grid-to-Rod Fretting Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngho; Kim, Hyungkyu; Kang, Heungseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    GTRF margin was calculated based on the fuel reliabilities program of operating power plants. But they have not accumulated sufficient experience under challenging operating conditions to be considered proven solutions. In addition, GTRF behaviors were significantly differed according to the plant types, operating condition and fuel types. So, analytical methods to resolve GTRF degradations are considered as difficult procedures for actual application. One of the most important problems is that it is difficult to evaluate the GTRF resistance of new spacer grid under operating power plant condition. Up to now, as a consequence, compliance with the fretting wear limit (typically 10% of the cladding thickness) is checked a posteriori, through post-irradiation examination. Therefore, in this study, rod simulation method for determining GTRF resistance of new spacer grid was proposed with a specially designed wear tester. This simulator enables us to examine the spacer grid shape effect under relatively short development period. In addition, for developing GTRF model, flow-induced vibration (FIV) was measured with different major variables such as GTR clearance, flow rate, etc. Fretting wear tests of nuclear fuel rods (i. e. grid-to-rod fretting) have been performed to examine the flow rate effect by using a specially designed test section with a simulated primary coolant. Based on above results, developed FIV-wear simulator could be effective to examine the spacer grid shape effect with short development period. Further study will be discussed on the GTR clearance effect with various spacer grid shapes.

  10. Preliminary Study on the Fretting Wear Behaviors of a Duel Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.H.; Lee, K.H.; Kim, H.K. [KAERI, 150 Dukjin-dong Yuseon-gu Daejeon, 305-353 (Korea, Republic of)

    2009-06-15

    Based on MIT's concept, an innovative fuel development project was launched by KAERI that a substantial power up-rating could be realized by introducing an internally and externally double cooled annular fuel for current PWR reactors. In order to apply this duel cooled fuel to an OPR 1000 reactor system, geometrical features of structural parts in a fuel assembly should be changed except an overall dimension of a fuel assembly. Typical changes are summarized as fuel rod diameter and weight, shape and position of a spacer grid spring, etc. When considering a duel cooled fuel rod, its vibration characteristic and fretting behavior should be verified because the modified shape and dimension of spacer grid spring, fuel rod diameter and weight, number of spacer grid assembly are closely related to a flow-induced vibration in a duel cooled fuel assembly. In this study, based on FIV test results of 4x4 fuel assembly, fretting wear tests of an outer duel cooled fuel rod were performed by using an embossing type spacer grid spring that could adjust its spring stiffness. The discussion was focused on the evaluation of the optimized spring stiffness and spring position in 1x1 cell by analyzing the fretting wear results. (authors)

  11. Fretting wear of Inconel 625 at high temperature and in high vacuum

    International Nuclear Information System (INIS)

    Iwabuchi, A.

    1985-01-01

    The purpose of this work was to investigate the fretting properties of Inconel 625 at high temperature and in high vacuum. Experiments were carried out under constant conditions with a normal load of 14 N and a peak-to-peak slip amplitude of 110 μm and through 6x10 4 cycles. Several environmental conditions were used. Pressure was varied between 10 -3 and 10 5 Pa at temperatures of 20 and 500 0 C. Temperatures up to 500 0 C were also used at pressures of 10 -3 and 10 5 Pa. At 10 -3 Pa and 500 0 C wear loss was negligible but wear scars showed severe damage consisting of deep cracks and accretion of transferred debris. The coefficient of friction then maintained a high value of 1.7 throughout the fretting test. The critical pressure below which oxidation rate becomes reduced is 10 Pa, a value independent of temperature. At pressures below this critical value the coefficient of friction increases steeply and the fretting mechanism changes from one of oxidative wear to one of adhesive wear. A compacted so-called 'glaze' oxide was formed at temperatures above 300 0 C in air (10 5 Pa) and at pressures above 10 3 Pa at 500 0 C. A comparison of results for Inconel 625 with those for S45C and SUS304 steels and Inconel 600 is given. (orig.)

  12. Stability Loss of the Cemented Stem of Hip Prosthesis due to Fretting Corrosion Fatigue

    Directory of Open Access Journals (Sweden)

    L. Capitanu

    2017-12-01

    Full Text Available Aim of this project was to study the fretting behaviour of the cemented femoral stem fixation of a total hip prosthesis, trying to capture the loss of contact between the femoral stem and polymetylmethacrilate cement fixation. To have a landmark, studies were performed compared with cementless fixation, where no fretting phenomenon occurs, on real prostheses, under biological 3D loading conditions. A fatigue test device, installed on a servo-hydraulic triaxial dynamic testing machine was used. It allowed monitoring the flexion-extension, abduction-adduction, inner-outer rotation movements, and the variation of the torsional torque, depending on normal loading. The test ends when the sample does not fail after 2000000 cycles, or when it has reached a predetermined number of cycles. Test fluid medium used was NaCl mixed with distilled water, a favourable environment for appearance of fretting corrosion. After the failure of stem fixation at 2450000 cycles, the mantle of bone cement remaining adherent on femoral stem was removed. Microscopic inspection of the femoral stem and of the inner part of the polymetylmethacrilate mantle demonstrated the existence of corrosion of the femoral stem surface beneath the cement mantle, and Fe2O3 deposits on the femoral stem surface and on the inner part of the mantle.

  13. FRET analysis of CP12 structural interplay by GAPDH and PRK.

    Science.gov (United States)

    Moparthi, Satish Babu; Thieulin-Pardo, Gabriel; de Torres, Juan; Ghenuche, Petru; Gontero, Brigitte; Wenger, Jérôme

    2015-03-13

    CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first time detailed structural modulation about the wild-type CP12 and its site-specific N-terminal and C-terminal disulfide bridge mutants upon interaction with GAPDH and PRK by Förster resonance energy transfer (FRET). Our results indicate an increase in CP12 compactness when the complex is formed with GAPDH or PRK. In addition, the distributions in FRET histograms show the elasticity and conformational flexibility of CP12 in all supra molecular complexes. Contrarily to previous beliefs, our FRET results importantly reveal that both N-terminal and C-terminal site-specific CP12 mutants are able to form the monomeric (GAPDH-CP12-PRK) complex. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Fretting Wear Damage Mechanism of Uranium under Various Atmosphere and Vacuum Conditions

    Directory of Open Access Journals (Sweden)

    Zhengyang Li

    2018-04-01

    Full Text Available A fretting wear experiment with uranium has been performed on a linear reciprocating tribometer with ball-on-disk contact. This study focused on the fretting behavior of the uranium under different atmospheres (Ar, Air (21% O2 + 78% N2, and O2 and vacuum conditions (1.05 and 1 × 10−4 Pa. Evolution of friction was assessed by coefficient of friction (COF and friction-dissipated energy. The oxide of the wear surface was evaluated by Raman spectroscopy. The result shows that fretting wear behavior presents strong atmosphere and vacuum condition dependence. With increasing oxygen content, the COF decreases due to abrasive wear and formation of oxide film. The COF in the oxygen condition is at least 0.335, and it has a maximum wear volume of about 1.48 × 107 μm3. However, the COF in a high vacuum condition is maximum about 1.104, and the wear volume is 1.64 × 106 μm3. The COF in the low vacuum condition is very different: it firstly increased and then decreased rapidly to a steady value. It is caused by slight abrasive wear and the formation of tribofilm after thousands of cycles.

  15. Fretting Corrosion Behavior of Experimental Ti-20Cr Compared to Titanium.

    Science.gov (United States)

    Sawada, Tomofumi; Schille, Christine; Almadani, Atif; Geis-Gerstorfer, Jürgen

    2017-02-17

    Experimental cast titanium alloys containing 20 mass% chromium (Ti-20Cr) show preferable mechanical properties and a good corrosion resistance. This study evaluated the fretting corrosion behavior of Ti-20Cr. Ti-20Cr ( n = 4) and commercially pure titanium (CP-Ti, n = 6) disk specimens were used. The fretting corrosion test was performed by electrochemical corrosion at 0.3 V in 0.9% saline solution and mechanical damage using 10 scratching cycles with three different scratching speeds (10-40 mm/s) at 10 N. After testing, the activation peak, repassivation time and surface morphology of each specimen were analyzed. The differences between the results were tested by parametric tests (α = 0.05). The average activation peaks were significantly higher in CP-Ti than in Ti-20Cr ( p Ti. Slight differences in the repassivation time were observed between the materials at every scratching speed; faster scratching speeds showed shorter repassivation times in both materials ( p Ti showed severe damage and significantly higher wear depth than Ti-20Cr ( p < 0.05). In conclusion, adding chromium to titanium reduced surface damage and improved the fretting corrosion resistance.

  16. A Toolbox of Genetically Encoded FRET-Based Biosensors for Rapid l-Lysine Analysis

    Directory of Open Access Journals (Sweden)

    Victoria Steffen

    2016-09-01

    Full Text Available Background: The fast development of microbial production strains for basic and fine chemicals is increasingly carried out in small scale cultivation systems to allow for higher throughput. Such parallelized systems create a need for new rapid online detection systems to quantify the respective target compound. In this regard, biosensors, especially genetically encoded Förster resonance energy transfer (FRET-based biosensors, offer tremendous opportunities. As a proof-of-concept, we have created a toolbox of FRET-based biosensors for the ratiometric determination of l-lysine in fermentation broth. Methods: The sensor toolbox was constructed based on a sensor that consists of an optimized central lysine-/arginine-/ornithine-binding protein (LAO-BP flanked by two fluorescent proteins (enhanced cyan fluorescent protein (ECFP, Citrine. Further sensor variants with altered affinity and sensitivity were obtained by circular permutation of the binding protein as well as the introduction of flexible and rigid linkers between the fluorescent proteins and the LAO-BP, respectively. Results: The sensor prototype was applied to monitor the extracellular l-lysine concentration of the l-lysine producing Corynebacterium glutamicum (C. glutamicum strain DM1933 in a BioLector® microscale cultivation device. The results matched well with data obtained by HPLC analysis and the Ninhydrin assay, demonstrating the high potential of FRET-based biosensors for high-throughput microbial bioprocess optimization.

  17. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy.

    Science.gov (United States)

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-03-23

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK 0.1 . A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  18. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    Science.gov (United States)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  19. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    Science.gov (United States)

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  20. Progress in ZnO Acceptor Doping: What Is the Best Strategy?

    Directory of Open Access Journals (Sweden)

    Judith G. Reynolds

    2014-01-01

    Full Text Available This paper reviews the recent progress in acceptor doping of ZnO that has been achieved with a focus toward the optimum strategy. There are three main approaches for generating p-type ZnO: substitutional group IA elements on a zinc site, codoping of donors and acceptors, and substitution of group VA elements on an oxygen site. The relevant issues are whether there is sufficient incorporation of the appropriate dopant impurity species, does it reside on the appropriate lattice site, and lastly whether the acceptor ionization energy is sufficiently small to enable significant p-type conduction at room temperature. The potential of nitrogen doping and formation of the appropriate acceptor complexes is highlighted although theoretical calculations predict that nitrogen on an oxygen site is a deep acceptor. We show that an understanding of the growth and annealing steps to achieve the relevant acceptor defect complexes is crucial to meet requirements.

  1. Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Cao, B Q; Lorenz, M; Rahm, A; Wenckstern, H von; Czekalla, C; Lenzner, J; Benndorf, G; Grundmann, M

    2007-01-01

    Phosphorus-doped ZnO (ZnO:P) nanowires were successfully prepared by a novel high-pressure pulsed-laser deposition process using phosphorus pentoxide as the dopant source. Detailed cathodoluminescence studies of single ZnO:P nanowires revealed characteristic phosphorus acceptor-related peaks: neutral acceptor-bound exciton emission (A 0 , X, 3.356 eV), free-to-neutral-acceptor emission (e, A 0 , 3.314 eV), and donor-to-acceptor pair emission (DAP, ∼3.24 and ∼3.04 eV). This means that stable acceptor levels with a binding energy of about 122 meV have been induced in the nanowires by phosphorus doping. Moreover, the induced acceptors are distributed homogeneously along the doped nanowires

  2. Influence of acceptor on charge mobility in stacked π-conjugated polymers

    Science.gov (United States)

    Sun, Shih-Jye; Menšík, Miroslav; Toman, Petr; Gagliardi, Alessio; Král, Karel

    2018-02-01

    We present a quantum molecular model to calculate mobility of π-stacked P3HT polymer layers with electron acceptor dopants coupled next to side groups in random position with respect to the linear chain. The hole density, the acceptor LUMO energy and the hybridization transfer integral between the acceptor and polymer were found to be very critical factors to the final hole mobility. For a dopant LUMO energy close and high above the top of the polymer valence band we have found a significant mobility increase with the hole concentration and with the dopant LUMO energy approaching the top of the polymer valence band. Higher mobility was achieved for small values of hybridization transfer integral between polymer and the acceptor, corresponding to the case of weakly bound acceptor. Strong couplings between the polymer and the acceptor with Coulomb repulsion interactions induced from the electron localizations was found to suppress the hole mobility.

  3. Some experiments on the primary electron acceptor in reaction centres from Rhodopseudomanas sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Wraight, C A; Cogdell, R J; Clayton, R K

    1975-01-01

    The bacterial reaction center absorbance change at 450 nm (A-450), assigned to an anionic semiquinone, has been suggested as a candidate for the reduced form of the primary electron acceptor in bacterial photosynthesis. In reaction centers of Rhodopseudomonas sphaeroides we have found kinetic discrepancies between the decay of A-450 and the recovery of photochemical competence. In addition, no proton uptake is measurable on the first turnover, although subsequent ones elicit one proton bound per electron. These results are taken to indicate that the acceptor reaction after a long dark period may be different for the first turnover than for subsequent ones. It is suggested that A-450 is still a likely candidate for the acceptor function but that in reaction centers, additional quinone may act as an adventitious primary acceptor when the ''true'' primary acceptor is reduced. Alternatively, the primary acceptor may act in a ''ping-pong'' fashion with respect to subsequent photoelectrons.

  4. Deactivation of group III acceptors in silicon during keV electron irradiation

    International Nuclear Information System (INIS)

    Sah, C.; Sun, J.Y.; Tzou, J.J.; Pan, S.C.

    1983-01-01

    Experimental results on p-Si metal-oxide-semiconductor capacitors (MOSC's) are presented which demonstrate the electrical deactivation of the acceptor dopant impurity during 8-keV electron irradiation not only in boron but also aluminum and indium-doped silicon. The deactivation rates of the acceptors during the 8-keV electron irradiation are nearly independent of the acceptor impurity type. The final density of the remaining active acceptor approaches nonzero values N/sub infinity/, with N/sub infinity/(B) Al--H>In-H. These deactivation results are consistent with our hydrogen bond model. The thermal annealing or regeneration rate of the deactivated acceptors in the MOSC's irradiated by 8-keV electron is much smaller than that in the MOSC's that have undergone avalanche electron injection, indicating that the keV electron irradiation gives rise to stronger hydrogen-acceptor bond

  5. FRET-Aptamer Assays for Bone Marker Assessment, C-Telopeptide, Creatinine, and Vitamin D

    Science.gov (United States)

    Bruno, John G.

    2013-01-01

    Astronauts lose 1.0 to 1.5% of their bone mass per month on long-duration spaceflights. NASA wishes to monitor the bone loss onboard spacecraft to develop nutritional and exercise countermeasures, and make adjustments during long space missions. On Earth, the same technology could be used to monitor osteoporosis and its therapy. Aptamers bind to targets against which they are developed, much like antibodies. However, aptamers do not require animal hosts or cell culture and are therefore easier, faster, and less expensive to produce. In addition, aptamers sometimes exhibit greater affinity and specificity vs. comparable antibodies. In this work, fluorescent dyes and quenchers were added to the aptamers to enable pushbutton, one-step, bind-and-detect fluorescence resonance energy transfer (FRET) assays or tests that can be freeze-dried, rehydrated with body fluids, and used to quantitate bone loss of vitamin D levels with a handheld fluorometer in the spacecraft environment. This work generated specific, rapid, one-step FRET assays for the bone loss marker C-telopeptide (CTx) when extracted from urine, creatinine from urine, and vitamin D congeners in diluted serum. The assays were quantified in nanograms/mL using a handheld fluorometer connected to a laptop computer to convert the raw fluorescence values into concentrations of each analyte according to linear standard curves. DNA aptamers were selected and amplified for several rounds against a 26- amino acid form of CTx, creatinine, and vitamin D. The commonalities between loop structures were studied, and several common loop structures were converted into aptamer beacons with a fluorophore and quencher on each end. In theory, when the aptamer beacon binds its cognate target (CTx bone peptide, creatinine, or vitamin D), it is forced open and no longer quenched, so it gives off fluorescent light (when excited) in proportion to the amount of target present in a sample. This proportional increase in fluorescence is

  6. Fretting fatigue life estimation using fatigue damage gradient correction factor in various contact configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)

    2017-03-15

    A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient

  7. Design improvement for fretting-wear reduction of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R

    2000-06-01

    In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared

  8. Design improvement for fretting-wear reduction of HANARO fuel assembly

    International Nuclear Information System (INIS)

    Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R.

    2000-06-01

    In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared

  9. Absorption from Neutral Acceptors in GaAs and GaP

    DEFF Research Database (Denmark)

    Christensen, Ove

    1973-01-01

    We present a new calculation of the absorption due to transitions of holes between neutral acceptors and the various valence-band sublevels in GaAs and GaP. The acceptor wave function was approximated by a previously suggested expression for ground-state wave functions appropriate to complicated...... band extrema. Numerical calculations of the absorption from intervalence-band transitions of free holes and neutral acceptors have been performed. Good agreement with experimental results is obtained....

  10. Advanced KSNP fuel, plus7 : grid-to-rod fretting wear resistance of the plus7 spacer grids

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Yong Hwan; Jang, Young Ki; Choi, Joon Hyung

    2003-01-01

    Vibration-induced grid-to-rod fretting wear initiates at a certain critical gap correlated with a critical work rate. A critical gap between grid and rod forms due to in-reactor performance of fuel, thermal relaxation of grid spring and irradiation growth of grid strap, etc. A critical work rate may be generated by three vibration mechanisms proposed in this paper. Three vibration mechanisms have been derived with various fretting wear experience in commercial reactors as well as various out-of-pile hydraulic test results. The first active vibration mechanism is high turbulence-induced excessive fuel rod vibration with the combination of excessive grid-to-rod gap. The second active vibration mechanism is self-excited fuel assembly vibration in a low frequency range caused by hydraulically unbalanced mixing vanes of the spacer grid assembly. The third active vibration mechanism is self-excited spacer grid strap vibration in quite a high frequency range caused by some spacer grid designs. In this study, each vibration mechanism on the grid-to-rod fretting wear damage is discussed. On the other hand, the effects of various grid designs on the fretting wear damage in the commercial reactors are predicted using the long-term fretting wear test results. It is found that the larger grid-to-rod initial contact area generates the less fretting wear damage. Consequently the conformal spring of PLUS7 is superior to typical convex shaped spring with regard to fretting wear resistance since the former generates relatively larger contact area than the latter

  11. Effect of uniaxial stress on the acceptor ground state and on the hopping conduction in p-type germanium and silicon

    International Nuclear Information System (INIS)

    Buczko, R.; Chroboczek, J.A.

