WorldWideScience

Sample records for multiple fept nanodot

  1. Formation of FePt nanodots by wetting of nanohole substrates

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abdelgawad

    2016-05-01

    Full Text Available Large area arrays of FePt nanodots are fabricated on patterned substrates made of SiOx, SiNx and TiNx. The templates have a depth of ∼10 nm and a pitch of ∼20 nm with 18 nm wide holes. FePt is sputtered on the nanohole arrays, then back-etched, leaving a highly ordered array of FePt nanodots behind. To promote phase transformation to the L10 phase, the samples are annealed at temperatures of 550-650° C. During annealing, the FePt strongly dewets SiOx and SiNx substrates, causing sintering and coalescence of the FePt nanodots, but the nanodots remain highly ordered on the TiNx substrate. The nanodot arrays on TiNx are characterized magnetically before and after annealing. The out-of-plane coercivity increases by ∼1 kOe, suggesting partial transformation to the L10 phase. We also show that a capping layer can be sputtered on top of the nanodot arrays prior to annealing to prevent dewetting.

  2. Cell characteristics of a multiple alloy nano-dots memory structure

    International Nuclear Information System (INIS)

    Bea, Ji Chel; Lee, Kang-Wook; Tanaka, Tetsu; Koyanagi, Mitsumasa; Song, Yun Heub; Lee, Gae-Hun

    2009-01-01

    A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (∼5.2 eV) and extremely high dot density (∼1.2 × 10 13 cm −2 ) was fabricated. Its structural effect for multiple layers was evaluated and compared to the one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with two to four multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler–Nordheim (FN) tunneling could be a candidate structure for future flash memory

  3. Leakage current characteristics of the multiple metal alloy nanodot memory

    International Nuclear Information System (INIS)

    Lee, Gae Hun; Lee, Jung Min; Yang, Hyung Jun; Song, Yun Heub; Bea, Ji Chel; Tanaka, Tetsu

    2010-01-01

    The leakage current characteristics of a multiple metal alloy nanodot device for a nonvolatile random access memory using FePt materials are investigated. Several annealing conditions are evaluated and optimized to suppress the leakage current and to better the memory characterisctics. This work confirmed that the annealing condition of 700 .deg. C in a high vacuum ambience (under 1 x 10 -5 Pa) simultaneously provided good cell characteristics from a high dot density of over 1 x 10 13 /cm 2 and a low leakage current. In addition, a smaller nanodot diameter was found to give a lower leakage current for the multiple nanodot memory. Finally, for the proposed annealing condition, the quadruple FePt multiple nanodot memory with a 2-nm dot diameter provided good leakage current characteristics, showing a threshold voltage shift of under 5% at an initial retention stage of 1000 sec.

  4. Cell characteristics of FePt nano-dot memories with a high-k Al2O3 blocking oxide

    International Nuclear Information System (INIS)

    Lee, Gae Hun; Lee, Jung Min; Yang, Hyung Jun; Song, Yun Heub; Bea, Ji Cheol; Tanaka, Testsu

    2012-01-01

    The cell characteristics of an alloy FePt nano-dot (ND) charge trapping memory with a high-k dielectric as a blocking oxide was investigated. Adoption of a high-k Al 2 O 3 material as a blocking oxide for the metal nano-dot memory provided a superior scaling of the operation voltage compared to silicon oxide under a similar gate leakage level. For the 40-nm-thick high-k (Al 2 O 3 ) blocking oxide, we confirmed an operation voltage reduction of ∼7 V under the same memory window on for silicon dioxide. Also, this device showed a large memory window of 7.8 V and a low leakage current under 10 -10 A in an area of Φ 0.25 mm. From these results, the use of a dielectric (Al 2 O 3 ) as a blocking oxide for a metal nano-dot device is essential, and a metal nano-dot memory with a high-k dielectric will be one of the candidates for a high-density non-volatile memory device.

  5. Patterned FePt nanostructures using ultrathin self-organized templates

    Science.gov (United States)

    Deng, Chen Hua; Zhang, Min; Wang, Fang; Xu, Xiao Hong

    2018-02-01

    Patterned magnetic thin films are both scientifically interesting and technologically useful. Ultrathin self-organized anodic aluminum oxide (AAO) template can be used to fabricate large area nanodot and antidot arrays. The magnetic properties of these nanostructures may be tuned by the morphology of the AAO template, which in turn can be controlled by synthetic parameters. In this work, ultrathin AAO templates were used as etching masks for the fabrication of both FePt nanodot and antidot arrays with high areal density. The perpendicular magnetic anisotropy of L10 FePt thin films are preserved in the nanostructures.

  6. Switching field distribution and magnetization reversal process of FePt dot patterns

    Energy Technology Data Exchange (ETDEWEB)

    Ishio, S., E-mail: ishio@gipc.akita-u.ac.jp [Department of Materials Science and Engineering, Akita University, Akita 010-8502 (Japan); Takahashi, S.; Hasegawa, T.; Arakawa, A.; Sasaki, H. [Department of Materials Science and Engineering, Akita University, Akita 010-8502 (Japan); Yan, Z.; Liu, X. [Venture Business Laboratory, Akita University, Tegata Gakuen-machi, Akita 010-8502 (Japan); Kondo, Y.; Yamane, H.; Ariake, J. [Akita Prefectural R and D Center, 4-21 Sanuki, Akita 010-1623 (Japan); Suzuki, M.; Kawamura, N.; Mizumaki, M. [Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2014-06-01

    The fabrication of FePt nanodots with a high structural quality and the control of their switching fields are key issues in realizing high density bit pattern recording. We have prepared FePt dot patterns for dots with 15–300 nm diameters by electron beam lithography and re-annealing, and studied the relation between magnetization reversal process and structure of FePt nanodots. The switching field (H{sub sw}) of dot patterns re-annealed at 710 °C for 240 min showed a bimodal distribution, where a higher peak was found at 5–6 T, and a lower peak was found at ∼2 T. It was revealed by cross-sectional TEM analysis that the structure of dots in the pattern can be classified into two groups. One group has a high degree of order with well-defined [0 0 1] crystalline growth, and the other group includes structurally-disturbed dots like [1 1 1] growth and twin crystals. This structural inhomogeneity causes the magnetic switching field distribution observed. - Highlights: • FePt dot patterns with 15–100 nm dot diameters were prepared by EB lithography. • Maximum coercivity of 30 kOe was found in the dot pattern with 30 nm in diameter. • Magnetization reversal was studied on the base of TEM analysis and LLG simulation.

  7. Effects of annealing temperature in a metal alloy nano-dot memory

    International Nuclear Information System (INIS)

    Lee, Jung Min; Lee, Gae Hun; Song, Yun Heub; Bea, Ji Cheol; Tanaka, Tetsu

    2011-01-01

    The annealing temperature dependence of the capacitance-voltage (C-V) characteristic has been studied in a metal-oxide semiconductor structure containing FePt nano-dots. Several in-situ annealing temperatures from 400 to ∼700 .deg. C in a high vacuum ambience (under 1 x 10 -5 Pa) were evaluated in view of the cell's characteristics and its reliability. Here, we demonstrate that the annealing temperature is significant for memory performance in an alloy metal nano-dot structure. A higher in-situ temperature provides better retention and a more reliable memory window. In the sample with an in-situ annealing condition of 700 .deg. C for 30 min, a memory window of 9.2 V at the initial stage was obtained, and a memory window of 6.2 V after 10 years was estimated, which is reliable for a non-volatile memory. From these results, the annealing condition for an alloy metal nano-dot memory is one of the critical parameters for the memory characteristics, and should be optimized for better memory performance.

  8. Optical properties of monodispersive FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [Center for Sustainable Environmental Technologies, Iowa State University, Ames, IA 50011 (United States)

    2004-10-01

    The optical properties of monodispersive FePt nanoparticle films were investigated using spectroscopic ellipsometry in the energy range of 1.5 to 5.5 eV. The monodispersive FePt nanoparticle film was stabilized on a Si substrate by means of an organosilane coupling film, resulting in the formation of a (Si/SiO{sub 2}/APTS/FePt nanoparticles monolayer) structure. Multilayer optical models were employed to study the contribution of the FePt nanoparticles to the measured optical properties of the monodispersive FePt nanoparticle film, and to estimate the optical properties of the FePt nanoparticle layer. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Spectroscopic ellipsometry study of FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [School of Materials Science and Technology, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2006-12-15

    The optical properties of a FePt nanoparticle film were investigated using spectroscopic ellipsometry. The FePt nanoparticle film of thickness about 15 nm was prepared by deposition of FePt nanoparticles directly on a Si substrate. The nanoparticle film was annealed at 600 C in vacuum for two hours before the measurements. The optical properties of the FePt nanoparticle film showed distinctively different spectra from those obtained from the bulk and thin film FePt samples, in particular in the low photon energy range (below 3.5 eV) where the nanoparticle film exhibited a relatively flat refractive index and a substantially lower extinction coefficient than the bulk and epitaxial thin film samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Fabrication and surface transformation of FePt nanoparticle monolayer

    International Nuclear Information System (INIS)

    Wang Ying; Ding Baojun; Li Hua; Zhang Xiaoyan; Cai Bingchu; Zhang Yafei

    2007-01-01

    The monolayer of FePt nanoparticles with the mean size of ∼4 nm was fabricated on a glass substrate by the Langmuir--Blodgett (LB) technology. The monolayer of FePt nanoparticles has a smooth surface and a high density structure as shown by the AFM image. The array structure of FePt nanoparticles on the surface of the film is clearly with a cubic symmetry in appropriate condition. Small-angle X-ray diffraction (SXRD) measurement of multilayer structure for the FePt nanoparticles has indicated that the superlattices consist of well-defined smooth layers. The transfer of nanoparticle layers onto a solid substrate surface was quite efficient for the first few layers, exhibiting a proportional increase of optical absorption in the UV-vis range. This results potentially opens up a new approach to the long-range ordered array of FePt nanoparticles capped by organic molecules on substrate and provide a promising thin film, which may exhibit the excellent ultra-high density magnetic recording properties

  11. Multiple oxide content media for columnar grain growth in L10 FePt thin films

    International Nuclear Information System (INIS)

    Ho, Hoan; Yang, En; Laughlin, David E.; Zhu, Jian-Gang

    2013-01-01

    An approach to enhance the height-to-diameter ratio of FePt grains in heat-assisted magnetic recording media is proposed. The FePt-SiO x thin films are deposited with a decrease of the SiO x percentage along the film growth direction. When bi-layer and tri-layer media are sputtered at 410 °C, we observe discontinuities in the FePt grains at interfaces between layers, which lead to poor epitaxial growth. Due to increased atomic diffusion, the bi-layer media sputtered at 450 °C is shown to (1) grow into continuous columnar grains with similar size as single-layer media but much higher aspect ratio, (2) have better L1 0 ordering and larger coercivity.

  12. Nanodot deposition and its application with atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zenglei, E-mail: liuzenglei@sia.cn; Jiao Niandong, E-mail: ndjiao@sia.cn [Chinese Academy of Sciences, State Key Laboratory of Robotics, Shenyang Institute of Automation (China); Xu Ke [Shenyang Jianzhu University (China); Wang, Zhidong [Chiba Institute of Technology (Japan); Dong Zaili; Liu Lianqing [Chinese Academy of Sciences, State Key Laboratory of Robotics, Shenyang Institute of Automation (China)

    2013-06-15

    Nanodot deposition using atomic force microscope (AFM) is investigated. To realize repeatable and precise deposition of nanodots, the detailed control method is discussed. The electric field between AFM tip and substrate is analyzed, and a convenient method to control tip-substrate separation is proposed. In experiments, two nanodot matrixes are fabricated and the heights of the nanodots are analyzed. Experimental results testify that the control method can lead to repeatable and precise fabrication of deposited nanodots. As an application of deposited nanodots, a carbon nanotube (CNT) is soldered on gold electrodes with deposited Au nanodots. After soldering, the contact resistances between the CNT and the electrodes decrease greatly. AFM-based nanodot deposition can be used to fabricate special nanopatterns; also it can be used to solder nanomaterials on substrates to improve the electrical connection, which has a promising future for nanodevice fabrication.

  13. Toward the direct deposition of L10 FePt nanoparticles

    International Nuclear Information System (INIS)

    Qiu Jiaoming; Judy, Jack H.; Weller, Dieter; Wang Jianping

    2005-01-01

    In this paper we report a technique that can directly fabricate L1 0 phase FePt nanoparticles. FePt nanoparticles were generated through gas-phase aggregation using a magnetron-sputtering-based nanocluster source. Following the source chamber, an online halogen-lamp heater was used for the L1 0 phase formation during the particles' flight in vacuum. Transmission electron microscopy and vibrating-sample magnetometer data verified the successful fabrication of the L1 0 phase FePt nanoparticles. The coercivity value at 300 K is 1100 Oe for the nanoparticles with online heating. Neon carrier gas was applied to manipulate FePt nanoparticle size and to enhance particle size uniformity. The size dependence of nanoparticle ordering was investigated

  14. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis

    2013-10-01

    We present the synthesis and characterization of a new class of self-suspended ferrofluids that exhibit remanent magnetization at room temperature. Our system relies on the chemisorption of a thiol-terminated ionic liquid with very low melting point on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic component. The ferrofluids do not show any sign of flocculation or phase separation, despite the strong interactions between the magnetic nanoparticles due to the strong chemisorption of the ionic liquid as evidenced by Raman spectroscopy and thermal analysis. Composites with high FePt loading (40 and 70. wt%) exhibit a pseudo solid-like rheological behavior and high remanent magnetization values (10.1 and 12.8. emu/g respectively). At lower FePt loading (12. wt%) a liquid like behavior is observed and the remanent and saturation magnetization values are 3.5 and 6.2. emu/g, respectively. The magnetic and flow properties of the materials can be easily fine tuned by controlling the type and amount of FePt nanoparticles used. © 2013 Elsevier Inc.

  15. Blue photoluminescent carbon nanodots from limeade

    Energy Technology Data Exchange (ETDEWEB)

    Suvarnaphaet, Phitsini [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); ThEP Center, Commission of Higher Education, 328 Si Ayuthaya Rd (Thailand); Tiwary, Chandra Sekhar [Department of Materials Science and Nano Engineering, Rice University, Houston, TX 7005 (United States); Wetcharungsri, Jutaphet; Porntheeraphat, Supanit [NECTEC, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120 (Thailand); Hoonsawat, Rassmidara [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); ThEP Center, Commission of Higher Education, 328 Si Ayuthaya Rd (Thailand); Ajayan, Pulickel Madhavapanicker [Department of Materials Science and Nano Engineering, Rice University, Houston, TX 7005 (United States); Tang, I-Ming [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Department of Material Science, Faculty of Science, Kasetsart University, Bangkok 10400 (Thailand); ThEP Center, Commission of Higher Education, 328 Si Ayuthaya Rd (Thailand); Asanithi, Piyapong, E-mail: asanithi@hotmail.com [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); ThEP Center, Commission of Higher Education, 328 Si Ayuthaya Rd (Thailand)

    2016-12-01

    Carbon-based photoluminescent nanodot has currently been one of the promising materials for various applications. The remaining challenges are the carbon sources and the simple synthetic processes that enhance the quantum yield, photostability and biocompatibility of the nanodots. In this work, the synthesis of blue photoluminescent carbon nanodots from limeade via a single-step hydrothermal carbonization process is presented. Lime carbon nanodot (L-CnD), whose the quantum yield exceeding 50% for the 490 nm emission in gram-scale amounts, has the structure of graphene core functionalized with the oxygen functional groups. The micron-sized flake of the as-prepared L-CnD powder exhibits multicolor emission depending on an excitation wavelength. The L-CnDs are demonstrated for rapidly ferric-ion (Fe{sup 3+}) detection in water compared to Fe{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Zn{sup 2+}, Mn{sup 2+} and Ni{sup 2+} ions. The photoluminescence quenching of L-CnD solution under UV light is used to distinguish the Fe{sup 3+} ions from others by naked eyes as low concentration as 100 μM. Additionally, L-CnDs provide exceptional photostability and biocompatibility for imaging yeast cell morphology. Changes in morphology of living yeast cells, i.e. cell shape variation, and budding, can be observed in a minute-period until more than an hour without the photoluminescent intensity loss. - Highlights: • Photoluminescent carbon nanodots are synthesized from limeade. • The quantum yield of lime carbon nanodots is higher than 50%. • The lime carbon nanodots can be applied for detecting of Fe{sup 3+} ions and for imaging living yeast cells.

  16. Ordering process of sputtered FePt films

    International Nuclear Information System (INIS)

    Takahashi, Y.K.; Ohnuma, M.; Hono, K.

    2003-01-01

    We have investigated the in situ ordering process of sputtered FePt thin films deposited on heated substrates at 300 deg. C with different thicknesses. The films thinner than 50 nm were composed of nanograins (∼5 nm) of disordered FePt phase. Recrystallization occurred when films were grown thicker than 100 nm, and transformation twins were observed in recrystallized grains, in which ordering to the L1 0 structure was confirmed

  17. Observation of high coercive fields in chemically synthesized coated Fe-Pt nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in

    2017-04-15

    Nanocrystalline Fe-Pt alloys have been synthesized via chemical reduction route using various capping agents; such as: oleic acid/oleylamine (route-1) and oleic acid/CTAB (route-2). We could able to synthesize Fe50Pt and Fe54Pt alloys via route 1 and 2, respectively. As-prepared Fe-Pt alloys crystallize in disordered fcc phase with crystallite sizes of 2.3 nm and 6 nm for route-1 and route-2, respectively. Disordered Fe-Pt alloys were transformed to ordered fct phase after annealing at 600 °C. SEM studies confirm the spherical shape morphologies of annealed Fe-Pt nanoparticles with SEM particle sizes of 24.4 nm and 21.2 nm for route-1 and route-2, respectively. TEM study confirms the presence of 4.6 nm particles for annealed Fe50Pt alloys with several agglomerating clusters of bigger size and appropriately agrees well with the XRD study. Room temperature magnetization studies of as-prepared Fe-Pt alloys (fcc) show ferromagnetism with negligible coercivities. Average magnetic moments per particle for as-prepared Fe-Pt alloys were estimated to be 753 μ{sub B} and 814 μ{sub B}, for route 1 and 2, respectively. Ordered fct Fe-Pt alloys show high values of coercivities of 10,000 Oe and 10,792 Oe for route-1 and route-2, respectively. Observed magnetic properties of the fct Fe-Pt alloys nps were interpreted with the basis of order parameters, size, surface, and composition effects. - Highlights: • Synthesis of capped nanocrystalline Fe-Pt alloys via chemical routes. • Ordered fct phase were obtained at 600 °C. • Microstructural studies were carried out using SEM and TEM. • Investigation on evolution of magnetic properties from fcc to fct state. • Maximum values of coercivities up to 10,792 Oe were observed.

  18. L1{sub 0}-FePt films fabricated by wet-chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Xiaoliang; Xiao, Wen; Bao, Nina; Li, Weimin; Chichvarina, Olga, E-mail: A0077107@nus.edu.sg; Ding, Jun, E-mail: msedingj@nus.edu.sg

    2015-08-31

    In this work, we have developed a method to fabricate FePt films by a combination of chemical deposition and post-annealing. Pt-doped Fe films were deposited on Pt(100 nm)/Ti(50 nm)/SiO{sub 2}/Si substrate using thermal deposition and the as-deposited films were subsequently annealed from 300 °C to 800 °C under 5% H{sub 2}/95% N{sub 2}. FePt films were achieved through diffusion and rearrangement of Fe and Pt atoms in post-annealing process. From X-ray diffraction results, the face-centered cubic (fcc) FePt phase appeared at 300 °C and the transformation from fcc to L1{sub 0} phase started at 400 °C. The L1{sub 0}-FePt film possessed an out-of-plane anisotropy and a coercivity of 729 kA/m after annealing at 600 °C. A further increase in annealing temperature led to lower value of coercivity, probably because of grain growth. In addition, the thickness of Pt-doped Fe films could be controlled from 150 nm to 700 nm by adjusting the amount of surfactant used. Our superconducting quantum interference device analysis showed that Pt dopant could significantly improve the chemical stability of Fe films in air. - Highlights: • We fabricated FePt film by a combination of chemical deposition and post-annealing. • L1{sub 0} FePt film was formed by Fe/Pt diffusion in annealing of Pt-doped Fe film. • L1{sub 0}-phase FePt with high coercivity and small out-of-plane anisotropy • Relatively small amount of Pt dopant can enhance chemical stability greatly. • We studied structure and magnetic property of as-deposited and annealed FePt film.

  19. Study the Polyol Process of Preparing the ru Doped FePt Nanoparticles

    Science.gov (United States)

    Lee, Chih-Hao; Hsu, Jen-Ho; Su, Hui-Chia; Huang, Tzu Wen

    The structure of Ru doped FePt nanoparticles using polyol process was studied. The particle size grown is around 5 nm, and a shell structure might be formed. By selecting the time and temperature of adding the Ru precursors into solution, three different processes to synthesize the FePtRu particles were studied resulting in different growing mechanics. The possible models during the reaction process are also discussed. The phase transition temperature for the as-grown FCC FePt nanoparticle to transform into L10 FePt nanoparticle is about 823 K which is about the same as the one without doping Ru atoms. From the XAS study of each element, the possible scenario is that: although Ru atoms with the size close to the Pt, they do not totally replace the Pt sites in the FePt alloy. Instead, most of Ru formed a shell outside the FePt nanoparticles and Fe atoms are replaced.

  20. Synthesis and characterization of chemically ordered FePt magnetic nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasa Rao, K. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Balaji, T., E-mail: theerthambalaji@yahoo.co [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Lingappa, Y. [Department of Chemistry, Sri Venkateswara University, Tirupati 517 502 (India); Reddy, M.R.P.; Kumar, Arbind; Prakash, T.L. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India)

    2010-08-15

    Monodispersed FePt alloy magnetic nano-particles are prepared by reduction of platinum acetyl acetonate and iron acetyl acetonate salts together in the presence of oleic acid and oleyl amine stabilizers by polyol process. The particle size of FePt is in the range of 2-3 nm confirmed by transmission electron microscopy (TEM). As-synthesized FePt nano-particles are chemically disordered with face centre cubic (fcc) structure where as after vacuum annealing these particles changed to face centre tetragonal (fct) ordered structure confirmed by the X-ray diffraction technique. Magnetic coercivity of 5.247 KOe was observed for fct structure.

  1. Atomistic computer simulations of FePt nanoparticles. Thermodynamic and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.

    2007-12-20

    In the present dissertation, a hierarchical multiscale approach for modeling FePt nanoparticles by atomistic computer simulations is developed. By describing the interatomic interactions on different levels of sophistication, various time and length scales can be accessed. Methods range from static quantum-mechanic total-energy calculations of small periodic systems to simulations of whole particles over an extended time by using simple lattice Hamiltonians. By employing these methods, the energetic and thermodynamic stability of non-crystalline multiply twinned FePt nanoparticles is investigated. Subsequently, the thermodynamics of the order-disorder transition in FePt nanoparticles is analyzed, including the influence of particle size, composition and modified surface energies by different chemical surroundings. In order to identify processes that reduce or enhance the rate of transformation from the disordered to the ordered state, the kinetics of the ordering transition in FePt nanoparticles is finally investigated by assessing the contributions of surface and volume diffusion. (orig.)

  2. Effect of sputter pressure on magnetotransport properties of FePt nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Shu, E-mail: mishu@buaa.edu.cn; Liu, Rui, E-mail: liurui1987@buaa.edu.cn; Li, Yuanyuan, E-mail: buaaliyuan@163.com; Ye, Jun, E-mail: yejun@iphy.ac.cn; Xie, Yong, E-mail: xiey@buaa.edu.cn; Chen, Ziyu, E-mail: chenzy@buaa.edu.cn

    2016-04-01

    FePt films were prepared by magnetron sputtering deposition using Ar as the sputtering gas under different working pressures (0.3–0.7 Pa). The effect of sputtering gas pressure on the microstructure, magnetic, and magnetoresistance properties has been investigated. The results show that the crystallization of FePt films is strongly dependent on the Ar sputter pressure. With the decrease of Ar working pressures, the fct phase forms and the coercivity (Hc) of FePt films rises under the same annealing temperature. As a result, the giant magnetoresistance (GMR) increases by 20% at the room temperature. At 0.7 Pa, the anisotropy magnetoresistance (AMR) can be observed clearly at a low field. However, as the Ar pressure decreases, the increase of GMR leads to a degradation of AMR effect. We believe that the improvement of GMR effect results from the increase of magnetic anisotropy and spin polarization in the process of transformation from the soft magnetic fcc phase to the hard magnetic fct phase. - Highlights: • FePt films were sputtered under different Ar working pressures. • The low Ar pressure promotes the formation of L1{sub 0} phase. • The Hc of FePt films enlarges with the reduction of Ar pressure. • As the Ar pressure decreases, the MR increases by 20%. • The total MR results from the competition of GMR and AMR.

  3. Effect of sputter pressure on magnetotransport properties of FePt nanocomposites

    International Nuclear Information System (INIS)

    Mi, Shu; Liu, Rui; Li, Yuanyuan; Ye, Jun; Xie, Yong; Chen, Ziyu

    2016-01-01

    FePt films were prepared by magnetron sputtering deposition using Ar as the sputtering gas under different working pressures (0.3–0.7 Pa). The effect of sputtering gas pressure on the microstructure, magnetic, and magnetoresistance properties has been investigated. The results show that the crystallization of FePt films is strongly dependent on the Ar sputter pressure. With the decrease of Ar working pressures, the fct phase forms and the coercivity (Hc) of FePt films rises under the same annealing temperature. As a result, the giant magnetoresistance (GMR) increases by 20% at the room temperature. At 0.7 Pa, the anisotropy magnetoresistance (AMR) can be observed clearly at a low field. However, as the Ar pressure decreases, the increase of GMR leads to a degradation of AMR effect. We believe that the improvement of GMR effect results from the increase of magnetic anisotropy and spin polarization in the process of transformation from the soft magnetic fcc phase to the hard magnetic fct phase. - Highlights: • FePt films were sputtered under different Ar working pressures. • The low Ar pressure promotes the formation of L1 0 phase. • The Hc of FePt films enlarges with the reduction of Ar pressure. • As the Ar pressure decreases, the MR increases by 20%. • The total MR results from the competition of GMR and AMR.

  4. Growth, structure and magnetic properties of magnetron sputtered FePt thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cantelli, Valentina

    2010-07-01

    The L1{sub 0} FePt phase belongs to the most promising hard ferromagnetic materials for high density recording media. The main challenges for thin FePt films are: (i) to lower the process temperature for the transition from the soft magnetic A1 to the hard magnetic L1{sub 0} phase, (ii) to realize c-axes preferential oriented layers independently from the substrate nature and (iii) to control layer morphology supporting the formation of FePt-L1{sub 0} selforganized isolated nanoislands towards an increase of the signal-to-noise ratio. In this study, dc magnetron sputtered FePt thin films on amorphous substrates were investigated. The work is focused on the correlation between structural and magnetic properties with respect to the influence of deposition parameters like growth mode (cosputtering vs. layer - by - layer) and the variation of the deposition gas (Ar, Xe) or pressure (0.3-3 Pa). In low-pressure Ar discharges, high energetic particle impacts support vacancies formation during layer growth lowering the phase transition temperature to (320{+-}20) C. By reducing the particle kinetic energy in Xe discharges, highly (001) preferential oriented L1{sub 0}-FePt films were obtained on a-SiO{sub 2} after vacuum annealing. L1{sub 0}-FePt nano-island formation was supported by the introduction of an Ag matrix, or by random ballistic aggregation and atomic self shadowing realized by FePt depositions at very high pressure (3 Pa). The high coercivity (1.5 T) of granular, magnetic isotropic FePt layers, deposited in Ar discharges, was measured with SQUID magnetometer hysteresis loops. For non-granular films with (001) preferential orientation the coercivity decreased (0.6 T) together with an enhancement of the out-of- plane anisotropy. Nanoislands show a coercive field close to the values obtained for granular layers but exhibit an in-plane easy axis due to shape anisotropy effects. An extensive study with different synchrotron X-ray scattering techniques, mainly

  5. Direct synthesis of L1 type Fe-Pt nanoparticles using microwave-polyol method

    International Nuclear Information System (INIS)

    Minami, Rumiko; Kitamoto, Yoshitaka; Chikata, Tsukasa; Kato, Shunsaku

    2005-01-01

    We report the synthesis of Fe-Pt nanoparticles with microwave irradiation during polyol-reduction reaction. Chemically ordered Fe-Pt nanoparticles with L1 structure are fabricated at 250 deg. C using a microwave-polyol method without any post-synthesis treatments. Moessbauer analyses reveal the nanoparticles have partially ordered L1 structure. The partially ordered Fe-Pt nanoparticles exhibit coercivity of 3.4 kOe, saturation magnetization of 49 emu/g, and anisotropy field of 83 kOe at room temperature

  6. Tunable magnetic properties by interfacial manipulation of L1(0)-FePt perpendicular ultrathin film with island-like structures.

    Science.gov (United States)

    Feng, C; Wang, S G; Yang, M Y; Zhang, E; Zhan, Q; Jiang, Y; Li, B H; Yu, G H

    2012-02-01

    Based on interfacial manipulation of the MgO single crystal substrate and non-magnetic AIN compound, a L1(0)-FePt perpendicular ultrathin film with the structure of MgO/FePt-AIN/Ta was designed, prepared, and investigated. The film is comprised of L1(0)-FePt "magnetic islands," which exhibits a perpendicular magnetic anisotropy (PMA), tunable coercivity (Hc), and interparticle exchange coupling (IEC). The MgO substrate promotes PMA of the film because of interfacial control of the FePt lattice orientation. The AIN compound is doped to increase the difference of surface energy between FePt layer and MgO substrate and to suppress the growth of FePt grains, which takes control of island growth mode of FePt atoms. The AIN compound also acts as isolator of L1(0)-FePt islands to pin the sites of FePt domains, resulting in the tunability of Hc and IEC of the films.

  7. Equilibrium shapes of polycrystalline silicon nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Korzec, M. D., E-mail: korzec@math.tu-berlin.de; Wagner, B., E-mail: bwagner@math.tu-berlin.de [Department of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin (Germany); Roczen, M., E-mail: maurizio.roczen@physik.hu-berlin.de [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schade, M., E-mail: martin.schade@physik.uni-halle.de [Zentrum für Innovationskompetenz SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Germany); Rech, B., E-mail: bernd.rech@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute for Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany)

    2014-02-21

    This study is concerned with the topography of nanostructures consisting of arrays of polycrystalline nanodots. Guided by transmission electron microscopy (TEM) measurements of crystalline Si (c-Si) nanodots that evolved from a “dewetting” process of an amorphous Si (a-Si) layer from a SiO{sub 2} coated substrate, we investigate appropriate formulations for the surface energy density and transitions of energy density states at grain boundaries. We introduce a new numerical minimization formulation that allows to account for adhesion energy from an underlying substrate. We demonstrate our approach first for the free standing case, where the solutions can be compared to well-known Wulff constructions, before we treat the general case for interfacial energy settings that support “partial wetting” and grain boundaries for the polycrystalline case. We then use our method to predict the morphologies of silicon nanodots.

  8. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  9. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    Science.gov (United States)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  10. Facile preparation of luminescent and intelligent gold nanodots based on supramolecular self-assembly

    International Nuclear Information System (INIS)

    Shi Yunfeng; Li Sujuan; Zhou Yahui; Zhai Qingpan; Hu Mengyue; Cai Fensha; Du Jimin; Liang Jiamiao; Zhu Xinyuan

    2012-01-01

    A new strategy for preparing luminescent and intelligent gold nanodots based on supramolecular self-assembly is described in this paper. The supramolecular self-assembly was initiated through electrostatic interactions and ion pairing between palmitic acid and hyperbranched poly(ethylenimine). The resulting structures not only have the dynamic reversible properties of supramolecules but also possess torispherical and highly branched architectures. Thus they can be regarded as a new kind of ideal nanoreactor for preparing intelligent Au nanodots. By preparing Au nanodots within this kind of supramolecular self-assembly, the environmental sensitivity of intelligent polymers and the optical, electrical properties of Au nanodots can be combined, endowing the Au nanodots with intelligence. In this paper, a supramolecular self-assembly process based on dendritic poly(ethylenimine) and palmitic acid was designed and then applied to prepare fluorescent and size-controlled Au nanodots. The pH response of Au nanodots embodied by phase transfer from oil phase to water phase was also investigated. (paper)

  11. Effects of Cr underlayer and Pt buffer layer on the interfacial structure and magnetic characteristics of sputtered FePt films

    International Nuclear Information System (INIS)

    Sun, A.-C.; Hsu, J.-H.; Huang, H.L.; Kuo, P.C.

    2006-01-01

    This work develops a new method for growing L1 0 FePt(0 0 1) thin film on a Pt/Cr bilayer using an amorphous glass substrate. Semi-coherent epitaxial growth was initiated from the Cr(0 0 2) underlayer, continued through the Pt(0 0 1) buffer layer, and extended into the L1 0 FePt(0 0 1) magnetic layer. The squareness of the L1 0 FePt film in the presence of both a Cr underlayer and a Pt buffer layer was close to unity as the magnetic field was applied perpendicular to the film plane. The single L1 0 FePt(1 1 1) orientation was observed in the absence of a Cr underlayer. When a Cr underlayer is inserted, the preferred orientation switched from L1 0 FePt(1 1 1) to L1 0 FePt(0 0 1) and the magnetic film exhibited perpendicular magnetic anisotropy. However, in the absence of an Pt intermediate layer, the Cr atoms diffused directly into the FePt magnetic layer and prevented the formation of the L1 0 FePt(0 0 1) preferred orientation. When a Pt buffer layer was introduced between the FePt and Cr underlayer, the L1 0 FePt(0 0 1) peak appeared. The thickness of the Pt buffer layer also substantially affected the magnetic properties and atomic arrangement at the FePt/Pt and Pt/Cr interfaces

  12. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis; Kelarakis, Antonios; Sahore, Ritu; DiSalvo, Francis J.; Livi, Sebastien; Giannelis, Emmanuel P.

    2013-01-01

    on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic

  13. Scanning probe lithography for fabrication of Ti metal nanodot arrays

    International Nuclear Information System (INIS)

    Jung, B.; Jo, W.; Gwon, M.J.; Lee, E.; Kim, D.-W.

    2010-01-01

    We report fabrication of Ti metal nanodot arrays by scanning probe microscopic indentation. A thin poly-methylmethacrylate (PMMA) layer was spin-coated on Si substrates with thickness of 70 nm. Nanometer-size pore arrays were formed by indenting the PMMA layer using a cantilever of a scanning probe microscope. Protuberances with irregular boundaries appeared during the indentation process. Control of approach and pulling-out speed during indentation was able to dispose of the protrusions. Ti metal films were deposited on the patterned PMMA layers by a radio-frequency sputtering method and subsequently lifted off to obtain metal nanodot arrays. The fabricated metal nanodot arrays have 200 nm of diameter and 500 nm of interdistance, which corresponds to a density of 4x10 8 /cm 2 . Scanning probe-based measurement of current-voltage (I-V) behaviors for a single Ti metal nanodot showed asymmetric characteristics. Applying external bias is likely to induce oxidation of Ti metal, since the conductance decreased and volume change of the dots was observed. I-V behaviors of Ti metal nanodots by conventional e-beam lithography were also characterized for comparison.

  14. Reducing the ordering temperature of FePt nanoparticles by Cu additive and alternate reduction method

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2017-12-01

    Full Text Available (FePt85Cu15 nanoparticles were successfully prepared by alternate reduction of metal salts in aqueous medium. Detailed investigations on the correlation between the magnetic and structural properties of these nanoparticles are presented as a function of annealing temperature. Both the X-ray diffraction patterns and the magnetic hysteresis loop measurements show the existence of L10-FePt phase at a relative low annealing temperature. It is proved that the Cu additive and alternate reduction are very effective methods in reducing the ordering temperature of FePt nanoparticles.

  15. Effects of deposition temperature and in-situ annealing time on structure and magnetic properties of (001) orientation FePt films

    International Nuclear Information System (INIS)

    Yu, Yongsheng; George, T.A.; Li, Haibo; Sun, Daqian; Ren, Zhenan; Sellmyer, D.J.

    2013-01-01

    FePt films were prepared on (100) oriented single crystal MgO substrates at high temperature ranging from 620 until 800 °C and in-situ annealed for different times ranging from 0 to 60 min to obtain ordered FePt films. The structural analysis indicates that FePt films grow epitaxially on MgO (100) substrates. Both increasing deposition temperature and in-situ annealing time enhance the (001) texture and ordering of FePt films. The magnetic analysis shows that these L1 0 FePt films have perpendicular anisotropy and the easy magnetization c-axis is perpendicular to the film plane. Magnetization reversal is controlled by a rotational mechanism. The hard magnetic properties of the films are improved with increasing deposition temperature or in-situ annealing time. - Highlights: ► The paper reports the texture and magnetic evolution of FePt films deposited on MgO substrates. ► Increasing deposition temperature or annealing time enhanced the texture and ordering. ► The magnetic analysis shows L1 0 FePt films have perpendicular anisotropy.

  16. Spin dynamics and thermal stability in L10 FePt

    Science.gov (United States)

    Chen, Tianran; Toomey, Wahida

    Increasing the data storage density of hard drives remains one of the continuing goals in magnetic recording technology. A critical challenge for increasing data density is the thermal stability of the written information, which drops rapidly as the bit size gets smaller. To maintain good thermal stability in small bits, one should consider materials with high anisotropy energy such as L10 FePt. High anisotropy energy nevertheless implies high coercivity, making it difficult to write information onto the disk. This issue can be overcome by a new technique called heat-assisted magnetic recording, where a laser is used to locally heat the recording medium to reduce its coercivity while retaining relatively good thermal stability. Many of the microscopic magnetic properties of L10 FePt, however, have not been theoretically well understood. In this poster, I will focus on a single L10 FePt grain, typically of a few nanometers. Specifically, I will discuss its critical temperature, size effect and, in particular, spin dynamics in the writing process, a key to the success of heat-assisted magnetic recording. WCU URF16.

  17. Magnetic properties and microstructure of low ordering temperature L10 FePt thin films

    International Nuclear Information System (INIS)

    Sun, A.C.; Kuo, P.C.; Chen, S.C.; Chou, C.Y.; Huang, H.L.; Hsu, J.H.

    2004-01-01

    Polycrystalline Fe 52 Pt 48 alloy thin films were prepared by dc magnetron sputtering on preheated natural-oxidized silicon wafer substrates. The film thickness was varied from 10 to 100 nm. The as-deposited film was encapsulated in a quartz tube and postannealed in vacuum at various temperatures for 1 h, then furnace cooled. It is found that the ordering temperature from as-deposited soft magnetic fcc FePt phase to hard magnetic fct L1 0 FePt phase could be reduced to about 350 deg. C by preheating substrate and furnace cooling treatment. The magnetic properties measurements indicated that the in-plane coercivity of the films was increased rapidly as annealing temperature is increased from 300 to 400 deg. C, but it decreased when the annealing temperature is higher than 400 deg. C. X-ray diffraction analysis shown that the as-deposited FePt thin film was a disorder fcc FePt phase. The magnetic measurement indicated that the transformation of disorder fcc FePt to fct L1 0 FePt phase was started at about 350 deg. C, which is consistent with the analysis of x-ray diffraction patterns. From scanning electron microscopy observation and selected area energy disperse spectrum analysis, the distributions of Fe and Pt elements in the films became nonuniform when the annealing temperature was higher than 500 deg. C due to the formation of the Fe 3 Pt phase. After annealing at 400 deg. C, the in plane coercivity of Fe 52 Pt 48 thin film with film thickness of 100 nm is 10 kOe, M s is 580 emu/cm3, and grain size is about 12 nm

  18. Effect of Hf underlayer on structure and magnetic properties of rapid thermal annealed FePt thin films

    International Nuclear Information System (INIS)

    Shen, C.Y.; Yuan, F.T.; Chang, H.W.; Lin, M.C.; Su, C.C.; Chang, S.T.; Wang, C.R.; Mei, J.K.; Hsiao, S.N.; Chen, C.C.; Shih, C.W.; Chang, W.C.

    2014-01-01

    FePt(20 nm) and FePt(20 nm)/Hf(10 nm) thin films prepared on the glass substrates by sputtering and post annealing are studied. For both samples, the as deposited films are disordered and L1 0 -ordering is triggered by a 400 °C-annealing. At T a ≥600 °C, Hf–Pt intermetallic compound forms with increasing T a , which consumes Pt in FePt layer and results in the formation of Fe 3 Pt phase. The film becomes soft magnetic at T a =800 °C. The optimized condition of FePt/Hf film is in the T a range of 500 to 600 °C where the interdiffusion between Hf and FePt layer is not extensive. The value of H c is 8.9 kOe and M r is 650–670 emu/cm 3 . Unlike FePt films, the Hf-undelayered samples show significantly reduced out-of-plane remanent and coercivity. The values for both are around 50% smaller than that of the FePt films. Additionally, Hf underlayer markedly reduces the FePt grain size and narrows the distribution, which enhances magnetic intergrain coupling. Good in-plane magnetic properties are preferred for the uses like a hard biasing magnet in a spintronic device. - Highlights: • Effect of Hf underlayer on structure and magnetic properties of FePt films are studied. • Hf underlayer reduces size, narrows the distribution of grains and thus enhances intergrain coupling. • Higher T a ≥600 °C makes Hf–Pt intermetallic compound and thus Fe 3 Pt phase form. • Good in-plane magnetic property is proper for uses in hard biasing magnet in spintronic devices

  19. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  20. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Guus Rijnders

    2010-03-01

    Full Text Available FePt nanoparticles (NPs were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(onates were used as an adsorbate to form self-assembled monolayers (SAMs on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP or phosphonoundecanoic acid (PNDA SAMs or with poly(ethyleneimine (PEI as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2 led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.

  1. Growth, structure and magnetic properties of FePt nanostructures on NaCl(001) and MgO(001)

    International Nuclear Information System (INIS)

    Liscio, F; Maret, M; Doisneau-Cottignies, B; Makarov, D; Albrecht, M; Roussel, H

    2010-01-01

    A comparison of the structural and magnetic properties of FePt nanostructures grown at different temperatures on NaCl(001) and MgO(001) substrates is presented. A strong influence of the deposition temperature on the epitaxial growth as well as on the size distribution of FePt nanostructures grown on NaCl substrates is observed. In spite of a large lattice mismatch between FePt and NaCl, a 'cube-over-cube' growth of nanostructures with a narrow size distribution was achieved at 520 K. Moreover, the growth of FePt nanostructures on NaCl(001) is not preceded by the formation of a wetting layer as observed on MgO(001). The higher degree of L1 0 chemical ordering in FePt nanostructures grown on MgO(001) accompanied by the absence of L1 0 variants with an in-plane tetragonal c-axis indicates that the tensile epitaxial stress induced by the MgO substrate is a key factor in the formation of the L1 0 phase with an out-of-plane c-axis. Superparamagnetic behavior is revealed for the FePt nanostructures grown on NaCl(001) due to their small size and relatively poor chemical order.

  2. A distributed charge storage with GeO2 nanodots

    International Nuclear Information System (INIS)

    Chang, T.C.; Yan, S.T.; Hsu, C.H.; Tang, M.T.; Lee, J.F.; Tai, Y.H.; Liu, P.T.; Sze, S.M.

    2004-01-01

    In this study, a distributed charge storage with GeO 2 nanodots is demonstrated. The mean size and aerial density of the nanodots embedded in SiO 2 are estimated to be about 5.5 nm and 4.3x10 11 cm -2 , respectively. The composition of the dots is also confirmed to be GeO 2 by x-ray absorption near-edge structure analyses. A significant memory effect is observed through the electrical measurements. Under the low voltage operation of 5 V, the memory window is estimated to ∼0.45 V. Also, a physical model is proposed to demonstrate the charge storage effect through the interfacial traps of GeO 2 nanodots

  3. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu V. [Department of Physics, Grambling State University, RWE Jones Drive, Carver Hall 81, Grambling, LA 71245 (United States)]. E-mail: naidusv@gram.edu; Harrell, J.W. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Lawson, Jeremy [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Nikles, David E. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Williams, John R. [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Isaacs-Smith, Tamara [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2005-12-15

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 x 10{sup 16} ions/cm{sup 2} at 43 {sup o}C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 {sup o}C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 x 10{sup 7} erg/cc, and thermal stability factor of 130. A much higher 375 {sup o}C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  4. In situ investigation of ordering phase transformations in FePt magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, James E., E-mail: j.wittig@vanderbilt.edu [Interdisciplinary Materials Science, Vanderbilt University, PMB 351683, 2301 Vanderbilt Place, Nashville, TN 37232 (United States); Bentley, James, E-mail: bentleyj48@gmail.com [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6376 (United States); Allard, Lawrence F., E-mail: allardlfjr@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6376 (United States)

    2017-05-15

    In situ high-resolution electron microscopy was used to reveal information at the atomic level for the disordered-to-ordered phase transformation of equiatomic FePt nanoparticles that can exhibit outstanding magnetic properties after transforming from disordered face-centered-cubic into the tetragonal L1{sub 0} ordered structure. High-angle annular dark-field imaging in the scanning transmission electron microscope provided sufficient contrast between the Fe and Pt atoms to readily monitor the ordering of the atoms during in situ heating experiments. However, during continuous high-magnification imaging the electron beam influenced the kinetics of the transformation so annealing had to be performed with the electron beam blanked. At 500 °C where the reaction rate was relatively slow, observation of the transformation mechanisms using this sequential imaging protocol revealed that ordering proceeded from (002) surface facets but was incomplete and multiple-domain particles were formed that contained anti-phase domain boundaries and anti-site defects. At 600 and 700 °C, the limitations of sequential imaging were revealed as a consequence of increased transformation kinetics. Annealing for only 5 min at 700 °C produced complete single-domain L1{sub 0} order; such single-domain particles were more spherical in shape with (002) facets. The in situ experiments also provided information concerning nanoparticle sintering, coalescence, and consolidation. Although there was resistance to complete sintering due to the crystallography of L1{sub 0} order, the driving force from the large surface-area-to-volume ratio resulted in considerable nanoparticle coalescence, which would render such FePt nanoparticles unsuitable for use as magnetic recording media. Comparison of the in situ data acquired using the protocol described above with parallel ex situ annealing experiments showed that identical behavior resulted in all cases. - Highlights: • HAADF STEM imaging reveals the

  5. Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles

    Science.gov (United States)

    Liu, Zhenyu; Wang, Guofeng

    2017-12-01

    In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.

  6. Perpendicular Magnetic Anisotropy in FePt Patterned Media Employing a CrV Seed Layer

    Directory of Open Access Journals (Sweden)

    Chun Dong

    2011-01-01

    Full Text Available Abstract A thin FePt film was deposited onto a CrV seed layer at 400°C and showed a high coercivity (~3,400 Oe and high magnetization (900–1,000 emu/cm3 characteristic of L10 phase. However, the magnetic properties of patterned media fabricated from the film stack were degraded due to the Ar-ion bombardment. We employed a deposition-last process, in which FePt film deposited at room temperature underwent lift-off and post-annealing processes, to avoid the exposure of FePt to Ar plasma. A patterned medium with 100-nm nano-columns showed an out-of-plane coercivity fivefold larger than its in-plane counterpart and a remanent magnetization comparable to saturation magnetization in the out-of-plane direction, indicating a high perpendicular anisotropy. These results demonstrate the high perpendicular anisotropy in FePt patterned media using a Cr-based compound seed layer for the first time and suggest that ultra-high-density magnetic recording media can be achieved using this optimized top-down approach.

  7. Fabrication of biomolecules self-assembled on Au nanodot array for bioelectronic device.

    Science.gov (United States)

    Lee, Taek; Kumar, Ajay Yagati; Yoo, Si-Youl; Jung, Mi; Min, Junhong; Choi, Jeong-Woo

    2013-09-01

    In the present study, an nano-platform composed of Au nanodot arrays on which biomolecules could be self-assembled was developed and investigated for a stable bioelectronic device platform. Au nanodot pattern was fabricated using a nanoporous alumina template. Two different biomolecules, a cytochrome c and a single strand DNA (ssDNA), were immobilized on the Au nanodot arrays. Cytochorme c and single stranded DNA could be immobilized on the Au nanodot using the chemical linker 11-MUA and thiol-modification by covalent bonding, respectively. The atomic structure of the fabricated nano-platform device was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrical conductivity of biomolecules immobilized on the Au nanodot arrays was confirmed by scanning tunneling spectroscopy (STS). To investigate the activity of biomolecule-immobilized Au-nano dot array, the cyclic voltammetry was carried out. This proposed nano-platform device, which is composed of biomolecules, can be used for the construction of a novel bioelectronic device.

  8. One-step synthesis of nitrogen-doped carbon nanodots for ratiometric pH sensing by femtosecond laser ablation method

    International Nuclear Information System (INIS)

    Xu, Huanhuan; Yan, Lihe; Nguyen, Vanthan; Yu, Yang; Xu, Yanmin

    2017-01-01

    Highlights: • Nitrogen-containing carbon nanodots (CDs) are synthesize using pulsed laser ablation in liquid. • The CDs show a strong fluorescence consisting of a dual-band luminescence peak. • The as prepared CDs can offer a ratiometric sensing platform for the detection the pH values. - Abstract: Nitrogen-doped carbon nanodots (CDs) are synthesized by one-step femtosecond laser ablation of graphite powder in aminotoluene at room temperature. The as-prepared CDs have the average diameter of 2.87 nm and possess an excitation-independent emission covering nearly the whole visible light region at a single excitation wavelength. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis indicate that there are a huge number of multiple oxygen groups and amine groups on the surface of the CDs. As their different fluorescence peaks originated from different emission surface groups on the nanodots show different pH dependence, these CDs can be used for ratiometric pH sensing.

  9. One-step synthesis of nitrogen-doped carbon nanodots for ratiometric pH sensing by femtosecond laser ablation method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huanhuan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab. of Information Photonic Technique, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Yan, Lihe, E-mail: liheyan@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab. of Information Photonic Technique, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Nguyen, Vanthan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab. of Information Photonic Technique, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Le Quy Don Technical University, Hanoi 122314 (Viet Nam); Yu, Yang; Xu, Yanmin [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab. of Information Photonic Technique, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2017-08-31

    Highlights: • Nitrogen-containing carbon nanodots (CDs) are synthesize using pulsed laser ablation in liquid. • The CDs show a strong fluorescence consisting of a dual-band luminescence peak. • The as prepared CDs can offer a ratiometric sensing platform for the detection the pH values. - Abstract: Nitrogen-doped carbon nanodots (CDs) are synthesized by one-step femtosecond laser ablation of graphite powder in aminotoluene at room temperature. The as-prepared CDs have the average diameter of 2.87 nm and possess an excitation-independent emission covering nearly the whole visible light region at a single excitation wavelength. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis indicate that there are a huge number of multiple oxygen groups and amine groups on the surface of the CDs. As their different fluorescence peaks originated from different emission surface groups on the nanodots show different pH dependence, these CDs can be used for ratiometric pH sensing.

  10. Magnetocrystalline anisotropy of FePt: a detailed view

    Czech Academy of Sciences Publication Activity Database

    Khan, S.A.; Blaha, P.; Ebert, H.; Minár, J.; Šipr, Ondřej

    2016-01-01

    Roč. 94, č. 14 (2016), 1-10, č. článku 144436. ISSN 2469-9950 Institutional support: RVO:68378271 Keywords : magnetocrystalline anisotropy * FePt * LDA Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  11. L10 phase transition in FePt thin films via direct interface reaction

    International Nuclear Information System (INIS)

    Li Xiaohong; Sun Hongyu; Wang Fengqing; Li Wei; Zhang Xiangyi; Liu Baoting; Guo Jianxin

    2008-01-01

    Lowering the L1 0 ordering temperature of FePt films is of great significance for their application as an ultrahigh density magnetic recording medium. In this study, the L1 0 ordering process of FePt thin films deposited directly on Si substrates has been significantly accelerated by the interface reaction between the thin film and the Si substrate, and thus the thin films show a low L1 0 ordering temperature of T = 310 deg. C as compared with those deposited on Si/SiO 2 substrates. The accelerated L1 0 ordering transition is predominantly dependent on the rapid growth of the ordered domains during the interface reaction. The film thickness has an important effect on the interface reaction and thus can be used to tune the L1 0 ordering process of the FePt films.

  12. Preparation of Fe-Pt perpendicular double-layered media with high electric resistivity backlayer

    International Nuclear Information System (INIS)

    Uchida, Masaru; Suzuki, Toshio; Ouchi, Kazuhiro

    2001-01-01

    High electric resistivity materials, oxide-added Fe-Si, were investigated as a soft-magnetic backlayer for Fe-Pt perpendicular double-layered media. It was found that there is a possibility of using (Fe-Si)-MgO as a backlayer. To promote a hetero-epitaxial growth of ordered Fe-Pt FCT(0 0 1), the backlayer needed a BCC(2 0 0) crystal orientation, in a situation where surface topology also played an important role

  13. Fabrication of ferromagnetic Co/Pt nanodots on NaCl-crystals

    Energy Technology Data Exchange (ETDEWEB)

    Caylioglu, Mahmut; Rathjen, Andreas; Neumann, Alexander; Kobs, Andre; Froemter, Robert; Oepen, Hans Peter [Institut fuer Angewandte Physik, Universitaet Hamburg, Jungiusstr. 11, 20355 Hamburg (Germany); Meyer, Andreas [Institut fuer Physikalische Chemie, Universitaet Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2011-07-01

    Recently, we have successfully studied the growth of ferromagnetic Co/Pt multilayers with perpendicular anisotropy on various substrates. Utilizing SiO{sub 2} cores of micelles as shadow mask we could create ferromagnetic nanodots in the range < 20 nm. For the purpose of producing nanodots in solution we have investigated the growth and nanodot fabrication on NaCl. In this talk we report on the preparation of cleaved NaCl surfaces that is necessary to get a layer-by-layer growth of the multilayer and a monomicel lar coverage via spin coating of the micelles. In contradiction to the results obtained with Si and SiO{sub 2}, multilayers of composition (Co{sub 0.8nm}/Pt{sub 2nm}){sub 4} have an in-plane easy plane behavior. This indicates that the interface roughness is increased resulting in a reduced interface anisotropy. In the light of our proposed study we have also produced thicker single Co films sandwiched between Pt. Nanodots made of such films are ferromagnetic and could be dissolved in water and imaged via scanning electron microscopy.

  14. Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process

    Energy Technology Data Exchange (ETDEWEB)

    Wodarz, Siggi [Department of Applied Chemistry, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Hasegawa, Takashi; Ishio, Shunji [Department of Materials Science, Akita University, Akita City 010-8502 (Japan); Homma, Takayuki, E-mail: t.homma@waseda.jp [Department of Applied Chemistry, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)

    2017-05-15

    CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated. - Highlights: • Ultra-fine CoPt nanodot arrays were fabricated by electrodeposition. • Crystallinity of hcp (002) was improved with uniform composition formation. • Uniform formation of hcp lattices leads to an increase in the coercivity.

  15. Highly ordered FEPT and FePd magnetic nano-structures: Correlated structural and magnetic studies

    International Nuclear Information System (INIS)

    Lukaszew, Rosa Alejandra; Cebollada, Alfonso; Clavero, Cesar; Garcia-Martin, Jose Miguel

    2006-01-01

    The micro-structure of epitaxial FePt and FePd films grown on MgO (0 0 1) substrates is correlated to their magnetic behavior. The FePd films exhibit high chemical ordering and perpendicular magnetic anisotropy. On the other hand FePt films exhibit low chemical ordering, with nano-grains oriented in two orthogonal directions, forcing the magnetization to remain in the plane of the films

  16. High Field Linear Magnetoresistance Sensors with Perpendicular Anisotropy L10-FePt Reference Layer

    Directory of Open Access Journals (Sweden)

    X. Liu

    2016-01-01

    Full Text Available High field linear magnetoresistance is an important feature for magnetic sensors applied in magnetic levitating train and high field positioning measurements. Here, we investigate linear magnetoresistance in Pt/FePt/ZnO/Fe/Pt multilayer magnetic sensor, where FePt and Fe ferromagnetic layers exhibit out-of-plane and in-plane magnetic anisotropy, respectively. Perpendicular anisotropy L10-FePt reference layer with large coercivity and high squareness ratio was obtained by in situ substrate heating. Linear magnetoresistance is observed in this sensor in a large range between +5 kOe and −5 kOe with the current parallel to the film plane. This L10-FePt based sensor is significant for the expansion of linear range and the simplification of preparation for future high field magnetic sensors.

  17. Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries

    Energy Technology Data Exchange (ETDEWEB)

    Jursinic, Paul A., E-mail: pjursinic@wmcc.org [West Michigan Cancer Center, 200 North Park Street, Kalamazoo, Michigan 49007 (United States)

    2015-10-15

    Purpose: A type of in vivo dosimeter, an optically stimulated luminescent dosimeter, OSLD, may have dose sensitivity that depends on the angle of incidence of radiation. This work measures how angular dependence of a nanoDot changes with the geometry of the phantom in which irradiation occurs and with the intrinsic structure of the nanoDot. Methods: The OSLDs used in this work were nanoDot dosimeters (Landauer, Inc., Glenwood, IL), which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x-rays. NanoDots with various intrinsic sensitivities were irradiated in numerous phantoms that had geometric shapes of cylinders, rectangles, and a cube. Results: No angular dependence was seen in cylindrical phantoms, cubic phantoms, or rectangular phantoms with a thickness to width ratio of 0.3 or 1.5. An angular dependence of 1% was observed in rectangular phantoms with a thickness to width of 0.433–0.633. A group of nanoDots had sensitive layers with mass density of 2.42–2.58 g/cm{sup 3} and relative sensitivity of 0.92–1.09 and no difference in their angular dependence. Within experimental uncertainty, nanoDot measurements agree with a parallel-plate ion chamber at a depth of maximum dose. Conclusions: When irradiated in cylindrical, rectangular, and cubic phantoms, nanoDots show a maximum angular dependence of 1% or less at an incidence angle of 90°. For a sample of 78 new nanoDots, the range of their relative intrinsic sensitivity is 0.92–1.09. For a sample of ten nanoDots, on average, the mass in the sensitive layer is 73.1% Al{sub 2}O{sub 3}:C and 26.9% polyester. The mass density of the sensitive layer of a nanoDot disc is between 2.42 and 2.58 g/cm{sup 3}. The angular dependence is not related to Al{sub 2}O{sub 3}:C loading of the nanoDot disc. The nanoDot at the depth of maximum dose has no more angular dependence than a parallel-plate ion chamber.

  18. “Single-” and “multi-core” FePt nanoparticles: from controlled synthesis via zwitterionic and silica bio-functionalization to MRI applications

    Energy Technology Data Exchange (ETDEWEB)

    Kostevšek, Nina, E-mail: nina.kostevsek@ijs.si; Šturm, Sašo [Jožef Stefan Institute, Department for Nanostructured Materials (Slovenia); Serša, Igor; Sepe, Ana [Jožef Stefan Institute, Department for Condensed Matter Physics (Slovenia); Bloemen, Maarten; Verbiest, Thierry [KU Leuven, Department of Chemistry (Belgium); Kobe, Spomenka; Žužek Rožman, Kristina [Jožef Stefan Institute, Department for Nanostructured Materials (Slovenia)

    2015-12-15

    The value of the magnetization has a strong influence on the performance of nanoparticles that act as the contrast agent material for MRI. In this article, we describe processing routes for the synthesis of FePt nanoparticles of different sizes, which, as a result, exhibit different magnetization values. “Single-core” FePt nanoparticles of different sizes (3–15 nm) were prepared via one-step or two-step synthesis, with the latter exhibiting twice the magnetization (m{sub (1.5T)} = 14.5 emu/g) of the nanoparticles formed via the one-step synthesis (m{sub (1.5T)} < 8 emu/g). Furthermore, we propose the synthesis of “multi-core” FePt nanoparticles by changing the ratio between the two surfactants (oleylamine and oleic acid). The step from smaller “single-core” FePt nanoparticles towards the larger, “multi-core” FePt nanoparticles (>20 nm) leads to an increase in the magnetization m{sub (1.5T)} from 8 to 19.5 emu/g, without exceeding the superparamagnetic limit. Stable water suspensions were prepared using two different approaches: (a) functionalization with a biocompatible, zwitterionic, catechol ligand, which was used on the FePt nanoparticles for the first time, and (b) coating with SiO{sub 2} shells of various thicknesses. These FePt-based nanostructures, the catechol- and SiO{sub 2}-coated “single-core” and “multi-core” FePt nanoparticles, were investigated in terms of the relaxation rates. The higher r{sub 2} values obtained for the “multi-core” FePt nanoparticles compared to that for the “single-core” ones indicate the superiority of the “multi-core” FePt nanoparticles as T{sub 2} contrast agents. Furthermore, it was shown that the SiO{sub 2} coating reduces the r{sub 1} and r{sub 2} relaxation values for both the “single-core” and “multi-core” FePt nanoparticles. The high r{sub 2}/r{sub 1} ratios obtained in our study put FePt nanoparticles near the top of the list of candidate materials for use in MRI

  19. Non-toxic lead sulfide nanodots as efficient contrast agents for visualizing gastrointestinal tract.

    Science.gov (United States)

    Liu, Zhen; Ran, Xiang; Liu, Jianhua; Du, Yingda; Ren, Jinsong; Qu, Xiaogang

    2016-09-01

    Non-invasive imaging of gastrointestinal (GI) tract using novel but efficient contrast agents is of the most important issues in the diagnosis and prognosis of GI diseases. Here, for the first time, we reported the design and synthesis of biothiol-decorated lead sulfide nanodots, as well as their usages in functional dual-modality imaging of GI tract in vivo. Due to the presence of glutathione on the surface of the nanodots, these well-prepared contrast agents could decrease the unwanted ion leakage, withstand the harsh conditions in GI tract, and avoid the systemic absorption after oral administration. Compared with clinical barium meal and iodine-based contrast agents, these nanodots exhibited much more significant enhancement in contrast efficiency during both 2D X-ray imaging and 3D CT imaging. Different from some conventional invasive imaging modalities, such as gastroscope and enteroscope, non-invasive imaging strategy by using glutathione modified PbS nanodots as contrast agents could reduce the painfulness towards patients, facilitate the imaging procedure, and economize the manipulation period. Moreover, long-term toxicity and bio-distribution of these nanodots after oral administration were evaluated in detail, which indicated their overall safety. Based on our present study, these nanodots could act as admirable contrast agents to integrate X-ray imaging and CT imaging for the direct visualization of GI tract. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Crystal Structures of GaN Nanodots by Nitrogen Plasma Treatment on Ga Metal Droplets

    Directory of Open Access Journals (Sweden)

    Yang-Zhe Su

    2018-06-01

    Full Text Available Gallium nitride (GaN is one of important functional materials for optoelectronics and electronics. GaN exists both in equilibrium wurtzite and metastable zinc-blende structural phases. The zinc-blende GaN has superior electronic and optical properties over wurtzite one. In this report, GaN nanodots can be fabricated by Ga metal droplets in ultra-high vacuum and then nitridation by nitrogen plasma. The size, shape, density, and crystal structure of GaN nanodots can be characterized by transmission electron microscopy. The growth parameters, such as pre-nitridation treatment on Si surface, substrate temperature, and plasma nitridation time, affect the crystal structure of GaN nanodots. Higher thermal energy could provide the driving force for the phase transformation of GaN nanodots from zinc-blende to wurtzite structures. Metastable zinc-blende GaN nanodots can be synthesized by the surface modification of Si (111 by nitrogen plasma, i.e., the pre-nitridation treatment is done at a lower growth temperature. This is because the pre-nitridation process can provide a nitrogen-terminal surface for the following Ga droplet formation and a nitrogen-rich condition for the formation of GaN nanodots during droplet epitaxy. The pre-nitridation of Si substrates, the formation of a thin SiNx layer, could inhibit the phase transformation of GaN nanodots from zinc-blende to wurtzite phases. The pre-nitridation treatment also affects the dot size, density, and surface roughness of samples.

