WorldWideScience

Sample records for multiple emulsion technique

  1. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    Science.gov (United States)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  2. PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.

    Science.gov (United States)

    Cavallaro, Gennara; Craparo, Emanuela Fabiola; Sardo, Carla; Lamberti, Gaetano; Barba, Anna Angela; Dalmoro, Annalisa

    2015-11-30

    Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-polylactic acid (PHEA-PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with α tocopherol (vitamin E) adopted as lipophilic model molecule. Applying a protocol based on solvent evaporation from multiple emulsions assisted by ultrasonic energy and optimizing the emulsification process (solvent selection/separation stages), PHEA-PLA nanostructured particles with total α tocopherol entrapment efficiency (100%), were obtained. The drug release is expected to take place in lower times with respect to PLA due to the presence of the hydrophilic PHEA, therefore the produced nanoparticles can be used for semi-long term release drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Formulation and characterization of a multiple emulsion containing 1 ...

    African Journals Online (AJOL)

    The purpose of the study was to prepare a stable multiple emulsion containing a skin anti-aging agent and using paraffin oil. Vitamin C, was incorporated into the inner aqueous phase of water-in-oil-in-water (w/o/w) multiple emulsion at a concentration of 1%. Multiple emulsion was prepared by two step method. Stability ...

  4. Development of lamivudine containing multiple emulsions stabilized by gum odina

    Directory of Open Access Journals (Sweden)

    Aditya Kumar Jena

    2018-06-01

    Full Text Available In the current study, a multiple emulsion (W/O/W of lamivudine was developed using a new biopolymer, gum odina (GOd to increase bioavailability and patient compliances. GOd was employed to stabilize both the interfaces of liquid membrane in both the external and internal aqueous phases. The developed W/O/W multiple emulsion of lamivudine was characterized by analyzing droplet size, zeta potential, polydispersity index (PDI, sedimentation, viscosity, rheological properties, drug entrapment efficiency, in-vitro drug release and stability at various storage conditions. The results obtained were also compared with W/O/W multiple emulsion of lamivudine prepared using Tween 80 (a standard emulsion stabilizer. The drug entrapment efficiency of W/O/W multiple emulsion stabilized using GOd was measured as 91.60 ± 3.66% with sustained lamivudine release over a period of 6 h. Rheological and microscopic examinations indicated long term stability of the developed emulsion prepared using GOd. The results of the current study provide a promising scope to attain sustained drug release through the W/O/W multiple emulsions stabilized by GOd in antiviral therapies. Keywords: Gum odina, Lamivudine, Multiple emulsions

  5. Microfluidic production of multiple emulsions and functional microcapsules

    NARCIS (Netherlands)

    Lee, Tae Yong; Choi, Tae Min; Shim, Tae Soup; Frijns, Raoul A.M.; Kim, Shin Hyun

    2016-01-01

    Recent advances in microfluidics have enabled the controlled production of multiple-emulsion drops with onion-like topology. The multiple-emulsion drops possess an intrinsic core-shell geometry, which makes them useful as templates to create microcapsules with a solid membrane. High flexibility

  6. Concanavalin-A conjugated fine-multiple emulsion loaded with 6-mercaptopurine.

    Science.gov (United States)

    Khopade, A J; Jain, N K

    2000-01-01

    Fine-multiple (water-in-oil-in-water) emulsions were prepared by two-step emulsification using sonication. They were coated with concanavalin-A (Con-A) by three methods. The one involving covalent coupling of Con-A to the multiple emulsion incorporated anchor was better compared with lipid derivatized Con-A anchoring or the glutaraldehyde-based cross-linking method, as shown by the faster rate of dextran-induced aggregation. The selected multiple emulsions were characterized by physical properties such as droplet size, encapsulation efficiency, and zeta potential. Stability parameters such as droplet size, creaming, leakage, and aggregation as a function of relative turbidity were monitored over a 1-month period, which revealed good stability of the formulations. The release profile of 6-mercaptopurine followed zero-order kinetics. Pharmacokinetic studies showed an increase in half-life and bioavailability from multiple emulsion formulations administered intravenously. There was prolonged retention of drug in various tissues of rats when treated with Con-A-coated multiple emulsion as compared with uncoated one. Our study demonstrates the suitability of fine-multiple emulsion for intravenous administration and the potential for prolonged retention of drugs and targeting in biological systems.