    1983-08-01

    We constructed variational wave functions, with correct asymptotic behaviour, for the ground state of shallow acceptors in Ge and Si, utilizing the spherical tensor representation of the effective mass hamiltonian of Baldereschi and Lipari (1973), at uniaxial stress, X, resulting from the application of a tensile or compressive force along the [001] orientation (respectively X 0). Energies of the components of the ground state, computed variationally, account very well for the X-induced displacements of the binding energies and the stress splitting of shallow acceptors in both Ge and Si, at X>0 (no data for X 0. However, they account only qualitatively for the rho(X) data available for Si (X>0 only), probably because of a larger chemical shift of the acceptor ground state in Si and its possible variation with X. At larger acceptor concentrations rho(X) decreases, at large X, much stronger than predicted for both Ge and Si. We attribute this discrepancy to the increase of the contribution to electron transport of multiple hopping transitions at large X values. (author)

  12. Simulation of vibration modes of the fuel rod damaged due to the grid-to-rod fretting wear

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Kyeong Koo; Jang, Young Ki; Lee, Kyou Seok

    1997-01-01

    The flow-induced fuel fretting wear observed in some PWRs mainly proceeds in the grid-to-rod contact positions. The grid-to-rod fretting wear in the PWR fuel assembly depends on grid-to-rod gap size, its axial profile and flow-induced vibration. This paper describes the GRIDFORCE program which generates the axially dependent grid-to-rod gap size as a function of burnup. The axially dependent grid-to-rod gap profiles are employed to predict the fuel rod vibration mode shapes by the ANSYS code. With the help of the Paidousis empirical formula, this paper also calculates the fuel rod vibration amplitudes under various supporting conditions, which indicates that the increase of the number of unsupported mid-grids will increase the fuel rod vibration amplitude. On the other hand, the comparison of the predicted vibration mode shapes and the observed mid-grid fretting wear pattern indicates that the 1st and 6th vibration mode shapes under the supporting inactive condition at the mid-grids can simulate the observed mid-grid fretting wear profile. This paper also proposes design guidelines against the grid-to-rod fretting wear. (author). 3 refs., 8 figs

  13. Characterizing the interactions between prolyl isomerase pin1 and phosphatase inhibitor-2 in living cells with FRET and FCS

    Science.gov (United States)

    Sun, Yuansheng; Wang, Lifu; Jyothikumar, Vinod; Brautigan, David L.; Periasamy, Ammasi

    2012-03-01

    Phosphatase inhibitor-2 (I2) was discovered as a regulator of protein Ser/Thr phosphatase-1 and is conserved from yeast to human. Binding between purified recombinant I2 from different species and the prolyl isomerase Pin1 has been demonstrated with pull-down assays, size exclusion chromatography and nuclear magnetic resonance spectroscopy. Despite this, questions persist as to whether these proteins associate together in living cells. In this study, we prepared fluorescent protein (FP) fusions of I2 and Pin1 and employed both Förster Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS) imaging techniques to characterize their interactions in living cells. In both intensity-based and time-resolved FRET studies, we observed FRET uniformly across whole cells co-expressing I2-Cerulean and Pin1-Venus that was significantly higher than in negative controls expressing Cerulean FP (without fusing to I2) as the FRET donor and Pin1-Venus, showing a specific interaction between I2-Cerulean and Pin1-Venus in living cells. We also observed the co-diffusion of I2-Cerulean and Pin1-mCherry in Fluorescence Cross Correlation Spectroscopy (FCCS) measurements. We further showed that I2 itself as well as I2-Pin1 formed complexes in living cells (predicted from in vitro studies) via a quantitative FRET assay, and demonstrated from FCS measurements that both I2 and Pin1 (fused to Cerulean) are highly mobile in living cells.

  14. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    Science.gov (United States)

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  15. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET).

    Science.gov (United States)

    Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon

    2016-07-07

    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.

  16. Development of a Fluorescence Resonance Energy Transfer (FRET-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense

    Directory of Open Access Journals (Sweden)

    Noremylia Mohd Bakhori

    2013-12-01

    Full Text Available An optical DNA biosensor based on fluorescence resonance energy transfer (FRET utilizing synthesized quantum dot (QD has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10−9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  17. Recent advances in photoinduced donor/acceptor copolymerization

    International Nuclear Information System (INIS)

    Joensson, S.; Viswanathan, K.; Hoyle, C.E.; Clark, S.C.; Miller, C.; Morel, F.; Decker, C.

    1999-01-01

    Photoinitiated free radical polymerization of donor (D)/acceptor (A) type monomers has gained considerable interest due to the possibility to efficiently photopolymerize non-acrylate based systems. Furthermore, this photoinduced alternating copolymerization can be accomplished without the presence of a conventional free radical generating photoinitiator. In the past, we have shown that the structural influences in the direct photolysis of N-Alkyl and N-Arylmaleimides as well as their corresponding ground state charge transfer complexes (CTC) with suitable donors have carefully been investigated. For certain combinations of A and D type monomers, a direct photolysis of the ground state complex or the excitation of the acceptor, followed by the formation of an exciplex, has been shown to initiate the copolymerization. Herein, we show that the main route of initiation is based on inter or intra molecular H-abstraction from an excited state maleimide, whereby no exciplex formation takes place. H-abstraction will predominantly take place in systems where easily abstractable hydrogens are present. Our laser flash photolysis investigation, ESR (A. Hiroshi, I. Takasi, T. Nosi, Macromol. Chem. 190 (1989) 2821) and phosphorescence emissions (K.S. Chen, T. Foster, J.K.S. Wan, J. Phys. Chem. 84 (1980) 2473; C.J. Seliskar, S.P. McGlynn, J. Chem. Phys. 55 (1971) 4337) studies show that triplet excited states of N-alkyl substituted maleimides (RMI), which are well known strong precursors for direct H-abstractions from aliphatic ethers and secondary alcohols, are formed upon excitation. Rates of copolymerization and degrees of conversion for copolymerization of maleimide/vinyl ether pairs in air and nitrogen have been measured as a function of hydrogen abstractability of the excited triplet state MI as well as the influence of concentration and hydrogen donating effect of the hydrogen donor

  18. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (Actinobacteria when compared to bulk soil. Electrodes as TEAs enhance electrogenic bacteria recovery and culturing. The use of MECs for the productions of Feammox-bacteria eliminates the dependence of Fe, a finite electron acceptor, therefore, allowing for continuous NH4+ removal. Finally, Fe-free Feammox-bacteria can be applied to reduce other metals of environmental concern; therefore, opening the range of possible application of Feammox-bacteria.

  19. Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Brault, Julien; Chenot, Sébastien; Dussaigne, Amélie; Leroux, Mathieu; Damilano, Benjamin

    2013-01-01

    Hall effect and capacitance-voltage C(V) measurements were performed on p-type GaN:Mg layers grown on GaN templates by molecular beam epitaxy with a high range of Mg-doping concentrations. The free hole density and the effective dopant concentration N A −N D as a function of magnesium incorporation measured by secondary ion mass spectroscopy clearly reveal both a magnesium doping efficiency up to 90% and a strong dependence of the acceptor ionization energy Ea with the acceptor concentration N A . These experimental observations highlight an isolated acceptor binding energy of 245±25 meV compatible, at high acceptor concentration, with the achievement of p-type GaN:Mg layers with a hole concentration at room temperature close to 10 19 cm −3

  20. An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor

    KAUST Repository

    Cha, Hyojung; Wu, Jiaying; Wadsworth, Andrew; Nagitta, Jade; Limbu, Saurav; Pont, Sebastian; Li, Zhe; Searle, Justin; Wyatt, Mark F.; Baran, Derya; Kim, Ji-Seon; McCulloch, Iain; Durrant, James R.

    2017-01-01

    polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C71 butyric acid methyl ester (PC71 BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any

  1. Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers

    NARCIS (Netherlands)

    Mullekom, van H.A.M.; Vekemans, J.A.J.M.; Havinga, E.E.; Meijer, E.W.

    2001-01-01

    This paper reviews the tools to manipulate and minimize the band gap of conjugated (co)polymers. The effects of minimization of the bond length alternation and of the incorporation of donor-K-acceptor units are discussed in particular. A systematic study of a series of alternating donor-acceptor

  2. Conformational dynamics of semiflexibly bridged electron donor-acceptor systems comprising long aliphatic tails

    NARCIS (Netherlands)

    Bleisteiner, B.; Marian, T.; Schneider, S.; Brouwer, A.M.; Verhoeven, J.W.

    2001-01-01

    In continuation of our previous work on the conformational dynamics (harpooning mechanism) of semiflexibly bridged electron donor-acceptor systems we have studied a derivative with two long aliphatic chains tethered to the donor and acceptor moieties, respectively. The fitting of the time- and

  3. Reconstruction of calmodulin single-molecule FRET states, dye interactions, and CaMKII peptide binding by MultiNest and classic maximum entropy

    Science.gov (United States)

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2013-08-01

    We analyzed single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  4. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy.

    Science.gov (United States)

    Devore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2013-08-30

    We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca 2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  5. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    Science.gov (United States)

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  6. A combined experimental and finite element approach to analyse the fretting mechanism of the head-stem taper junction in total hip replacement

    NARCIS (Netherlands)

    Bitter, T.; Khan, I.; Marriott, T.; Lovelady, E.; Verdonschot, N.J.; Janssen, D.W.

    2017-01-01

    Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental

  7. Advanced non-linear flow-induced vibration and fretting-wear analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Toorani, M.; Pan, L.; Li, R.; Idvorian, N. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Vincent, B.

    2009-07-01

    Fretting wear is a potentially significant degradation mechanism in nuclear steam generators and other shell and tube heat transfer equipment as well. This paper presents an overview of the recently developed code FIVDYNA which is used for the non-linear flow-induced vibration and fretting wear analysis for operating steam generators (OTSG and RSG) and shell-and-tube heat exchangers. FIVDYNA is a non-linear time-history Flow-Induced Vibration (FIV) analysis computer program that has been developed by Babcock and Wilcox Canada to advance the understanding of tube vibration and tube to tube-support interaction. In addition to the dynamic fluid induced forces the program takes into account other tube static forces due to axial and lateral tube preload and thermal interaction loads. The program is capable of predicting the location where the fretting wear is most likely to occur and its magnitude taking into account the support geometry including gaps. FIVDYNA uses the general purpose finite element computer code ABAQUS as its solver. Using ABAQUS gives the user the flexibility to add additional forces to the tube ranging from tube preloads and the support offsets to thermal loads. The forces currently being modeled in FIVDYNA are the random turbulence, steady drag force, fluid-elastic forces, support offset and pre-strain force (axial loads). This program models the vibration of tubes and calculates the structural dynamic characteristics, and interaction forces between the tube and the tube supports. These interaction forces are then used to calculate the work rate at the support and eventually the predicted depth of wear scar on the tube. A very good agreement is found with experiments and also other computer codes. (author)

  8. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging.

    Directory of Open Access Journals (Sweden)

    Shaoying Lu

    2008-07-01

    Full Text Available Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP experiments, we have developed a finite element (FE method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2/sec than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2/sec and outside: 0.18+/-0.02 microm(2/sec. The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.

  9. Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements.

    Science.gov (United States)

    Fuertes, Gustavo; Banterle, Niccolò; Ruff, Kiersten M; Chowdhury, Aritra; Mercadante, Davide; Koehler, Christine; Kachala, Michael; Estrada Girona, Gemma; Milles, Sigrid; Mishra, Ankur; Onck, Patrick R; Gräter, Frauke; Esteban-Martín, Santiago; Pappu, Rohit V; Svergun, Dmitri I; Lemke, Edward A

    2017-08-01

    Unfolded states of proteins and native states of intrinsically disordered proteins (IDPs) populate heterogeneous conformational ensembles in solution. The average sizes of these heterogeneous systems, quantified by the radius of gyration ( R G ), can be measured by small-angle X-ray scattering (SAXS). Another parameter, the mean dye-to-dye distance ( R E ) for proteins with fluorescently labeled termini, can be estimated using single-molecule Förster resonance energy transfer (smFRET). A number of studies have reported inconsistencies in inferences drawn from the two sets of measurements for the dimensions of unfolded proteins and IDPs in the absence of chemical denaturants. These differences are typically attributed to the influence of fluorescent labels used in smFRET and to the impact of high concentrations and averaging features of SAXS. By measuring the dimensions of a collection of labeled and unlabeled polypeptides using smFRET and SAXS, we directly assessed the contributions of dyes to the experimental values R G and R E For chemically denatured proteins we obtain mutual consistency in our inferences based on R G and R E , whereas for IDPs under native conditions, we find substantial deviations. Using computations, we show that discrepant inferences are neither due to methodological shortcomings of specific measurements nor due to artifacts of dyes. Instead, our analysis suggests that chemical heterogeneity in heteropolymeric systems leads to a decoupling between R E and R G that is amplified in the absence of denaturants. Therefore, joint assessments of R G and R E combined with measurements of polymer shapes should provide a consistent and complete picture of the underlying ensembles.

  10. Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions

    International Nuclear Information System (INIS)

    Benea, Lidia; Başa, Sorin-Bogdan; Dănăilă, Eliza; Caron, Nadège; Raquet, Olivier; Ponthiaux, Pierre; Celis, Jean-Pierre

    2015-01-01

    Highlights: • The friction and wear properties of Ni/nano-WC composite were studied. • Nano-WC reinforcement decreased friction coefficient in dry and wet conditions. • Nano-WC reinforcement fraction was seen to be 12 wt.%. • Nanohardness increased by 27% compared to nickel without WC reinforcements. • Ennoblement of OCP corresponding to the Ni/nano-WC composite coating. - Abstract: The fretting and wear behaviors of Ni/nano-WC composite coatings were studied by considering the effect of fretting frequency of 1 Hz during 10,000 cycles, at different applied loads in dry or wet conditions. The studies were performed on a ball-on-disk tribometer and the results were compared with pure Ni coating. The nanohardness of pure Ni and Ni/nano-WC composite coatings was tested by nanoindentation technique. To evaluate the wet wear (tribocorrosion) behavior the open circuit potential (OCP) was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors (PWRs). The results show that Ni/nano-WC composite coatings exhibited a low friction coefficient, high nanohardness and wear resistance compared with pure Ni coatings under similar experimental conditions. Ni/nano-WC composite coatings were obtained on stainless steel support by electrochemical codeposition of nano-sized WC particles (diameter size of ∼60 nm) with nickel, from a standard nickel Watts plating bath. The surface morphology and the composition of the coatings were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) respectively

  11. New donor-acceptor-donor molecules based on quinoline acceptor unit with Schiff base bridge: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kotowicz, Sonia [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Siwy, Mariola [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Filapek, Michal; Malecki, Jan G. [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Smolarek, Karolina; Grzelak, Justyna; Mackowski, Sebastian [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun (Poland); Slodek, Aneta, E-mail: aneta.slodek@us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Schab-Balcerzak, Ewa, E-mail: ewa.schab-balcerzak@us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland)

    2017-03-15

    Three solution-processable small organic molecules bearing quinoline as electron-accepting moiety were synthesized via condensation reaction of novel 6-amino-2-(2,2’-bithiophen-5-yl)-4-phenylquinoline with 2,2’-bithiophene-5-carboxaldehyde, 9-ethyl-9H-carbazole-3-carbaldehyde and 9-phenanthrenecarboxaldehyde. The presence of alternating electron-donating and accepting units results in a donor-acceptor-donor architecture of these molecular systems. Thermal, photophysical, and electrochemical properties of these small molecules were examined and the experimental results were supported by the density functional theory calculations. The obtained molecular systems exhibited high thermal stability with decomposition temperatures (5% weight loss) exceeding 330 °C in nitrogen atmosphere. It was found, based on DSC measurements, that investigated Schiff bases form amorphous material with glass transition temperatures between 88 and 190 °C. They also showed a UV–vis absorption in the range of 250–500 nm both in solution and in solid state as film and blend with PMMA and PVK. Photoluminescence measurements revealed moderately strong blue-light emission of the imines in solution as well as in PMMA blend with quantum yields in the range of 2–26%. In the case of imines dispersed in PVK matrix the emission of green light was mainly observed. In addition, when mixed with plasmonically active silver nanowires, the compounds exhibit relatively strong electroluminescence signal, associated with plasmonics enhancement, as evidenced by high-resolution photoluminescence imaging. The energy band gap estimated based on cyclic voltammetry was between 2.38 and 2.61 eV. - Highlights: • New Schiff bases possess donor-acceptor-imine-bridge-donor architecture were synthesized and examined. • Thorough characterization of optical and electrochemical properties of novel Schiff bases has been carried out. • Optical and electrochemical measurements were compared with DFT

  12. The synergy of corrosion and fretting wear process on Inconel 690 in the high temperature high pressure water environment

    Science.gov (United States)

    Wang, Zihao; Xu, Jian; Li, Jie; Xin, Long; Lu, Yonghao; Shoji, Tetsuo; Takeda, Yoichi; Otsuka, Yuichi; Mutoh, Yoshiharu

    2018-04-01

    The synergistic effect of corrosion and fretting process of the steam generator (SG) tube was investigated by using a self-designed high temperature test rig in this paper. The experiments were performed at 100°C , 200°C and 288°C , respectively. The fretting corrosion damage was studied by optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Raman spectroscopy and auger electron spectroscopy (AES). The results demonstrated that the corrosion process in high temperature high pressure (HTHP) water environment had a distinct interaction with the fretting process of Inconel 690. With the increment of temperature, the damage mechanism changed from a simple mechanical process to a mechanochemical process.

  13. TECHNIQUE OF TESTING ON FRETTING AT THE SPHERE-TO-PLANE CONTACT

    Directory of Open Access Journals (Sweden)

    А. Khimko

    2012-12-01

    Full Text Available  The methodology of conducting tests on fretting at the sphere-to-plane contact was developed for the wing mechanization unit, namely for screw-nut pair with intermediate balls. Wearability tests were conducted on a modified installation МФК-1, the feature of which is the designed holder that allows testing with real balls. It was found that at the dry contact of ШХ-15 and 30Х2НВФA materials, surface microcracks are formed due to welding of microasperities areas and their rupture under the influence of vibration.

  14. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren

    2015-01-01

    The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode...... polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm...

  15. Experimental evaluation of the fretting fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2013-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. A method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires along the length of the monostrand. The experimental data....... Moreover, the paper provides relevant information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of the monostrand undergoing flexural deformations. The results presented herein are of special interest for the fatigue analysis of modern stay...

  16. The Role of FRET in Non-Fullerene Organic Solar Cells: Implications for Molecular Design.

    Science.gov (United States)

    Gautam, Bhoj R; Younts, Robert; Carpenter, Joshua; Ade, Harald; Gundogdu, Kenan

    2018-04-19

    Non-fullerene acceptors (NFAs) have been demonstrated to be promising candidates for highly efficient organic photovoltaic (OPV) devices. The tunability of absorption characteristics of NFAs can be used to make OPVs with complementary donor-acceptor absorption to cover a broad range of the solar spectrum. However, both charge transfer from donor to acceptor moieties and energy (energy) transfer from high-bandgap to low-bandgap materials are possible in such structures. Here, we show that when charge transfer and exciton transfer processes are both present, the coexistence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low-bandgap material is hindered due to exciton population in the larger bandgap acceptor domains. Our results further show that excitons in low-bandgap material should have a relatively long lifetime compared to the transfer time of excitons from higher bandgap material in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.

  17. Fretting Fatigue Behaviour of Pin-Loaded Thermoset Carbon-Fibre-Reinforced Polymer (CFRP Straps

    Directory of Open Access Journals (Sweden)

    Fabio Baschnagel

    2016-04-01

    Full Text Available This paper focuses on the fretting fatigue behaviour of pin-loaded carbon-fibre-reinforced polymer (CFRP straps studied as models for rigging systems in sailing yachts, for suspenders of arch bridges and for pendent cables in cranes. Eight straps were subjected to an ultimate tensile strength test. In total, 26 straps were subjected to a fretting fatigue test, of which ten did not fail. An S–N curve was generated for a load ratio R of 0.1 and a frequency f of 10 Hz, showing a fatigue limit stress of the straps around the matrix fatigue limit, corresponding to 46% of the straps’ ultimate tensile strength (σUTS. The fatigue limit was defined as 3 million load cycles (N = 3 × 106, but tests were even conducted up to N = 11.09 × 106. Catastrophic failure of the straps was initiated in their vertex areas. Investigations on the residual strength and stiffness properties of straps tested around the fatigue limit stress (for N ≥ 1 × 106 showed little influence of the fatigue loading on these properties. Quasi-static finite element analyses (FEA were conducted. The results obtained from the FEA are in good agreement with the experiments and demonstrate a fibre parallel stress concentration in the vertex area of factor 1.3, under the realistic assumption of a coefficient of friction (cof between pin and strap of 0.5.

  18. [Detection of protein-protein interactions by FRET and BRET methods].

    Science.gov (United States)

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  19. A Study on Corrosion and Fretting Wear Resistance of Alloy 690 Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Won, Ju Jin; Min, Su Jung; Kim, Myeong Su; Kim, Kyu Tae [Dongguk Univ., Gyeongju (Korea, Republic of)

    2013-10-15

    In this article, the effects of such failures have on the materials of alloy 690 are assessed. The corroded volume variation and mass decreased continuously with time. However, the oxide volume changes in an irregular pattern since the oxide formed on the alloy 690 metal may be detached due to the flake formation. The amount of the fretting wear increased with time. It can be seen that the wear rate increased with time and reduced at the later time. The test results show that the ductility decreased as corrosion increases. Alloy 690 is broadly used as a material of nuclear power plant's steam generator tubes because of its excellent mechanical strength, corrosion properties, wear properties and stability at a high temperature. However, the tubes for nuclear power plant's steam generators become a major threat for lifetime management and efficient operation of nuclear power plant due to various corrosion and fretting wear failures caused by flow-induced vibration (FIV) that occurs between tubes.