  1. Fabrication of Gold Nanodot Array for the Localized Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Young Min Bae

    2014-01-01

    Full Text Available Localized surface plasmon resonance (LSPR is a promising method for detecting antigen-antibody binding in label-free biosensors. In this study, the fabrication of a LSPR substrate with a gold nanodot array through the lift-off process of an alumina mask is reported. The substrate showed an extinction peak in its extinction spectrum, and the peak position was dependent on the height of the gold nanodot array, and the change of extinction peak with the height could be predicted by the numerical simulation. In addition, the peak position was observed to be red-shifted with the increasing RIU value of the medium surrounding the gold nanodot array. In particular, the peak position in the 10 nm thick gold nanodot array was approximately 710 nm in air, and the sensitivity, defined as the ratio of the shift of peak position to the RIU of the medium, was 323.6 nm/RIU. The fabrication procedure could be applied to fabricate the LSPR substrates with a large area.

  2. Green synthesis of graphitic carbon nitride nanodots using sodium chloride template

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Bo [National University of Defense Technology, College of Science (China); Zou, Xianshuai; Yan, Tingnan; Fei, Junjie [Xiangtan University, College of Chemistry (China); Chu, Zengyong, E-mail: chuzy@nudt.edu.cn [National University of Defense Technology, College of Science (China)

    2016-05-15

    Graphitic carbon nitride (g-C{sub 3}N{sub 4}) nanodots are simply prepared by a thermal treatment of dicyandiamide (DCDA) confined within NaCl templates. Cyano groups are introduced to the nanodots due to the catalytic effect of NaCl. NaCl could facilitate the polymerization of DCDA at lower temperatures, but will promote the decomposition when the temperature is above 550 °C. Thermal treatment at 600 °C for 30 min is the optimal condition for the scalable synthesis of g-C{sub 3}N{sub 4} nanodots with an average diameter of ~9 nm. g-C{sub 3}N{sub 4} nanodots have a higher band gap of 3.1 eV, which can emit bright blue light due to the decreased diameter, the introduction of cyano groups, and the incorporation of some sodium ions. The residue sodium ions and the cyano groups might lead to the local distortion of the graphitic crystals, or act as recombination centers for the enhanced photoluminescence.Graphical Abstract.

  3. The fabrication of metal silicide nanodot arrays using localized ion implantation

    International Nuclear Information System (INIS)

    Han, Jin; Kim, Tae-Gon; Min, Byung-Kwon; Lee, Sang Jo

    2010-01-01

    We propose a process for fabricating nanodot arrays with a pitch size of less than 25 nm. The process consists of localized ion implantation in a metal thin film on a Si wafer using a focused ion beam (FIB), followed by chemical etching. This process utilizes the etching resistivity changes of the ion beam irradiated region that result from metal silicide formation by ion implantation. To control the nanodot diameter, a threshold ion dose model is proposed using the Gaussian distribution of the ion beam intensities. The process is verified by fabricating nanodots with various diameters. The mechanism of etching resistivity is investigated via x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES).

  4. Shape induced magnetic vortex state in hexagonal ordered cofe nanodot arrays using ultrathin alumina shadow mask

    Science.gov (United States)

    Sellarajan, B.; Saravanan, P.; Ghosh, S. K.; Nagaraja, H. S.; Barshilia, Harish C.; Chowdhury, P.

    2018-04-01

    The magnetization reversal process of hexagonal ordered CoFe nanodot arrays was investigated as a function of nanodot thickness (td) varying from 10 to 30 nm with fixed diameter. For this purpose, ordered CoFe nanodots with a diameter of 80 ± 4 nm were grown by sputtering using ultra-thin alumina mask. The vortex annihilation and the dynamic spin configuration in the ordered CoFe nanodots were analyzed by means of magnetic hysteresis loops in complement with the micromagnetic simulation studies. A highly pinched hysteresis loop observed at 20 nm thickness suggests the occurrence of vortex state in these nanodots. With increase in dot thickness from 10 to 30 nm, the estimated coercivity values tend to increase from 80 to 175 Oe, indicating irreversible change in the nucleation/annihilation field of vortex state. The measured magnetic properties were then corroborated with the change in the shape of the nanodots from disk to hemisphere through micromagnetic simulation.

  5. High-coercivity FePt nanoparticle assemblies embedded in silica thin films

    International Nuclear Information System (INIS)

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Ramanath, G; Li, A; Ramanujan, R V

    2009-01-01

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 deg. C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H c >630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  6. Fe nanodot system fabricated by non-lithographic method and its structural properties

    International Nuclear Information System (INIS)

    Chu Van Chiem; Nguyen Thi Thu Ha; Ngo Thi Thanh Tam; Nguyen Van Chuc; Phan Ngoc Minh; Li Huying; Seo Jae Muyng

    2009-01-01

    In this work, we study the magnetic structure and morphology of the Fe nanodot system fabricated by the non-lithographic method, using anodic aluminum oxide (AAO) membrane as a template. By the two-steps aluminum anodization, the AAO patterns with the hexagonal pore arrangement have been achieved. Using AAO pattern as a template, under suitable conditions we successfully deposited the iron metal in the pores by the thermal vacuum evaporation. By the exposure of the deposited system from the bottom of the AAO membrane, the hexagonal ordered Fe nanodot system has been obtained. The morphologies of the nanodot system were imaged by the Atomic Force Microscopy (AFM) and Field Emission Scanning Microscopy (FESEM) methods. The magnetic structures were investigated by the Energy Dispersive X-Ray Fluorescence Spectroscopy (EDS) and Magnetic Force Microscopy (MFM) methods. Experimental results confirmed that the MFM image of the fabricated Fe nanodot system is similar to their AFM image.

  7. Fe nanodot system fabricated by non-lithographic method and its structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Chiem, Chu Van; Thu Ha, Nguyen Thi; Thanh Tam, Ngo Thi; Chuc, Nguyen Van; Minh, Phan Ngoc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Distr., Hanoi (Viet Nam); Huying, Li; Seo Jae Muyng [Physics department, Chonbuk National University (Korea, Republic of)], E-mail: chucnv@ims.vast.ac.vn

    2009-09-01

    In this work, we study the magnetic structure and morphology of the Fe nanodot system fabricated by the non-lithographic method, using anodic aluminum oxide (AAO) membrane as a template. By the two-steps aluminum anodization, the AAO patterns with the hexagonal pore arrangement have been achieved. Using AAO pattern as a template, under suitable conditions we successfully deposited the iron metal in the pores by the thermal vacuum evaporation. By the exposure of the deposited system from the bottom of the AAO membrane, the hexagonal ordered Fe nanodot system has been obtained. The morphologies of the nanodot system were imaged by the Atomic Force Microscopy (AFM) and Field Emission Scanning Microscopy (FESEM) methods. The magnetic structures were investigated by the Energy Dispersive X-Ray Fluorescence Spectroscopy (EDS) and Magnetic Force Microscopy (MFM) methods. Experimental results confirmed that the MFM image of the fabricated Fe nanodot system is similar to their AFM image.

  8. Nano-structure formation of Fe-Pt perpendicular magnetic recording media co-deposited with MgO, Al2O3 and SiO2 additives

    International Nuclear Information System (INIS)

    Safran, G.; Suzuki, T.; Ouchi, K.; Barna, P.B.; Radnoczi, G.

    2006-01-01

    Perpendicular magnetic recording media samples were prepared by sputter deposition on sapphire with a layer sequence of MgO seed-layer/Cr under-layer/FeSi soft magnetic under-layer/MgO intermediate layer/FePt-oxide recording layer. The effects of MgO, Al 2 O 3 and SiO 2 additives on the morphology and orientation of the FePt layer were investigated by transmission electron microscopy. The samples exhibited (001) orientation of the L1 FePt phase with the mutual orientations of sapphire substrate//MgO(100)[001]//Cr(100)[11-bar0]//FeSi(100)[11-bar0]//MgO(100) [001]//FePt(001)[100]. The morphology of the FePt films varied due to the co-deposited oxides: The FePt layers were continuous and segmented by stacking faults aligned at 54 o to the surface. Films with SiO 2 addition, beside the oriented columnar FePt grains, exhibited a fraction of misoriented crystallites due to random repeated nucleation. Al 2 O 3 addition resulted in a layered structure, i.e. an initial continuous epitaxial FePt layer covered by a secondary layer of FePt-Al 2 O 3 composite. Both components (FePt and MgO) of the MgO-added samples were grown epitaxially on the MgO intermediate layer, so that a nano-composite of intercalated (001) FePt and (001) MgO was formed. The revealed microstructures and formation mechanisms may facilitate the improvement of the structural and magnetic properties of the FePt-oxide composite perpendicular magnetic recording media

  9. DLC nano-dot surfaces for tribological applications in MEMS devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R. Arvind; Na, Kyounghwan [Nano-Bio Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Yi, Jin Woo; Lee, Kwang-Ryeol [Computational Science Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Yoon, Eui-Sung, E-mail: esyoon@kist.re.kr [Nano-Bio Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2011-02-01

    With the invention of miniaturized devices like micro-electro-mechanical systems (MEMS), tribological studies at micro/nano-scale have gained importance. These studies are directed towards understanding the interactions between surfaces at micro/nano-scales, under relative motion. In MEMS devices, the critical forces, namely adhesion and friction restrict the smooth operation of the elements that are in relative motion. These miniaturized devices are traditionally made from silicon (Si), whose tribological properties are not good. In this paper, we present a short investigation of nano- and micro-tribological properties of diamond-like carbon (DLC) nano-dot surfaces. The investigation was undertaken to evaluate the potential of these surfaces for their possible application to the miniaturized devices. The tribological evaluation of the DLC nano-dot surfaces was done in comparison with bare Si (1 0 0) surfaces and DLC coated silicon surfaces. A commercial atomic force microscope (AFM) was used to measure adhesion and friction properties of the test materials at the nano-scale, whereas a custom-built micro-tribotester was used to measure their micro-friction property. Results showed that the DLC nano-dot surfaces exhibited superior tribological properties with the lowest values of adhesion force, and friction force both at the nano- and micro-scales, when compared to the bare Si (1 0 0) surfaces and DLC coated silicon surfaces. In addition, the DLC nano-dot surfaces showed no observable wear at the micro-scale, unlike the other two test materials. The superior tribological performance of the DLC nano-dot surfaces is attributed to their hydrophobic nature and the reduced area of contact projected by them.

  10. DLC nano-dot surfaces for tribological applications in MEMS devices

    International Nuclear Information System (INIS)

    Singh, R. Arvind; Na, Kyounghwan; Yi, Jin Woo; Lee, Kwang-Ryeol; Yoon, Eui-Sung

    2011-01-01

    With the invention of miniaturized devices like micro-electro-mechanical systems (MEMS), tribological studies at micro/nano-scale have gained importance. These studies are directed towards understanding the interactions between surfaces at micro/nano-scales, under relative motion. In MEMS devices, the critical forces, namely adhesion and friction restrict the smooth operation of the elements that are in relative motion. These miniaturized devices are traditionally made from silicon (Si), whose tribological properties are not good. In this paper, we present a short investigation of nano- and micro-tribological properties of diamond-like carbon (DLC) nano-dot surfaces. The investigation was undertaken to evaluate the potential of these surfaces for their possible application to the miniaturized devices. The tribological evaluation of the DLC nano-dot surfaces was done in comparison with bare Si (1 0 0) surfaces and DLC coated silicon surfaces. A commercial atomic force microscope (AFM) was used to measure adhesion and friction properties of the test materials at the nano-scale, whereas a custom-built micro-tribotester was used to measure their micro-friction property. Results showed that the DLC nano-dot surfaces exhibited superior tribological properties with the lowest values of adhesion force, and friction force both at the nano- and micro-scales, when compared to the bare Si (1 0 0) surfaces and DLC coated silicon surfaces. In addition, the DLC nano-dot surfaces showed no observable wear at the micro-scale, unlike the other two test materials. The superior tribological performance of the DLC nano-dot surfaces is attributed to their hydrophobic nature and the reduced area of contact projected by them.

  11. Fabrication of three-dimensional ordered nanodot array structures by a thermal dewetting method

    International Nuclear Information System (INIS)

    Li Zhenxing; Yoshino, Masahiko; Yamanaka, Akinori

    2012-01-01

    A new fabrication method for three-dimensional nanodot arrays with low cost and high throughput is developed in this paper. In this process, firstly a 2D nanodot array is fabricated by combination of top-down and bottom-up approaches. A nanoplastic forming technique is utilized as the top-down approach to fabricate a groove grid pattern on an Au layer deposited on a substrate, and self-organization by thermal dewetting is employed as the bottom-up approach. On the first-layer nanodot array, SiO 2 is deposited as a spacer layer. Au is then deposited on the spacer layer and thermal dewetting is conducted to fabricate a second-layer nanodot array. The effective parameters influencing dot formation on the second layer, including Au layer thickness and SiO 2 layer thickness, are studied. It is demonstrated that a 3D nanodot array of good vertical alignment is obtained by repeating the SiO 2 deposition, Au deposition and thermal dewetting. The mechanism of the dot agglomeration process is studied based on geometrical models. The effects of the spacer layer thickness and Au layer thickness on the morphology and alignment of the second-layer dots are discussed. (paper)

  12. Rapid fabrication of an ordered nano-dot array by the combination of nano-plastic forming and annealing methods

    International Nuclear Information System (INIS)

    Yoshino, Masahiko; Ohsawa, Hiroki; Yamanaka, Akinori

    2011-01-01

    In this paper, a new fabrication method for an ordered nano-dot array is developed. Combination of coating, nano-plastic forming and annealing processes is studied to produce uniformly sized and ordered gold nano-dot array on a quartz glass substrate. The experimental results reveal that patterning of a groove grid on the gold-coated substrate with NPF is effective to obtain the ordered gold nano-dot array. In the proposed fabrication process, the size of the gold nano-dot can be controlled by adjusting the groove grid size. A minimum gold nano-dot array fabricated on a quartz-glass substrate was 93 nm in diameter and 100 nm in pitch. Furthermore, the mechanism of nano-dot array generation by the presented process is investigated. Using a theoretical model it is revealed that the proposed method is capable of fabrication of smaller nano-dots than 10 nm by controlling process conditions adequately.

  13. Magnetic bubbles and domain evolution in Fe/Gd multilayer nanodots

    Science.gov (United States)

    Wang, T. T.; Liu, W.; Dai, Z. M.; Zhao, X. T.; Zhao, X. G.; Zhang, Z. D.

    2018-04-01

    The formation of magnetic bubbles and the domain-evolution processes, induced by a perpendicular magnetic field in Fe/Gd multilayer films and nanodots, have been investigated. At room temperature, the stripe domains in a continuous film transform into magnetic bubbles in an external field, while bubbles form spontaneously in nanodots due to the existence of shape anisotropy. When the temperature decreases to 20 K, the enhancement of the perpendicular magnetic anisotropy of the samples results in an increase of the domain size in the continuous film and the magnetization-reversal behavior of each nanodot becomes independent, and most reversed dots do not depend on each other, indicating the magnetic characteristics of a single domain. The present research provides further understanding of the evolution of magnetic bubbles in the Fe/Gd system and suggests their promising applications in patterned recording materials.

  14. Magnetic and structural characterizations on nanoparticles of FePt, FeRh and their composites

    International Nuclear Information System (INIS)

    Ko, Hnin Yu Yu; Suzuki, Takao; Nam, Nguyen T.; Phuoc, Nguyen N.; Cao Jiangwei; Hirotsu, Yoshihiko

    2008-01-01

    The various compositions of FePt and FeRh nanoparticles, and their composite particles have been fabricated by the solution-phase chemical method and their magnetic properties characterized. High-resolution transmission electron microscopic observations indicate that mono-dispersed FeRh and FePt/FeRh nanoparticles are fabricated with the average size of 3-5 nm. However, larger size particles are distributed in the annealed state. From X-ray diffraction results, the as-deposited FeRh nanoparticles reveal a chemically disordered fcc structure which can be transformed into CsCl-type structure through thermal annealing. Similarly, the annealed FePt nanoparticles show the L1 0 -phase fct structure although the fcc structure is apparent in the as-deposited state. It is also found that the first time in the exchange bias effect in the composite of ferromagnetic (FePt) and anti-ferromagnetic (FeRh) nanoparticles; result in a shift of the hysteresis loop after field cooling process

  15. Hierarchical ultrathin alumina membrane for the fabrication of unique nanodot arrays

    International Nuclear Information System (INIS)

    Wang, Yuyang; Wang, Yi; Wang, Hailong; Wang, Xinnan; Cong, Ming; Xu, Weiqing; Xu, Shuping

    2016-01-01

    Ultrathin alumina membranes (UTAMs) as evaporation masks have been a powerful tool for the fabrication of high-density nanodot arrays and have received much attention in magnetic memory devices, photovoltaics, and nanoplasmonics. In this paper, we report the fabrication of a hierarchical ultrathin alumina membrane (HUTAM) with highly ordered submicro/nanoscale channels and its application as an evaporation mask for the realization of unique non-hexagonal nanodot arrays dependent on the geometrical features of the HUTAM. This is the first report of a UTAM with a hierarchical geometry, breaking the stereotype that only limited sets of nanopatterns can be realized using the UTAM method (with typical inter-pore distance of 100 nm). The fabrication of a HUTAM is discussed in detail. An improved, longer wet etching time than previously reported is found to effectively remove the barrier layer and widen the pores of a HUTAM. A growth sustainability issue brought about by pre-patterning is discussed. Spectral comparison was made to distinguish the UTAM nanodots and HUTAM nanodots. Our results can be an inspiration for more sophisticated applications of pre-patterned anodized aluminum oxide in photocatalysis, photovoltaics, and nanoplasmonics. (paper)

  16. FePt magnetic particles prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, V., E-mail: vvjimeno@fis.ucm.es [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155, Las Rozas 28230 (Spain); Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid 28040 (Spain); Hernando, A.; Crespo, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155, Las Rozas 28230 (Spain); Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid 28040 (Spain)

    2013-10-15

    High-energy ball milling of Fe and Pt elemental powders has been carried out under dry and wet (in presence of solvent and surfactants) conditions. Dry milling leads to the formation of the disordered FCC-FePt alloy whereas by the wet milling procedure the main process is the decrease of Fe and Pt particle size, although some dissolution of Pt into Fe grains cannot be ruled out, and no hint of the formation of the FCC-FePt phase is observed even to milling times up to 20 h, as X-ray diffraction, electron microscopy and Mössbauer spectroscopy indicates. The as-milled particles were annealed at 600 °C for 2 h under Ar atmosphere. It is noticed that the disordered fcc-FePt phase observed in particles milled under dry conditions transform to ordered fct phase characterized by a hard magnetic behavior with a coercive field up to 10,000 Oe. However, those particles milled in the surfactant/solvent medium exhibit a soft magnetic behavior with a coercive field of 600 Oe. These results indicate that wet high-energy ball milling is not an adequate technique for obtaining single-phase FePt particles. - Highlights: • FePt particles have been obtained by high-energy ball milling. • In the presence of surfactants and solvents, almost no alloying process takes place. • After annealing, the coercive field of the FePt alloy particles increases from 150 Oe to 10,000 Oe.

  17. Modeling of Toroidal Ordering in Ferroelectric Nanodots

    National Research Council Canada - National Science Library

    Crone, Joshua C; Chung, Peter W

    2007-01-01

    .... Beginning with an introduction of basic concepts, the report reviews the current state-of-the-art of ferroelectric nanodot technology through a literature review and identifies areas of need for continued study...

  18. Enhanced field emission from PbTiO{sub 3} nanodots prepared by phase separation approach

    Energy Technology Data Exchange (ETDEWEB)

    Li Jinna; Luo Ming [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng Wenjian, E-mail: wengwj@zju.edu.cn [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Cheng Kui; Du Piyi; Shen Ge; Han Gaorong [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2009-10-15

    Uniformly distributed PbTiO{sub 3} nanodots were successfully prepared by phase separation approach. A precursor sol film was first spin-coated on Si wafer and then spontaneously separated into two distinct phases owing to the Marangoni instability. PT nanodots with tailorable size and density were obtained after further heat treatment. X-ray diffraction analysis indicated that these nanodots showed a perovskite structure. An excellent room temperature field emission property of PbTiO{sub 3} nanodots was observed: the minimum turn-on voltage was about 5.3 V/{mu}m; while the emission current density reached about 270 {mu}A cm{sup -2} at an applied field of about 9.25 V/{mu}m.

  19. L1{sub 0} phase transition in FePt thin films via direct interface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaohong; Sun Hongyu; Wang Fengqing; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Liu Baoting; Guo Jianxin [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-12-07

    Lowering the L1{sub 0} ordering temperature of FePt films is of great significance for their application as an ultrahigh density magnetic recording medium. In this study, the L1{sub 0} ordering process of FePt thin films deposited directly on Si substrates has been significantly accelerated by the interface reaction between the thin film and the Si substrate, and thus the thin films show a low L1{sub 0} ordering temperature of T = 310 deg. C as compared with those deposited on Si/SiO{sub 2} substrates. The accelerated L1{sub 0} ordering transition is predominantly dependent on the rapid growth of the ordered domains during the interface reaction. The film thickness has an important effect on the interface reaction and thus can be used to tune the L1{sub 0} ordering process of the FePt films.

  20. Mn doping effect on structure and magnetism of epitaxial (FePt)1-xMnx films

    International Nuclear Information System (INIS)

    Huang, J.C.A.; Chang, Y.C.; Yu, C.C.; Yao, Y.D.; Hu, Y.M.; Fu, C.M.

    2003-01-01

    We study the structure and perpendicular magnetism of molecular beam epitaxy grown (FePt) 1-x Mn x films with doping concentration x=0, 1%, 2%, 3%, 4%, and 5%. The (FePt) 1-x Mn x films were made by multilayers growth of [Fe/Pt/Mn]xN at 100 deg. C and annealed at 600 deg. C. X-ray diffraction scans indicate that relatively better L1 0 ordered structure for low Mn doping (x 3%. The perpendicular magnetic anisotropy effect of the (FePt) 1-x Mn x films tends to decrease with the increase of Mn doping for x>1%. However, the x=1% doped films possess slightly better perpendicular magnetic anisotropy effect than the zero doped film. The perpendicular magnetic anisotropy constant are of about 1.3x10 7 and 1.6x10 7 erg/cm 3 for x=0% and x=1%, respectively

  1. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L10 ordering by introducing Ag cap-layers

    International Nuclear Information System (INIS)

    Hsiao, S.N.; Wu, S.C.; Liu, S.H.; Tsai, J.L.; Chen, S.K.; Chang, Y.C.; Lee, H.Y.

    2015-01-01

    High-order FePt continuous films with a strong (001) texture were fabricated on a glass substrate by introducing Ag layers and rapid thermal annealing (RTA). The dewetting of the (001)-textured FePt was suppressed during RTA with high heating rates (>80 K/s). The Ag cap layers not only increased the in-plane tensile stress, but also improved the (001) anisotropy and L1 0 ordering of the FePt layers. All continuous Ag/FePt bilayer films possessed strong perpendicular anisotropies and high-ordered states irrespective of the Ag layer thickness. - Highlights: • Dewetting of (001) FePt fims were suppressed by introducing Ag cap layers. • Ag layers enhanced in-plane tensile stress, (001) texture and L1 0 ordering. • Irrespective of Ag thickness, the Ag/FePt films exhibited strong (001) texture

  2. Room temperature FePt nanoparticles formation kinetics by laser solution photolysis

    CSIR Research Space (South Africa)

    Nkosi, S

    2012-04-01

    Full Text Available An experiment has been designed to measure the radiation emission during photolysis, as well as the production of either positive or negative metallic ions in liquid from of FePt nanoparticles....

  3. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    International Nuclear Information System (INIS)

    Daud, M.; Khan, Z.; Ashgar, A.; Danish, M. I.; Qazi, I. A.

    2015-01-01

    This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, ph, temperature, and contact time were determined for removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudo first-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at ph 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at ph 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater removal efficiency due to the small particle size, extremely large surface area (627 m 2 /g), and high adsorption capacity.

  4. Calculated dependence of FePt damping on external field magnitude and direction

    Directory of Open Access Journals (Sweden)

    N. A. Natekar

    2017-05-01

    Full Text Available Near the Curie temperature (Tc, magnetic parameters including magnetization, anisotropy, and damping depend strongly on both temperature and length scale. This manifestation of renormalization theory is most readily seen in the case of magnetization where the magnitude of the atomic spin is largely unaffected by temperature, but the bulk magnetization vanishes at Tc. It has been previously argued that the Landau-Lifshitz-Gilbert damping parameter alpha exhibits a similar effect owing to its dependence on both atomic effects and magnon-magnon scattering, the latter having a strong length dependence. Here, we calculate, using an anisotropic exchange description of L10 FePt (Tc = 705 K, the damping (and other magnetic properties dependence on temperature for FePt at length scales around 1.0 nm as appropriate for high temperature micromagnetic simulation. While the damping reduces as the applied field along the easy direction increases, it tends to increase as the field direction is changed to in-plane. The renormalized parameters are also calculated for higher and lower Tc (770K and 630K by invoking the linear relationship between the exchange stiffness parameter and Curie temperature. This corresponds to doped and/or non-stoichiometric FePt and allows better understanding of the effects of varying anisotropy to exchange ratio.

  5. Heteroepitaxy of zinc-blende SiC nano-dots on Si substrate by organometallic ion beam

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kiuchi, M.; Sugimoto, S.; Goto, S.

    2006-01-01

    The self-assembled SiC nano-dots were fabricated on Si(111) substrate at low-temperatures using the organometallic ion beam deposition technique. The single precursor of methylsilicenium ions (SiCH 3 + ) with the energy of 100 eV was deposited on Si(111) substrate at 500, 550 and 600 deg. C. The characteristics of the self-assembled SiC nano-dots were analyzed by reflection high-energy electron diffraction (RHEED), Raman spectroscopy and atomic force microscope (AFM). The RHEED patterns showed that the crystal structure of the SiC nano-dots formed on Si(111) substrate was zinc-blende SiC (3C-SiC) and it was heteroepitaxy. The self-assembled SiC nano-dots were like a dome in shape, and their sizes were the length of 200-300 nm and the height of 10-15 nm. Despite the low-temperature of 500 deg. C as SiC crystallization the heteroepitaxial SiC nano-dots were fabricated on Si(111) substrate using the organometallic ion beam

  6. Decoration of carbon nanotube with size-controlled L10-FePt nanoparticles for storage media

    Science.gov (United States)

    Moradi, Reza; Sebt, Seyed Ali; Arabi, Hadi; Larijani, Majid Mojtahedzadeh

    2013-10-01

    In this work, first multi-wall carbon nanotubes (MWCNTs) with outer diameter about 20-30 nm are synthesized by a CVD method; they have been purified and functionalized with a two-step process. The approach consists of thermal oxidation and subsequent chemical oxidation. Then, monosize FePt nanoparticles along carbon nanotubes surface are synthesized by a Polyol process. The synthesized FePt nanoparticles are about 2.5 nm in size and they have superparamagnetic behavior with fcc structure. The CNTs surfaces as a substrate prevent the coalescence of particles during thermal annealing. Annealing at the temperature higher than 600 ∘C for 2 h under a reducing atmosphere (90 % Ar + 10 % H2) leads to phase transition from fcc to fct-L10 structure. So, the magnetic behavior changes from the superparamagnetic to the ferromagnetic. Furthermore, after the phase transition, the FePt nanoparticles have finite size with an average of about 3.5 nm and the coercivity of particles reaches 5.1 kOe.

  7. Tuning the metal-insulator transition in manganite films through surface exchange coupling with magnetic nanodots.

    Science.gov (United States)

    Ward, T Z; Gai, Z; Xu, X Y; Guo, H W; Yin, L F; Shen, J

    2011-04-15

    In strongly correlated electronic systems, the global transport behavior depends sensitively on spin ordering. We show that spin ordering in manganites can be controlled by depositing isolated ferromagnetic nanodots at the surface. The exchange field at the interface is tunable with nanodot density and makes it possible to overcome dimensionality and strain effects in frustrated systems to greatly increasing the metal-insulator transition and magnetoresistance. These findings indicate that electronic phase separation can be controlled by the presence of magnetic nanodots.

  8. FePt and CoPt nanoparticles prepared by micellar method. Effects of A1{yields}L1{sub 0} transition on oxidation resistance and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Han, Luyang

    2011-02-15

    In this thesis FePt and CoPt alloy nanoparticles are prepared with reverse micelles. The metallic nanoparticles with diameters of 2-12 nm and interparticle distances of 20-140 nm are obtained on Si substrates. The magnetic properties of FePt and CoPt nanoparticles as well as oxidation behavior of FePt nanoparticles are investigated. X-ray magnetic circular dichroism (XMCD) measurements on 5.8 nm FePt nanoparticles after hydrogen plasma reduction at 300 C reveals that the magnetic moment per Fe atom and magnetic anisotropy energy match chemically disordered FePt in A1 phase. Annealing at 650 C transform portion of FePt particles to chemically ordered L1{sub 0} phase. The presense of nanoparticles in L1{sub 0} phase is identified by high-resolution transmission electronmicroscopy (HRTEM) investigation, where it is also observed that large fraction of the particles contain defects such as twin boundaries and stacking faults. By increasing the annealing temperature or prolonging annealing time, ratio of transformed particles increases. The average magnetic anisotropy energy of the transformed particles is below 30% of the value of bulk FePt in L1{sub 0} phase. Annealing at above 750 C, however, decreases the average magnetic anisotropy in the sample. Similar A1 {yields} L1{sub 0} transition is observed in FePt nanoparticles with different diameters as well as in CoPt nanoparticles. The spin moment of Fe in FePt nanoparticles decreases with smaller particle diameter, while the orbital moment stays almost constant. Magnetic moments at room temperature are significantly reduced compared to those at low temperature, suggesting the Curie temperatures in FePt and CoPt nanoparticles are significantly lower than in the bulk. The annealing also induces Pt segregation towards the surface in FePt nanoparticles, which is identified by the decreased apparent Fe content measured by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The segregation of Pt

  9. Trap-assisted tunneling in aluminum-doped ZnO/indium oxynitride nanodot interlayer Ohmic contacts on p-GaN

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Wen-Cheng, E-mail: wcke@mail.ntust.edu.tw; Yang, Cheng-Yi [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Lee, Fang-Wei; Chen, Wei-Kuo [Department of Electrophysics, National Chiao-Tung University, Hsin-Chu 300, Taiwan (China); Huang, Hao-Ping [Department of Mechanical Engineering, Yuan Ze University, Chung-Li 320, Taiwan (China)

    2015-10-21

    This study developed an Ohmic contact formation method for a ZnO:Al (AZO) transparent conductive layer on p-GaN films involving the introduction of an indium oxynitride (InON) nanodot interlayer. An antisurfactant pretreatment was used to grow InON nanodots on p-GaN films in a RF magnetron sputtering system. A low specific contact resistance of 1.12 × 10{sup −4} Ω cm{sup 2} was achieved for a sample annealed at 500 °C for 30 s in nitrogen ambient and embedded with an InON nanodot interlayer with a nanodot density of 6.5 × 10{sup 8} cm{sup −2}. By contrast, a sample annealed in oxygen ambient exhibited non-Ohmic behavior. X-ray photoemission spectroscopy results showed that the oxygen vacancy (V{sub o}) in the InON nanodots played a crucial role in carrier transport. The fitting I–V characteristic curves indicated that the hopping mechanism with an activation energy of 31.6 meV and trap site spacing of 1.1 nm dominated the carrier transport in the AZO/InON nanodot/p-GaN sample. Because of the high density of donor-like oxygen vacancy defects at the InON nanodot/p-GaN interface, positive charges from the underlying p-GaN films were absorbed at the interface. This led to positive charge accumulation, creating a narrow depletion layer; therefore, carriers from the AZO layer passed through InON nanodots by hopping transport, and subsequently tunneling through the interface to enter the p-GaN films. Thus, AZO Ohmic contact can be formed on p-GaN films by embedding an InON nanodot interlayer to facilitate trap-assisted tunneling.

  10. Effect of carbon additive on microstructure evolution and magnetic properties of epitaxial FePt (001) thin films

    International Nuclear Information System (INIS)

    Ding, Y.F.; Chen, J.S.; Liu, E.; Lim, B.C.; Hu, J.F.; Liu, B.

    2009-01-01

    FePt:C thin films were deposited on CrRu underlayers by DC magnetron co-sputtering. The effects of C content, FePt:C film thickness and substrate temperature on the microstructural and magnetic properties of the epitaxial FePt (001) films were studied. Experimental results showed that even with 30 vol.% C doping, the FePt films could keep a (001) preferred orientation at 350 deg. C . When a FePt:C film was very thin (< 5 nm), the film had a continuous microstructure instead of a granual structure with C diffused onto the film surface. With further increased film thickness, the film started to nucleate and formed a column microstructure over continuous FePt films. A strong exchange coupling in the FePt:C films was believed to be due to the presence of a thin continuous FePt layer attributed to the carbon diffusion during the initial stage of the FePt:C film growth. Despite the presence of a strong exchange coupling in the FePt:C (20 vol.% C) film, the SNR ratio of the FePt:C media was about 10 dB better than that of the pure FePt media. The epitaxial growth of the FePt:C films on the Pt layers was observed from high resolution TEM cross sectional images even for the films grown at about 200 deg. C . The TEM images did not show an obvious change in the morphology of the FePt:C films deposited at different temperatures (from 200 deg. C to 350 deg. C ), though the ordering degree and coercivity of the films increased with increased substrate temperature

  11. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    Directory of Open Access Journals (Sweden)

    Muhammad Daud

    2015-01-01

    Full Text Available This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, pH, temperature, and contact time were determined for NO3- removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudofirst-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at pH 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at pH 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater NO3- removal efficiency due to the small particle size, extremely large surface area (627 m2/g, and high adsorption capacity.

  12. Ytterbium oxide nanodots via block copolymer self-assembly and their efficacy to dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang-Won; Ahn, Sungwoo; Lim, Sung-Hwan; Jin, Ming Hao; Song, Jeemin; Yun, Seung-Young [Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Kim, Hyeon Mo; Kim, Gi Jeong [Sooyang Chemtec Co., Ltd., Digital-ro 32-gil, Guro-gu, Seoul 152-777 (Korea, Republic of); Ok, Kang Min [Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Hong, Jongin, E-mail: hongj@cau.ac.kr [Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756 (Korea, Republic of)

    2016-02-28

    Graphical abstract: - Highlights: • A novel phosphor, Yb{sub 2}O{sub 3}, was developed as a UV-absorbing spectral converter for dye-sensitized solar cells (DSSCs). • The ordered Yb{sub 2}O{sub 3} nanodots trap more light and prevent charge recombination at the interfaces. • Their multifunctionality improves DSSC performance for both Ru-based and organic dyes. - Abstract: In this study, we develop a novel phosphor, Yb{sub 2}O{sub 3}, to be used as the spectral converter in dye-sensitized solar cells (DSSCs) for the efficient capture of ultraviolet light via down-conversion. These zero-dimensional nanodots with a high refractive index also allow more light to be trapped and can prevent charge recombination at the interfaces in the DSSCs. Compared to DSSCs without the nanodots, the DSSCs fabricated with the Yb{sub 2}O{sub 3} nanodots exhibits higher power-conversion efficiencies for both the N719 (10.5%) and CSD-01 (20.5%) dyes. The multifunctionality of the Yb{sub 2}O{sub 3} nanodots provides a new route for improving the performance of DSSCs.

  13. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L1{sub 0} ordering by introducing Ag cap-layers

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, S.C. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Liu, S.H. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Tsai, J.L., E-mail: tsaijl@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chang, Y.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lee, H.Y. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)

    2015-11-15

    High-order FePt continuous films with a strong (001) texture were fabricated on a glass substrate by introducing Ag layers and rapid thermal annealing (RTA). The dewetting of the (001)-textured FePt was suppressed during RTA with high heating rates (>80 K/s). The Ag cap layers not only increased the in-plane tensile stress, but also improved the (001) anisotropy and L1{sub 0} ordering of the FePt layers. All continuous Ag/FePt bilayer films possessed strong perpendicular anisotropies and high-ordered states irrespective of the Ag layer thickness. - Highlights: • Dewetting of (001) FePt fims were suppressed by introducing Ag cap layers. • Ag layers enhanced in-plane tensile stress, (001) texture and L1{sub 0} ordering. • Irrespective of Ag thickness, the Ag/FePt films exhibited strong (001) texture.

  14. Reduction in L10 phase transition temperature of PLD grown FePt thin by pre-annealing pulse laser exposure

    International Nuclear Information System (INIS)

    Wang, Y.; Rawat, R.S.; Bisht, A.

    2013-01-01

    A pre-annealing atmospheric pulsed laser exposure was applied to decrease the phase transition (from chemically disordered A1 phase to chemically ordered L1 0 phase) temperature of FePt nano-particles on a Si (100) substrate. Different pre-annealing laser energy densities of 0.024 and 0.079 J/cm2 were utilized to expose the pulsed laser deposition (PLD) FePt thin film samples under atmospheric conditions. Subsequently, FePt thin film samples were annealed at different temperatures of 300 and 400 ºC to observe the influence of laser exposure on the phase transition temperature. The phase transition temperature was decreased from conventional 600 ºC to 400 ºC by one shot pre-annealing atmospheric pulsed laser exposure. (author)

  15. Lowering of the L10 ordering temperature of FePt nanoparticles by He+ ion irradiation

    International Nuclear Information System (INIS)

    Wiedwald, U.; Klimmer, A.; Kern, B.; Han, L.; Boyen, H.-G.; Ziemann, P.; Fauth, K.

    2007-01-01

    Arrays of FePt particles (diameter 7 nm) with mean interparticle distances of 60 nm are prepared by a micellar technique on Si substrates. The phase transition of these magnetic particles towards the chemically ordered L1 0 phase is tracked for 350 kV He + ion irradiated samples and compared to a nonirradiated reference. Due to the large separation of the magnetically decoupled particles the array can be safely annealed without any agglomeration as usually observed for more densely packed colloidal FePt nanoparticles. The He + ion exposure yields a significant reduction of the ordering temperature by more than 100 K

  16. Tuning the optical response in carbon doped boron nitride nanodots

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-09-04

    Time dependent density functional theory and the hybrid B3LYP functional are used to investigate the structural and optical properties of pristine and carbon doped hexagonal boron nitride nanodots. In agreement with recent experiments, the embedded carbon atoms are found to favor nucleation. Our results demonstrate that carbon clusters of different shapes promote an early onset of absorption by generating in-gap states. The nanodots are interesting for opto-electronics due to their tunable optical response in a wide energy window. We identify cluster sizes and shapes with optimal conversion efficiency for solar radiation and a wide absorption range form infrared to ultraviolet. This journal is

  17. Thickness dependence of magnetization reversal mechanism in perpendicularly magnetized L1{sub 0} FePt films

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Mei; Wang, Xin, E-mail: xinwang@uestc.edu.cn; Lu, Haipeng; Zhang, Li; Deng, Longjiang; Xie, Jianliang

    2017-04-15

    We have studied the magnetic switching behavior of L1{sub 0}-ordered FePt films with varying thickness. It was found that coercivity is strongly dependent on the film thickness. The obvious variations of the coercivity in the thin films are confirmed by the measurements of structural and magnetic properties. With increasing thickness, the degree of L1{sub 0} chemical ordering increased, while the magnetization reversal process transforms from a pinned two-steps magnetization reversal to a comparatively smooth domain wall motion behavior. Although considering anisotropy, exchange interaction and applied magnetic field, the switching behavior in films is quite complex, the main features of the magnetization reversal mechanism can be understood by performing detailed investigation on the effect of the deposition temperature and the angle of magnetic field. - Highlights: • Series of FePt films with L1{sub 0} phase have been prepared. • We focused on the magnetization reversal mechanism with varying thicknesses. • The angle-dependence of switching process is revealed in the FePt films. • Different switching mechanisms were found by increasing the film thickness.

  18. Non-Aqueous Sol-Gel Synthesis of FePt Nanoparticles in the Absence of In Situ Stabilizers

    Directory of Open Access Journals (Sweden)

    Tobias Preller

    2018-05-01

    Full Text Available The synthesis of FePt nanocrystals is typically performed in an organic solvent at rather high temperatures, demanding the addition of the in situ stabilizers oleic acid and oleylamine to produce monomodal particles with well-defined morphologies. Replacing frequently-used solvents with organic media bearing functional moieties, the use of the stabilizers can be completely circumvented. In addition, various morphologies and sizes of the nanocrystals can be achieved by the choice of organic solvent. The kinetics of particle growth and the change in the magnetic behavior of the superparamagnetic FePt nanocrystals during the synthesis with a set of different solvents, as well as the resulting morphologies and stoichiometries of the nanoparticles were determined by powder X-ray diffraction (PXRD, small-angle X-ray scattering (SAXS, transmission electron microscopy (TEM, inductively coupled plasma optical emission spectroscopy (ICP-OES/mass spectrometry (ICP-MS, and superconducting quantum interference device (SQUID measurements. Furthermore, annealing of the as-prepared FePt nanoparticles led to the ordered L10 phase and, thus, to hard magnetic materials with varying saturation magnetizations and magnetic coercivities.

  19. Preparing magnetic yttrium iron garnet nanodot arrays by ultrathin anodic alumina template on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hui; Han, Mangui, E-mail: han-mangui@yahoo.com; Deng, Longjiang [National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zheng, Liang; Zheng, Peng; Qin, Huibin [Institute of Electron Device and Application, Hangzhou Dianzi University, Hangzhou 310008 (China); Wu, Qiong [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China)

    2015-08-10

    Ultrahigh density periodically ordered magnetic yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) nanodot arrays have been prepared by pulsed laser deposition through an ultrathin alumina mask (UTAM). UTAM having periodically ordered circularly shaped holes with 350 nm in diameter, 450 nm in inter-pore distance, and 700 nm in height has been prepared on silicon substrate. Furthermore, the microstructure and magnetic properties of YIG nanodot arrays have been characterized. Nanodot arrays with a sharp distribution in diameter centered at 340 nm with standard deviation of 10 nm have been fabricated. Moreover, typical hysteresis loops and ferromagnetic resonance spectra in in-plane and out-of-plane revealed that this unique structure greatly influences the magnetics properties of YIG. First, coercivity of YIG nanodot arrays in in-plane was increased about from 15 Oe of YIG films to 500 Oe. Then, the degree of uniformity about nanodot height decided that two or more resonance peaks in out-of-plane were detected in the spectra. The peak-to-peak linewidth values were about 94 Oe and 40 Oe in the parallel and perpendicular directions, respectively, which indicated that the values were larger by the two-magnon scattering. Consequently, this pattering method creates opportunities for studying physics in oxide nanomagnets and may be applied in spin-wave devices.

  20. High-coercivity FePt sputtered films

    International Nuclear Information System (INIS)

    Luong, N.H.; Hiep, V.V.; Hong, D.M.; Chau, N.; Linh, N.D.; Kurisu, M.; Anh, D.T.K.; Nakamoto, G.

    2005-01-01

    Fe 56 Pt 44 thin films have been prepared by RF magnetron sputtering on Si substrates. The substrate temperature was kept at 350 deg C. The X-ray diffraction patterns of as-deposited FePt films exhibited a disordered structure. Annealing of the films at 650-685 deg C for 1 h yielded an ordered L1 0 phase with FCT structure. The high value for coercivity H C of 17 kOe was obtained at room temperature for the 68 nm thick film annealed at 685 deg C. The hard magnetic properties as well as grain structure of the films strongly depend on the annealing conditions

  1. Influences of Mg Doping on the Electrochemical Performance of TiO2 Nanodots Based Biosensor Electrodes

    Directory of Open Access Journals (Sweden)

    M. S. H. Al-Furjan

    2014-01-01

    Full Text Available Electrochemical biosensors are essential for health monitors to help in diagnosis and detection of diseases. Enzyme adsorptions on biosensor electrodes and direct electron transfer between them have been recognized as key factors to affect biosensor performance. TiO2 has a good protein adsorption ability and facilitates having more enzyme adsorption and better electron transfer. In this work, Mg ions are introduced into TiO2 nanodots in order to further improve electrode performance because Mg ions are considered to have good affinity with proteins or enzymes. Mg doped TiO2 nanodots on Ti substrates were prepared by spin-coating and calcining. The effects of Mg doping on the nanodots morphology and performance of the electrodes were investigated. The density and size of TiO2 nanodots were obviously changed with Mg doping. The sensitivity of 2% Mg doped TiO2 nanodots based biosensor electrode increased to 1377.64 from 897.8 µA mM−1 cm−2 and its KMapp decreases to 0.83 from 1.27 mM, implying that the enzyme achieves higher catalytic efficiency due to better affinity of the enzyme with the Mg doped TiO2. The present work could provide an alternative to improve biosensor performances.

  2. Endotaxially stabilized B2-FeSi nanodots in Si (100) via ion beam co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Cathal, E-mail: c.cassidy@oist.jp; Singh, Vidyadhar; Grammatikopoulos, Panagiotis [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Onna-Son, Okinawa 904-0495 (Japan); Kioseoglou, Joseph [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Lal, Chhagan [Department of Physics, University of Rajasthan, Jaipur, Rajasthan 302005 (India); Sowwan, Mukhles, E-mail: mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Onna-Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, East Jerusalem, P.O. Box 51000, Palestine (Country Unknown)

    2014-04-21

    We report on the formation of embedded B2-FeSi nanodots in [100]-oriented Si substrates, and investigate the crystallographic mechanism underlying the stabilization of this uncommon, bulk-unstable, phase. The nanodots were approximately 10 nm in size, and were formed by iron thin film deposition and subsequent annealing. Cross-sectional transmission electron microscopy, energy loss spectroscopy mapping, and quantitative image simulation and analysis were utilized to identify the phase, strain, and orientational relationship of the nanodots to the host silicon lattice. X-ray photoelectron spectroscopy was utilized to analyze the surface composition and local bonding. Elasticity calculations yielded a nanodot residual strain value of −18%. Geometrical phase analysis graphically pinpointed the positions of misfit dislocations, and clearly showed the presence of pinned (11{sup ¯}1{sup ¯}){sub Si}//(100){sub FeSi}, and unpinned (2{sup ¯}42){sub Si}//(010){sub FeSi}, interfaces. This partial endotaxy in the host silicon lattice was the mechanism that stabilized the B2-FeSi phase.

  3. Exchange bias effect in L10-ordered FePt and FeCo-based bilayer structure: effect of increasing applied field

    Science.gov (United States)

    Singh, Sadhana; Kumar, Dileep; Bhagat, Babli; Choudhary, R. J.; Reddy, V. R.; Gupta, Ajay

    2018-02-01

    The applied magnetic field (H APP) dependence of the exchange bias (EB) is studied in an exchange-coupled thin-film bilayer composed of a hard ferromagnetic FePt layer in the proximity of a soft ferromagnetic FeCo layer. FePt/FeCo structure is deposited in an ultra-high vacuum chamber, where the FePt layer was first annealed at 823 K for 30 min and subsequently cooled to room temperature in the presence of an in-plane magnetic field, H MAX ~ 1.5 kOe to promote L10-ordered hard magnetic phase with magnetic moments aligned in one of the in-plane directions in the FePt layer. In-situ magneto-optical Kerr effect measurements during different stages of bilayer growth and detailed ex-situ superconducting quantum interference device-vibrating sample magnetometer measurements jointly revealed that due to the interplay between exchange coupling at the interface and dipolar energies of the saturated hard FePt layer, a hysteresis loop of FeCo layer shifts along the magnetic field axis. A clear dependence of EB field (H EB) on increasing maximum value of the H APP during the hysteresis loop measurement is understood in terms of the magnetic state of soft and hard magnetic layers, where EB increases with increasing H APP until the hard layer moment remains undisturbed in its remanence state. As soon as the field was sufficient to rotate the spins of the FePt layer, the loop became symmetric with respect to the field axis.

  4. Fabrication of gold nanodot arrays on a transparent substrate as a nanobioplatform for label-free visualization of living cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mi; El-Said, Waleed Ahmed; Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742 (Korea, Republic of)

    2011-06-10

    Two-dimensional gold (Au) nanodot arrays on a transparent substrate were fabricated for imaging of living cells. A nanoporous alumina mask with large-area coverage capability was prepared by a two-step chemical wet etching process after a second anodization. Highly ordered Au nanodot arrays were formed on indium-tin-oxide (ITO) glass using very thin nanoporous alumina of approximately 200 nm thickness as an evaporation mask. The large-area Au nanodot arrays on ITO glass were modified with RGD peptide (arginine; glycine; aspartic acid) containing a cysteine (Cys) residue and then used to immobilize human cancer HeLa cells, the morphology of which was observed by confocal microscopy. The confocal micrographs of living HeLa cells on Au nanodot arrays revealed enhanced contrast and resolution, which enabled discernment of cytoplasmic organelles more clearly. These results suggest that two-dimensional Au nanodot arrays modified with RGD peptide on ITO glass have potential as a biocompatible nanobioplatform for the label-free visualization and adhesion of living cells.

  5. On the Relationship of Magnetocrystalline Anisotropy and Stoichiometry in Epitaxial L1{sub 0} CoPt(001) and FePt(001) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Barmak, K

    2004-08-10

    Two series of epitaxial CoPt and FePt films, with nominal thicknesses of 42 or 50 nm, were prepared by sputtering onto single crystal MgO(001) substrates in order to investigate the chemical ordering and the resultant magnetic properties as a function of alloy composition. In the first series, the film composition was kept constant, while the substrate temperature was increased from 144 to 704 C. In the second series the substrate temperature was kept constant at 704 C for CoPt and 620 C for FePt, while the alloy stoichiometry was varied in the nominalrange of 40-60 at% Co(Fe). Film compositions and thicknesses were measured via Rutherford backscattering spectrometry. The lattice and long-range order parameter for the L1{sub 0} phase were obtained for both sets of films using x-ray diffraction. The room-temperature magnetocrystalline anisotropy constants were determined for a subset of the films using torque magnetometry. The order parameter was found to increase with increasing temperature, with ordering occurring more readily in FePt when compared with CoPt. A perpendicular anisotropy developed in CoPt for substrate temperatures above 534 C and in FePt above 321 C. The structure and width of the magnetic domains in CoPt and FePt, as seen by magnetic force microscopy, also demonstrated an increase in magnetic anisotropy with increasing temperature. For the films deposited at the highest temperatures (704 C for CoPt and 620 C for FePt), the order parameter reached a maximum near the equiatomic composition, whereas the magnetocrystalline anisotropy increased as the concentration of Co or Fe was increased from below to slightly above the equiatomic composition. It is concluded that non-stoichiometric L1{sub 0} CoPt and FePt, with a slight excess of Co or Fe, are preferable for applications requiring the highest anisotropies.

  6. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mi, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Mo Yoon, Dang; Kim, Miyoung [Korea Printed Electronics Center, Korea Electronics Technology Institute, Jeollabuk-do, 561-844 (Korea, Republic of); Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lim, Si-Hyung [School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  7. Electrochemically decorated ZnTe nanodots on single-walled carbon nanotubes for room-temperature NO2 sensor application.

    Science.gov (United States)

    Kim, Donguk; Park, Ki-Moon; Shanmugam, Rajakumar; Yoo, Bongyoung

    2014-11-01

    A gas sensor with ZnTe nanodot-modified single-walled carbon nanotubes (SWCNTs) is demonstrated for NO2 detection at room temperature. ZnTe nanodots are electrochemically deposited in an aqueous solution containing ZnSO4, TeO2 and citrate. A deposition potential range of ZnTe formation of -0.65 to -0.9 V is determined by cyclic voltammetry, and an intermetallic ZnTe compound is formed at above 50 degrees C bath. SWCNT-based sensors show the highly sensitive response down to 1 ppm NO2 gas at room temperature. In particular, the sensitivity of ZnTe nanodot-modified SWCNTs is increased by 6 times as compared to that of pristine SWCNT sensors. A selectivity test of SWCNT-ZnTe nanodots sensors is carried out with ammonia gas (NH3) and methanol vapor (MeOH), and the result confirms an excellent selectivity to NO2 gas.

  8. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.

    Science.gov (United States)

    Seemann, K M; Kuhn, B

    2014-07-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

  9. Independent control of the vortex chirality and polarity in a pair of magnetic nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junqin; Wang, Yong, E-mail: wangyong@sinap.ac.cn; Cao, Jiefeng; Meng, Xiangyu; Zhu, Fangyuan; Wu, Yanqing; Tai, Renzhong

    2017-08-01

    Independent control of the vortex chirality and polarity is realized by changing the in-plane magnetic field direction in nanodot pair through Object Oriented Micromagnetic Framework (OOMMF) simulation. The two magnetic circles are close to each other and have magnetic interaction. The two circles always have the same polarity and opposite chirality at every remanent state. There are totally four predictable magnetic states in the nanodot pair which can be obtained in the remanent state relaxed from the saturation state along all possible directions. An explanation on the formation of vortex states is given by vortex dynamics. The vortex states are stable in large out-of-plane magnetic field which is in a direction opposite to the vortex polarity. The geometry of the nanodot pair gives a way to easily realize a vortex state with specific polarity and chirality.

  10. Near-infrared electroluminescence emission from an n-InN nanodots/p-Si heterojunction structure

    International Nuclear Information System (INIS)

    Wu Guoguang; Du Guotong; Gao Fubin; Shen Chunsheng; Li Wancheng; Wang Hui

    2012-01-01

    An n-InN nanodots/p-Si(1 1 1) heterojunction diode was fabricated by plasma-assisted molecular beam epitaxy. The device shows clear rectifying behaviour with a turn-on voltage of approximately 1.2 V at room temperature. The near-infrared electroluminescence (EL) can be observed under forward bias, which covers a wide wavelength range. In comparison with the photoluminescence spectra, the maximum of the EL spectra has a blueshift which is probably due to the size quantization effect of small-sized InN nanodots and their stronger contribution to the EL intensity. On the other hand, there is an obvious enhancement of the less dominant transitions on the short wavelength side of the EL spectra, which may arise from the recombination of the injected holes with the extremely high-density surface electrons of InN nanodots. (paper)

  11. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    International Nuclear Information System (INIS)

    Fang, Huajing; Yan, Qingfeng; Geng, Chong; Li, Qiang; Chan, Ngai Yui; Au, Kit; Ng, Sheung Mei; Leung, Chi Wah; Wa Chan, Helen Lai; Dai, Jiyan; Yao, Jianjun; Guo, Dong

    2016-01-01

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride–trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ∼62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality

  12. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Huajing [Department of Applied Physics, The Hong Kong Polytechnic University (PolyU) Hunghom, Kowloon (Hong Kong); Department of Chemistry, Tsinghua University, Beijing 100084 (China); Yan, Qingfeng, E-mail: yanqf@mail.tsinghua.edu.cn, E-mail: jiyan.dai@polyu.edu.hk; Geng, Chong; Li, Qiang [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Chan, Ngai Yui; Au, Kit; Ng, Sheung Mei; Leung, Chi Wah; Wa Chan, Helen Lai; Dai, Jiyan, E-mail: yanqf@mail.tsinghua.edu.cn, E-mail: jiyan.dai@polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (PolyU) Hunghom, Kowloon (Hong Kong); Yao, Jianjun [Asylum Research, Oxford Instruments, Shanghai 200233 (China); Guo, Dong [Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-01-07

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride–trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ∼62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality.

  13. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    Science.gov (United States)

    Fang, Huajing; Yan, Qingfeng; Geng, Chong; Chan, Ngai Yui; Au, Kit; Yao, Jianjun; Ng, Sheung Mei; Leung, Chi Wah; Li, Qiang; Guo, Dong; Wa Chan, Helen Lai; Dai, Jiyan

    2016-01-01

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ˜62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality.

  14. Enhancement of L10 ordering with the c-axis perpendicular to the substrate in FePt alloy film by using an epitaxial cap-layer

    Directory of Open Access Journals (Sweden)

    Mitsuru Ohtake

    2017-05-01

    Full Text Available FePt alloy thin films with cap-layers of MgO or C are prepared on MgO(001 single-crystal substrates by using a two-step method consisting of low-temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. The FePt film thickness is fixed at 10 nm, whereas the cap-layer thickness is varied from 1 to 10 nm. The influences of cap-layer material and cap-layer thickness on the variant structure and the L10 ordering are investigated. Single-crystal FePt(001 films with disordered fcc structure (A1 grow epitaxially on the substrates at 200 °C. Single-crystal MgO(001 cap-layers grow epitaxially on the FePt films, whereas the structure of C cap-layers is amorphous. The phase transformation from A1 to L10 occurs when the films are annealed at 600 °C. The FePt films with MgO cap-layers thicker than 2 nm consist of L10(001 variant with the c-axis perpendicular to the substrate surface, whereas those with C cap-layers involve small volumes of L10(100 and (010 variants with the c-axis lying in the film plane. The in-plane and the out-of-plane lattices are respectively more expanded and contracted in the continuous-lattice MgO/FePt/MgO structure due to accommodations of misfits of FePt film with respect to not only the MgO substrate but also the MgO cap-layer. The lattice deformation promotes phase transformation along the perpendicular direction and L10 ordering. The FePt films consisting of only L10(001 variant show strong perpendicular magnetic anisotropies and low in-plane coercivities. The present study shows that an introduction of epitaxial cap-layer is effective in controlling the c-axis perpendicular to the substrate surface.

  15. PLD synthesis of GaN nanowires and nanodots on patterned catalyst surface for field emission study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, D.K.T.; Hong, M.H. [National University of Singapore (Singapore). Department of Electrical and Computer Engineering; Data Storage Institute, Singapore (Singapore); Tan, L.S. [National University of Singapore (Singapore). Department of Electrical and Computer Engineering; Zhu, Y.W.; Sow, C.H. [National University of Singapore (Singapore). Nanoscience and Nanotechnology Initiative; National University of Singapore (Singapore). Department of Physics

    2008-11-15

    Patterned gallium nitride nanowires and nanodots have been grown on n-Si(100) substrates by pulsed laser deposition. The nanostructures are patterned using a physical mask, resulting in regions of nanowire growth of different densities. The field emission (FE) characteristics of the patterned gallium nitride nanowires show a turn-on field of 9.06 V/{mu}m to achieve a current density of 0.01 mA/cm{sup 2} and an enhanced field emission current density as high as 0.156 mA/cm{sup 2} at an applied field of 11 V/{mu}m. Comparing the peak FE current densities of both the nanowires and nanodots, the peak FE current density of nanowires is around 700 times higher than that of the peak FE current density of nanodots since nanodots have a lower aspect ratio compared to nanowires. The field emission results indicate that, besides density difference, crystalline quality as well as the low electron affinity of gallium nitride, high aspect ratio of gallium nitride nanostructures will greatly enhance their field emission properties. (orig.)