  7. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    Energy Technology Data Exchange (ETDEWEB)

    Akbaba, Hasan; Karagöz, Uğur [Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 35100 Izmir (Turkey); Selamet, Yusuf [Izmir Institute of Technology, Faculty of Science, Department of Physics, 35433 Izmir (Turkey); Kantarcı, A. Gülten, E-mail: gulten.kantarci@ege.edu.tr [Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 35100 Izmir (Turkey)

    2017-03-15

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15–17 emu g{sup −1} for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting. - Highlights: • A novel iron oxide nanoparticle synthesis method with in-situ surface coating. • Combining advantages of microemulsions and multiple emulsion methods. • Multiple emulsions were used as microreactors for magnetic nanoparticle synthesis. • Superparamagnetic iron oxide particles synthesized in the core of cationic lipids. • Possible delivery systems for nucleic acids, oil soluble compounds or drugs.

  8. Study on short-lived particles with emulsion techniques

    International Nuclear Information System (INIS)

    Prentis, D.D.

    1984-01-01

    Experiments on measuring the lifetimes are reviewed and the decay mechanisms for c-, b-quark, tau-lepton and charmed hadron are disclosed by means of emulsion chambers and hybride techniques (HT) of the emulsion-spectrometer type. The dominant development of hybride emulsion technique is traced beginning with the early experiments on measuring the lifetime of particles with emulsion (approximately 10 -13 s) and emulsion chambers. The layouts of arrangement of emulsions, counters and chambers are presented. Experiments on neutrino beams in the Fermilab and CERN using a foot bubble chamber and the Big European Bubble Chamber (BEBC) are briefly described. HT experiments with a muon beam and neutrino beams in the Fermilab, with a photon beam in CERN with the use of the modified Omega are considered in detail. The results on measuring the lifetimes of the particles investigated are presented. The lengths of decay tracks, hypothetical decays, fitted masses, leVels of permissible limit of kinematic analysis, pulses of charmed baryons and intrinsic lifetimes of candidates for decay Λsub(c)sup(+), D +- , D 0 , F + - mesons are tabulated. The maximum likelihood method has been applied to determine the lifetimes from complete data on decays. It is noted that new developments in the field of semiconductor detectors and automation of emulsion measurements can extend possibilities of HT for investigation of both charmed

  9. Egg white powder-stabilised multiple (water-in-olive oil-in-water) emulsions as beef fat replacers in model system meat emulsions.

    Science.gov (United States)

    Öztürk, Burcu; Urgu, Müge; Serdaroğlu, Meltem

    2017-05-01

    Today, multiple emulsions are believed to have a considerable application potential in food industry. We aimed to investigate physical, chemical and textural quality characteristics of model system meat emulsions (MSME) in which beef fat (C) was totally replaced by 10% (E-10), 20% (E-20) or 30% (E-30) multiple emulsions (W 1 /O/W 2 ) prepared with olive oil and egg white powder (EWP). Incorporation of W 1 /O/W 2 emulsion resulted in reduced fat (from 11.54% to 4.01%), increased protein content (from 13.66% to 14.74%), and modified fatty acid composition, significantly increasing mono- and polyunsaturated fatty acid content and decreasing saturated fatty acid content. E-20 and E-30 samples had lower jelly and fat separation (5.77% and 5.25%) compared to C and E-10 (9.67% and 8.55%). W 1 /O/W 2 emulsion treatments had higher water-holding capacity (93.96-94.35%) than C samples (91.84%), and also showed the desired storage stability over time. Emulsion stability results showed that E-20 and E-30 samples had lower total expressible fluid (14.05% and 14.53%) and lower total expressible fat (5.06% and 5.33%) compared to C samples (19.13% and 6.09%). Increased concentrations of W 1 /O/W 2 emulsions led to alterations in colour and texture parameters. TBA values of samples were lower in W 1 /O/W 2 emulsion treatments than control treatment during 60 days of storage. Our results indicated that multiple emulsions prepared with olive oil and EWP had promising impacts on reducing fat, modifying the lipid composition and developing both technologically and oxidatively stable meat systems. These are the first findings concerning beef matrix fat replacement with multiple emulsions stabilised by EWP. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Mixing Time, Inversion and Multiple Emulsion Formation in a Limonene and Water Pickering Emulsion