  20. Efficient FRET-based fuorescent ratiometric chemosensors for Fe3+ and its application in living cells

    International Nuclear Information System (INIS)

    Wang, Cuicui; Liu, Yaqi; Cheng, Junye; Song, Jianhua; Zhao, Yufen; Ye, Yong

    2015-01-01

    A series of novel FRET-based fluorescent ratiometric chemosensors (L 1 –L 6 ) were designed and synthesized. Sensor L 2 showed reversible and the best selective recognition toward Fe 3+ over other metal ions with a detection limit of 0.418 ppm, which can meet the selective requirements for practical application. Experiment results showed that the response behavior of L 2 toward Fe 3+ is pH independent in weak acid condition (pH 4.0–6.0). In addition, sensor L 2 was successfully applied for ratiometric visualization of Fe 3+ in living cells. - Highlights: • The detection limit of a new FRET probe for Fe 3+ was 0.418 ppm. • The probe exhibited high selectivity and sensitivity detection to Fe 3+ with a pH span of 4.0–6.0. • The significant changes in color could be used for naked-eye detection • The fluorescence imaging experiment demonstrated its value of practical application

  1. Stem Migration and Fretting Corrosion of the Antirotation Pin in the K2/Apex Hip System.

    Science.gov (United States)

    Kent, Michael; Edmondson, Mark; Ebert, Jay; Nivbrant, Nils; Kop, Alan; Wood, David; De Steiger, Richard

    2016-03-01

    Many exchangeable neck hip systems have been withdrawn because of fretting corrosion at the neck/stem coupling. Our prospective randomized study evaluating stem stability (Roentgen stereophotogrammetric analysis, dual-energy x-ray absorptiometry) and clinical outcomes between the K2/Apex hip systems was ceased early because of a withdrawal of the stems which had an unfavorably high early revision rate reported in the Australian Orthopaedic Association National Joint Registry (9.3% at 3 years). At 2 years, there are no clinical differences between the stems. Roentgen stereophotogrammetric analysis has identified a high proportion of potentially concerning subsidence and retroversion in both groups, more marked in the K2 stem, although mostly in asymptomatic patients. Dual-energy x-ray absorptiometry has shown similar bone density around the stems. Retrieval analysis of 3 study patients showed fretting corrosion of the antirotation pin and aseptic lymphocyte-dominated vasculitis-associated lesion, with no relationship to bearing type or size. Analysis of 7 further nonstudy K2/Apex stems confirmed similar corrosion. This study shows potentially concerning subsidence of both stems and is the first to describe corrosion at the neck-stem interface and a relationship to metal-related pathology. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  2. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer L.; Kim, Hanseong [Arizona State University, Tempe, AZ 85287-1604 (United States); Markwardt, Michele L. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Chen, Liqing; Fromme, Raimund [Arizona State University, Tempe, AZ 85287-1604 (United States); Rizzo, Mark A. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Wachter, Rebekka M., E-mail: rwachter@asu.edu [Arizona State University, Tempe, AZ 85287-1604 (United States)

    2013-05-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.

  3. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    International Nuclear Information System (INIS)

    Watkins, Jennifer L.; Kim, Hanseong; Markwardt, Michele L.; Chen, Liqing; Fromme, Raimund; Rizzo, Mark A.; Wachter, Rebekka M.

    2013-01-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed

  4. Assessment of Corrosion, Fretting, and Material Loss of Retrieved Modular Total Knee Arthroplasties.

    Science.gov (United States)

    Martin, Audrey J; Seagers, Kirsten A; Van Citters, Douglas W

    2017-07-01

    Modular junctions in total hip arthroplasties have been associated with fretting, corrosion, and debris release. The purpose of this study is to analyze damage severity in total knee arthroplasties of a single design by qualitative visual assessment and quantitative material loss measurements to evaluate implant performance and patient impact via material loss. Twenty-two modular knee retrievals of the same manufacturer were identified from an institutional review board-approved database. Junction designs included tapers with an axial screw and tapers with a radial screw. Constructs consisted of 2 metal alloys: CoCr and Ti6Al4V. Components were qualitatively scored and quantitatively measured for corrosion and fretting. Negative values represent adhered material. Statistical differences were analyzed using sign tests. Correlations were tested with a Spearman rank order test (P corrosion than other components, suggesting preferential corrosion when interfacing with Ti6Al4V. Overall, although corrosion was noted in this series, material loss was low, and none were revised for clinical metal-related reaction. This suggests the clinical impact from corrosion in total knee arthroplasty is low. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Evaluation of a FRET-peptide substrate to predict virulence in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wendy E Kaman

    Full Text Available Pseudomonas aeruginosa produces a number of proteases that are associated with virulence and disease progression. A substrate able to detect P. aeruginosa-specific proteolytic activity could help to rapidly alert clinicians to the virulence potential of individual P. aeruginosa strains. For this purpose we designed a set of P. aeruginosa-specific fluorogenic substrates, comprising fluorescence resonance energy transfer (FRET-labeled peptides, and evaluated their applicability to P. aeruginosa virulence in a range of clinical isolates. A FRET-peptide comprising three glycines (3xGly was found to be specific for the detection of P. aeruginosa proteases. Further screening of 97 P. aeruginosa clinical isolates showed a wide variation in 3xGly cleavage activity. The absence of 3xGly degradation by a lasI knock out strain indicated that 3xGly cleavage by P. aeruginosa could be quorum sensing (QS-related, a hypothesis strengthened by the observation of a strong correlation between 3xGly cleavage, LasA staphylolytic activity and pyocyanin production. Additionally, isolates able to cleave 3xGly were more susceptible to the QS inhibiting antibiotic azithromycin (AZM. In conclusion, we designed and evaluated a 3xGly substrate possibly useful as a simple tool to predict virulence and AZM susceptibility.

  6. The role of two-phase coolant in moderating fretting in nuclear steam generators

    International Nuclear Information System (INIS)

    Dyke, J.M.

    2004-01-01

    This paper expands the principal of coolant-cushioning in Nuclear Steam Generators whereby the two-phase coolant, especially the bubble film on the tube surface, moderates the vibration of coolant tubes against their supports. The current paper addresses tube bundle and anti-vibration bars (AVB) geometry issues; examines the tube bundle-coolant-AVB interfaces and examines implications for recirculation flow, AVB design and boiler size. In a T(sat) fluid, the tube surface is uniformly coating with growing bubbles whose momentum is perpendicular to the surface at first, then they are swept away by the bulk flow. The combination of this momentum, the phase change and the water film remaining on the surface, counteract the vibration energy of the tube-AVB system, reducing the likelihood of metal-to-metal contact and consequent fretting. To maximize the benefit of the cushioning effect, the following design inputs are needed: 1) the AVB-tube interface should have sufficient clearance for the T(sat) solution to operate, 2) The AVB should be wide enough to generate the necessary cushioning force, and 3) the AVB should be thin enough to be flexible and absorb some of the transferred vibration energy. Furthermore, fretting and crude deposition at the AVB-tube interface can be reduced or eliminated by reducing the number of AVBs, increasing clearances and making the AVBs limber

  7. Modeling of fuel bundle vibration and the associated fretting wear in a CANDU fuel channel

    International Nuclear Information System (INIS)

    Mohany, A.; Hassan, M.

    2011-01-01

    In this paper a numerical model is developed to predict the vibration response of a CANDU® fuel bundle and the associated fretting wear in the surrounding pressure tube. One excitation mechanism is considered in this model; turbulence-induced excitation caused by coolant flow inside the fuel channel. The numerical model can be easily adapted to include the effects of seismic events, fuel bundle impact during refuelling and start-up of the reactor, and the acoustic pressure pulsations caused by the primary heat transport (PHT) pumps. The simulation is performed for a typical CANDU fuel bundle with 37 fuel elements. The clearances between the buttons of the inner fuel elements, and between the bearing pads of the outer fuel elements and the pressure tube were measured from an actual fuel bundle. Some variability among the measured clearance values was observed. Therefore, probability density functions of the measured clearance values were established and the simulation was performed for the probabilistic distribution of the clearance values. The contact between the fuel bundle and the pressure tube is modeled using pseudo-force contact method. The proposed modelling technique can be used in future CANDU reactors to avoid fuel and pressure tube fretting damage due to the aforementioned excitation mechanisms. (author)

  8. Analysis of nonlinear optical properties in donor–acceptor materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, Paul N. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Inc., Dayton, Ohio 45431 (United States); Pachter, Ruth [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Nguyen, Kiet A. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES, Inc., Dayton, Ohio 45432 (United States)

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  9. Potassium acceptor doping of ZnO crystals

    Directory of Open Access Journals (Sweden)

    Narendra S. Parmar

    2015-05-01

    Full Text Available ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 1016 cm−3. IR measurements show a local vibrational mode (LVM at 3226 cm−1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm−1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  10. Potassium acceptor doping of ZnO crystals

    Science.gov (United States)

    Parmar, Narendra S.; Corolewski, Caleb D.; McCluskey, Matthew D.; Lynn, K. G.

    2015-05-01

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ˜1 × 1016 cm-3. IR measurements show a local vibrational mode (LVM) at 3226 cm-1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O-H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm-1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  11. Potassium acceptor doping of ZnO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Narendra S., E-mail: nparmar@wsu.edu; Lynn, K. G. [Center for Materials Research, Washington State University, Pullman, Washington 99164-2711 (United States); Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Corolewski, Caleb D.; McCluskey, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  12. Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells

    KAUST Repository

    Alamoudi, Maha

    2018-03-02

    Small-molecule “nonfullerene” acceptors are promising alternatives to fullerene (PC61/71BM) derivatives often used in bulk heterojunction (BHJ) organic solar cells; yet, the efficiency-limiting processes and their dependence on the acceptor structure are not clearly understood. Here, we investigate the impact of the acceptor core structure (cyclopenta-[2,1-b:3,4-b′]dithiophene (CDT) versus indacenodithiophene (IDTT)) of malononitrile (BM)-terminated acceptors, namely CDTBM and IDTTBM, on the photophysical characteristics of BHJ solar cells. Using PCE10 as donor polymer, the IDTT-based acceptor achieves power conversion efficiencies (8.4%) that are higher than those of the CDT-based acceptor (5.6%) because of a concurrent increase in short-circuit current and open-circuit voltage. Using (ultra)fast transient spectroscopy we demonstrate that reduced geminate recombination in PCE10:IDTTBM blends is the reason for the difference in short-circuit currents. External quantum efficiency measurements indicate that the higher energy of interfacial charge-transfer states observed for the IDTT-based acceptor blends is the origin of the higher open-circuit voltage.

  13. Synthesis and optoelectronic characterization of some triphenylamine-based compounds containing strong acceptor substituents

    Energy Technology Data Exchange (ETDEWEB)

    Grigoras, Mircea, E-mail: grim@icmpp.ro; Ivan, Teofilia; Vacareanu, Loredana; Catargiu, Ana Maria; Tigoianu, Radu

    2014-09-15

    Three novel triphenylamine-based compounds containing strong electron acceptor groups have been synthesized and their comparative photophysical properties are presented. These compounds were obtained by a two-step method: (i) triphenylamine compounds with one, two and three phenylacetylene arms were synthesized by Sonogashira reaction between iodine-substituted triphenylamines and phenylacetylene, followed by (ii) post-modification of these electron-rich alkynes by addition of the strong electron acceptor, tetracyanoethylene. Characterization of all oligomers was made by FTIR, {sup 1}H-NMR, UV–vis and fluorescence spectroscopy. A batochromic shifting of the UV and photoluminescence maxima was observed with the increase of the acceptor group number. The electrochemical behavior was studied by cyclic voltammetry. The cyclic voltammograms have evidenced that triphenylamine-phenylacetylene compounds undergo only oxidation processes while compounds modified with tetracyanoethylene show both oxidation and reduction peaks associated with donor and acceptor groups, respectively. The donor–acceptor compounds coordinate metal ions (i.e., Hg{sup 2+} and Sn{sup 2+}) by cyano groups resulting in the decreasing of charge transfer band intensity, and they can be used as chemosensors. - Highlights: • Three triphenylamine-based ethynylene compounds were prepared by Sonogashira reaction. • Post-modification of ethynylene linkages by tetracyanethylene cycloaddition and retroconversion led to donor–acceptor compounds. • Photophysical properties of donor–acceptor oligomers were studied in different solvents.

  14. Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells

    KAUST Repository

    Alamoudi, Maha; Khan, Jafar Iqbal; Firdaus, Yuliar; Wang, Kai; Andrienko, Denis; Beaujuge, Pierre; Laquai, Fré dé ric

    2018-01-01

    Small-molecule “nonfullerene” acceptors are promising alternatives to fullerene (PC61/71BM) derivatives often used in bulk heterojunction (BHJ) organic solar cells; yet, the efficiency-limiting processes and their dependence on the acceptor structure are not clearly understood. Here, we investigate the impact of the acceptor core structure (cyclopenta-[2,1-b:3,4-b′]dithiophene (CDT) versus indacenodithiophene (IDTT)) of malononitrile (BM)-terminated acceptors, namely CDTBM and IDTTBM, on the photophysical characteristics of BHJ solar cells. Using PCE10 as donor polymer, the IDTT-based acceptor achieves power conversion efficiencies (8.4%) that are higher than those of the CDT-based acceptor (5.6%) because of a concurrent increase in short-circuit current and open-circuit voltage. Using (ultra)fast transient spectroscopy we demonstrate that reduced geminate recombination in PCE10:IDTTBM blends is the reason for the difference in short-circuit currents. External quantum efficiency measurements indicate that the higher energy of interfacial charge-transfer states observed for the IDTT-based acceptor blends is the origin of the higher open-circuit voltage.

  15. Shallow acceptors in strained Ge/Ge1-xSix heterostructures with quantum wells

    International Nuclear Information System (INIS)

    Aleshkin, V.Ya.; Andreev, B.A.; Gavrilenko, V.I.; Erofeeva, I.V.; Kozlov, D.V.; Kuznetsov, O.A.

    2000-01-01

    Dependence of acceptor localized state energies in quantum wells (strained layers of Ge in heterostructures Ge/Ge 1-x Si x ) on the width of quantum well and position in it was studied theoretically. Spectrum of impurity absorption in the far infrared range was calculated. Comparison of the results calculated and observed photoconductivity spectra permits estimating acceptor distribution over quantum well and suggesting conclusion that acceptors can be largely concentrated near heteroboundaries. Absorption spectrum was calculated bearing in mind resonance impurity states, which permits explaining the observed specific features in the photoconductivity spectrum short-wave range by transition to resonance energy levels, bound to upper subzones of dimensional quantization [ru

  16. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    Science.gov (United States)

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy

    NARCIS (Netherlands)

    Vermeer, J.E.M.; van Munster, E.B.; Vischer, N.O.; Gadella, T.

    2004-01-01

    Multimode fluorescence resonance energy transfer (FRET) microscopy was applied to study the plasma membrane organization using different lipidated green fluorescent protein (GFP)-fusion proteins co-expressed in cowpea protoplasts. Cyan fluorescent protein (CFP) was fused to the hyper variable region

  18. Experimental studies of resistance fretting-wear of fuel rods for VVER-1000 and TVS-KVADRAT fuel assemblies

    International Nuclear Information System (INIS)

    Makarov, V.; Afanasiev, A.; Egorov, Yu.; Matvienko, I.

    2015-01-01

    The paper covers the results of the studies performed to justify the wear resistance of fuel rods in contact with the spacer grids of TVS VVER-1000 fuel assembly and TVS-KVADRAT square fuel assembly of Russian design for PWR-900 reactor. The presented results of three testing stages comprise: Testing of mockup fuel rods of VVER TVS fuel assembly for fretting wear under the conditions of the water chemistry of VVER reactor; Testing models of different design embodiments of the fuel rods for VVER TVS fuel assembly for fretting wear in still cold water; Testing mockup fuel rods of TVS-KVADRAT square fuel assembly for PWR reactor for frettingwear under the conditions of PWR water chemistry. The effect of structural and operational factors was determined (amplitudes, fuel rod vibration frequencies, values of cladding-to-spacer grid cell gap for the depth of fuel rod cladding wear etc.), an assessment was made of the threshold values of fuel rod vibration parameters, which, if not exceeded, provide the absence of the fuel rod cladding fretting wear in the fuel rod-to spacer grid contact area. Key words: fretting wear, fuel rod, spacer grid, VVER, PWR (author)

  19. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET)

    NARCIS (Netherlands)

    Lidke, D.S.; Nagy, P.; Barisas, B.G.; Heintzmann, R.; Post, Janine Nicole; Lidke, K.A.; Clayton, A.H.A.; Arndt-jovin, D.J.; Jovin, T.M.

    2003-01-01

    We report the implementation and exploitation of fluorescence polarization measurements, in the form of anisotropy fluorescence lifetime imaging microscopy (rFLIM) and energy migration Förster resonance energy transfer (emFRET) modalities, for wide-field, confocal laser-scanning microscopy and flow

  20. Förster Resonance Energy Transfer (FRET) between Heterogeneously Distributed Probes: Application to Lipid Nanodomains and Pores

    Czech Academy of Sciences Publication Activity Database

    Šachl, Radek; Johansson, L. B. A.; Hof, Martin

    2012-01-01

    Roč. 13, č. 12 (2012), s. 16141-16156 E-ISSN 1422-0067 R&D Projects: GA ČR GAP208/10/1090; GA ČR GAP208/10/0376 Institutional support: RVO:61388955 Keywords : FRET * lipid domains * pores Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.464, year: 2012

  1. Influence of thermal oxidation duration on the microstructure and fretting wear behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Liu, Yuhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-06-01

    Thermal oxidation under water oxidizing atmosphere was performed on Ti6Al4V alloy under different durations from 2 h to 8 h. Surface characterizations were performed using X-ray diffractometery (XRD), scanning electron microscopy (SEM), Raman spectroscopy, nanoindentation and nano scratch testing. Fretting wear behaviors of untreated and oxidized samples were also examined. The formed oxide coating mainly included rutile TiO{sub 2} as well as a little alumina. The weight gain with respect to the oxidation duration obeyed the linear oxidation kinetics law. The growth of oxide grains was in inadequate growth state of incomplete scale coverage from 2nd to 4th hour duration, in normal growth state from 4th to 6th hour duration while in excessive growth state of oxide particle agglomeration and surface roughening from 6th to 8th (or more than 8th) hour duration. The coating thickness increased from 5 μm to 12 μm as oxidation duration increased from 2 h to 8 h. The increase in duration also increased surface roughness and nano hardness as well as adhesion strength of the film/substrate for oxidized samples. The nano hardness value was 10.06 ± 2.15 GPa and the critical load of failure during nano scratch testing was 554.3 ± 6.44 mN for 4 h treated sample. The untreated and oxidized samples showed a same fretting running status and fretting regime with a displacement amplitude of 200 μm while revealing different fretting failure mechanisms. It was mainly abrasive and adhesive wear under ploughing force for untreated sample, while a mix of 3-body abrasion by rolling oxide particles and severe plastic deformation under high contact stress between two ceramic materials for the oxidized samples. The oxide coating was not worn out and improved the fretting wear resistance of titanium alloy. - Highlights: • A thickness of 5–12 μm rutile TiO{sub 2} coating formed under different oxidation durations. • Weight gain with respect to oxidation duration obeyed linear

  2. Wide-field lifetime-based FRET imaging for the assessment of early functional distribution of transferrin-based delivery in breast tumor-bearing small animals

    Science.gov (United States)

    Sinsuebphon, Nattawut; Rudkouskaya, Alena; Barroso, Margarida; Intes, Xavier

    2016-02-01

    Targeted drug delivery is a critical aspect of successful cancer therapy. Assessment of dynamic distribution of the drug provides relative concentration and bioavailability at the target tissue. The most common approach of the assessment is intensity-based imaging, which only provides information about anatomical distribution. Observation of biomolecular interactions can be performed using Förster resonance energy transfer (FRET). Thus, FRET-based imaging can assess functional distribution and provide potential therapeutic outcomes. In this study, we used wide-field lifetime-based FRET imaging for the study of early functional distribution of transferrin delivery in breast cancer tumor models in small animals. Transferrin is a carrier for cancer drug delivery. Its interaction with its receptor is within a few nanometers, which is suitable for FRET. Alexa Fluor® 700 and Alexa Fluor® 750 were conjugated to holo-transferrin which were then administered via tail vein injection to the mice implanted with T47D breast cancer xenografts. Images were continuously acquired for 60 minutes post-injection. The results showed that transferrin was primarily distributed to the liver, the urinary bladder, and the tumor. The cellular uptake of transferrin, which was indicated by the level of FRET, was high in the liver but very low in the urinary bladder. The results also suggested that the fluorescence intensity and FRET signals were independent. The liver showed increasing intensity and increasing FRET during the observation period, while the urinary bladder showed increasing intensity but minimal FRET. Tumors gave varied results corresponding to their FRET progression. These results were relevant to the biomolecular events that occurred in the animals.