  16. High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2011-10-11

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic, superconducting and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  17. Orientation and magnetic properties of FePt and CoPt films grown on MgO(1 1 0) single-crystal substrate by electron-beam coevaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yu Minghui [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States); Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States)], E-mail: myu1@uno.edu; Ohguchi, H.; Zambano, A.; Takeuchi, I. [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States); Liu, J.P. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Josell, D.; Bendersky, L.A. [Metallurgy Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2007-09-25

    We have studied the orientation and magnetic properties of FePt and CoPt films deposited by electron-beam co-evaporation on MgO(1 1 0) single-crystal substrates at substrate temperatures from 500 to 700 deg. C. We observed that long-range chemical ordering of the L1{sub 0} structure occurred over the entire range of substrate temperatures in FePt films and at 600 deg. C and up in CoPt films. Growth of FePt and CoPt yielded epitaxial films with cube-on-cube orientation of the pseudo-cubic L1{sub 0} lattice with respect to the cubic MgO. X-ray diffraction patterns and magnetization loops of the FePt and CoPt films revealed the existence of L1{sub 0} domains with the tetragonal c axis inclined at 45 deg. to the film plane, orientations (0 h h) and (h 0 h), as well as L1{sub 0} domains with the tetragonal c axis in the plane of the film, orientation (h h 0). The FePt and CoPt films for which X-ray diffraction indicated tetragonal phase was present all exhibited hard magnetic properties with easy axis along the [0 0 1] substrate direction as well as large in-plane magnetocrystalline anisotropy.

  18. Carbon Nanodots: Dual‐Color‐Emitting Carbon Nanodots for Multicolor Bioimaging and Optogenetic Control of Ion Channels (Adv. Sci. 11/2017)

    OpenAIRE

    Kim, Hyemin; Park, Yoonsang; Beack, Songeun; Han, Seulgi; Jung, Dooyup; Cha, Hyung Joon; Kwon, Woosung; Hahn, Sei Kwang

    2017-01-01

    Carbon nanodots (CNDs) have been widely investigated for theranostic applications including fluorescence imaging, photoacoustic imaging, photothermal therapy, and photodynamic therapy. In article number 1700325, Sei Kwang Hahn, Woosung Kwon, and co‐workers develop dual‐color‐emitting CNDs uniquely designed by the electronic structure engineering for both futuristic multi‐color bioimaging and optogenetic control of ion channels.

  19. Sintering prevention and phase transformation of FePt nanoparticles

    International Nuclear Information System (INIS)

    Ding, Y.; Majetich, S.A.; Kim, J.; Barmak, K.; Rollins, H.; Sides, P.

    2004-01-01

    Two approaches attempted to overcome FePt nanoparticle sintering during the transformation to the high coercivity L1 0 phase, which currently limits the use of these nanoparticles in data storage media. High-pressure treatment of dilute nanoparticle solutions failed to prevent sintering due to surfactant decomposition above 360 deg. C. By pre-annealing nanoparticle monolayers to decompose the surfactant, and then coating with an immiscible SiO 2 matrix, sintering was prevented with annealing temperatures up to 700 deg. C

  20. Elimination of impurity phase formation in FePt magnetic thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wang, Ying; Medwal, Rohit; Sehdev, Neeru; Yadian, Boluo; Tan, T.L.; Lee, P.; Talebitaher, A.; Ilyas, Usman; Ramanujan, R.V.; Huang, Yizhong; Rawat, R.S.

    2014-01-01

    The formation of impurity phases in FePt thin films severely degrades its magnetic properties. The X-ray diffraction patterns of FePt thin films, synthesized using pulsed laser deposition (PLD), showed peaks corresponding to impurity phases, resulting in softer magnetic properties. A systematic investigation was carried to determine the factors that might have led to impurity phase formation. The factors include (i) PLD target composition, (ii) substrate material, (iii) annealing parameters such as temperature, duration and ambience and (iv) PLD deposition parameters such as chamber ambience, laser energy fluence and target–substrate distance. Depositions on the different substrates revealed impurity phase formation only on Si substrates. It was found that the target composition, PLD chamber ambience, and annealing ambience were not the factors that caused the impurity phase formation. The annealing temperature and duration influenced the impurity phases, but are not the cause of their formation. A decrease in the laser energy fluence and increase of the target–substrate distance resulted in elimination of the impurity phases and enhancement in the magnetic and structural properties of FePt thin films. The energy of the ablated plasma species, controlled by the laser energy fluence and the target–substrate distance, is found to be the main factor responsible for the formation of the impurity phases.

  1. Synthesis and characterization of FePt nanoparticles by high energy ball milling with and without surfactant

    International Nuclear Information System (INIS)

    Velasco, V.; Martinez, A.; Recio, J.; Hernando, A.; Crespo, P.

    2012-01-01

    Highlights: ► Fe and Pt powders in the presence of surfactants don’t alloyed by HEBM technique. ► FePt alloys obtained by dry milling exhibit particle sizes of around 10 μm. ► FePt alloys obtained by dry milling exhibit soft magnetic behavior. ► A thermal treatment induces a phase transformation from FCC to FCT. - Abstract: FePt nanoparticles were prepared by high energy ball milling (HEBM) in two different ways. In the first one, elemental powders were mixed and milled whereas in the second one the milling was performed in the presence of oleyl amine and oleic acid as surfactants and hexane as a solvent. X-ray diffraction shows that when the milling is performed in dry conditions, Fe and Pt are alloyed after 5 h, whereas in the wet milling procedure alloying does not take place. In the first case, the diffraction pattern corresponds to the disordered FCC phase. This behavior is also corroborated by the evolution of the magnetic characteristics. In the case of the alloy obtained in dry conditions, the powder was heat treated in order to induce the transformation to the ordered phase. Coercivities of 2.5 kOe are obtained after 650 °C for 2 h.

  2. Molecular dynamic simulation study of plasma etching L10 FePt media in embedded mask patterning (EMP) process

    OpenAIRE

    Jianxin Zhu; P. Quarterman; Jian-Ping Wang

    2017-01-01

    Plasma etching process of single-crystal L10-FePt media [H. Wang et al., Appl. Phys. Lett. 102(5) (2013)] is studied using molecular dynamic simulation. Embedded-Atom Method [M. S. Daw and M. I. Baskes, Phy. Rev. B 29, 6443 (1984); X. W. Zhou, R. A. Johnson and H. N. G. Wadley, Phy. Rev. B 69, 144113 (2004)] is used to calculate the interatomic potential within atoms in FePt alloy, and ZBL potential [J.F. Ziegler, J. P. Biersack and U. Littmark, “The Stopping and Range of Ions in Matter,” Vol...

  3. Magnetic Field Effects on Pure-state and Thermal Entanglement of Anisotropic Magnetic Nanodots

    Science.gov (United States)

    Istomin, Andrei Y.

    2005-05-01

    Anisotropic magnetic nanodots have recently been proposed as promising candidates for qubits for scalable quantum computing [1,2]. The main advantages of such magnetic qubits are their well-separated energy levels (which may allow operation at temperature of the order of a few K), nanometer size (which simplifies fabrication), and large spin values (which facilitates measurement of qubit states). The entanglement properties of eigenstates of a pair of Heisenberg-interacting nanodots have been analyzed in [2], where we have shown that ferromagnetic (FM) coupling produces two significantly entangled excited states. Here we investigate the magnetic field effects on the entanglement of these and other states. We show that entanglement of excited FM eigenstates of two non-identical nanodots can be tuned to its maximum value by applying a relatively weak non-uniform magnetic field. [1] J. Tejada, E.M. Chudnovsky, E. del Barco, J.M. Hernandez, and T.P. Spiller, Nanotechnology 12, 181 (2001). [2] R. Skomski, A.Y. Istomin, A.F. Starace, and D.J. Sellmyer, Phys. Rev. A 70, 062307 (2004).

  4. Micromagnetic study of single-domain FePt nanocrystals overcoated with silica

    International Nuclear Information System (INIS)

    Hyun, Changbae; Lee, Doh C; Korgel, Brian A; Lozanne, Alex de

    2007-01-01

    Chemically-synthesized FePt nanocrystals must be annealed at a high temperature (>550 deg. C) to induce the hard ferromagnetic L 1 0 phase. Unfortunately, the organic stabilizer covering these nanocrystals degrades at these temperatures and the nanocrystals sinter, resulting in the loss of control over nanocrystal size and separation in the film. We have developed a silica overcoating strategy to prevent nanocrystal sintering. In this study, 6 nm diameter FePt nanocrystals were coated with 17 nm thick shells of silica using an inverse micelle process. Magnetization measurements of the annealed FePt-SiO 2 nanocrystals indicate ferromagnetism with a high coercivity at room temperature. Magnetic force microscopy (MFM) results show that the film composed of nanocrystals behaves as a dipole after magnetization by an 8 T external field. The individual nanocrystals are modelled as single-domain particles with random crystallographic orientations. We propose that the interparticle magnetic dipole interaction is weaker than the magnetocrystalline energy in the remanent state, leading to an unusual material with no magnetic anisotropy and no domains. Films of these nanoparticles are promising candidates for magnetic media with a data storage density of ∼Tb/in 2

  5. On the advantages of spring magnets compared to pure FePt: Strategy for rare-earth free permanent magnets following a bottom-up approach

    Energy Technology Data Exchange (ETDEWEB)

    Pousthomis, M.; Garnero, C. [Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4 (France); Marcelot, C.G. [Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4 (France); Centre d’Elaboration de Matériaux et d’Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, B.P. 94347, 31055 Toulouse (France); Blon, T.; Cayez, S. [Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4 (France); Cassignol, C.; Du, V.A.; Krispin, M. [Siemens AG, Corporate Technology, Munich (Germany); Arenal, R. [Transpyrenean Advanced Laboratory for Electron Microscopy (TALEM), INSA - INA, CNRS - Universidad de Zaragoza, 30155 Toulouse (France); Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), U. Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza (Spain); Fundacion ARAID, 50018 Zaragoza (Spain); Soulantica, K.; Viau, G. [Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4 (France); Lacroix, L.-M., E-mail: lmlacroi@insa-toulouse.fr [Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4 (France); Transpyrenean Advanced Laboratory for Electron Microscopy (TALEM), INSA - INA, CNRS - Universidad de Zaragoza, 30155 Toulouse (France)

    2017-02-15

    Nanostructured magnets benefiting from efficient exchange-coupling between hard and soft grains represent an appealing approach for integrated miniaturized magnetic power sources. Using a bottom-up approach, nanostructured materials were prepared from binary assemblies of bcc FeCo and fcc FePt nanoparticles and compared with pure L1{sub 0}-FePt materials. The use of a bifunctional mercapto benzoic acid yields homogeneous assemblies of the two types of particles while reducing the organic matter amount. The 650 °C thermal annealing, mandatory to allow the L1{sub 0}-FePt phase transition, led to an important interdiffusion and thus decreased drastically the amount of soft phase present in the final composites. The analysis of recoil curves however evidenced the presence of an efficient interphase exchange coupling, which allows obtaining better magnetic performances than pure L1{sub 0} FePt materials, energy product above 100 kJ m{sup −3} being estimated for a Pt content of only 33%. These results clearly evidenced the interest of chemically grown nanoparticles for the preparation of performant spring-magnets, opening promising perspective for integrated subcentimetric magnets with optimized properties.

  6. High performance superconducting devices enabled by three dimensionally ordered nanodots and/or nanorods

    Science.gov (United States)

    Goyal, Amit

    2013-09-17

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  7. Tuning the optical response in carbon doped boron nitride nanodots

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2014-01-01

    carbon atoms are found to favor nucleation. Our results demonstrate that carbon clusters of different shapes promote an early onset of absorption by generating in-gap states. The nanodots are interesting for opto-electronics due to their tunable optical

  8. Effect of Ni doping on the structural and magnetic properties of FePt nanoparticles

    International Nuclear Information System (INIS)

    Yang, H.-W.; Chung, C.-M.; Ding, Jack Y.

    2007-01-01

    A serial of FePtNi nanoparticles were investigated on their crystal structure and magnetic properties. The FePtNi nanoparticles were synthesized simultaneously by the reduction of iron (III) acetylacetonate, platinum (II) acetylacetonate and nickel (II) acetylacetonate with 1,2-hexadecanediol as the reducing agent. The X-ray diffraction patterns indicate that the addition of 8, 12, 17 at% Ni in FePt nanoparticles suppressed the transformation of the particles from disorder face-centered cubic to order face-centered tetragonal L1 0 -phase under annealing treatment. However, further increasing Ni contents to 21 at%, the nanoparticle transformed to L1 2 phase. Doping of Ni into the FePt compound system may decrease coercivity and crystal anisotropy energy. A maximum coercivity of 7 KOe at room temperature was obtained for (Fe 52 Pt 48 ) 92 Ni 8 nanoparticles after annealing at 600 deg. C for 30 min

  9. Thermal dewetting with a chemically heterogeneous nano-template for self-assembled L1(0) FePt nanoparticle arrays.

    Science.gov (United States)

    Wang, Liang-Wei; Cheng, Chung-Fu; Liao, Jung-Wei; Wang, Chiu-Yen; Wang, Ding-Shuo; Huang, Kuo-Feng; Lin, Tzu-Ying; Ho, Rong-Ming; Chen, Lih-Juann; Lai, Chih-Huang

    2016-02-21

    A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal annealing and reactive ion etching (RIE) process. This gives a template composed of an ordered hexagonal array of SiOC hemispheres emerging in the polystyrene matrix. After the deposition of a FePt film on this template, we utilize the rapid thermal annealing (RTA) process, which provides in-plane stress, to achieve thermal dewetting and structural ordering of FePt simultaneously. Since the template is composed of different composition surfaces with periodically varied morphologies, it offers more tuning knobs to manipulate the nanostructures. We show that both the decrease in the area of the PS matrix and the increase in the strain energy relaxation transfer the dewetted pattern from the randomly distributed nanoparticles into a hexagonal periodic array of L10 FePt nanoparticles. Transmission electron microscopy with the in situ heating stage reveals the evolution of the dewetting process, and confirms that the positions of nanoparticles are aligned with those of the SiOC hemispheres. The nanoparticles formed by this template-dewetting show an average diameter and center-to-center distance of 19.30 ± 2.09 nm and 39.85 ± 4.80 nm, respectively. The hexagonal array of FePt nanoparticles reveals a large coercivity of 1.5 T, much larger than the nanoparticles fabricated by top-down approaches. This approach offers an efficient pathway toward self-assembled nanostructures in a wide range of material systems.

  10. Synthesis and characterization of FePt nanoparticles by high energy ball milling with and without surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, V., E-mail: vvjimeno@fis.ucm.es [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Martinez, A.; Recio, J. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Hernando, A.; Crespo, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Dpto. de Fisica de Materiales, UCM, 28040 Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Fe and Pt powders in the presence of surfactants don't alloyed by HEBM technique. Black-Right-Pointing-Pointer FePt alloys obtained by dry milling exhibit particle sizes of around 10 {mu}m. Black-Right-Pointing-Pointer FePt alloys obtained by dry milling exhibit soft magnetic behavior. Black-Right-Pointing-Pointer A thermal treatment induces a phase transformation from FCC to FCT. - Abstract: FePt nanoparticles were prepared by high energy ball milling (HEBM) in two different ways. In the first one, elemental powders were mixed and milled whereas in the second one the milling was performed in the presence of oleyl amine and oleic acid as surfactants and hexane as a solvent. X-ray diffraction shows that when the milling is performed in dry conditions, Fe and Pt are alloyed after 5 h, whereas in the wet milling procedure alloying does not take place. In the first case, the diffraction pattern corresponds to the disordered FCC phase. This behavior is also corroborated by the evolution of the magnetic characteristics. In the case of the alloy obtained in dry conditions, the powder was heat treated in order to induce the transformation to the ordered phase. Coercivities of 2.5 kOe are obtained after 650 Degree-Sign C for 2 h.

  11. The anisotropy field of FePt L10 nanoparticles controlled by very thin Pt layer

    International Nuclear Information System (INIS)

    Okamoto, Satoshi; Kitakami, Osamu; Kikuchi, Nobuaki; Miyazaki, Takamichi; Shimada, Yutaka; Chiang, Te-Hsuan

    2004-01-01

    We have prepared epitaxial FePt L1 0 (001) nanoparticles covered with Pt [d Pt nm]/Ag[(4-d Pt ) nm] overlayers. The particles are oblate spheroids approximately 10 nm in diameter and 2 nm in height. The anisotropy field H k at 0 K, which is evaluated from the temperature dependences of coercivity H c , decreases from 90 to 60 kOe on increasing the Pt thickness from d Pt 0 to 1.5 nm, while the energy barrier at zero field remains unchanged. The significant reduction of H k due to the presence of the adjacent Pt layer can be attributed to an enhanced magnetic moment caused by the ferromagnetic polarization of Pt atoms at the interface. This finding suggests an effective method of controlling the switching field of FePt L1 0 nanoparticles

  12. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity.

    Science.gov (United States)

    Ma, Teng; Fu, Qiang; Su, Hai-Yan; Liu, Hong-Yang; Cui, Yi; Wang, Zhen; Mu, Ren-Tao; Li, Wei-Xue; Bao, Xin-He

    2009-05-11

    Tunable surface: The surface structure of the Fe-Pt bimetallic catalyst can be reversibly modulated between the iron-oxide-rich Pt surface and the Pt-skin structure with subsurface Fe via alternating reduction and oxidation treatments (see figure). The regenerated active Pt-skin structure is active in reactions involving CO and/or O.

  13. Initial Study on Thin Film Preparation of Carbon Nanodots Composites as Luminescence Material

    Science.gov (United States)

    Iskandar, F.; Aimon, A. H.; Akmaluddin, A. R.; Nuryadin, B. W.; Abdullah, M.

    2016-08-01

    Nowadays, the developments of phosphors materials require elements without noble metals and simple production process. Carbon nanodots (C-dots) are one of phosphor materials with wide range of emission band, and high biocompatibility. In this research thin film carbon nanodots composite have been prepared by spin coating method. Prior deposition, powder carbon nanodots were synthesized from a mixture of commercial urea as the nitrogen sources and citric acid as a carbon source by using hydrothermal and microwave-assisted heating method. The prepared powder was dispersed in transparent epoxy resin and then coated on glass substrate. The photoluminescence result for sample with 0.035 g citric acid exhibited an intense, single, homogeneous and broad spectrum with yellowish emission upon excitation at 365 nm. The Fourier Transform Infrared Spectroscopy (FTIR) result showed the existences of C=C, C-H, C=O, N-H and O-H functional groups which confirmed the quality of the sample. Further, based on UV-Vis measurement, the prepared thin film was highly transparent (transmittance 90%) with estimated film thickness around 764 nm. This result may open an opportunity for optoelectronic devices.

  14. Initial Study on Thin Film Preparation of Carbon Nanodots Composites as Luminescence Material

    International Nuclear Information System (INIS)

    Iskandar, F; Aimon, A H; Akmaluddin, A R; Abdullah, M; Nuryadin, B W

    2016-01-01

    Nowadays, the developments of phosphors materials require elements without noble metals and simple production process. Carbon nanodots (C-dots) are one of phosphor materials with wide range of emission band, and high biocompatibility. In this research thin film carbon nanodots composite have been prepared by spin coating method. Prior deposition, powder carbon nanodots were synthesized from a mixture of commercial urea as the nitrogen sources and citric acid as a carbon source by using hydrothermal and microwave-assisted heating method. The prepared powder was dispersed in transparent epoxy resin and then coated on glass substrate. The photoluminescence result for sample with 0.035 g citric acid exhibited an intense, single, homogeneous and broad spectrum with yellowish emission upon excitation at 365 nm. The Fourier Transform Infrared Spectroscopy (FTIR) result showed the existences of C=C, C-H, C=O, N-H and O-H functional groups which confirmed the quality of the sample. Further, based on UV-Vis measurement, the prepared thin film was highly transparent (transmittance 90%) with estimated film thickness around 764 nm. This result may open an opportunity for optoelectronic devices. (paper)

  15. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    NARCIS (Netherlands)

    Yildirim, O.; Gang, T.; Kinge, S.S.; Reinhoudt, David; Blank, David H.A.; van der Wiel, Wilfred Gerard; Rijnders, Augustinus J.H.M.; Huskens, Jurriaan

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs

  16. Atomistic modeling of L10 FePt: path to HAMR 5Tb/in2

    Science.gov (United States)

    Chen, Tianran; Benakli, Mourad; Rea, Chris

    2015-03-01

    Heat assisted magnetic recording (HAMR) is a promising approach for increasing the storage density of hard disk drives. To increase data density, information must be written in small grains, which requires materials with high anisotropy energy such as L10 FePt. On the other hand, high anisotropy implies high coercivity, making it difficult to write the data with existing recording heads. This issue can be overcome by the technique of HAMR, where a laser is used to heat the recording medium to reduce its coercivity while retaining good thermal stability at room temperature due to the large anisotropy energy. One of the keys to the success of HAMR is the precise control of writing process. In this talk, I will propose a Monte Carlo simulation, based on an atomistic model, that would allow us to study the magnetic properties of L10 FePt and dynamics of spin reversal for the writing process in HAMR.

  17. Effects of RGD immobilization on light-induced cell sheet detachment from TiO{sub 2} nanodots films

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kui; Wang, Tiantian [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Yu, Mengliu [The Affiliated Stomatologic Hospital, Zhejiang University, Hangzhou 310003 (China); The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China); Wan, Hongping [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Lin, Jun [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wang, Huiming, E-mail: hmwang1960@hotmail.com [The Affiliated Stomatologic Hospital, Zhejiang University, Hangzhou 310003 (China); The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China)

    2016-06-01

    Light-induced cell detachment is reported to be a safe and effective cell sheet harvest method. In the present study, the effects of arginine–glycine–aspartic acid (RGD) immobilization on cell growth, cell sheet construction and cell harvest through light illumination are investigated. RGD was first immobilized on TiO{sub 2} nanodots films through simple physical adsorption, and then mouse pre-osteoblastic MC3T3-E1 cells were seeded on the films. It was found that RGD immobilization promoted cell adhesion and proliferation. It was also observed that cells cultured on RGD immobilized films showed relatively high level of pan-cadherin. Cells harvested with ultraviolet illumination (365 nm) showed good viability on both RGD immobilized and unmodified TiO{sub 2} nanodot films. Single cell detachment assay showed that cells detached more quickly on RGD immobilized TiO{sub 2} nanodot films. That could be ascribed to the RGD release after UV365 illumination. The current study demonstrated that RGD immobilization could effectively improve both the cellular responses and light-induced cell harvest. - Highlights: • RGD immobilization on TiO{sub 2} nanodots film favors light-induced cell sheet detachment. • Physically adsorbed RGD detaches from the film through ultraviolet illumination. • RGD detachment promotes cells and cell sheets detachment.

  18. Structure and magnetic properties of L10-FePt thin films on TiN/RuAl underlayers

    International Nuclear Information System (INIS)

    Yang En; Ratanaphan, Sutatch; Zhu Jiangang; Laughlin, David E.

    2011-01-01

    Highly ordered L1 0 FePt-oxide thin films with small grains were prepared by using a RuAl layer as a grain size defining seed layer along with a TiN barrier layer. Different HAMR (Heat Assisted Magnetic Recording) favorable underlayers were studied to encourage perpendicular texture and preferred microstructure. It was found that the epitaxial and small grain growth from the RuAl/TiN underlayer results in small and uniform grains in the FePt layer with perpendicular texture. By introducing the grain size defining underlayers, the FePt grain size can be reduced from 30 to 6 nm with the same volume fraction (9%) of SiO 2 in the film, excellent perpendicular texture, and very high order parameter at 520 deg. C.

  19. Silver nanoparticles on GaSb nanodots: a LSPR-boosted binary platform for broadband light harvesting and SERS

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Mukul, E-mail: mkbh10@gmail.com; Ranjan, Mukesh; Mukherjee, Subroto [FCIPT, Institute for Plasma Research (India)

    2015-02-15

    We report the LSPR-augmented optical response of silver nanoparticle-topped GaSb nanodots produced by low-energy ion beam irradiation. Nanostructure ordering and interdot gap play crucial roles for inducing the LSPR effect, enhancing the absorbing capacity of the structure as validated by reflection measurements. The measured size of silver-capped GaSb nanodot varies from 28 to 48 nm. Enhanced plasmon coupling for the 600 eV configuration initiates the presence of giant electromagnetic fields as confirmed by LSPR and SERS measurements. Anisotropic Bruggeman effective medium approximation was performed to match the experimentally observed optical response of the nanostructure. Calculated screening factor values of 0.29 and 0.23 for 600 and 800 eV ion energy produced nanodot configurations were obtained, respectively, which are in tune with the measured reflected and SERS signal. The calculated dielectric constants confirm the directional anisotropy along the length of the silver-capped GaSb nanodots. The proposed model successfully matches the void fraction and nanostructure height in accordance with SEM and reported TEM measurements. Thus, the model developed can be used to optimize the maximum plasmonic coupling efficiency among the dots. We propose two key applications for this nanostructure, first as an absorptive substrate for deep space photovoltaics and second to act as an effective SERS substrate.

  20. Evolution of microstructure and residual stress on L1{sub 0} ordering in FePt thin films with different initial stress states

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Yuan, F.T. [iSentek Ltd., Advanced Sensor Laboratory, New Taipei City 221, Taiwan (China); Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Sun, A.C. [Department of Chemical Engineering and Materials Science, Yuan Ze University, Jungli 320, Taiwan (China); Su, S.H.; Chiu, K.F. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2016-01-15

    We have characterized the dependence of microstructure, and internal strain/stress on L1{sub 0} ordering in 40 nm thick FePt films with different initial stresses. The microstructural and crystallographic results indicate that defect annihilation and grain growth induced an increase in tensile stress of ~1 GPa before extensive L1{sub 0} ordering. The induced tensile stress can efficiently facilitate the nucleation of L1{sub 0} phase owing to that the volume expansion of L1{sub 0} ordering and atomic rearrangement neutralizes the tensile stress. If the as-deposited FePt film has a highly compressive state, the induced tensile stress will be canceled out and ordering is retarded, which results in a higher ordering temperature. - Highlights: • Microstructure-stress connection in FePt films was studied. • Initial stress alters microstructure and stress evolution during annealing. • Densification induces tensile stress of ~1 GPa before extensive L1{sub 0} ordering. • Induced tensile stress can efficiently facilitate the nucleation of L1{sub 0} phase. • Compressively initial stress results in a higher ordering temperature .

  1. Longitudinal recording on FePt and FePtX (X = B, Ni) intermetallic compounds

    Science.gov (United States)

    Li, Ning

    1999-11-01

    Near field recording on high coercivity FePt intermetallic compound media using a high Bsat write element was investigated. Untextured FePt media were prepared by magnetron sputtering on ZrO2 disks at a substrate temperature of 450°C, with post annealing at 450°C for 8 hrs. Both multilayer and cosputtered precursors produced the ordered tetragonal L10 phase with high coercivity between 5kOe and 12kOe. To improve readback noise decrease magnetic domain size, FePtB media were subsequently prepared by cosputtering. Over-write, roll-off, signal to noise ratio and non-linear transition shift (NLTS) ere measured by both metal in gap (MIG) and merged MR heads. FePtB media showed similar NLTS to commercial CoCrPtTa longitudinal media, but 5dB lower signal to noise ratio. By operating recording transducers in near contact, reasonable values of (>30dB) could be obtained. VSM Rotational Transverse Magnetization has been used for measuring the anisotropy field of magnetic thin films. Magnetization reversal during rotation of a 2D isotropic an applied field is discussed. The relationship between the transverse magnetization My and the applied field H was numerically solved. An excellent approximation for the transverse magnetization is found to be: My/Ms=A(1- H/Hk) 2.5, where A = 1.1434, and Hk is the anisotropy field. For curve fitting to experimental data, both A and Hk were used as fitting parameters. Comparison between a constructed torque hysteresis method and this VSM RTM method have been made theoretically and experimentally. Both results showed that VSM RTM will give better extrapolation of the anisotropy field. The torque measurement will slightly overestimate the anisotropy field. The anisotropy fields of FePt and FePtX (X = B, Ni) films were characterized using this VSM RTM technique with comparison to a CoCrTaPt disk. Anisotropy energy was derived. Hc/Hk was used as an indicator for coherent rotation of a single domain. Interactions between magnetic domains were

  2. On the resonant state of magnetization in array of interacting nanodots

    Science.gov (United States)

    Kim, P. D.; Orlov, V. A.; Rudenko, R. Yu.; Prokopenko, V. S.; Orlova, I. N.; Kobyakov, A. V.

    2017-10-01

    Development of the interpretation of the phenomenon of the lift of the magnetic resonance frequencies degeneracy caused by the magnetostatic interaction in assemblies of nanodisks has been done. The difference of the resonance behavior of magnetic vortexes in a round and rectangular nanodots has been studied experimentally and explained.

  3. SU-F-P-50: Performance Evaluation of Optically Stimulated Luminescence (OSL) NanoDots in Therapy and Imaging In-Vivo Dose Measurement During Patient Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Sarkar, B; Kaur, H; Rathinamuthu, S; Giri, U; Jassal, K; Ganesh, T; Munshi, A; Mohanti, B; Krishnankutty, S; Sathiya, J [Fortis Memorial Research Institute, Gurgaon, Haryana (India)

    2016-06-15

    Purpose: This study was designed to evaluate the performance of optically stimulated Luminescence (OSL) nanoDots as in-vivo dosimeter. For the measurements of surface doses as well as scattered plus leakage doses, nanoDots were used during the setup verification as well as during the treatment delivery. Methods: For a total seven patients undergoing radiotherapy by volumetric modulated arc therapy, surface doses from image guidance and scattered plus leakage doses from treatment delivery were measured. Two sets of calibration curves were generated – one for therapy and another for imaging. Two different nanoDots were used for imaging and therapy doses. Imaging nanoDots were placed at the isocenter only at the time of CBCT and therapy nanoDots were placed at 25 cm away from the isocenter (either in cranial or in caudal direction) only at the time of treatment delivery. During the entire course, nanoDots were placed at the same measurement points. NanoDots were read after 15 minutes of their exposure. For the next fraction, nanoDots were corrected for the residual doses from the previous fractions. Results: Measured surface doses during imaging were 0.14±0.32 cGy, 0.11±0.04 cGy, 0.12±0.53 cGy, 0.04±0.02 cGy, 0.13±0.23 cGy, 0.11±0.43 cGy, 0.10±0.04 cGy with overall mean dose of 0.08±0.1 cGy. Measured doses during treatment delivery, indicative of scattered and leakage dose, were 0.84±0.43 cGy, 1.3±0.4 cGy, 1.4±0.4 cGy, 0.18±0.48 cGy, 0.78±0.29 cGy, 0.27±0.08 cGy, 0.78±0.07 cGy with overall mean dose of 0.61±1.3 cGy. Conclusion: This dosimeter can be used as supplementary unit to verify the doses. No change in the prescription is recommended based on nanoDots measurement. This study is on-going therefore we are presenting only mere number of patients. A large volume data will be presented after completion of the study with proper statistical analysis.

  4. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

    Science.gov (United States)

    Goyal, Amit , Kang; Sukill, [Knoxville, TN

    2012-02-21

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  5. Origin of open recoil curves in L1_0-A1 FePt exchange coupled nanocomposite thin film

    International Nuclear Information System (INIS)

    Goyal, Rajan; Kapoor, Akanksha; Lamba, S.; Annapoorni, S.

    2016-01-01

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1_0–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1_0-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1_0) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.

  6. Magnetic characteristics and nanostructures of FePt granular films with GeO2 segregant

    Science.gov (United States)

    Ono, Takuya; Moriya, Tomohiro; Hatayama, Masatoshi; Tsumura, Kaoru; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito

    2017-01-01

    To realize a granular film composed of L10-FePt grains with high uniaxial magnetic anisotropy energy, Ku, and segregants for energy-assisted magnetic recording, a FePt-GeO2/FePt-C stacked film was investigated in the engineering process. The FePt-GeO2/FePt-C stacked film fabricated at a substrate temperature of 450 °C realized uniaxial magnetic anisotropy, Kugrain , of about 2.5 × 107 erg/cm3, which is normalized by the volume fraction of FePt grains, and a granular structure with an averaged grain size of 7.7 nm. As the thickness of the FePt-GeO2 upper layer was increased to 9 nm, the Ku values were almost constant. That result differs absolutely from the thickness dependences of the other oxide segregant materials such as SiO2 and TiO2. Such differences on the oxide segregant are attributed to their chemical bond. The strong covalent bond of GeO2 is expected to result in high Ku of the FePt-GeO2/FePt-C stacked films.

  7. Nano-dot and nano-pit fabrication on a GaAs substrate by a pulse applied AFM

    International Nuclear Information System (INIS)

    Kim, H C; Yu, J S; Ryu, S H

    2012-01-01

    The nano-patterning characteristics of GaAs is investigated using a pulse applied atomic force microscope (AFM). Very short range voltage pulses of micro to nano-seconds’ duration are applied to a conductive diamond-coated silicon (Si) tip in contact mode, to regulate the created feature size. The effects of pulse conditions such as pulse voltage, duration, frequency, offset voltage, anodization time, and applied tip pressure on nano-dot generation are characterized, based on the experiments. An interesting phenomenon, nano-pit creation instead of nano-dot creation, is observed when the applied pulse duration is less than 100 μs. Pulse frequency and offset voltage are also involved in nano-pit generation. The electrical spark discharge between the tip and the GaAs's surface is the most probable cause of the nano-pit creation and its generation mechanism is explained by considering the relevant pulse parameters. Nano-pits over 15 nm in depth are acquired on the GaAs substrate by adjusting the pulse conditions. This research facilitates the fabrication of more complex nano-structures on semiconductor materials since nano-dots and nano-pits could be easily made without any additional post-processes. (paper)

  8. A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells

    Directory of Open Access Journals (Sweden)

    Hung Yao-Ching

    2009-01-01

    Full Text Available Abstract Micro-structures that mimic the extracellular substratum promote cell growth and differentiation, while the cellular reaction to a nanostructure is poorly defined. To evaluate the cellular response to a nanoscaled surface, NIH 3T3 cells were grown on nanodot arrays with dot diameters ranging from 10 to 200 nm. The nanodot arrays were fabricated by AAO processing on TaN-coated wafers. A thin layer of platinum, 5 nm in thickness, was sputtered onto the structure to improve biocompatibility. The cells grew normally on the 10-nm array and on flat surfaces. However, 50-nm, 100-nm, and 200-nm nanodot arrays induced apoptosis-like events. Abnormality was triggered after as few as 24 h of incubation on a 200-nm dot array. For cells grown on the 50-nm array, the abnormality started after 72 h of incubation. The number of filopodia extended from the cell bodies was lower for the abnormal cells. Immunostaining using antibodies against vinculin and actin filament was performed. Both the number of focal adhesions and the amount of cytoskeleton were decreased in cells grown on the 100-nm and 200-nm arrays. Pre-coatings of fibronectin (FN or type I collagen promoted cellular anchorage and prevented the nanotopography-induced programed cell death. In summary, nanotopography, in the form of nanodot arrays, induced an apoptosis-like abnormality for cultured NIH 3T3 cells. The occurrence of the abnormality was mediated by the formation of focal adhesions.

  9. Silicon nanodot layers for photovoltaic application: size/density control and electrical properties

    Czech Academy of Sciences Publication Activity Database

    Stegemann, B.; Čermák, Jan; Rezek, Bohuslav; Kočka, Jan; Schmidt, M.

    2014-01-01

    Roč. 228, 4-5 (2014), 543-556 ISSN 0942-9352 R&D Projects: GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : silicon nanodots * Kelvin probe force microscopy * current-sensing AFM * photovoltaic s Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.356, year: 2014

  10. Origin of open recoil curves in L1{sub 0}-A1 FePt exchange coupled nanocomposite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Rajan [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kapoor, Akanksha [M. Tech Nanoscience and Nanotechnology, University of Delhi, Delhi 110007 (India); Lamba, S. [School of Sciences, Indira Gandhi National Open University, New Delhi 110068 (India); Annapoorni, S., E-mail: annapoornis@yahoo.co.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-11-15

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1{sub 0}–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1{sub 0}-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1{sub 0}) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.

  11. Size effect on L10 ordering and magnetic properties of chemically synthesized FePt and FePtAu nanoparticles

    Science.gov (United States)

    Jia, Zhiyong; Kang, Shishou; Shi, Shifan; Nikles, David E.; Harrell, J. W.

    2005-05-01

    There is growing evidence that FePt nanoparticles become increasingly difficult to chemically order as the size approaches a few nanometers. We have studied the chemical ordering of FePt and FePtAu nanoparticle arrays as a function of particle size. Monodisperse Fe49Pt51 and Fe48Pt44Au8 nanoparticles with a size about 6nm were synthesized by the simultaneous decomposition of iron pentacarbonyl and reduction of platinum acetylacetonate and gold (III) acetate in a mixture of phenyl ether and hexadecylamine (HDA), with 1-adamantanecarboxylic acid and HDA as stabilizers. The nanoparticles were dispersed in toluene, films of the particles were cast onto silicon wafers from the dispersion, and the films were annealed in a tube furnace with flowing Ar +5%H2. The magnetic anisotropy and switching volumes were determined from time- and temperature-dependent coercivity measurements. By comparing with 3-nm FePt and FePtAu nanoparticles of comparable composition, the phase transformation is easier for the larger particles. Under the same annealing conditions, the larger particles have higher anisotropy and order parameter. Additive Au is very effective in enhancing the chemical ordering in both small and large particles, with x-ray diffraction superlattice peaks appearing after annealing at 350°C. Dynamic remnant coercivity measurements and magnetic switching volumes suggest particle aggregation at the higher annealing temperatures in both small and large particles.

  12. Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO(2) composite/p-AlGaN heterojunction light-emitting diodes.

    Science.gov (United States)

    Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang

    2009-04-22

    This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.

  13. Growth and structure of L1 sub 0 ordered FePt films on GaAs(001)

    CERN Document Server

    Nefedov, A; Theis-Broehl, K; Zabel, H; Doi, M; Schuster, E; Keune, W

    2002-01-01

    The structural properties of epitaxial L1 sub 0 ordered FePt(001) films, grown by molecular beam epitaxy (alternating deposition of Fe and Pt atomic layers) on buffer-Pt/seed-Fe/GaAs(001) have been studied by in situ reflection high-energy electron diffraction and by ex situ x-ray scattering as a function of the growth conditions. Reflection high-energy electron diffraction intensity oscillations measured during FePt layer growth provide evidence for island growth at T sub s = 200 deg. C and quasi layer-by-layer growth at T sub s = 350 deg. C. From small-angle and wide-angle x-ray scattering it was found that the degree of epitaxy depends critically on morphology of the seed layer and the substrate roughness. X-ray diffraction analysis showed that the long-range order parameter increases from near zero for films grown at 200 deg. C to 0.65 for films grown at 350 deg. C. This confirms the fact that the order parameter is mainly determined by the surface mobility of the atoms which is controlled experimentally ...

  14. Silicon nanodot formation and self-ordering under bombardment with heavy Bi3 ions

    International Nuclear Information System (INIS)

    Boettger, Roman; Heinig, Karl-Heinz; Bischoff, Lothar; Liedke, Bartosz; Huebner, Rene; Pilz, Wolfgang

    2013-01-01

    Si nanodots of high density and hexagonal short-range order are observed upon normal-incidence bombardment of hot, crystalline Si with Bi 3 + ions having a kinetic energy of a few tens of keV. The heights of nanodots are comparable to their widths of ∝20 nm. The implanted Bi accumulates in tiny Bi nanocrystals in a thin Si top layer which is amorphous due to implantation damage. Light and heavy ions up to Xe cause smoothing of surfaces, but Bi 3 + ions considered here have a much higher mass. Atomistic simulations prove that each Bi 3 + impact deposits an extremely high energy density resulting in a several nanometer large melt pool, which resolidifies within a few hundreds of picoseconds. Experiments confirm that dot patterns form only if the deposited energy density exceeds the threshold for melting. Comparing monatomic and polyatomic Bi ion irradiation, Bi-Si phase separation and preferential ion erosion are ruled out as driving forces of pattern formation. A model based on capillary forces in the melt pool explains the pattern formation consistently. High-density Si nanodots are formed by polyatomic Bi ion irradiation of hot Si surfaces. Each impact causes local transient melt pools smaller than the dots. Hexagonally ordered patterns evolve by self-organization driven by repeated ion-induced melting of tiny volumes. Homogeneously distributed Bi nanocrystals are found in the a-Si film. These nanocrystals are related to particularities of the Si-Bi phase diagram. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Bioorganic nanodots for non-volatile memory devices

    International Nuclear Information System (INIS)

    Amdursky, Nadav; Shalev, Gil; Handelman, Amir; Natan, Amir; Rosenwaks, Yossi; Litsyn, Simon; Szwarcman, Daniel; Rosenman, Gil; Roizin, Yakov

    2013-01-01

    In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO 2 surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device

  16. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    International Nuclear Information System (INIS)

    Chen, Shu; Lee, Stephen L.; André, Pascal

    2016-01-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  17. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shu; Lee, Stephen L. [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); André, Pascal, E-mail: pjpandre@riken.jp [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); RIKEN, Wako 351-0198 (Japan); Department of Physics, CNRS-Ewha International Research Center (CERC), Ewha W. University, Seoul 120-750 (Korea, Republic of)

    2016-11-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  18. Evidence of new high-pressure magnetic phases in Fe-Pt Invar alloy

    International Nuclear Information System (INIS)

    Matsushita, M.; Endo, S.; Miura, K.; Ono, F.

    2003-01-01

    To investigate the magnetic properties of disordered Fe 70 Pt 30 Invar alloy under high pressure, measurements of the real part of the AC susceptibility (χ) were made under pressure up to 7.5 GPa in the temperature range 4.2-385 K using a cubic anvil high-pressure apparatus. The Curie temperature (T C ) decreased with increasing pressure, and then, two new high-pressure magnetic phases appeared. These results show that the ferromagnetism of Fe-Pt Invar alloy becomes weaker, and the antiferromagnetic interaction becomes dominant with increasing pressure

  19. Quantitative transmission electron microscopy analysis of multi-variant grains in present L10-FePt based heat assisted magnetic recording media

    International Nuclear Information System (INIS)

    Ho, Hoan; Zhu, Jingxi; Kulovits, Andreas; Laughlin, David E.; Zhu, Jian-Gang

    2014-01-01

    We present a study on atomic ordering within individual grains in granular L1 0 -FePt thin films using transmission electron microscopy techniques. The film, used as a medium for heat assisted magnetic recording, consists of a single layer of FePt grains separated by non-magnetic grain boundaries and is grown on an MgO underlayer. Using convergent-beam techniques, diffraction patterns of individual grains are obtained for a large number of crystallites. The study found that although the majority of grains are ordered in the perpendicular direction, more than 15% of them are multi-variant, or of in-plane c-axis orientation, or disordered fcc. It was also found that these multi-variant and in-plane grains have always grown across MgO grain boundaries separating two or more MgO grains of the underlayer. The in-plane ordered portion within a multi-variant L1 0 -FePt grain always lacks atomic coherence with the MgO directly underneath it, whereas, the perpendicularly ordered portion is always coherent with the underlying MgO grain. Since the existence of multi-variant and in-plane ordered grains are severely detrimental to high density data storage capability, the understanding of their formation mechanism obtained here should make a significant impact on the future development of hard disk drive technology

  20. Angular dependence of the nanoDot OSL dosimeter

    International Nuclear Information System (INIS)

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.

  1. In situ x-ray reflectivity and grazing incidence x-ray diffraction study of L 1{sub 0} ordering in {sup 57}Fe/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Raghavendra Reddy, V; Gupta, Ajay; Gome, Anil [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452 017 (India); Leitenberger, Wolfram [Institute of Physics, University of Potsdam, 14469 Potsdam (Germany); Pietsch, U [Physics Department, University of Siegen, D-57068 Siegen (Germany)], E-mail: vrreddy@csr.ernet.in, E-mail: varimalla@yahoo.com

    2009-05-06

    In situ high temperature x-ray reflectivity and grazing incidence x-ray diffraction measurements in the energy dispersive mode are used to study the ordered face-centered tetragonal (fct) L 1{sub 0} phase formation in [Fe(19 A)/Pt(25 A)]{sub x 10} multilayers prepared by ion beam sputtering. With the in situ x-ray measurements it is observed that (i) the multilayer structure first transforms to a disordered FePt and subsequently to an ordered fct L 1{sub 0} phase, (ii) the ordered fct L 1{sub 0} FePt peaks start to appear at 320 deg. C annealing, (iii) the activation energy of the interdiffusion is 0.8 eV and (iv) ordered fct FePt grains have preferential out-of-plane texture. The magneto-optical Kerr effect and conversion electron Moessbauer spectroscopies are used to study the magnetic properties of the as-deposited and 400 deg. C annealed multilayers. The magnetic data for the 400 {sup 0}C annealed sample indicate that the magnetization is at an angle of {approx}50 deg. from the plane of the film.

  2. Controlling vortex chirality and polarity by geometry in magnetic nanodots

    OpenAIRE

    Agramunt Puig, Sebastià

    2014-01-01

    The independent control of both vortex chirality and polarity is a significant challenge in magnetic devices based on nano-sized magnetic vortex structures. By micromagnetic simulations here, we show that in soft ferromagnetic nanodots with an adequate modulated thickness, the desired combination of chirality and polarity can be achieved just by changing the direction of the in-plane applied magnetic field. Despite the complex behavior, the vortex chirality and polarity control can be summari...

  3. Topography evolution of 500 keV Ar(4+) ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws.

    Science.gov (United States)

    Sulania, Indra; Agarwal, Dinesh C; Kumar, Manish; Kumar, Sunil; Kumar, Pravin

    2016-07-27

    We report the formation of self-organized nano-dots on the surface of InP(100) upon irradiating it with a 500 keV Ar(4+) ion beam. The irradiation was carried out at an angle of 25° with respect to the normal at the surface with 5 different fluences ranging from 1.0 × 10(15) to 1.0 × 10(17) ions per cm(2). The morphology of the ion-irradiated surfaces was examined by atomic force microscopy (AFM) and the formation of the nano-dots on the irradiated surfaces was confirmed. The average size of the nano-dots varied from 44 ± 14 nm to 94 ± 26 nm with increasing ion fluence. As a function of the ion fluence, the variation in the average size of the nano-dots has a great correlation with the surface roughness, which changes drastically up to the ion fluence of 1.0 × 10(16) ions per cm(2) and attains almost a saturation level for further irradiation. The roughness and the growth exponent values deduced from the scaling laws suggest that the kinetic sputtering and the large surface diffusion steps of the atoms are the primary reasons for the formation of the self-organized nanodots on the surface. X-ray photo-electron spectroscopy (XPS) studies show that the surface stoichiometry changes with the ion fluence. With irradiation, the surface becomes more indium (In)-rich owing to the preferential sputtering of the phosphorus atoms (P) and the pure metallic In nano-dots evolve at the highest ion fluence. The cross-sectional scanning electron microscopy (SEM) analysis of the sample irradiated with the highest fluence showed the absence of the nanostructuring beneath the surface. The surface morphological changes at this medium energy ion irradiation are discussed in correlation with the low and high energy experiments to shed more light on the mechanism of the well separated nano-dot formation.

  4. Multiferroic BiFeO3 thin films and nanodots grown on highly oriented pyrolytic graphite substrates

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2017-12-01

    Multiferroic BiFeO3 (BFO) thin films and nanodots are deposited on highly oriented pyrolytic graphite (HOPG) substrates via a pulsed laser deposition technique, where the HOPG surface has a honeycomb lattice structure made of carbon atoms, similar to graphene. A graphene/BFO/HOPG capacitor exhibited multiferroic properties, namely ferroelectricity (a residual polarization of 26.8 μC/cm2) and ferromagnetism (a residual magnetization of 1.1 × 10-5 emu). The BFO thin film had high domain wall energies and demonstrated switching time of approximately 82 ns. An 8-nm BFO nanodot showed a typical piezoelectric hysteresis loop with an effective residual piezoelectric constant of approximately 110 pm/V and exhibited two clearly separated current curves depending on the ferroelectric polarization direction.

  5. Bioorganic nanodots for non-volatile memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Amdursky, Nadav; Shalev, Gil; Handelman, Amir; Natan, Amir; Rosenwaks, Yossi [School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Litsyn, Simon; Szwarcman, Daniel; Rosenman, Gil, E-mail: rgil@post.tau.ac.il [School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); StoreDot LTD, 16 Menahem Begin St., Ramat Gan (Israel); Roizin, Yakov [School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); TowerJazz, P.O. Box 619, Migdal HaEmek 23105 (Israel)

    2013-12-01

    In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO{sub 2} surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device.

  6. SiO{sub 2} nanodot arrays using functionalized block copolymer templates and selective silylation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Min; Ku, Se Jin; Kim, Jin-Baek, E-mail: kjb@kaist.ac.kr [Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-Dong, Yuseong-Gu, Daejeon, 305-701 (Korea, Republic of)

    2010-06-11

    Silicon oxide nanodot arrays were fabricated using functionalized block copolymer templates and selective silylation. A polystyrene-b-poly(acrylic acid/acrylic anhydride) (PS-b-PAA/AN) thin film containing spherical nanodomains was used as a template to build nanoscopic silica structures. A PS-b-PAA/AN thin film was prepared by acid-catalyzed thermal deprotection of polystyrene-b-poly(tert-butyl acrylate) on an SU-8 resist film containing a photoacid generator. This resulting film has excellent solvent and thermal resistance due to crosslinked anhydride linkages in carboxyl-functionalized PAA/AN block domains. Silicon was introduced by spin-spraying of hexamethyldisilazane (HMDS) over the entire surface of a self-assembled PS-b-PAA/AN thin film. HMDS was selectively reacted with carboxylic acid groups in spherical domains of a PAA/AN block. SiO{sub 2} nanodot arrays were generated by oxygen reactive ion etching.

  7. Magnetization behavior of nanomagnets for patterned media application

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, S.; Kikuchi, N.; Kato, T.; Kitakami, O. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Mitsuzuka, K.; Shimatsu, T.; Muraoka, H.; Aoi, H. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Lodder, J.C. [Information Storage Group, MESA, University of Twente, Enschede 7500 AE (Netherlands)], E-mail: j.c.lodder@el.utwente.nl

    2008-11-15

    Bit patterned media (BPM) which utilize each magnetic nanostructured dot as one recorded bit has attracted much interest as a promising candidate for future high-density magnetic recording. In this study, the magnetization reversal behaviors of nanostructured L1{sub 0}-FePt, Co/Pt multilayer (ML), and CoPt/Ru dots are investigated. For Co/Pt and CoPt/Ru nanodots, the bi-stable state is maintained in a very wide size range up to several hundred nm, and the magnetization reversal is dominated by the nucleation of a small reversed nucleus with the dimension of domain wall width. On the other hand, the critical size for the bi-stability of L1{sub 0}-FePt is about 60 nm, and its magnetization reversal proceeds via domain wall displacement even for such a small dot size. These reversal behaviors, depending on the magnetic materials, might be attributed to the difference in structural inhomogeneity, such as defects. In addition to the magnetic properties, the structural uniformity of the material could be crucial for the BPM application.

  8. Effect of TiN-ZrO{sub 2} intermediate layer on the microstructure and magnetic properties of FePt and FePt-SiO{sub 2}-C thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, K.F., E-mail: dongkf1981@163.com; Mo, W.Q.; Jin, F.; Song, J.L.

    2017-06-15

    Highlights: • The TiN-ZrO{sub 2} consisted of solid solution of Ti(Zr)ON segregated by amorphous ZrO{sub 2}. • With doping ZrO{sub 2} into TiN layer, grain size of FePt films significantly decreased. • By introducing TiN-ZrO{sub 2}/TiN combined layer, the magnetic properties were improved. - Abstract: The microstructures and magnetic properties of FePt based thin films grown on TiN-ZrO{sub 2} and TiN-ZrO{sub 2}/TiN intermediate layers were systematically investigated. The TiN-ZrO{sub 2} intermediate layer was granular consisting of grains of solid solution of Ti(Zr)ON segregated by amorphous ZrO{sub 2}. It was found with doping ZrO{sub 2} into TiN intermediate layer, grain size of FePt-SiO{sub 2}-C films significantly decreased. Simultaneously, the isolation was obviously improved and grain size distribution became more uniform. However, the magnetic properties of the FePt-SiO{sub 2}-C films grown on TiN-ZrO{sub 2} intermediate layers were slowly deteriorated, which was due to the disturbance of the epitaxial growth of FePt by amorphous ZrO{sub 2} in TiN-ZrO{sub 2} intermediate layer. In order to improve the TiN-ZrO{sub 2} (0 0 2) texture and the crystallinity of TiN-ZrO{sub 2}, TiN-ZrO{sub 2}/TiN combined intermediate layer was introduced. And the magnetic properties were improved, simultaneously, achieving the benefit of grain size reduction. For the FePt 4 nm-SiO{sub 2} 40 vol%-C 20 vol% film grown on TiN/TiN-ZrO{sub 2} 30 vol% combined intermediate layer, well isolated FePt (0 0 1) granular films with coercivity higher than 17.6 kOe and an average size as small as 6.5 nm were achieved.

  9. Measurement of magnetic property of FePt granular media at near Curie temperature

    International Nuclear Information System (INIS)

    Yang, H.Z.; Chen, Y.J.; Leong, S.H.; An, C.W.; Ye, K.D.; Hu, J.F.

    2017-01-01

    The characterization of the magnetic switching behavior of heat assisted magnetic recording (HAMR) media at near Curie temperature (T_c) is important for high density recording. In this study, we measured the magnetic property of FePt granular media (with room temperature coercivity ~25 kOe) at near T_c with a home built HAMR testing instrument. The local area of HAMR media is heated to near T_c by a flat-top optical heating beam. The magnetic property in the heated area was in-situ measured by a magneto-optic Kerr effect (MOKE) testing beam. The switching field distribution (SFD) and coercive field (H_c) of the FePt granular media and their dependence on the optical heating power at near T_c were studied. We measured the DC demagnetization (DCD) signal with pulsed laser heating at different optical powers. We also measured the T_c distribution of the media by measuring the AC magnetic signal as a function of optical heating power. In a summary, we studied the SFD, H_c of the HAMR media at near T_c in a static manner. The present methodology will facilitate the HAMR media testing. - Highlights: • A flat-top optical beam homogeneously heats up HAMR media to near T_c. • When H_c of media drops to 5 kOe with optical heating, SFD is measured to be 0.6. • H_c, SFD, M_s of HAMR media at near T_c are measured with the methodology.

  10. A new process for fabricating nanodot arrays on selective regions with diblock copolymer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae-Ho [Department of Materials Science and Engineering, Polymer Research Institute, Pohang University of Science and Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784 (Korea, Republic of)

    2007-09-12

    A procedure for micropatterning a single layer of nanodot arrays in selective regions is demonstrated by using thin films of polystyrene-b-poly(t-butyl acrylate) (PS-b-PtBA) diblock copolymer. The thin-film self-assembled into hexagonally arranged PtBA nanodomains in a PS matrix on a substrate by solvent annealing with 1,4-dioxane. The PtBA nanodomains were converted into poly(acrylic acid) (PAA) having carboxylic-acid-functionalized nanodomains by exposure to hydrochloric acid vapor, or were removed by ultraviolet (UV) irradiation to generate vacant sites without any functional groups due to the elimination of PtBA domains. By sequential treatment with aqueous sodium bicarbonate and aqueous zinc acetate solution, zinc cations were selectively loaded only on the carboxylic-acid-functionalized nanodomains prepared via hydrolysis. Macroscopic patterning through a photomask via UV irradiation, hydrolysis, sequential zinc cation loading and calcination left a nanodot array of zinc oxide on a selectively UV-shaded region.

  11. FORC-study of magnetization reversal of L10-FePt based exchange coupled composite films

    Directory of Open Access Journals (Sweden)

    Gongyuan Situ

    2017-05-01

    Full Text Available Perpendicular exchange coupled composite structures were prepared, utilizing L10-FePt as hard layer and [Co/Ni]N multilayer as soft layer. Magnetic characteristics revealed the gradually change of the magnetization reversal mechanism from incoherent rotational mode to dominant wall motion as the thickness of soft layer increases. Furthermore, FORC analysis were employed to characterize the interactions of our ECC magnetic system, the result indicates that the exchange coupling interaction were enhanced with the increasing thickness of soft layer.

  12. Enhanced dielectric constant and fatigue-resistance of PbZr0.4Ti0.6O3 capacitor with magnetic intermetallic FePt top electrode

    Science.gov (United States)

    Liu, B. T.; Zhao, J. W.; Li, X. H.; Zhou, Y.; Bian, F.; Wang, X. Y.; Zhao, Q. X.; Wang, Y. L.; Guo, Q. L.; Wang, L. X.; Zhang, X. Y.

    2010-06-01

    Both FePt/PbZr0.4Ti0.6O3(PZT)/Pt and Pt/PZT/Pt ferroelectric capacitors have been fabricated on Si substrates. It is found that up to 109 switching cycles, the FePt/PZT/Pt capacitor, measured at 50 kHz, with polarization decreased by 57%, is superior to the Pt/PZT/Pt capacitor by 82%, indicating that an intermetallic FePt top electrode can also improve the fatigue-resistance of a PZT capacitor. Maximum dielectric constants are 980 and 770 for PZT capacitors with FePt and Pt, respectively. This is attributed to the interface effect between PZT film and the top electrode since the interfacial capacitance of FePt/PZT is 3.5 times as large as that of Pt/PZT interface.

  13. Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation

    Directory of Open Access Journals (Sweden)

    Moonsang Lee

    2018-06-01

    Full Text Available We investigate the electrical characteristics of Schottky contacts for an Au/hydride vapor phase epitaxy (HVPE a-plane GaN template grown via in situ GaN nanodot formation. Although the Schottky diodes present excellent rectifying characteristics, their Schottky barrier height and ideality factor are highly dependent upon temperature variation. The relationship between the barrier height, ideality factor, and conventional Richardson plot reveals that the Schottky diodes exhibit an inhomogeneous barrier height, attributed to the interface states between the metal and a-plane GaN film and to point defects within the a-plane GaN layers grown via in situ nanodot formation. Also, we confirm that the current transport mechanism of HVPE a-plane GaN Schottky diodes grown via in situ nanodot formation prefers a thermionic field emission model rather than a thermionic emission (TE one, implying that Poole–Frenkel emission dominates the conduction mechanism over the entire range of measured temperatures. The deep-level transient spectroscopy (DLTS results prove the presence of noninteracting point-defect-assisted tunneling, which plays an important role in the transport mechanism. These electrical characteristics indicate that this method possesses a great throughput advantage for various applications, compared with Schottky contact to a-plane GaN grown using other methods. We expect that HVPE a-plane GaN Schottky diodes supported by in situ nanodot formation will open further opportunities for the development of nonpolar GaN-based high-performance devices.

  14. Measurement of magnetic property of FePt granular media at near Curie temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.Z., E-mail: YANG_Hongzhi@dsi.a-star.edu.sg; Chen, Y.J.; Leong, S.H.; An, C.W.; Ye, K.D.; Hu, J.F.

    2017-02-01

    The characterization of the magnetic switching behavior of heat assisted magnetic recording (HAMR) media at near Curie temperature (T{sub c}) is important for high density recording. In this study, we measured the magnetic property of FePt granular media (with room temperature coercivity ~25 kOe) at near T{sub c} with a home built HAMR testing instrument. The local area of HAMR media is heated to near T{sub c} by a flat-top optical heating beam. The magnetic property in the heated area was in-situ measured by a magneto-optic Kerr effect (MOKE) testing beam. The switching field distribution (SFD) and coercive field (H{sub c}) of the FePt granular media and their dependence on the optical heating power at near T{sub c} were studied. We measured the DC demagnetization (DCD) signal with pulsed laser heating at different optical powers. We also measured the T{sub c} distribution of the media by measuring the AC magnetic signal as a function of optical heating power. In a summary, we studied the SFD, H{sub c} of the HAMR media at near T{sub c} in a static manner. The present methodology will facilitate the HAMR media testing. - Highlights: • A flat-top optical beam homogeneously heats up HAMR media to near T{sub c}. • When H{sub c} of media drops to 5 kOe with optical heating, SFD is measured to be 0.6. • H{sub c}, SFD, M{sub s} of HAMR media at near T{sub c} are measured with the methodology.