    Directory of Open Access Journals (Sweden)

    Laura Sawiak

    2018-05-01

    Full Text Available It has previously been demonstrated that particle-stabilized emulsions comprised of limonene, water and fumed silica particles exhibit complex emulsification behavior as a function of composition and the duration of the emulsification step. Most notably the system can invert from being oil-continuous to being water-continuous under prolonged mixing. Here we investigate this phenomenon experimentally for the regime where water is the majority liquid. We prepare samples using a range of different emulsification times and we examine the final properties in bulk and via confocal microscopy. We use the images to quantitatively track the sizes of droplets and clusters of particles. We find that a dense emulsion of water droplets forms initially which is transformed, in time, into a water-in-oil-in-water multiple emulsion with concomitant changes in droplet and cluster sizes. In parallel we carry out rheological studies of water-in-limonene emulsions using different concentrations of fumed silica particles. We unite our observations to propose a mechanism for inversion based on the changes in flow properties and the availability of particles during emulsification.

  11. How the multiple antioxidant properties of ascorbic acid affect lipid oxidation in oil-in-water emulsions.

    Science.gov (United States)

    Uluata, Sibel; McClements, D Julian; Decker, Eric A

    2015-02-18

    Lipid oxidation is a serious problem for oil-containing food products because it negatively affects shelf life and nutritional composition. An antioxidant strategy commonly employed to prevent or delay oxidation in foods is to remove oxygen from the closed food-packaging system. An alternative technique is use of an edible oxygen scavenger to remove oxygen within the food. Ascorbic acid (AA) is a particularly promising antioxidant because of its natural label and multiple antioxidative functions. In this study, AA was tested as an oxygen scavenger in buffer and an oil-in-water (O/W) emulsion. The effects of transition metals on the ability of AA to scavenge oxygen were determined. Headspace oxygen decrease less than 1% in the medium-chain triacylglycerol (MCT) O/W emulsion system (pH 3 and 7). AA was able to almost completely remove dissolved oxygen (DO) in a buffered solution. Transition metals (Fe(2+) and Cu(+)) significantly accelerated the degradation of AA; however, iron and copper only increased DO depletion rates, by 10.6-16.4% from day 1 to 7, compared to the control. AA (2.5-20 mM) decreased DO in a 1% O/W emulsion system 32.0-64.0% and delayed the formation of headspace hexanal in the emulsion from 7 to over 20 days. This research shows that, when AA is used in an O/W emulsion system, oxidation of the emulsion system can be delay by multiple mechanisms.