  3. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    Science.gov (United States)

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-05-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  4. Development of device for grid spring fatigue and a cell-based fuel rod fretting wear tests

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Kang, Heung Seok; Song, Kee Nam

    2001-05-01

    As an activity of experimental research on the cause and the remedy of LWR fuel fretting failure, developed is test equipment for fatigue of grid spring and cell-based fuel rod fretting wear test. The equipment enables to perform the fretting wear test in the case of gap existence between spring and cladding, which has not been possible by the previously developed one (KAERI/TR-1570/2000). It can also provide fatigue test capability with the frequency of more than 10 Hz. Used are a servo-motor, an eccentric cylinder and lever mechanism for driving system as was similarly used for the previous equipment. In fretting wear test, up to 2 span-length of a fuel cladding tube can be accommodated. For fatigue test, on the other hand, a device for clamping the spring fixture is installed additionally. As a feature of the present equipment, the gap or the contacting force between a spring and a tube can be adjusted during the fretting wear test, while an initial spring force can be simulated for the fatigue test. Tests will be conducted in air at room temperature. In this report, every part of the equipment is explained with photographs, which will provide an easy understanding. Test procedure such as specimen installation, sequence of operation and program handling is also given. As a performance test of the present equipment, displacement range is measured when the hinge of the lever locates at its maximum and minimum positions. This will be used as basic information when additional eccentric cylinder is necessary for different displacement ranges

  5. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    Science.gov (United States)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a

  6. Influence of Ubiquitous Electron Acceptors on In Situ Anaerobic Biotransformation of RDX in Groundwater

    National Research Council Canada - National Science Library

    Wani, Altaf

    2003-01-01

    A series of column studies, with aquifer material from the former Nebraska Ordnance Plant, were performed to explore the phenomenon of electron competition from ubiquitous inorganic electron acceptors (nitrate and sulfate...

  7. A survey of acceptor dopants for β-Ga2O3

    Science.gov (United States)

    Lyons, John L.

    2018-05-01

    With a wide band gap, high critical breakdown voltage and commercially available substrates, Ga2O3 is a promising material for next-generation power electronics. Like most wide-band-gap semiconductors, obtaining better control over its electrical conductivity is critically important, but has proven difficult to achieve. Although efficient p-type doping in Ga2O3 is not expected, since theory and experiment indicate the self-trapping of holes, the full development of this material will require a better understanding of acceptor dopants. Here the properties of group 2, group 5 and group 12 acceptor impurities in β-Ga2O3 are explored using hybrid density functional calculations. All impurities are found to exhibit acceptor transition levels above 1.3 eV. After examining formation energies as a function of chemical potential, Mg (followed closely by Be) is determined to be the most stable acceptor species.

  8. Nanographenes as electron-deficient cores of donor-acceptor systems.

    Science.gov (United States)

    Liu, Yu-Min; Hou, Hao; Zhou, Yan-Zhen; Zhao, Xin-Jing; Tang, Chun; Tan, Yuan-Zhi; Müllen, Klaus

    2018-05-15

    Conjugation of nanographenes (NGs) with electro-active molecules can establish donor-acceptor π-systems in which the former generally serve as the electron-donating moieties due to their electronic-rich nature. In contrast, here we report a series of reversed donor-acceptor structures are obtained by C-N coupling of electron-deficient perchlorinated NGs with electron-rich anilines. Selective amination at the vertexes of the NGs is unambiguously shown through X-ray crystallography. By varying the donating ability of the anilino groups, the optical and assembly properties of donor-acceptor NGs can be finely modulated. The electron-deficient concave core of the resulting conjugates can host electron-rich guest molecules by intermolecular donor-acceptor interactions and gives rise to charge-transfer supramolecular architectures.

  9. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.; Holliday, Sarah; Chen, Hung-Yang; Cryer, Samuel J.; McCulloch, Iain

    2015-01-01

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted

  10. On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface

    KAUST Repository

    Sini, Gjergji; Schubert, Marcel; Risko, Chad; Roland, Steffen; Lee, Olivia P.; Chen, Zhihua; Richter, Thomas V.; Dolfen, Daniel; Coropceanu, Veaceslav; Ludwigs, Sabine; Scherf, Ullrich; Facchetti, Antonio; Frechet, Jean; Neher, Dieter

    2018-01-01

    and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor–acceptor (D–A) interface. Model systems comprised of polythiophene

  11. Spatial structure of single and interacting Mn acceptors in GaAs

    Science.gov (United States)

    Koenraad, Paul

    2005-03-01

    Ferromagnetic semiconductors such as Ga1-xMnxAs are receiving a lot of attention at the moment because of their application in spintronic devices. However, despite intense study of deep acceptors in III-V semiconductors such as MnGa, little information has been obtained on their electronic properties at the atomic scale. Yet the spatial shape of the Mn acceptor state will influence the hole-mediated Mn-Mn coupling and thus all of the magnetic properties of ferromagnetic semiconductors such as Ga1-xMnxAs. This study presents an experimental and theoretical description of the spatial symmetry of the Mn acceptor wave-function in GaAs. We present measurements of the spatial mapping of the anisotropic wavefunction of a hole localized at a Mn acceptor. To achieve this, we have used the STM tip not only to image the Mn acceptor but also to manipulate its charge state A^0/A^- at room temperature. Within an envelope function effective mass model (EFM) the anisotropy in the acceptor wave-function can be traced to the influence of the cubic symmetry of the GaAs crystal which selects specific d-states that mix into the ground state due to the spin-orbit interaction in the valence band. Comparison with calculations based on a tight-binding model (TBM) for the Mn acceptor structure supports this conclusion. Using the same experimental and theoretical approach we furthermore explored the interaction between Mn acceptors directly by analyzing close Mn-Mn pairs, which were separated by less than 2 nm. We will discuss some implications of these results for Mn delta-doped layers grown on differently oriented growth surfaces.

  12. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits

    Science.gov (United States)

    Mattera, Lucia; Bhuckory, Shashi; Wegner, K. David; Qiu, Xue; Agnese, Fabio; Lincheneau, Christophe; Senden, Tim; Djurado, David; Charbonnière, Loïc J.; Hildebrandt, Niko; Reiss, Peter

    2016-05-01

    A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD conjugation with fragmented antibodies (F(ab)). The obtained F(ab)-QD conjugates range among the smallest antibody-functionalized nanoprobes ever reported, with a hydrodynamic diameter coating for FRET could be demonstrated by an 6.2 and 2.5 fold improvement of the limit of detection (LOD) for PSA compared to commercially available hydrophilic QDs emitting at 605 and 705 nm, respectively. While the commercial QDs contain identical inorganic cores responsible for their fluorescence, they are coated with a comparably thick amphiphilic polymer layer leading to much larger hydrodynamic diameters (>26 nm without biomolecules). The LODs of 0.8 and 3.7 ng mL-1 obtained in 50 μL serum samples are below the clinical cut-off level of PSA (4 ng mL-1) and demonstrate their direct applicability in clinical diagnostics.A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post

  13. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy

    Directory of Open Access Journals (Sweden)

    Daniel Sultanov

    2017-01-01

    Full Text Available DNA accessibility to various protein complexes is essential for various processes in the cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose polymerase 1 increases the accessibility of DNA in chromatin to repair proteins and transcriptional machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance Energy Transfer microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed after poly(ADP-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, partial uncoiling of the entire nucleosomal DNA.

  14. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Science.gov (United States)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  15. Flow-induced vibration and fretting-wear damage in a moisture separator reheater

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.

    1996-01-01

    Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operational changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem

  16. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Science.gov (United States)

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide

    2018-01-12

    In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  17. Fretting-wear characteristics of steam generator tubes contacting with foreign object

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2003-01-01

    Fretting-wear characteristics of steam generator tubes contacting with foreign object has been investigated in this study. The operating steam generator shell-side flow field conditions are obtained from three-dimensional steam generator flow calculation using a well-validated steam generator thermal-hydraulic analysis computer code. Modal analyses are performed for the finite element modelings of tubes to get the natural frequency, corresponding mode shape and participation factor. The wear rate of a steam generator tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted. In addition, the effects of internal pressure and flow velocity on the remaining life of the tube are discussed in this paper

  18. Spectroscopic studies of charge transfer complexes of some amino aromatic donors with some acceptors

    International Nuclear Information System (INIS)

    Al-Ani, S.S.

    1989-01-01

    Charge transfer (C.T.) complexes are the products of the weak reversible interactions between electron donors and electron acceptors. Sixteen novel C.T. complexes were studied and discussed. These complexes were formed from aromatic electron donors with various electron acceptors in absolute ethyl alcohol at 20 0 C. Electronic absorption spectra of these complexes and their donors and acceptors were taken. New charge transfer absorption bands appeared for these complexes in the UV-VIS region. The donors used are tetramethyl diamino benzophenone, P-amino-N:N-dimethyl aniline, tetramethyl-diamino-diphenylmethane, P-amino-azobenzene and benzidine, while the acceptors are iodine, bromine, picric acid, 2,4-dinitrophenol, trifluoroacetic acid and trichloroacetic acid. The results showed a disappearance of some donors and acceptors absorption bands. The energy of C.T. bands were calculated from which the ionization potentials of donors were obtained. The results showed that energies of C.T. Bands for complexes of a given donor with a series of acceptors are very similar. Some C.T. complexes showed low value of energy and high values of electrical conductivity. These are ionic complexes rather than molecular ones. 4 tabs.; 2 figs.; 99 refs

  19. Alternansucrase acceptor reactions with D-tagatose and L-glucose.

    Science.gov (United States)

    Côté, Gregory L; Dunlap, Christopher A; Appell, Michael; Momany, Frank A

    2005-02-07

    Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.

  20. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).

    Science.gov (United States)

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-11-22

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  1. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available The different properties of acceptor-doped (hard and donor-doped (soft lead zirconate titanate (PZT ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  2. Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals

    Science.gov (United States)

    Kananen, B. E.; Halliburton, L. E.; Scherrer, E. M.; Stevens, K. T.; Foundos, G. K.; Chang, K. B.; Giles, N. C.

    2017-08-01

    Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors ( M gGa0 ) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors ( M gGa- ). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These M gGa0 acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. The M gGa0 acceptors thermally convert back to their nonparamagnetic M gGa- charge state when the temperature of the crystal is raised above approximately 250 K.

  3. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET

    Directory of Open Access Journals (Sweden)

    Mengyi Yang

    2018-01-01

    Full Text Available Summary: Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox. : Yang et al. revealed significant conformational dynamics of Cas9 at global and local scales using single-molecule FRET. They uncovered surprising long-range allosteric communication between the HNH nuclease domain and the RNA/DNA heteroduplex at the PAM-distal end that serves as a proofreading checkpoint to govern the nuclease activity and specificity of Cas9. Keywords: CRISPR, Cas9, single-molecule, FRET, conformational dynamics, proofreading, off-target, allosteric communication, genome editing

  4. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    International Nuclear Information System (INIS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-01-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov–de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov–de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of

  5. Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.

    Science.gov (United States)

    Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd

    2013-08-16

    α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.

  6. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    Directory of Open Access Journals (Sweden)

    Lovley Derek R

    2010-11-01

    Full Text Available Abstract Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen and acceptors (Fe(III, fumarate was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III, while growth in the presence of Fe(III and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.

  7. Förster Resonance Energy Transfer (FRET as a Tool for Dissecting the Molecular Mechanisms for Maturation of the Shigella Type III Secretion Needle Tip Complex

    Directory of Open Access Journals (Sweden)

    William D. Picking

    2012-11-01

    Full Text Available Förster resonance energy transfer (FRET provides a powerful tool for monitoring intermolecular interactions and a sensitive technique for studying Å-level protein conformational changes. One system that has particularly benefited from the sensitivity and diversity of FRET measurements is the maturation of the Shigella type III secretion apparatus (T3SA needle tip complex. The Shigella T3SA delivers effector proteins into intestinal cells to promote bacterial invasion and spread. The T3SA is comprised of a basal body that spans the bacterial envelope and a needle with an exposed tip complex that matures in response to environmental stimuli. FRET measurements demonstrated bile salt binding by the nascent needle tip protein IpaD and also mapped resulting structural changes which led to the recruitment of the translocator IpaB. At the needle tip IpaB acts as a sensor for host cell contact but prior to secretion, it is stored as a heterodimeric complex with the chaperone IpgC. FRET analyses showed that chaperone binding to IpaB’s N-terminal domain causes a conformational change in the latter. These FRET analyses, with other biophysical methods, have been central to understanding T3SA maturation and will be highlighted, focusing on the details of the FRET measurements and the relevance to this particular system.

  8. Theoretical-experimental assessment of the variables affecting fretting of Atucha I nuclear power plant utility steam generators tubes

    International Nuclear Information System (INIS)

    Kulichevsky, Raul M.

    1995-01-01

    Fretting wear of Steam Generator tubes caused by flow induced vibrations generates uncertainty on their integrity. The knowledge of the controlling variables of the wear process may give a criterion to evaluate the tubes residual life. Information on vibratory response and dynamic interaction between tubes and their supports are prerequisites for understanding the relationship between fretting wear and tube vibration. Experimental results of the vibratory response of an Atucha-I nuclear power plant type U-tube, the influence of tube/support clearance on this response and a study of tube/support dynamic interaction, which allow the verification of a finite element model of this type of tubes, are presented in this work. Also wear results for the Incoloy 800/DIN 1.4550 austenitic stainless steel pair of materials and a first evaluation of the wear constant of this pair are presented. (author)

  9. Regulatory assembly of the vacuolar proton pump VoV1-ATPase in yeast cells by FLIM-FRET

    Science.gov (United States)

    Ernst, Stefan; Batisse, Claire; Zarrabi, Nawid; Böttcher, Bettina; Börsch, Michael

    2010-02-01

    We investigate the reversible disassembly of VOV1-ATPase in life yeast cells by time resolved confocal FRET imaging. VOV1-ATPase in the vacuolar membrane pumps protons from the cytosol into the vacuole. VOV1-ATPase is a rotary biological nanomotor driven by ATP hydrolysis. The emerging proton gradient is used for secondary transport processes as well as for pH and Ca2+ homoeostasis in the cell. The activity of the VOV1-ATPase is regulated through assembly / disassembly processes. During starvation the two parts of VOV1-ATPase start to disassemble. This process is reversed after addition of glucose. The exact mechanisms are unknown. To follow the disassembly / reassembly in vivo we tagged two subunits C and E with different fluorescent proteins. Cellular distributions of C and E were monitored using a duty cycle-optimized alternating laser excitation scheme (DCO-ALEX) for time resolved confocal FRET-FLIM measurements.

  10. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.

    2015-10-27

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers

  11. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics

    KAUST Repository

    Holliday, Sarah

    2015-01-21

    A novel small molecule, FBR, bearing 3-ethylrhodanine flanking groups was synthesized as a nonfullerene electron acceptor for solution-processed bulk heterojunction organic photovoltaics (OPV). A straightforward synthesis route was employed, offering the potential for large scale preparation of this material. Inverted OPV devices employing poly(3-hexylthiophene) (P3HT) as the donor polymer and FBR as the acceptor gave power conversion efficiencies (PCE) up to 4.1%. Transient and steady state optical spectroscopies indicated efficient, ultrafast charge generation and efficient photocurrent generation from both donor and acceptor. Ultrafast transient absorption spectroscopy was used to investigate polaron generation efficiency as well as recombination dynamics. It was determined that the P3HT:FBR blend is highly intermixed, leading to increased charge generation relative to comparative devices with P3HT:PC60BM, but also faster recombination due to a nonideal morphology in which, in contrast to P3HT:PC60BM devices, the acceptor does not aggregate enough to create appropriate percolation pathways that prevent fast nongeminate recombination. Despite this nonoptimal morphology the P3HT:FBR devices exhibit better performance than P3HT:PC60BM devices, used as control, demonstrating that this acceptor shows great promise for further optimization.

  12. Acceptors related to group I elements in ZnO ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kushnirenko, V.I. [V. Lashkarev Institute of Semiconductor Physics, NAS of Ukraine, Pr. Nauky 45, Kiev 03028 (Ukraine); Markevich, I.V., E-mail: ivmarkevich@ukr.net [V. Lashkarev Institute of Semiconductor Physics, NAS of Ukraine, Pr. Nauky 45, Kiev 03028 (Ukraine); Zashivailo, T.V. [National Technical University of Ukraine ' KPI' , Pr. Pobedy 37, Kiev 03056 (Ukraine)

    2012-08-15

    ZnO ceramics doped with Li, Na or K were sintered in air for 4 h at 1000 Degree-Sign C. Electrical conductivity as well as photoluminescence (PL), PL excitation and photoconductivity spectra were measured and compared with those in undoped samples. The influence of both fast and slow cooling of the samples from 1000 Degree-Sign C on measured characteristics was investigated. The yellow-orange PL bands associated with the deep acceptors Li{sub Zn}, Na{sub Zn} and K{sub Zn} were observed and the corresponding PL excitation spectra were determined. These acceptors were found to form some complexes with other lattice defects. - Highlights: Black-Right-Pointing-Pointer Centers related to Li, Na and K impurities in zinc oxide were investigated. Black-Right-Pointing-Pointer It was shown that Li{sub Zn}, Na{sub Zn} and K{sub Zn} centers were deep acceptors responsible for yellow-orange PL bands. Black-Right-Pointing-Pointer These acceptors were found to form some complexes with other lattice defects. Black-Right-Pointing-Pointer The formation of shallow acceptors due to doping ZnO ceramics with Li, Na and K was not found.

  13. FRET-based biosensors for the detection and quantification of AI-2 class of quorum sensing compounds.

    Science.gov (United States)

    Rajamani, Sathish; Sayre, Richard

    2011-01-01

    Intercellular small molecular weight signaling molecules modulate a variety of biological functions in bacteria. One of the more complex behaviors mediated by intercellular signaling molecules is the suite of activities regulated by quorum sensing molecules. These molecules mediate a variety of population-dependent responses, including the expression of genes that regulate bioluminescence, type III secretion, siderophore production, colony morphology, biofilm formation, and metalloprotease production. Given their central role in regulating these responses, the detection and quantification of QS molecules has important practical implications. Until recently, the detection of QS molecules from Gram-negative bacteria has relied primarily on bacterial reporter systems. These bioassays though immensely useful are subject to interference by compounds that affect bacterial growth and metabolism. In addition, the reporter response is highly dependent on culture age and cell population density. To overcome such limitations, we developed an in vitro protein-based assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer-2 (AI-2) QS molecules. The biosensor is based on the interaction of BAI-2 with the Vibrio harveyi QS receptor LuxP. Conformation changes associated with BAI-2 binding to the LuxP receptor change the orientation of cyan and yellow variants of GFP (CFP and YFP) fused the N- and C-termini, respectively, of the LuxP receptor. LuxP-BAI2 binding induces changes in fluorescence resonance energy transfer (FRET) between CFP and YFP, whose magnitude of change is ligand concentration dependent. A set of ligand-insensitive LuxP-mutant FRET protein sensor was also developed for use as control biosensors. The FRET-based BAI-2 biosensor responds selectively to both synthetic and biologically derived BAI-2compounds. This report describes the use of the LuxP-FRET biosensor for the detection and quantification of

  14. Spectroscopic and theoretical investigation of conformational changes of proteins by synthesized pyrimidine derivative and its sensitivity towards FRET application

    Science.gov (United States)

    Ghosh, Swadesh; Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2018-04-01

    Interest in synthesizing and characterizing (IR, NMR and HRMS spectroscopic methods) a pyrimidine based Schiff-base ligand, 2-(2-(Anthracen-9-ylmethylene) hydrazinyl)-4,6-dimethyl pyrimidine (ANHP) has been developed for its application to ascertain the conformational change of protein and sensitivity towards fluorescence resonance energy transfer (FRET) process. Location of ANHP in bovine serum albumin (BSA) and human serum albumin (HSA) proteins environment has been determined using different spectroscopic techniques. Weakly fluorescent ANHP have shown greater protein induced fluorescence enhancement (PIFE) in case of HSA than BSA, though in both cases energy transfer efficiency are almost same but difference in binding constant values encourages us to find the location of ANHP within the complex protein environment. From the FRET parameter and α-helicity change, it has been found that ANHP bound with Trp-214 of HSA and surface Trp-134 of BSA. Conformational changes of proteins have been observed more for HSA than BSA in presence of ANHP, which has confirmed the location of ANHP in both the protein environments. Coupled with experimental studies, molecular docking analysis has also been done to explain the locations and distance dependent FRET process of ANHP in both proteins.