  15. SU-E-T-391: Assessment and Elimination of the Angular Dependence of the Response of the NanoDot OSLD System in MV Beams

    International Nuclear Information System (INIS)

    Lehmann, J; Dunn, L; Lye, J; Kenny, J W; Alves, A D C; Cole, A; Asena, A; Kron, T; Williams, I M

    2014-01-01

    Purpose: Assess the angular dependence of the nanoDot OSLD system in MV X-ray beams at depths and mitigate this dependence for measurements in phantoms. Methods: Measurements for 6 MV photons at 3 cm and 10 cm depth and Monte Carlo simulations were performed. Two special holders were designed which allow a nanoDot dosimeter to be rotated around the center of its sensitive volume (5 mm diameter disk). The first holder positions the dosimeter disk perpendicular to the beam (en-face). It then rotates until the disk is parallel with the beam (edge on). This is referred to as Setup 1. The second holder positions the disk parallel to the beam (edge on) for all angles (Setup 2). Monte Carlo simulations using GEANT4 considered detector and housing in detail based on microCT data. Results: An average drop in response by 1.4±0.7% (measurement) and 2.1±0.3% (Monte Carlo) for the 90° orientation compared to 0° was found for Setup 1. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming 100% active material (Al??O??) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response (within simulation uncertainty of about 1%). For Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusion: The nanoDot dosimeter system exhibits a small angular dependence off approximately 2%. Changing the orientation of the dosimeter so that a coplanar beam arrangement always hits the detector material edge on reduces the angular dependence to within the measurement uncertainty of about 1%. This makes the dosimeter more attractive for phantom based clinical measurements and audits with multiple coplanar beams. The Australian Clinical Dosimetry Service is a joint initiative between the Australian Department of Health and the Australian Radiation Protection and

  16. Interparticle interactions of FePt core and Fe{sub 3}O{sub 4} shell in FePt/Fe{sub 3}O{sub 4} magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hossein, E-mail: Akbari.ph@iauardabil.ac.ir [Department of Physics, Ardabil Branch, Islamic Azad University, Ardabil (Iran, Islamic Republic of); Zeynali, Hossein [Department of Physics, Kashan Branch, Islamic Azad University, Kashan (Iran, Islamic Republic of); Bakhshayeshi, Ali [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of)

    2016-02-22

    Monodisperse FePt nanoparticles were successfully synthesized using simple wet chemical method. Fe{sub 3}O{sub 4} was used as a magnetic shell around each FePt nanoparticles. In FePt/Fe{sub 3}O{sub 4} core/shell system, core thickness is 2 nm and shell thickness varies from zero to 2.5 nm. A theoretical model presented to calculate the shell thickness dependence of Coercivity. Presented model is compared with the results from Stoner–Wohlfarth model to interpret the shell thickness dependence of Coercivity in FePt/Fe{sub 3}O{sub 4} core/shell nanoparticles. There is a difference between the results from Stoner–Wohlfarth model and experimental data when the shell thickness increases. In the presented model, the effects of interparticle exchange and random magneto crystalline anisotropy are added to the previous models of magnetization reversal for core/shell nanostructures in order to achieve a better agreement with experimental data. For magnetic shells in FePt/Fe{sub 3}O{sub 4} core/shell, effective coupling between particles increases with increasing shell thickness which leads to Coercivity destruction for stronger couplings. According to the boundary conditions, in the harder regions with higher exchange stiffness, there is small variation in magnetization and so the magnetization modes become more localized. We discussed both localized and non-localized magnetization modes. For non-zero shell thickness, non-localized modes propagate in the soft phase which effects the quality of particle exchange interactions. - Highlights: • Monodisperse FePt nanoparticles were successfully synthesized using simple wet chemical method. • Fe{sub 3}O{sub 4} was used as a magnetic shell around each FePt nanoparticles. • A theoretical model presented to calculate the shell thickness dependence of Coercivity. • Magnetic shells increase effective coupling between particles with increasing shell thickness. • Magnetization modes are more localized in the regions with

  17. Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots.

    Science.gov (United States)

    Nayak, Alpana; Unayama, Satomi; Tai, Seishiro; Tsuruoka, Tohru; Waser, Rainer; Aono, Masakazu; Valov, Ilia; Hasegawa, Tsuyoshi

    2018-02-01

    Controlling movements of electrons and holes is the key task in developing today's highly sophisticated information society. As transistors reach their physical limits, the semiconductor industry is seeking the next alternative to sustain its economy and to unfold a new era of human civilization. In this context, a completely new information token, i.e., ions instead of electrons, is promising. The current trend in solid-state nanoionics for applications in energy storage, sensing, and brain-type information processing, requires the ability to control the properties of matter at the ultimate atomic scale. Here, a conceptually novel nanoarchitectonic strategy is proposed for controlling the number of dopant atoms in a solid electrolyte to obtain discrete electrical properties. Using α-Ag 2+ δ S nanodots with a finite number of nonstoichiometry excess dopants as a model system, a theory matched with experiments is presented that reveals the role of physical parameters, namely, the separation between electrochemical energy levels and the cohesive energy, underlying atomic-scale manipulation of dopants in nanodots. This strategy can be applied to different nanoscale materials as their properties strongly depend on the number of doping atoms/ions, and has the potential to create a new paradigm based on controlled single atom/ion transfer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Impact of ultrafast demagnetization process on magnetization reversal in L10 FePt revealed using double laser pulse excitation

    Science.gov (United States)

    Shi, J. Y.; Tang, M.; Zhang, Z.; Ma, L.; Sun, L.; Zhou, C.; Hu, X. F.; Zheng, Z.; Shen, L. Q.; Zhou, S. M.; Wu, Y. Z.; Chen, L. Y.; Zhao, H. B.

    2018-02-01

    Ultrafast laser induced magnetization reversal in L10 FePt films with high perpendicular magnetic anisotropy was investigated using single- and double-pulse excitations. Single-pulse excitation beyond 10 mJ cm-2 caused magnetization (M) reversal at the applied fields much smaller than the static coercivity of the films. For double-pulse excitation, both coercivity reduction and reversal percentage showed a rapid and large decrease with the increasing time interval (Δt) of the two pulses in the range of 0-2 ps. In this Δt range, the maximum demagnetization (ΔMp) was also strongly attenuated, whereas the integrated demagnetization signals over more than 10 ps, corresponding to the average lattice heat effect, showed little change. These results indicate that laser induced M reversal in FePt films critically relies on ΔMp. Because ΔMp is determined by spin temperature, which is higher than lattice temperature, utilizing an ultrafast laser instead of a continuous-wave laser in laser-assisted M reversal may reduce the overall deposited energy and increase the speed of recording. The effective control of M reversal by slightly tuning the time delay of two laser pulses may also be useful for ultrafast spin manipulation.

  19. Naked eye and smartphone applicable detection of toxic mercury ions using fluorescent carbon nanodots

    OpenAIRE

    BAÇ, BURCU; GENÇ, RÜKAN

    2017-01-01

    Chitosan passivated carbon nanodots (C-Dots$_{CHIT})$ were synthesized from expired molasses via a simple and green thermal synthesis procedure. As-synthesized C-Dots were nitrogen-doped (NC-Dots$_{CHIT})$ by posttreatment with liquid ammonia and used as nanoprobes for fluorometric detection of mercury ions (Hg(II)$_{aq.})$. Fluorescence response of NC-Dots$_{CHIT}$ in the presence of mercury was evaluated and compared with that of the polyethylene glycol passivated C-Dots$_{PEG}$. This sensi...

  20. Characterization of the nanoDot OSLD dosimeter in CT

    Energy Technology Data Exchange (ETDEWEB)

    Scarboro, Sarah B. [The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); The Methodist Hospital, Houston, Texas 77030 (United States); Cody, Dianna; Followill, David; Court, Laurence; Stingo, Francesco C.; Kry, Stephen F., E-mail: SFKry@mdanderson.org [The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Alvarez, Paola [The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Zhang, Di [Biomedical Physics Graduate Program, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and Toshiba American Medical Systems, Tustin, California 92780 (United States); McNitt-Gray, Michael [The Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 (United States)

    2015-04-15

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due

  1. Characterization of the nanoDot OSLD dosimeter in CT

    International Nuclear Information System (INIS)

    Scarboro, Sarah B.; Cody, Dianna; Followill, David; Court, Laurence; Stingo, Francesco C.; Kry, Stephen F.; Alvarez, Paola; Zhang, Di; McNitt-Gray, Michael

    2015-01-01

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due

  2. Formation of nanodots and enhancement of thermoelectric power induced by ion irradiation in PbTe:Ag composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Manju, E-mail: manjubala474@gmail.com [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Meena, Ramcharan; Gupta, Srashti; Pannu, Compesh [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Tripathi, Tripurari S. [Aalto University, Värmemansgränden 2, 02150 Espoo (Finland); Varma, Shikha [Institute of Physics, Bhubaneshwar, Odisha 751005 (India); Tripathi, Surya K. [Department of Physics, Panjab University, Chandigarh 160 014 (India); Asokan, K., E-mail: asokaniuac@gmail.com [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Avasthi, Devesh K. [Amity University, Noida 201313, Uttar Pradesh (India)

    2016-07-15

    Present study demonstrates an enhancement in thermoelectric power of 10% Ag doped PbTe (PbTe:Ag) thin films when irradiated with 200 keV Ar ion. X-ray diffraction showed an increase in crystallinity for both PbTe and PbTe:10Ag nano-composite films after Ar ion irradiation due to annealing of defects in the grain boundaries. The preferential sputtering of Pb and Te ions in comparison to Ag ions resulted in the formation of nano-dots. This was further confirmed by X-ray photoelectron spectroscopy (XPS). Such an enhancement in thermoelectric power of irradiated PbTe:10Ag films in comparison to pristine PbTe:10Ag film is attributed to the decrease in charge carrier concentration that takes part in the transport process via restricting the tunneling of carriers through the wider potential barrier formed at the interface of nano-dots.

  3. Silver electrodeposition on nanostructured gold: from nanodots to nanoripples

    International Nuclear Information System (INIS)

    Claro, P C dos Santos; Fonticelli, M; BenItez, G; Azzaroni, O; Schilardi, P L; Luque, N B; Leiva, E; Salvarezza, R C

    2006-01-01

    Silver nanodots and nanoripples have been grown on nanocavity-patterned polycrystalline Au templates by controlled electrodeposition. The initial step is the growth of a first continuous Ag monolayer followed by preferential deposition at nanocavities. The Ag-coated nanocavities act as preferred sites for instantaneous nucleation and growth of the three-dimensional metallic centres. By controlling the amount of deposited Ag, dots of ∼50 nm average size and ∼4 nm average height can be grown with spatial and size distributions dictated by the template. The dots are in a metastable state. Further Ag deposition drives the dot surface structure to nanoripple formation. Results show that electrodeposition on nanopatterned electrodes can be used to prepare a high density of nanostructures with a narrow size distribution and spatial order

  4. Self-assembly and optical properties of patterned ZnO nanodot arrays

    International Nuclear Information System (INIS)

    Song Yijian; Zheng Maojun; Ma Li

    2007-01-01

    Patterned ZnO nanodot (ND) arrays and a ND-cavity microstructure were realized on an anodic alumina membrane (AAM) surface through a spin-coating sol-gel process, which benefits from the morphology and localized negative charge surface of AAM as well as the optimized sol concentration. The growth mechanism is believed to be a self-assembly process. This provides a simple approach to fabricate semiconductor quantum dot (QD) arrays and a QD-cavity system with its advantage in low cost and mass production. Strong ultra-violet emission, a multi-phonon process, and its special structure-related properties were observed in the patterned ZnO ND arrays

  5. Spray-ILGAR {sup registered} deposition of controllable ZnS nanodots and application as passivation/point contact at the In{sub 2}S{sub 3}/Cu(In,Ga)(S,Se){sub 2} junction in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yanpeng Fu

    2012-03-15

    The spray ion layer gas reaction (Spray-ILGAR) technique produces homogeneous compact metal chalcogenide films used as buffer layers for thin film solar cells with high efficiencies. It was a great challenge to elaborate this method for the deposition of nanodots. This thesis shows that high quality, uncoated, monodisperse and sub 10 nm ZnS nanodots with controllable dot density and size (to some extend) can be prepared at the requisite low temperature by this sequential, cyclic and low cost method which can be scaled up for industrial in-line production. In addition, by this Spray-ILGAR technique, a structured buffer layer, composed of ZnS nanodots covered by a closed In{sub 2}S{sub 3} film, has been introduced as a defect passivation / point contact layer at the Cu(In,Ga)(S,Se){sub 2} (CIGSSe) absorber interface. The ZnS nanodots are deposited starting from nebulizing an aqueous Zn acetylacetonate (Zn(acac){sub 2}) solution followed by H{sub 2}S sulfurization. The unique sequential process allows the formation of the nanodot film with good properties. The choice of the process parameters (e.g. solvent, temperature, concentration) allows the control of particle density and partly also of particle size. These nanodots are rather homogeneous in size, shape and composition, and tend to keep maximum distance from each other. In contrast, ZnS nanodots deposited by a continuous spray chemical vapor deposition (Spray-CVD) are irregular in shape with inclusions of ZnO. The mechanism behind the ZnS nanodots formation is studied in two ways. On one hand, the decomposition mechanism of Zn(acac){sub 2} on the hot substrate in the spray based processes is studied by means of in-situ mass spectroscopy. On the other hand, by interpretation of the scanning electron microscopy (SEM), energy filtered transmission electron microscopy results (EF-TEM), it is possible to elucidate the self-limiting growth of ZnS nanodots in the Spray-ILGAR and Spray-CVD processes. The fundamental

  6. Size effect on order-disorder transition kinetics of FePt nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Shuaidi; Qi, Weihong; Huang, Baiyun

    2014-01-01

    The kinetics of order-disorder transition of FePt nanoparticles during high temperature annealing is theoretically investigated. A model is developed to address the influence of large surface to volume ratio of nanoparticles on both the thermodynamic and kinetic aspect of the ordering process; specifically, the nucleation and growth of L1 0 ordered domain within disordered nanoparticles. The size- and shape-dependence of transition kinetics are quantitatively addressed by a revised Johnson-Mehl-Avrami equation that included corrections for deviations caused by the domination of surface nucleation in nanoscale systems and the non-negligible size of the ordered nuclei. Calculation results based on the model suggested that smaller nanoparticles are kinetically more active but thermodynamically less transformable. The major obstacle in obtaining completely ordered nanoparticles is the elimination of antiphase boundaries. The results also quantitatively confirmed the existence of a size-limit in ordering, beyond which, inducing order-disorder transitions through annealing is impossible. A good agreement is observed between theory, experiment, and computer simulation results

  7. Azimuthal spin-wave excitations in magnetic nanodots over the soliton background: Vortex, Bloch, and Néel-like skyrmions

    Science.gov (United States)

    Mruczkiewicz, M.; Gruszecki, P.; Krawczyk, M.; Guslienko, K. Y.

    2018-02-01

    We study azimuthal spin-wave (SW) excitations in a circular ferromagnetic nanodot in different inhomogeneous, topologically nontrivial magnetization states, specifically, vortex, Bloch-type skyrmion, and Néel-type skyrmion states. A continuous transition between these states is realized by gradually changing the out-of-plane magnetic anisotropy and the Dzyaloshinskii-Moriya exchange interaction (DMI), and the corresponding SW spectra are calculated for each state. We observe the lifting of degeneracy of SW mode frequencies and a change in the systematics of frequency levels. The latter effect is induced by the geometric Berry phase, which occurs in SWs localized at the edge of the dot in the vortex state, and vanishes in the skyrmion states. Furthermore, channeling of edge-localized azimuthal SWs and a related large frequency splitting are observed in the skyrmion states. This is attributed to DMI-induced nonreciprocity, while the coupling of the breathing and gyrotropic modes is related to the skyrmion motion. Finally, we demonstrate efficient coupling of the dynamic magnetization to a uniform magnetic field in nanodots of noncircular symmetry in the skyrmion states.

  8. The mechanism of vortex switching in magnetic nanodots under circular magnetic field. I. The resonance action of the field on the nanodot eigenmodes

    CERN Document Server

    Kovalev, A S

    2002-01-01

    The resonance activation of eigenmodes for a finite 2D easy-plane ferromagnet is considered to treat theoretically by the vortex switching in magnetic nanodots due to the action of external circular magnetic field. It is shown analytically that if the anisotropy is weak, i.e. the vortex has a nonzero polarity (total magnization along the z-axis), the process of the field action has a complicated nature. The circular field acts in a resonance way upon azimuthal system eigenmodes, in which magnetization depends on the azimuthal coordinate (as a direct resonance at the eigenfrequencies of these modes). The interaction of the azimuthal and symmetric modes (in which the magnetization does not depend on the azimuthal coordinate) via the applied field gives rise to complex parametric resonance at multifrequencies. The results obtained are compared with the data of previous numerical calculations.

  9. Tuning anomalous Hall conductivity in L1[sub 0] FePt films by long range chemical ordering

    KAUST Repository

    Chen, M.; Shi, Z.; Xu, W. J.; Zhang, Xixiang; Du, J.; Zhou, S. M.

    2011-01-01

    For L10 FePt films, the anomalous Hall conductivity σ xy=-a σxx-b, where a=a0f(T), b=b 0f(T), and f (T) is the temperature dependence factor of the spontaneous magnetization. With increasing chemical long range ordering S, a0 changes its sign accompanied by a reduction of its magnitude and b0 increases monotonically. The spin-orbit coupling strength is suggested to increase with increasing S. As an approach, the long range chemical ordering can be used to control the anomalous Hall effect in ferromagnetic alloy films. © 2011 American Institute of Physics.

  10. Tuning anomalous Hall conductivity in L1[sub 0] FePt films by long range chemical ordering

    KAUST Repository

    Chen, M.

    2011-02-24

    For L10 FePt films, the anomalous Hall conductivity σ xy=-a σxx-b, where a=a0f(T), b=b 0f(T), and f (T) is the temperature dependence factor of the spontaneous magnetization. With increasing chemical long range ordering S, a0 changes its sign accompanied by a reduction of its magnitude and b0 increases monotonically. The spin-orbit coupling strength is suggested to increase with increasing S. As an approach, the long range chemical ordering can be used to control the anomalous Hall effect in ferromagnetic alloy films. © 2011 American Institute of Physics.

  11. Ultrasmall Tin Nanodots Embedded in Nitrogen-Doped Mesoporous Carbon: Metal-Organic-Framework Derivation and Electrochemical Application as Highly Stable Anode for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Dai, Ruoling; Sun, Weiwei; Wang, Yong

    2016-01-01

    Highlights: • Sn-based metal-organic-framework (MOF) is prepared. • Ultrasmall tin nanodots (2–3 nm) are embedded in nitrogen-doped mesoporous carbon. • The Sn/C composite anode shows high capacity and ultralong cycle life. - Abstract: This work reports a facile metal-organic-framework based approach to synthesize Sn/C composite, in which ultrasmall Sn nanodots with typical size of 2–3 nm are uniformly embedded in the nitrogen-doped porous carbon matrix (denoted as Sn@NPC). The effect of thermal treatment and nitrogen doping are also explored. Owing to the delicate size control and confined volume change within carbon matrix, the Sn@NPC composite can exhibit reversible capacities of 575 mAh g −1 (Sn contribution: 1091 mAh g −1 ) after 500 cycles at 0.2 A g −1 and 507 mAh g −1 (Sn contribution: 1077 mAh g −1 ) after 1500 cycles at 1 A g −1 . The excellent long-life electrochemical stability of the Sn@NPC anode has been mainly attributed to the uniform distribution of ultrasmall Sn nanodots and the highly-conductive and flexible N-doped carbon matrix, which can effectively facilitate lithium ion/electron diffusion, buffer the large volume change and improve the structure stability of the electrode during repetitive cycling with lithium ions.

  12. Fluorescent carbon nanodots facilely extracted from Coca Cola for temperature sensing

    Science.gov (United States)

    Li, Feiming; Chen, Qiaoling; Cai, Zhixiong; Lin, Fangyuan; Xu, Wei; Wang, Yiru; Chen, Xi

    2017-12-01

    A novel method for the fabrication of carbon nanodots (CDs) is introduced: extracting CDs from the well-known soft drink Coca Cola via dialysis. The obtained CDs are of good monodispersity with a narrow size distribution (average diameter of 3.0 nm), good biocompatibility, high solubility (about 180 mg ml-1) and stable fluorescence even at a high salt concentration. Furthermore, they are sensitive to the temperature change with a linear relationship between the fluorescence intensity and temperature from 5 °C-95 °C. The CDs have been applied in high stable temperature sensing. This protocol is quite simple, green, cost-effective and technologically simple, which might be used for a range of applications including sensing, catalysts, drug and gene delivery, and so on.

  13. Enhanced saturation magnetization of Fe3Si nanodot-embedded Fe80Si17Nb3 flexible film for efficient wireless power transfer

    International Nuclear Information System (INIS)

    Pai, Yi-Hao; Yan, Zih-Yu; Fu, Ping-Hao

    2013-01-01

    An efficient magnetically coupled resonance response is performed using an iron silicide-based nanostructured magnetoelectric material with high saturation magnetization for the wireless charging of battery-powered consumer electronics. With 500 °C annealing, the self-assembled Fe 3 Si nanodots buried in the Fe 80 Si 17 Nb 3 host matrix with (220) lattice spacing of 1.99 Å corresponding to a volume density of 8.96 × 10 16 cm 3 , can be obtained and a maximum saturation magnetization of 244 emu g −1 achieved. The return loss of the antenna will be tuned to match the designed frequency with greater attenuated intensity (−0.39 dB) and a relatively narrow bandwidth (6 kHz) when the Fe 3 Si nanodot-embedded Fe 80 Si 17 Nb 3 sample is placed in a WiTricity system. An efficient wireless power transfer can be created and improved from 47.5% to 97.3%. The associated coil and loop antenna resonators are significantly readjusted to match the power transfer by putting this nanostructured magnetoelectric material in a WiTricity system. - Highlights: • The saturation magnetization is effective enhancement in the presence of Fe 3 Si nanodot buried in the Fe 80 Si 17 Nb 3 . • A saturation magnetization of 244 emu g −1 is proposed for high-efficiency wireless power transfer. • The return loss of the antenna will be tuned to match the designed frequency. • Such a wireless power transfer can be enhanced efficiency up to 97.3%

  14. Chlorine triggered de-alloying of AuAg@Carbon nanodots: Towards fabrication of a dual signalling assay combining the plasmonic property of bimetallic alloy nanoparticles and photoluminescence of carbon nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpour, Zahra; Safavi, Afsaneh, E-mail: safavi@susc.ac.ir; Abdollahi, Seyyed Hossein

    2017-03-22

    Integration of Au-Ag alloy and fluorescent carbon nanodots (C-dots) into a single platform resulted in a new dual sensing assay for chlorine. Selective etching of Ag from AuAg@C-dots was transformed into: (i) colorimetric signal by surface plasmon resonance (SPR) tuning of the alloy and (ii) fluorimetric signal by perturbation of fluorescence energy transfer between C-dots and alloy nanoparticles. Fast oxidizing of silver atoms incorporated in the bimetallic structure induced by chlorine resulted in selective de-alloying of bimetallic hybrid nanoparticles and an intense visible change of the colloidal dispersion color. On the other hand, the systematic change in Au/Ag ratio strongly affected the emission intensity of C-dots in the hybrid structure leading to an enhancement in the fluorescence signal. Thus, the assay enables the detection of chlorine both under visible and UV lights with high sensitivity. The detection limit (DL) values were calculated as 6.2 × 10{sup −7} M and 5.1 × 10{sup −7} M through colorimetric and fluorimetric pathways, respectively. Most importantly, it was demonstrated to be selective over common cations, anions and some reactive oxygen species (ROS). This assay was successfully applied to the determination of chlorine concentration in bleach solution and tap water. It is robust and is suitable for cost effective chlorine measurement in environmental samples. - Highlights: • A new dual signalling assay for hypochlorite ion is introduced. • Bimetallic Au-Ag nanoparticles are hybridized with fluorescent carbon nanodots. • It shows amplified colorimetric response with respect to monometallic counterparts. • This sensor is multifunctional, robust, rapid and sensitive. • The practical applicability is investigated for environmental monitoring.

  15. Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters

    International Nuclear Information System (INIS)

    Giaddui, Tawfik; Cui Yunfeng; Galvin, James; Yu Yan; Xiao Ying

    2013-01-01

    Purpose: To investigate the effect of energy (kVp) and filters (no filter, half Bowtie, and full Bowtie) on the dose response curves of the Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters (OSLDs) in CBCT dose fields. To measure surface and internal doses received during x-ray volume imager (XVI) (Version R4.5) and on board imager (OBI) (Version 1.5) CBCT imaging protocols using these two types of dosimeters. Methods: Gafchromic XRQA2 film and nanoDot OSLD dose response curves were generated at different kV imaging settings used by XVI (software version R4.5) and OBI (software version 1.5) CBCT systems. The settings for the XVI system were: 100 kVp/F0 (no filter), 120 kVp/F0, and 120 kVp/F1 (Bowtie filter), and for the OBI system were: 100 kVp/full fan, 125 kVp/full fan, and 125 kVp/half fan. XRQA2 film was calibrated in air to air kerma levels between 0 and 11 cGy and scanned using reflection scanning mode with the Epson Expression 10000 XL flat-bed document scanner. NanoDot OSLDs were calibrated on phantom to surface dose levels between 0 and 14 cGy and read using the inLight TM MicroStar reader. Both dosimeters were used to measure in field surface and internal doses in a male Alderson Rando Phantom. Results: Dose response curves of XRQA2 film and nanoDot OSLDs at different XVI and OBI CBCT settings were reported. For XVI system, the surface dose ranged between 0.02 cGy in head region during fast head and neck scan and 4.99 cGy in the chest region during symmetry scan. On the other hand, the internal dose ranged between 0.02 cGy in the head region during fast head and neck scan and 3.17 cGy in the chest region during chest M20 scan. The average (internal and external) dose ranged between 0.05 cGy in the head region during fast head and neck scan and 2.41 cGy in the chest region during chest M20 scan. For OBI system, the surface dose ranged between 0.19 cGy in head region during head scan and 4.55 cGy in the pelvis region during spot

  16. Ag nanodots decorated SiO2 coated ZnO core-shell nanostructure with enhanced luminescence property as potential imaging agent

    Science.gov (United States)

    Gupta, Jagriti; Barick, K. C.; Hassan, P. A.; Bahadur, Dhirendra

    2018-04-01

    Ag decorated silica coated ZnO nanocomposite (Ag@SiO2@ZnO NCs) has been synthesized by soft chemical approach. The physico-chemical properties of Ag@SiO2@ZnO NCs are investigated by various sophisticated characterization techniques such as X-ray diffraction, Transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible absorption and photoluminescent spectroscopy. X-ray diffraction confirms the phase formation of ZnO and Ag in nanocomposite. TEM micrograph clearly shows that Ag nanodots are well decorated over silica coated ZnO NCs. The photoluminescent study reveals the enhancement in the photoluminance property when the Ag nanodots are decorated over silica coated ZnO nanocomposite due to an electromagnetic coupling between excitons and plasmons. Furthermore, the photoluminescent property is an important tool for bio-imaging application, reveal that NCs give green and red emission after excitation with 488 and 535 nm. Therefore, low cytotoxicity and excellent fluorescence stability in vitro makes it a more suitable material for both cellular imaging and therapy for biomedical applications.

  17. Morphological evolution of InP nano-dots and surface modifications after keV irradiation

    International Nuclear Information System (INIS)

    Paramanik, Dipak; Sahu, S N; Varma, Shikha

    2008-01-01

    Evolution and coarsening behaviour of self-assembled nano-dots fabricated on an InP surface by 3 keV Ar ion sputtering have been studied in conjunction with the structural modifications at the surface. The dots have been produced in off-normal geometry but in the absence of rotation. For small sputtering durations, the dots coarsen and agglomerate, up to a critical time t c , while the surface roughens and experiences a tensile stress. A relaxation in this stress is observed after the surface becomes amorphized at t c , beyond which an inverse coarsening, fragmentation of dots and a smoothened surface are observed

  18. Self-organizing nanodot structures on InP surfaces evolving under low-energy ion irradiation: analysis of morphology and composition.

    Science.gov (United States)

    Radny, Tobias; Gnaser, Hubert

    2014-01-01

    Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence Φ the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18) cm(-2), and ion fluxes f of (0.4 - 2) × 10(14) cm(-2) s(-1) were used. The surface morphology resulting from these ion irradiations was examined by atomic force microscopy (AFM). Generally, nanodot structures are formed on the surface; their dimensions (diameter, height and separation), however, were found to depend critically on the specific bombardment conditions. As a function of ion fluence, the mean radius r, height h, and spacing l of the dots can be fitted by power-law dependences: r ∝ Φ(0.40), h ∝ Φ(0.48), and l ∝ Φ(0.19). In terms of ion flux, there appears to exist a distinct threshold: below f ~ (1.3 ± 0.2) × 10(14) cm(-2) s(-1), no ordering of the dots exists and their size is comparatively small; above that value of f, the height and radius of the dots becomes substantially larger (h ~ 40 nm and r ~ 50 nm). This finding possibly indicates that surface diffusion processes could be important. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that APT can provide analytical information on the composition of individual InP nanodots. By means of 3D APT data, the surface region of such nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of approximately 1 nm and amount to 1.3 to 1.7.

  19. SU-F-BRE-14: Uncertainty Analysis for Dose Measurements Using OSLD NanoDots

    Energy Technology Data Exchange (ETDEWEB)

    Kry, S; Alvarez, P; Stingo, F; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: Optically stimulated luminescent dosimeters (OSLD) are an increasingly popular dosimeter for research and clinical applications. It is also used by the Radiological Physics Center for remote auditing of machine output. In this work we robustly calculated the reproducibility and uncertainty of the OSLD nanoDot. Methods: For the RPC dose calculation, raw readings are corrected for depletion, element sensitivity, fading, linearity, and energy. System calibration is determined for the experimental OSLD irradiated at different institutions by using OSLD irradiated by the RPC under reference conditions (i.e., standards): 1 Gy in a Cobalt beam. The intra-dot and inter-dot reproducibilities (coefficient of variation) were determined from the history of RPC readings of these standards. The standard deviation of the corrected OSLD signal was then calculated analytically using a recursive formalism that did not rely on the normality assumption of the underlying uncertainties, or on any type of mathematical approximation. This analytical uncertainty was compared to that empirically estimated from >45,000 RPC beam audits. Results: The intra-dot variability was found to be 0.59%, with only a small variation between readers. Inter-dot variability was found to be 0.85%. The uncertainty in each of the individual correction factors was empirically determined. When the raw counts from each OSLD were adjusted for the appropriate correction factors, the analytically determined coefficient of variation was 1.8% over a range of institutional irradiation conditions that are seen at the RPC. This is reasonably consistent with the empirical observations of the RPC, where the coefficient of variation of the measured beam outputs is 1.6% (photons) and 1.9% (electrons). Conclusion: OSLD nanoDots provide sufficiently good precision for a wide range of applications, including the RPC remote monitoring program for megavoltage beams. This work was supported by PHS grant CA10953 awarded by

  20. Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: nanodots vs nanorods.

    Science.gov (United States)

    Shah, Syed Mujtaba; Martini, Cyril; Ackermann, Jörg; Fages, Frédéric

    2012-02-01

    We report the synthesis and spectroscopic characterization of nanohybrid structures consisting of an azobenzene compound grafted on the surface of zinc oxide nanoparticles. Characteristic bathochromic shifts indicate that the azobenzene photochromic molecules self-assemble onto the surface of the nanocrystals. The extent of packing is dependent on the shape of the nanoparticle. ZnO nanorods, with flat facets, enable a tighter organization of the molecules in the self-assembled monolayer than in the case of nanodots that display a more curvated shape. Consistently, the efficiency of photochromic switching of the self-assembled monolayer on ZnO nanoparticles is also shown to be strongly affected by nanoparticle shape. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Elaboration et propriétés de nanofils de CoPt et FePt électrodéposés

    OpenAIRE

    Dahmane , Yasmina

    2007-01-01

    The main purpose of this work is to prepare CoPt and FePt nanowires by electrodeposition in nanoporous aluminum membranes. The electrochemical bath was composed of only two salts (chlorides), one for the cobalt (CoCl2, 6H2O) and one for platinum (K2PtCl6). We succeeded preparing networks of CoPt nanowires with diameters of about 70-80 nm and a coercivity of 1.1 Tesla at room temperature. These magnetically hard materials present the tetragonal phase L10 obtained after annealing at 700 °C the ...

  2. Atomically flat surface of (0 0 1) textured FePt thin films by residual stress control

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.H. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chou, C.L.; Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Lee, H.Y. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan (China)

    2015-11-01

    Highlights: • We demonstrate crystallographic structure, (0 0 1) texture, surface roughness, and residual stress in the single-layered FePt thin films annealed at various heating rates (10–110 K/s). • Texture coefficient of (0 0 1)-plane of the samples increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress. • Dewetting phenomenon due to stress relaxation leads to the broadening of [0 0 1] easy axis and degradation of perpendicular magnetic anisotropy. • A strong dependence of surface roughness on in-plane residual stress was revealed. • When the samples are RTA at 40 K/s, the enhanced perpendicular magnetic anisotropy and atomically surface roughness are achieved. - Abstract: Single-layered Fe{sub 52}Pt{sub 48} films with thickness of 10 nm were sputter-deposited on glass substrates. Rapid thermal annealing with different heating rates (10–110 K/s) was applied to transform as-deposited fcc phase into L1{sub 0} phase and meanwhile to align [0 0 1]-axis of L1{sub 0} crystal along plane normal direction. Based on X-ray diffractometry using synchrotron radiation source, the texture coefficient of (0 0 1)-plane increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress analyzed by asymmetric sin{sup 2} ψ method. Furthermore, it was revealed by atomic force microscopy that the dewetting process occurred as heating rate was raised up to 80 K/s and higher. The change in the microstructure due to stress relaxation leads to the degradation of (0 0 1) orientation and magnetic properties. Surface roughness is closely related to the in-plane tensile stress. Enhanced perpendicular magnetic anisotropy and atomically flat surface were achieved for the samples annealed at 40 K/s, which may be suitable for further practical applications. This work also suggests a feasible way for surface

  3. Chip-based generation of carbon nanodots via electrochemical oxidation of screen printed carbon electrodes and the applications for efficient cell imaging and electrochemiluminescence enhancement.

    Science.gov (United States)

    Xu, Yuanhong; Liu, Jingquan; Zhang, Jizhen; Zong, Xidan; Jia, Xiaofang; Li, Dan; Wang, Erkang

    2015-06-07

    A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips.

  4. Dynamic micromagnetic simulation of the magnetic spectrum of permalloy nanodot array with vortex state

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Y. [College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066 (China); College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Zhao, G.P., E-mail: zhaogp@uestc.edu.cn [College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066 (China); Morvan, F.J.; Wu, S.Q. [College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066 (China); Yue, M. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2017-01-15

    Due to its potential applications in high-density magnetic storage and spin electronic devices, the ferromagnetic resonance absorption phenomenon has recently drawn much attention. By studying the influence of different materials with various shapes on this phenomenon, the new understandings gained could lead to other applications in the future. In this paper, dynamic magnetic susceptibilities of the vortex state in permalloy nanodot arrays have been investigated using a three-dimensional object oriented micromagnetic framework (OOMMF) code with a two-dimensional periodic boundary condition (2D-PBC) extension and compared with those of a single dot carefully. The resonance mode is excited in the vortex state of nanodot arrays by the microwave magnetic field perpendicular to the dot plane. In this case only radially symmetric spin wave modes can be excited. The influence of the geometric parameters on the resonance frequency has been studied systemically, including the dot radius, the number of repeating elements, and the dot distance. One can see that the resonance peak of the dot array is higher than that of a single dot because of the induced stronger magnetostatic coupling. A critical dot distance exists at which the dot array may be treated as a single dot. There is only one resonance peak for both the dot array and the single dot, as the radius changes. - Highlights: • Resonance peak of the dot array is higher than that of a single dot because of the induced stronger magnetostatic coupling. • A critical dot distance exists at which the dot array may be treated as a single dot. • There is only one resonance peak for both the dot array and the single dot, as the radius changes.

  5. Dynamic micromagnetic simulation of the magnetic spectrum of permalloy nanodot array with vortex state

    International Nuclear Information System (INIS)

    Peng, Y.; Zhao, G.P.; Morvan, F.J.; Wu, S.Q.; Yue, M.

    2017-01-01

    Due to its potential applications in high-density magnetic storage and spin electronic devices, the ferromagnetic resonance absorption phenomenon has recently drawn much attention. By studying the influence of different materials with various shapes on this phenomenon, the new understandings gained could lead to other applications in the future. In this paper, dynamic magnetic susceptibilities of the vortex state in permalloy nanodot arrays have been investigated using a three-dimensional object oriented micromagnetic framework (OOMMF) code with a two-dimensional periodic boundary condition (2D-PBC) extension and compared with those of a single dot carefully. The resonance mode is excited in the vortex state of nanodot arrays by the microwave magnetic field perpendicular to the dot plane. In this case only radially symmetric spin wave modes can be excited. The influence of the geometric parameters on the resonance frequency has been studied systemically, including the dot radius, the number of repeating elements, and the dot distance. One can see that the resonance peak of the dot array is higher than that of a single dot because of the induced stronger magnetostatic coupling. A critical dot distance exists at which the dot array may be treated as a single dot. There is only one resonance peak for both the dot array and the single dot, as the radius changes. - Highlights: • Resonance peak of the dot array is higher than that of a single dot because of the induced stronger magnetostatic coupling. • A critical dot distance exists at which the dot array may be treated as a single dot. • There is only one resonance peak for both the dot array and the single dot, as the radius changes.

  6. Micromagnetics of thermally activated switching in nonuniformly magnetized nanodots

    International Nuclear Information System (INIS)

    Torres, L.; Lopez-Diaz, L.; Moro, E.; Francisco, C. de; Alejos, O.

    2001-01-01

    Patterned magnetic elements are being proposed as media for the future ultrahigh density storage systems. The equilibrium states of different patterned magnetic dots at zero temperature have been studied in numerous micromagnetic works while in the last year some studies have begun to include the effect of temperature in the computations. In this research a stochastic dynamic micromagnetic study is carried out for rectangular magnetic dots with size 10 by 3.1 times the exchange length, patterned in a film with a thickness of 5 times the exchange length. Two kinds of nonuniform magnetized nanodots are studied in detail: those in which the state prior to the switching follows the shape of a 'C' and those following an 'S'. In both cases a field near to the zero-temperature switching field is applied and then the thermally activated switching is observed. The dependence of the switching time on temperature is analyzed. It is observed how for the 'C' configuration an Arrhenius-like behavior is obtained in a large temperature window while this is not the case for the 'S' configuration. The micromagnetic structure of the switching thermally activated modes leading to these behaviors is also studied

  7. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells.

    Science.gov (United States)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2012-06-25

    The whole picture: Carbon nanodots labeled with two fluorescent dyes have been developed as a tunable ratiometric pH sensor to measure intracellular pH. The nanosensor shows good biocompatibility and cellular dispersibility. Quantitative determinations on intact HeLa cells and pH fluctuations associated with oxidative stress were performed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement

    Science.gov (United States)

    Safaiee, Rosa; Golshan, Mohammad Mehdi

    2017-06-01

    The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals' in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present

  9. Uniform Si nano-dot fabrication using reconstructed structure of Si(110)

    Science.gov (United States)

    Yano, Masahiro; Uozumi, Yuki; Yasuda, Satoshi; Asaoka, Hidehito

    2018-06-01

    Si nano-dot (ND) formation on Si(110) is observed by means of a scanning tunneling microscope (STM). The initial Si-NDs are Si crystals that are continuous from the substrate and grow during the oxide layer desorption. The NDs fabricated on the flat surface of Si(110)-1 × 1 are surrounded by four types of facets with almost identical appearance probabilities. An increase in the size of the NDs increases the variety of its morphology. In contrast, most Si-NDs fabricated on straight-stepped surface of Si(110)-16 × 2 reconstructed structure are surrounded by only a single type of facet, namely the \\text{Si}(17,15,1)-2 × 1 plane. An appearance probability of the facet in which the base line is along the step of Si(110)-16 × 2 exceeds 75%. This finding provides a fabrication technique of uniformed structural Si-NDs by using the reconstructed structure of Si(110).

  10. Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots

    International Nuclear Information System (INIS)

    Mohd Yazid, S.N.A.; Chin, S.F.; Pang, S.C.; Ng, S.M.

    2013-01-01

    We report that fluorescent carbon nanodots (C-dots) can act as an optical probe for quantifying Sn(II) ions in aqueous solution. C-dots are synthesized by carbonization and surface oxidation of preformed sago starch nanoparticles. Their fluorescence is significantly quenched by Sn(II) ions, and the effect can be used to determine Sn(II) ions. The highest fluorescence intensity is obtained at a concentration of 1.75 mM of C-dots in aqueous solution. The probe is highly selective and hardly interfered by other ions. The quenching mechanism appears to be predominantly of the static (rather than dynamic) type. Under optimum conditions, there is a linear relationship between fluorescence intensity and Sn(II) ions concentration up to 4 mM, and with a detection limit of 0.36 μM. (author)

  11. Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography.

    Science.gov (United States)

    Gnaser, Hubert; Radny, Tobias

    2015-12-01

    Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18)cm(-2) and ion flux densities f of (0.4-2) × 10(14) cm(-2) s(-1) were used. Nanodot structures were found to evolve on the surface from these ion irradiations, their dimensions however, depend on the specific bombardment conditions. The resulting surface morphology was examined by atomic force microscopy (AFM). As a function of ion fluence, the mean radius, height, and spacing of the dots can be fitted by power-law dependences. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that by APT the composition of individual InP nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of ~1 nm and amount to 1.3-1.8. However, several aspects critical for the analyses were identified: (i) because of the small dimensions of these nanostructures a successful tip preparation proved very challenging. (ii) The elemental compositions obtained from APT were found to be influenced pronouncedly by the laser pulse energy; typically, low energies result in the correct stoichiometry whereas high ones lead to an inhomogeneous evaporation from the tips and deviations from the nominal composition. (iii) Depending again on the laser energy, a prolific emission of Pn cluster ions was observed, with n ≤ 11. Copyright © 2015. Published by Elsevier B.V.

  12. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2011-07-01

    Full Text Available Using dual-focus fluorescence correlation spectroscopy, we have analyzed the adsorption of three human blood serum proteins, namely serum albumin, apolipoprotein A-I and apolipoprotein E4, onto polymer-coated, fluorescently labeled FePt nanoparticles (~12 nm diameter carrying negatively charged carboxyl groups on their surface. For all three proteins, a step-wise increase in hydrodynamic radius with protein concentration was observed, strongly suggesting the formation of protein monolayers that enclose the nanoparticles. Consistent with this interpretation, the absolute increase in hydrodynamic radius can be correlated with the molecular shapes of the proteins known from X-ray crystallography and solution experiments, indicating that the proteins bind on the nanoparticles in specific orientations. The equilibrium dissociation coefficients, measuring the affinity of the proteins to the nanoparticles, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of the electrostatic properties of the proteins. From structure-based calculations of the surface potentials, positively charged patches of different extents can be revealed, through which the proteins interact electrostatically with the negatively charged nanoparticle surfaces.

  13. Static magnetism and thermal switching in randomly oriented L10 FePt thin films

    Science.gov (United States)

    Lisfi, A.; Pokharel, S.; Alqarni, A.; Akioya, O.; Morgan, W.; Wuttig, M.

    2018-05-01

    Static magnetism and thermally activated magnetic relaxation were investigated in granular FePt films (20 nm-200 nm thick) with random magnetic anisotropy through hysteresis loop, torque curve and magnetization time dependence measurements. While the magnetism of thicker film (200 nm thick) is dominated by a single switching of the ordered L10 phase, thinner film (20 nm) displays a double switching, which is indicative of the presence of the disordered cubic phase. The pronounced behavior of double switching in thinner film suggests that the film grain boundary is composed of soft cubic magnetic phase. The magnetic relaxation study reveals that magnetic viscosity S of the films is strongly dependent on the external applied field and exhibits a maximum value (12 kAm) around the switching field and a vanishing behavior at low (1 kOe) and large (12 kOe) fields. The activation volume of the thermal switching was found to be much smaller than the physical volume of the granular structure due to the incoherent rotation mode of the magnetization reversal mechanism, which is established to be domain wall nucleation.

  14. Formation mechanisms of metallic Zn nanodots by using ZnO thin films deposited on n-Si substrates

    International Nuclear Information System (INIS)

    Yuk, J. M.; Lee, J. Y.; Kim, Y.; No, Y. S.; Kim, T. W.; Choi, W. K.

    2010-01-01

    High-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy results showed that metallic Zn nanodots (NDs) were fabricated through transformation of ZnO thin films by deposition of SiO x on ZnO/n-Si (100) heterostructures. The Zn NDs with various sizes and densities were formed due to the occurrence of the mass diffusion of atoms along the grain boundaries in the ZnO thin films. The fabrication mechanisms of metallic Zn NDs through transformation of ZnO thin films deposited on n-Si substrates are described on the basis of the experimental results.

  15. Enhanced saturation magnetization of Fe{sub 3}Si nanodot-embedded Fe{sub 80}Si{sub 17}Nb{sub 3} flexible film for efficient wireless power transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Yi-Hao, E-mail: paiyihao@mail.ndhu.edu.tw; Yan, Zih-Yu; Fu, Ping-Hao

    2013-07-15

    An efficient magnetically coupled resonance response is performed using an iron silicide-based nanostructured magnetoelectric material with high saturation magnetization for the wireless charging of battery-powered consumer electronics. With 500 °C annealing, the self-assembled Fe{sub 3}Si nanodots buried in the Fe{sub 80}Si{sub 17}Nb{sub 3} host matrix with (220) lattice spacing of 1.99 Å corresponding to a volume density of 8.96 × 10{sup 16} cm{sup 3}, can be obtained and a maximum saturation magnetization of 244 emu g{sup −1} achieved. The return loss of the antenna will be tuned to match the designed frequency with greater attenuated intensity (−0.39 dB) and a relatively narrow bandwidth (6 kHz) when the Fe{sub 3}Si nanodot-embedded Fe{sub 80}Si{sub 17}Nb{sub 3} sample is placed in a WiTricity system. An efficient wireless power transfer can be created and improved from 47.5% to 97.3%. The associated coil and loop antenna resonators are significantly readjusted to match the power transfer by putting this nanostructured magnetoelectric material in a WiTricity system. - Highlights: • The saturation magnetization is effective enhancement in the presence of Fe{sub 3}Si nanodot buried in the Fe{sub 80}Si{sub 17}Nb{sub 3}. • A saturation magnetization of 244 emu g{sup −1} is proposed for high-efficiency wireless power transfer. • The return loss of the antenna will be tuned to match the designed frequency. • Such a wireless power transfer can be enhanced efficiency up to 97.3%.

  16. Magnetically actuated bi-directional microactuators with permalloy and Fe/Pt hard magnet

    International Nuclear Information System (INIS)

    Pan, C.T.; Shen, S.C.

    2005-01-01

    Bi-directional polyimide (PI) electromagnetic microactuator with different geometries are designed, fabricated and tested. Fabrication of the electromagnetic microactuator consists of 10 μm thick Ni/Fe (80/20) permalloy deposition on the PI diaphragm by electroplating, high aspect ratio electroplating of copper planar coil with 10 μm in thickness, bulk micromachining, and excimer laser selective ablation. They were fabricated by a novel concept avoiding the etching selectivity and residual stress problems during wafer etching. A mathematical model is created by ANSYS software to analyze the microactuator. The external magnetic field intensity (H ext ) generated by the planar coil is simulated by ANSYS software. ANSYS software is used to predict the deflection angle of the microactuator. Besides, to provide bi-directional and large deflection angle of microactuator, hard magnet Fe/Pt is deposited at a low temperature of 300 deg. C by sputtering onto the PI diaphragm to produce a perpendicular magnetic anisotropic field. This magnetic field can enhance the interaction with H ext to induce attractive and repulsive bi-directional force to provide large displacement. The results of magnetic microactuator with and without hard magnets are compared and discussed. The preliminary result reveals that the electromagnetic microactuator with hard magnet shows a greater deflection angle than that without one

  17. Atomic-layer deposited IrO2 nanodots for charge-trap flash-memory devices

    International Nuclear Information System (INIS)

    Choi, Sangmoo; Cha, Young-Kwan; Seo, Bum-Seok; Park, Sangjin; Park, Ju-Hee; Shin, Sangmin; Seol, Kwang Soo; Park, Jong-Bong; Jung, Young-Soo; Park, Youngsoo; Park, Yoondong; Yoo, In-Kyeong; Choi, Suk-Ho

    2007-01-01

    Charge-trap flash- (CTF) memory structures have been fabricated by employing IrO 2 nanodots (NDs) grown by atomic-layer deposition. A band of isolated IrO 2 NDs of about 3 nm lying almost parallel to Si/SiO 2 interface is confirmed by transmission electron microscopy and x-ray photoelectron spectroscopy. The memory device with IrO 2 NDs shows much larger capacitance-voltage (C-V) hysteresis and memory window compared with the control sample without IrO 2 NDs. After annealing at 800 deg. C for 20 min, the ND device shows almost no change in the width of C-V hysteresis and the ND distribution. These results indicate that the IrO 2 NDs embedded in SiO 2 can be utilized as thermally stable, discrete charge traps, promising for metal oxide-ND-based CTF memory devices

  18. L1{sub 0} stacked binaries as candidates for hard-magnets. FePt, MnAl and MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Yu-ichiro [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Applied Physics, The University of Tokyo (Japan); Madjarova, Galia [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University (Bulgaria); Flores-Livas, Jose A. [Department of Physics, Universitaet Basel (Switzerland); Dewhurst, J.K.; Gross, E.K.U. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Felser, C. [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Sharma, S. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physics, Indian Institute of Technology, Roorkee, Uttarkhand (India)

    2017-08-15

    We present a novel approach for designing new hard magnets by forming stacks of existing binary magnets to enhance the magneto crystalline anisotropy. This is followed by an attempt at reducing the amount of expensive metal in these stacks by replacing it with cheaper metal with similar ionic radius. This strategy is explored using examples of FePt, MnAl and MnGa. In this study a few promising materials are suggested as good candidates for hard magnets: stacked binary FePt{sub 2}MnGa{sub 2} in structure where each magnetic layer is separated by two non-magnetic layers, FePtMnGa and FePtMnAl in hexagonally distorted Heusler structures and FePt{sub 0.5}Ti{sub 0.5}MnAl. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Room-temperature Synthesis of Amorphous Molybdenum Oxide Nanodots with Tunable Localized Surface Plasmon Resonances.

    Science.gov (United States)

    Zhu, Chuanhui; Xu, Qun; Ji, Liang; Ren, Yumei; Fang, Mingming

    2017-12-05

    Two-dimensional (2D) semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals. However, tuning of their plasmonic resonances towards different wavelengths in the visible-light region with physical or chemical methods still remains challenging. In this work, we design a simple room-temperature chemical reaction route to synthesize amorphous molybdenum oxide (MoO 3-x ) nanodots that exhibit strong localized surface plasmon resonances (LSPR) in the visible and near-infrared region. Moreover, tunable plasmon resonances can be achieved in a wide range with the changing surrounding solvent, and accordingly the photoelectrocatalytic activity can be optimized with the varying LSPR peaks. This work boosts the light-matter interaction at the nanoscale and could enable photodetectors, sensors, and photovoltaic devices in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The role of high work-function metallic nanodots on the performance of a-Si:H solar cells: offering ohmic contact to light trapping.

    Science.gov (United States)

    Kim, Jeehwan; Abou-Kandil, Ahmed; Fogel, Keith; Hovel, Harold; Sadana, Devendra K

    2010-12-28

    Addition of carbon into p-type "window" layers in hydrogenated amorphous silicon (a-Si:H) solar cells enhances short circuit currents and open circuit voltages by a great deal. However, a-Si:H solar cells with high carbon-doped "window" layers exhibit poor fill factors due to a Schottky barrier-like impedance at the interface between a-SiC:H windows and transparent conducting oxides (TCO), although they show maximized short circuit currents and open circuit voltages. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiC:H. Applying ultrathin high-work-function metals at the interface between the two materials results in an effective lowering of the work function mismatch and a consequent ohmic behavior. If the metal layer is sufficiently thin, then it forms nanodots rather than a continuous layer which provides light-scattering effect. We demonstrate 31% efficiency enhancement by using high-work-function materials for engineering the work function at the key interfaces to raise fill factors as well as photocurrents. The use of metallic interface layers in this work is a clear contrast to previous work where attempts were made to enhance the photocurrent using plasmonic metal nanodots on the solar cell surface.

  1. Lowering of L10 phase transition temperature of FePt thin films by single shot H+ ion exposure using plasma focus device

    International Nuclear Information System (INIS)

    Pan, Z.Y.; Lin, J.J.; Zhang, T.; Karamat, S.; Tan, T.L.; Lee, P.; Springham, S.V.; Ramanujan, R.V.; Rawat, R.S.

    2009-01-01

    FePt thin films are exposed to pulsed energetic H + ion beam from plasma focus. In irradiated films, the phase transition from the low K u disordered face-centered-cubic structure to high K u ordered face-centered-tetragonal phase was achieved at 400 deg. C with the order parameter S ranging from 0.73 to 0.83, high coercivity of about 5356 kA/m, high negative nucleation field of about 7700 kA/m and high squareness ratio ranging from 0.73 to 0.79. The advantage of using plasma focus device is that it can lower phase transition temperature and significantly enhance the magnetic properties by a pulsed single shot exposure

  2. Functionalized Graphene–Polyoxometalate Nanodots Assembly as “Organic–Inorganic” Hybrid Supercapacitors and Insights into Electrode/Electrolyte Interfacial Processes

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2017-07-01

    Full Text Available The stable high-performance electrochemical electrodes consisting of supercapacitive reduced graphene oxide (rGO nanosheets decorated with pseudocapacitive polyoxometalates (phosphomolybdate acid-H3PMo12O40 (POM and phosphotungstic acid-H3PW12O40 (POW nanodots/nanoclusters are hydrothermally synthesized. The interactions between rGO and POM (and POW components create emergent “organic–inorganic” hybrids with desirable physicochemical properties (specific surface area, mechanical strength, diffusion, facile electron and ion transport enabled by molecularly bridged (covalently and electrostatically tailored interfaces for electrical energy storage. The synergistic hybridization between two electrochemical energy storage mechanisms, electrochemical double-layer from rGO and redox activity (faradaic of nanoscale POM (and POW nanodots, and the superior operating voltage due to high overpotential yielded converge yielding a significantly improved electrochemical performance. They include increase in specific capacitance from 70 F·g−1 for rGO to 350 F·g−1 for hybrid material with aqueous electrolyte (0.4 M sodium sulfate, higher current carrying capacity (>10 A·g−1 and excellent retention (94% resulting higher specific energy and specific power density. We performed scanning electrochemical microscopy to gain insights into physicochemical processes and quantitatively determine associated parameters (diffusion coefficient (D and heterogeneous electron transfer rate (kET at electrode/electrolyte interface besides mapping electrochemical (reactivity and electro-active site distribution. The experimental findings are attributed to: (1 mesoporous network and topologically multiplexed conductive pathways; (2 higher density of graphene edge plane sites; and (3 localized pockets of re-hybridized orbital engineered modulated band structure provided by polyoxometalates anchored chemically on functionalized graphene nanosheets, contribute toward

  3. The A1 to L10 transformation in FePt films with ternary alloying additions of Mg, V, Mn, and B

    International Nuclear Information System (INIS)

    Wang, B.; Barmak, K.; Klemmer, T. J.

    2011-01-01

    The impact of ternary additions of Mg, V, Mn, and B on the A1 [face centered cubic (fcc)] to L1 0 phase transformation has been studied. The films were cosputter deposited from elemental targets at room temperature and annealed after deposition. The films had Mg additions in the range ∼0-2.6 at.%, V additions in the range 0.7-12.2 at.%, Mn additions in the range 2.2-16.3 at.%, and B additions in the range 1.2-12.9 at.%. For all four ternary alloy systems, annealing resulted in the formation of no other phases than the L1 0 phase. Ternary additions of C than the binary FePt films with the same Pt content.

  4. Nanosecond pulsed laser induced self-organized nano-dots patterns on GaSb surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yutaka, E-mail: yyoshida@cris.hokudai.ac.jp [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, N8, W13, Kita-ku, Sapporo 060-8628, Hokkaido (Japan); Creative Research Institution Sousei, Hokkaido University, N21, W10, Kita-ku, Sapporo 001-0021, Hokkaido (Japan); Oosawa, Kazuya; Wajima, Jyunya; Watanabe, Seiichi [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, N8, W13, Kita-ku, Sapporo 060-8628, Hokkaido (Japan); Matsuo, Yasutaka [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Hokkaido (Japan); Kato, Takahiko [Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1 Omika, Hitachi-shi 319-1292, Ibaraki-ken (Japan); Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, N8, W13, Kita-ku, Sapporo 060-8628, Hokkaido (Japan)

    2014-07-01

    We report a technique for formation of two-dimensional (2D) nanodot (ND) patterns on gaillium antimoide (GaSb) using a nanosecond pulsed laser irradiation with 532 nm wavelength. The patterns have formed because of the interference and the self-organization under energy deposition of the laser irradiation, which induced the growth of NDs on the local area. The NDs are grown and shrunken in the pattern by energy depositions. In the laser irradiation with average laser energy density of 35 mJ cm⁻², large and small NDs are formed on GaSb surface. The large NDs have grown average diameter from 160 to 200 nm with increase of laser pulses, and the small NDs have shrunken average diameter from 75 to 30 nm. The critical dot size is required about 107 nm for growth of the NDs in the patterns. Nanosecond pulsed laser irradiation can control the self-organized ND size on GaSb in air as a function of the laser pulses.

  5. Dependence of surface distribution of self-assembled InSb nanodots on surface morphology and spacer layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Godbole, M., E-mail: mohit.godbole@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Olivier, E.J. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Coetsee, E.; Swart, H.C. [Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300 (South Africa); Neethling, J.H.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    Self-assembled InSb nanodots (NDs) were grown on a GaSb (1 0 0) substrate using metal-organic vapour phase epitaxy (MOVPE). The effects of etching depth of the substrate and thickness of the GaSb buffer layer on the density and size distribution of single and double layer dots were studied for detector applications. The etch depth of the substrate was varied up to 30 {mu}m. In this particular study, the dots were grown at 450 Degree-Sign C and the GaSb spacer thickness was varied between 50 nm and 200 nm. The optimum substrate etch depth was found to be 30 {mu}m while the best spacer thickness was found to be 200 nm.

  6. Dependence of surface distribution of self-assembled InSb nanodots on surface morphology and spacer layer thickness

    International Nuclear Information System (INIS)

    Godbole, M.; Olivier, E.J.; Coetsee, E.; Swart, H.C.; Neethling, J.H.; Botha, J.R.

    2012-01-01

    Self-assembled InSb nanodots (NDs) were grown on a GaSb (1 0 0) substrate using metal-organic vapour phase epitaxy (MOVPE). The effects of etching depth of the substrate and thickness of the GaSb buffer layer on the density and size distribution of single and double layer dots were studied for detector applications. The etch depth of the substrate was varied up to 30 μm. In this particular study, the dots were grown at 450 °C and the GaSb spacer thickness was varied between 50 nm and 200 nm. The optimum substrate etch depth was found to be 30 μm while the best spacer thickness was found to be 200 nm.

  7. Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials.

    Science.gov (United States)

    Kwon, Woosung; Lee, Gyeongjin; Do, Sungan; Joo, Taiha; Rhee, Shi-Woo

    2014-02-12

    Size-controlled soft-template synthesis of carbon nanodots (CNDs) as novel photoactive materials is reported. The size of the CNDs can be controlled by regulating the amount of an emulsifier. As the size increases, the CNDs exhibit blue-shifted photoluminescence (PL) or so-called an inverse PL shift. Using time-correlated single photon counting, ultraviolet photoelectron spectroscopy, and low-temperature PL measurements, it is revealed that the CNDs are composed of sp² clusters with certain energy gaps and their oleylamine ligands act as auxochromes to reduce the energy gaps. This insight can provide a plausible explanation on the origin of the inverse PL shift which has been debatable over a past decade. To explore the potential of the CNDs as photoactive materials, several prototypes of CND-based optoelectronic devices, including multicolored light-emitting diodes and air-stable organic solar cells, are demonstrated. This study could shed light on future applications of the CNDs and further expedite the development of other related fields. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing

    Science.gov (United States)

    Nguyen, Vanthan; Yan, Lihe; Xu, Huanhuan; Yue, Mengmeng

    2018-01-01

    Measuring temperature with greater precision at localized small length scales or in a nonperturbative manner is a necessity in widespread applications, such as integrated photonic devices, micro/nano electronics, biology, and medical diagnostics. To this context, use of nanoscale fluorescent temperature probes is regarded as the most promising method for temperature sensing because they are noninvasive, accurate, and enable remote micro/nanoscale imaging. Here, we propose a novel ratiometric fluorescent sensor for nanothermometry using carbon nanodots (C-dots). The C-dots were synthesized by one-step method using femtosecond laser ablation and exhibit unique multi-emission property due to emissions from abundant functional groups on its surface. The as-prepared C-dots demonstrate excellent ratiometric temperature sensing under single wavelength excitation that achieves high temperature sensitivity with a 1.48% change per °C ratiometric response over wide-ranging temperature (5-85 °C) in aqueous buffer. The ratiometric sensor shows excellent reversibility and stability, holding great promise for the accurate measurement of temperature in many practical applications.

  9. SU-F-T-327: Total Body Irradiation In-Vivo Dose Measurements Using Optically Stimulated Luminescence (OSL) NanoDots and Farmer Type Ion Chamber

    International Nuclear Information System (INIS)

    Kaur, H; Kumar, S; Sarkar, B; Ganesh, T; Giri, U; Jassal, K; Rathinamuthu, S; Gulia, G; Gopal, V; Mohanti, B; Munshi, A

    2016-01-01

    Purpose: This study was performed to analyze the agreement between optically stimulated luminescence (OSL) nanoDots measured doses and 0.6 cc Farmer type ionization chamber measured doses during total body irradiation (TBI). Methods: In-vivo dose measurements using OSL nanoDots and Farmer chamber were done in a total of twelve patients who received TBI at our center by bilateral parallel-opposed beams technique. In this technique, the patient is kept inside the TBI box which is filled with rice bags and irradiated using two bilateral parallel opposed beams of 40×40 cm"2 size with 45° collimator rotation at an SSD of 333.5 cm in an Elekta Synergy linear accelerator. All patients received a dose of 2 Gy in single fraction as conditioning regimen. The beams were equally weighted at the midplane of the box. The nanoDots were placed over forehead, right and left neck, right and left lung, umbilicus, right and left abdomen, medial part of thigh, knee and toe. A 0.6 cc Farmer chamber was placed in between the thighs of the patient. Measured doses are reported along with the statistical comparisons using paired sample t-test. Results: For the above sites the mean doses were 212.2±21.1, 218.2±7.6, 218.7±9.3, 215.6±9.5, 217.5±11.5, 214.5±7.7, 218.3±6.8, 221.5±15, 229.1±11.0, 220.5±7.7 and 223.3±5.1 cGy respectively. For all OSL measurements the mean dose was 218.6±11.8 cGy. Farmer chamber measurements yielded a mean dose of 208.8±15.6 cGy. Statistical analysis revealed that there was no significant difference between OSL measured doses in forehead, right and left neck, right and left lung, umbilicus, right and left abdomen and toe and Farmer chamber measured doses (0.72≤p≤0.06). However the mean OSL doses at thigh and knee were statistically different (p<0.05) from the Farmer chamber measurements. Conclusion: OSL measurements were found to be in agreement with Farmer type ionization chamber measurements in in-vivo dosimetry of TBI.