  12. Efficiency and protective effect of encapsulation of milk immunoglobulin G in multiple emulsion.

    Science.gov (United States)

    Chen, C C; Tu, Y Y; Chang, H M

    1999-02-01

    Milk immunoglobulin G (IgG), separated with protein G affinity chromatography, and IgG in colostral whey were encapsulated by 0.5% (w/v) of Tween 80, sucrose stearate, or soy protein, which were used as secondary emulsifiers in the water in oil in water type multiple emulsion. The residual contents of separated IgG and IgG in colostral whey, ranging from 58.7 to 49.7% and from 13.2 to 21.3%, respectively, in the inner water phase (water phase surrounded by oil phase) with emulsifiers were determined by ELISA. However, the emulsion stability decreased after 24 h, and the residual IgG content in the inner water phase was lowered. Encapsulation of IgG in the multiple emulsion increased the stability of separated IgG against acid (pH 2.0) and alkali (pH 12.0) by 21-56% and 33-62%, respectively, depending on the emulsifier used. Moreover, multiple emulsion also provided a remarkable protective effect on separated IgG stability against proteases. The residual contents of separated IgG in multiple emulsion, using Tween 80 as secondary emulsifier, incubated for 2 h with pepsin (pH 2.0) and trypsin and chymotrypsin (pH 7.6) (enzyme/substrate = 1/20) were 35.4, 72.5, and 82.3%, whereas those of separated IgG in enzyme solution were only 7.2, 33. 1, and 35.2%, respectively. However, the separated IgG loss during the preparation of multiple emulsion was almost 41-50%.

  13. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    Science.gov (United States)

    Akbaba, Hasan; Karagöz, Uğur; Selamet, Yusuf; Kantarcı, A. Gülten

    2017-03-01

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15-17 emu g-1 for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting.

  14. Influence of a multiple emulsion, liposomes and a microemulsion gel on sebum, skin hydration and TEWL.

    Science.gov (United States)

    Mahrhauser, D; Nagelreiter, C; Baierl, A; Skipiol, J; Valenta, C

    2015-04-01

    In this study, the influence of three cosmetically relevant, priorly characterized vehicles on skin hydration, sebum content and transepidermal water loss was investigated. The chosen vehicles included a liposomal pre-formulation, a multiple W/O/W emulsion and a microemulsion gel. The in vivo effects of these vehicles were demonstrated and compared among them. The stability of the prepared vehicles was determined visually, microscopically, rheologically by pH measurements and particle size. Interactions with skin were assessed by non-invasive biophysical techniques using the Corneometer(®), Aqua Flux(®) and Sebumeter, measuring skin hydration, TEWL and skin sebum content, respectively. All vehicles remained stable over an observation period of 6 weeks. The multiple emulsion increased sebum content and skin hydration. In case of the liposomes, each monitored parameter remained almost constant. In contrast, the microemulsion gel lowered skin hydration and increased TEWL values, but even 1 week after termination of the treatment TEWL decreased almost close to control levels. All produced vehicles were proven to remain physically stable over the duration of this study. The used multiple emulsion showed very skin-friendly properties by increasing sebum and skin hydration. Likewise, the liposomal pre-formulation exhibited no negative effects. On the contrary, the investigated microemulsion gel seemed to have skin dehydrating and TEWL increasing features. However, the multiple emulsion as well as liposomes was identified to be well-tolerated vehicles for skin which might qualify them for the use in cosmetic formulations. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Formulation and characterization of a multiple emulsion containing 1% L-ascorbic acid

    Directory of Open Access Journals (Sweden)

    Naveed Akhtar

    2010-04-01

    Full Text Available The purpose of the study was to prepare a stable multiple emulsion containing a skin anti-aging agent and using paraffin oil. Vitamin C, was incorporated into the inner aqueous phase of water-in-oil-in-water (w/o/w multiple emulsion at a concentration of 1%. Multiple emulsion was prepared by two step method. Stability studies were performed at different accelerated conditions, i.e. 8 oC (in refrigerator, 25 oC (in oven, 40 oC (in oven, and 40 oC at 75% RH (in stability cabin for 28 days to predict the stability of formulations. Different parameters, namely pH, globule size, electrical conductivity and effect of centrifugation (simulating gravity were determined during stability studies. Data obtained was evaluated statistically using ANOVA two way analyses and LSD tests. Multiple emulsion formulated was found to be stable at lower temperatures (i.e. 8 and 25 oC for 28 days. No phase separation was observed in the samples during stability testing. It was found that there was no significant change (p > 0.05 in globule sizes in most of the samples kept at various conditions. Insignificant changes (p > 0.05 in both pH and conductivity values were determined for the samples kept at 8, 40, and 40 oC at 75% RH, throughout the study period. Further studies are needed to formulate more stable emulsions with other emulsifying agents.