  15. Fretting-wear damage of heat exchanger tubes: a proposed damage criterion based on tube vibration response

    International Nuclear Information System (INIS)

    Yetisir, M.; McKerrow, E.; Pettigrew, M.J.

    1997-01-01

    A simple criterion is proposed to estimate fretting-wear damage in heat exchanger tubes with clearance supports. The criterion is based on parameters such as vibration frequency, mid-span vibration amplitude, span length, tube mass and an empirical wear coefficient. It is generally accepted that fretting-wear damage is proportional to a parameter called work-rate. Work-rate is a measure of the dynamic interaction between a vibrating tube and its supports. Due to the complexity of the impact-sliding behavior at the clearance-supports, work-rate calculations for heat exchanger tubes require specialized non-linear finite element codes. These codes include contact models for various clearance-support geometries. Such non-linear finite element analyses are complex, expensive and time consuming. The proposed criterion uses the results of linear vibration analysis (i.e., vibration frequency and mid-span vibration amplitude due to turbulence) and does not require a non-linear analysis. It can be used by non-specialists for a quick evaluation of the expected work-rate, and hence, the fretting-wear damage of heat exchanger tubes. The proposed criterion was obtained from an extensive parametric study that was conducted using a non-linear finite element program. It is shown that, by using the proposed work-rate criteria, work-rate can be estimated within a factor of two. This result, however, requires further testing with more complicated flow patterns. (author)

  16. Determination of Equilibrium Constant and Relative Brightness in FRET-FCS by Including the Third-Order Correlations.

    Science.gov (United States)

    Meng, Lingyi; He, Shanshan; Zhao, Xin Sheng

    2017-12-21

    Fluorescence correlation spectroscopy (FCS) encodes the information on the equilibrium constant (K), the relative fluorescence brightness of fluorophore (Q), and the forward and backward reaction rate constants (k + and k - ) on a physical or chemical relaxation. However, it has been a long-standing problem to completely resolve the FCS data to get the thermodynamic and kinetic information. Recently, we have solved the problem for fluorescence autocorrelation spectroscopy (FACS). Here, we extend the method to fluorescence cross-correlation spectroscopy (FCCS), which appears when FCS is coupled with fluorescence resonance energy transfer (FRET). Among 12 total second-order and third-order pre-exponential factors in a relaxation process probed by the FRET-FCS technique, 3 are independent. We presented and discussed 3 sets of explicit solutions to use these pre-exponential factors to calculate K and Q. Together with the relaxation time, the acquired K will allow people to obtain k + and k - , so that the goal of deciphering the FRET-FCS data will be fully reached. The theory is verified by extensive computer simulations and tested experimentally on a system of oligonucleotide hybridization.

  17. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    Charge photocurrent generation is a key process in solar energy conversion systems. Effective dissociation of the photo-generated electron-hole pairs (excitons) has a strong influence on the efficiency of the organic solar cells. Charge dissociation takes place at the donor/acceptor interface via...... which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...... charge transfer (CT) excitons, which is Coulombically bound interfacial electron- hole pairs residing at the donor/acceptor heterojunctions. The CT state represents an intermediate state between the exciton dissociation and recombination back to the ground state. Since the recombination of photo...

  18. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola

    2018-01-29

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  19. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola; Wadsworth, Andrew; Moser, Maximilian; Baran, Derya; McCulloch, Iain; Brabec, Christoph J.

    2018-01-01

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  20. Shallow acceptors in Ge/GeSi heterostructures with quantum wells in magnetic field

    International Nuclear Information System (INIS)

    Aleshkin, V.Ya.; Antonov, A.V.; Veksler, D.B.; Gavrilenko, V.I.; Erofeeva, I.V.; Ikonnikov, A.V.; Kozlov, D.V.; Spirin, K.E.; Kuznetsov, O.A.

    2005-01-01

    One investigated both theoretically and experimentally into shallow acceptors in Ge/GeSi heterostructures with quantum wells (QW) in a magnetic field. It is shown that alongside with lines of cyclotron resonance in magnetoabsorption spectra one observes transitions from the ground state of acceptor to the excited ones associated with the Landau levels from the first and the second subbands of dimensional quantization, and resonance caused by ionization of A + -centres. To describe impurity transitions in Ge/GeSi heterostructures with QW in a magnetic field and to interpret the experiment results in detail one uses numerical method of calculation based on expansion of wave function of acceptor in terms of basis of wave functions of holes in QW in the absence of magnetic field [ru

  1. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Roch, Christina; Kuhn, Joachim; Kleesiek, Knut [Institut fuer Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitaetsklinik der Ruhr-Universitaet Bochum, 32545 Bad Oeynhausen (Germany); Goetting, Christian, E-mail: cgoetting@hdz-nrw.de [Institut fuer Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitaetsklinik der Ruhr-Universitaet Bochum, 32545 Bad Oeynhausen (Germany)

    2010-01-01

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that K{sub m} and V{sub max} values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  2. The effect of molecular geometry on the photovoltaic property of diketopyrrolopyrrole based non-fullerene acceptors

    DEFF Research Database (Denmark)

    Zhang, Fei; Brandt, Rasmus Guldbæk; Gu, Zhuowei

    2015-01-01

    The non-fullerene acceptors with different geometric structures have great impact on light absorption, exciton dissociation, and charge transportation in the active layer of organic solar cells (OSCs). In this paper, we designed and synthesized two diketopyrrolopyrrole based non-fullerene acceptors......) while compared to Ph(DPP)2. Therefore, the resulting P3HT:PhDMe(DPP)2 based OSCs shows a better power conversion efficiency (PCE) of 0.65%, higher than that from P3HT:Ph(DPP)2 based OSCs (0.48%), which can be ascribed to more efficient exciton dissociation and electron transportation in the active layer...

  3. Mechanism of electron transfer from e-sub(aq) to acceptors in micelles

    International Nuclear Information System (INIS)

    Graetzel, M.; Henglein, A.; Janata, E.

    1975-01-01

    Pulse radiolysis experiments were carried out to investigate reactions A + e - sub(aq) → A - of hydrated electrons with acceptors A incorporated in the lipoidic part of micellar 10 -3 M sodium-lauryl-sulfate (SLS) and cetyl-trimethyl-ammonium-bromide (CTAB). The acceptors were 9-nitro-anthracene and pyrene, the latter in both the singlet and triplet state (the triplet was produced by UV-light irradiation shortly before the high energy electron pulse was applied). The triplet state of pyrene reacts in CTAB-micelles with a rate constant smaller by at least a factor of two than the singlet ground state. (orig./HK) [de

  4. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Kalpana, P.; Merwyn, A.; Nithiananthi, P.; Jayakumar, K., E-mail: kjkumar-gri@rediffmail.com [Nanostructure Lab, Department of Physics, Gandhigram Rural University, Gandhigram-624302 (India); Reuben, Jasper D. [Department of Physics, School of Engineering, Saveetha University, Thandalam, Chennai- 600104 (India)

    2015-06-24

    The Coulomb interaction of holes in a Semimagnetic Cd{sub 1-x}Mn{sub x}Te / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  5. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    Science.gov (United States)

    Kalpana, P.; Merwyn, A.; Reuben, Jasper D.; Nithiananthi, P.; Jayakumar, K.

    2015-06-01

    The Coulomb interaction of holes in a Semimagnetic Cd1-xMnxTe / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  6. Interaction of point intrinsic defects in n-type indium phosphide with acceptor clusters

    International Nuclear Information System (INIS)

    Vitovskij, N.A.; Lagunova, T.S.; Rakhimov, O.

    1984-01-01

    The rates of implanting defects of donor- and acceptor type stable at room temperature in n-InP during gamma irradiation are found to vary versus the compensating impurity type. Zinc atoms interact with defects most actively. Irradiation also brings about the growth of acceptor clusters, this growth being most markedly expressed in InP . The presence of an additional mechanism of charge-carriers scattering associated with the existence of clusters of compensating centres is verified, the temperature dependence of the effectiveness of this mechanism μ approximately Tsup(-1.2) is found

  7. Design, synthesis and photovoltaic properties of a series of new acceptor-pended conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    Zhihong; Wu; Yongxiang; Zhu; Wei; Li; Yunping; Huang; Junwu; Chen; Chunhui; Duan; Fei; Huang; Yong; Cao

    2016-01-01

    A series of novel acceptor-pended conjugated polymers featuring a newly developed carbazole-derived unit are designed and synthesized. The relationships between chemical structure and optoelectronic properties of the polymers are systematically investigated.The control of UV-Vis absorption spectra and energy levels in resulting polymers are achieved by introducing suitable pended acceptor units. The photovoltaic properties of the resulting polymers are evaluated by blending the polymers with(6,6)-phenyl-C71-butyric acid methyl ester. The resulting solar cells exhibit moderate performances with high open-circuit voltage. Charge transport properties and morphology were investigated to understand the performance of corresponding solar cells.

  8. Dominant intrinsic acceptors in GaN and ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, K; Hautakangas, S; Tuomisto, F [Laboratory of Physics, Helsinki University of Technology, PO Box 1100, FI-02015 TKK (Finland)

    2006-09-01

    Positron annihilation measurements reveal negatively charged Ga vacancies in n-type GaN and Zn vacancies in n-type ZnO. Positron trapping at other negative defects is not observed, indicating that cation vacancies are the dominant acceptors in these materials. The vacancy concentrations are the same as the total acceptor densities determined in Hall experiments, confirming the dominant role of the vacancy defects. The Ga vacancy in GaN is found as the main compensating centre over the range of four orders of magnitude of intentional oxygen doping.

  9. Dominant intrinsic acceptors in GaN and ZnO

    International Nuclear Information System (INIS)

    Saarinen, K; Hautakangas, S; Tuomisto, F

    2006-01-01

    Positron annihilation measurements reveal negatively charged Ga vacancies in n-type GaN and Zn vacancies in n-type ZnO. Positron trapping at other negative defects is not observed, indicating that cation vacancies are the dominant acceptors in these materials. The vacancy concentrations are the same as the total acceptor densities determined in Hall experiments, confirming the dominant role of the vacancy defects. The Ga vacancy in GaN is found as the main compensating centre over the range of four orders of magnitude of intentional oxygen doping

  10. Materials for coatings against erosion, fretting, and high-temperature oxidation

    International Nuclear Information System (INIS)

    Feller, H.G.; Wienstroth, U.; Balke, C.

    1990-01-01

    This paper investigates the applicability of Co-Cr-W alloys (CoCr29W29, CoCr29W9Y1, CoCr29W9Fe3Y1, CoCr29W9Y1Al1) as coating materials for the substrates MA 6000 and MA 754. Their properties are compared with those of Amperit 410, which is the alloy NiCo23Cr17Al12.5Y0.5. Their isothermal oxidation behaviour at temperatures up to 1000deg C is found to be better for the most part than that of the commercially available Amperit 410. Furthermore, the oxide shows distinctly better adhesion, so that better results concerning resistance to hot-gas corrosion are expected. The fretting behaviour at room temperature is characterized by very low friction factors and a strong resistance to wear. A comparable behaviour is found for resistance to erosive wear. Specimens tested for 500 hours in the pressurised beam device exhibit only minimal changes of mass in the bond MA 600/coating. Single-particle impact tests reveal that exposure of specimens to high temperatures leads to an increase in mean hardness, which is caused by a solidification of the yttrium-containing phase. (orig./MM) [de

  11. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors

    Science.gov (United States)

    Jones, Alexander M; Danielson, Jonas ÅH; ManojKumar, Shruti N; Lanquar, Viviane; Grossmann, Guido; Frommer, Wolf B

    2014-01-01

    Cytosolic hormone levels must be tightly controlled at the level of influx, efflux, synthesis, degradation and compartmentation. To determine ABA dynamics at the single cell level, FRET sensors (ABACUS) covering a range ∼0.2–800 µM were engineered using structure-guided design and a high-throughput screening platform. When expressed in yeast, ABACUS1 detected concentrative ABA uptake mediated by the AIT1/NRT1.2 transporter. Arabidopsis roots expressing ABACUS1-2µ (Kd∼2 µM) and ABACUS1-80µ (Kd∼80 µM) respond to perfusion with ABA in a concentration-dependent manner. The properties of the observed ABA accumulation in roots appear incompatible with the activity of known ABA transporters (AIT1, ABCG40). ABACUS reveals effects of external ABA on homeostasis, that is, ABA-triggered induction of ABA degradation, modification, or compartmentation. ABACUS can be used to study ABA responses in mutants and quantitatively monitor ABA translocation and regulation, and identify missing components. The sensor screening platform promises to enable rapid fine-tuning of the ABA sensors and engineering of plant and animal hormone sensors to advance our understanding of hormone signaling. DOI: http://dx.doi.org/10.7554/eLife.01741.001 PMID:24737862

  12. Feedback-mediated cancer therapy: a FRET-based nanoreporter approach

    Science.gov (United States)

    Sarkar, Suproteem K.; Khater, Yashika; Kulkarni, Ashish; Sengupta, Shiladitya

    2014-08-01

    A theranostic nanoparticle system was developed by integrating a chemotherapeutic agent with an "activatable" fluorescent tracer. The system signals tumor death by monitoring the activity of caspase-3, a product of apoptosis, and can therefore screen the treatment sensitivity of a particular tumor. The polymer nanoparticles (Poly [isobutylene-alt-maleic anhydride]) were formed through reprecipitation and contained paclitaxel, a chemotherapy drug, and fluorescein isothiocyanate, a fluorescent dye. The dye's fluorescence was quenched through Förster resonance energy transfer (FRET) by a quencher that was connected to the dye by a peptide chain. With sizes ranging from 200-250 nm, the nanoparticles were stable for two weeks. The nanoparticles were tested in vitro with responsive Lewis Lung Carcinoma (LLC) cells and taxane-resistant cells. Upon cell death by paclitaxel exposure, caspase-3 cleaved the peptide chain connecting the dye and the quencher, causing the system to fluoresce. When LLC cells were treated with the system, the nanoreporters fluoresced, but when resistant cells were tested, and when the drug was removed from the system, the nanoreporters did not fluoresce. Since the system screens if a drug can successfully kill a particular tumor, it offers a novel and promising approach to personalized medicine.

  13. Study of elastoplastic deformations self-fretting of flat cylinders by mandrelling

    International Nuclear Information System (INIS)

    Caron, Roger

    1974-04-01

    An application of the theory of thick tubes to the special case of flat cylinders which have been self-fretted by mandrelling, is presented. The following materials were used: 1 - a soft steel, XC 18 F, considered to be perfectly elastoplastic; 2 - an alloyed steel, 35 NCD 16, designated consolidable. In the first case, the slip trajectories observed on the polished cylinder surface enabled the plastic deformation region to be defined. It was found, in particular, that the average value of the mean boundary radius at the maximum pressure differs very little from that determined using basic formulas. In the second case, the plastic deformations uniformly affect the internal layers, and privileged trajectories do not exist in this region. On the other hand, the ε θ and ε r expansion curves (from deformation measurements), are continuous from the inner radius to the outer radius; the boundary radius was thus localized from considerations of its correspondence with the ε θ -ε r (shearing deformation) at the elastic limit of the material. This characteristic was determined from measurements made using a test piece provided for this purpose. The radii obtained with this method agree with the theoretical radii over only 4/5 of the total deformation, the uncertainty region being taken into consideration. The maximum value of this parameter was determined in such a way as to obtain a return to a completely elastic rest position. (author) [fr

  14. Conformational Analysis of Misfolded Protein Aggregation by FRET and Live-Cell Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Akira Kitamura

    2015-03-01

    Full Text Available Cellular homeostasis is maintained by several types of protein machinery, including molecular chaperones and proteolysis systems. Dysregulation of the proteome disrupts homeostasis in cells, tissues, and the organism as a whole, and has been hypothesized to cause neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS and Huntington’s disease (HD. A hallmark of neurodegenerative disorders is formation of ubiquitin-positive inclusion bodies in neurons, suggesting that the aggregation process of misfolded proteins changes during disease progression. Hence, high-throughput determination of soluble oligomers during the aggregation process, as well as the conformation of sequestered proteins in inclusion bodies, is essential for elucidation of physiological regulation mechanism and drug discovery in this field. To elucidate the interaction, accumulation, and conformation of aggregation-prone proteins, in situ spectroscopic imaging techniques, such as Förster/fluorescence resonance energy transfer (FRET, fluorescence correlation spectroscopy (FCS, and bimolecular fluorescence complementation (BiFC have been employed. Here, we summarize recent reports in which these techniques were applied to the analysis of aggregation-prone proteins (in particular their dimerization, interactions, and conformational changes, and describe several fluorescent indicators used for real-time observation of physiological states related to proteostasis.

  15. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes

    Directory of Open Access Journals (Sweden)

    Peijian Huang

    2018-01-01

    Full Text Available In order to access the fretting damage of the steam generator tube (SGT, a fast fiber Fabry-Perot (F-P non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  16. Chlorinated Electron Acceptor Abundance Drives Selection of Dehalococcoides mccartyi (D. mccartyi Strains in Dechlorinating Enrichment Cultures and Groundwater Environments

    Directory of Open Access Journals (Sweden)

    Alfredo Pérez-de-Mora

    2018-05-01

    Full Text Available Dehalococcoides mccartyi (D. mccartyi strains differ primarily from one another by the number and identity of the reductive dehalogenase homologous catalytic subunit A (rdhA genes within their respective genomes. While multiple rdhA genes have been sequenced, the activity of the corresponding proteins has been identified in only a few cases. Examples include the enzymes whose substrates are groundwater contaminants such as trichloroethene (TCE, cis-dichloroethene (cDCE and vinyl chloride (VC. The associated rdhA genes, namely tceA, bvcA, and vcrA, along with the D. mccartyi 16S rRNA gene are often used as biomarkers of growth in field samples. In this study, we monitored an additional 12 uncharacterized rdhA sequences identified in the metagenome in the mixed D. mccartyi-containing culture KB-1 to monitor population shifts in more detail. Quantitative PCR (qPCR assays were developed for 15 D. mccartyi rdhA genes and used to measure population diversity in 11 different sub-cultures of KB-1, each enriched on different chlorinated ethenes and ethanes. The proportion of rdhA gene copies relative to D. mccartyi 16S rRNA gene copies revealed the presence of multiple distinct D. mccartyi strains in each culture, many more than the two strains inferred from 16S rRNA analysis. The specific electron acceptor amended to each culture had a major influence on the distribution of D. mccartyi strains and their associated rdhA genes. We also surveyed the abundance of rdhA genes in samples from two bioaugmented field sites (Canada and United Kingdom. Growth of the dominant D. mccartyi strain in KB-1 was detected at the United Kingdom site. At both field sites, the measurement of relative rdhA abundances revealed D. mccartyi population shifts over time as dechlorination progressed from TCE through cDCE to VC and ethene. These shifts indicate a selective pressure of the most abundant chlorinated electron acceptor, as was also observed in lab cultures. These

  17. Mechanism and Dynamics of Charge Transfer in Donor-Bridge-Acceptor Systems

    NARCIS (Netherlands)

    Gorczak-Vos, N.

    2016-01-01

    Photoinduced charge transfer in organic materials is a fundamental process in various biological and technological areas. Donor-bridge-acceptor (DBA) molecules are used as model systems in numerous theoretical and experimental work to systematically study and unravel the underlying mechanisms of

  18. Ex-situ activation of magnesium acceptors in InGaN/LED-structures

    Energy Technology Data Exchange (ETDEWEB)

    Kusch, Gunnar; Frentrup, Martin; Stellmach, Joachim; Kolbe, Tim; Wernicke, Tim; Pristovsek, Markus; Kneissl, Michael [Technische Universitaet Berlin, Institut fuer Festkoerperphysik, Hardenbergstr. 36, 10623 Berlin (Germany)

    2011-07-01

    One of the main problems limiting the output power of group-III-nitride compound light emitting diodes (LEDs) and laser diodes (LD) is the p-doping of nitrides with magnesium (Mg). During metal-organic vapor phase epitaxy (MOVPE) growth of (Al)GaN:Mg magnesium acceptors are passivated by hydrogen (H). By thermal annealing under nitrogen atmosphere the Mg-H bond can be cracked, thus activating the Mg acceptor. We have investigated ex-situ Mg-activation of the p-GaN layer and p-AlGaN electron blocking layer (EBL) in LEDs grown by MOVPE. Especially the activation of the AlGaN EBL is crucial. Simulations show, that a high doping level is required for effective electron blocking and a high injection efficiency. Additionally the acceptor activation energy is expected to increase with increasing Al-content, reducing the free hole concentration in the EBL. Electroluminescence spectroscopy (EL) was performed to determine the influence of the activation on the external quantum efficiency of the LED structure. Furthermore we used CV measurements to determine the Mg-acceptor concentration.