  10. Microstructural and magnetic properties of L10 FePt-C (0 0 1) textured nanocomposite films grown on different intermediate layers

    International Nuclear Information System (INIS)

    Chen, J S; Chow, G M; Lim, B C; Hu, J F; Ding, Y F; Ju, G

    2008-01-01

    The FePt : C films with different volume fractions of carbon and different thicknesses were epitaxially grown on a CrRu(2 0 0) underlayer with Pt and MgO intermediate layers. The magnetic properties and microstructure of these FePt : C films were investigated. The FePt : C films grown on the Pt intermediate layer consisted of a continuous layer of FePt, with overlying granular FePt grains, while the FePt : C films grown on the MgO intermediate layer consisted of granular FePt : C layers with overlying granular grains. The formation of the overlying granular FePt grains was attributed to carbon diffusion to the surface which resulted in the second nucleation of FePt. The different interface energies and surface energies of FePt on Pt and MgO intermediate layers caused the formation of an initial continuous FePt layer on the Pt intermediate layer and initial granular FePt layers on the MgO intermediate layer. The coupling between the continuous FePt layer or the granular FePt layer and the overlying granular FePt grains resulted in simultaneous magnetization reversal and thus strong exchange coupling in FePt : C films.

  11. Study of interlayer coupling between FePt and FeCoB thin films through MgO spacer layer

    Science.gov (United States)

    Singh, Sadhana; Kumar, Dileep; Gupta, Mukul; Reddy, V. Raghvendra

    2017-05-01

    Interlayer exchange coupling between hard-FePt and soft-FeCoB magnetic layers has been studied with increasing thickness of insulator MgO spacer layer in FePt/MgO/FeCoB sandwiched structure. A series of the samples were prepared in identical condition using ion beam sputtering method and characterized for their magnetic and structural properties using magneto-optical Kerr effect (MOKE) and X-ray reflectivity measurements. The nature of coupling between FePt and FeCoB was found to be ferromagnetic which decreases exponentially with increasing thickness of MgO layer. At very low thickness of MgO layer, both layers were found strongly coupled thus exhibiting coherent magnetization reversal. At higher thickness, both layers were found decoupled and magnetization reversal occurred at different switching fields. Strong coupling at very low thickness is attributed to pin holes in MgO layer which lead to direct coupling whereas on increasing thickness, coupling may arise due to magneto-static interactions.

  12. CoPt and FePt magnetic alloys grown on van der Waals WSe{sub 2}(0001) surfaces and on arrays of SiO{sub 2} spherical particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Denys

    2008-06-06

    Modern magnetic recording is based on usage of hard magnetic alloys as a recording media. In order to increase the areal storage density (number of stored bits per square inch), materials with a high value of magnetic anisotropy are required to stabilize the direction of the magnetization and thus satisfy the criteria of thermal stability. The magnetic alloy currently used for hard disk drive production is a granular CoCrPt:SiO2 alloy with a grain size of approximately 7 nm and an anisotropy constant of about 0.4 MJ/m{sup 3}. However, the predicted limit of the highest achievable areal density of this type of granular media is 500-600 Gbit/in{sup 2}. To satisfy the demand of higher densities, new magnetic alloys have to be introduced. The most promising candidates for future ultra-high density magnetic recording applications are chemically L10 ordered FePt and CoPt alloys with anisotropy constants of about 10 MJ/m{sup 3} and 3 MJ/m{sup 3}, respectively. In order to obtain a high value of uniaxial magnetic anisotropy, the substrate temperature during molecular beam epitaxy or sputtering deposition has to be higher than 500 C. For practical use in industrial applications the ordering temperature of the FePt and CoPt alloys has to be reduced. One of the promising approaches to reduce the ordering temperature is related to the enhancement of the adatom mobility by growing the alloy on the chemically saturated surface. In this regard an attempt to reduce the ordering temperature of the CoPt alloy with equiatomic composition was performed in the scope of present work by growing the CoPt alloy on van der Waals WSe{sub 2}(0001) substrates. Moreover, an increase in data density can be gained using the concept of patterned media, where an information unit (bit) is stored in a single nanostructure. The most attractive way to produce patterned magnetic media for ultra-high density magnetic recording applications is based on self-assembly of the magnetic nanostructures. In this

  13. SU-F-T-327: Total Body Irradiation In-Vivo Dose Measurements Using Optically Stimulated Luminescence (OSL) NanoDots and Farmer Type Ion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, H; Kumar, S; Sarkar, B; Ganesh, T; Giri, U; Jassal, K; Rathinamuthu, S; Gulia, G; Gopal, V; Mohanti, B; Munshi, A [Fortis Memorial Research Institute, Gurgaon, Haryana (India)

    2016-06-15

    Purpose: This study was performed to analyze the agreement between optically stimulated luminescence (OSL) nanoDots measured doses and 0.6 cc Farmer type ionization chamber measured doses during total body irradiation (TBI). Methods: In-vivo dose measurements using OSL nanoDots and Farmer chamber were done in a total of twelve patients who received TBI at our center by bilateral parallel-opposed beams technique. In this technique, the patient is kept inside the TBI box which is filled with rice bags and irradiated using two bilateral parallel opposed beams of 40×40 cm{sup 2} size with 45° collimator rotation at an SSD of 333.5 cm in an Elekta Synergy linear accelerator. All patients received a dose of 2 Gy in single fraction as conditioning regimen. The beams were equally weighted at the midplane of the box. The nanoDots were placed over forehead, right and left neck, right and left lung, umbilicus, right and left abdomen, medial part of thigh, knee and toe. A 0.6 cc Farmer chamber was placed in between the thighs of the patient. Measured doses are reported along with the statistical comparisons using paired sample t-test. Results: For the above sites the mean doses were 212.2±21.1, 218.2±7.6, 218.7±9.3, 215.6±9.5, 217.5±11.5, 214.5±7.7, 218.3±6.8, 221.5±15, 229.1±11.0, 220.5±7.7 and 223.3±5.1 cGy respectively. For all OSL measurements the mean dose was 218.6±11.8 cGy. Farmer chamber measurements yielded a mean dose of 208.8±15.6 cGy. Statistical analysis revealed that there was no significant difference between OSL measured doses in forehead, right and left neck, right and left lung, umbilicus, right and left abdomen and toe and Farmer chamber measured doses (0.72≤p≤0.06). However the mean OSL doses at thigh and knee were statistically different (p<0.05) from the Farmer chamber measurements. Conclusion: OSL measurements were found to be in agreement with Farmer type ionization chamber measurements in in-vivo dosimetry of TBI.

  14. Evaluation of resistive switching properties of Si-rich oxide embedded with Ti nanodots by applying constant voltage and current

    Science.gov (United States)

    Ohta, Akio; Kato, Yusuke; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    We have studied the resistive switching behaviors of electron beam (EB) evaporated Si-rich oxide (SiO x ) sandwiched between Ni electrodes by applying a constant voltage and current. Additionally, the impact of Ti nanodots (NDs) embedded into SiO x on resistive switching behaviors was investigated because it is expected that NDs can trigger the formation of a conductive filament path in SiO x . The resistive switching behaviors of SiO x show that the response time during resistance switching was decreased by increasing the applied constant current or constant voltage. It was found that Ti-NDs in SiO x enhance the conductive filament path formation owing to electric field concentration by Ti-NDs.

  15. A self-ordered, body-centered tetragonal superlattice of SiGe nanodot growth by reduced pressure CVD

    Science.gov (United States)

    Yamamoto, Yuji; Zaumseil, Peter; Capellini, Giovanni; Schubert, Markus Andreas; Hesse, Anne; Albani, Marco; Bergamaschini, Roberto; Montalenti, Francesco; Schroeder, Thomas; Tillack, Bernd

    2017-12-01

    Self-ordered three-dimensional body-centered tetragonal (BCT) SiGe nanodot structures are fabricated by depositing SiGe/Si superlattice layer stacks using reduced pressure chemical vapor deposition. For high enough Ge content in the island (>30%) and deposition temperature of the Si spacer layers (T > 700 °C), we observe the formation of an ordered array with islands arranged in staggered position in adjacent layers. The in plane periodicity of the islands can be selected by a suitable choice of the annealing temperature before the Si spacer layer growth and of the SiGe dot volume, while only a weak influence of the Ge concentration is observed. Phase-field simulations are used to clarify the driving force determining the observed BCT ordering, shedding light on the competition between heteroepitaxial strain and surface-energy minimization in the presence of a non-negligible surface roughness.

  16. Growth mechanism of InGaN nanodots on three-dimensional GaN structures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwy; Min, Daehong; Nam, Okhyun [Department of Nano-Optical Engineering, Convergence Center for Advanced Nano-Semiconductor (CANS), Korea Polytechnic University (KPU), Siheung-si, Gyeonggi-do (Korea, Republic of)

    2017-07-15

    In this study, we investigated the growth mechanism of indium gallium nitride (InGaN) nanodots (NDs) and an InGaN layer, which were simultaneously formed on a three-dimensional (3D) gallium nitride (GaN) structure, having (0001) polar, (11-22) semi-polar, and (11-20) nonpolar facets. We observed the difference in the morphological and compositional properties of the InGaN structures. From the high resolution transmission electron microscopy (HR-TEM) images, it can be seen that the InGaN NDs were formed only on the polar and nonpolar facets, whereas an InGaN layer was formed on the semi-polar facet. The indium composition variation in all the InGaN structures was observed using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray spectroscopy (EDS). The different growth mechanism can be explained by two reasons: (i) The difference in the diffusivities of indium and gallium adatoms at each facet of 3D GaN structure; and (ii) the difference in the kinetic Wulff plots of polar, semi-polar, and nonpolar GaN planes. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Chemical synthesis, phase transformation and magnetic proprieties of FePt and FePd nanoparticles

    International Nuclear Information System (INIS)

    Delattre, Anastasia

    2010-01-01

    This work aims at understanding the chemical synthesis of FePt and FePd nanoparticles (NPs), and at exploring how to implement the phase transformation from the chemically disordered to the L10 phase, without coalescence. Using hexadecanenitrile instead of oleylamine, we obtain NPs with a more homogenous internal composition, instead of core-shell NPs. Through a systematic study (designed experiment relying on Taguchi tables), we developed the FePd synthesis, while evidencing the role of each ligand and of the reductor. To induce the crystalline phase transformation while avoiding coalescence, we explored two ways. In the first one, atomic vacancies are introduced in the NPs through light ion irradiation, atomic mobility being ensured by annealing at moderate temperature (300 C). As a result, the blocking temperature is multiplied by 4, due to anisotropy enhancement. However, strong chemical ordering in the L10 phase cannot be achieved. The second approach relies on the dispersion of the NPs in a salt (NaCl) matrix, prior to annealing at 700 C: high chemical ordering is achieved, and the blocking temperature is beyond 400 C. We then developed a single-step process to remove the salt by dissolution in water and to re-disperse NPs in stable aqueous or organics solutions. These high magnetic anisotropy NPs are then readily available for further chemical or manipulation steps, with applied perspectives in areas such as data storage, or biology. (author)

  18. Applications of an energy-dispersive pnCCD for X-ray reflectivity: Investigation of interdiffusion in Fe-Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Ali; Send, Sebastian; Pietsch, Ullrich [Universitaet Siegen, FB Physik, Walter-Flex-Strasse 3, 57072 Siegen (Germany); Hartmann, Robert [PNSensor GmbH, Muenchen (Germany); Strueder, Lothar [Universitaet Siegen, FB Physik, Walter-Flex-Strasse 3, 57072 Siegen (Germany); Planck-Institut fuer extraterrestrische Physik (MPE), Muenchen (Germany); MPI Halbleiterlabor, Muenchen (Germany); Savan, Alan; Ludwig, Alfred [Ruhr-Universitaet Bochum, Bochum (Germany); Zotov, Nikolay [Forschungszentrum Juelich, Juelich (Germany)

    2011-11-15

    A frame store pn-junction CCD (pnCCD) detector was applied to study thermally induced interdiffusion in Fe/Pt thin film multilayers (MLs) in a temperature range between 300 and 585 K. Based on the energy resolution of the detector the reflectivity was measured simultaneously in a spectral range between 8 keV < E < 20 keV including the Pt L-edge energies close to 11.5 keV. Above T = 533 K we find a strong drop of intensities at 1st and 2nd order ML Bragg peak interpreted by mutual interdiffusion. Considering a simulated model of interdiffusion it has been found that the concentration of iron that diffuses into the platinum sub layers is higher than that of platinum into iron. The time dependence of inter diffusion was also calculated in the range of 533-568 K and was described by the Arrhenius equation D(T) = D{sub 0} exp(-H{sub a}/k{sub B}T). The activation energy for the MLs used [Fe 1.7 nm/Pt 2 nm]{sub 50} was found to be 0.94 {+-} 0.22 eV. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Carbon Nanodots as Dual-Mode Nanosensors for Selective Detection of Hydrogen Peroxide

    Science.gov (United States)

    Shen, Cheng-Long; Su, Li-Xia; Zang, Jin-Hao; Li, Xin-Jian; Lou, Qing; Shan, Chong-Xin

    2017-07-01

    Hydrogen peroxide (H2O2) is an important product of oxidase-based enzymatic reactions, such as glucose/glucose oxidase (GOD) reaction. Therefore, the probing of generated H2O2 for achieving the detection of various carbohydrates and their oxidases is very significative. Herein, we report one kind of dual-emission carbon nanodots (CDs) that can serve as novel dual-mode nanosensors with both fluorometric and colorimetric output for the selective detection of H2O2. The dual-model nanosensors are established only by the undecorated dual-emission CDs, where significant fluorometric and colorimetric changes are observed with the addition of different concentrations of H2O2 in the CD solution, which benefit to the achievement of the naked-eye detection for H2O2. The mechanism of the nanosensors can be attributed to the fact that the external chemical stimuli like hydroxyl radicals from H2O2 bring about the change of surface properties and the aggregation of CDs, which dominate the emission and absorption of CDs. The constructed dual-mode nanosensors exhibit good biocompatibility and high selectivity toward H2O2 with a linear detection range spanning from 0.05 to 0.5 M and allow the detection of H2O2 as low as 14 mM.

  20. Non-lift-off block copolymer lithography of 25 nm magnetic nanodot arrays.

    Science.gov (United States)

    Baruth, A; Rodwogin, Marc D; Shankar, A; Erickson, M J; Hillmyer, Marc A; Leighton, C

    2011-09-01

    Although nanolithographic techniques based on self-assembled block copolymer templates offer tremendous potential for fabrication of large-area nanostructure arrays, significant difficulties arise with both the lift-off and etch processes typically used for pattern transfer. These become progressively more important in the limit of extreme feature sizes. The few techniques that have been developed to avoid these issues are quite complex. Here, we demonstrate successful execution of a nanolithographic process based on solvent annealed, cylinder-forming, easily degradable, polystyrene-b-polylactide block copolymer films that completely avoids lift-off in addition to the most challenging aspects of etching. We report a "Damascene-type" process that overfills the polystyrene template with magnetic metal, employs ion beam milling to planarize the metal surface down to the underlying polystyrene template, then exploits the large etch rate contrast between polystyrene and typical metals to generate pattern reversal of the original template into the magnetic metal. The process is demonstrated via formation of a large-area array of 25 nm diameter ferromagnetic Ni(80)Fe(20) nanodots with hexagonally close-packed order. Extensive microscopy, magnetometry, and electrical measurements provide detailed characterization of the pattern formation. We argue that the approach is generalizable to a wide variety of materials, is scalable to smaller feature sizes, and critically, minimizes etch damage, thus preserving the essential functionality of the patterned material.

  1. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    International Nuclear Information System (INIS)

    Aji, Mahardika Prasetya; Wiguna, Pradita Ajeng; Susanto,; Rosita, Nita; Suciningtyas, Siti Aisyah; Sulhadi

    2016-01-01

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showed that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.

  2. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Aji, Mahardika Prasetya, E-mail: mahardika190@gmail.com; Wiguna, Pradita Ajeng; Susanto,; Rosita, Nita; Suciningtyas, Siti Aisyah; Sulhadi [Department of Physics, Faculty of Mathematics and Natural Science Universitas Negeri Semarang, Jalan Raya Sekaran Gunungpati 50229 Indonesia (Indonesia)

    2016-04-19

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showed that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.

  3. Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries

    Science.gov (United States)

    Pei, Jie; Geng, Hongbo; Ang, Huixiang; Zhang, Lingling; Wei, Huaixin; Cao, Xueqin; Zheng, Junwei; Gu, Hongwei

    2018-07-01

    In this manuscript, we synthesize a porous three-dimensional anode material consisting of molybdenum dioxide nanodots anchored on nitrogen (N)/sulfur (S) co-doped reduced graphene oxide (GO) (3D MoO2/NP-NSG) through hydrothermal, lyophilization and thermal treatment. First, the NP-NSG is formed via hydrothermal treatment using graphene oxide, hydrogen peroxide (H2O2), and thiourea as the co-dopant for N and S, followed by calcination of the N/S co-doped GO in the presence of ammonium molybdate tetrahydrate to obtain the 3D MoO2/NP-NSG product. This novel material exhibits a series of out-bound electrochemical performances, such as superior conductivity, high specific capacity, and excellent stability. As an anode for lithium-ion batteries (LIBs), the MoO2/NP-NSG electrode has a high initial specific capacity (1376 mAh g‑1), good cycling performance (1250 mAh g‑1 after 100 cycles at a current density of 0.2 A g‑1), and outstanding Coulombic efficiency (99% after 450 cycles at a current density of 1 A g‑1). Remarkably, the MoO2/NP-NSG battery exhibits exceedingly good rate capacities of 1021, 965, 891, 760, 649, 500 and 425 mAh g‑1 at different current densities of 200, 500, 1000, 2000, 3000, 4000 and 5000 mA g‑1, respectively. The superb electrochemical performance is owed to the high porosity of the 3D architecture, the synergistic effect contribution from N and S co-doped in the reduced graphene oxide (rGO), and the uniform distribution of MoO2 nanodots on the rGO surface.

  4. Facile synthesis of flower like FePt@ZnO core–shell structure and its bifunctional properties

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Jerina [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, O.D., E-mail: ddjaya@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Mandal, B.P. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Salunke, H.G. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Naik, R. [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-06-01

    Graphical abstract: Flower shaped FePt and ZnO coated FePt with core–shell nanostructures are synthesized by a facile solvothermal procedure. Shell thickness of ZnO over FePt core was tuned by varying FePt concentration with respect to ZnO. Hybrid structure with lower FePt concentration exhibited bifunctionality such as near room temperature ferromagnetism and photoluminescence. Pristine FePt crystallize in the fct (L1{sub 0}) phase whereas it converts into fcc phase in presence of ZnO. - Highlights: • FePt@ZnO hybrid core–shell particles, with unique flower shape morphology have been prepared by solvothermal method. • Phase transition of fct-FePt to fcc-FePt has been found in presence of ZnO nanoparticles. • Plausible mechanism for growth of flowershaped nanoparticle is in accordance with energy minimization principle. • The core shell structure (FePt@ZnO) exhibits bi-functional properties. - Abstract: Flower shaped FePt and ZnO coated FePt (FePt@ZnO) core–shell nanostructures are synthesized by a facile solvothermal procedure. Two different compositions (molar ratio) of FePt and ZnO (FePt:ZnO = 1:3 and FePt:ZnO = 1:6) core–shells with different thicknesses of ZnO shells were synthesized. Hybrid FePt@ZnO core–shell flower structure with lower FePt concentration (FePt:ZnO = 1:6) exhibited bifunctionality including near room temperature ferromagnetism and photoluminescence at ambient conditions. X-ray diffraction patterns of pristine FePt showed partially ordered face centred tetragonal (fct) L1{sub 0} phase whereas ZnO coated FePt (FePt@ZnO) nanostructures showed hexagonal ZnO and disordered phase of FePt with fcc structure. The phase transition of fct FePt to fcc phase occurring in presence of ZnO is further confirmed by transmission electron microscopy and magnetic measurement studies. The formation of the nanoflowers was possibly due to growth along the [0 1 1] or [0 0 1] direction, keeping the core nearly spherical in accordance with the

  5. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement.

    Science.gov (United States)

    Zhang, Yanan; Guo, Shan; Cheng, Shibo; Ji, Xinghu; He, Zhike

    2017-08-15

    The homeostasis of lysosomal pH is crucial in cell physiology. Developing small fluorescent nanosensors for lysosome imaging and ratiometric measurement of pH is highly demanded yet challenging. Herein, a pH-sensitive fluorescein tagged aptamer AS1411 has been utilized to covalently modify the label-free fluorescent silicon nanodots via a crosslinker for construction of a ratiometric pH biosensor. The established aptasensor exhibits the advantages of ultrasmall size, hypotoxicity, excellent pH reversibility and good photostability, which favors its application in an intracellular environment. Using human breast MCF-7 cancer cells and MCF-10A normal cells as the model, this aptasensor shows cell specificity for cancer cells and displays a wide pH response range of 4.5-8.0 in living cells. The results demonstrate that the pH of MCF-7 cells is 5.1, which is the expected value for acidic organelles. Lysosome imaging and accurate measurement of pH in MCF-7 cells have been successfully conducted based on this nanosensor via fluorescent microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dual modal ultra-bright nanodots with aggregation-induced emission and gadolinium-chelation for vascular integrity and leakage detection.

    Science.gov (United States)

    Feng, Guangxue; Li, Jackson Liang Yao; Claser, Carla; Balachander, Akhila; Tan, Yingrou; Goh, Chi Ching; Kwok, Immanuel Weng Han; Rénia, Laurent; Tang, Ben Zhong; Ng, Lai Guan; Liu, Bin

    2018-01-01

    The study of blood brain barrier (BBB) functions is important for neurological disorder research. However, the lack of suitable tools and methods has hampered the progress of this field. Herein, we present a hybrid nanodot strategy, termed AIE-Gd dots, comprising of a fluorogen with aggregation-induced emission (AIE) characteristics as the core to provide bright and stable fluorescence for optical imaging, and gadolinium (Gd) for accurate quantification of vascular leakage via inductively-coupled plasma mass spectrometry (ICP-MS). In this report, we demonstrate that AIE-Gd dots enable direct visualization of brain vascular networks under resting condition, and that they form localized punctate aggregates and accumulate in the brain tissue during experimental cerebral malaria, indicative of hemorrhage and BBB malfunction. With its superior detection sensitivity and multimodality, we hereby propose that AIE-Gd dots can serve as a better alternative to Evans blue for visualization and quantification of changes in brain barrier functions. Copyright © 2017. Published by Elsevier Ltd.

  7. Iron-platinum multilayer thin film reactions to form L1(0) iron-platinum and exchange spring magnets

    Science.gov (United States)

    Yao, Bo

    FePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of [Fe/Pt] n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of [Fe/Pt]n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of [Fe/Pt] n multilayer films were systematically examined. The transmission electron microscopy (TEM) study of the annealed multilayers indicates that the Pt layer grows at the expense of Fe during annealing, forming a disordered fcc FePt phase by the interdiffusion of Fe into Pt. This thickening of the fcc Pt layer can be attributed to the higher solubilities of Fe into fcc Pt, as compared to the converse. For the range of film thickness studied, a continuous L10 FePt product layer that then thickens with further annealing is not found. Instead, the initial L10 FePt grains are distributed mainly on the grain boundaries within the fcc FePt layer and at the Fe/Pt interfaces and further transformation of the sample to the ordered L10 FePt phase proceeds coupled with the growth of the initial L10 FePt grains. A comprehensive study of annealed [Fe/Pt]n films is provided concerning the phase fraction, grain size, nucleation/grain density, interdiffusivity, long-range order parameter, and texture, as well as magnetic properties. A method based on hollow cone dark field TEM is introduced to measure the volume fraction, grain size, and density of ordered L10 FePt phase grains in the annealed films, and low-angle X-ray diffraction is used to measure the effective Fe-Pt interdiffusivity. The process-structure-properties relations of two groups of samples with varying substrate temperature and periodicity are reported. The results demonstrate that the processing parameters

  8. Very high coercivities of top-layer diffusion Au/FePt thin films

    International Nuclear Information System (INIS)

    Yuan, F.T.; Chen, S.K.; Liao, W.M.; Hsu, C.W.; Hsiao, S.N.; Chang, W.C.

    2006-01-01

    The Au/FePt samples were prepared by depositing a gold cap layer at room temperature onto a fully ordered FePt layer, followed by an annealing at 800 deg. C for the purpose of interlayer diffusion. After the deposition of the gold layer and the high-temperature annealing, the gold atoms do not dissolve into the FePt Ll 0 lattice. Compared with the continuous FePt film, the TEM photos of the bilayer Au(60 nm)/FePt(60 nm) show a granular structure with FePt particles embedded in Au matrix. The coercivity of Au(60 nm)/FePt(60 nm) sample is 23.5 kOe, which is 85% larger than that of the FePt film without Au top layer. The enhancement in coercivity can be attributed to the formation of isolated structure of FePt ordered phase

  9. Luminescence properties of Si-capped β-FeSi{sub 2} nanodots epitaxially grown on Si(001) and (111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Amari, Shogo; Ichikawa, Masakazu [Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Yoshiaki, E-mail: nakamura@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan)

    2014-02-28

    We studied the luminescence properties of Si-capped β-FeSi{sub 2} nanodots (NDs) epitaxially grown on Si substrates by using photoluminescence (PL) and electroluminescence (EL) spectroscopies. Codepositing Fe and Si on ultrathin SiO{sub 2} films induced the self-assembly of epitaxial β-FeSi{sub 2} NDs. The PL spectra of the Si/β-FeSi{sub 2} NDs/Si structure depended on the crystal orientation of the Si substrate. These structures exhibited a broad PL peak near 0.8 eV on both Si(001) and (111) substrates. The PL intensity depended on the shape of the β-FeSi{sub 2} NDs. For the flat NDs, which exhibited higher PL intensity, we also recorded EL spectra. We explained the luminescence properties of these structures by the presence of nanostructured Si offering radiative electronic states in the Si cap layers, generated by nano-stressors for upper Si layer: the strain-relaxed β-FeSi{sub 2} NDs.

  10. Characterization of nanoDot optically stimulated luminescence detectors and high-sensitivity MCP-N thermoluminescent detectors in the 40-300 kVp energy range.

    Science.gov (United States)

    Poirier, Yannick; Kuznetsova, Svetlana; Villarreal-Barajas, Jose Eduardo

    2018-01-01

    To investigate empirically the energy dependence of the detector response of two in vivo luminescence detectors, LiF:Mg,Cu,P (MCP-N) high-sensitivity TLDs and Al 2 O 3 :C OSLDs, in the 40-300-kVp energy range in the context of in vivo surface dose measurement. As these detectors become more prevalent in clinical and preclinical in vivo measurements, knowledge of the variation in the empirical dependence of the measured response of these detectors across a wide spectrum of beam qualities is important. We characterized a large range of beam qualities of three different kilovoltage x-ray units: an Xstrahl 300 Orthovoltage unit, a Precision x-Ray X-RAD 320ix biological irradiator, and a Varian On-Board Imaging x-ray unit. The dose to water was measured in air according to the AAPM's Task Group 61 protocol. The OSLDs and TLDs were irradiated under reference conditions on the surface of a water phantom to provide full backscatter conditions. To assess the change in sensitivity in the long term, we separated the in vivo dosimeters of each type into an experimental and a reference group. The experimental dosimeters were irradiated using the kilovoltage x-ray units at each beam quality used in this investigation, while the reference group received a constant 10 cGy irradiation at 6 MV from a Varian clinical linear accelerator. The individual calibration of each detector was verified in cycles where both groups received a 10 cGy irradiation at 6 MV. The nanoDot OSLDs were highly reproducible, with ±1.5% variation in response following >40 measurement cycles. The TLDs lost ~20% of their signal sensitivity over the course of the study. The relative light output per unit dose to water of the MCP-N TLDs did not vary with beam quality for beam qualities with effective energies <50 keV (~150 kVp/6 mm Al). At higher energies, they showed a reduced (~75-85%) light output per unit dose relative to 6 MV x rays. The nanoDot OSLDs exhibited a very strong (120

  11. Growing Embossed Nanostructures of Polymer Brushes on Wet-Etched Silicon Templated via Block Copolymers

    Science.gov (United States)

    Lu, Xiaobin; Yan, Qin; Ma, Yinzhou; Guo, Xin; Xiao, Shou-Jun

    2016-02-01

    Block copolymer nanolithography has attracted enormous interest in chip technologies, such as integrated silicon chips and biochips, due to its large-scale and mass production of uniform patterns. We further modified this technology to grow embossed nanodots, nanorods, and nanofingerprints of polymer brushes on silicon from their corresponding wet-etched nanostructures covered with pendent SiHx (X = 1-3) species. Atomic force microscopy (AFM) was used to image the topomorphologies, and multiple transmission-reflection infrared spectroscopy (MTR-IR) was used to monitor the surface molecular films in each step for the sequential stepwise reactions. In addition, two layers of polymethacrylic acid (PMAA) brush nanodots were observed, which were attributed to the circumferential convergence growth and the diffusion-limited growth of the polymer brushes. The pH response of PMAA nanodots in the same region was investigated by AFM from pH 3.0 to 9.0.

  12. Structural and magnetic properties of FePt nanoparticles from the gas phase; Strukturelle und magnetische Eigenschaften von FePt-Nanopartikeln aus der Gasphase

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrieva, O.

    2007-09-21

    In this work, we present the structural and magnetic characterization of FePt nanoparticles. The nanoparticles with mean size of about 6 nm were prepared by sputtering in the gas and subsequent inert gas condensation. The particles are annealed in the furnace during their flight prior to deposition on a substrate. The aim of this work is to prepare magnetically hard FePt nanoparticles in the L1{sub 0}-ordered phase. The structure of the particles was investigated by high-resolution transmission electron microscopy, and the investigations were supported by contrast simulations. The morphology of the particles varies with the sputter-gas pressure and with the annealing temperature. At a pressure of 0.5 mbar, the FePt-nanoparticles are multiply-twinned with an icosahedral structure and exhibit no formation of the L1{sub 0}-ordered phase. At a higher pressure of 1 mbar and an annealing temperature of 1000 C, the particles are partially single-crystalline. About 36 % of the particles are found to be in the L1{sub 0}-ordered state as was estimated by statistical counting supported by simulations. In order to activate the volume diffusion in the particles and to stabilize the formation of the L1{sub 0}-ordered state, the addition of nitrogen was used during the sputtering phase. In this phase, atomic nitrogen is incorporated interstitially into the structure of the primary particles. After annealing nitrogen effuses out of the particles and, thereby, increases the volume diffusion of the Fe and Pt atoms. The incorporation of nitrogen atoms during nucleation and their effusion at an annealing temperature of 1000 C was verified by electron energy loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS). Structural investigations on particles prepared in the presence of nitrogen shows that most of the particles are single-crystalline and about 70 % of them are L1{sub 0}-ordered. Detailed structural analysis of the nanoparticles was done by the exit wave

  13. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.).

    Science.gov (United States)

    Chen, Jing; Dou, Runzhi; Yang, Zhongzhou; Wang, Xiaoping; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2016-08-01

    In this study, the toxicity of water-soluble carbon nanodots (C-dots) to maize (Zea mays L.) and their uptake and transport in plants were investigated. After exposed in sand matrix amended with 0-2000 mg/L C-dots for 4 weeks, we found that the phytotoxicity of C-dots was concentration-dependent. C-dots at 250 and 500 mg/L showed no toxicity to maize. However, 1000 and 2000 mg/L C-dots significantly reduced the fresh weight of root by 57% and 68%, and decreased the shoot fresh weight by 38% and 72%, respectively. Moreover, in maize roots, the exposure of C-dots at 2000 mg/L significantly increased the H2O2 content and lipid peroxidation (6.5 and 1.65 times higher, respectively), as well as, the antioxidant enzymes activities, up to 2, 1.5, 1.9 and 1.9 times higher for catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase, respectively. On the other hand, C-dots were observed in detached root-cap cells, cortex and vascular bundle of roots and mesophyll cells of leaves through fluorescence microscopy analysis, suggesting that C-dots were absorbed and translocated systemically in maize. Remarkably, a certain amount of C-dots were excreted out from leaf blade. To our knowledge, this is the first study combined phenotypic observation with physiologic responses and bioaccumulation and translocation analysis of C-dots to investigate their effect and fate in maize.

  14. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching.

    Science.gov (United States)

    Zhang, Yanan; Ning, Xinping; Mao, Guobin; Ji, Xinghu; He, Zhike

    2018-05-01

    We have developed a new enzyme-free method for target sequence DNA detection based on the dynamic quenching of fluorescent silicon nanodots (SiNDs) toward Cy5-tagged DNA probe. Fascinatingly, the water-soluble SiNDs can quench the fluorescence of cyanine (Cy5) in Cy5-tagged DNA probe in homogeneous solution, and the fluorescence of Cy5-tagged DNA probe can be restored in the presence of target sequence DNA (the synthetic target miRNA-27a). Based on this phenomenon, a SiND-featured fluorescent sensor has been constructed for "turn-on" detection of the synthetic target miRNA-27a for the first time. This newly developed approach possesses the merits of low cost, simple design, and convenient operation since no enzymatic reaction, toxic reagents, or separation procedures are involved. The established method achieves a detection limit of 0.16 nM, and the relative standard deviation of this method is 9% (1 nM, n = 5). The linear range is 0.5-20 nM, and the recoveries in spiked human fluids are in the range of 90-122%. This protocol provides a new tactic in the development of the nonenzymic miRNA biosensors and opens a promising avenue for early diagnosis of miRNA-associated disease. Graphical abstract The SiND-based fluorescent sensor for detection of S-miR-27a.

  15. Unique lasing mechanism of localized dispersive nanostructures in InAs/InGaAlAs quantum dash broad interband laser

    KAUST Repository

    Tan, C. L.; Djie, H. S.; Tan, C. K.; Ooi, Boon S.

    2010-01-01

    The authors report on the nanowires-like and nanodots-like lasing behaviors in addition to multiple-wavelength interband transitions from InAs/InAlGaAs quantum dash (Qdash) lasers in the range of ~1550 nm. The presence of lasing actions

  16. One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy Sciences, Beijing 100049 (China); Zhang Xiong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Zhang Dacheng [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy Sciences, Beijing 100049 (China); Ma Yanwei, E-mail: ywma@mail.iee.ac.cn [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-01-15

    Highlights: > Graphite oxide instead of graphene as precursor has been used to synthesize reduced graphene oxide/ruthenium oxide composites by a hydrothermal treatment. > Using NaOH solution to adjust pH of GO colloids leads to homogeneous ruthenium oxide deposited on reduced graphene oxide sheets. > A maximum capacitance of 471 F g{sup -1} is obtained at 0.5 A g{sup -1} for the composites when loading 40% of RuO{sub 2} and its life retention reaches 92% after 3000 cycles. - Abstract: Ruthenium oxide nanodots have been deposited on reduced graphene oxide (RGO) sheets homogeneously by hydrothermal and annealing methods. Adding NaOH solution in GO colloids prevents the restack and agglomeration of GO sheets when mixed with ruthenium chloride solution. Local crystallization of RuO{sub 2} in the composites is revealed by X-ray diffraction and transmission electron microscopy. The element mapping image demonstrates the uniform distribution of Ru on RGO sheets. Unlike the pure crystalline RuO{sub 2} exhibiting poor electrochemical performance, the composites present superior capacitive properties. The hydrothermal time is optimized and a maximum of 471 F g{sup -1} is measured in the composites at 0.5 A g{sup -1} when loaded with 45 wt% of RuO{sub 2}. After 3000 cycles, its specific capacitance remains 92% of the maximum capacitance. Our results suggest potential application of the reduced graphene oxide/ruthenium oxide composites to supercapacitors.

  17. One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors

    International Nuclear Information System (INIS)

    Chen Yao; Zhang Xiong; Zhang Dacheng; Ma Yanwei

    2012-01-01

    Highlights: → Graphite oxide instead of graphene as precursor has been used to synthesize reduced graphene oxide/ruthenium oxide composites by a hydrothermal treatment. → Using NaOH solution to adjust pH of GO colloids leads to homogeneous ruthenium oxide deposited on reduced graphene oxide sheets. → A maximum capacitance of 471 F g -1 is obtained at 0.5 A g -1 for the composites when loading 40% of RuO 2 and its life retention reaches 92% after 3000 cycles. - Abstract: Ruthenium oxide nanodots have been deposited on reduced graphene oxide (RGO) sheets homogeneously by hydrothermal and annealing methods. Adding NaOH solution in GO colloids prevents the restack and agglomeration of GO sheets when mixed with ruthenium chloride solution. Local crystallization of RuO 2 in the composites is revealed by X-ray diffraction and transmission electron microscopy. The element mapping image demonstrates the uniform distribution of Ru on RGO sheets. Unlike the pure crystalline RuO 2 exhibiting poor electrochemical performance, the composites present superior capacitive properties. The hydrothermal time is optimized and a maximum of 471 F g -1 is measured in the composites at 0.5 A g -1 when loaded with 45 wt% of RuO 2 . After 3000 cycles, its specific capacitance remains 92% of the maximum capacitance. Our results suggest potential application of the reduced graphene oxide/ruthenium oxide composites to supercapacitors.

  18. Development of novel FePt/nanodiamond hybrid nanostructures: L1{sub 0} phase size-growth suppression and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Douvalis, A. P., E-mail: adouval@uoi.gr; Bourlinos, A. B. [University of Ioannina, Physics Department (Greece); Tucek, J.; Čépe, K. [Palacký University Olomouc, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (Czech Republic); Bakas, T. [University of Ioannina, Physics Department (Greece); Zboril, R. [Palacký University Olomouc, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (Czech Republic)

    2016-05-15

    A new type of hybrid nanomaterial composed of magnetic FePt nanoparticles grown on the surface of nanodiamond nanotemplate assemblies is described for the first time. Post annealing in vacuum of the as-made nanomaterial bearing cubic A1 soft magnetic FePt nanoparticles leads to the development of FePt nanoparticles with tetragonal L1{sub 0} hard, magnetic-phase characteristics, leaving untouched the nanodiamond nanotemplate assemblies. X-ray diffraction, high-resolution transmission electron microscopy including chemical mapping (HRTEM/HAADF), magnetization measurements, and {sup 57}Fe Mössbauer spectroscopy data show that the magnetic FePt nanoparticles, with average sizes of 3 and 8 nm in the as-made and annealed hybrids, respectively, are homogenously distributed within the nanodiamond template in both nanomaterials. As a consequence, their structural, morphological, and magnetic properties differ significantly from the corresponding properties of the nonsupported (free) as-made and annealed FePt nanoparticles with average sizes of 6 and 32 nm, respectively, developed by the same methods. This spatial isolation suppresses the size-growth of the FePt nanoparticles during the post-annealing procedure, triggering superparamagnetic relaxation phenomena, which are exposed as a combination of hard and soft magnetic-phase characteristics.

  19. Formation of hard magnetic L1{sub 0}-FePt/FePd monolayers from elemental multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Nam Hoon

    2007-06-18

    In this thesis, ordered L1{sub 0}-FePt and FePd films of different nominal compositions are prepared from Fe/Pt and Fe/Pd multilayers by annealing. In case of the L1{sub 0}-FePt films the composition of the films is modified by changing the individual elemental layer thicknesses in the multilayer precursors. This simple variation of the composition is the great advantage of the multilayer approach compared to sputtering single alloy layer from an alloy target. The formation mechanism of the fct phase from the multilayers and the microstructural properties are investigated. The characteristics of the hysteresis loop (coercivity {mu}{sub 0}H{sub c}, remanence J{sub r}) and of the intrinsic magnetic properties (anisotropy constant K{sub l}, spontaneous polarization J{sub s}, exchange constant A) of the ordered L1{sub 0}-FePt and FePd films are studied. The effects of the composition of the L1{sub 0}-FePt films on the microstructural and magnetic properties are investigated. The microstructure of these ordered L1{sub 0}-FePt films are then correlated to the magnetic properties with microstructural parameters by investigating the temperature dependence of the coercivity. (orig.)

  20. Annealing effect on magnetic property and recording performance of [FePt/MgO]n perpendicular magnetic recording media

    International Nuclear Information System (INIS)

    Suzuki, Takao; Zhang, Zhengang; Singh, Amarendra K.; Yin, Jinhua; Perumal, A.; Osawa, Hiroshi

    2005-01-01

    Granular-type FePt perpendicular magnetic recording media with (001)-texture, obtained by annealing FePt/MgO multilayer films, are fabricated onto 2.5-in glass discs. For the sake of spin-stand testing, the coercivity of FePt films is carefully modulated by controlling the annealing conditions. With annealing, exchange coupling between FePt grains is decreased, indicated by the reductions in α value and activation volume. FePt ordering process is dependent on initial FePt/MgO multilayer structures, which governs the optimum annealing condition regarding coercivities and α(=4π(dM/dH)H=Hc). The SNR ratio exhibits a sensitive dependence on initial FePt/MgO multilayer structures as well as annealing conditions

  1. Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu(2+) sensing in living cells.

    Science.gov (United States)

    Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Zhao, Bo; Wen, Xiangping; Zhang, Guomei; Dong, Chuan; Shuang, Shaomin

    2016-03-15

    We report a controllable strategy for fabrication of green and blue fluorescent carbon nanodots (CDs), and demonstrate their applications for pH and Cu(2+) sensing in living cells. Green and blue fluorescent CDs have been synthesized by hydrothermal method and pyrolysis of leeks, respectively, providing an easy way for the production of CDs without the request of tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. Green fluorescent CDs (G-CDs) exhibit high tolerance to pH values and external cations. Blue fluorescent CDs (B-CDs) can be applied to pH and Cu(2+) sensing. The linear range of Cu(2+) detection is 0.01-10.00 μM and the detection limit is 0.05 μM. For pH detection, there is a good linearity in the pH range of 3.5-10.0. The linear and rapid response of B-CDs to Cu(2+) and pH is valuable for Cu(2+) and pH sensing in living cells. Confocal fluorescent imaging of human cervical carcinoma cells indicates that B-CDs could visualize Cu(2+) and pH fluctuations in living cells with negligible autofluorescence. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries.

    Science.gov (United States)

    Liu, Yihang; Zhang, Anyi; Shen, Chenfei; Liu, Qingzhou; Cao, Xuan; Ma, Yuqiang; Chen, Liang; Lau, Christian; Chen, Tian-Chi; Wei, Fei; Zhou, Chongwu

    2017-06-27

    Sodium-ion batteries offer an attractive option for potential low cost and large scale energy storage due to the earth abundance of sodium. Red phosphorus is considered as a high capacity anode for sodium-ion batteries with a theoretical capacity of 2596 mAh/g. However, similar to silicon in lithium-ion batteries, several limitations, such as large volume expansion upon sodiation/desodiation and low electronic conductance, have severely limited the performance of red phosphorus anodes. In order to address the above challenges, we have developed a method to deposit red phosphorus nanodots densely and uniformly onto reduced graphene oxide sheets (P@RGO) to minimize the sodium ion diffusion length and the sodiation/desodiation stresses, and the RGO network also serves as electron pathway and creates free space to accommodate the volume variation of phosphorus particles. The resulted P@RGO flexible anode achieved 1165.4, 510.6, and 135.3 mAh/g specific charge capacity at 159.4, 31878.9, and 47818.3 mA/g charge/discharge current density in rate capability test, and a 914 mAh/g capacity after 300 deep cycles in cycling stability test at 1593.9 mA/g current density, which marks a significant performance improvement for red phosphorus anodes for sodium-ion chemistry and flexible power sources for wearable electronics.

  3. Low-temperature formation of crystalline Si:H/Ge:H heterostructures by plasma-enhanced CVD in combination with Ni-nanodots seeding nucleation

    Science.gov (United States)

    Lu, Yimin; Makihara, Katsunori; Takeuchi, Daichi; Ikeda, Mitsuhisa; Ohta, Akio; Miyazaki, Seiichi

    2017-06-01

    Hydrogenated microcrystalline (µc) Si/Ge heterostructures were prepared on quartz substrates by plasma-enhanced chemical vapor deposition (CVD) from VHF inductively coupled plasma of SiH4 just after GeH4 employing Ni nanodots (NDs) as seeds for crystalline nucleation. The crystallinity of the films and the progress of grain growth were characterized by Raman scattering spectroscopy and atomic force microscopy (AFM), respectively. When the Ge films were grown on Ni-NDs at 250 °C, the growth of µc-Ge films with crystallinity as high as 80% was realized without an amorphous phase near the Ge film/quartz substrate interface. After the subsequent Si film deposition at 250 °C, fine grains were formed in the early stages of film growth on µc-Ge films with compositional mixing (µc-Si0.85Ge0.15:H) caused by the release of large lattice mismatch between c-Si and c-Ge. With further increase in Si:H film thickness, the formation of large grain structures accompanied by fine grains was promoted. These results suggest that crystalline Si/Ge heterojunctions can be used for efficient carrier collection in solar cell application.

  4. Poly(vinylidene fluoride)/NH2-Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor.

    Science.gov (United States)

    Cho, Sunghun; Lee, Jun Seop; Jang, Jyongsik

    2015-05-13

    This work describes a ternary nanocomposite system, composed of poly(vinylidene fluoride) (PVDF), NH2-treated graphene nanodots (GNDs), and reduced graphene oxides (RGOs), for use in high energy density capacitor. When the RGO sheets were added to PVDF matrix, the β-phase content of PVDF became higher than that of the pristine PVDF. The surface-treatment of GNDs with an ethylenediamine can promote the hydrogen bonding interactions between the GNDs and PVDF, which promote the formation of β-phase PVDF. This finding could be extended to combine the advantages of both RGO and NH2-treated GND for developing an effective and reliable means of preparing PVDF/NH2-treated GND/RGO nanocomposite. Relatively small amounts of NH2-treated GND/RGO cofillers (10 vol %) could make a great impact on the α → β phase transformation, dielectric, and ferroelectric properties of the ternary nanocomposite. The resulting PVDF/NH2-treated GND/RGO nanocomposite exhibited higher dielectric constant (ε' ≈ 60.6) and larger energy density (U(e) ≈ 14.1 J cm(-3)) compared with the pristine PVDF (ε' ≈ 11.6 and U(e) ≈ 1.8 J cm(-3)).

  5. Magnetic properties of nanocrystallized Fe-Pt-B melt-spun ribbons

    International Nuclear Information System (INIS)

    Yamamoto, Tokujiro; Omori, Akihiro; Kimura, Hisamichi; Inoue, Akihisa

    2007-01-01

    L1 0 FePt nanoparticles have been prepared by etching grain boundaries of heat-treated melt-spun Fe-19Pt-25B (at.%) alloy ribbons. It is revealed that an L1 0 FePt nanocrystalline phase is directly formed from the Fe-Pt-B amorphous ribbons by long-time heat treatment at low temperatures in the vicinity of 723 K. With increasing heat treatment time, dimensions of the nanocrystallized FePt grains increase, accompanied by a change from soft ferromagnetic to hard ferromagnetic. The ribbon crystallized at 723 K for 1.8 ks consists of only an FePt L1 0 phase and its coercivity is as low as 0.381 kA/m. However, it increases to 372 kA/m with increasing grain size of precipitated L1 0 phase to about 30 nm by heat treatment for 86.4 ks, while the saturation magnetic flux density remains constant at about 0.4 T. Etching boundaries in heat-treated ribbons has been performed to obtain ferromagnetic L1 0 FePt nanoparticles and several particles were observed by means of transmission electron microscopy

  6. Influence of an Fe cap layer on the structural and magnetic properties of Fe49Pt51/Fe bi-layers

    International Nuclear Information System (INIS)

    Chao-Yang, Duan; Bin, Ma; Zong-Zhi, Zhang; Qing-Yuan, Jin; Fu-Lin, Wei

    2009-01-01

    The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated. Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L1 0 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer. Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe 49 Pt 51 /Fe bi-layers by their exchange coupling

  7. Structural investigations of silicon nanostructures grown by self-organized island formation for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Roczen, Maurizio; Malguth, Enno; Barthel, Thomas; Gref, Orman; Toefflinger, Jan A.; Schoepke, Andreas; Schmidt, Manfred; Ruske, Florian; Korte, Lars; Rech, Bernd [Institute for Silicon Photovoltaics, Helmholtz-Zentrum Berlin, Berlin (Germany); Schade, Martin; Leipner, Hartmut S. [Martin-Luther-Universitaet Halle-Wittenberg, Interdisziplinaeres Zentrum fuer Materialwissenschaften, Halle (Germany); Callsen, Gordon; Hoffmann, Axel [Technische Universitaet Berlin, Institut fuer Festkoerperphysik, Berlin (Germany); Phillips, Matthew R. [University of Technology Sydney, Department of Physics and Advanced Materials, NSW (Australia)

    2012-09-15

    The self-organized growth of crystalline silicon nanodots and their structural characteristics are investigated. For the nanodot synthesis, thin amorphous silicon (a-Si) layers with different thicknesses have been deposited onto the ultrathin (2 nm) oxidized (111) surface of Si wafers by electron beam evaporation under ultrahigh vacuum conditions. The solid phase crystallization of the initial layer is induced by a subsequent in situ annealing step at 700 C, which leads to the dewetting of the initial a-Si layer. This process results in the self-organized formation of highly crystalline Si nanodot islands. Scanning electron microscopy confirms that size, shape, and planar distribution of the nanodots depend on the thickness of the initial a-Si layer. Cross-sectional investigations reveal a single-crystalline structure of the nanodots. This characteristic is observed as long as the thickness of the initial a-Si layer remains under a certain threshold triggering coalescence. The underlying ultra-thin oxide is not structurally affected by the dewetting process. Furthermore, a method for the fabrication of close-packed stacks of nanodots is presented, in which each nanodot is covered by a 2 nm thick SiO{sub 2} shell. The chemical composition of these ensembles exhibits an abrupt Si/SiO{sub 2} interface with a low amount of suboxides. A minority charge carrier lifetime of 18 {mu}s inside of the nanodots is determined. (orig.)

  8. Amorphous Ge quantum dots embedded in SiO2 formed by low energy ion implantation

    International Nuclear Information System (INIS)

    Zhao, J. P.; Huang, D. X.; Jacobson, A. J.; Chen, Z. Y.; Makarenkov, B.; Chu, W. K.; Bahrim, B.; Rabalais, J. W.

    2008-01-01

    Under ultrahigh vacuum conditions, extremely small Ge nanodots embedded in SiO 2 , i.e., Ge-SiO 2 quantum dot composites, have been formed by ion implantation of 74 Ge + isotope into (0001) Z-cut quartz at a low kinetic energy of 9 keV using varying implantation temperatures. Transmission electron microscopy (TEM) images and micro-Raman scattering show that amorphous Ge nanodots are formed at all temperatures. The formation of amorphous Ge nanodots is different from reported crystalline Ge nanodot formation by high energy ion implantation followed by a necessary high temperature annealing process. At room temperature, a confined spatial distribution of the amorphous Ge nanodots can be obtained. Ge inward diffusion was found to be significantly enhanced by a synergetic effect of high implantation temperature and preferential sputtering of surface oxygen, which induced a much wider and deeper Ge nanodot distribution at elevated implantation temperature. The bimodal size distribution that is often observed in high energy implantation was not observed in the present study. Cross-sectional TEM observation and the depth profile of Ge atoms in SiO 2 obtained from x-ray photoelectron spectra revealed a critical Ge concentration for observable amorphous nanodot formation. The mechanism of formation of amorphous Ge nanodots and the change in spatial distribution with implantation temperature are discussed

  9. Microstructure and magnetic properties of nanocomposite FePt/MgO and FePt/Ag films

    International Nuclear Information System (INIS)

    Chen, S.C.; Kuo, P.C.; Sun, A.C.; Chou, C.Y.; Fang, Y.H.; Wu, T.H.

    2006-01-01

    An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (H c- parallel ) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film

  10. Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media

    Energy Technology Data Exchange (ETDEWEB)

    Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K., E-mail: takahashi.yukiko@nims.go.jp; Wang, J.; Hono, K. [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Ina, T.; Nakamura, T.; Ueno, W.; Nitta, K.; Uruga, T. [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2014-06-02

    We investigated the Ag distribution in a FePtAg-C granular film that is under consideration for a heat assisted magnetic recording medium by aberration-corrected scanning transmission electron microscope-energy dispersive X-ray spectroscopy and X-ray absorption fine structure. Ag is rejected from the core of FePt grains during the deposition, forming Ag-enriched shell surrounding L1{sub 0}-ordered FePt grains. Since Ag has no solubility in both Fe and Pt, the rejection of Ag induces atomic diffusions thereby enhancing the kinetics of the L1{sub 0}-order in the FePt grains.

  11. Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Hyun Kyung Jung

    2014-01-01

    Full Text Available The effect of catalytic thin film thickness on the diameter control of individual carbon nanotubes grown by plasma enhanced chemical vapor deposition was investigated. Individual carbon nanotubes were grown on catalytic nanodot arrays, which were fabricated by e-beam lithography and e-beam evaporation. During e-beam evaporation of the nanodot pattern, more catalytic metal was deposited at the edge of the nanodots than the desired catalyst thickness. Because of this phenomenon, carbon atoms diffused faster near the center of the dots than at the edge of the dots. The carbon atoms, which were gathered at the interface between the catalytic nanodot and the diffusion barrier, accumulated near the center of the dot and lifted the catalyst off. From the experiments, an individual carbon nanotube with the same diameter as that of the catalytic nanodot was obtained from a 5 nm thick catalytic nanodot; however, an individual carbon nanotube with a smaller diameter (~40% reduction was obtained from a 50 nm thick nanodot. We found that the thicker the catalytic layer, the greater the reduction in diameter of the carbon nanotubes. The diameter-controlled carbon nanotubes could have applications in bio- and nanomaterial scanning and as a contrast medium for magnetic resonance imaging.

  12. General radiographic attributes of optically stimulated luminescence dosimeters: A basic insight

    Science.gov (United States)

    Musa, Y.; Hashim, S.; Ghoshal, S. K.; Bradley, D. A.; Ahmad, N. E.; Karim, M. K. A.; Hashim, A.; Kadir, A. B. A.

    2018-06-01

    We report the ubiquitous radiographic characteristics of optically stimulated luminescence dosimeters (OSLD) so called nanoDot OSLDs (Landauer Inc., Glendwood, IL). The X-ray irradiations were performed in free air ambiance to inspect the repeatability, the reproducibility, the signal depletion, the element correction factors (ECFs), the dose response and the energy dependence. Repeatability of multiple readouts after single irradiation to 10 mGy revealed a coefficient of variation below 3%, while the reproducibility in repeated irradiation-readout-annealing cycles was above 2%. The OSL signal depletion for three nanoDots with simultaneous irradiation to 20 mGy and sequential readouts of 25 times displayed a consistent signal reduction ≈0.5% per readout with R2 values over 0.98. ECFs for individual OSLDs were varied from 0.97 to 1.03. In the entire dose range under 80 kV, a good linearity with an R2 exceeding 0.99 was achieved. Besides, the percentage difference between OSLD and ion-chamber dose was less than 5%, which was superior to TLD. The X-ray photon irradiated energy response factors (between 0.76 and 1.12) in the range of 40-150 kV (26.1-61.2 keV) exhibited significant energy dependence. Indeed, the nanoDot OSLDs disclosed good repeatability, reproducibility and linearity. The OSLDs measured doses were closer to ion-chamber doses than that of TLD. It can be further improved up to ≈3% by applying the individual dosimeter ECF. On top, the energy dependent uncertainties can be minimized using the energy correction factors. It is established that the studied nanoDot OSLDs are prospective for measuring entrance dose in general radiographic practices.

  13. Visualization of anomalous Ettingshausen effect in a ferromagnetic film: Direct evidence of different symmetry from spin Peltier effect

    Science.gov (United States)

    Seki, T.; Iguchi, R.; Takanashi, K.; Uchida, K.

    2018-04-01

    Spatial distribution of temperature modulation due to the anomalous Ettingshausen effect (AEE) is visualized in a ferromagnetic FePt thin film with in-plane and out-of-plane magnetizations using the lock-in thermography technique. Comparing the AEE of FePt with the spin Peltier effect (SPE) of a Pt/yttrium iron garnet junction provides direct evidence of different symmetries of AEE and SPE. Our experiments and numerical calculations reveal that the distribution of heat sources induced by AEE strongly depends on the direction of magnetization, leading to the remarkable different temperature profiles in the FePt thin film between the in-plane and perpendicularly magnetized configurations.

  14. Synthesis and characterization of FePt/Au core-shell nanoparticles

    International Nuclear Information System (INIS)

    Presa, P. de la; Multigner, M.; Morales, M.P.; Rueda, T.; Fernandez-Pinel, E.; Hernando, A.

    2007-01-01

    In this work, the structural and magnetic properties of the gold-coated FePt nanoparticles synthesized from high-temperature solution phase are presented. The amount of gold was optimized to obtain most of the FePt particles coated. The particle diameter increases from 4 to 10 nm as observed by TEM. The magnetic properties are largely affected by the coating. At low temperature, the coercive field Hc of the coated nanoparticles decreases about three times respect to the uncoated and the blocking temperature reduces to the half. The changes of the magnetic behavior are discussed in terms of the effect of the gold atoms at the FePt core surface

  15. Study of microstructure and magnetic properties of L10 FePt/SiO2 thin films

    Directory of Open Access Journals (Sweden)

    Giannopoulos G.

    2014-07-01

    Full Text Available Achieving magnetic recording densities in excess of 1Tbit/in2 requires not only perpendicular media with anisotropies larger than 7 MJ/m3, making FePt alloys an ideal choice, but also a narrow distribution below 10 nm for a reduced S/N ratio. Such grain size reduction and shape control are crucial parameters for high density magnetic recording, along with high thermal stability. Previous work has shown that the L10 FePt grain size can be controlled by alloying FePt with materials such as C, Ag, and insulators such as AlOx, MgO. Au and Al2O3 also act to segregate and magnetically decouple the FePt grains. Better results were obtained with C with respect to the uniformity of grains and SiO2 with respect to the shape. We present our results on co-sputtering FePt with C or SiO2 (up to 30 vol % on MgO (001 single crystal substrates at 350 and 500 oC. With C or SiO2 addition we achieved grain size reduction, shape control and isolated structure formation, producing continuous films with high uniformity and a narrow grain size distribution. These additions thus allow us to simultaneously control the coercivity and the S/N ratio. We also will report structural and microstructural properties.