  16. Fabrication, physicochemical characterization and preliminary efficacy evaluation of a W/O/W multiple emulsion loaded with 5% green tea extract

    Directory of Open Access Journals (Sweden)

    Tariq Mahmood

    2013-06-01

    Full Text Available Complex multiple emulsions have an excellent ability to fill large volumes of functional cosmetic agents. This study was aimed to encapsulate large volume of green tea in classical multiple emulsion and to compare its stability with a multiple emulsion without green tea extract. Multiple emulsions were developed using Cetyl dimethicone copolyol as lipophilic emulsifier and classic polysorbate-80 as hydrophilic emulsifier. Multiple emulsions were evaluated for various physicochemical aspects like conductivity, pH, microscopic analysis, rheology and these characteristics were followed for a period of 30 days in different storage conditions. In vitro and in vivo skin protection tests were also performed for both kinds of multiple emulsions i.e. with active (MeA and without active (MeB. Both formulations showed comparable characteristics regarding various physicochemical characteristics in different storage conditions. Rheological analysis showed that formulations showed pseudo plastic behavior upon continuous shear stress. Results of in vitro and in vivo skin protection data have revealed that the active formulation has comparable skin protection effects to that of control formulation. It was presumed that stable multiple emulsions could be a promising choice for topical application of green tea but multiple emulsions presented in this study need improvement in the formula, concluded on the basis of pH, conductivity and apparent viscosity data.

  17. Rheological and droplet size analysis of W/O/W multiple emulsions containing low concentrations of polymeric emulsifiers

    Directory of Open Access Journals (Sweden)

    DRAGANA D. VASILJEVIĆ

    2009-07-01

    Full Text Available Multiple emulsions are complex dispersion systems which have many potential applications in pharmaceutics, cosmetics and the food industry. In practice, however, significant problems may arise because of their thermodynamic instability. In this study, W/O/W multiple emulsion systems containing low concentration levels of lipophilic polymeric primary emulsifiers cetyl dimethicone copolyol and PEG–30 dipolyhydroxystearate were evaluated. The concentrations of the primary emulsifiers were set at 1.6 and 2.4 % w/w in the final emulsions. Rheological and droplet size analysis of the investigated samples showed that the type and concentration of the primary lipophilic polymeric emulsifier markedly affected the characteristics of the multiple emulsions. The multiple emulsion prepared with 2.4 % w/w PEG–30 dipolyhydroxystearate as the primary emulsifier exhibited the highest apparent viscosity, yield stress and elastic modulus values, as well as the smallest droplet size. Furthermore, these parameters remained relatively constant over the study period, confirming the high stability of the investigated sample. The results obtained indicate that the changes observed in the investigated samples over time could be attributed to the swelling/breakdown mechanism of the multiple droplets. Such changes could be adequately monitored by rheological and droplet size analysis.

  18. Automated track recognition and event reconstruction in nuclear emulsion

    International Nuclear Information System (INIS)

    Deines-Jones, P.; Aranas, A.; Cherry, M.L.; Dugas, J.; Kudzia, D.; Nilsen, B.S.; Sengupta, K.; Waddington, C.J.; Wefel, J.P.; Wilczynska, B.; Wilczynski, H.; Wosiek, B.