  19. Quantitative measurements of magnetic polaron binding on acceptors in CdMnTe alloys

    Science.gov (United States)

    Nhung, Tran Hong; Planel, R.

    1983-03-01

    The acceptor binding energy is measured as a function of Temperature and composition in Cd1-x Mnx Te alloys, by time resolved spectroscopy. The Bound magnetic polaron effect is measured and compared with a theory accouting for magnetic saturation and fluctuations.

  20. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    Science.gov (United States)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  1. Limited Cash Flow on Slot Machines: Effects of Prohibition of Note Acceptors on Adolescent Gambling Behaviour

    Science.gov (United States)

    Hansen, Marianne; Rossow, Ingeborg

    2010-01-01

    This study addresses the impact of prohibition of note acceptors on gambling behaviour and gambling problems among Norwegian adolescents. Data comprised school surveys at three time points; 2004 and 2005 (before intervention) and 2006 (after intervention). Net samples comprised 20.000 students aged 13-19 years at each data collection. Identical…

  2. In vitro fermentation of alternansucrase raffinose acceptor products by human gut bacteria

    Science.gov (United States)

    In this work, in vitro fermentation of alternansucrase raffinose acceptor products, previously fractionated according to their degree of polymerization (DP; from DP4 to DP10) was carried out using pH-controlled small scale batch cultures at 37ºC under anaerobic conditions with human faeces. Bifidog...

  3. On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface

    KAUST Repository

    Sini, Gjergji

    2018-01-22

    Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor–acceptor (D–A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force (energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.

  4. Activated Carbon as an Electron Acceptor and Redox Mediator during the Anaerobic Biotransformation of Azo Dyes

    NARCIS (Netherlands)

    Zee, van der F.P.; Bisschops, I.A.E.; Lettinga, G.; Field, J.A.

    2003-01-01

    The role of AC as redox mediator in accelerating the reductive transformation of pollutants as well as a terminal electron acceptor in the biological oxidation of an organic substrate is described. This study explores the use of AC as an immobilized redox mediator for the reduction of a recalcitrant

  5. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics

    KAUST Repository

    Holliday, Sarah; Ashraf, Raja Shahid; Nielsen, Christian Bergenstof; Kirkus, Mindaugas; Rö hr, Jason A.; Tan, Chinghong; Collado-Fregoso, Elisa; Knall, Astrid Caroline; Durrant, James R.; Nelson, Jenny K.; McCulloch, Iain

    2015-01-01

    3HT:PC60BM devices, the acceptor does not aggregate enough to create appropriate percolation pathways that prevent fast nongeminate recombination. Despite this nonoptimal morphology the P3HT:FBR devices exhibit better performance than P3HT:PC60BM

  6. Tailored Band Gaps in Sulfur- and Nitrogen-Containing Porous Donor-Acceptor Polymers

    Czech Academy of Sciences Publication Activity Database

    Schwarz, D.; Kochergin, Y. S.; Acharjya, A.; Ichangi, Arun; Opanasenko, Maksym; Čejka, Jiří; Lappan, U.; Arki, P.; He, J.; Schmidt, J.; Nachtigall, P.; Thomas, A.; Tarábek, Ján; Bojdys, Michael J.

    2017-01-01

    Roč. 23, č. 53 (2017), s. 13023-13027 ISSN 0947-6539 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : conjugated microporous polymers * donor-acceptor dyads * photocatalysis * sulfur * triazine Subject RIV: CC - Organic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Organic chemistry; Physical chemistry (UFCH-W) Impact factor: 5.317, year: 2016

  7. Photoluminescence quenching through resonant energy transfer in blends of conjugated polymer with low-molecular acceptor

    International Nuclear Information System (INIS)

    Zapunidi, S. A.; Paraschuk, D. Yu.

    2008-01-01

    A model is proposed for photoluminescence quenching due to resonant energy transfer in a blend of a conjugated polymer and a low-molecular energy acceptor. An analytical dependence of the normalized photoluminescence intensity on the acceptor concentration is derived for the case of a homogeneous blend. This dependence can be described by two fitting parameters related to the Foerster radii for energy transfer between conjugated segments of the polymer and between the conjugated polymer segment and the energy acceptor. Asymptotic approximations are obtained for the model dependence that make it possible to estimate the contribution from the spatial migration of excitons to the photoluminescence quenching. The proposed model is used to analyze experimental data on the photoluminescence quenching in a blend of the soluble derivative of poly(p-phenylene vinylene) and trinitrofluorenone [13]. The Foerster radius for resonant energy transfer between the characteristic conjugated segment of poly(p-phenylene vinylene) and the energy acceptor is determined to be r F = 2.6 ± 0.3 nm

  8. 2004 Electron Donor Acceptor Interactions Gordon Conference - August 8-13, 2004

    Energy Technology Data Exchange (ETDEWEB)

    GUILFORD JONES; S ST

    2005-09-14

    The 2004 Gordon Conference on Donor/Acceptor Interactions will take place at Salve Regina University in Newport, Rhode Island on August 8-13, 2004. The conference will be devoted to the consequences of charge interaction and charge motion in molecular and materials systems.

  9. Donor-acceptor properties of a single-molecule altered by on-surface complex formation

    Czech Academy of Sciences Publication Activity Database

    Meier, T.; Pawlak, R.; Kawai, S.; Geng, Y.; Liu, X.; Decurtins, S.; Hapala, Prokop; Baratoff, A.; Liu, S.X.; Jelínek, Pavel; Meyer, E.; Glatzel, T.

    2017-01-01

    Roč. 11, č. 8 (2017), s. 8413-8420 ISSN 1936-0851 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : nc AFM * DFT * acceptor donor Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 13.942, year: 2016

  10. Optimum energy levels and offsets for organic donor/acceptor binary photovoltaic materials and solar cells

    International Nuclear Information System (INIS)

    Sun, S.-S.

    2005-01-01

    Optimum frontier orbital energy levels and offsets of an organic donor/acceptor binary type photovoltaic material have been analyzed using classic Marcus electron transfer theory in order to achieve the most efficient photo induced charge separation. This study reveals that, an exciton quenching parameter (EQP) yields one optimum donor/acceptor frontier orbital energy offset that equals the sum of the exciton binding energy and the charge separation reorganization energy, where the photo generated excitons are converted into charges most efficiently. A recombination quenching parameter (RQP) yields a second optimum donor/acceptor energy offset where the ratio of charge separation rate constant over charge recombination rate constant becomes largest. It is desirable that the maximum RQP is coincidence or close to the maximum EQP. A third energy offset is also identified where charge recombination becomes most severe. It is desirable that the most severe charge recombination offset is far away from maximum EQP offset. These findings are very critical for evaluating and fine tuning frontier orbital energy levels of a donor/acceptor pair in order to realize high efficiency organic photovoltaic materials

  11. Electron Transfer in Donor-Bridge-Acceptor Systems and Derived Materials

    NARCIS (Netherlands)

    Oosterbaan, W.D.

    2002-01-01

    Some aspects of photoinduced electron transfer (ET) in (electron donor)-bridge-(electron acceptor) compounds (D-B-A) and derived materials are investigated. Aim I is to determine how and to which extent non-conjugated double bonds in an otherwise saturated hydrocarbon bridge affect the rate of

  12. Synthesis of OMS Materials and Investigation of Their Acceptor-Donor Characteristics.

    Science.gov (United States)

    Grajek, H; Paciura-Zadrożna, J; Choma, J; Michalski, E; Witkiewicz, Z

    2012-10-01

    Three ordered mesoporous siliceous (OMS) materials known as MCM41s-unmodified MCM-41C16 ("C16"), and two MCM41s with different surface functionalities: MCM-41C16-SH ("C16-SH") and MCM-41C16-NH 2 ("C16-NH 2 ")-were synthesized and studied by inverse gas chromatography in order to determine their acceptor-donor properties. The specific retention volumes of nonpolar and polar probes that were chromatographed on these ordered mesoporous silica adsorbents were evaluated under infinite dilution conditions. Two methods were employed to calculate the standard free energy of adsorption, Δ G ads , of each chromatographed probe on the basis its specific retention volume. These Δ G ads values were then employed to estimate the van der Waals contribution and the specific contribution of the free surface energy for each MCM41. DN values (donor numbers, based on the Gutmann scale) and AN* values (acceptor numbers, based on the Riddle-Fowkes scale) were employed to determine the values of parameters that characterize the ability of the MCM41s to act as electron acceptors (parameter: K A ) and donors (parameter: K D ). Considering the different compositions of the probes, each of which has different acceptor-donor properties, a new chromatographic test to supplement the Grob test is suggested.

  13. Highly efficient exciplex organic light-emitting diodes incorporating a heptazine derivative as an electron acceptor.

    Science.gov (United States)

    Li, Jie; Nomura, Hiroko; Miyazaki, Hiroshi; Adachi, Chihaya

    2014-06-11

    Highly efficient exciplex systems incorporating a heptazine derivative () as an electron acceptor and 1,3-di(9H-carbazol-9-yl)benzene () as an electron donor are developed. An organic light-emitting diode containing 8 wt% : as an emitting layer exhibits a maximum external quantum efficiency of 11.3%.

  14. Adsorption of Organic Electron Acceptors on Graphene-like Molecules: Quantum Chemical and Molecular Mechanical Study

    Czech Academy of Sciences Publication Activity Database

    Haldar, Susanta; Kolář, Michal; Sedlák, Robert; Hobza, Pavel

    2012-01-01

    Roč. 116, č. 48 (2012), s. 25328-25336 ISSN 1932-7447 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : graphene * organic electron acceptors * interaction energies * base-pairs * hydrophobic association Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 4.814, year: 2012

  15. Novel indole-based inhibitors of IMPDH: introduction of hydrogen bond acceptors at indole C-3.

    Science.gov (United States)

    Watterson, Scott H; Dhar, T G Murali; Ballentine, Shelley K; Shen, Zhongqi; Barrish, Joel C; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2003-04-07

    The development of a series of novel indole-based inhibitors of 5'-inosine monophosphate dehydrogenase (IMPDH) is described. Various hydrogen bond acceptors at C-3 of the indole were explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are outlined.

  16. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    Science.gov (United States)

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  17. The Effect of Modulation Ratio of Cu/Ni Multilayer Films on the Fretting Damage Behaviour of Ti-811 Titanium Alloy.

    Science.gov (United States)

    Zhang, Xiaohua; Liu, Daoxin; Li, Xiaoying; Dong, Hanshan; Xi, Yuntao

    2017-05-26

    To improve the fretting damage (fretting wear and fretting fatigue) resistance of Ti-811 titanium alloy, three Cu/Ni multilayer films with the same modulation period thickness (200 nm) and different modulation ratios (3:1, 1:1, 1:3) were deposited on the surface of the alloy via ion-assisted magnetron sputtering deposition (IAD). The bonding strength, micro-hardness, and toughness of the films were evaluated, and the effect of the modulation ratio on the room-temperature fretting wear (FW) and fretting fatigue (FF) resistance of the alloy was determined. The results indicated that the IAD technique can be successfully used to prepare Cu/Ni multilayer films, with high bonding strength, low-friction, and good toughness, which yield improved room-temperature FF and FW resistance of the alloy. For the same modulation period (200 nm), the micro-hardness, friction, and FW resistance of the coated alloy increased, decreased, and improved, respectively, with increasing modulation ratio of the Ni-to-Cu layer thickness. However, the FF resistance of the coated alloy increased non-monotonically with the increasing modulation ratio. Among the three Cu/Ni multilayer films, those with a modulation ratio of 1:1 can confer the highest FF resistance to the Ti-811 alloy, owing mainly to their unique combination of good toughness, high strength, and low-friction.

  18. Organic charge transfer phase formation in thin films of the BEDT-TTF/TCNQ donor-acceptor system

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Keller, K.; Huth, M.

    2009-01-01

    We have performed charge transfer phase formation studies on the donor/acceptor system bis-(ethylendithio)tetrathiafulvalene (BEDT-TTF)/tetracyanoquinodimethane,(TCNQ) by means of physical vapor deposition. We prepared donor/acceptor bilayer structures on glass and Si(100)/SiO substrates held...

  19. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    Science.gov (United States)

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  20. Effect of deviation from stoichiometry on the nature of shallow acceptor states in CdTe crystals

    International Nuclear Information System (INIS)

    Agrinskaya, N.V.; Shashkova, V.V.

    1988-01-01

    Photoconductivity and photoluminescence spectra in the region of donor-acceptor recombination of pure CdTe crystals, grown under conditions of different deviations from stoichiometry are investigated. It is shown that the predominant type of minor acceptors in n-type crystals (with Cd excess) differs from acceptors in p-type crystals (with Te excess). Residual acceptors replacing Te(P, As) prevail in n-type crystals and acceptors replacing Cd(Li, Na) prevail in p-type crystals. As a result of p-type crystal annealing a change of the type of prevailing aceptors accurs in Cd pairs (bands linked with P, As prevail) which testifies to the residual impurity reconstruction in Cd and Te sublattices

  1. Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor-acceptor conjugated polymers

    KAUST Repository

    Lima, Igo T.; Risko, Chad; Aziz, Saadullah Gary; Da Silva Filho, Demé trio A Da Silva; Bredas, Jean-Luc

    2014-01-01

    Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.

  2. Modulation of Donor-Acceptor Distance in a Series of Carbazole Push-Pull Dyes; A Spectroscopic and Computational Study

    Directory of Open Access Journals (Sweden)

    Joshua J. Sutton

    2018-02-01

    Full Text Available A series of eight carbazole-cyanoacrylate based donor-acceptor dyes were studied. Within the series the influence of modifying the thiophene bridge, linking donor and acceptor and a change in the nature of the acceptor, from acid to ester, was explored. In this joint experimental and computational study we have used electronic absorbance and emission spectroscopies, Raman spectroscopy and computational modeling (density functional theory. From these studies it was found that extending the bridge length allowed the lowest energy transition to be systematically red shifted by 0.12 eV, allowing for limited tuning of the absorption of dyes using this structural motif. Using the aforementioned techniques we demonstrate that this transition is charge transfer in nature. Furthermore, the extent of charge transfer between donor and acceptor decreases with increasing bridge length and the bridge plays a smaller role in electronically mixing with the acceptor as it is extended.

  3. Microbial Anaerobic Ammonium Oxidation Under Iron Reducing Conditions, Alternative Electron Acceptors

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2015-12-01

    Autotrophic Acidimicrobiaceae-bacterium named A6 (A6), part of the Actinobacteria phylum have been linked to anaerobic ammonium (NH4+) oxidation under iron reducing conditions. These organisms obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, the TEAs are iron oxides [Fe(III)], which are reduced to Fe(II), this process is known as Feammox. Our studies indicate that alternative forms of TEAs can be used by A6, e.g. iron rich clays (i.e. nontronite) and electrodes in bioelectrochemical systems such as Microbial Electrolysis Cells (MECs), which can sustain NH4+removal and A6 biomass production. Our results show that nontronite can support Feammox and promote bacterial cell production. A6 biomass increased from 4.7 x 104 to 3.9 x 105 cells/ml in 10 days. Incubations of A6 in nontronite resulted in up to 10 times more NH4+ removal and 3 times more biomass production than when ferrihydrite is used as the Fe(III) source. Additionally, Fe in nontronite can be reoxidized by aeration and A6 can reutilize it; however, Fe is still finite in the clay. In contrast, in MECs, A6 harvest electrons from NH4+ and use an anode as an unlimited TEA, as a result current is produced. We operated multiple MECs in parallel using a single external power source, as described by Call & Logan (2011). MECs were run with an applied voltage of 0.7V and different growing mediums always containing initial 5mM NH4+. Results show that current production is favored when anthraquinone-2,6-disulfonate (AQDS), an electron shuttled, is present in the medium as it facilitates the transfer of electrons from the bacterial cell to the anode. Additionally, A6 biomass increased from 1 x 104 to 9.77 x 105cells/ml in 14 days of operation. Due to Acidimicrobiaceae-bacterium A6's ability to use various TEAs, MECs represent an alternative, iron-free form, for optimized biomass production of A6 and its application in NH4

  4. A comparative study on the fretting wear properties of advanced zirconium fuel cladding materials

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu; Park, Jeong Yong; Kim, Jun Hwan

    2005-06-01

    Fretting wear tests were carried out in room and high temperature water in order to evaluate the wear properties of new zirconium nuclear fuel claddings (K2∼K6) and the commercial claddings (M5, zirlo and zircaloy-4). The objective is to compare the wear resistance of K2∼K6 claddings with that of the commercial ones at the same test condition. After the wear tests, the average wear volume and the maximum wear depth were evaluated and compared at each test condition. As a result, it is difficult to select the most wear-resistant cladding between the K2∼K6 claddings and the commercial ones. This is because the average wear volume and maximum depth of each cladding included between the scattering range of measured results. However, wear resistance of the tested claddings based on the average wear volume and maximum wear depth could be summarized as follows: K5 > zircaloy-4 > (K2,K3) > (K4,M5) > K6 > zirlo at room temperature, zircaloy-4 > K5 > (K3,K4,zirlo) > (K2,K6) > M5 at high temperature and pressure. Therefore, it is concluded that K5 cladding among the tested new zirconium alloys has relatively higher wear-resistance in room and high temperature condition. In order to examine the wear mechanism, it is necessary to systematically study with the consideration of the alloying element effect and test environment. In this report, the wear test procedure and the wear evaluation method are described in detail

  5. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    Science.gov (United States)

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Forster Resonance Energy Transfer (FRET) Analysis of Dual CFP/YFP Labeled AMPA Receptors Reveals Structural Rearrangement within the C-Terminal Domain during Receptor Activation

    DEFF Research Database (Denmark)

    Zachariassen, Linda Grønborg; Katchan, Mila; Plested, Andrew

    2014-01-01

    that retain function and display intrareceptor FRET. This includes a construct (GluA2-6Y-10C) containing YFP in the intracellular loop between the M1 and M2 membrane-embedded segments and CFP inserted in the C-ter- minal domain (CTD). GluA2-6Y-10C displays FRET with an efficiency of 0.11 while retaining wild......-type receptor expression and kinetic properties. We have used GluA2-6Y-10C to study conformational changes in homomeric GluA2 receptors during receptor activation. Our results show that the FRET efficiency is dependent on functional state of GluA2-6Y-10C and hereby indi- cates that the intracellular CTD...

  7. A New FRET-Based Sensitive DNA Sensor for Medical Diagnostics using PNA Probe and Water-Soluble Blue Light Emitting Polymer

    Directory of Open Access Journals (Sweden)

    Nidhi Mathur

    2008-01-01

    Full Text Available A reliable, fast, and low-cost biosensor for medical diagnostics using DNA sequence detection has been developed and tested for the detection of the bacterium “Bacillus anthracis.” In this sensor, Poly [9,9-di (6,6′- N, N′ trimethylammonium hexylfluorenyl-2, 7-diyl-alt-co- (1,4-phenylene] dibromide salt (PFP has been taken as cationic conjugated polymer (CCP and PNA attached with fluorescein dye (PNAC∗ as a probe. The basic principle of this sensor is that when a PNAC∗ probe is hybridized with a single strand DNA (ssDNA having complementary sequence, Forster resonance energy transfer (FRET may take place from PFP to the PNAC∗/DNA complex. If the FRET is efficient, the photoluminescence from the PFP will be highly quenched and that from PNAC∗ will be enhanced. On the other hand, if the DNA sequence is noncomplementary to PNA, FRET will not occur.