  16. Growth, Fabrication and Characterization of Patterned Semiconductor Nanostructures

    Science.gov (United States)

    Kumari, Archana

    In this work we developed a new technique for the growth of GaAs nanostrcutures and tungsten disulphide (WS2) nanodots, a two dimensional dichalcogenide (2D-TMD). We patterned a thin SiO2 film for the first time by reactive ion etching through the alumina templates and GaAs nanopillars and nanodots were grown through the holes in SiO2 film by MBE. The WS2 nanodots were synthesized by the atomic layer deposition of WS 2 via alumina template. First, WO3 nanodots were deposited through the porous template using e-beam evaporation and then WO3 vapor reacts with sulfur to obtain WS2 nanodots by chemical vapor deposition technique. We studied morphological and optical properties of patterned nanostructures using SEM, TEM photoluminescence(PL) technique, AFM and Raman microscopy. We used different As2/Ga ratio to obtain patterned nanostructures through the holes of the SiO2 film. These nanopillars were epitaxially aligned to the GaAs(111)B substrates. We achieved (111)B oriented nanopillars with typical diameters between 72 nm to 76 nm and lengths between 200 nm- 600 nm. These nanopillars have six {110} side facets. Though there were few defects, but mostly they were following the pattern in SiO 2. We obtained nanopillars with predominantly two types of tops, triangular pyramidal tops and hexagonal flat tops. We find that these nanopillars have a mixed crystal structure of zinc-blende and wurtzite structures. There is a high density of twins and stacking faults. Alternating wurtzite and zinc-blende layers within the nanopillars, however, lead to quantum confinement effect and thus a blue-shift of PL emission. WS2 nanodots precisely controlled in size have potential applications in nanoelectronics due to their unique optical and electrical properties. Most of the nanodots synthesized so far are produced using liquid exfoliation method from the bulk. Here we report the size controlled growth of uniform WS2 nanodots using self -organized alumina templates as a growth mask on

  17. Feasibilty of a Multi-bit Cell Perpendicular Magnetic Tunnel Junction Device

    Science.gov (United States)

    Kim, Chang Soo

    The ultimate objective of this research project was to explore the feasibility of making a multi-bit cell perpendicular magnetic tunnel junction (PMTJ) device to increase the storage density of spin-transfer-torque random access memory (STT-RAM). As a first step toward demonstrating a multi-bit cell device, this dissertation contributed a systematic and detailed study of developing a single cell PMTJ device using L10 FePt films. In the beginning of this research, 13 up-and-coming non-volatile memory (NVM) technologies were investigated and evaluated to see whether one of them might outperform NAND flash memories and even HDDs on a cost-per-TB basis in 2020. This evaluation showed that STT-RAM appears to potentially offer superior power efficiency, among other advantages. It is predicted that STTRAM's density could make it a promising candidate for replacing NAND flash memories and possibly HDDs if STTRAM could be improved to store multiple bits per cell. Ta/Mg0 under-layers were used first in order to develop (001) L1 0 ordering of FePt at a low temperature of below 400 °C. It was found that the tradeoff between surface roughness and (001) L10 ordering of FePt makes it difficult to achieve low surface roughness and good perpendicular magnetic properties simultaneously when Ta/Mg0 under-layers are used. It was, therefore, decided to investigate MgO/CrRu under-layers to simultaneously achieve smooth films with good ordering below 400°C. A well ordered 4 nm L10 FePt film with RMS surface roughness close to 0.4 nm, perpendicular coercivity of about 5 kOe, and perpendicular squareness near 1 was obtained at a deposition temperature of 390 °C on a thermally oxidized Si substrate when MgO/CrRu under-layers are used. A PMTJ device was developed by depositing a thin MgO tunnel barrier layer and a top L10 FePt film and then being postannealed at 450 °C for 30 minutes. It was found that the sputtering power needs to be minimized during the thin MgO tunnel barrier

  18. Self-regulated magnetic fluid hyperthermia: A potential cancer therapy

    Science.gov (United States)

    Bagaria, Hitesh Ghanshyam

    An emerging cancer therapy, self-regulated magnetic fluid hyperthermia (MFH), is the motivation for this work. In this therapy, cancer is annihilated by heating the tumor to desired therapeutic temperatures (˜45°C) by using magnetic nanoparticles of controlled Curie temperatures (Tc). This work was aimed at preparing and characterizing FePt, NiPd and NiPt nanoparticles for self-regulated MFH because their Tc could be tuned by changing their composition. Based on the excellent colloidal stability, size tunability and toxicity considerations, FePt was an obvious choice for self-regulated MFH. The 3.2 nm Fe61Pt39 particles displayed a Tc of 151°C, which is well below the Tc of bulk Fe61Pt39 (˜327°C). To reach the desired Tc of 45°C the composition of iron needs to be increased. However, a major obstacle was the formation of iron oxide shells with increase in iron composition of the particles. A recent finding that the composition of individual FePt particles deviated significantly from the average value encouraged us to study the mechanism of formation of FePt particles. Our analysis showed that early in the reaction the particles were Pt-rich and as the reaction proceeded the Fe content increased. It was found that the wide distribution in the composition of individual particles started early in the synthesis, suggesting that the compositional variability may be attributed to the Pt nuclei. The synthesized FePt particles are unsuitable for biological applications because of their hydrophobic surface. Hence, their surface was modified by ligand exchange with mercapto alkanoic acids. After ligand exchange, stable FePt dispersions could be formed in alkaline water. The study revealed that both the carboxylate and thiol groups were required to form stable FePt dispersions. In addition, 15 nm gold particles were successfully conjugated to genetically modified adenoviruses that selectively bind to cancer tumors. We also modeled the thermal transport in tissues during

  19. Physical essence of the multibody contact-sliding at atomic scale

    Science.gov (United States)

    Han, Xuesong

    2014-01-01

    Investigation the multibody contact-sliding occurred at atomic discrete contact spot will play an important role in determine the origin of tribology behavior and evaluates the micro-mechanical property of nanomaterials and thus optimizing the design of surface texture. This paper carries out large scale parallel molecular dynamics simulation on contact-sliding at atomic scale to uncover the special physical essence. The research shows that some kind of force field exists between nanodot pair and the interaction can be expressed by the linear combination of exponential function while the effective interaction distance limited in 1 angstrom for nanodot with several tens of nanometer diameter. The variation tendency about the interaction force between nanodot array is almost the same between nanodot pairs and thus the interaction between two nanodot array can be characterized by parallel mechanical spring. Multibody effect which dominates the interaction between atoms or molecules will gradually diminish with the increasing of length scales.

  20. High magnetic coercivity of FePt-Ag/MgO granular nanolayers

    Science.gov (United States)

    Roghani, R.; Sebt, S. A.; Khajehnezhad, A.

    2018-06-01

    L10-FePt ferromagnetic nanoparticles have a hight coercivity of Tesla order. Thus, these nanoparticles, with size of 10 to 15 nm and uniform surface distribution, are suitable in magnetic data storage technology with density of more than 1GB. In order to improve structural and magnetic properties of FePt nanoparticles, some elements and combinations have been added to compound. In this research, we show that due to the presence of the Ag, the phase transition temperature of FePt from fcc to L10-fct phase decreases. The presence of Ag as an additive in FePt-Ag nanocomposite, increases the magnetic coercivity. This nanocomposite, with 10% Ag, was deposited by magnetron sputtering on the MgO heat layer. VSM results of 10 nm nanoparticles show that coercivity has increased up to 1.4 T. XRD and FESEM results confirm that the size of the L10-FePt nanoparticles are 10 nm and their surface distribution are uniform. Ag gradually form nano scale clusters with separate lattice and FePt-Ag nanocomposite appears. The result of this process is emptiness of Ag position in FePt-fcc lattice. So, the mobility of Fe and Pt atoms in this lattice increases and it can be possible for them to move in lower temperature. This mechanism explain the effect of Ag on decreasing the transition temperature to fct-L10 phase, and hight coercivity of FePt nanoparticles.

  1. Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g-C3N4 to construct Z-scheme system for improving photocatalytic performance

    Science.gov (United States)

    Wu, Haijun; Li, Chunmei; Che, Huinan; Hu, Hao; Hu, Wei; Liu, Chunbo; Ai, Junzhe; Dong, Hongjun

    2018-05-01

    The Co3O4/g-C3N4 Z-scheme system is constructed by decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on the surface of g-C3N4, which dramatically improves the photocatalytic activity for degrading tetracycline hydrochloride (TC) compared with single g-C3N4. The microstructure investigations evidence the mesoporous structure and enlarged specific surface area of Co3O4/g-C3N4 Z-scheme system, which implies the increase of surface active sites and adsorption ability for reactant molecules. Moreover, by virtue of analyzing physical and photoelectrochemical properties, it evidences that the decoration effect of mesoporous Co3O4 nanospheres on the surface of g-C3N4 obviously improves the transfer and separation efficiency of charge carriers between two phase interfaces and broadens light harvest range. These important factors are beneficial to enhancing photocatalytic activity of Co3O4/g-C3N4 Z-scheme system. In addition, the photocatalityc reaction mechanism is also revealed in depth.

  2. Response of optically stimulated luminescence dosimeters subjected to X-rays in diagnostic energy range

    International Nuclear Information System (INIS)

    Musa, Y; Hashim, S; Karim, M K A; Ang, W C; Salehhon, N; Bakar, K A

    2017-01-01

    The use of optically stimulated luminescence (OSL) for dosimetry applications has recently increased considerably due to availability of commercial OSL dosimeters (nanoDots) for clinical use. The OSL dosimeter has a great potential to be used in clinical dosimetry because of its prevailing advantages in both handling and application. However, utilising nanoDot OSLDs for dose measurement in diagnostic radiology can only be guaranteed when the performance and characteristics of the dosimeters are apposite. In the present work, we examined the response of commercially available nanoDot OSLD (Al 2 O 3 :C) subjected to X-rays in general radiography. The nanoDots response with respect to reproducibility, dose linearity and signal depletion were analysed using microStar reader (Landauer, Inc., Glenwood, IL). Irradiations were performed free-in-air using 70, 80 and 120 kV tube voltages and tube currents ranging from 10 – 100 mAs. The results showed that the nanoDots exhibit good linearity and reproducibility when subjected to diagnostic X-rays, with coefficient of variations (CV) ranging between 2.3% to 3.5% representing a good reproducibility. The results also indicated average of 1% signal reduction per readout. Hence, the nanoDots showed a promising potential for dose measurement in general X-ray procedure. (paper)

  3. Magnetic properties and microstructure study of high coercivity Au/FePt/Au trilayer thin films

    International Nuclear Information System (INIS)

    Chen, S.K.; Yuan, F.T.; Liao, W.M.; Hsu, C.W.; Horng, Lance

    2006-01-01

    High-coercivity Au(60 nm)/FePt(δ nm)/Au(60 nm) trilayer samples were prepared by sputtering at room temperature, followed by post annealing at different temperatures. For the sample with δ=60 nm, L1 ordering transformation occurs at 500 deg. C. Coercivity (H c ) is increased with the annealing temperature in the studied range 400-800 deg. C. The H c value of the trilayer films is also varied with thickness of FePt intermediate layer (δ), from 27 kOe for δ=60 nm to a maximum value of 33.5 kOe for δ=20 nm. X-ray diffraction data indicate that the diffusion of Au atoms into the FePt L1 lattice is negligible even after a high-temperature (800 deg. C) annealing process. Furthermore, ordering parameter is almost unchanged as δ is reduced from 60 to 15 nm. Transmission electron microscope (TEM) photos indicate that small FePt Ll particles are dispersed amid the large-grained Au. We believe that the high coercivity of the trilayer sample is attributed to the small and uniform grain sizes of the highly ordered FePt particles which have perfect phase separation with Au matrix

  4. Nanosurface design of dental implants for improved cell growth and function

    Science.gov (United States)

    Pan, Hsu-An; Hung, Yao-Ching; Chiou, Jin-Chern; Tai, Shih-Ming; Chen, Hsin-Hung; Huang, G. Steven

    2012-08-01

    A strategy was proposed for the topological design of dental implants based on an in vitro survey of optimized nanodot structures. An in vitro survey was performed using nanodot arrays with dot diameters ranging from 10 to 200 nm. MG63 osteoblasts were seeded on nanodot arrays and cultured for 3 days. Cell number, percentage undergoing apoptotic-like cell death, cell adhesion and cytoskeletal organization were evaluated. Nanodots with a diameter of approximately 50 nm enhanced cell number by 44%, minimized apoptotic-like cell death to 2.7%, promoted a 30% increase in microfilament bundles and maximized cell adhesion with a 73% increase in focal adhesions. An enhancement of about 50% in mineralization was observed, determined by von Kossa staining and by Alizarin Red S staining. Therefore, we provide a complete range of nanosurfaces for growing osteoblasts to discriminate their nanoscale environment. Nanodot arrays present an opportunity to positively and negatively modulate cell behavior and maturation. Our results suggest a topological approach which is beneficial for the design of dental implants.

  5. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    control the spin wave dynamics of magnetic structures twisted spatially, we prepared the exchange-coupled films with the hard magnetic L10-FePt and...information writing of magnetic storage and spintronic applications. Introduction and Objective: Recent rapid progress in the research field of nano...scaled bilayer elements is also an important aim of this project. Approach/Method: The exchange-coupled films with the hard magnetic L10-FePt and

  6. Nano-engineered ZnO/CeO2 dots@CNFs for fuel cell application

    Directory of Open Access Journals (Sweden)

    Zafar Khan Ghouri

    2016-03-01

    Full Text Available Well-dispersed ZnO(xCeO2(1−x nanodots@carbon nanofibers as anode catalysts for the electrooxidation of methanol were synthesized by an easy-controlled template-free method. Their structure and morphology were characterized by X-ray diffraction (XRD, high resolution transmission electron microscopy (HR-TEM, field-emission scanning electron microscopy (FESEM equipped with rapid EDX (energy dispersive analysis of X-ray. The appealed characterization techniques specified that the obtained material is carbon nanofibers decorated by ZnO and CeO2 nanodots. The electrochemical oxidation of methanol on ZnO(xCeO2(1−x nanodots@CNFs modified glassy carbon electrode in alkaline solutions was systematically evaluated by cyclic voltammetry (CV method. A detailed investigation is made for the electrocatalytic oxidation of methanol by varying methanol concentration. The corresponding current densities of ZnO(60%CeO2(40% nanodots@CNFs and ZnO(40%CeO2(60% nanodots@CNFs were 5.3 and 16.3 mA/cm2, respectively. Moreover, negative onset potential (−50 mV vs. Ag/AgCl was observed when ZnO(40%CeO2(60% nanodots@CNFs were utilized, which is a superior value among the reported non-precious electrocatalysts. These results suggested cheap and effective nanomaterials as non-precious catalyst for DMFCs application and pave the way to further improve the performance in energy and environmental applications.

  7. c-Axis correlated extended defects and critical current in YBa2Cu3Ox films grown on Au and Ag-nano dot decorated substrates

    International Nuclear Information System (INIS)

    Mikheenko, P.; Sarkar, A.; Dang, V.-S.; Tanner, J.L.; Abell, J.S.; Crisan, A.

    2009-01-01

    We report measurements of critical current in YBa 2 Cu 3 O x films deposited on SrTiO 3 substrates decorated with silver and gold nanodots. An increase in critical current in these films, in comparison with the films deposited on non-decorated substrates, has been achieved. We argue that this increase comes from the c-axis correlated extended defects formed in the films and originated from the nanodots. Additionally to creating extended defects, the nanodots pin them and prevent their exit from the sample during the film growth, thus keeping a high density of defects and providing a lower rate of decrease of the critical current with the thickness of the films. The best pinning is achieved in the samples with silver nanodots by optimising their deposition temperature. The nanodots grown at a temperature of a few hundred deg. C have a small diameter of a few nanometres and a high surface density of 10 11 -10 12 particles/cm 2 . We give evidence of c-axis correlated extended defects in YBa 2 Cu 3 O x films by planar and cross-sectional atomic force microscopy, transmission electron microscopy and angle-dependent transport measurements of critical current.

  8. Degradation of 2,4,6-trichlorophenol with peroxymonosulfate catalyzed by soluble and supported iron porphyrins

    International Nuclear Information System (INIS)

    Günay, Tuğçe; Çimen, Yasemin

    2017-01-01

    Degradation of 2,4,6-trichloropenol (TCP) with peroxymonosulfate (PMS) catalyzed by iron porphyrin tetrasulfonate ([FePTS)] was investigated in an 8-to-1 (v/v) CH 3 OH-H 2 O mixture. Typical reaction medium contained a 4.00 mL methanol solution of TCP (0.100 mmol), a 0.50 mL aqueous solution of catalyst (5.0 × 10 −4  mmol), and 0.100 mmol PMS (as 0.031 g of Oxone). The reaction was performed at ambient temperature. The conversion of TCP was 74% in 30 min and 80% in 6 h when the catalyst was [FePTS]. Amberlite IRA-900 supported [FePTS] catalyst was also prepared. In the recycling experiments the homogeneous [FePTS] lost its activity after the first cycle, while [FePTS]-Amberlite IRA 900 maintained its activity for the first 2 cycles. After the second cycle, the conversion of TCP dropped to <10% for Amberlite IRA-900 supported [FePTS] catalyst. The degradation of TCP with PMS was also attempted using cobalt, copper, nickel and palladium porphyrin tetrasulfonate catalysts, however, no catalytic activity was observed with these structures. - Highlights: • The method presents an effective oxidation of TCP. • This research provided persistence, less harmful, self-degradable and more environmental oxidation products. • About seventy percent conversions of TCP in 30 min was achieved at room temperature. - This research provided non-persistent, less harmful, self-degradable and more environmentally friendly oxidation products. About 70% conversions of TCP in 30 min was achieved at room temperature.

  9. Optimization of L1{sub 0} FePt/Fe{sub 45}Co{sub 55} thin films for rare earth free permanent magnet applications

    Energy Technology Data Exchange (ETDEWEB)

    Giannopoulos, G., E-mail: g.giannopoulos@inn.demokritos.gr; Psycharis, V.; Niarchos, D. [INN, NCSR Demokritos, Athens 15310 (Greece); Reichel, L. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); TU Dresden, Institute for Materials Science, 01062 Dresden (Germany); Markou, A.; Panagiotopoulos, I. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Damm, C.; Fähler, S. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); Khan, Imran; Hong, Jisang [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-06-14

    The magnetic properties of magnetron sputtered bilayers consisting of Fe{sub 45}Co{sub 55} ultrathin layers on top of L1{sub 0} FePt films epitaxially grown on MgO substrates are studied in view of their possible application as rare earth free permanent magnets. It is found that FePt layers induce a tetragonal distortion to the Fe-Co layers which leads to increased anisotropy. This allows to take advantage of the Fe-Co high magnetic moment with less significant loss of the coercivity compared to a typical hard/soft exchange spring system. A maximum energy product approaching 50 MGOe is obtained for a FePt(7 ML)/FeCo/(5 ML) sample. The results are in accordance with first-principles computational methods, which predict that even higher energy products are possible for micromagnetically optimized microstructures.

  10. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    Science.gov (United States)

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  11. Live-cell imaging of biothiols via thiol/disulfide exchange to trigger the photoinduced electron transfer of gold-nanodot sensor

    International Nuclear Information System (INIS)

    Liu, Ching-Ping; Wu, Te-Haw; Liu, Chia-Yeh; Lin, Shu-Yi

    2014-01-01

    Highlights: • The ultrasmall size, PAMAM dendrimer-entrapped Au 8 -clusters were synthesized. • Thiol/disulfide exchange with biothiols to release 2-PyT resulted in quenching. • The sensing platform can detect both low and high molecular weight thiols. • Capable of imaging biothiols including protein thiols in living cells. - Abstract: Biothiols have been reported to involve in intracellular redox-homeostasis against oxidative stress. In this study, a highly selective and sensitive fluorescent probe for sensing biothiols is explored by using an ultrasmall gold nanodot (AuND), the dendrimer-entrapped Au 8 -cluster. This strategy relies upon a thiol/disulfide exchange to trigger the fluorescence change through a photoinduced electron transfer (PET) process between the Au 8 -cluster (as an electron donor) and 2-pyridinethiol (2-PyT) (as an electron acceptor) for sensing biothiols. When 2-PyT is released via the cleavage of disulfide bonds by biothiols, the PET process from the Au 8 -cluster to 2-PyT is initiated, resulting in fluorescence quenching. The fluorescence intensity was found to decrease linearly with glutathione (GSH) concentration (0–1500 μM) at physiological relevant levels and the limit of detection for GSH was 15.4 μM. Compared to most nanoparticle-based fluorescent probes that are limited to detect low molecular weight thiols (LMWTs; i.e., GSH and cysteine), the ultrasmall Au 8 -cluster-based probe exhibited less steric hindrance and can be directly applied in selectively and sensitively detecting both LMWTs and high molecular weight thiols (HMWTs; i.e., protein thiols). Based on such sensing platform, the surface-functionalized Au 8 -cluster has significant promise for use as an efficient nanoprobe for intracellular fluorescence imaging of biothiols including protein thiols in living cells whereas other nanoparticle-based fluorescent probes cannot

  12. Live-cell imaging of biothiols via thiol/disulfide exchange to trigger the photoinduced electron transfer of gold-nanodot sensor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ching-Ping; Wu, Te-Haw; Liu, Chia-Yeh; Lin, Shu-Yi, E-mail: shuyi@nhri.org.tw

    2014-11-07

    Highlights: • The ultrasmall size, PAMAM dendrimer-entrapped Au{sub 8}-clusters were synthesized. • Thiol/disulfide exchange with biothiols to release 2-PyT resulted in quenching. • The sensing platform can detect both low and high molecular weight thiols. • Capable of imaging biothiols including protein thiols in living cells. - Abstract: Biothiols have been reported to involve in intracellular redox-homeostasis against oxidative stress. In this study, a highly selective and sensitive fluorescent probe for sensing biothiols is explored by using an ultrasmall gold nanodot (AuND), the dendrimer-entrapped Au{sub 8}-cluster. This strategy relies upon a thiol/disulfide exchange to trigger the fluorescence change through a photoinduced electron transfer (PET) process between the Au{sub 8}-cluster (as an electron donor) and 2-pyridinethiol (2-PyT) (as an electron acceptor) for sensing biothiols. When 2-PyT is released via the cleavage of disulfide bonds by biothiols, the PET process from the Au{sub 8}-cluster to 2-PyT is initiated, resulting in fluorescence quenching. The fluorescence intensity was found to decrease linearly with glutathione (GSH) concentration (0–1500 μM) at physiological relevant levels and the limit of detection for GSH was 15.4 μM. Compared to most nanoparticle-based fluorescent probes that are limited to detect low molecular weight thiols (LMWTs; i.e., GSH and cysteine), the ultrasmall Au{sub 8}-cluster-based probe exhibited less steric hindrance and can be directly applied in selectively and sensitively detecting both LMWTs and high molecular weight thiols (HMWTs; i.e., protein thiols). Based on such sensing platform, the surface-functionalized Au{sub 8}-cluster has significant promise for use as an efficient nanoprobe for intracellular fluorescence imaging of biothiols including protein thiols in living cells whereas other nanoparticle-based fluorescent probes cannot.

  13. Growth and characterization of Fe nanostructures on GaN

    International Nuclear Information System (INIS)

    Honda, Yuya; Hayakawa, Satoko; Hasegawa, Shigehiko; Asahi, Hajime

    2009-01-01

    We have investigated the growth of Fe nanostructures on GaN(0 0 0 1) substrates at room temperature using reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), and superconducting quantum interference device magnetometer. Initially, a ring RHEED pattern appears, indicating the growth of polycrystalline α-Fe. At around 0.5 nm deposition, the surface displays a transmission pattern from α-Fe films with the epitaxial relationship of Fe(1 1 0)//GaN(0 0 0 1) and Fe[1 -1 1]//GaN[1 1 -2 0] (Kurdjumov-Sachs (KS) orientational relationship). Further deposition to 1 nm results in the appearance of a new spot pattern together with the pattern from domains with the KS orientation relationship. The newly observed pattern shows that Fe layers are formed with the epitaxial relationship of Fe(1 1 0)//GaN(0 0 0 1) and Fe[0 0 1]//GaN[1 1 -2 0] (Nishiyama-Wasserman (NW) orientational relationship). From STM images for Fe layers with the KS and NW orientational relationships, it can be seen that Fe layers with the KS relationship consist of round-shaped Fe nanodots with below 7 nm in average diameter. These nanodots coalesce to form nanodots elongating along the Fe[1 0 0] direction, and they have the KS orientational relationship. Elongated Fe nanodots with the NW relationship show ferromagnetism while round-shaped Fe nanodots with the KS relationship show super-paramagnetic behavior. We will discuss their magnetic properties in connection with the change in crystalline configurations of nanodots.

  14. Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe-Pt-Ag-B bulk nanocomposite magnets

    International Nuclear Information System (INIS)

    Nicula, R.; Crisan, O.; Crisan, A.D.; Mercioniu, I.; Stir, M.; Vasiliu, F.

    2015-01-01

    Highlights: • Formation of the L10 FePt hard-magnetic phase (>90%) directly in the as-cast state. • Specific alternating hard/soft nanostructure is stable to 600 °C without grain growth. • Anisotropic and non-linear thermal expansion effects. • The FePtAgB alloy behaves like a single magnetic phase (full exchange coupling). - Abstract: Rare-earth free (RE-free) exchange coupling nanocomposite magnets are intensively studied nowadays due to their potential use in applications demanding stable high-temperature operation and corrosion resistance. In this respect, the FePt alloy system is one of the most actively addressed potential permanent magnet solutions. In FePt alloys, promising magnetic features arise from the co-existence of hard magnetic L1 0 FePt and soft magnetic L1 2 Fe 3 Pt phases emerged from the same metastable precursor. The present work deals with an in-situ temperature-resolved synchrotron radiation study of the thermal stability, thermal expansion and microstructure evolution in exchange-coupled FePtAgB alloys. The as-cast microstructural state as well as the optimized magnetic behavior are given as reference and correlated to the observed microstructural evolution with temperature. The melt-spun Fe 48 Pt 28 Ag 6 B 18 alloy ribbons were examined in situ by synchrotron X-ray powder diffraction from ambient temperature up to 600 °C. The FePt-Fe 3 Pt exchange-coupled microstructure achieved by rapid solidification is not significantly altered during the high temperature exposure. The thermal expansion of the FePt L1 0 unit cell has been found to be strongly anisotropic, being essentially an in-plane expansion which may be seen as an anisotropic invar effect. For the FePt L1 0 phase, a significant deviation from linear thermal expansion is observed at the Curie temperature T C = 477 °C. This non-linear behavior above T C is tentatively linked to a diffusion/segregation mechanism of Ag. The promising hard magnetic properties as well as the

  15. Columnar grain growth of FePt(L10) thin films

    International Nuclear Information System (INIS)

    Yang En; Ho Hoan; Laughlin, David E.; Zhu Jiangang

    2012-01-01

    An experimental approach for obtaining perpendicular FePt-SiOx thin films with a large height to diameter ratio FePt(L1 0 ) columnar grains is presented in this work. The microstructure for FePt-SiOx composite thin films as a function of oxide volume fraction, substrate temperature, and film thickness is studied by plan view and cross section TEM. The relations between processing, microstructure, epitaxial texture, and magnetic properties are discussed. By tuning the thickness of the magnetic layer and the volume fraction of oxide in the film at a sputtering temperature of 410 deg. C, a 16 nm thick perpendicular FePt film with ∼8 nm diameter of FePt grains was obtained. The height to diameter ratio of the FePt grains was as large as 2. Ordering at lower temperature can be achieved by introducing a Ag sacrificial layer.

  16. One-pot synthesis of FePt/CNTs nanocomposites for efficient cellular imaging and cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weihong; Zheng, Xiuwen, E-mail: xwzheng1976@163.com [Linyi University, School of Chemistry & Chemical Engineering, Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers (China); Li, Shulian [Linyi Tumor Hospital (China); Zhang, Wei; Wen, Xin [Linyi University, School of Chemistry & Chemical Engineering, Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers (China); Yue, Ludan [Shandong Normal University (China); Wang, Jinlong [Shandong University of Technology (China)

    2015-11-15

    Here, we developed a facile route to synthesize carbon nanotube-based FePt nanocomposites (FePt/CNTs) as a potential theranostic platform in the cancer treatment. FePt/CNTs were firstly synthesized via one-pot polyol route, and then functionalized with 6-arm-polyethylene glycol-amine polymer. The average size of FePt nanoparticles (NPs) is 3–4 nm, which is dispersed on the CNT surface (ca.50–150 nm). The as-prepared FePt NPs display high cytotoxicity by highly reactive oxygen species in cancer cells. Folic acid and fluorescein isothiocyanate are assembled onto the surface of FePt/CNTs for effective targeting of folate receptor-positive cancer cells and simultaneously for the visualization of cellular uptake. Therefore, the FePt/CNTs NPs capability of simultaneously performing diagnosis, therapy, and targeting is, therefore, promising for future potential widespread application in biomedicine.

  17. TH-AB-207A-03: Skin Dose to Patients Receiving Multiple CTA and CT Exams of the Head

    International Nuclear Information System (INIS)

    Nawfel, RD; Young, G

    2016-01-01

    Purpose: To measure patient skin dose from CT angiography (CTA) and CT exams of the head, and determine if patients having multiple exams could receive cumulative doses that approach or exceed deterministic thresholds. Methods: This study was HIPAA compliant and conducted with IRB approval. Patient skin doses were measured over a 4 month period using nanoDot OSL dosimeters placed on the head of 52 patients for two CT scanners. On each scanner, 26 patients received CT exams (scanner 1: 10 females, 16 males, mean age 64.2 years; scanner 2: 18 females, 8 males, mean age 61.2 years). CT exam dose metrics, CTDIvol and dose-length product (DLP) were recorded for each exam. Additionally, skin dose was measured on an acrylic skull phantom in each scanner and on a neuro-interventional imaging system using clinical protocols. Measured dose data was used to estimate peak skin dose (PSD) for 4 patients receiving multiple exams including CTA, head CT, and cerebral angiography. Results: For scanner 1, the mean PSD for CTA exams (98.9 ± 5.3 mGy) and for routine head CT exams (39.2 ± 3.7 mGy) agreed reasonably well with the PSD measured on the phantom, 105.4 mGy and 40.0 mGy, respectively. Similarly for scanner 2, the mean PSD for CTA exams (98.8 ± 7.4 mGy) and for routine head CT exams (42.9 ± 9.4 mGy) compared well with phantom measurements, 95.2 mGy and 37.6 mGy, respectively. In addition, the mean PSD was comparable between scanners for corresponding patient exams, CTA and routine head CT respectively. PSD estimates ranged from 1.9 – 4.5 Gy among 4 patients receiving multiple exams. Conclusion: Patients having several exams including both CTA and routine head CT may receive cumulative doses approaching or exceeding the threshold for single dose deterministic effects.

  18. TH-AB-207A-03: Skin Dose to Patients Receiving Multiple CTA and CT Exams of the Head

    Energy Technology Data Exchange (ETDEWEB)

    Nawfel, RD; Young, G [Brigham & Women’s Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To measure patient skin dose from CT angiography (CTA) and CT exams of the head, and determine if patients having multiple exams could receive cumulative doses that approach or exceed deterministic thresholds. Methods: This study was HIPAA compliant and conducted with IRB approval. Patient skin doses were measured over a 4 month period using nanoDot OSL dosimeters placed on the head of 52 patients for two CT scanners. On each scanner, 26 patients received CT exams (scanner 1: 10 females, 16 males, mean age 64.2 years; scanner 2: 18 females, 8 males, mean age 61.2 years). CT exam dose metrics, CTDIvol and dose-length product (DLP) were recorded for each exam. Additionally, skin dose was measured on an acrylic skull phantom in each scanner and on a neuro-interventional imaging system using clinical protocols. Measured dose data was used to estimate peak skin dose (PSD) for 4 patients receiving multiple exams including CTA, head CT, and cerebral angiography. Results: For scanner 1, the mean PSD for CTA exams (98.9 ± 5.3 mGy) and for routine head CT exams (39.2 ± 3.7 mGy) agreed reasonably well with the PSD measured on the phantom, 105.4 mGy and 40.0 mGy, respectively. Similarly for scanner 2, the mean PSD for CTA exams (98.8 ± 7.4 mGy) and for routine head CT exams (42.9 ± 9.4 mGy) compared well with phantom measurements, 95.2 mGy and 37.6 mGy, respectively. In addition, the mean PSD was comparable between scanners for corresponding patient exams, CTA and routine head CT respectively. PSD estimates ranged from 1.9 – 4.5 Gy among 4 patients receiving multiple exams. Conclusion: Patients having several exams including both CTA and routine head CT may receive cumulative doses approaching or exceeding the threshold for single dose deterministic effects.

  19. Preparation and characterization of single-crystal multiferroic nanofiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhaohui; Xiao, Zhen; Yin, Simin; Mai, Jiangquan; Liu, Zhenya; Xu, Gang; Li, Xiang; Shen, Ge [State Key Lab of Silicon Materials, Department of Material Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Han, Gaorong, E-mail: hgr@zju.edu.cn [State Key Lab of Silicon Materials, Department of Material Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China)

    2013-03-05

    Graphical abstract: One-dimensional single-crystal multiferroic composites composed of PbTiO{sub 3} nanofiber-CoFe{sub 2}O{sub 4} nanodot have been prepared for the first time by a facile in situ solid state sintering method. The composites demonstrate ferroelectricity and ferromagnetism as well as strong coupling between them. Highlights: ► 1D single-crystal multiferroic PTO-CFO was prepared via in situ solid state sintering method. ► A simple epitaxial growth relation has been found between the PTO–CFO composites. ► The composites reveal ferroelectricity and ferromagnetism as well as coupling between them. -- Abstract: One-dimensional single-crystal multiferroic composites consisting of PbTiO{sub 3} (PTO) nanofiber-CoFe{sub 2}O{sub 4} (CFO) nanodot were prepared using an in situ solid state sintering method, where pre-perovskite PTO nanofibers and CFO nanodots were used as precursors. Structural analyses by using transmission electron microscopy, scanning electron microscopy and X-ray diffraction determined a epitaxial growth relation between the PTO nanofiber and the CFO nanodot. Ferromagnetism and ferroelectricity of the nanofiber composites were investigated by using vibarting sample magnetometer (VSM) and piezoresponse force microscopy (PFM)

  20. Magnetic Properties and Microstructure of FeOx/Fe/FePt and FeOx/FePt Films

    Directory of Open Access Journals (Sweden)

    Jai-Lin Tsai

    2013-01-01

    Full Text Available The Fe(6 nm/FePt film with perpendicular magnetization was deposited on the glass substrate. To study the oxygen diffusion effect on the coupling of Fe/FePt bilayer, the plasma oxidation with 0.5~7% oxygen flow ratio was performed during sputtered part of Fe layer and formed the FeOx(3 nm/Fe(3 nm/FePt trilayer. Two-step magnetic hysteresis loops were found in trilayer with oxygen flow ratio above 1%. The magnetization in FeOx and Fe/FePt layers was decoupled. The moments in FeOx layer were first reversed and followed by coupled Fe/FePt bilayer. The trilayer was annealed again at 500°C and 800°C for 3 minutes. When the FeOx(3 nm/Fe(3 nm/FePt trilayer was annealed at 500°C, the layers structure was changed to FeOx(6 nm/FePt bilayer due to oxygen diffusion. The hard-magnetic FeOx(6 nm/FePt film was coupled with single switching field. The FeOx/(disordered FePt layer structure was observed with further annealing at 800°C and presented soft-magnetic loop. In summary, the coupling between soft-magnetic Fe, FeOx layer, and hard-magnetic L10 FePt layer can be controlled by the oxygen diffusion behavior, and the oxidation of Fe layer was tuned by the annealing temperature. The ordered L10 FePt layer was deteriorated by oxygen and became disordered FePt when the annealed temperature was up to 800°C.

  1. Highly coercive thin-film nanostructures

    International Nuclear Information System (INIS)

    Zhou, J.; Skomski, R.; Kashyap, A.; Sorge, K.D.; Sui, Y.; Daniil, M.; Gao, L.; Yan, M.L.; Liou, S.-H.; Kirby, R.D.; Sellmyer, D.J.

    2005-01-01

    The processing, structure, and magnetism of highly coercive Sm-Co and FePt thin-film nanostructures are investigated. The structures include 1:5 based Sm-Co-Cu-Ti magnets, particulate FePt:C thin films, and FePt nanotubes. As in other systems, the coercivity depends on texture and imperfections, but there are some additional features. A specific coercivity mechanism in particulate media is a discrete pinning mode intermediate between Stoner-Wohlfarth rotation and ordinary domain-wall pinning. This mechanism yields a coercivity maximum for intermediate intergranular exchange and explains the occurrence of coercivities of 5 T in particulate Sm-Co-Cu-Ti magnets

  2. Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction

    Energy Technology Data Exchange (ETDEWEB)

    Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei; Ball, Madelyn; Huber, George W.; Zanchet, Daniela; Dumesic, James A.

    2018-03-01

    FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. The catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H2O activation on FeOx species at or near the Pt surface, mostly in the (II) oxidation state.

  3. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging.

    Science.gov (United States)

    Niu, Fushuang; Xu, Yuanhong; Liu, Mengli; Sun, Jing; Guo, Pengran; Liu, Jingquan

    2016-03-14

    Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often required. Herein, solid-state C-dots were simply prepared by bottom-up EC carbonization of nitriles (e.g. acetonitrile) in the presence of an ionic liquid [e.g. 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)], using carbon-free electrodes. Due to the positive charges of BMIM(+) on the C-dots, the final products presented in a precipitate form on the cathode, and the unreacted nitriles and BMIMPF6 can be easily removed by simple vacuum filtration. The as-prepared solid-state C-dots can be well dispersed in an aqueous medium with excellent photoluminescence properties. The average size of the C-dots was found to be 3.02 ± 0.12 nm as evidenced by transmission electron microscopy. Other techniques such as UV-vis spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were applied for the characterization of the C-dots and to analyze the possible generation mechanism. These C-dots have been successfully applied in efficient cell imaging and specific ferric ion detection.

  4. Double-layered perpendicular magnetic recording media of granular-type FePt-MgO films

    International Nuclear Information System (INIS)

    Zhang Zhengang; Singh, Amarendra K.; Yin Jinhua; Perumal, A.; Suzuki, Takao

    2005-01-01

    The recording performance of double-layered granular-type FePt-MgO perpendicular magnetic recording media fabricated onto glass discs by sputtering is investigated. The (0 0 1)-textured FePt granular films are obtained by annealing FePt/MgO multilayers. Three different multilayer structures are compared in their magnetic properties and recording SNR performances. To evaluate thermal stability property of these granular-type FePt disks, the time-dependent magnetic force microscope (MFM) signal from the written bits on one of these disks is recorded in the temperature range 25-200 degree sign C. The signal decay at high observation temperature is interpreted based on the temperature dependence of magnetic anisotropy (K u )

  5. Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies

    International Nuclear Information System (INIS)

    Babonneau, D; Abadias, G; Toudert, J; Girardeau, T; Fonda, E; Micha, J S; Petroff, F

    2008-01-01

    The comprehensive study of C/FePt granular multilayers prepared by ion-beam sputtering at room temperature and subsequent annealing is reported. The as-deposited multilayers consist of carbon-encapsulated FePt nanoparticles (average size ∼3 nm) with a disordered face-centered-cubic structure. The effects of thermal annealing on the structural and magnetic properties are investigated by using dedicated ex situ and in situ techniques, including high-resolution transmission electron microscopy, extended x-ray absorption fine structure, magnetometry, and coupled grazing incidence small-angle x-ray scattering and x-ray diffraction. Our structural data show that the particle size and interparticle distance increase slightly with annealing at temperatures below 790 K by thermally activated migration of Fe and Pt atoms. We find that thermal annealing at temperatures above 870 K results in the dramatic growth of the FePt nanoparticles by coalescence and their gradual L1 0 ordering. In addition, we observe a preferential graphitization of the carbon matrix, which provides protection against oxidation for the FePt nanoparticles. Magnetization measurements indicate that progressive magnetic hardening occurs after annealing. The dependences of the blocking temperature, saturation magnetization, coercivity, and magnetocrystalline anisotropy energy on the annealing temperature are discussed on the basis of the structural data

  6. Order quantification of hexagonal periodic arrays fabricated by in situ solvent-assisted nanoimprint lithography of block copolymers

    International Nuclear Information System (INIS)

    Simão, Claudia; Khunsin, Worawut; Kehagias, Nikolaos; Sotomayor Torres, Clivia M; Salaun, Mathieu; Zelsmann, Marc; Morris, Michael A

    2014-01-01

    Directed self-assembly of block copolymer polystyrene-b-polyethylene oxide (PS-b-PEO) thin film was achieved by a one-pot methodology of solvent vapor assisted nanoimprint lithography (SAIL). Simultaneous solvent-anneal and imprinting of a PS-b-PEO thin film on silicon without surface pre-treatments yielded a 250 nm line grating decorated with 20 nm diameter nanodots array over a large surface area of up to 4′ wafer scale. The grazing-incidence small-angle x-ray scattering diffraction pattern showed the fidelity of the NIL stamp pattern replication and confirmed the periodicity of the BCP of 40 nm. The order of the hexagonally arranged nanodot lattice was quantified by SEM image analysis using the opposite partner method and compared to conventionally solvent-annealed block copolymer films. The imprint-based SAIL methodology thus demonstrated an improvement in ordering of the nanodot lattice of up to 50%, and allows significant time and cost reduction in the processing of these structures. (papers)

  7. Ferroelectric nanostructure having switchable multi-stable vortex states

    Science.gov (United States)

    Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  8. Inorganic nanoprobes for biological sensing and imaging

    National Research Council Canada - National Science Library

    Mattoussi, Hedi; Cheon, Jinwoo

    2009-01-01

    ... and Nickel Nanoparticles Metal Alloy Nanoparticles 2.3.1 FePt Nanoparticles 2.3.2 Other Metal Alloy Nanoparticles Metal Oxide Nanoparticles 2.4.1 Monometallic Oxide Nanoparticles 2.4.2 Bimetall...

  9. SU-E-T-553: Monte Carlo Calculation of Proton Bragg Peak Displacements in the Presence of Al2O3:C Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Young, L; Yang, F [Univ Washington, Seattle, WA (United States)

    2015-06-15

    Purpose: The application of optically stimulated luminescence dosimeters (OSLDs) may be extended to clinical investigations verifying irradiated doses in small animal models. In proton beams, the accurate positioning of the Bragg peak is essential for tumor targeting. The purpose of this study was to estimate the displacement of a pristine Bragg peak when an Al2O3:C nanodot (Landauer, Inc.) is placed on the surface of a water phantom and to evaluate corresponding changes in dose. Methods: Clinical proton pencil beam simulations were carried out with using TOPAS, a Monte Carlo platform layered on top of GEANT4. Point-shaped beams with no energy spread were modeled for energies 100MV, 150MV, 200MV, and 250MV. Dose scoring for 100,000 particle histories was conducted within a water phantom (20cm × 20cm irradiated area, 40cm depth) with its surface placed 214.5cm away from the source. The modeled nanodot had a 4mm radius and 0.2mm thickness. Results: A comparative analysis of Monte Carlo depth dose profiles modeled for these proton pencil beams did not demonstrate an energy dependent in the Bragg peak shift. The shifts in Bragg Peak depth for water phantoms modeled with a nanodot on the phantom surface ranged between 2.7 to 3.2 mm. In all cases, the Bragg Peaks were shifted closer to the irradiation source. The peak dose in phantoms with an OSLD remained unchanged with percent dose differences less than 0.55% when compared to phantom doses without the nanodot. Conclusion: Monte Carlo calculations show that the presence of OSLD nanodots in proton beam therapy will not change the position of a pristine Bragg Peak by more than 3 mm. Although the 3.0 mm shift will not have a detrimental effect in patients receiving proton therapy, this effect may not be negligible in dose verification measurements for mouse models at lower proton beam energies.

  10. Large spin current injection in nano-pillar-based lateral spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Tatsuya [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan)

    2016-08-26

    We have investigated the influence of the injection of a large pure spin current on a magnetization process of a non-locally located ferromagnetic dot in nano-pillar-based lateral spin valves. Here, we prepared two kinds of the nano-pillar-type lateral spin valve based on Py nanodots and CoFeAl nanodots fabricated on a Cu film. In the Py/Cu lateral spin valve, although any significant change of the magnetization process of the Py nanodot has not been observed at room temperature. The magnetization reversal process is found to be modified by injecting a large pure spin current at 77 K. Switching the magnetization by the nonlocal spin injection has also been demonstrated at 77 K. In the CoFeAl/Cu lateral spin valve, a room temperature spin valve signal was strongly enhanced from the Py/Cu lateral spin valve because of the highly spin-polarized CoFeAl electrodes. The room temperature nonlocal switching has been demonstrated in the CoFeAl/Cu lateral spin valve.

  11. High Temperature Magnetic Properties of Indirect Exchange Spring FePt/M(Cu,C/Fe Trilayer Thin Films

    Directory of Open Access Journals (Sweden)

    Anabil Gayen

    2013-01-01

    Full Text Available We report the investigation of temperature dependent magnetic properties of FePt and FePt(30/M(Cu,C/Fe(5 trilayer thin films prepared by using magnetron sputtering technique at ambient temperature and postannealed at different temperatures. L10 ordering, hard magnetic properties, and thermal stability of FePt films are improved with increasing postannealing temperature. In FePt/M/Fe trilayer, the formation of interlayer exchange coupling between magnetic layers depends on interlayer materials and interface morphology. In FePt/C/Fe trilayer, when the C interlayer thickness was about 0.5 nm, a strong interlayer exchange coupling between hard and soft layers was achieved, and saturation magnetization was enhanced considerably after using interlayer exchange coupling with Fe. In addition, incoherent magnetization reversal process observed in FePt/Fe films changes into coherent switching process in FePt/C/Fe films giving rise to a single hysteresis loop. High temperature magnetic studies up to 573 K reveal that the effective reduction in the coercivity decreases largely from 34 Oe/K for FePt/Fe film to 13 Oe/K for FePt/C(0.5/Fe film demonstrating that the interlayer exchange coupling seems to be a promising approach to improve the stability of hard magnetic properties at high temperatures, which is suitable for high-performance magnets and thermally assisted magnetic recording media.

  12. Unconventional scaling of the anomalous Hall effect accompanying electron localization correction in the dirty regime

    KAUST Repository

    Lu, Y. M.

    2013-03-05

    Scaling of the anomalous Hall conductivity to longitudinal conductivity σAH∝σ2xx has been observed in the dirty regime of two-dimensional weak and strong localization regions in ultrathin, polycrystalline, chemically disordered, ferromagnetic FePt films. The relationship between electron transport and temperature reveals a quantitatively insignificant Coulomb interaction in these films, while the temperature dependent anomalous Hall conductivity experiences quantum correction from electron localization. At the onset of this correction, the low-temperature anomalous Hall resistivity begins to be saturated when the thickness of the FePt film is reduced, and the corresponding Hall conductivity scaling exponent becomes 2, which is above the recent unified theory of 1.6 (σAH∝σ1.6xx). Our results strongly suggest that the correction of the electron localization modulates the scaling exponent of the anomalous Hall effect.

  13. Feasibility of bit patterned media for HAMR at 5 Tb/in{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sumei, E-mail: wang3936@umn.edu; Ghoreyshi, Ali; Victora, R. H. [MINT, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-05-07

    We have investigated the feasibility of BPM for HAMR via Finite Difference Time Domain and atomistic simulation and we have substantiated the feasibility of 5 Tb/in{sup 2} with two filling factors 25% and 56% even when the maximum on-track bit temperature is below the Curie temperature. The success of this underheated switching is attributed to sufficiently low anisotropy instead of reduction of Curie temperature. The temperature gradient in the cross-track direction is almost doubled if the optical head width is reduced by half, indicating the possibility of higher areal densities. Moreover, contrary to continuous media, we also found that the power absorption peaks at the bottom of the bit patterned FePt when the media is illuminated from above, which is probably due to stronger coupling there between FePt and the surrounding materials.

  14. Synthesis and In Vitro Performance of Polypyrrole-Coated Iron-Platinum Nanoparticles for Photothermal Therapy and Photoacoustic Imaging

    Science.gov (United States)

    Phan, Thi Tuong Vy; Bui, Nhat Quang; Moorthy, Madhappan Santha; Lee, Kang Dae; Oh, Junghwan

    2017-10-01

    Multifunctional nano-platform for the combination of photo-based therapy and photoacoustic imaging (PAI) for cancer treatment has recently attracted much attention to nanotechnology development. In this study, we developed iron-platinum nanoparticles (FePt NPs) with the polypyrrole (PPy) coating as novel agents for combined photothermal therapy (PTT) and PAI. The obtained PPy-coated FePt NPs (FePt@PPy NPs) showed excellent biocompatibility, photothermal stability, and high near-infrared (NIR) absorbance for the combination of PTT and PAI. In vitro investigation experimentally demonstrated the effectiveness of FePt@PPy NPs in killing cancer cells with NIR laser irradiation. Moreover, the phantom test of PAI used in conjunction with FePt@PPy NPs showed a strong photoacoustic signal. Thus, the novel FePt@PPy NPs could be considered as promising multifunctional nanoparticles for further applications of photo-based diagnosis and treatment.

  15. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    International Nuclear Information System (INIS)

    Yu Zhenrui; Aceves, Mariano; Carrillo, Jesus; Lopez-Estopier, Rosa

    2006-01-01

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V T . When the applied voltage is smaller than V T , the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V T , the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained

  16. Development and structural characterization of exchange-spring-like nanomagnets in (Fe,Co)-Pt bulk nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, O.; Crisan, A.D.; Mercioniu, I. [National Institute for Materials Physics, P.O. Box MG-7, 077125 Magurele, Bucharest (Romania); Nicula, R. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Vasiliu, F., E-mail: fvasiliu@infim.ro [National Institute for Materials Physics, P.O. Box MG-7, 077125 Magurele, Bucharest (Romania)

    2016-03-01

    FePt-based alloys are currently under scrutiny for their possible use as materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that may operate at higher temperatures than the classic Nd–Fe–B magnets. Within this study, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. In the as-cast FeCoPt ribbons, a three-phase structure comprising well-ordered CoFePt and CoPt L1{sub 0} phases embedded in a disordered fcc FePt matrix was evidenced by XRD, HREM and SAED. Extended transmission electron microscopy analysis demonstrates the incipient formation of ordered L1{sub 0} phases. X-ray diffraction was used to characterize the phase structure and to obtain the structural parameters of interest for L1{sub 0} ordering. In the as-cast state, the co-existence of hard magnetic CoFePt and CoPt L1{sub 0} tetragonal phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains (grain sizes from 1 to 7 nm). Following a thermal treatment of 1 h at 670 °C, the soft magnetic fcc matrix phase transforms to tetragonal L1{sub 0} phases (disorder–order transition). The resulting CoPt and CoFePt L1{sub 0} phases have grains of around 5–20 nm in size. In the as-cast state, magnetic measurements show a quite large remanence (0.75 T), close to the value of the parent L1{sub 0} FePt phase. Coercive fields of about 200 kA/m at 5 K were obtained, comparable with those reported for some FePt-based bulk alloys. Upon annealing both remanence and coercivity are increased and values of up to 254 kA/m at 300 K are obtained. The polycrystalline structure of the annealed FeCoPt samples, as well as the formation of multiple c-axis domains in different CoPt and CoFePt regions (which leads to a reduction of the magneto-crystalline anisotropy) may account for the observed coercive fields that are

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    range 2D organization of chemically synthesized FePt nanoparticles dispersed on Si ⟨ 100 ⟩ substrate by means of pulsed H+ energetic ion irradiation using a dense plasma focus (DPF) device. The irradiation of energetic H + ions on FePt ...

  18. Ferromagnetic resonance characterization of nano-FePt by electron spin resonance

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-01-01

    Full Text Available Electron spin resonance (ESR) measurements at room temperature and X-band microwave frequency were performed on highly crystalline FePt system thin films. Fairly high DC static magnetic field absorption of about 300 mT was observed in these films...

  19. Magnetoelectric control of spin currents

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, J. E.; Vargas, J. M.; Avilés-Félix, L.; Butera, A. [Centro Atómico Bariloche, Instituto de Nanociencia y Nanotecnología (CNEA) and Conicet, 8400 Bariloche, Río Negro (Argentina)

    2016-06-13

    The ability to control the spin current injection has been explored on a hybrid magnetoelectric system consisting of a (011)-cut ferroelectric lead magnesium niobate-lead titanate (PMNT) single crystal, a ferromagnetic FePt alloy, and a metallic Pt. With this PMNT/FePt/Pt structure we have been able to control the magnetic field position or the microwave excitation frequency at which the spin pumping phenomenon between FePt and Pt occurs. We demonstrate that the magnetoelectric heterostructure operating in the L-T (longitudinal magnetized-transverse polarized) mode couples the PMNT crystal to the magnetostrictive FePt/Pt bilayer, displaying a strong magnetoelectric coefficient of ∼140 Oe cm kV{sup −1}. Our results show that this mechanism can be effectively exploited as a tunable spin current intensity emitter and open the possibility to create an oscillating or a bistable switch to effectively manipulate spin currents.

  20. Compositionally graded Fe{sub (1−x)}-Pt{sub (x)} nanowires produced by alternating current electrodeposition into alumina templates

    Energy Technology Data Exchange (ETDEWEB)

    Fardi-Ilkhchy, Ali [Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Nasirpouri, Farzad, E-mail: Nasirpouri@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Bran, Cristina; Vázquez, Manuel [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain)

    2016-12-15

    Fe{sub (1−x)}-Pt{sub (x)} (0Fe-Pt alloy nanowires was studied. Based on experimental data, AC sine wave deposition at an intermediate voltage of 12 V{sub rms} and a frequency of 50 Hz, produces nanowires with nearly stoichiometric composition (Fe{sub 42}Pt{sub 58}) and a reasonably good uniformity of pore filling. However, there is a gradual change of composition in Fe-Pt alloy nanowires along the length under certain AC parameters. The observed dependency of alloy composition on the deposition voltage and frequency of AC electrodeposition is explained by an interplay between reduction potentials and diffusion coefficients of Fe and Pt ions which makes FePt system able to access compositionally graded nanowires. Magnetic measurements of nanowires of as-deposited nanowires confirm that maximum coercivity of 1.55 kOe is observed for nearly stoichiometric composition which increases up to 1.81 kOe after thermal annealing at 550 °C. - Graphical abstract: Evaluation of synthesizing extrinsic parameters (such as deposition voltages and frequency) and intrinsic parameters (diffusion coefficient and reduction potential of ion species) in compositionally graded Fe{sub (1−x)}-Pt{sub (x)} nanowires prepared by alternating current electrodeposition into alumina templates.

  1. Self-assembled monolayers on metal oxides : applications in nanotechnology

    NARCIS (Netherlands)

    Yildirim, O.

    2010-01-01

    The thesis describes the use of phosph(on)ate-based self-assembled monolayers (SAMs) to modify and pattern metal oxides. Metal oxides have interesting electronic and magnetic properties such as insulating, semiconducting, metallic, ferromagnetic etc. and SAMs can tailor the surface properties. FePt

  2. Phase diagrams of magnetic state transformations in multiferroic composites controlled by size, shape and interfacial coupling strain

    Directory of Open Access Journals (Sweden)

    Qiang Sheng

    2017-10-01

    Full Text Available This work aims to give a comprehensive view of magnetic state stability and transformations in PZT-film/FeGa-dot multiferroic composite systems due to the combining effects of size, shape and interfacial coupling strain. It is found that the stable magnetic state of the FeGa nanodots is not only a function of the size and shape of the nanodot but also strongly sensitive to the interfacial coupling strain modified by the polarization state of PZT film. In particular, due to the large magnetostriction of FeGa, the phase boundaries between different magnetic states (i.e., in-plane/out-of-plane polar states, and single-/multi-vortex states of FeGa nanodots can be effectively tuned by the polarization-mediated strain. Fruitful strain-mediated transformation paths of magnetic states including those between states with different orderings (i.e., one is polar and the other is vortex, as well as those between states with the same ordering (i.e., both are polar or both are vortex have been revealed in a comprehensive view. Our result sheds light on the potential of utilizing electric field to induce fruitful magnetic state transformation paths in multiferroic film-dot systems towards a development of novel magnetic random access memories.

  3. Introduction of Artificial Pinning Center into PLD-YBCO Coated Conductor on IBAD and Self-Epitaxial CeO2 Buffered Metal Substrate

    International Nuclear Information System (INIS)

    Kobayashi, H.; Yamada, Y.; Ishida, S.; Takahashi, K.; Konishi, M.; Ibi, A.; Miyata, S.; Kato, T.; Hirayama, T.; Shiohara, Y.

    2006-01-01

    In order to fabricate YBa2Cu3O7-x (YBCO) coated conductors with high critical current density Jc in magnetic fields, we fabricated YBCO coated conductors with artificial pinning centers by the pulsed laser deposition (PLD) method on a self epitaxial PLD-CeO2 layer and ion-beam assisted deposition (IBAD)-Gd2Zr2O7 (GZO) buffered Hastelloy tape. Artificial pinning centers were introduced by the PLD deposition using the yttria-stabilized zirconia (YSZ) oxide target (nano-dot method) and YBCO target including YSZ particles (mixed target method). In the experiments using YSZ oxide target, YSZ nano-dots were observed. They were approximately 15 nm in height and 10 nm to 70 nm in diameter. We found that the density of nano-dots was controlled by the number of laser pulses. These samples exhibited higher Jc than YBCO films in magnetic fields. Furthermore, a similar improvement of Jc was observed in the experiments using YBCO target including YSZ particles. TEM observation revealed that columnar nano-structure made of BaZrO3 was formed during YBCO deposition and it was effective for pinning. We call this new epitaxial nano-structure 'bamboo structure' from its anisotropic growth and morphology

  4. l-Tyrosine Contained in Dietary Supplement by Chemiluminescence Reaction of an Iron-Phthalocyanine Complex

    Directory of Open Access Journals (Sweden)

    Takao Ohtomo

    2012-01-01

    Full Text Available The chemiluminescence (CL signal immediately appeared when a hydrogen peroxide solution was injected into an iron-phthalocyanine tetrasulfonic acid (Fe-PTS aqueous solution. Moreover, the CL intensity of Fe-PTS decreased by adding L-tyrosine. Based on these results, the determination of trace amounts of L-tyrosine was developed using the quenching-chemiluminescence. The calibration curve of L-tyrosine was obtained in the concentration range of 2.0×10−7 M to 2.0×10−5 M. Moreover, the relative standard deviation (RSD was 1.63 % (=5 for 2.0×10−6 M L-tyrosine, and its detection limits (3σ were 1.81×10−7 M. The spike and recovery experiments for L-tyrosine were performed using a soft drink. Furthermore, the determination of L-tyrosine was applied to supplements containing various kinds of amino acids. Each satisfactory relative recovery was obtained at 98 to 102%.

  5. Chemically ordered face-centred tetragonal Fe–Pt nanoparticles ...

    Indian Academy of Sciences (India)

    2012-02-21

    Feb 21, 2012 ... Heat treatment of Fe/Pt co-doped films in air caused generation of Pt NPs first. At this stage, Fe .... water to salt can be varied from 26 to 28) and mixed with ..... electron diffraction (SAED) pattern (grey scale inverted; fig- ure 5c) ...

  6. Biomimetic Nanoarchitectures for the Study of T Cell Activation with Single-Molecule Control

    Science.gov (United States)

    Cai, Haogang

    Physical factors in the environment of a cell affect its function and behavior in a variety of ways. There is increasing evidence that, among these factors, the geometric arrangement of receptor ligands plays an important role in setting the conditions for critical cellular processes. The goal of this thesis is to develop new techniques for probing the role of extracellular ligand geometry, with a focus on T cell activation. In this work, top-down molecular-scale nanofabrication and bottom-up selective self-assembly were combined in order to present functional nanomaterials (primarily biomolecules) on a surface with precise spatial control and single-molecule resolution. Such biomolecule nanoarrays are becoming an increasingly important tool in surface-based in vitro assays for biosensing, molecular and cellular studies. The nanoarrays consist of metallic nanodots patterned on glass coverslips using electron beam and nanoimprint lithography, combined with self-aligned pattern transfer. The nanodots were then used as anchors for the immobilization of biological ligands, and backfilled with a protein-repellent passivation layer of polyethylene glycol. The passivation efficiency was improved to minimize nonspecific adsorption. In order to ensure true single-molecule control, we developed an on-chip protocol to measure the molecular occupancy of nanodot arrays based on fluorescence photobleaching, while accounting for quenching effects by plasmonic absorption. We found that the molecular occupancy can be interpreted as a packing problem, with the solution depending on the nanodot size and the concentration of self-assembly reagents, where the latter can be easily adjusted to control the molecular occupancy according to the dot size. The optimized nanoarrays were used as biomimetic architectures for the study of T cell activation with single-molecule control. T cell activation involves an elaborate arrangement of signaling, adhesion, and costimulatory molecules

  7. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Young, L [UniversityWashington, Seattle, WA (United States); Yang, F; Sandison, G [University of Washington, Seattle, WA (United States); Woodworth, D [University of California, Santa Barbara, Santa Barbara, CA (United States); McCormick, Z [University of Nevada - Reno, Reno, Nevada (United States)

    2014-06-01

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depth of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron beam

  8. Multiple-Ring Digital Communication Network

    Science.gov (United States)

    Kirkham, Harold

    1992-01-01

    Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.

  9. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices

    Science.gov (United States)

    Farid, Sidra; Kuljic, Rade; Poduri, Shripriya; Dutta, Mitra; Darling, Seth B.

    2018-06-01

    High-density arrays of gold nanodots and nanoholes on indium tin oxide (ITO)-coated glass surfaces are fabricated using a nanoporous template fabricated by the self-assembly of diblock copolymers of poly (styrene-block-methyl methacrylate) (PS-b-PMMA) structures. By balancing the interfacial interactions between the polymer blocks and the substrate using random copolymer, cylindrical block copolymer microdomains oriented perpendicular to the plane of the substrate have been obtained. Nanoporous PS films are created by selectively etching PMMA cylinders, a straightforward route to form highly ordered nanoscale porous films. Deposition of gold on the template followed by lift off and sonication leaves a highly dense array of gold nanodots. These materials can serve as templates for the vapor-liquid-solid (VLS) growth of semiconductor nanorod arrays for next generation hybrid optoelectronic applications.

  10. Multiple Input - Multiple Output (MIMO) SAR

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort will research and implement advanced Multiple-Input Multiple-Output (MIMO) Synthetic Aperture Radar (SAR) techniques which have the potential to improve...

  11. MULTIPLE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2015-04-01

    Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets

  12. Magnetic properties and inhomogeneous phase transition in (Fe sub x Co sub 0 sub . sub 5 sub - sub x)Pt sub 0 sub . sub 5 films

    CERN Document Server

    Jang, P W; Na, J G; Lee, S R

    1999-01-01

    (Fe sub x Co sub 0 sub . sub 5 sub - sub x)Pt sub 0 sub . sub 5 ternary thin films were deposited on glass substrates by using a dc sputtering method at room temperature and were subsequently annealed at 700 .deg. C in a high vacuum. A high degree of the (111) preferred orientation could be obtained in all the as-deposited films and was not destroyed, even though post annealing. The CoPt and the FePt binary alloys were completely mixed and had a L1 sub o -type ordered structure, as confirmed by single (222) peaks and by the linear variation of the lattice constant a sub o. The ordered structure of the FePt alloy was thought to have formed from the disordered structure by an inhomogeneous process, which was confirmed by the asymmetric peak shapes. The lattice parameter a sub o varied linearly with the Fe content while the coercivity showed a minimum value at the equiatomic composition of the Fe and the Co atoms.