    1997-01-01

    The major advantages of nuclear emulsion for detecting charged particles are its submicron position resolution and sensitivity to minimum ionizing particles. These must be balanced, however, against the difficult manual microscope measurement by skilled observers required for the analysis. We have developed an automated system to acquire and analyze the microscope images from emulsion chambers. Each emulsion plate is analyzed independently, allowing coincidence techniques to be used in order to reject background and estimate error rates. The system has been used to analyze a sample of high-multiplicity Pb-Pb interactions (charged particle multiplicities ∝ 1100) produced by the 158 GeV/c per nucleon 208 Pb beam at CERN. Automatically measured events agree with our best manual measurements on 97% of all the tracks. We describe the image analysis and track reconstruction techniques, and discuss the measurement and reconstruction uncertainties. (orig.)

  19. Effect of gelation of inner dispersed phase on stability of (w1/o/w2) multiple emulsions

    NARCIS (Netherlands)

    Oppermann, A.K.L.; Renssen, M.; Schuch, A.; Stieger, M.A.; Scholten, E.

    2015-01-01

    The use of water-in-oil-in-water (w1/o/w2) multiple emulsions offers a method for the reduction of oil in foods. In this study we investigated the influence of osmotic pressure tailoring and gelation of the inner dispersed w1 water droplets on the stability and yield of multiple emulsions. Yield is

  20. Time stamp technique using a nuclear emulsion multi-stage shifter for gamma-ray telescope

    International Nuclear Information System (INIS)

    Takahashi, Satoru; Aoki, Shigeki; Rokujo, Hiroki; Hamada, Kaname; Komatsu, Masahiro; Morishima, Kunihiro; Nakamura, Mitsuhiro; Nakano, Toshiyuki; Niwa, Kimio; Sato, Osamu; Yoshioka, Teppei; Kodama, Koichi

    2010-01-01

    Nuclear emulsion has a potential use as a gamma-ray telescope with high angular resolution. For this application it is necessary to know the time when each track was recorded in the emulsion. In previous experiments using nuclear emulsion, various efforts were used to associate time to nuclear emulsion tracks and to improve the time resolution. Using a high speed readout system for nuclear emulsion together with a clock-based multi-stage emulsion shifter, we invented a technique to give a time-stamp to emulsion tracks and greatly improve the time resolution. A test experiment with a 2-stage shifter was used to demonstrate the principle of multi-stage shifting, and we achieved a time resolution 1.5 s for 12.1 h (about 1 part in 29 000) with the time stamp reliability 97% and the time stamp efficiency 98%. This multi-stage shifter can achieve the time resolution required for a gamma-ray telescope and can also be applied to another cosmic ray observations and accelerator experiments using nuclear emulsion.

  1. Particle multiplicity distributions in silicon-emulsion collisions at 4.5A GeV/c

    International Nuclear Information System (INIS)

    Liu Fuhu; Abd Allah, Nabil N.; Zhang Donghai; Duan Maiying

    2003-01-01

    The experimental results of particle multiplicity distributions in silicon-emulsion collisions at 4.5A GeV/c (the Dubna synchrophasotron momentum) are reported. The correlations between the multiplicities of target fragments are given. The saturation effect of target black fragment multiplicity in the collisions is observed

  2. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang; Zhang, Jiaming; Thoroddsen, Sigurdur T

    2013-01-01

    of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions

  3. Creating nanoscale emulsions using condensation.

    Science.gov (United States)

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  4. Oil encapsulation in core-shell alginate capsules by inverse gelation II: comparison between dripping techniques using W/O or O/W emulsions.

    Science.gov (United States)

    Martins, Evandro; Poncelet, Denis; Rodrigues, Ramila Cristiane; Renard, Denis

    2017-09-01

    In the first part of this article, it was described an innovative method of oil encapsulation from dripping-inverse gelation using water-in-oil (W/O) emulsions. It was noticed that the method of oil encapsulation was quite different depending on the emulsion type (W/O or oil-in-water (O/W)) used and that the emulsion structure (W/O or O/W) had a high impact on the dripping technique and the capsules characteristics. The objective of this article was to elucidate the differences between the dripping techniques using both emulsions and compare the capsule properties (mechanical resistance and release of actives). The oil encapsulation using O/W emulsions was easier to perform and did not require the use of emulsion destabilisers. However, capsules produced from W/O emulsions were more resistant to compression and showed the slower release of actives over time. The findings detailed here widened the knowledge of the inverse gelation and gave opportunities to develop new techniques of oil encapsulation.