  8. The Use of Two-Photon FRET-FLIM to Study Protein Interactions During Nuclear Envelope Fusion In Vivo and In Vitro.

    Science.gov (United States)

    Byrne, Richard D; Larijani, Banafshé; Poccia, Dominic L

    2016-01-01

    FRET-FLIM techniques have wide application in the study of protein and protein-lipid interactions in cells. We have pioneered an imaging platform for accurate detection of functional states of proteins and their interactions in fixed cells. This platform, two-site-amplified Förster resonance energy transfer (a-FRET), allows greater signal generation while retaining minimal noise thus enabling application of fluorescence lifetime imaging microscopy (FLIM) to be routinely deployed in different types of cells and tissue. We have used the method described here, time-resolved FRET monitored by two-photon FLIM, to demonstrate the direct interaction of Phospholipase Cγ (PLCγ) by Src Family Kinase 1 (SFK1) during nuclear envelope formation and during male and female pronuclear membrane fusion in fertilized sea urchin eggs. We describe here a generic method that can be applied to monitor any proteins of interest.

  9. Fretting fatigue cracking of a center guide bolt supporting the combustion chamber in a heavy-duty gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Fischer, Boromir; Gaedicke, Tobias [Siemens AG, Energy Sector, Gasturbinenwerk Berlin (Germany). Werkstoffprueflabor

    2018-04-01

    The slotted center guide bolt of the center guide feature of the lower part of the outer shell of an annular combustion chamber was found fractured in a heavy-duty gas turbine engine used for power generation, after approximately 5.500 operating hours. The incident was a one-off event and not a recurring incident. No similar events were reported from the fleet; hence the failure was not considered a field issue. The metallurgical root cause investigation that was ordered to determine the failure mechanism revealed that the incident center guide bolt failed by fretting fatigue cracking, a high cycle fatigue (HCF) phenomenon.

  10. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  11. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    International Nuclear Information System (INIS)

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok

    2012-01-01

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  12. Fluorescence Resonance Energy Transfer in Polydiacetylene Liposomes

    Science.gov (United States)

    Li, Xuelian; Matthews, Shelton; Kohli, Punit

    2009-01-01

    Conjugated polydiacetylene (PDA) possessing stimuli-responsive properties has been intensively investigated for developing efficient sensors. We report here fluorescence resonance energy transfer (FRET) in liposomes synthesized using different molar ratios of dansyl-tagged diacetylene and diacetylene–carboxylic acid monomers. Photopolymerization of diacetylene resulted in cross-linked PDA liposomes. We used steady-state electronic absorption, emission, and fluorescence anisotropy (FA) analysis to characterize the thermal-induced FRET between dansyl fluorophores (donor) and PDA (acceptor). We found that the monomer ratio of acceptor to donor (Rad) and length of linkers (functional part that connects dansyl fluorophores to the diacetylene group in the monomer) strongly affected FRET. For Rad = 10 000, the acceptor emission intensity was amplified by more than 18 times when the liposome solution was heated from 298 to 338 K. A decrease in Rad resulted in diminished acceptor emission amplification. This was primarily attributed to lower FRET efficiency between donors and acceptors and a higher background signal. We also found that the FRET amplification of PDA emissions after heating the solution was much higher when dansyl was linked to diacetylene through longer and flexible linkers than through shorter linkers. We attributed this to insertion of dansyl in the bilayer of the liposomes, which led to an increased dansyl quantum yield and a higher interaction of multiple acceptors with limited available donors. This was not the case for shorter and more rigid linkers where PDA amplification was much smaller. The present studies aim at enhancing our understanding of FRET between fluorophores and PDA-based conjugated liposomes. Furthermore, receptor tagged onto PDA liposomes can interact with ligands present on proteins, enzymes, and cells, which will produce emission sensing signal. Therefore, using the present approach, there exist opportunities for designing FRET

  13. Study of the Contributions of Donor and Acceptor Photoexcitations to Open Circuit Voltage in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Douglas Yeboah

    2017-10-01

    Full Text Available One of the key parameters in determining the power conversion efficiency (PCE of bulk heterojunction (BHJ organic solar cells (OSCs is the open circuit voltage . The processes of exciting the donor and acceptor materials individually in a BHJ OSC are investigated and are found to produce two different expressions for . Using the contributions of electron and hole quasi-Fermi levels and charge carrier concentrations, the two different expressions are derived as functions of the energetics of the donor and acceptor materials and the photo-generated charge carrier concentrations, and calculated for a set of donor-acceptor blends. The simultaneous excitation of both the donor and acceptor materials is also considered and the corresponding , which is different from the above two, is derived. The calculated from the photoexcitation of the donor is found to be somewhat comparable with that obtained from the photoexcitation of the acceptor in most combinations of the donor and acceptor materials considered here. It is also found that the calculated from the simultaneous excitations of donor and acceptor in BHJ OSCs is also comparable with the other two . All three thus derived produce similar results and agree reasonably well with the measured values. All three depend linearly on the concentration of the photoexcited charge carriers and hence incident light intensity, which agrees with experimental results. The outcomes of this study are expected to help in finding materials that may produce higher and hence enhanced PCE in BHJ OSCs.

  14. Atomic scale images of acceptors in III-V semiconductors. Band bending, tunneling paths and wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Loth, S.

    2007-10-26

    This thesis reports measurements of single dopant atoms in III-V semiconductors with low temperature Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). It investigates the anisotropic spatial distribution of acceptor induced tunneling processes at the {l_brace}110{r_brace} cleavage planes. Two different tunneling processes are identified: conventional imaging of the squared acceptor wave function and resonant tunneling at the charged acceptor. A thorough analysis of the tip induced space charge layers identifies characteristic bias windows for each tunnel process. The symmetry of the host crystal's band structure determines the spatial distribution of the tunneling paths for both processes. Symmetry reducing effects at the surface are responsible for a pronounced asymmetry of the acceptor contrasts along the principal [001] axis. Uniaxial strain fields due to surface relaxation and spin orbit interaction of the tip induced electric field are discussed on the basis of band structure calculations. High-resolution STS studies of acceptor atoms in an operating p-i-n diode confirm that an electric field indeed changes the acceptor contrasts. In conclusion, the anisotropic contrasts of acceptors are created by the host crystal's band structure and concomitant symmetry reduction effects at the surface. (orig.)

  15. Design and synthesis of bipyridine platinum(II) bisalkynyl fullerene donor-chromophore-acceptor triads with ultrafast charge separation.

    Science.gov (United States)

    Lee, Sai-Ho; Chan, Chris Tsz-Leung; Wong, Keith Man-Chung; Lam, Wai Han; Kwok, Wai-Ming; Yam, Vivian Wing-Wah

    2014-07-16

    Donor-chromophore-acceptor triads, (PTZ)2-Pt(bpy)-C60 and ((t)BuPTZ)2-Pt(bpy)-C60, along with their model compound, (Ph)2-Pt(bpy)-C60, have been synthesized and characterized; their photophysical and electrochemical properties have been studied, and the origin of the absorption and emission properties has been supported by computational studies. The photoinduced electron transfer reactions have been investigated using the femtosecond and nanosecond transient absorption spectroscopy. In dichloromethane, (Ph)2-Pt(bpy)-C60 shows ultrafast triplet-triplet energy transfer from the (3)MLCT/LLCT excited state within 4 ps to give the (3)C60* state, while in (PTZ)2-Pt(bpy)-C60 and ((t)BuPTZ)2-Pt(bpy)-C60, charge-separated state forms within 400 fs from the (3)MLCT/LLCT excited state with efficiency of over 0.90, and the total efficiency with the contribution of (3)C60* is estimated to be 0.99. Although the forward electron transfer reactions are very rapid, the charge-separated state recombines to the singlet ground state at a time of hundreds of nanoseconds because of the difference in spin multiplicity between the charge-separated state and the ground state.

  16. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor

    Science.gov (United States)

    Diehl, Katharine L.; Kolesnichenko, Igor V.; Robotham, Scott A.; Bachman, J. Logan; Zhong, Ye; Brodbelt, Jennifer S.; Anslyn, Eric V.

    2016-10-01

    The coupling and decoupling of molecular units is a fundamental undertaking of organic chemistry. Herein we report the use of a very simple conjugate acceptor, derived from Meldrum's acid, for the sequential ‘clicking’ together of an amine and a thiol in aqueous conditions at neutral pH. Subsequently, this linkage can be ‘declicked’ by a chemical trigger to release the original amine and thiol undisturbed. The reactivity differs from that of other crosslinking agents because the selectivity for sequential functionalization derives from an altering of the electrophilicity of the conjugate acceptor on the addition of the amine. We describe the use of the procedure to modify proteins, create multicomponent libraries and synthesize oligomers, all of which can be declicked to their starting components in a controlled fashion when desired. Owing to the mild reaction conditions and ease of use in a variety of applications, the method is predicted to have wide utility.

  17. Substrate dependence of energy level alignment at the donor-acceptor interface in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Zhou, Y.C.; Liu, Z.T.; Tang, J.X.; Lee, C.S.; Lee, S.T.

    2009-01-01

    The interface energy level alignment between copper phthalocyanine (CuPC) and fullerene (C60), the widely studied donor-acceptor pair in organic photovoltaics (OPVs), on indium-tin oxide (ITO) and Mg substrate was investigated. The CuPC/C60 interface formed on ITO shows a nearly common vacuum level, but a dipole and band bending exist, resulting in a 0.8 eV band offset at the same interface on Mg. This observation indicates that the energy difference between the highest occupied molecular orbital of CuPC and the lowest unoccupied molecular orbital of C60, which dictates the open circuit voltage of the CuPC/C60 OPV, can be tuned by the work function of the substrate. Furthermore, the substrate effect on the energy alignment at the donor/acceptor interface can satisfactorily explain that a device with an anode of a smaller work function can provide a higher open circuit voltage.

  18. Giant first hyperpolarizabilities of donor-acceptor substituted graphyne: An ab initio study.

    Science.gov (United States)

    Chakraborti, Himadri

    2016-01-15

    Graphyne (Gy), a theoretically proposed material, has been utilized, for the first time, in a phenomenal donor-Gy-acceptor (D-Gy-A) structure to plan a superior nonlinear optical material. Owing to the extraordinary character of graphyne, this conjugate framework shows strikingly extensive static first hyperpolarizability (β(tot)) up to 128×10(-30) esu which is an enormous improvement than that of the bare graphyne. The donor-acceptor separation plays a key role in the change of β(tot) value. The π-conjugation of graphyne backbone has spread throughout some of the D-A attached molecules and leads to a low band gap state. Finally, two level model clarifies that the molecule having low transition energy should have high first hyperpolarizability. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Positron annihilation in liquids and in solutions containing electron acceptors and charge-transfer complexes

    International Nuclear Information System (INIS)

    Jansen, P.

    1976-05-01

    Positron lifetime measurements and angular correlation measurements were performed in several organic liquids. The results strongly indicate that positronium is contained in a 'bubble' in the liquids. The radius of the bubble can be estimated by using broadness of the narrow component in the angular correlation distribution, and by using the surface tension of the liquids. Both methods give bubble radii from 4-7 A in the solvents investigated. The bubble influences the reaction mechanism between Ps and weak electron acceptors in such a way that the presence of the bubble decreases the reactivity of Ps. Positron lifetime measurements were also performed on a series of mixtures of organic liquids and on electron acceptors and charge-transfer complexes in solution. The results were is agreement with the spur model of Ps formation. (Auth.)

  20. Structural, theoretical and experimental models of photosynthetic antennas, donors and acceptors

    International Nuclear Information System (INIS)

    Barkigia, K.M.; Chantranupong, L.; Fajer, J.; Kehres, L.A.; Smith, K.M.

    1989-01-01

    Theoretical calculations, based on recent x-ray studies of bacterial reaction centers, suggest that the light-absorption properties of the special pair phototraps in bacteria are controlled by the interplanar spacing between the bacteriochlorophyll subunits that constitute the special pairs. The calculations offer attractively simple explanations for the range of absorption spectra exhibited by photosynthetic bacteria. The wide range of (bacterio)chlorophyll skeletal conformations revealed by x-ray diffraction studies raise the intriguing possibility that different conformations, imposed by protein constraints, can modulate the light-absorption and redox properties of the chromophores in vivo. Electron-nuclear double resonance data obtained for the primary acceptors in green plants suggest specific substituent orientations and hydrogen bonding that may help optimize the orientations of the acceptors relative to the donors

  1. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    Science.gov (United States)

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  2. Comparative evaluation of the acceptor properties of quinone derivatized polypyridinic ligands

    International Nuclear Information System (INIS)

    Norambuena, Ester; Olea-Azar, Claudio; Delgadillo, Alvaro; Barrera, Mauricio; Loeb, Barbara

    2009-01-01

    The reduction properties of four acceptor polipyridyl ligands modified with quinones were studied by different experimental methods, as cyclic voltammetry and ESR spectroscopy, and by theoretical calculations. ESR spectra for the reduced ligands show different patterns among them, suggesting that the quinone moiety plays an important role in the delocalization of the received electron. The hyperfine coupling constants calculated for the magnetic nucleus were in good agreement with experimental data. The results were additionally interpreted with the help of two theoretical predictors: the electrophilicity index and the Fukui function obtained through the spin density. The results suggest that 12,17-dihydronaphtho-[2,3-h]dipyrido[3,2-a:2',3'-c]-phenazine-12,17-dione, Aqphen, shows the most promising behavior to be employed as an acceptor ligand in complexes with potential application in NLO devices.

  3. Comparative evaluation of the acceptor properties of quinone derivatized polypyridinic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Norambuena, Ester [Departamento de Quimica, Facultad de Ciencias Basicas, Universidad Metropolitana de Ciencias de la Educacion, Santiago (Chile); Olea-Azar, Claudio [Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago (Chile); Delgadillo, Alvaro [Departamento de Quimica, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena (Chile); Barrera, Mauricio [Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile); Loeb, Barbara, E-mail: bloeb@puc.cl [Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile)

    2009-05-18

    The reduction properties of four acceptor polipyridyl ligands modified with quinones were studied by different experimental methods, as cyclic voltammetry and ESR spectroscopy, and by theoretical calculations. ESR spectra for the reduced ligands show different patterns among them, suggesting that the quinone moiety plays an important role in the delocalization of the received electron. The hyperfine coupling constants calculated for the magnetic nucleus were in good agreement with experimental data. The results were additionally interpreted with the help of two theoretical predictors: the electrophilicity index and the Fukui function obtained through the spin density. The results suggest that 12,17-dihydronaphtho-[2,3-h]dipyrido[3,2-a:2',3'-c]-phenazine-12,17-dione, Aqphen, shows the most promising behavior to be employed as an acceptor ligand in complexes with potential application in NLO devices.

  4. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul

    2018-04-13

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  5. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul; Meitzner, Rico; Nwadiaru, Ogechi V.; Friebe, Christian; Cann, Jonathan; Ahner, Johannes; Ulbricht, Christoph; Kan, Zhipeng; Hö ppener, Stephanie; Hager, Martin D.; Egbe, Daniel A. M.; Welch, Gregory C.; Laquai, Fré dé ric; Schubert, Ulrich S.; Hoppe, Harald

    2018-01-01

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  6. Deep and shallow acceptor levels in solid solutions Pb0.98Sm0.02S

    International Nuclear Information System (INIS)

    Hasanov, H.A.; Rahimov, R.Sh.

    2010-01-01

    It is well known that the metal vacancies the energy levels of which take place between permitted energies of valency band, are the main acceptor centers in the led salts and solid solutions on their base. The aim of the given paper is founding of character of acceptor levels in single crystals Pb 0 .98Sm 0 .02S with low concentrations of charge carrier. The deep and shallow acceptor levels are found at investigation of Hall effect in Pb 0 .98Sm 0 .02S solid solution with character of low concentrations of charge carriers in crystals

  7. Acceptor number-dependent ultrafast photo-physical properties of push-pull chromophores using time-resolved methods

    Science.gov (United States)

    Chi, Xiao-Chun; Wang, Ying-Hui; Gao, Yu; Sui, Ning; Zhang, Li-Quan; Wang, Wen-Yan; Lu, Ran; Ji, Wen-Yu; Yang, Yan-Qiang; Zhang, Han-Zhuang

    2018-04-01

    Three push-pull chromophores comprising a triphenylamine (TPA) as electron-donating moiety and functionalized β-diketones as electron acceptor units are studied by various spectroscopic techniques. The time-correlated single-photon counting data shows that increasing the number of electron acceptor units accelerates photoluminescence relaxation rate of compounds. Transient spectra data shows that intramolecular charge transfer (ICT) takes place from TPA units to β-diketones units after photo-excitation. Increasing the number of electron acceptor units would prolong the generation process of ICT state, and accelerate the excited molecule reorganization process and the relaxation process of ICT state.

  8. On the acceptor-related photoluminescence spectra of GaAs quantum-wire microcrystals: A model calculation

    International Nuclear Information System (INIS)

    Oliveira, L.E.; Porras Montenegro, N.; Latge, A.

    1992-07-01

    The acceptor-related photoluminescence spectrum of a GaAs quantum-wire microcrystal is theoretically investigated via a model calculation within the effective-mass approximation, with the acceptor envelope wave functions and binding energies calculated through a variational procedure. Typical theoretical photoluminescence spectra show two peaks associated to transitions from the n = 1 conduction subband electron gas to acceptors at the on-center and on-edge positions in the wire in good agreement with the recent experimental results by Hirum et al. (Appl. Phys. Lett. 59, 431 (1991)). (author). 14 refs, 3 figs

  9. Contact damage failure analyses of fretting wear behavior of the metal stem titanium alloy-bone cement interface.

    Science.gov (United States)

    Zhang, Lanfeng; Ge, Shirong; Liu, Hongtao; Wang, Qingliang; Wang, Liping; Xian, Cory J

    2015-11-01

    Although cemented titanium alloy is not favored currently in the Western world for its poor clinical and radiography outcomes, its lower modulus of elasticity and good biocompatibility are instrumental for its ability supporting and transforming physical load, and it is more suitable for usage in Chinese and Japanese populations due to their lower body weights and unique femoral characteristics. Through various friction tests of different cycles, loads and conditions and by examining fretting hysteresis loops, fatigue process curves and wear surfaces, the current study investigated fretting wear characteristics and wear mechanism of titanium alloy stem-bone cement interface. It was found that the combination of loads and displacement affected the wear quantity. Friction coefficient, which was in an inverse relationship to load under the same amplitude, was proportional to amplitudes under the same load. Additionally, calf serum was found to both lubricate and erode the wear interface. Moreover, cement fatigue contact areas appeared black/oxidative in dry and gruel in 25% calf serum. Fatigue scratches were detected within contact areas, and wear scars were found on cement and titanium surfaces, which were concave-shaped and ring concave/ convex-shaped, respectively. The coupling of thermoplastic effect and minimal torque damage has been proposed to be the major reason of contact damage. These data will be important for further studies analyzing metal-cement interface failure performance and solving interface friction and wear debris production issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    International Nuclear Information System (INIS)

    Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.; Juliano, Maria A.; Hayashi, Mirian A.F.; Oliveira, Vitor

    2010-01-01

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, and enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.

  11. Validation of FRET Assay for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome Assembly Dynamics

    Science.gov (United States)

    van der Ploeg, René; Goudelis, Spyridon Theodoros; den Blaauwen, Tanneke

    2015-01-01

    The increase in antibiotic resistant bacteria demands the development of new antibiotics against preferably new targets. The common approach is to test compounds for their ability to kill bacteria or to design molecules that inhibit essential protein activities in vitro. In the first case, the mode of action of the drug is unknown and in the second case, it is not known whether the compound will pass the impermeable barrier of the bacterial envelope. We developed an assay that detects the target of a compound, as well as its ability to pass the membrane(s) simultaneously. The Escherichia coli cytoskeletal protein MreB recruits protein complexes (elongasomes) that are essential for cell envelope growth. An in cell Förster Resonance Energy Transfer (FRET) assay was developed to detect the interaction between MreB molecules and between MreB and the elongasome proteins RodZ, RodA and PBP2. Inhibition of the polymerization of MreB by S-(3,4-dichlorobenzyl) isothiourea (A22) or of the activity of PBP2 by mecilinam resulted in loss or reduction of all measured interactions. This suggests that the interactions between the elongasome proteins are governed by a combination of weak affinities and substrate availability. This validated in cell FRET assay can be used to screen for cell envelope growth inhibitors. PMID:26263980

  12. Dual Mechanism of an Intramolecular Charge Transfer (ICT)-FRET-Based Fluorescent Probe for the Selective Detection of Hydrogen Peroxide.