  13. Multiple constant multiplication optimizations for field programmable gate arrays

    CERN Document Server

    Kumm, Martin

    2016-01-01

    This work covers field programmable gate array (FPGA)-specific optimizations of circuits computing the multiplication of a variable by several constants, commonly denoted as multiple constant multiplication (MCM). These optimizations focus on low resource usage but high performance. They comprise the use of fast carry-chains in adder-based constant multiplications including ternary (3-input) adders as well as the integration of look-up table-based constant multipliers and embedded multipliers to get the optimal mapping to modern FPGAs. The proposed methods can be used for the efficient implementation of digital filters, discrete transforms and many other circuits in the domain of digital signal processing, communication and image processing. Contents Heuristic and ILP-Based Optimal Solutions for the Pipelined Multiple Constant Multiplication Problem Methods to Integrate Embedded Multipliers, LUT-Based Constant Multipliers and Ternary (3-Input) Adders An Optimized Multiple Constant Multiplication Architecture ...

  14. The multiple Dirichlet product and the multiple Dirichlet series

    OpenAIRE

    Onozuka, Tomokazu

    2016-01-01

    First, we define the multiple Dirichlet product and study the properties of it. From those properties, we obtain a zero-free region of a multiple Dirichlet series and a multiple Dirichlet series expression of the reciprocal of a multiple Dirichlet series.

  15. Coupled plasmon modes and their localization in graded plasmonic chains

    International Nuclear Information System (INIS)

    Xiao, J.J.; Yakubo, K.; Yu, K.W.

    2007-01-01

    Plasmonic waves occur in the subwavelength scale with transverse confinement below the diffraction limit. In this work, we report results of longitudinal localization-delocalization transitions of coupled plasmon modes in graded chains of metallic nanodots. Two graded models are studied: graded index of refraction in the host medium and incremental spacing between the nanoparticles. The coupled plasmon modes in these graded systems exhibit strong localization, showing a tunable passband in finite size systems. These localized modes survive in presence of weak loss in the nanodots. To understand the localization mechanism, we construct equivalent systems of one-dimensional coupled harmonic oscillators, whose coupling strength or masses are gradually varied from one end to the other, with additional on-site potentials. Confining and transmitting electromagnetic energy in these structures may pave new way for many fruitful applications in plasmonics

  16. Introduction to nanotheranostics

    CERN Document Server

    Tamil Selvan, Subramanian

    2016-01-01

    This book offers readers an introduction to the current status of nanoparticles and other nanomaterials that have potential applications in theranostics. Above all, it highlights the diagnostic and therapeutic applications of metallic (e.g. Au, Ag), semiconducting quantum dots (e.g. CdSe, CdTe), magnetic (e.g. Fe3O4, FePt, Co), and multifunctional (combination of two or three) nanoparticles. .

  17. Mixed multiplicities for arbitrary ideals and generalized Buchsbaum-Rim multiplicities

    International Nuclear Information System (INIS)

    Callejas-Bedregal, R.; Jorge Perez, V.H.

    2005-12-01

    We introduce first the notion of mixed multiplicities for arbitrary ideals in a local d-dimensional noetherian ring (A, m) which, in some sense, generalizes the concept of mixed multiplicities for m-primary ideals. We also generalize Teissier's Product Formula for a set of arbitrary ideals. We also extend the notion of the Buchsbaum-Rim multiplicity (in short, we write BR-multiplicity) of a submodule of a free module to the case where the submodule no longer has finite colength. For a submodule M of A p we introduce a sequence e BR k (M), k = 0,...,d + p - 1 which in the ideal case coincides with the multiplicity sequence c 0 (I, A),...,c d (I, A) defined for an arbitrary ideal I of A by Achilles and Manaresi in [AM]. In case that M has finite colength in A p and it is totally decomposable we prove that our BR-multiplicity sequence essentially falls into the standard BR-multiplicity of M. (author)

  18. High-performance cobalt carbonate hydroxide nano-dot/NiCo(CO3)(OH)2 electrode for asymmetric supercapacitors

    Science.gov (United States)

    Lee, Damin; Xia, Qi Xun; Yun, Je Moon; Kim, Kwang Ho

    2018-03-01

    Binder-free mesoporous NiCo(CO3)(OH)2 nanowire arrays were grown using a facile hydrothermal technique. The Co2(CO3)(OH)2 in NiCo(CO3)(OH)2 nanowire arrays was well-decorated as nano-dot scale (a few nanometer). In addition, increasing cobalt content in nickel compound matrix, NiCo(CO3)(OH)2 nanowire arrays were separately uniformly grown without agglomeration on Ni foam, providing a high specific surface area to help electrolyte access and ion transfer. The enticing composition and morphology of the NiCo(CO3)(OH)2 nanowire exhibit a superior specific capacity of 1288.2 mAh g-1 at a current density of 3 A g-1 and excellent cycling stability with the capacity retention of 80.7% after 10,000 cycles. Furthermore, an asymmetric supercapacitor composed of the NiCo(CO3)(OH)2 composite as a positive electrode and the graphene as a negative electrode presented a high energy density of 35.5 W h kg-1 at a power density of 2555.6 W kg-1 and satisfactory cycling stability with 71.3% capacity retention after 10,000 cycles. The great combination of the active nano-dot Co2(CO3)(OH)2 and the individually grown NiCo(CO3)(OH)2 nanowires made it a promising electrode material for asymmetric supercapacitors. A well-developed nanoarchitecture of the nano-dot Co2(CO3)(OH)2 decorated NiCo(CO3)(OH)2 composite could pave the way for an excellent electrode design for high-performance supercapacitors.

  19. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study

    Institute of Scientific and Technical Information of China (English)

    Wee-Jun Ong; Lutfi Kurnianditia Putri; Yoong-Chuen Tan; Lling-Lling Tan; Neng Li; Yun Hau Ng; Xiaoming Wen; Siang-Piao Chai

    2017-01-01

    In this work,we demonstrated the successful construction of metal-free zerodimensional/two-dimensional carbon nanodot (CND)-hybridized protonated g-C3N4 (pCN) (CND/pCN) heterojunction photocatalysts by means of electrostatic attraction.We experimentally found that CNDs with an average diameter of 4.4 nm were uniformly distributed on the surface of pCN using electron microscopy analysis.The CND/pCN-3 sample with a CND content of 3 wt.% showed the highest catalytic activity in the CO2 photoreduction process under visible and simulated solar light.Thisprocess results in the evolution of CH4 and CO.The total amounts of CH4 and CO generated by the CND/pCN-3 photocatalyst after 10 h of visible-light activity were found to be 29.23 and 58.82 μmol·gcatalyst-1,respectively.These values were 3.6 and 2.28 times higher,respectively,than the amounts generated when using pCN alone.The corresponding apparent quantum efficiency (AQE) was calculated to be 0.076%.Furthermore,the CND/pCN-3 sample demonstrated high stability and durability after four consecutive photoreaction cycles,with no significant decrease in the catalytic activity.The significant improvement in the photoactivity using CND/pCN-3 was attributed to the synergistic interaction between pCN and CNDs.This synergy allows the effective migration of photoexcited electrons from pCN to CNDs via wellcontacted heterojunction interfaces,which retards the charge recombination.This was confirmed by photoelectrochemical measurements,and steady-state and time-resolved photoluminescence analyses.The first-principles density functional theory (DFT) calculations were consistent with our experimental results,and showed that the work function of CNDs (5.56 eV) was larger than that of pCN (4.66 eV).This suggests that the efficient shuttling of electrons from the conduction band of pCN to CNDs hampers the recombination of electron-hole pairs.This significantly increased the probability of free charge carriers reducing CO2 to CH4

  20. Lithography-Free Fabrication of Large Area Subwavelength Antireflection Structures Using Thermally Dewetted Pt/Pd Alloy Etch Mask

    Directory of Open Access Journals (Sweden)

    Kang Jeong-Jin

    2009-01-01

    Full Text Available Abstract We have demonstrated lithography-free, simple, and large area fabrication method for subwavelength antireflection structures (SAS to achieve low reflectance of silicon (Si surface. Thin film of Pt/Pd alloy on a Si substrate is melted and agglomerated into hemispheric nanodots by thermal dewetting process, and the array of the nanodots is used as etch mask for reactive ion etching (RIE to form SAS on the Si surface. Two critical parameters, the temperature of thermal dewetting processes and the duration of RIE, have been experimentally studied to achieve very low reflectance from SAS. All the SAS have well-tapered shapes that the refractive index may be changed continuously and monotonously in the direction of incident light. In the wavelength range from 350 to 1800 nm, the measured reflectance of the fabricated SAS averages out to 5%. Especially in the wavelength range from 550 to 650 nm, which falls within visible light, the measured reflectance is under 0.01%.

  1. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors

    International Nuclear Information System (INIS)

    Llordes, Anna; Palau, A.; Gazquez, J.; Coll, M.; Vlad, R.; Pomar, A.; Arbiol, Jordi; Guzman, Roger; Ye, S.; Rouco, V.; Sandiumenge, Felip; Ricart, Susagna; Puig, Teresa; Varela del Arco, Maria; Chataigner, D.; Vanacken, J.; Gutierrez, J.; Moschalkov, V.; Deutscher, G.; Magen Dominguez, Cesar; Obradors, Xavier

    2012-01-01

    Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centers in solution-derived high-temperature superconductor nanocomposites through generation of nanostrained regions where Cooper pair formation is suppressed. The nanostrained regions identified from transmission electron microscopy devise a very high concentration of partial dislocations associated with intergrowths generated between the randomly oriented nanodots and the epitaxial YBa 2 Cu 3 O 7 matrix. Consequently, an outstanding vortex-pinning enhancement correlated to the nanostrain is demonstrated for four types of randomly oriented nanodot, and a unique evolution towards an isotropic vortex-pinning behaviour, even in the effective anisotropy, is achieved as the nanostrain turns isotropic. We suggest a new vortex-pinning mechanism based on the bond-contraction pairing model, where pair formation is quenched under tensile strain, forming new and effective core-pinning regions.

  2. Silica nanoparticle stability in biological media revisited.

    Science.gov (United States)

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  3. Robust multiple frequency multiple power localization schemes in the presence of multiple jamming attacks.

    Directory of Open Access Journals (Sweden)

    Ahmed Abdulqader Hussein

    Full Text Available Localization of the wireless sensor network is a vital area acquiring an impressive research concern and called upon to expand more with the rising of its applications. As localization is gaining prominence in wireless sensor network, it is vulnerable to jamming attacks. Jamming attacks disrupt communication opportunity among the sender and receiver and deeply impact the localization process, leading to a huge error of the estimated sensor node position. Therefore, detection and elimination of jamming influence are absolutely indispensable. Range-based techniques especially Received Signal Strength (RSS is facing severe impact of these attacks. This paper proposes algorithms based on Combination Multiple Frequency Multiple Power Localization (C-MFMPL and Step Function Multiple Frequency Multiple Power Localization (SF-MFMPL. The algorithms have been tested in the presence of multiple types of jamming attacks including capture and replay, random and constant jammers over a log normal shadow fading propagation model. In order to overcome the impact of random and constant jammers, the proposed method uses two sets of frequencies shared by the implemented anchor nodes to obtain the averaged RSS readings all over the transmitted frequencies successfully. In addition, three stages of filters have been used to cope with the replayed beacons caused by the capture and replay jammers. In this paper the localization performance of the proposed algorithms for the ideal case which is defined by without the existence of the jamming attack are compared with the case of jamming attacks. The main contribution of this paper is to achieve robust localization performance in the presence of multiple jamming attacks under log normal shadow fading environment with a different simulation conditions and scenarios.

  4. Optimizing antiemetic therapy in multiple-day and multiple cycles of chemotherapy

    DEFF Research Database (Denmark)

    Ellebaek, E.; Herrstedt, J.

    2008-01-01

    PURPOSE OF REVIEW: Only a few studies have investigated the effect of antiemetic therapy in patients treated with multiple-day or multiple cycles of chemotherapy. The present review will assess the available data, highlight the current recommendations and draw attention towards the remaining...... of chemotherapy the addition of a NK1-receptor antagonist aprepitant to standard antiemetic therapy has increased the antiemetic effect, and multiple cycle extension studies have demonstrated that this increment in effect is sustained during multiple cycles of chemotherapy. A recent study indicated...... that the dopamine D2-receptor antagonist metopimazine has some additive effect on delayed symptoms induced by multiple-day chemotherapy. SUMMARY: The development of the NK1-receptor antagonist aprepitant has significantly improved the antiemetic control in patients treated with multiple cycles of chemotherapy. Far...

  5. Multiple sclerosis

    Science.gov (United States)

    ... indwelling catheter Osteoporosis or thinning of the bones Pressure sores Side effects of medicines used to treat the ... Daily bowel care program Multiple sclerosis - discharge Preventing pressure ulcers Swallowing problems Images Multiple sclerosis MRI of the ...

  6. Beyond KNO multiplicative cascades and novel multiplicity scaling laws

    CERN Document Server

    Hegyi, S

    1999-01-01

    The collapse of multiplicity distributions P/sub n/ onto a universal scaling curve arises when P/sub n/ is expressed as a function of the standardized multiplicity (n-c)/ lambda with c and lambda being location and scale parameters governed by leading particle effects and the growth of average multiplicity. It is demonstrated that self- similar multiplicative cascade processes such as QCD parton branching naturally lead to a novel type of scaling behavior of P/sub n/ which manifests itself in Mellin space through a location change controlled by the degree of multifractality and a scale change governed by the depth of the cascade. Applying the new scaling rule it is shown how to restore data collapsing behavior of P/sub n/ measured in hh collisions at ISR and SPS energies. (21 refs).

  7. Growth and structure of Si and Ge in vanadium oxide nanomesh on Pd(1 1 1) studied by STM and DFT

    International Nuclear Information System (INIS)

    Chan, Lap Hong; Hayazaki, Shinji; Ogawa, Kokushi; Yuhara, Junji

    2013-01-01

    Highlights: ► We studied the growth and structure of Si and Ge in vanadium oxide nanomesh on Pd(1 1 1) by STM and DFT calculations. ► All the Si atoms formed isolated Si nanoclusters. ► Some Ge atoms formed monomer Ge nanodots on Pd(1 1 1), while the others formed isolated Ge nanoclusters. - Abstract: The growth of silicon (Si)/germanium (Ge) atoms in a well ordered (4 × 4) vanadium (V) oxide nanomesh on Pd(1 1 1) prepared by ultra-high-vacuum evaporation has been studied by scanning tunneling microscopy (STM) and ab initio density functional theory (DFT) calculations. At the very beginning of the Si deposition, all of the Si atoms deposited were adsorbed on top of the V-oxide nanomesh, forming Si nanoclusters, and each Si atom formed was isolated other Si atoms. Two different adsorption sites for Si atoms were observed by STM. In the case of Ge deposition, some Ge atoms filled the vanadium oxide nanoholes, forming Ge nanodots on Pd(1 1 1), while the others were adsorbed on top of the V-oxide nanomesh, forming isolated Ge nanoclusters. The ab initio DFT total-energy calculations indicated that the Ge atoms occupying the nanohole were more stable than those adsorbed on the nanomesh. The simulated images were highly consistent with the experimental STM images with the exception of the Ge nanodots, which exhibited a large, uniform protrusion in the STM images. Therefore, the adsorbed atom might be mobile in the nanohole at room temperature, possibly as a result of interaction with the STM tip.

  8. Comparing Hp(3) evaluated from the conversion coefficients from air kerma to personal dose equivalent for eye lens dosimetry calibrated on a new cylindrical PMMA phantom

    Science.gov (United States)

    Esor, J.; Sudchai, W.; Monthonwattana, S.; Pungkun, V.; Intang, A.

    2017-06-01

    Based on a new occupational dose limit recommended by ICRP (2011), the annual dose limit for the lens of the eye for workers should be reduced from 150 mSv/y to 20 mSv/y averaged over 5 consecutive years in which no single year exceeding 50 mSv. This new dose limit directly affects radiologists and cardiologists whose work involves high radiation exposure over 20 mSv/y. Eye lens dosimetry (Hp(3)) has become increasingly important and should be evaluated directly based on dosimeters that are worn closely to the eye. Normally, Hp(3) dose algorithm was carried out by the combination of Hp(0.07) and Hp(10) values while dosimeters were calibrated on slab PMMA phantom. Recently, there were three reports from European Union that have shown the conversion coefficients from air kerma to Hp(3). These conversion coefficients carried out by ORAMED, PTB and CEA Saclay projects were performed by using a new cylindrical head phantom. In this study, various delivered doses were calculated using those three conversion coefficients while nanoDot, small OSL dosimeters, were used for Hp(3) measurement. These calibrations were performed with a standard X-ray generator at Secondary Standard Dosimetry Laboratory (SSDL). Delivered doses (Hp(3)) using those three conversion coefficients were compared with Hp(3) from nanoDot measurements. The results showed that percentage differences between delivered doses evaluated from the conversion coefficient of each project and Hp(3) doses evaluated from the nanoDots were found to be not exceeding -11.48 %, -8.85 % and -8.85 % for ORAMED, PTB and CEA Saclay project, respectively.

  9. Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements

    International Nuclear Information System (INIS)

    Chia, A.; Wiseman, H. M.

    2011-01-01

    Feedback control engineers have been interested in multiple-input-multiple-output (MIMO) extensions of single-input-single-output (SISO) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensive use of vector-operator algebra.

  10. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, Mohammad Akbar Hosain

    2014-12-04

    Various examples are provided for generalized internal multiple imaging (GIMI). In one example, among others, a method includes generating a higher order internal multiple image using a background Green\\'s function and rendering the higher order internal multiple image for presentation. In another example, a system includes a computing device and a generalized internal multiple imaging (GIMI) application executable in the computing device. The GIMI application includes logic that generates a higher order internal multiple image using a background Green\\'s function and logic that renders the higher order internal multiple image for display on a display device. In another example, a non-transitory computer readable medium has a program executable by processing circuitry that generates a higher order internal multiple image using a background Green\\'s function and renders the higher order internal multiple image for display on a display device.

  11. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, Mohammad Akbar Hosain; Alkhalifah, Tariq

    2014-01-01

    Various examples are provided for generalized internal multiple imaging (GIMI). In one example, among others, a method includes generating a higher order internal multiple image using a background Green's function and rendering the higher order internal multiple image for presentation. In another example, a system includes a computing device and a generalized internal multiple imaging (GIMI) application executable in the computing device. The GIMI application includes logic that generates a higher order internal multiple image using a background Green's function and logic that renders the higher order internal multiple image for display on a display device. In another example, a non-transitory computer readable medium has a program executable by processing circuitry that generates a higher order internal multiple image using a background Green's function and renders the higher order internal multiple image for display on a display device.

  12. Multiplicity: An Explorative Interview Study on Personal Experiences of People with Multiple Selves.

    Science.gov (United States)

    Ribáry, Gergő; Lajtai, László; Demetrovics, Zsolt; Maraz, Aniko

    2017-01-01

    Background and aims: Personality psychology research relies on the notion that humans have a single self that is the result of the individual's thoughts, feelings, and behaviors that can be reliably described (i.e., through traits). People who identify themselves as "multiple" have a system of multiple or alternative, selves, that share the same physical body. This is the first study to explore the phenomenon of multiplicity by assessing the experiences of people who identify themselves as "multiple." Methods: First, an Internet forum search was performed using the terms "multiplicity" and "multiple system." Based on that search, people who identified themselves as multiple were contacted. Interviews were conducted by a consultant psychiatrist, which produced six case vignettes. Results: Multiplicity is discussed on Twitter, Tumblr, Google+ and several other personal websites, blogs, and forums maintained by multiples. According to the study's estimates, there are 200-300 individuals who participate in these forums and believe they are multiple. Based on the six interviews, it appears that multiples have several selves who are relatively independent of each other and constitute the personality's system. Each "resident person" or self, has their own unique behavioral pattern, which is triggered by different situations. However, multiples are a heterogeneous group in terms of their system organization, memory functions, and control over switching between selves. Conclusions: Multiplicity can be placed along a continuum between identity disturbance and dissociative identity disorder (DID), although most systems function relatively well in everyday life. Further research is needed to explore this phenomenon, especially in terms of the extent to which multiplicity can be regarded as a healthy way of coping.

  13. Multiple purpose electrical profit; Emprendimiento electrico de prestacion multiple

    Energy Technology Data Exchange (ETDEWEB)

    Assennato, H. [Electrica de Azul Ltda., Buenos Aires (Argentina)

    1986-12-31

    This paper shows the multiple purpose aspects of electrification projects in rural and isolated areas. The multiple aspects involved in the electrification process may include, over electric power supply: improvement of life quality, irrigation and rural mechanization. 4 figs., 6 tabs., 4 refs.

  14. Multiple myeloma

    International Nuclear Information System (INIS)

    Sohn, Jeong Ick; Ha, Choon Ho; Choi, Karp Shik

    1994-01-01

    Multiple myeloma is a malignant plasma cell tumor that is thought to originate proliferation of a single clone of abnormal plasma cell resulting production of a whole monoclonal paraprotein. The authors experienced a case of multiple myeloma with severe mandibular osteolytic lesions in 46-year-old female. As a result of careful analysis of clinical, radiological, histopathological features, and laboratory findings, we diagnosed it as multiple myeloma, and the following results were obtained. 1. Main clinical symptoms were intermittent dull pain on the mandibular body area, abnormal sensation of lip and pain due to the fracture on the right clavicle. 2. Laboratory findings revealed M-spike, reversed serum albumin-globulin ratio, markedly elevated ESR and hypercalcemia. 3. Radiographically, multiple osteolytic punched-out radiolucencies were evident on the skull, zygoma, jaw bones, ribs, clavicle and upper extremities. Enlarged liver and increased uptakes on the lesional sites in RN scan were also observed. 4. Histopathologically, markedly hypercellular marrow with sheets of plasmoblasts and megakaryocytes were also observed.

  15. Multiple exostotic hypochondroplasia: Syndrome of combined hypochondroplasia and multiple exostoses

    International Nuclear Information System (INIS)

    Dominguez, R.; Young, L.W.; Girdany, B.R.; Steele, M.W.

    1984-01-01

    This is a report of a family with major focus on the daughter who had short stature. The mother had hypochondroplasia and the father had multiple exostoses. The daughter's skeletal roentgenograms show features of both hypochondroplasia and multiple exostoses. The roentgenographic, clinical and genetic aspects of these skeletal dysplasias are reviewed and hypochrondroplasia is contrasted with achondroplasia. The genetic and counseling implications of the association of hypochondroplasia and multiple exostoses are discussed. (orig.)

  16. Multiple exostotic hypochondroplasia: Syndrome of combined hypochondroplasia and multiple exostoses

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, R.; Young, L.W.; Girdany, B.R.; Steele, M.W.

    1984-07-01

    This is a report of a family with major focus on the daughter who had short stature. The mother had hypochondroplasia and the father had multiple exostoses. The daughter's skeletal roentgenograms show features of both hypochondroplasia and multiple exostoses. The roentgenographic, clinical and genetic aspects of these skeletal dysplasias are reviewed and hypochrondroplasia is contrasted with achondroplasia. The genetic and counseling implications of the association of hypochondroplasia and multiple exostoses are discussed.

  17. Control of Flux Pinning in MOD YBCO Coated Conductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [American Superconductor Corporation, Westborough, MA; Huang, Y. [American Superconductor Corporation, Westborough, MA; Li, X. [American Superconductor Corporation, Westborough, MA; Kodenkandath, Thomas [American Superconductor Corporation, Westborough, MA; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Schoop, U. [American Superconductor Corporation, Westborough, MA; Verebelyi, D. T. [American Superconductor Corporation, Westborough, MA; Thieme, C. L. H. [American Superconductor Corporation, Westborough, MA; Siegal, E. E. [American Superconductor Corporation, Westborough, MA; Holesinger, T. G. [Los Alamos National Laboratory (LANL); Maiorov, B. [Los Alamos National Laboratory (LANL); Miller, D. J. [Argonne National Laboratory (ANL); Maroni, V. A. [Argonne National Laboratory (ANL); Goyal, Amit [ORNL; Specht, Eliot D [ORNL; Paranthaman, Mariappan Parans [ORNL

    2007-01-01

    Two different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  18. Control of flux pinning in MOD YBCO coated conductor.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Huang, Y.; Li, X.; Kodenkandath, T.; Rupich, M. W.; Schoop, U.; Verebelyi, D. T.; Thieme, C. L. H.; Siegal, E.; Holesinger, T. G.; Maiorov, B.; Civale, L.; Miller, D. J.; Maroni, V. A.; Li, J.; Martin, P. M.; Specht, E. D.; Goyal, A.; Paranthaman, M. P.; American Superconductor Corp.; LANL; ORNL

    2007-06-01

    NTwo different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  19. Solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K

    International Nuclear Information System (INIS)

    Ren Jing; Gu Zhengfei; Cheng Gang; Zhou Huaiying

    2005-01-01

    The solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K (Pr ≤ 70%) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques. The 1173 K isothermal section consists of 13 single-phase regions, 22 two-phase regions and 10 three-phase regions. At 1173 K, we have observed that the maximum solid solubility of Pt in α-Fe is below 1.5 at.% and the solid solution region of Pt in γ-Fe is from 2 to 35 at.%; the maximum solid solubility of Fe in Pt is 18 at.%. The maximum solubility of Fe in PrPt 5 , PrPt 3 , PrPt 2 , Pr 3 Pt 4 , PrPt, Pr 3 Pt 2 and Pr 7 Pt 3 is below 1 at.%. The maximum solubility of Pr in α-(Fe, Pt), γ-(Fe, Pt), FePt, FePt 3 and (Pt, Fe) (the solid solution of Fe in Pt) is 6, 2, 4, 4.5 and 1.5 at.%, respectively. In this work, it is found that the phase Pr 3 Pt 4 does not exist in the ternary system. The binary compounds Fe 7 Pr and Fe 2 Pr and any new ternary compounds were not observed

  20. Multiple homicides.

    Science.gov (United States)

    Copeland, A R

    1989-09-01

    A study of multiple homicides or multiple deaths involving a solitary incident of violence by another individual was performed on the case files of the Office of the Medical Examiner of Metropolitan Dade County in Miami, Florida, during 1983-1987. A total of 107 multiple homicides were studied: 88 double, 17 triple, one quadruple, and one quintuple. The 236 victims were analyzed regarding age, race, sex, cause of death, toxicologic data, perpetrator, locale of the incident, and reason for the incident. This article compares this type of slaying with other types of homicide including those perpetrated by serial killers. Suggestions for future research in this field are offered.

  1. Neutron Multiplicity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine Chiyoko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    Neutron multiplicity measurements are widely used for nondestructive assay (NDA) of special nuclear material (SNM). When combined with isotopic composition information, neutron multiplicity analysis can be used to estimate the spontaneous fission rate and leakage multiplication of SNM. When combined with isotopic information, the total mass of fissile material can also be determined. This presentation provides an overview of this technique.

  2. [Multiple meningiomas].

    Science.gov (United States)

    Terrier, L-M; François, P

    2016-06-01

    Multiple meningiomas (MMs) or meningiomatosis are defined by the presence of at least 2 lesions that appear simultaneously or not, at different intracranial locations, without the association of neurofibromatosis. They present 1-9 % of meningiomas with a female predominance. The occurrence of multiple meningiomas is not clear. There are 2 main hypotheses for their development, one that supports the independent evolution of these tumors and the other, completely opposite, that suggests the propagation of tumor cells of a unique clone transformation, through cerebrospinal fluid. NF2 gene mutation is an important intrinsic risk factor in the etiology of multiple meningiomas and some exogenous risk factors have been suspected but only ionizing radiation exposure has been proven. These tumors can grow anywhere in the skull but they are more frequently observed in supratentorial locations. Their histologic types are similar to unique meningiomas of psammomatous, fibroblastic, meningothelial or transitional type and in most cases are benign tumors. The prognosis of these tumors is eventually good and does not differ from the unique tumors except for the cases of radiation-induced multiple meningiomas, in the context of NF2 or when diagnosed in children where the outcome is less favorable. Each meningioma lesion should be dealt with individually and their multiple character should not justify their resection at all costs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Multiplicity: An Explorative Interview Study on Personal Experiences of People with Multiple Selves

    Directory of Open Access Journals (Sweden)

    Gergő Ribáry

    2017-06-01

    Full Text Available Background and aims: Personality psychology research relies on the notion that humans have a single self that is the result of the individual's thoughts, feelings, and behaviors that can be reliably described (i.e., through traits. People who identify themselves as “multiple” have a system of multiple or alternative, selves, that share the same physical body. This is the first study to explore the phenomenon of multiplicity by assessing the experiences of people who identify themselves as “multiple.”Methods: First, an Internet forum search was performed using the terms “multiplicity” and “multiple system.” Based on that search, people who identified themselves as multiple were contacted. Interviews were conducted by a consultant psychiatrist, which produced six case vignettes.Results: Multiplicity is discussed on Twitter, Tumblr, Google+ and several other personal websites, blogs, and forums maintained by multiples. According to the study's estimates, there are 200–300 individuals who participate in these forums and believe they are multiple. Based on the six interviews, it appears that multiples have several selves who are relatively independent of each other and constitute the personality's system. Each “resident person” or self, has their own unique behavioral pattern, which is triggered by different situations. However, multiples are a heterogeneous group in terms of their system organization, memory functions, and control over switching between selves.Conclusions: Multiplicity can be placed along a continuum between identity disturbance and dissociative identity disorder (DID, although most systems function relatively well in everyday life. Further research is needed to explore this phenomenon, especially in terms of the extent to which multiplicity can be regarded as a healthy way of coping.

  4. Multiple sclerosis

    International Nuclear Information System (INIS)

    Grunwald, I.Q.; Kuehn, A.L.; Backens, M.; Papanagiotou, P.; Shariat, K.; Kostopoulos, P.

    2008-01-01

    Multiple sclerosis is the most common chronic inflammatory disease of myelin with interspersed lesions in the white matter of the central nervous system. Magnetic resonance imaging (MRI) plays a key role in the diagnosis and monitoring of white matter diseases. This article focuses on key findings in multiple sclerosis as detected by MRI. (orig.) [de

  5. Neutron-multiplication measurement instrument

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results.

  6. Neutron multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1983-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  7. Neutron-multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  8. Multiple Improvements of Multiple Imputation Likelihood Ratio Tests

    OpenAIRE

    Chan, Kin Wai; Meng, Xiao-Li

    2017-01-01

    Multiple imputation (MI) inference handles missing data by first properly imputing the missing values $m$ times, and then combining the $m$ analysis results from applying a complete-data procedure to each of the completed datasets. However, the existing method for combining likelihood ratio tests has multiple defects: (i) the combined test statistic can be negative in practice when the reference null distribution is a standard $F$ distribution; (ii) it is not invariant to re-parametrization; ...

  9. Al2O3 nanocrystals embedded in amorphous Lu2O3 high-k gate dielectric for floating gate memory application

    International Nuclear Information System (INIS)

    Yuan, C L; Chan, M Y; Lee, P S; Darmawan, P; Setiawan, Y

    2007-01-01

    The integration of nanoparticles has high potential in technological applications and opens up possibilities of the development of new devices. Compared to the conventional floating gate memory, a structure containing nanocrystals embedded in dielectrics shows high potential to produce a memory with high endurance, low operating voltage, fast write-erase speeds and better immunity to soft errors [S. Tiwari, F. Rana, H. Hanafi et al. 1996 Appl.Phys. Lett. 68, 1377]. A significant improvement on data retention [J. J. Lee, X. Wang et al. 2003 Proceedings of the VLSI Technol. Symposium, p33] can be observed when discrete nanodots are used instead of continuous floating gate as charge storage nodes because local defect related leakage can be reduced efficiently. Furthermore, using a high-k dielectric in place of the conventional SiO2 based dielectric, nanodots flash memory is able to achieve significantly improved programming efficiency and data retention [A. Thean and J. -P. Leburton, 2002 IEEE Potentials 21, 35; D. W. Kim, T. Kim and S. K. Banerjee, 2003 IEEE Trans. Electron Devices 50, 1823]. We have recently successfully developed a method to produce nanodots embedded in high-k gate dielectrics [C. L. Yuan, P. Darmawan, Y. Setiawan and P. S. Lee, 2006 Electrochemical and Solid-State Letters 9, F53; C. L. Yuan, P. Darmawan, Y. Setiawan and P. S. Lee, 2006 Europhys. Lett. 74, 177]. In this paper, we fabricated the memory structure of Al 2 O 3 nanocrystals embedded in amorphous Lu 2 O 3 high k dielectric using pulsed laser ablation. The mean size and density of the Al 2 O 3 nanocrystals are estimated to be about 5 nm and 7x1011 cm -2 , respectively. Good electrical performances in terms of large memory window and good data retention were observed. Our preparation method is simple, fast and economical

  10. Multiple-Input Multiple-Output OFDM with Index Modulation

    OpenAIRE

    Basar, Ertugrul

    2015-01-01

    Orthogonal frequency division multiplexing with index modulation (OFDM-IM) is a novel multicarrier transmission technique which has been proposed as an alternative to classical OFDM. The main idea of OFDM-IM is the use of the indices of the active subcarriers in an OFDM system as an additional source of information. In this work, we propose multiple-input multiple-output OFDM-IM (MIMO-OFDM-IM) scheme by combining OFDM-IM and MIMO transmission techniques. The low complexity transceiver structu...

  11. Rational design of carbon and TiO2 assembly materials: covered or strewn, which is better for photocatalysis?

    Science.gov (United States)

    Cui, Guan-wei; Wang, Wei-liang; Ma, Ming-yue; Zhang, Ming; Xia, Xin-yuan; Han, Feng-yun; Shi, Xi-feng; Zhao, Ying-qiang; Dong, Yu-bin; Tang, Bo

    2013-07-21

    The rational design of carbonaceous hybrid nanostructures is very important for obtaining high photoactivity. TiO2 particles strewn with an optimal quantity of carbon nanodots have a much higher photoactivity than that of TiO2 covered with a carbon layer, showing the importance of carbon morphology in the photocatalysis of carbonaceous hybrid nanostructures.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Two distinct particle distributions are established from analysis of () data, in conformity with results of electron microscopy. In vapour deposited films at low growth rate (∼ 0.4 Å/s), morphology changes from a self-similar fractal to nanodots as the deposition temperature is raised from 700–800°C. The large lattice ...

  13. Stability Properties of Network Diversity Multiple Access with Multiple-Antenna Reception and Imperfect Collision Multiplicity Estimation

    Directory of Open Access Journals (Sweden)

    Ramiro Samano-Robles

    2013-01-01

    Full Text Available In NDMA (network diversity multiple access, protocol-controlled retransmissions are used to create a virtual MIMO (multiple-input multiple-output system, where collisions can be resolved via source separation. By using this retransmission diversity approach for collision resolution, NDMA is the family of random access protocols with the highest potential throughput. However, several issues remain open today in the modeling and design of this type of protocol, particularly in terms of dynamic stable performance and backlog delay. This paper attempts to partially fill this gap by proposing a Markov model for the study of the dynamic-stable performance of a symmetrical and non-blind NDMA protocol assisted by a multiple-antenna receiver. The model is useful in the study of stability aspects in terms of the backlog-user distribution and average backlog delay. It also allows for the investigation of the different states of the system and the transition probabilities between them. Unlike previous works, the proposed approach considers the imperfect estimation of the collision multiplicity, which is a crucial process to the performance of NDMA. The results suggest that NDMA improves not only the throughput performance over previous solutions, but also the average number of backlogged users, the average backlog delay and, in general, the stability of random access protocols. It is also shown that when multiuser detection conditions degrade, ALOHA-type backlog retransmission becomes relevant to the stable operation of NDMA.

  14. Multiple Primary Tumors

    African Journals Online (AJOL)

    2017-12-05

    Dec 5, 2017 ... Multiple primary tumors occur in clinical practice causing diagnostic dilemma. It is not very .... was estrogen receptor negative, progesterone receptor negative, and ... cervical, ovarian, and urinary bladder cancers. Multiple.

  15. Patients with multiple contact allergies

    DEFF Research Database (Denmark)

    Carlsen, Berit Christina; Andersen, Klaus Ejner; Menné, Torkil

    2008-01-01

    Patients with multiple contact allergies, also referred to as polysensitized, are more frequent than predicted from prevalence of single sensitivities. The understanding of why some people develop multiple contact allergies, and characterization of patients with multiple contact allergies...... of developing multiple contact allergies. Evidence of allergen clusters among polysensitized individuals is also reviewed. The literature supports the idea that patients with multiple contact allergies constitute a special entity within the field of contact allergy. There is no generally accepted definition...... of patients with multiple contact allergies. We suggest that contact allergy to 3 or more allergens are defined as multiple contact allergies....

  16. Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography.

    Science.gov (United States)

    Du, Ke; Ding, Junjun; Wathuthanthri, Ishan; Choi, Chang-Hwan

    2017-11-17

    It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.

  17. Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection

    Energy Technology Data Exchange (ETDEWEB)

    Bechelany, M; Brodard, P; Philippe, L; Michler, J, E-mail: mikhael.bechelany@empa.c, E-mail: pierre.brodard@empa.c [Laboratory for Mechanics of Materials and Nanostructures, EMPA, Swiss Federal Laboratories for Materials Testing and Research, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)

    2009-11-11

    The possibility to synthesize large areas of silver grains organized in nanorings using a simple technique based on nanosphere lithography and electroless plating as a metal deposition method is described for the first time. In addition, we present a systematic SERS study of the obtained long-range ordered silver nanodots and nanorings. The possibility to precisely control the size, the interdistance and the morphology of these nanostructures allows us to systematically investigate the influence of these parameters on SERS. We show that the best possible SERS substrates should not only present optimal sizes, interdistances and shapes, but also a grain-like structure composed of sub-100 nm grains in order to maximize the number of hot-spots. In addition, we show that grains arranged in nanorings present higher enhancement factors (E{sub F} = 5.5 x 10{sup 5}) as compared to similar arrays made of nanodots. A wide range of applications, including real-time monitoring of catalytic surface reactions, environmental and security monitoring as well as clinical and pharmaceutical screening, can be envisaged for these SERS substrates.

  18. Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection

    Science.gov (United States)

    Bechelany, M.; Brodard, P.; Philippe, L.; Michler, J.

    2009-11-01

    The possibility to synthesize large areas of silver grains organized in nanorings using a simple technique based on nanosphere lithography and electroless plating as a metal deposition method is described for the first time. In addition, we present a systematic SERS study of the obtained long-range ordered silver nanodots and nanorings. The possibility to precisely control the size, the interdistance and the morphology of these nanostructures allows us to systematically investigate the influence of these parameters on SERS. We show that the best possible SERS substrates should not only present optimal sizes, interdistances and shapes, but also a grain-like structure composed of sub-100 nm grains in order to maximize the number of hot-spots. In addition, we show that grains arranged in nanorings present higher enhancement factors (EF = 5.5 × 105) as compared to similar arrays made of nanodots. A wide range of applications, including real-time monitoring of catalytic surface reactions, environmental and security monitoring as well as clinical and pharmaceutical screening, can be envisaged for these SERS substrates.

  19. Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection

    International Nuclear Information System (INIS)

    Bechelany, M; Brodard, P; Philippe, L; Michler, J

    2009-01-01

    The possibility to synthesize large areas of silver grains organized in nanorings using a simple technique based on nanosphere lithography and electroless plating as a metal deposition method is described for the first time. In addition, we present a systematic SERS study of the obtained long-range ordered silver nanodots and nanorings. The possibility to precisely control the size, the interdistance and the morphology of these nanostructures allows us to systematically investigate the influence of these parameters on SERS. We show that the best possible SERS substrates should not only present optimal sizes, interdistances and shapes, but also a grain-like structure composed of sub-100 nm grains in order to maximize the number of hot-spots. In addition, we show that grains arranged in nanorings present higher enhancement factors (E F = 5.5 x 10 5 ) as compared to similar arrays made of nanodots. A wide range of applications, including real-time monitoring of catalytic surface reactions, environmental and security monitoring as well as clinical and pharmaceutical screening, can be envisaged for these SERS substrates.

  20. MultipleColposcopyJCO

    Science.gov (United States)

    Performing multiple biopsies during a procedure known as colposcopy—visual inspection of the cervix—is more effective than performing only a single biopsy of the worst-appearing area for detecting cervical cancer precursors. This multiple biopsy approach

  1. Integration of gas phase condensed nanoparticles in YBa_2Cu_3O_7_-_δ multilayers

    International Nuclear Information System (INIS)

    Sparing, Maria

    2012-01-01

    The control and targeted variation of nanoparticles properties is a central challenge in research on particle induced defects in YBa_2Cu_3O_7_-_δ. Using a combined Sputter-PLD system with inert gas condensation particle size and density integrated into the YBCO multilayers were varied independently. The cooling process influences the electrical properties of the multilayers. The effect of HfO2 and FePt nanoparticles on the structural and electrical properties was studied.

  2. Integration of gas phase condensed nanoparticles in YBa{sub 2}Cu{sub 3}O{sub 7-δ} multilayers; Integration von gasphasenkondensierten Nanopartikeln in YBa{sub 2}Cu{sub 3}O{sub 7-δ}-Multilagen

    Energy Technology Data Exchange (ETDEWEB)

    Sparing, Maria

    2012-07-01

    The control and targeted variation of nanoparticles properties is a central challenge in research on particle induced defects in YBa{sub 2}Cu{sub 3}O{sub 7-δ}. Using a combined Sputter-PLD system with inert gas condensation particle size and density integrated into the YBCO multilayers were varied independently. The cooling process influences the electrical properties of the multilayers. The effect of HfO2 and FePt nanoparticles on the structural and electrical properties was studied.

  3. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, M. A. H.

    2014-08-05

    Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not have sharp contrasts to reproduce such scattering in the Green’s function through forward modeling. If properly imaged, internal multiples (internally scattered energy) can enhance the seismic image. Conventionally, to image internal multiples, accurate, sharp contrasts in the velocity model are required to construct a Green’s function with all the scattered energy. As an alternative, we have developed a generalized internal multiple imaging procedure that images any order internal scattering using the background Green’s function (from the surface to each image point), constructed from a smooth velocity model, usually used for conventional imaging. For the first-order internal multiples, the approach consisted of three steps, in which we first back propagated the recorded surface seismic data using the background Green’s function, then crosscorrelated the back-propagated data with the recorded data, and finally crosscorrelated the result with the original background Green’s function. This procedure images the contribution of the recorded first-order internal multiples, and it is almost free of the single-scattering recorded energy. The cost includes one additional crosscorrelation over the conventional single-scattering imaging application. We generalized this method to image internal multiples of any order separately. The resulting images can be added to the conventional single-scattering image, obtained, e.g., from Kirchhoff or reverse-time migration, to enhance the image. Application to synthetic data with reflectors illuminated by multiple scattering (double scattering) demonstrated the effectiveness of the approach.

  4. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays.

    Science.gov (United States)

    Johnen, Sandra; Meißner, Frank; Krug, Mario; Baltz, Thomas; Endler, Ingolf; Mokwa, Wilfried; Walter, Peter

    2016-01-01

    Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT), used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe) or mixtures of iron-platinum (Fe-Pt) and iron-titanium (Fe-Ti) acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28) cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue.

  5. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Sandra Johnen

    2016-01-01

    Full Text Available Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT, used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe or mixtures of iron-platinum (Fe-Pt and iron-titanium (Fe-Ti acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28 cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue.

  6. The thermochemical behavior of some binary shape memory alloys by high temperature direct synthesis calorimetry

    International Nuclear Information System (INIS)

    Meschel, S.V.; Pavlu, J.; Nash, P.

    2011-01-01

    Research highlights: → We studied 14 shape memory alloys. → The enthalpies of formation and structure characteristics are summarized. → Theoretical predictions by ab initio calculations compare better with experimental measurements than Miedema's semi empirical model. - Abstract: The standard enthalpies of formation of some shape memory alloys have been measured by high temperature direct synthesis calorimetry at 1373 K. The following results (in kJ/mol of atoms) are reported: CoCr (-0.3 ± 2.9); CuMn (-3.7 ± 3.2); Cu 3 Sn (-10.4 ± 3.1); Fe 2 Tb (-5.5 ± 2.4); Fe 2 Dy (-1.6 ± 2.9); Fe 17 Tb 2 (-2.1 ± 3.1); Fe 17 Dy 2 (-5.3 ± 1.7); FePd 3 (-16.0 ± 2.7); FePt (-23.0 ± 1.9); FePt 3 (-20.7 ± 2.3); NiMn (-24.9 ± 2.6); TiNi (-32.7 ± 1.0); TiPd (-60.3 ± 2.5). The results are compared with some earlier experimental values obtained by calorimetry and by EMF technique. They are also compared with predicted values on the basis of the semi empirical model of Miedema and co-workers and with ab initio calculations when available. We will also assess the available information regarding the structures of these alloys.

  7. Orchestrating Multiple Intelligences

    Science.gov (United States)

    Moran, Seana; Kornhaber, Mindy; Gardner, Howard

    2006-01-01

    Education policymakers often go astray when they attempt to integrate multiple intelligences theory into schools, according to the originator of the theory, Howard Gardner, and his colleagues. The greatest potential of a multiple intelligences approach to education grows from the concept of a profile of intelligences. Each learner's intelligence…

  8. MULTIPLE SPINAL CANAL MENINGIOMAS

    Directory of Open Access Journals (Sweden)

    Nandigama Pratap Kumar

    2016-10-01

    Full Text Available BACKGROUND Meningiomas of the spinal canal are common tumours with the incidence of 25 percent of all spinal cord tumours. But multiple spinal canal meningiomas are rare in compare to solitary lesions and account for 2 to 3.5% of all spinal meningiomas. Most of the reported cases are both intra cranial and spinal. Exclusive involvement of the spinal canal by multiple meningiomas are very rare. We could find only sixteen cases in the literature to the best of our knowledge. Exclusive multiple spinal canal meningiomas occurring in the first two decades of life are seldom reported in the literature. We are presenting a case of multiple spinal canal meningiomas in a young patient of 17 years, who was earlier operated for single lesion. We analysed the literature, with illustration of our case. MATERIALS AND METHODS In September 2016, we performed a literature search for multiple spinal canal meningiomas involving exclusively the spinal canal with no limitation for language and publication date. The search was conducted through http://pubmed.com, a wellknown worldwide internet medical address. To the best of our knowledge, we could find only sixteen cases of multiple meningiomas exclusively confined to the spinal canal. Exclusive multiple spinal canal meningiomas occurring in the first two decades of life are seldom reported in the literature. We are presenting a case of multiple spinal canal meningiomas in a young patient of 17 years, who was earlier operated for solitary intradural extra medullary spinal canal meningioma at D4-D6 level, again presented with spastic quadriparesis of two years duration and MRI whole spine demonstrated multiple intradural extra medullary lesions, which were excised completely and the histopathological diagnosis was transitional meningioma. RESULTS Patient recovered from his weakness and sensory symptoms gradually and bladder and bowel symptoms improved gradually over a period of two to three weeks. CONCLUSION Multiple

  9. Magnetic properties of the alloy system Fe-Pt. Bulk materials and nanoparticles; Magnetische Eigenschaften des Legierungssystems Fe-Pt. Volumenmaterialien und Nanopartikel

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, C.

    2007-12-14

    Besides the determination of magnetic properties of epitaxial grown Fe{sub x}Pt{sub 1-x} films like e.g. the magnetic anisotropy, effective magnetisation, exchange length and damping as reference data, wet-chemically synthesised spherical Fe{sub x}Pt{sub 1-x} nanoparticles with different sizes, compositions and crystal structures were examined systematically after the reduction of Fe oxides by a hydrogen plasma treatment. Organic ligands surrounding the particles after the synthesis, were removed as well during this procedure. These ligands prevent the agglomeration of the nanoparticles when deposited onto a substrate, but do not have any measurable effect on the oxide formation under air exposure and do not change the magnetic properties of oxidised nanoparticles within experimental error bars. Static and dynamic magnetic properties were determined using the ferromagnetic resonance technique and themeasurement of the x-ray absorption, especially the analysis of the X-ray circular dichroism. The analysis of the element-specific magnetic moments shows that the effective magnetic spin moment ({mu}{sup eff}{sub s}) of the Fe{sub x}Pt{sub 1-x} nanoparticles is reduced by 20.30% with respect to the one of the corresponding Fe{sub x}Pt{sub 1-x} film due to the inhomogeneous composition within the nanoparticles which was found by the analysis of the extended X-ray absorption fine structure. With decreasing particle size, {mu}{sup eff}{sub s} is further decreasing while the ratio of orbital-to-effective-spin magnetic moment ({mu}{sub l}/{mu}{sup eff}{sub s}) increases. Annealing at 600 C of a sample consisting of Fe{sub 0.50}Pt{sub 0.50} nanoparticles with a mean diameter around 6 nm yields a strong increase of the {mu}{sub l}/{mu}{sup eff}{sub s} ratio at the Fe sites: it reaches a value of about 9% and is as large as the value at the Pt sites. This is accompanied by an enhancement of the coercive field from (36{+-}5) mT to (292{+-}8) mT after annealing that can be explained by an increase of the effective anisotropy from 5.5 x 10{sup 4}J/m{sup 3} to 3.85 x 10{sup 5}J/{sup 3} due to the (partial) transformation to the chemically ordered phase. The effective anisotropy of very small Fe{sub 0.70}Pt{sub 0.30} nanoparticles with a mean diameter of 2.5 nm show a strong temperature dependence due to thermal fluctuations which was measured using the ferromagnetic resonance technique. The damping of the magnetisation precession in such measurements is increasing with increasing Pt content in agreement to the composition dependence of the damping in Fe{sub x}Pt{sub 1-x} films. (orig.)

  10. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    Science.gov (United States)

    Sun, Shouheng; Zhang, Sen; Zhu, Huiyuan; Guo, Shaojun

    2015-07-28

    A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mA/mg Pt, and retain greater than 90% activity after a 13 hour stability test.

  11. Maltreatment in multiple-birth children.

    Science.gov (United States)

    Lang, Cathleen A; Cox, Matthew J; Flores, Glenn

    2013-12-01

    The rate of multiple births has increased over the last two decades. In 1982, an increased frequency of injuries among this patient population was noted, but few studies have evaluated the increased incidence of maltreatment in twins. The study aim was to evaluate the features of all multiple-birth children with substantiated physical abuse and/or neglect over a four-year period at a major children's hospital. A Retrospective chart review was conducted of multiple-gestation children in which at least one child in the multiple set experienced child maltreatment from January 2006 to December 2009. Data regarding the child, injuries, family, and perpetrators were abstracted. We evaluated whether family and child characteristics were associated with maltreatment, and whether types of injuries were similar within multiple sets. For comparison, data from the same time period for single-birth maltreated children also were abstracted, including child age, gestational age at birth, and injury type. There were 19 sets of multiple births in which at least one child had abusive injuries and/or neglect. In 10 of 19 sets (53%), all multiples were found to have a form of maltreatment, and all children in these multiple sets shared at least one injury type. Parents lived together in 63% of cases. Fathers and mothers were the alleged perpetrator in 42% of the cases. Multiple-gestation-birth maltreated children were significantly more likely than single-birth maltreated children to have abdominal trauma (13% vs. 1%, respectively; pchildren often, but not always, were abused. In sets with two maltreated children, children usually shared the same modes of maltreatment. Multiples are significantly more likely than singletons to be younger and experience fractures and abdominal trauma. The findings support the current standard practice of evaluating all children in a multiple set when one is found to be abused or neglected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, Egon; Stenager, E N; Knudsen, Lone

    1994-01-01

    In a cross-sectional study of 117 randomly selected patients (52 men, 65 women) with definite multiple sclerosis, it was found that 76 percent were married or cohabitant, 8 percent divorced. Social contacts remained unchanged for 70 percent, but outgoing social contacts were reduced for 45 percent......, need for structural changes in home and need for pension became greater with increasing physical handicap. No significant differences between gender were found. It is concluded that patients and relatives are under increased social strain, when multiple sclerosis progresses to a moderate handicap...

  13. Applying Multiple Intelligences

    Science.gov (United States)

    Christodoulou, Joanna A.

    2009-01-01

    The ideas of multiple intelligences introduced by Howard Gardner of Harvard University more than 25 years ago have taken form in many ways, both in schools and in other sometimes-surprising settings. The silver anniversary of Gardner's learning theory provides an opportunity to reflect on the ways multiple intelligences theory has taken form and…

  14. Infrared, Raman and Magnetic Resonance Spectroscopic study of SiO.sub.2./sub.:C nanopowders

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia; Vorlíček, Vladimír; Kalabukhova, E.; Sitnikov, A.; Vasin, A.; Kysil, D.; Sevostianov, S.; Tertykh, V.; Nazarov, A.

    2017-01-01

    Roč. 12, č. 1 (2017), 1-12, č. článku 292. ISSN 1931-7573 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : EPR * Raman spectroscopy * carbosil * carbon nanodots * carbon-related defects Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  15. Multiple-membrane multiple-electrolyte redox flow battery design

    Science.gov (United States)

    Yan, Yushan; Gu, Shuang; Gong, Ke

    2017-05-02

    A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte.

  16. Multiplicity: discussion points from the Statisticians in the Pharmaceutical Industry multiplicity expert group.

    Science.gov (United States)

    Phillips, Alan; Fletcher, Chrissie; Atkinson, Gary; Channon, Eddie; Douiri, Abdel; Jaki, Thomas; Maca, Jeff; Morgan, David; Roger, James Henry; Terrill, Paul

    2013-01-01

    In May 2012, the Committee of Health and Medicinal Products issued a concept paper on the need to review the points to consider document on multiplicity issues in clinical trials. In preparation for the release of the updated guidance document, Statisticians in the Pharmaceutical Industry held a one-day expert group meeting in January 2013. Topics debated included multiplicity and the drug development process, the usefulness and limitations of newly developed strategies to deal with multiplicity, multiplicity issues arising from interim decisions and multiregional development, and the need for simultaneous confidence intervals (CIs) corresponding to multiple test procedures. A clear message from the meeting was that multiplicity adjustments need to be considered when the intention is to make a formal statement about efficacy or safety based on hypothesis tests. Statisticians have a key role when designing studies to assess what adjustment really means in the context of the research being conducted. More thought during the planning phase needs to be given to multiplicity adjustments for secondary endpoints given these are increasing in importance in differentiating products in the market place. No consensus was reached on the role of simultaneous CIs in the context of superiority trials. It was argued that unadjusted intervals should be employed as the primary purpose of the intervals is estimation, while the purpose of hypothesis testing is to formally establish an effect. The opposing view was that CIs should correspond to the test decision whenever possible. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Multiple primary cancer

    International Nuclear Information System (INIS)

    Jung, Gyu Sik; Lee, Ouk; Kim, So Sun; Kim, Ho Joon; Chun, Byung Hee; Joh, Young Duck

    1989-01-01

    It is rare for one human being to be afflicted with more than one cancer. However with further advances in therapeutic regimens, histopathologic observation, diagnostic modalities, and increased curiosity, there are increasing number of case reports of multiple primary cancer. The present study evaluates 25 histologically confirmed cases of multiple primary cancer from 1974 to 1988 at Kosin Medical Center. The most frequent site of the first primary cancer in male was stomach and in female, uterine cervix. The first primary cancer in female occurred in endocrine-related organs (breast, uterus and thyroid) in 63.6 percent. Synchronous cancers are diagnosed simultaneously or within an interval of about six months and synchronous cancers were 16 out of 25 cases. Metachronous cancers are diagnosed at interval of more than six months. There were 9 metachronous cancers and average interval between the first and second primary cancer was 22.8 months. The incidence of multiple primary cancer was 0.11 percent. The average age was 51.9 years at the time of the first primary cancer (53.1 years in male and 50.3 years in female). CT scan was most helpful in early detection of multiple primary cancers facilitating biopsy and surgery. Multiple primary cancers are beyond the medical curiosity. Early diagnosis of the disease and careful follow-up study, based on an awareness of the possibility of second cancers, will substantially increase the survival of these patients

  18. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    Energy Technology Data Exchange (ETDEWEB)

    Erlangga, Mokhammad Puput [Geophysical Engineering, Institut Teknologi Bandung, Ganesha Street no.10 Basic Science B Buliding fl.2-3 Bandung, 40132, West Java Indonesia puput.erlangga@gmail.com (Indonesia)

    2015-04-16

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  19. Accurate scaling on multiplicity

    International Nuclear Information System (INIS)

    Golokhvastov, A.I.

    1989-01-01

    The commonly used formula of KNO scaling P n =Ψ(n/ ) for descrete distributions (multiplicity distributions) is shown to contradict mathematically the condition ΣP n =1. The effect is essential even at ISR energies. A consistent generalization of the concept of similarity for multiplicity distributions is obtained. The multiplicity distributions of negative particles in PP and also e + e - inelastic interactions are similar over the whole studied energy range. Collider data are discussed. 14 refs.; 8 figs

  20. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    Science.gov (United States)

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system

  1. Multiple embryos, multiple nepionts and multiple equatorial layers in Cycloclypeus carpenteri.

    Science.gov (United States)

    Briguglio, Antonino; Kinoshita, Shunichi; Wolfgring, Erik; Hohenegger, Johann

    2016-04-01

    In this study, 17 specimens of Cycloclypeus carpenteri have been analyzed by means of microCT scanning. We used CT scanning technique as it enables the visualization and the quantifications of internal structures of hollow specimens without their destruction. It has been observed that many specimens possessing the natural morphology of this taxon, actually contain multiple embryos (up to 16 in one single specimen) and, in some few cases, multiple nepionts each with its own heterosteginid chambers (up to three separated nepionts). The diameter of each proloculus has been measured, and as a result, they are very variable even within the same specimen, therefore questioning the long known theory that schizonts have smaller proloculi than gamonts and also questioning the fact that proloculi in the same species should all have comparable size. Furthermore, we have observed the presence of additional equatorial planes on several specimens. Such additional planes are always connected to what seems to be the main equatorial plane. Such connections are T-shaped and are located at the junction between two equatorial layers; these junctions are made by a chamberlet, which possesses an unusually higher number of apertures. The connections between equatorial planes are always perfectly synchronized with the relative growth step and the same chamber can be therefore followed along the multiple equatorial planes. Apparently there is a perfect geometric relationship between the creation of additional equatorial planes and the position of the nepionts. Whenever the nepionts are positioned on different planes, additional planes are created and the angle of the nepionts is related to the banding angle of the equatorial planes. The presence of additional planes do not hamper the life of the cell, on the contrary, it seems that the cell is still able to build nicely shaped chamberlets and, after volumetric calculations, it seems all specimens managed to keep their logistic growth

  2. Multiple photon resonances

    International Nuclear Information System (INIS)

    Elliott, C.J.; Feldman, B.J.

    1979-02-01

    A detailed theoretical analysis is presented of the interaction of intense near-resonant monochromatic radiation with an N-level anharmonic oscillator. In particular, the phenomenon of multiple photon resonance, the process by which an N-level system resonantly absorbs two or more photons simultaneously, is investigated. Starting from the Schroedinger equation, diagrammatic techniques are developed that allow the resonant process to be analyzed quantitatively, in analogy with well-known two-level coherent phenomena. In addition, multiple photon Stark shifts of the resonances, shifts absent in two-level theory, are obtained from the diagrams. Insights into the nature of multiple photon resonances are gained by comparing the quantum mechanical system with classical coupled pendulums whose equations of motion possess identical eigenvalues and eigenvectors. In certain limiting cases, including that of the resonantly excited N-level harmonic oscillator and that of the equally spaced N-level system with equal matrix elements, analytic results are derived. The influence of population relaxation and phase-disrupting collisions on the multiple photon process are also analyzed, the latter by extension of the diagrammatic technique to the density matrix equations of motion. 11 figures

  3. Multiplication modules over non-commutative rings

    International Nuclear Information System (INIS)

    Tuganbaev, A A

    2003-01-01

    It is proved that each submodule of a multiplication module over a regular ring is a multiplicative module. If A is a ring with commutative multiplication of right ideals, then each projective right ideal is a multiplicative module, and a finitely generated A-module M is a multiplicative module if and only if all its localizations with respect to maximal right ideals of A are cyclic modules over the corresponding localizations of A. In addition, several known results on multiplication modules over commutative rings are extended to modules over not necessarily commutative rings

  4. Multiple intelligences: Can they be measured?

    OpenAIRE

    Kirsi Tirri; Petri Nokelainen; Erkki Komulainen

    2013-01-01

    This paper is about issues relating to the assessment of multiple intelligences. The first section introduces the authors’ work on building measures of multiple intelligences and moral sensitivities. It also provides a conceptual definition of multiple intelligences based on Multiple Intelligences theory by Howard Gardner (1983). The second section discusses the context specificity of intelligences and alternative approaches to measuring multiple intelligences. The third section analyses the ...

  5. Multiple Intelligences and quotient spaces

    OpenAIRE

    Malatesta, Mike; Quintana, Yamilet

    2006-01-01

    The Multiple Intelligence Theory (MI) is one of the models that study and describe the cognitive abilities of an individual. In [7] is presented a referential system which allows to identify the Multiple Intelligences of the students of a course and to classify the level of development of such Intelligences. Following this tendency, the purpose of this paper is to describe the model of Multiple Intelligences as a quotient space, and also to study the Multiple Intelligences of an individual in...