    Science.gov (United States)

    Liang, Xiao; Xu, Xiaoyi; Qiao, Dan; Yin, Zheng; Shang, Luqing

    2017-12-14

    A dual-mechanism intramolecular charge transfer (ICT)-FRET fluorescent probe for the selective detection of H 2 O 2 in living cells has been designed and synthesized. This probe used a coumarin-naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H 2 O 2 , the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ=558 and 485 nm (F 558 /F 485 ) shifted notably (up to 100-fold). Moreover, there was a good linearity (R 2 =0.9911) between the ratio and concentration of H 2 O 2 in the range of 0 to 60 μm, with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H 2 O 2 . Importantly, it could be used to visualize endogenous H 2 O 2 produced by stimulation from epidermal growth factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Validation of FRET Assay for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome Assembly Dynamics

    Directory of Open Access Journals (Sweden)

    René van der Ploeg

    2015-07-01

    Full Text Available The increase in antibiotic resistant bacteria demands the development of new antibiotics against preferably new targets. The common approach is to test compounds for their ability to kill bacteria or to design molecules that inhibit essential protein activities in vitro. In the first case, the mode of action of the drug is unknown and in the second case, it is not known whether the compound will pass the impermeable barrier of the bacterial envelope. We developed an assay that detects the target of a compound, as well as its ability to pass the membrane(s simultaneously. The Escherichia coli cytoskeletal protein MreB recruits protein complexes (elongasomes that are essential for cell envelope growth. An in cell Förster Resonance Energy Transfer (FRET assay was developed to detect the interaction between MreB molecules and between MreB and the elongasome proteins RodZ, RodA and PBP2. Inhibition of the polymerization of MreB by S-(3,4-dichlorobenzyl isothiourea (A22 or of the activity of PBP2 by mecilinam resulted in loss or reduction of all measured interactions. This suggests that the interactions between the elongasome proteins are governed by a combination of weak affinities and substrate availability. This validated in cell FRET assay can be used to screen for cell envelope growth inhibitors.

  14. FRET based integrated pyrene-AgNPs system for detection of Hg (II) and pyrene dimer: Applications to environmental analysis

    Science.gov (United States)

    Walekar, Laxman S.; Hu, Peidong; Vafaei Molamahmood, Hamed; Long, Mingce

    2018-06-01

    The integrated system of pyrene and cetyltrimethyl ammonium bromide (CTAB) capped silver nanoparticles (AgNPs) with a distance (r) of 2.78 nm has been developed for the detection of Hg (II) and pyrene dimer. The interaction between pyrene and AgNPs results in the fluorescence quenching of pyrene due to the energy transfer, whose mechanism can be attributed to the Forster Resonance Energy Transfer (FRET) supported by experimental observation and theoretical calculations. The developed probe shows a highly selective and sensitive response towards Hg (II) probably due to the amalgam formation, which results in the fluorescence recovery (90%) of pyrene and color change of solution from yellowish brown to colorless. The addition of Hg (II) may increase the distance between pyrene and AgNPs undergoes the 'FRET OFF' process. This system gives a selective response towards Hg (II) over other competing metal ions. Under the optimal condition, the system offers good linearity between 0.1 and 0.6 μg mL-1 with a detection limit of 62 ng mL-1. In addition, the system also provides an effective platform for detection of pyrene in its dimer form even at very low concentrations (10 ng mL-1) on the surface of AgNPs. Therefore, it could be used as effective alternatives for the detection of Hg (II) as well as pyrene simultaneously.

  15. Fiber Fabry-Perot Force Sensor with Small Volume and High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Science.gov (United States)

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie

    2017-12-13

    Measuring the radial collision force between the steam generator tube (SGT) and the tube support plate (TSP) is essential to assess the fretting damage of the SGT. In order to measure the radial collision force, a novel miniaturized force sensor based on fiber Fabry-Perot (F-P) was designed, and the principle and characteristics of the sensor were analyzed in detail. Then, the F-P force sensor was successfully fabricated and calibrated, and the overall dimensions of the encapsulated fiber F-P sensor were 17 mm × 5 mm × 3 mm (L × W × H). The sensor works well in humid, high pressure (10 MPa), high temperature (350 °C), and vibration (40 kHz) environments. Finally, the F-P force sensors were installed in a 1:1 steam generator test loop, and the radial collision force signals between the SGT and the TSP were obtained. The experiments indicated that the F-P sensor with small volume and high performance could help in assessing the fretting damage of the steam generator tubes.

  16. Design specifications to ensure flow-induced vibration and fretting-wear performance in CANDU steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2009-01-01

    Preventing flow-induced vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. This paper outlines the steps required to generate and support such design specifications for CANDU nuclear steam generators and heat exchangers, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  17. Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin Complexes

    Directory of Open Access Journals (Sweden)

    David Llères

    2017-02-01

    Full Text Available How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer-based fluorescence lifetime imaging microscopy (FLIM approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1 and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.

  18. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    International Nuclear Information System (INIS)

    Arora, Vinita; Bakhshi, A.K.

    2010-01-01

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF 2 bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF 2 ) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended π conjugation.

  19. Phenyl vs Alkyl Polythiophene: A Solar Cell Comparison Using a Vinazene Derivative as Acceptor

    KAUST Repository

    Woo, Claire H.; Holcombe, Thomas W.; Unruh, David A.; Sellinger, Alan; Fréchet, Jean M. J.

    2010-01-01

    The solar cell performance of poly[3-(4-n-octyl)-phenylthiophene] (POPT) and poly(3hexylthiophene) (P3HT) are compared in devices using 4,7-bis(2-(l-(2-ethylhexyl)-4,5-dicyanoimidazol-2-yl)vinyi)benzo[c][l,2,5] -thiadiazole (EV-BT) as the electron acceptor. Despite their reduced light absorption, POPT:EV-BT devices generate higher photocurrents in both bilayer and bulk heterojunction (BHJ) architectures than analogous P3HT:EV-BT devices. Optimized POPT:EV-BT BHJ devices achieve 1.4% average efficiency, whereas the analogous P3HT devices only reach 1.1%. Morphology does not account for the large difference in performance as AFM studies of the active layer suggest, comparable levels of phase separation in the two systems. Reverse bias analysis demonstrates that P3HT devices have a higher maximum potential than POPT devices, but P3HT devices appear to be more severely limited by recombination losses under standard operating conditions. A possible explanation for the superior performance in POPT devices is that the pendant phenyl ring in POPT can twist out-of-plane and increase the separation distance with the acceptor molecule. A larger donor/acceptor separation distance can destabilize the geminate pair and lead to more efficient charge separation in POPT:EV-BT devices. Our results emphasize the importance of donor/acceptor pair interactions and its effect on charge separation, processes in polymer solar cells. © 2010 American Chemical Society.

  20. Self-consistent electronic structure of a model stage-1 graphite acceptor intercalate

    International Nuclear Information System (INIS)

    Campagnoli, G.; Tosatti, E.

    1981-04-01

    A simple but self-consistent LCAO scheme is used to study the π-electronic structure of an idealized stage-1 ordered graphite acceptor intercalate, modeled approximately on C 8 AsF 5 . The resulting non-uniform charge population within the carbon plane, band structure, optical and energy loss properties are discussed and compared with available spectroscopic evidence. The calculated total energy is used to estimate migration energy barriers, and the intercalate vibration mode frequency. (author)

  1. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin

    2017-11-27

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  2. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin; Gasparini, Nicola; Baran, Derya

    2017-01-01

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  3. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Vinita [Department of Chemistry, University of Delhi, Delhi 110 007 (India); Bakhshi, A.K., E-mail: akbakhshi2000@yahoo.com [Department of Chemistry, University of Delhi, Delhi 110 007 (India)

    2010-08-03

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF{sub 2} bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF{sub 2}) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended {pi} conjugation.

  4. Phenyl vs Alkyl Polythiophene: A Solar Cell Comparison Using a Vinazene Derivative as Acceptor

    KAUST Repository

    Woo, Claire H.

    2010-03-09

    The solar cell performance of poly[3-(4-n-octyl)-phenylthiophene] (POPT) and poly(3hexylthiophene) (P3HT) are compared in devices using 4,7-bis(2-(l-(2-ethylhexyl)-4,5-dicyanoimidazol-2-yl)vinyi)benzo[c][l,2,5] -thiadiazole (EV-BT) as the electron acceptor. Despite their reduced light absorption, POPT:EV-BT devices generate higher photocurrents in both bilayer and bulk heterojunction (BHJ) architectures than analogous P3HT:EV-BT devices. Optimized POPT:EV-BT BHJ devices achieve 1.4% average efficiency, whereas the analogous P3HT devices only reach 1.1%. Morphology does not account for the large difference in performance as AFM studies of the active layer suggest, comparable levels of phase separation in the two systems. Reverse bias analysis demonstrates that P3HT devices have a higher maximum potential than POPT devices, but P3HT devices appear to be more severely limited by recombination losses under standard operating conditions. A possible explanation for the superior performance in POPT devices is that the pendant phenyl ring in POPT can twist out-of-plane and increase the separation distance with the acceptor molecule. A larger donor/acceptor separation distance can destabilize the geminate pair and lead to more efficient charge separation in POPT:EV-BT devices. Our results emphasize the importance of donor/acceptor pair interactions and its effect on charge separation, processes in polymer solar cells. © 2010 American Chemical Society.

  5. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    Energy Technology Data Exchange (ETDEWEB)

    Cominetti, Alessandra; Pellegrino, Andrea; Longo, Luca [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Po, Riccardo, E-mail: riccardo.po@eni.com [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Tacca, Alessandra; Carbonera, Chiara; Salvalaggio, Mario [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Baldrighi, Michele; Meille, Stefano Valdo [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, IT-20131 Milano (Italy)

    2015-06-01

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells.

  6. Amine donor and acceptor influence on the thermodynamics of ω-transaminase reactions

    DEFF Research Database (Denmark)

    Gundersen, Maria T.; Abu, Rohana; Schürmann, Martin

    2015-01-01

    In recent years biocatalytic transamination using ω-transaminase has become established as one of the most interesting routes to synthesize chiral amines with a high enantiomeric purity, especially in the pharmaceutical sector where the demand for such compounds is high. Nevertheless, one limitat...... of such reactions because it may be used to help select suitable donor/acceptor combinations. The results presented here give guidance, with respect to thermodynamics, in order to further extend the application of biocatalytic transamination....... limitation for successful implementation and scale-up is that the thermodynamics of such conversions are frequently found unfavourable. Herein we report experimental measurements of apparent equilibrium constants for several industrially relevant transamination reactions in a systematic manner to better...... understand the effect of amine acceptor and donor choice. For example, we have found that ortho-substitution of acetophenone like molecules, had a significant impact on the thermodynamic equilibrium. Likewise, the effect of cyclic amine acceptors was evaluated and compared to similar non-cyclic structures...

  7. Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.

    Science.gov (United States)

    Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li

    2018-03-21

    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

  8. Surface protection during plasma hydrogenation for acceptor passivation in InP

    International Nuclear Information System (INIS)

    Lopata, J.; Dautremont-Smith, W.C.; Pearton, S.J.; Lee, J.W.; Ha, N.T.; Luftman, H.S.

    1990-01-01

    Various dielectric and metallic films were examined as H-permeable surface protection layers on InP during H 2 or D 2 plasma exposure for passivation of acceptors in the InP. Plasma deposited SiN x , SiO 2 , and a-Si(H) films ranging in thickness from 85 to 225 angstrom were used to protect p-InP during d 2 plasma exposure at 250 degrees C. Optimum protective layer thicknesses were determined by a trade-off between the effectiveness of the layer to prevent P loss from the wafer surface and the ability to diffuse atomic H or D at a rate greater than or equal to that in the underlying InP. SIMS and capacitance-voltage depth profiling were used to determine the extent of D in-diffusion and acceptor passivation respectively. Sputter deposited W and e-beam evaporated Ti films ∼100 Angstrom thick were also evaluated. The W coated sample yielded similar results to those with dielectric films in that acceptors in p-InP were passivated to a similar depth for the same plasma exposure. The 100 Angstrom Ti film, however, did not allow the D to diffuse into the InP substrate. It is surmised that the Ti film trapped the D, thus preventing diffusion into the substrate

  9. Partial purification of xylosyltransferase (XylT) from rat liver and characterization of endogenous acceptors

    International Nuclear Information System (INIS)

    Klinger, M.; Roden, L.

    1986-01-01

    The biosynthesis of the carbohydrate-protein linkage region of most proteoglycan species is initiated by transfer of xylose from UDP-xylose to serine hydroxyl groups in the core protein. The XylT catalyzing this reaction has been previously purified from embryonic chick cartilage and from a rat chondrosarcoma but not from a normal mammalian tissue. In this study, XylT was extracted from rat liver by homogenization in buffer containing 1 M KCl and was partially purified by chromatography on heparin-Sepharose, AH-Sepharose, and on Sepharose-linked tryptic fragments of silk fibroin. The eluate from the latter contained more than 40% of the applied activity and less than 5% of the protein. Gel chromatography of XylT eluted from heparin-Sepharose indicated a mol. wt. of 95,000 to 100,000. Incorporation of ( 3 H)xylose into endogenous acceptors in the crude extract amounted to more than 50% of the total observed with added substrate (silk fibroin). Of the total endogenous acceptor activity in the crude extract, 98% was not adsorbed to heparin-Sepharose and yielded a labeled product which was stable to treatment with 0.5 M NaOH at 20 0 C for 16 h; this material may have been glycogen. In contrast, most of the radioactivity incorporated into the endogenous acceptor in the heparin-Sepharose eluate was alkali-labile, as would be expected for the xylosylated core protein of a proteoglycan

  10. Vacancy clustering and acceptor activation in nitrogen-implanted ZnO

    Science.gov (United States)

    Børseth, Thomas Moe; Tuomisto, Filip; Christensen, Jens S.; Monakhov, Edouard V.; Svensson, Bengt G.; Kuznetsov, Andrej Yu.

    2008-01-01

    The role of vacancy clustering and acceptor activation on resistivity evolution in N ion-implanted n -type hydrothermally grown bulk ZnO has been investigated by positron annihilation spectroscopy, resistivity measurements, and chemical profiling. Room temperature 220keV N implantation using doses in the low 1015cm-2 range induces small and big vacancy clusters containing at least 2 and 3-4 Zn vacancies, respectively. The small clusters are present already in as-implanted samples and remain stable up to 1000°C with no significant effect on the resistivity evolution. In contrast, formation of the big clusters at 600°C is associated with a significant increase in the free electron concentration attributed to gettering of amphoteric Li impurities by these clusters. Further annealing at 800°C results in a dramatic decrease in the free electron concentration correlated with activation of 1016-1017cm-3 acceptors likely to be N and/or Li related. The samples remain n type, however, and further annealing at 1000°C results in passivation of the acceptor states while the big clusters dissociate.

  11. Electron Acceptors Based on α-Substituted Perylene Diimide (PDI) for Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Donglin [Department; Wu, Qinghe [Department; Cai, Zhengxu [Department; Zheng, Tianyue [Department; Chen, Wei [Materials; Institute; Lu, Jessica [Department; Yu, Luping [Department

    2016-02-02

    Perylene diimide (PDI) derivatives functionalized at the ortho-position (αPPID, αPBDT) were synthesized and used as electron acceptors in non-fullerene organic photovoltaic cells. Because of the good planarity and strong π-stacking of ortho-functionalized PDI, the αPPID and αPBDT exhibit a strong tendency to form aggregates, which endow the materials with high electron mobility. The inverted OPVs employing αPDI-based compounds as the acceptors and PBT7-Th as the donor give the highest power conversion efficiency (PCE) values: 4.92% for αPBDT-based devices and 3.61% for αPPID-based devices, which are, respectively, 39% and 4% higher than that of their β-substituted counterparts βPBDT and βPPID. Charge separation studies show more efficient exciton dissociation at interfaces between αPDI-based compounds and PTB7-Th. The results suggest that α-substituted PDI derivatives are more promising electron acceptors for organic photovoltaic (OPV) components than β-isomers.

  12. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry

    Science.gov (United States)

    Carter, Charles W.; Wolfenden, Richard

    2016-01-01

    abstract The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  13. Simulation study on the effects of chemical structure and molecular size on the acceptor strength in poly(3-hexylthiophene)-based copolymer with alternating donor and acceptor for photovoltaic applications

    Science.gov (United States)

    Rassamesard, Areefen; Pengpan, Teparksorn

    2017-02-01

    This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ  gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar spectrum. Hence, the BT acceptor functional group provides a compromise in the characteristics of a donor-acceptor copolymer, useful in a polymeric candidate material for the photoactive layer in a polymer solar

  14. Localization of xanthine oxidoreductase activity using the tissue protectant polyvinyl alcohol and final electron acceptor Tetranitro BT

    NARCIS (Netherlands)

    Kooij, A.; Frederiks, W. M.; Gossrau, R.; van Noorden, C. J.

    1991-01-01

    We have detected xanthine oxidoreductase activity in unfixed cryostat sections of rat and chicken liver, rat duodenum, and bovine mammary gland using the tissue protectant polyvinyl alcohol, the electron carrier 1-methoxyphenazine methosulfate, the final electron acceptor Tetranitro BT, and

  15. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu; Adhikari, Aniruddha; Parida, Manas R.; Aly, Shawkat Mohammede; Bakr, Osman; Mohammed, Omar F.

    2017-01-01

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex

  16. Establishing a cellular FRET-based fluorescence plate reader assay to monitor proNGF-induced cross-linking of sortilin and the neurotrophin receptor p75(NTR)

    DEFF Research Database (Denmark)

    Skeldal, Sune; Kjaergaard, Maj M; Alwasel, Saleh

    2015-01-01

    the vps10p domain receptor sortilin and the neurotrophin receptor p75(NTR). However, proNGF-induced receptor complex formation has been difficult to directly assess other than by western blotting. We here describe a fluorescence resonance energy transfer (FRET) based fluorescence plate reader assay...

  17. Towards characterization of DNA structure under physiological conditions in vivo at the single-molecule level using single-pair FRET

    Czech Academy of Sciences Publication Activity Database

    Fessl, Tomáš; Adamec, František; Polívka, Tomáš; Foldynová-Trantírková, Silvie; Vácha, František; Trantírek, L.

    2012-01-01

    Roč. 40, č. 16 (2012), s. 10 ISSN 0305-1048 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z60220518 Keywords : in-cell FRET * fluorescence * DNA * nucleic acid * ATTO * in vivo Subject RIV: BO - Biophysics Impact factor: 8.278, year: 2012

  18. Investigation of fretting corrosion of vacuum-chrome-plated vt3-1 titanium alloy in pair with unprotected vt3-1 alloy and 40khnma steel

    International Nuclear Information System (INIS)

    Rojkh, I.L.; Koltunova, L.N.; Vejtsman, M.G.; Birman, Ya.N.; Skosarev, A.V.; Kogan, I.S.

    1978-01-01

    The character of destruction of contacting surfaces in the process of fretting corrosion of titanium alloy VT3-1 chromized in vacuum in pair with unprotected alloy VT3-1 and steel 40KhNMA has been studied by scanning electron microscopy, electronography, and recording the surface profile. The specific load was 200 kg/cm 2 , vibration amplitude 50 mkm and frequency 500 Hz. It has been established that pairs unprotected with coating are subjected to intensive fretting corrosion especially when they are made of titanium alloy. For the pair chromized alloy VT3-1 - unprotected alloy VT3-1 no destruction of a chromized surface is observed. Vacuum chromium coating in the pair with steel 40KhNMA reveals similar properties as in pair with a titanium alloy. The surface of a steel sample is destroyed because of fretting corrosion, though the intensity of corrosion is lower than in the case of unprotected pairs. Vacuum chromium coating is recommended for protection of titanium alloy VT3-1 from fretting corrosion in pair with steel 40KhNMA or an alloy VT3-1 especially in those cases when various organic coatings are unsuitable

  19. Time resolved amplified FRET identifies protein kinase B activation state as a marker for poor prognosis in clear cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    James Miles

    2017-12-01

    General significance: The quantitative imaging technology based on Amplified-FRET can rapidly analyse protein activation states and molecular interactions. It could be used for prognosis and assess drug function during the early cycles of chemotherapy. It enables evaluation of clinical efficiency of personalised cancer treatment.

  20. FRET study of membrane proteins: determination of the tilt and orientation of the N-terminal domain of M13 major coat protein

    NARCIS (Netherlands)

    Nazarov, P.V.; Koehorst, R.B.M.; Vos, W.L.; Apanasovich, V.V.; Hemminga, M.A.

    2007-01-01

    A formalism for membrane protein structure determination was developed. This method is based on steady-state FRET data and information about the position of the fluorescence maxima on site-directed fluorescent labeled proteins in combination with global data analysis utilizing simulation-based