  6. Rehabilitation and multiple sclerosis

    DEFF Research Database (Denmark)

    Dalgas, Ulrik

    2011-01-01

    In a chronic and disabling disease like multiple sclerosis, rehabilitation becomes of major importance in the preservation of physical, psychological and social functioning. Approximately 80% of patients have multiple sclerosis for more than 35 years and most will develop disability at some point......, a paradigm shift is taking place and it is now increasingly acknowledged that exercise therapy is both safe and beneficial. Robot-assisted training is also attracting attention in multiple sclerosis rehabilitation. Several sophisticated commercial robots exist, but so far the number of scientific studies...... promising. This drug has been shown to improve walking ability in some patients with multiple sclerosis, associated with a reduction of patients' self-reported ambulatory disability. Rehabilitation strategies involving these different approaches, or combinations of them, may be of great use in improving...

  7. Suppression of external quantum efficiency roll-off of nanopatterned organic-light emitting diodes at high current densities

    Energy Technology Data Exchange (ETDEWEB)

    Kuwae, Hiroyuki; Kasahara, Takashi [Nano-Science and Nano-Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Nitta, Atsushi; Yoshida, Kou; Inoue, Munetomo [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Matsushima, Toshinori; Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Shoji, Shuichi [Nano-Science and Nano-Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Mizuno, Jun [JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku, Tokyo 162-0041 (Japan)

    2015-10-21

    We developed organic light-emitting diodes (OLEDs) with nanopatterned current flow regions using electron-beam lithography with the aim of suppressing singlet–polaron annihilation (SPA). Nanopatterns composed of lines and circles were used in the current flow regions of nano-line and nano-dot OLEDs, respectively. Excitons partially escape from the current flow regions where SPA takes place. As such, current densities where external quantum efficiencies were half of their initial values (J{sub 0}) increased as line width and circle diameter were decreased to close to the exciton diffusion length. Circles were more efficient at enhancing exciton escape and increasing J{sub 0} than lines. The J{sub 0} increase in the nano-dot OLEDs containing nanopatterned circles with a diameter of 50 nm was approximately 41-fold that of a conventional OLED with a current flow region of 4 mm{sup 2}. The dependence of J{sub 0} on the size and shape of the nanopatterns was well explained by an SPA model that considered exciton diffusion. Nanopatterning of OLEDs is a feasible method of obtaining large J{sub 0}.

  8. Au nanowire junction breakup through surface atom diffusion

    Science.gov (United States)

    Vigonski, Simon; Jansson, Ville; Vlassov, Sergei; Polyakov, Boris; Baibuz, Ekaterina; Oras, Sven; Aabloo, Alvo; Djurabekova, Flyura; Zadin, Vahur

    2018-01-01

    Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 °C, 400 °C, 600 °C and 700 °C) during a time period of 10 min. We show that nanowires are especially prone to fragmentation around junctions and crossing points even at comparatively low temperatures. The fragmentation process is highly temperature dependent and the junction region breaks up at a lower temperature than a single nanowire. We develop a gold parametrization for kinetic Monte Carlo simulations and demonstrate the surface diffusion origin of the nanowire junction fragmentation. We show that nanowire fragmentation starts at the junctions with high reliability and propose that aligning nanowires in a regular grid could be used as a technique for fabricating arrays of nanodots.

  9. The cause multiplicity and the multiple cause style of adverse events in Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Miyazaki, Takamasa

    2008-01-01

    An adverse event in a nuclear power plant occurs due to either one cause or multiple causes. To consider ways of preventing adverse events, it is useful to clarify whether events are caused by single or multiple causes. In this study, the multiple causes is expressed using the cause multiplicity and the multiple cause style. Classified causes of adverse events in Japanese nuclear power plants were analyzed, with the following results: the cause multiplicity of serious adverse events is higher than that of minor adverse events, and the multiple cause style can be expressed by combining two styles: series type and parallel type. Also, for a multiple cause event, a new method of displaying the event is presented as a cause-chain chart where the cause items are arranged in a sequential way and are connected considering the mutual relations among the causes. This new display method shows the whole flow of issues concerning the event more simply than the conventional display method of the chain of phenomena, and would be useful for considering the terminating point of the chain of causes. (author)

  10. Hadron multiplicity as the limit of jet multiplicity at high resolution

    International Nuclear Information System (INIS)

    Lupia, S.; Ochs, W.

    1998-01-01

    Recently exact numerical results from the evolution equation for parton multiplicities in QCD jets have been obtained. A comparison with various approximate results is presented. A good description is obtained not only of the jet multiplicities measured at LEP-1 but also of the hadron multiplicities for cm s energies above 1.6 GeV in e + e - annihilation. The solution suggests that a final state hadron can be represented by a jet in the limit of small (nonperturbative) k perpendicular to cut-off Q 0 . In this description using as adjustable parameters only the QCD scale Λ and the cut-off Q 0 , the coupling α s can be seen to rise towards large values above unity at low energies. (orig.)

  11. Fatigue and Multiple Sclerosis

    Science.gov (United States)

    ... to navigation Skip to content Menu Navigation National Multiple Sclerosis Society Sign In In Your Area Donate Donate ... of MS What Causes MS? Who Gets MS? Multiple Sclerosis FAQs Types of MS Related Conditions Symptoms & Diagnosis ...

  12. Correlations in multiple production on nuclei and Glauber model of multiple scattering

    International Nuclear Information System (INIS)

    Zoller, V.R.; Nikolaev, N.N.

    1982-01-01

    Critical analysis of possibility for describing correlation phenomena during multiple production on nuclei within the framework of the Glauber multiple seattering model generalized for particle production processes with Capella, Krziwinski and Shabelsky has been performed. It was mainly concluded that the suggested generalization of the Glauber model gives dependences on Ng(Np) (where Ng-the number of ''grey'' tracess, and Np-the number of protons flying out of nucleus) and, eventually, on #betta# (where #betta#-the number of intranuclear interactions) contradicting experience. Independent of choice of relation between #betta# and Ng(Np) in the model the rapidity corrletor Rsub(eta) is overstated in the central region and understated in the region of nucleus fragmentation. In mean multiplicities these two contradictions of experience are disguised with random compensation and agreement with experience in Nsub(S) (function of Ng) cannot be an argument in favour of the model. It is concluded that eiconal model doesn't permit to quantitatively describe correlation phenomena during the multiple production on nuclei

  13. Multiple Voices, Multiple Realities: Self-Defined Images of Self among Adolescent Hispanic English Language Learners

    Science.gov (United States)

    Ajayi, Lasisi J.

    2006-01-01

    Acquisition of multiple identities to negotiate new forms of social participation and the concomitant attendant multiple languages and multiple cultures is "sine qua non" to success in English language learning classrooms. This study therefore, investigates how middle school Hispanic students reconceptualize their identities to negotiate…

  14. Health Literacy - Multiple Languages

    Science.gov (United States)

    ... Here: Home → Multiple Languages → All Health Topics → Health Literacy URL of this page: https://medlineplus.gov/languages/ ... W XYZ List of All Topics All Health Literacy - Multiple Languages To use the sharing features on ...

  15. Salmonella Infections - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Salmonella Infections URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Salmonella Infections - Multiple Languages To use the sharing features ...

  16. Cosmetic Dentistry - Multiple Languages

    Science.gov (United States)

    ... Here: Home → Multiple Languages → All Health Topics → Cosmetic Dentistry URL of this page: https://medlineplus.gov/languages/ ... W XYZ List of All Topics All Cosmetic Dentistry - Multiple Languages To use the sharing features on ...

  17. Rotavirus Infections - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Rotavirus Infections URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotavirus Infections - Multiple Languages To use the sharing features ...

  18. Multiple sclerosis

    International Nuclear Information System (INIS)

    Sadashima, Hiromichi; Kusaka, Hirofumi; Imai, Terukuni; Takahashi, Ryosuke; Matsumoto, Sadayuki; Yamamoto, Toru; Yamasaki, Masahiro; Maya, Kiyomi

    1986-01-01

    Eleven patients with a definite diagnosis of multiple sclerosis were examined in terms of correlations between the clinical features and the results of cranial computed tomography (CT), and magnetic resonance imaging (MRI). Results: In 5 of the 11 patients, both CT and MRI demonstrated lesions consistent with a finding of multiple sclerosis. In 3 patients, only MRI demonstrated lesions. In the remaining 3 patients, neither CT nor MRI revealed any lesion in the brain. All 5 patients who showed abnormal findings on both CT and MRI had clinical signs either of cerebral or brainstem - cerebellar lesions. On the other hand, two of the 3 patients with normal CT and MRI findings had optic-nerve and spinal-cord signs. Therefore, our results suggested relatively good correlations between the clinical features, CT, and MRI. MRI revealed cerebral lesions in two of the four patients with clinical signs of only optic-nerve and spinal-cord lesions. MRI demonstrated sclerotic lesions in 3 of the 6 patients whose plaques were not detected by CT. In conclusion, MRI proved to be more helpful in the demonstration of lesions attributable to chronic multiple sclerosis. (author)

  19. Neutron source multiplication method

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1985-01-01

    Extensive use has been made of neutron source multiplication in thousands of measurements of critical masses and configurations and in subcritical neutron-multiplication measurements in situ that provide data for criticality prevention and control in nuclear materials operations. There is continuing interest in developing reliable methods for monitoring the reactivity, or k/sub eff/, of plant operations, but the required measurements are difficult to carry out and interpret on the far subcritical configurations usually encountered. The relationship between neutron multiplication and reactivity is briefly discussed and data presented to illustrate problems associated with the absolute measurement of neutron multiplication and reactivity in subcritical systems. A number of curves of inverse multiplication have been selected from a variety of experiments showing variations observed in multiplication during the course of critical and subcritical experiments where different methods of reactivity addition were used, with different neutron source detector position locations. Concern is raised regarding the meaning and interpretation of k/sub eff/ as might be measured in a far subcritical system because of the modal effects and spectrum differences that exist between the subcritical and critical systems. Because of this, the calculation of k/sub eff/ identical with unity for the critical assembly, although necessary, may not be sufficient to assure safety margins in calculations pertaining to far subcritical systems. Further study is needed on the interpretation and meaning of k/sub eff/ in the far subcritical system

  20. Connecting the Production Multiple

    DEFF Research Database (Denmark)

    Lichen, Alex Yu; Mouritsen, Jan

    &OP process itself is a fluid object, but there is still possibility to organise the messy Production. There are connections between the Production multiple and the managerial technology fluid. The fluid enacted the multiplicity of Production thus making it more difficult to be organised because there were...... in opposite directions. They are all part of the fluid object. There is no single chain of circulating references that makes the object a matter of fact. Accounting fluidity means that references drift back and forth and enact new realities also connected to the chain. In this setting future research may......This paper is about objects. It follows post ANT trajectories and finds that objects are multiple and fluid. Extant classic ANT inspired accounting research largely sees accounting inscriptions as immutable mobiles. Although multiplicity of objects upon which accounting acts has been explored...

  1. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen

    2017-12-22

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  2. Vascular comorbidities in multiple sclerosis

    DEFF Research Database (Denmark)

    Thormann, Anja; Magyari, Melinda; Koch-Henriksen, Nils

    2016-01-01

    To investigate the occurrence of vascular comorbidities before and after the clinical onset of multiple sclerosis. In this combined case-control and cohort study, all Danish born citizens with onset of multiple sclerosis 1980-2005 were identified from the Danish Multiple Sclerosis Registry...... and randomly matched with controls regarding year of birth, gender, and municipality on January 1st in the year of multiple sclerosis (MS) onset (index date). Individual-level information on comorbidities was obtained from several independent nationwide registries and linked to the study population by unique...

  3. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen; Schuster, Gerard T.

    2017-01-01

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  4. A multiplicity logic unit

    International Nuclear Information System (INIS)

    Bialkowski, J.; Moszynski, M.; Zagorski, A.

    1981-01-01

    The logic diagram principle of operation and some details of the design of the multiplicity logic unit are presented. This unit was specially designed to fulfil the requirements of a multidetector arrangement for gamma-ray multiplicity measurements. The unit is equipped with 16 inputs controlled by a common coincidence gate. It delivers a linear output pulse with the height proportional to the multiplicity of coincidences and logic pulses corresponding to 0, 1, ... up to >= 5-fold coincidences. These last outputs are used to steer the routing unit working with the multichannel analyser. (orig.)

  5. Safe Dynamic Multiple Inheritance

    DEFF Research Database (Denmark)

    Ernst, Erik

    2002-01-01

    Multiple inheritance and similar mechanisms are usually only supported at compile time in statically typed languages. Nevertheless, dynamic multiple inheritance would be very useful in the development of complex systems, because it allows the creation of many related classes without an explosion...... in the size and level of redundancy in the source code. In fact, dynamic multiple inheritance is already available. The language gbeta is statically typed and has supported run-time combination of classes and methods since 1997, by means of the combination operator '&'. However, with certain combinations...

  6. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  7. Atrial Fibrillation - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Atrial Fibrillation URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Atrial Fibrillation - Multiple Languages To use the sharing features on ...

  8. Domestic Violence - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Domestic Violence URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Domestic Violence - Multiple Languages To use the sharing features on ...

  9. Herbal Medicine - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Herbal Medicine URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Herbal Medicine - Multiple Languages To use the sharing features on ...

  10. Elder Abuse - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Elder Abuse URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Elder Abuse - Multiple Languages To use the sharing features on ...

  11. Zika Virus - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Zika Virus URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Zika Virus - Multiple Languages To use the sharing features on ...

  12. Diabetic Foot - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Diabetic Foot URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Diabetic Foot - Multiple Languages To use the sharing features on ...

  13. Child Abuse - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Child Abuse URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Child Abuse - Multiple Languages To use the sharing features on ...

  14. Self-assembly of ordered graphene nanodot arrays

    DEFF Research Database (Denmark)

    Camilli, Luca; Jørgensen, Jakob H.; Tersoff, Jerry

    2017-01-01

    The ability to fabricate nanoscale domains of uniform size in two-dimensional materials could potentially enable new applications in nanoelectronics and the development of innovative metamaterials. However, achieving even minimal control over the growth of two-dimensional lateral heterostructures...

  15. Testing for Nonuniform Differential Item Functioning with Multiple Indicator Multiple Cause Models

    Science.gov (United States)

    Woods, Carol M.; Grimm, Kevin J.

    2011-01-01

    In extant literature, multiple indicator multiple cause (MIMIC) models have been presented for identifying items that display uniform differential item functioning (DIF) only, not nonuniform DIF. This article addresses, for apparently the first time, the use of MIMIC models for testing both uniform and nonuniform DIF with categorical indicators. A…

  16. Hadron multiplicity as the limit of jet multiplicity at high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lupia, S.; Ochs, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut

    1998-05-01

    Recently exact numerical results from the evolution equation for parton multiplicities in QCD jets have been obtained. A comparison with various approximate results is presented. A good description is obtained not only of the jet multiplicities measured at LEP-1 but also of the hadron multiplicities for cm s energies above 1.6 GeV in e{sup +}e{sup -} annihilation. The solution suggests that a final state hadron can be represented by a jet in the limit of small (nonperturbative) k {sub perpendicular} {sub to} cut-off Q{sub 0}. In this description using as adjustable parameters only the QCD scale {Lambda} and the cut-off Q{sub 0}, the coupling {alpha}{sub s} can be seen to rise towards large values above unity at low energies. (orig.). 8 refs.

  17. Multiple solid-phase microextraction

    NARCIS (Netherlands)

    Koster, EHM; de Jong, GJ

    2000-01-01

    Theoretical aspects of multiple solid-phase microextraction are described and the principle is illustrated with the extraction of lidocaine from aqueous solutions. With multiple extraction under non-equilibrium conditions considerably less time is required in order to obtain an extraction yield that

  18. Formation of multiple networks

    DEFF Research Database (Denmark)

    Magnani, Matteo; Rossi, Luca

    2013-01-01

    we introduce the first network formation model for multiple networks. Network formation models are among the most popular tools in traditional network studies, because of both their practical and theoretical impact. However, existing models are not sufficient to describe the generation of multiple...

  19. A Robust Two-Phase Pumped Loop With Multiple Evaporators and Multiple Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future spacecraft require advanced thermal management technologies to provide effective cooling for multiple instruments and reject heat through multiple...

  20. SU-F-T-517: Determining the Tissue Equivalence of a Brass Mesh Bolus in a Reconstructed Chest Wall Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shekel, E; Epstein, D; Levin, D [Dept of radiotherapy, Assuta Medical Centers, Tel Aviv (Israel)

    2016-06-15

    Purpose: To determine the tissue equivalence of a brass mesh bolus (RPD) in the setting of a reconstructed chest wall irradiation Methods: We measured breast skin dose delivered by a tangential field plan on an anthropomorphic phantom using Mosfet and nanoDot (Landauer) dosimeters in five different locations on the breast. We also measured skin dose using no bolus, 5mm and 10 mm superflab bolus. In the Eclipse treatment planning system (Varian, Palo Alto, CA) we calculated skin dose for different bolus thicknesses, ranging from 0 to 10 mm, in order to evaluate which calculation best matches the brass mesh measurements, as the brass mesh cannot be simulated due to artefacts.Finally, we measured depth dose behavior with the brass mesh bolus to verify that the bolus does not affect the dose to the breast itself beyond the build-up region. Results: Mosfet and nanoDot measurements were consistent with each other.As expected, skin dose measurements with no bolus had the least agreement with Eclipse calculation, while measurements for 5 and 10 mm agreed well with the calculation despite the difficulty in conforming superflab bolus to the breast contour. For the brass mesh the best agreement was for 3 mm bolus Eclipse calculation. For Mosfets, the average measurement was 90.8% of the expected dose, and for nanoDots 88.33% compared to 83.34%, 88.64% and 93.94% (2,3 and 5 mm bolus calculation respectively).The brass mesh bolus increased skin dose by approximately 25% but there was no dose increase beyond the build-up region. Conclusion: Brass mesh bolus is most equivalent to a 3 mm bolus, and does not affect the dose beyond the build-up region. The brass mesh cannot be directly calculated in Eclipse, hence a 3mm bolus calculation is a good reflection of the dose response to the brass mesh bolus.

  1. Attenuation of multiples in image space

    Science.gov (United States)

    Alvarez, Gabriel F.

    In complex subsurface areas, attenuation of 3D specular and diffracted multiples in data space is difficult and inaccurate. In those areas, image space is an attractive alternative. There are several reasons: (1) migration increases the signal-to-noise ratio of the data; (2) primaries are mapped to coherent events in Subsurface Offset Domain Common Image Gathers (SODCIGs) or Angle Domain Common Image Gathers (ADCIGs); (3) image space is regular and smaller; (4) attenuating the multiples in data space leaves holes in the frequency-Wavenumber space that generate artifacts after migration. I develop a new equation for the residual moveout of specular multiples in ADCIGs and use it for the kernel of an apex-shifted Radon transform to focus and separate the primaries from specular and diffracted multiples. Because of small amplitude, phase and kinematic errors in the multiple estimate, we need adaptive matching and subtraction to estimate the primaries. I pose this problem as an iterative least-squares inversion that simultaneously matches the estimates of primaries and multiples to the data. Standard methods match only the estimate of the multiples. I demonstrate with real and synthetic data that the method produces primaries and multiples with little cross-talk. In 3D, the multiples exhibit residual moveout in SODCIGs in in-line and cross-line offsets. They map away from zero subsurface offsets when migrated with the faster velocity of the primaries. In ADCIGs the residual moveout of the primaries as a function of the aperture angle, for a given azimuth, is flat for those angles that illuminate the reflector. The multiples have residual moveout towards increasing depth for increasing aperture angles at all azimuths. As a function of azimuth, the primaries have better azimuth resolution than the multiples at larger aperture angles. I show, with a real 3D dataset, that even below salt, where illumination is poor, the multiples are well attenuated in ADCIGs with the new

  2. Body Weight - Multiple Languages

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Body Weight URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Body Weight - Multiple Languages To use the sharing features on this page, ...

  3. Applications of Fast Truncated Multiplication in Cryptography

    Directory of Open Access Journals (Sweden)

    Laszlo Hars

    2006-12-01

    Full Text Available Truncated multiplications compute truncated products, contiguous subsequences of the digits of integer products. For an n-digit multiplication algorithm of time complexity O(nα, with 1<α≤2, there is a truncated multiplication algorithm, which is constant times faster when computing a short enough truncated product. Applying these fast truncated multiplications, several cryptographic long integer arithmetic algorithms are improved, including integer reciprocals, divisions, Barrett and Montgomery multiplications, 2n-digit modular multiplication on hardware for n-digit half products. For example, Montgomery multiplication is performed in 2.6 Karatsuba multiplication time.

  4. The Future Multiple

    DEFF Research Database (Denmark)

    Spaniol, Matthew Jon; Rowland, Nicholas James

    2015-01-01

    /value – The original contribution is in demonstrating how plural futures and the singular future co-exist in practice. Thus, an eclipse of the future by futures can only ever be partial. For “futures” to be conceptually potent, “the future” must be at least provisionally believable and occasionally useful. Otherwise......, if “the future” were so preposterous an idea, then “futures” would cease to be a critical alternative to it. Futures needs the future; they are relationally bound together in a multiplicity. This paper considers what such a logical reality implies for a field that distances itself from the future and self......). Multiplicity, as a post-ANT sensibility, helps one make sense of the empirical materials. This paper examines the possibility that rather than being alternatives to one another, plural futures and the singular future might co-exist in practice, and, thus, constitute a multiplicity. Design...

  5. Multiplicity in difference geometry

    OpenAIRE

    Tomasic, Ivan

    2011-01-01

    We prove a first principle of preservation of multiplicity in difference geometry, paving the way for the development of a more general intersection theory. In particular, the fibres of a \\sigma-finite morphism between difference curves are all of the same size, when counted with correct multiplicities.

  6. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  7. More Popsicle-Stick Multiplication.

    Science.gov (United States)

    Dunkels, Andrejs

    1982-01-01

    A way to use tongue depressors in a model of multiplication is presented. The original intent was to use the sticks to teach about fractions, but "mistakes" in student responses led to new ideas. It is felt that teachers should use the model in teaching multiplication. (MP)

  8. Effect of TiON–MgO intermediate layer on microstructure and magnetic properties of L1{sub 0} FePt–C–SiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Deng, J.Y. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore); Dong, K.F. [School of Automation, China University of Geosciences, Wuhan 430074 (China); Peng, Y.G.; Ju, G.P. [Seagate Technology, Fremont, CA 94538 (United States); Hu, J.F. [Data Storage Institute (DSI), Singapore 117608 (Singapore); Chow, G.M.; Chen, J.S. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2016-11-01

    The microstructure and magnetic properties of L1{sub 0} FePt–C–SiO{sub 2} films grown on TiON–MgO intermediate layer were studied. TiON–MgO layer was deposited by co-sputtering TiN and MgO–TiO{sub 2} targets at 380 °C. With increasing MgO–TiO{sub 2} doping concentration, the contact angle between FePt grains with intermediate layer gradually increased, and it was close to 90° when the volume percentage of MgO–TiO{sub 2} reached 30%. At this condition, a high out-of-plane coercivity of 19.1 kOe was obtained, while the opening-up of in-plane M-H loop was very narrow. Moreover, it was found that the out-of-plane coercivity can be further improved to 21.6 kOe, by slightly increasing the percentage of MgO–TiO{sub 2} to 35 vol%. - Highlights: • The effect of TiON–MgO intermediate layer was studied. • With increasing the MgO composition, the surface energy of intermediate layer increased, and the FePt/TiON–MgO interfacial energy decreased. The contact angle of FePt grains with intermediate layer increased with the MgO composition, and 90° contact angle could be achieved by optimizing the MgO composition. • Good perpendicular magnetic anisotropy was retained with large out-of-plane coercivity and narrow in-plane opening-up.

  9. Mechanisms of multiple production processes

    International Nuclear Information System (INIS)

    Dremin, I.M.

    1977-01-01

    Theoretical approaches to multiple production processes are discussed. A large number of models proceeds from the notion about common excited system produced by colliding hadrons. This class of models includes the hydrodynamical, statistical, thermodynamical and statistical bootstrap models. Sometimes the production process is due to excitation and decay of two colliding particles. The fragmentation bremsstrahlung and inelastic diffraction models belong to this group. The largest group of models describes the multiple production process as a result of formation of many excited centers. The typical example is the multiperipheral model. An interesting direction is given by the attempts to interrelate the mechanism of multiple production with internal structure of particles that is with their constituents (C-group)'-quarks, gluons, etc. Besides the models there are phenomenological (p group) attempts to connect different features of multiple production. Experimental data indicate the existence of leading and pionization particles thus giving an evidence for applications of different models. The data about increase of total and inclusive cross sections, the behaviour of the mean multiplicity and correlations at high energies provide a clue for further development of multiple production theory

  10. Multiplicative properties of quantum channels

    Science.gov (United States)

    Rahaman, Mizanur

    2017-08-01

    In this paper, we study the multiplicative behaviour of quantum channels, mathematically described by trace preserving, completely positive maps on matrix algebras. It turns out that the multiplicative domain of a unital quantum channel has a close connection to its spectral properties. A structure theorem (theorem 2.5), which reveals the automorphic property of an arbitrary unital quantum channel on a subalgebra, is presented. Various classes of quantum channels (irreducible, primitive, etc) are then analysed in terms of this stabilising subalgebra. The notion of the multiplicative index of a unital quantum channel is introduced, which measures the number of times a unital channel needs to be composed with itself for the multiplicative algebra to stabilise. We show that the maps that have trivial multiplicative domains are dense in completely bounded norm topology in the set of all unital completely positive maps. Some applications in quantum information theory are discussed.

  11. Optimized simultaneous inversion of primary and multiple reflections; Inversion linearisee simultanee des reflexions primaires et des reflexions multiples

    Energy Technology Data Exchange (ETDEWEB)

    Pelle, L.

    2003-12-01

    The removal of multiple reflections remains a real problem in seismic imaging. Many preprocessing methods have been developed to attenuate multiples in seismic data but none of them is satisfactory in 3D. The objective of this thesis is to develop a new method to remove multiples, extensible in 3D. Contrary to the existing methods, our approach is not a preprocessing step: we directly include the multiple removal in the imaging process by means of a simultaneous inversion of primaries and multiples. We then propose to improve the standard linearized inversion so as to make it insensitive to the presence of multiples in the data. We exploit kinematics differences between primaries and multiples. We propose to pick in the data the kinematics of the multiples we want to remove. The wave field is decomposed into primaries and multiples. Primaries are modeled by the Ray+Born operator from perturbations of the logarithm of impedance, given the velocity field. Multiples are modeled by the Transport operator from an initial trace, given the picking. The inverse problem simultaneously fits primaries and multiples to the data. To solve this problem with two unknowns, we take advantage of the isometric nature of the Transport operator, which allows to drastically reduce the CPU time: this simultaneous inversion is this almost as fast as the standard linearized inversion. This gain of time opens the way to different applications to multiple removal and in particular, allows to foresee the straightforward 3D extension. (author)

  12. Multiple sclerosis and organic solvents

    DEFF Research Database (Denmark)

    Mortensen, J T; Brønnum-Hansen, Henrik; Rasmussen, K

    1998-01-01

    We investigated a possible causal relation between exposure to organic solvents in Danish workers (housepainters, typographers/printers, carpenters/cabinetmakers) and onset of multiple sclerosis. Data on men included in the Danish Multiple Sclerosis Register (3,241 men) were linked with data from......, and butchers. Over a follow-up period of 20 years, we observed no increase in the incidence of multiple sclerosis among men presumed to be exposed to organic solvents. It was not possible to obtain data on potential confounders, and the study design has some potential for selection bias. Nevertheless......, the study does not support existing hypotheses regarding an association between occupational exposure to organic solvents and multiple sclerosis....

  13. Human Supervision of Multiple Autonomous Vehicles

    Science.gov (United States)

    2013-03-22

    AFRL-RH-WP-TR-2013-0143 HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES Heath A. Ruff Ball...REPORT TYPE Interim 3. DATES COVERED (From – To) 09-16-08 – 03-22-13 4. TITLE AND SUBTITLE HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES 5a...Supervision of Multiple Autonomous Vehicles To support the vision of a system that enables a single operator to control multiple next-generation

  14. Multicentric malignant transformation of multiple exostoses

    International Nuclear Information System (INIS)

    Ozaki, T.; Hillmann, A.; Winkelmann, W.; Blasius, S.; Link, T.

    1998-01-01

    We treated a patient with large multiple chondrosarcomas derived from multiple cartilaginous exostoses. One sarcoma originated in the left pubic bone and the other sarcoma in the posterior aspect of the greater trochanter of the left femur. Thirty months after hindquarter amputation, the patient is alive without relapse. This is the first report of a patient with synchronous multiple malignant transformation of multiple cartilaginous exostoses. (orig.)

  15. Teaching Individuals with Profound Multiple Disabilities to Access Preferred Stimuli with Multiple Microswitches

    Science.gov (United States)

    Tam, Gee May; Phillips, Katrina J.; Mudford, Oliver C.

    2011-01-01

    We replicated and extended previous research on microswitch facilitated choice making by individuals with profound multiple disabilities. Following an assessment of stimulus preferences, we taught 6 adults with profound multiple disabilities to emit 2 different responses to activate highly preferred stimuli. All participants learnt to activate…

  16. Multiple group membership and well-being

    DEFF Research Database (Denmark)

    Sønderlund, Anders L.; Morton, Thomas A.; Ryan, Michelle K.

    2017-01-01

    multiple group membership and well-being, but only for individuals high in SIC. This effect was mediated by perceived identity expression and access to social support. Study 2 (N = 104) also found that multiple group memberships indirectly contributed to well-being via perceived identity expression......A growing body of research points to the value of multiple group memberships for individual well-being. However, much of this work considers group memberships very broadly and in terms of number alone. We conducted two correlational studies exploring how the relationship between multiple group...... and social support, as well as identity compatibility and perceived social inclusion. But, in this study the relationship between multiple group memberships and well-being outcomes was moderated by the perceived value and visibility of group memberships to others. Specifically, possessing multiple, devalued...

  17. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    Science.gov (United States)

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  18. Multiple Stars Across the H-R Diagram

    CERN Document Server

    Hubrig, Swetlana; Tokovinin, Andrei; Proceedings of the ESO Workshop held in Garching, Germany, 12-15 July 2005

    2008-01-01

    Stars show a marked tendency to be in systems of different multiplicity, ranging from simple binaries and triples to globular clusters with several 10,000's of stars. The formation and evolution of multiple systems remains a challenging part of astrophysics, and the contributions in this book report on the significant progress that had been made in this research field in the last years. The reader will find a variety of research topics addressed, such as the dynamical evolution in multiple stars, the effects of the environment on multiple system parameters, stellar evolution within multiple stars, multiplicity of massive stars, pre-main sequence and intermediate mass stars, multiplicity of low-mass stars from embedded protostars to open clusters, and brown dwarfs and extrasolar planets in multiples. This book presents the proceedings of the ESO Workshop on Multiple Stars across the H-R Diagram held in the summer of 2005.

  19. Assessing Children's Multiplicative Thinking

    Science.gov (United States)

    Hurst, Chris; Hurrell, Derek

    2016-01-01

    Multiplicative thinking is a "big idea" of mathematics that underpins much of the mathematics learned beyond the early primary school years. This paper reports on a current study that utilises an interview tool and a written quiz to gather data about children's multiplicative thinking. The development of the tools and some of the…

  20. Restoration of γ-ray multiplicity distributions from experiments with low efficiency multiplicity filters

    International Nuclear Information System (INIS)

    Bellia, G.; Del Zoppo, A.; Migneco, E.; Russo, G.; Istituto Nazionale di Fisica Nucleare, Catania

    1984-01-01

    The restoration of γ-ray multiplicity distributions from experimental p-fold coincidence distributions is discussed. It is shown that the restoration of the multiplicity from measurements with low total detection efficiency is an 'incorrectly posed problem'. While in the literature the analysis of the experimental data has been attempted only in terms of the lowest central moments of the multiplicity distribution, in this paper an unfolding method based on the minimization of the directioned discrepancies in the probability space is used. The method is found to work very well even if the total efficiency Ω <= 0.1. Realistic tests and a comparison with the usual method of analysis are presented. (orig.)

  1. Does vagotomy protect against multiple sclerosis?

    Science.gov (United States)

    Sundbøll, Jens; Horváth-Puhó, Erzsébet; Adelborg, Kasper; Svensson, Elisabeth

    2017-07-01

    To examine the association between vagotomy and multiple sclerosis. We conducted a matched cohort study of all patients who underwent truncal or super-selective vagotomy and a comparison cohort, by linking Danish population-based medical registries (1977-1995). Hazard ratios (HRs) for multiple sclerosis, adjusting for potential confounders were computed by means of Cox regression analysis. Median age of multiple sclerosis onset corresponded to late onset multiple sclerosis. No association with multiple sclerosis was observed for truncal vagotomy (0-37 year adjusted HR=0.91, 95% confidence interval [CI]: 0.48-1.74) or super-selective vagotomy (0-37 year adjusted HR=1.28, 95% CI: 0.79-2.09) compared with the general population. We found no association between vagotomy and later risk of late onset multiple sclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Interferon Treatment of Multiple Sclerosis

    OpenAIRE

    Alajbegovic, Azra; Deljo, Dervis; Alajbegovic, Salem; Djelilovic-Vranic, Jasminka; Todorovic, Ljubica; Tiric-Campara, Merita

    2012-01-01

    Introduction: In the treatment of Multiple Sclerosis (MS) differ: treatment of relapse, treatment slow the progression of the disease (immunomodulators and immunosuppression), and symptomatic treatment. The aim: The aim of this study is to analyze the application of interferon therapy in the treatment of MS-E: Process the disease, patients with multiple sclerosis who have passed the commission for multiple sclerosis at the Neurology Clinic of Clinical Center of Sarajevo University as a refere...

  3. Immunomodulation of multiple myeloma.

    Science.gov (United States)

    Tohnya, Tanyifor M; Figg, William D

    2004-11-01

    Multiple myeloma is a multi-process disease, and these different processes are responsible for the reduced sensitivity to chemotherapy and radiotherapy, hence the relapse and refractory nature of multiple myeloma. Emphasis is now placed on the hypothesis that myeloma cell growth, inhibition of apoptosis and drug resistance are dependent on immunomodulatory cytokines such as IL-6 and pro-angiogenic factors such as VEGF. In addition to its anti-angiogenic effects, the immunomodulatory properties of thalidomide make it a possible therapy for patients with advanced multiple myeloma. This has lead to the clinical development of a number of immunomodulatory thalidomide analogues (IMiDs) which are more potent and have less side effects than the parent drug, thalidomide. In the August 15(th) issue of Journal of Clinical Oncology, Schey SA et al. suggested that an IMiD (CC-4047) maybe efficacious due to T-cell co-stimulation, and safe in patients with relapsed or refractory multiple myeloma. This article demonstrates a supporting role for IMiDs as immunomodulatory adjuvant therapy.

  4. Sudden multiple fractures in a patient with sarcoidosis in multiple organs.

    Science.gov (United States)

    Sada, Mitsuru; Saraya, Takeshi; Ishii, Haruyuki; Goto, Hajime

    2014-04-07

    A 30-year-old man who incidentally fractured his right olecranon and other multiple phalanges was admitted to our hospital. He had a 2-year history of uveitis and bilateral hilar lymphadenopathy (BHL), and pulmonary sarcoidosis was diagnosed from transbronchial lung biopsy. Right elbow arthrodesis was performed, and biopsied specimens showed non-caseating epithelioid cell granuloma, suggesting osseous sarcoidosis. He was discharged uneventfully without further treatment, but BHL had progressed with the appearance of lung parenchymal lesions 3 months later. At that time, involvement of other organs was also noted on Gallium-67 scintigraphy, showing accumulations in BHL, axillary and inguinal lymph nodes, enlarged liver and spleen and subcutaneous areas. After initiation of steroid therapy, multiple organ involvement improved, and no further bone involvement has been recognised to date. Osseous sarcoidosis complicated by bone fracture is an extremely rare presentation, but should be considered in patients with sarcoidosis, especially when multiple organs are involved.

  5. Multiple myeloma.

    LENUS (Irish Health Repository)

    Collins, Conor D

    2012-02-01

    Advances in the imaging and treatment of multiple myeloma have occurred over the past decade. This article summarises the current status and highlights how an understanding of both is necessary for optimum management.

  6. Multiple Sclerosis

    Science.gov (United States)

    Multiple sclerosis (MS) is a nervous system disease that affects your brain and spinal cord. It damages the myelin sheath, the material that surrounds and protects your nerve cells. This damage slows down ...

  7. Multiple relay selection for delay-limited applications

    KAUST Repository

    Alsharoa, Ahmad M.; Abediseid, Walid; Alouini, Mohamed-Slim

    2013-01-01

    A multiple relay selection system model that implements the decode-and-forward mode is investigated. All communication nodes are assumed to be equipped by multiple antennas. Furthermore, lattices space-time coded multiple-input multiple-output half

  8. Hadron multiplicities at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Du Fresne von Hohenesche, Nicolas [Institut fuer Kernphysik, Universitaet Mainz, Johann-Joachim-Becher-Weg 45, 55128 Mainz (Germany); Collaboration: COMPASS Collaboration

    2014-07-01

    Quark fragmentation functions (FF) D{sub q}{sup h}(z,Q{sup 2}) describe final-state hadronization of quarks q into hadrons h. The FFs can be extracted from hadron multiplicities produced in semi-inclusive deep inelastic scattering. The COMPASS collaboration has recently measured charged hadron multiplicities for identified pions and kaons using a 160 GeV/c muon beam impinging on an iso-scalar target. The data cover a large kinematical range and provide an important input for global QCD analyses of world data at NLO, aiming at the determination of FFs in particular in the strange quark sector. The newest results from COMPASS on pion and kaon multiplicities will be presented.

  9. Homogeneous nano-patterning using plasmon-assisted photolithography

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kosei [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan); Takabatake, Satoaki; Onishi, Ko; Itoh, Hiroko; Nishijima, Yoshiaki [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021 (Japan); Misawa, Hiroaki [PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan)

    2011-07-04

    We report an innovative lithography system appropriate for fabricating sharp-edged nanodot patterns with nanoscale accuracy using plasmon-assisted photolithography. The key technology is two-photon photochemical reactions of a photoresist induced by plasmonic near-field light and the scattering component of the light in a photoresist film. The scattering component of the light is a radiation mode from higher order localized surface plasmon resonances scattered by metallic nanostructures.

  10. Multiple giant cell lesions in a patient with Noonan syndrome with multiple lentigines

    NARCIS (Netherlands)

    van den Berg, Henk; Schreuder, Willem Hans; Jongmans, Marjolijn; van Bommel-Slee, Danielle; Witsenburg, Bart; de Lange, Jan

    2016-01-01

    A patient with Noonan syndrome with multiple lentigines (NSML) and multiple giant cell lesions (MGCL) in mandibles and maxillae is described. A mutation p.Thr468Met in the PTPN11-gene was found. This is the second reported NSML patient with MGCL. Our case adds to the assumption that, despite a

  11. Sentencing Multiple Crimes

    DEFF Research Database (Denmark)

    Most people assume that criminal offenders have only been convicted of a single crime. However, in reality almost half of offenders stand to be sentenced for more than one crime.The high proportion of multiple crime offenders poses a number of practical and theoretical challenges for the criminal......, and psychology offer their perspectives to the volume. A comprehensive examination of the dynamics involved with sentencing multiple offenders has the potential to be a powerful tool for legal scholars and professionals, particularly given the practical importance of the topic and the relative dearth of research...

  12. Closed-Loop Surface Related Multiple Estimation

    NARCIS (Netherlands)

    Lopez Angarita, G.A.

    2016-01-01

    Surface-related multiple elimination (SRME) is one of the most commonly used methods for suppressing surface multiples. However, in order to obtain an accurate surface multiple estimation, dense source and receiver sampling is required. The traditional approach to this problem is performing data

  13. Toric Codes, Multiplicative Structure and Decoding

    DEFF Research Database (Denmark)

    Hansen, Johan Peder

    2017-01-01

    Long linear codes constructed from toric varieties over finite fields, their multiplicative structure and decoding. The main theme is the inherent multiplicative structure on toric codes. The multiplicative structure allows for \\emph{decoding}, resembling the decoding of Reed-Solomon codes and al...

  14. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation

    KAUST Repository

    Sun, Jingya; Yu, Weili; Usman, Anwar; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Alarousu, Erkki; Takanabe, Kazuhiro; Mohammed, Omar F.

    2014-01-01

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag 2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices. © 2014 American Chemical Society.

  15. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation

    KAUST Repository

    Sun, Jingya

    2014-02-20

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag 2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices. © 2014 American Chemical Society.

  16. Deep convolutional neural network based antenna selection in multiple-input multiple-output system

    Science.gov (United States)

    Cai, Jiaxin; Li, Yan; Hu, Ying

    2018-03-01

    Antenna selection of wireless communication system has attracted increasing attention due to the challenge of keeping a balance between communication performance and computational complexity in large-scale Multiple-Input MultipleOutput antenna systems. Recently, deep learning based methods have achieved promising performance for large-scale data processing and analysis in many application fields. This paper is the first attempt to introduce the deep learning technique into the field of Multiple-Input Multiple-Output antenna selection in wireless communications. First, the label of attenuation coefficients channel matrix is generated by minimizing the key performance indicator of training antenna systems. Then, a deep convolutional neural network that explicitly exploits the massive latent cues of attenuation coefficients is learned on the training antenna systems. Finally, we use the adopted deep convolutional neural network to classify the channel matrix labels of test antennas and select the optimal antenna subset. Simulation experimental results demonstrate that our method can achieve better performance than the state-of-the-art baselines for data-driven based wireless antenna selection.

  17. Functional Multiple-Set Canonical Correlation Analysis

    Science.gov (United States)

    Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.

    2012-01-01

    We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…

  18. Model Pembelajaran Berbasis Penstimulasian Multiple Intelligences Siswa

    Directory of Open Access Journals (Sweden)

    Edy Legowo

    2017-03-01

    Full Text Available Tulisan ini membahas mengenai penerapan teori multiple intelligences dalam pembelajaran di sekolah. Pembahasan diawali dengan menguraikan perkembangan konsep inteligensi dan multiple intelligences. Diikuti dengan menjelaskan dampak teori multiple intelligences dalam bidang pendidikan dan pembelajaran di sekolah. Bagian selanjutnya menguraikan tentang implementasi teori multiple intelligences dalam praktik pembelajaran di kelas yaitu bagaimana pemberian pengalaman belajar siswa yang difasilitasi guru dapat menstimulasi multiple intelligences siswa. Evaluasi hasil belajar siswa dari pandangan penerapan teori multiple intelligences seharusnya dilakukan menggunakan authentic assessment dan portofolio yang lebih memfasilitasi para siswa mengungkapkan atau mengaktualisasikan hasil belajarnya melalui berbagai cara sesuai dengan kekuatan jenis inteligensinya.

  19. The INEL beryllium multiplication experiment

    International Nuclear Information System (INIS)

    Smith, J.R.; King, J.J.

    1991-03-01

    The experiment to measure the multiplication of 14-MeV neutrons in bulk beryllium has been completed. The experiment consists of determining the ratio of 56 Mn activities induced in a large manganese bath by a central 14-MeV neutron source, with and without a beryllium sample surrounding the source. In the manganese bath method a neutron source is placed at the center of a totally-absorbing aqueous solution of MnSo 4 . The capture of neutrons by Mn produces a 56 Mn activity proportional to the emission rate of the source. As applied to the measurement of the multiplication of 14- MeV neutrons in bulk beryllium, the neutron source is a tritium target placed at the end of the drift tube of a small deuteron accelerator. Surrounding the source is a sample chamber. When the sample chamber is empty, the neutrons go directly to the surrounding MnSO 4 solution, and produce a 56 Mn activity proportional to the neutron emission rate. When the chamber contains a beryllium sample, the neutrons first enter the beryllium and multiply through the (n,2n) process. Neutrons escaping from the beryllium enter the bath and produce a 56 Mn activity proportional to the neutron emission rate multiplied by the effective value of the multiplication in bulk beryllium. The ratio of the activities with and without the sample present is proportional to the multiplication value. Detailed calculations of the multiplication and all the systematic effects were made with the Monte Carlo program MCNP, utilizing both the Young and Stewart and the ENDF/B-VI evaluations for beryllium. Both data sets produce multiplication values that are in excellent agreement with the measurements for both raw and corrected values of the multiplication. We conclude that there is not real discrepancy between experimental and calculated values for the multiplication of neutrons in bulk beryllium. 12 figs., 11 tabs., 18 refs

  20. Extending Data Worth Analyses to Select Multiple Observations Targeting Multiple Forecasts

    DEFF Research Database (Denmark)

    Vilhelmsen, Troels Norvin; Ferre, Ty Paul

    2017-01-01

    . In the present study, we extend previous data worth analyses to include: simultaneous selection of multiple new measurements and consideration of multiple forecasts of interest. We show how the suggested approach can be used to optimize data collection. This can be used in a manner that suggests specific...... measurement sets or that produces probability maps indicating areas likely to be informative for specific forecasts. Moreover, we provide examples documenting that sequential measurement election approaches often lead to suboptimal designs and that estimates of data covariance should be included when...

  1. Multiple mononeuropathy

    Science.gov (United States)

    ... with multiple mononeuropathy are prone to new nerve injuries at pressure points such as the knees and elbows. They should avoid putting pressure on these areas, for example, by not leaning on the elbows, crossing the knees, ...

  2. Multiple Sclerosis After Infectious Mononucleosis

    DEFF Research Database (Denmark)

    Nielsen, Trine Rasmussen; Rostgaard, Klaus; Nielsen, Nete Munk

    2007-01-01

    BACKGROUND: Infectious mononucleosis caused by the Epstein-Barr virus has been associated with increased risk of multiple sclerosis. However, little is known about the characteristics of this association. OBJECTIVE: To assess the significance of sex, age at and time since infectious mononucleosis......, and attained age to the risk of developing multiple sclerosis after infectious mononucleosis. DESIGN: Cohort study using persons tested serologically for infectious mononucleosis at Statens Serum Institut, the Danish Civil Registration System, the Danish National Hospital Discharge Register, and the Danish...... Multiple Sclerosis Registry. SETTING: Statens Serum Institut. PATIENTS: A cohort of 25 234 Danish patients with mononucleosis was followed up for the occurrence of multiple sclerosis beginning on April 1, 1968, or January 1 of the year after the diagnosis of mononucleosis or after a negative Paul...

  3. Multiple Thymoma with Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Dong Hyun Seo

    2017-02-01

    Full Text Available The actual incidence of multiple thymoma is unknown and rarely reported because it remains controversial whether the cases represent a disease of multicentric origin or a disease resulting from intrathymic metastasis. In this case, a patient underwent total thymectomy for multiple thymoma with myasthenia gravis via bilateral video-assisted thoracic surgery. A well-encapsulated multinodular cystic mass, measuring 57 mm×50 mm×22 mm in the right lobe of the thymus, and a well-encapsulated mass, measuring 32 mm×15 mm×14 mm in the left lobe, were found. Both tumors were type B2 thymoma. Few cases of multiple thymoma with myasthenia gravis have ever been reported in the literature. We report a case of synchronous multiple thymoma associated with myasthenia gravis.

  4. On Utmost Multiplicity of Hierarchical Stellar Systems

    Directory of Open Access Journals (Sweden)

    Gebrehiwot Y. M.

    2016-12-01

    Full Text Available According to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm the existence of at most septuple (seven-component systems. In this study, we cross-match the stellar systems of very high multiplicity (six and more components in modern catalogues of visual double and multiple stars to find among them the candidates to hierarchical systems. After cross-matching the catalogues of closer binaries (eclipsing, spectroscopic, etc., some of their components were found to be binary/multiple themselves, what increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, were flagged and excluded from the statistics. We compiled a list of hierarchical systems with potentially very high multiplicity that contains ten objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems.

  5. Multiple Sclerosis and Vitamin D

    Science.gov (United States)

    ... Editors David C. Spencer, MD Steven Karceski, MD Multiple sclerosis and vitamin D Andrew J. Solomon, MD WHAT ... caused by improper immune responses (autoimmune diseases), including multiple sclerosis (MS). A recent Patient Page in Neurology provided ...

  6. Multiple Hierarchies and Organizational Control

    Science.gov (United States)

    Evans, Peter B.

    1975-01-01

    Uses a control-loss model to explore the effects of multiple channels in formal organizations, and presents an argument for the superior control properties of dual hierarchies. Two variant forms of multiple hierarchies are considered. (Author)

  7. Multiple Intelligences: Current Trends in Assessment

    Science.gov (United States)

    Harman, Marsha J.; Kordinak, S. Thomas; Bruce, A. Jerry

    2009-01-01

    With his theory of multiple intelligences, Howard Gardner challenged the presumption that intelligence is a single innate entity. He maintained that multiple intelligences exist and are related to specific brain areas and symbol systems. Each of the intelligences has its merits and limits, but by using a multiple intelligences approach, more…

  8. High-multiplicity processes

    International Nuclear Information System (INIS)

    Shelkov, G.; Sisakyan, A.; Mandzhavidze, I.

    1999-01-01

    We wish to demonstrate that investigation of asymptotically high multiplicity (AHM) hadron reactions may solve, or at least clear up, a number of problems unsolvable by other ways. We would lean upon the idea: (i) the reactions final state entropy is proportional to multiplicity and, by this reason, just in the AHM domain one may expect the equilibrium final state and (ii) the AHM final state is cold because of the energy-momentum conservation laws. This means that the collective phenomena may become important in the AHM domain. The possibility of hard processes dominance is considered also

  9. Realization of a gamma multiplicity filter and gamma multiplicity measurements

    International Nuclear Information System (INIS)

    Azgui, F.

    1981-12-01

    A gamma multiplicity filter for the study of reaction mechanism has been realised. It's composed of six NaI(Tl) counters. The flexibility of the geometry allows many configurations. This set up has been tested with gamma radioactive sources and with the 252 Cf source to resolve problems of gamma-efficiency of the NaI(Tl) counters and the contamination of neutrons in these detectors. A logical electronic unit (Encodeur) has been constructed and the around electronic has been developped. This gamma multiplicity filter has been coupled with a detector of high resolution Ge(Li), and used in two reactions: 12 C + 55 Mn at E( 12 C) = 54 MeV; α + 63 Cu at E(α) = 52 MeV. The dominant process is the fusion-evaporation. The compound nucleus 67 Ga, is formed at the same excitation energy. The values of multiplicities Msub(γ) have been extracted using a program based on the formalism of W.J. Ockels. The fractionalization of the angular momentum is well observed for some residual nuclei ( 63 Zn, 64 Zn, 65 Zn), and for each residual nucleus, the average gamma multiplicity is lower with projectile α than that with projectile 12 C. For the most strongly output channel p2n, an entry point for the 64 Zn has been determined in the reactions. All these observations are in good agreement with those published, in the same region (f-p shell) of nuclei. This set up can be coupled with different central detector as, ''X'', neutrons charged particles detectors, and will be used with the new machine SARA to make a systematic study of transfer of angular momentum to the fragments at 30 MeV/A [fr

  10. Genetic variants and multiple myeloma risk

    DEFF Research Database (Denmark)

    Martino, Alessandro; Campa, Daniele; Jurczyszyn, Artur

    2014-01-01

    BACKGROUND: Genetic background plays a role in multiple myeloma susceptibility. Several single-nucleotide polymorphisms (SNP) associated with genetic susceptibility to multiple myeloma were identified in the last years, but only a few of them were validated in independent studies. METHODS...... with multiple myeloma risk (P value range, 0.055-0.981), possibly with the exception of the SNP rs2227667 (SERPINE1) in women. CONCLUSIONS: We can exclude that the selected polymorphisms are major multiple myeloma risk factors. IMPACT: Independent validation studies are crucial to identify true genetic risk...

  11. Piercing and Tattoos - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Piercing and Tattoos URL of this page: https://medlineplus. ... V W XYZ List of All Topics All Piercing and Tattoos - Multiple Languages To use the sharing ...

  12. Probing the dynamic response of antivortex, interstitial and trapped vortex lattices on magnetic periodic pinning potentials

    International Nuclear Information System (INIS)

    Gomez, A; Gonzalez, E M; Vicent, J L; Gilbert, D A; Liu Kai; Milošević, M V

    2013-01-01

    The dynamics of the pinned vortex, antivortex and interstitial vortex have been studied in superconducting/magnetic hybrids consisting of arrays of Co/Pd multilayer nanodots embedded in Nb films. The magnetic nanodots show out-of-plane magnetization at the remanent state. This magnetic state allows for superconducting vortex lattices of different types in an applied homogeneous magnetic field. We experimentally and theoretically show three such lattices: (i) a lattice containing only antivortices; (ii) a vortex lattice entirely pinned on the dots; and (iii) a vortex lattice with pinned and interstitial vortices. Between the flux creep (low vortex velocity) and the free flux flow (high vortex velocity) regimes the interaction between the magnetic array and the vortex lattice governs the vortex dynamics, which in turn enables distinguishing experimentally the type of vortex lattice which governs the dissipation. We show that the vortex lattice with interstitial vortices has the highest onset velocity where the lattice becomes ordered, whereas the pinned vortex lattice has the smallest onset velocity. Further, for this system, we directly estimate that the external force needed to depin vortices is 60% larger than the one needed to depin antivortices; therefore we are able to decouple the antivortex–vortex motion. (paper)

  13. Calculation of electronic stopping power along glancing swift heavy ion tracks in perovskites using ab initio electron density data

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, O; Duvenbeck, A; Akcoeltekin, E; Meyer, R; Schleberger, M [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany); Lebius, H [CIMAP, blvd Henri Becquerel, 14070 Caen (France)], E-mail: marika.schleberger@uni-due.de

    2008-08-06

    In recent experiments the irradiation of insulators of perovskite type with swift (E{approx}100 MeV) heavy ions under glancing incidence has been shown to provide a unique means to generate periodically arranged nanodots at the surface. The physical origin of these patterns has been suggested as stemming from a highly anisotropic electron density distribution within the bulk. In order to show the relevance of the electron density distribution of the target we present a model calculation for the system Xe{sup 23+} {yields} SrTiO{sub 3} that is known to produce the aforementioned surface modifications. On the basis of the Lindhard model of electronic stopping, we employ highly-resolved ab initio electron density data to describe the conversion of kinetic energy into excitation energy along the ion track. The primary particle dynamics are obtained via integration of the Newtonian equations of motion that are governed by a space- and time-dependent frictional force originating from Lindhard stopping. The analysis of the local electronic stopping power along the ion track reveals a pronounced periodic structure. The periodicity length varies strongly with the particular choice of the polar angle of incidence and is directly correlated to the experimentally observed formation of periodic nanodots at insulator surfaces.

  14. Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications

    International Nuclear Information System (INIS)

    Agarwal, Pankaj B.; Kumar, A.; Saravanan, R.; Sharma, A.K.; Shekhar, Chandra

    2010-01-01

    Nano-arrays of bio-molecules have potential applications in many areas namely, bio-sensors, bio/molecular electronics and virus detection. Spot array, micro-contact printing and photolithography are used for micron size array fabrications while Dip-Pen Nanowriting (DPN) is employed for submicron/nano size arrays. We have fabricated nano-dots of 16-MHA (16-mercaptohexadecanoic acid) self-assembled monolayer (SAM) on gold substrate by DPN technique with different dwell time under varying relative humidity. These patterns were imaged in the same system in LFM (Lateral Force Microscopy) mode with fast scanning speed (5 Hz). The effect of humidity on size variation of nano-dots has been studied. During experiments, relative humidity (RH) was varied from 20% to 60%, while the temperature was kept constant ∼ 25 o C. The minimum measured diameter of the dot is ∼ 294 nm at RH = 20% for a dwell time of 2 s. The thickness of the 16-MHA dots, estimated in NanoRule image analysis software is ∼ 2 nm, which agrees well with the length of single MHA molecule (2.2 nm). The line profile has been used to estimate the size and thickness of dots. The obtained results will be useful in further development of nano-array based bio-sensors and bio-electronic devices.

  15. Scanning Auger microscopy for high lateral and depth elemental sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: eugenie.martinez@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Yadav, P. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouttemy, M. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Renault, O.; Borowik, Ł.; Bertin, F. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Etcheberry, A. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chabli, A. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •SAM performances and limitations are illustrated on real practical cases such as the analysis of nanowires and nanodots. •High spatial elemental resolution is shown with the analysis of reference semiconducting Al{sub 0.7}Ga{sub 0.3}As/GaAs multilayers. •High in-depth elemental resolution is also illustrated. Auger depth profiling with low energy ion beams allows revealing ultra-thin layers (∼1 nm). •Analysis of cross-sectional samples is another effective approach to obtain in-depth elemental information. -- Abstract: Scanning Auger microscopy is currently gaining interest for investigating nanostructures or thin multilayers stacks developed for nanotechnologies. New generation Auger nanoprobes combine high lateral (∼10 nm), energy (0.1%) and depth (∼2 nm) resolutions thus offering the possibility to analyze the elemental composition as well as the chemical state, at the nanometre scale. We report here on the performances and limitations on practical examples from nanotechnology research. The spatial elemental sensitivity is illustrated with the analysis of Al{sub 0.7}Ga{sub 0.3}As/GaAs heterostructures, Si nanowires and SiC nanodots. Regarding the elemental in-depth composition, two effective approaches are presented: low energy depth profiling to reveal ultra-thin layers (∼1 nm) and analysis of cross-sectional samples.

  16. Multifunctional Fe3O4/Au core/satellite nanocubes: an efficient chemical synthesis, characterization and functionalization of streptavidin protein.

    Science.gov (United States)

    Abbas, Mohamed; RamuluTorati, Sri; Kim, CheolGi

    2017-02-14

    A novel and efficient chemical approach for the synthesis of Fe 3 O 4 /Au core/satellite nanocubes is reported. In a one-pot reaction, metallic Au nanodots were successfully deposited on the polyvinylpyrrolidone (PVP) functionalized Fe 3 O 4 nanocube surface for the fabrication of a core/satellite structure (Fe 3 O 4 /Au) by the reduction of HAuCl 4 using ammonia. Transmission electron microscopy and energy dispersive spectroscopy mapping revealed that small Au nanodots of about 2 nm average size decorated the surface of Fe 3 O 4 nanocubes. X-ray diffraction data was used to confirm the formation of both the phases of a cubic inverse spinel structure for Fe 3 O 4 and a bcc structure for Au in the core/satellite structure of Fe 3 O 4 /Au nanocubes. The magnetic properties of the seed Fe 3 O 4 nanocubes and Fe 3 O 4 /Au core/satellite nanocubes were measured by using a superconducting quantum interference device at 300 K. For biological application purposes, the as-synthesized Fe 3 O 4 /Au core/satellite nanocubes were functionalized by cysteamine followed by successful immobilization of streptavidin protein as confirmed through the fluorescence confocal microscopy images.

  17. Scan Quality and Entrance Skin Dose in Thoracic CT: A Comparison between Bismuth Breast Shield and Posteriorly Centered Partial CT Scans

    International Nuclear Information System (INIS)

    Tappouni, Rafel; Mathers, Bradley

    2012-01-01

    Objectives. To compare the effectiveness of the bismuth breast shield and partial CT scan in reducing entrance skin dose and to evaluate the effect of the breast shield on image quality (IQ). Methods. Nanodots were placed on an adult anthropomorphic phantom. Standard chest CT, CT with shield, and partial CT were performed. Nanodot readings and effective doses were recorded. 50 patients with chest CTs obtained both with and without breast shields were reviewed. IQ was evaluated by two radiologists and by measuring Hounsfield units (HUs) and standard deviation (SD) of HU in anterior subcutaneous region. Results. Breast shield and the partial CT scans reduced radiation to the anterior chest by 38% and 16%, respectively. Partial CT increased dose to the posterior chest by 37% and effective dose by 8%. Change in IQ in shield CT was observed in the anterior chest wall. Significant change in IQ was observed in 5/50 cases. The shield caused an increase of 20 HU (P = 0.021) and a 1.86 reduction in SD of HU (P = 0.027) in the anterior compared to posterior subcutaneous regions. Summary. Bismuth breast shield is more effective than the partial CT in reducing entrance skin dose while maintaining image quality

  18. Multiple-valued logic design based on the multiple-peak BiCMOS-NDR circuits

    Directory of Open Access Journals (Sweden)

    Kwang-Jow Gan

    2016-06-01

    Full Text Available Three different multiple-valued logic (MVL designs using the multiple-peak negative-differential-resistance (NDR circuits are investigated. The basic NDR element, which is made of several Si-based metal-oxide-semiconductor field-effect-transistor (MOS and SiGe-based heterojunction-bipolar-transistor (HBT devices, can be implemented by using a standard BiCMOS process. These MVL circuits are designed based on the triggering-pulse control, saw-tooth input signal, and peak-control methods, respectively. However, there are some transient states existing between the multiple stable levels for the first two methods. These states might affect the circuit function in practical application. As a result, our proposed peak-control method for the MVL design can be used to overcome these transient states.

  19. The Multiple Control of Verbal Behavior

    Science.gov (United States)

    Michael, Jack; Palmer, David C.; Sundberg, Mark L.

    2011-01-01

    Amid the novel terms and original analyses in Skinner's "Verbal Behavior", the importance of his discussion of multiple control is easily missed, but multiple control of verbal responses is the rule rather than the exception. In this paper we summarize and illustrate Skinner's analysis of multiple control and introduce the terms "convergent…

  20. Multiplicity in Early Stellar Evolution

    Science.gov (United States)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.