  5. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang

    2013-12-16

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions. © 2014 IOP Publishing Ltd.

  6. Naproxen-imprinted xerogels in the micro- and nanospherical formsby emulsion technique.

    Science.gov (United States)

    Ornelas, Mariana; Azenha, Manuel; Pereira, Carlos; Silva, A Fernando

    2015-11-27

    Naproxen-imprinted xerogels in the microspherical and nanospherical forms were prepared by W/O emulsion and microemulsion, respectively. The work evolved from a sol–gel mixture previously reported for bulk synthesis. It was relatively simple to convert the original sol–gel mixture to one amenable to emulsion technique. The microspheres thus produced presented mean diameter of 3.7 μm, surface area ranging 220–340 m2/g, selectivity factor 4.3 (against ibuprofen) and imprinting factor 61. A superior capacity (9.4 μmol/g) was found, when comparing with imprints obtained from similar pre-gelification mixtures. However, slow mass transfer kinetics was deduced from column efficiency results. Concerning the nanospherical format, which constituted the first example of the production of molecularly imprinted xerogels in that format by microemulsion technique, adapting the sol–gel mixture was troublesome. In the end, nanoparticles with diameter in the order of 10 nm were finally obtained, exhibiting good indications of an efficient molecular imprinting process. Future refinements are necessary to solve serious aggregation issues, before moving to more accurate characterization of the binding characteristics or to real applications of the nanospheres.

  7. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    Directory of Open Access Journals (Sweden)

    Phaechamud T

    2016-06-01

    Full Text Available Thawatchai Phaechamud,1 Sarun Tuntarawongsa2 1Department of Pharmaceutical Technology, 2Pharmaceutical Intelligence Unit Prachote Plengwittaya, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand Abstract: Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. Keywords

  8. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    Science.gov (United States)

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  9. Nanocrystalline cellulose-dispersed AKD emulsion for enhancing the mechanical and multiple barrier properties of surface-sized paper.

    Science.gov (United States)

    Yang, Luming; Lu, Sheng; Li, Juanjuan; Zhang, Fengshan; Cha, Ruitao

    2016-01-20

    In this study, we employed nanocrystalline cellulose (NCC) as an efficient dispersant to perpare alkyl ketene dimer (AKD) emulsion. The particle size and zeta potential of AKD/NCC emulsion were measured, which were approximately 5 μm and -50 mV, respectively. The surface-sized paper possessed multiple barriers properties. The air permeability of surface-sized paper was 0.29 μm/Pas and the sizing degree reached 42 s when the amount of sizing was 12.58 g/m(2) with a 96.83% decrease and a 40.00%, increase, respectively. Furthermore, the mechanical properties were optimal when the amount of sizing was about 8 g/m(2). AKD/NCC emulsion acted as a good reinforcing agent in surface-sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Influence of Emulsion Polymerization Techniques to Particle Size of Copoly(styrene/butyl acrylate/methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Tresye Utari

    2008-04-01

    Full Text Available In the majority of applications, particle size and particle size distribution are highly significant factors that determine the properties of a polymer dispersion, such as its flow behavior or its stability. For example, a coating material with small particle size will give smooth coating result, good adhesive strength, good water resistance and latex stability. This article describes influence of various emulsion polymerization techniques to particle size of copoly(styrene/butyl acrylate/methyl methacrylate with mix surfactant SDBS linear chain and nonyl fenol (EO10 and initiator ammonium persulphate. DSC data, solid content and IR spectrum showed that copoly(styrene/butyl acrylate/methyl methacrylate was produced. Batch emulsion polymerization technique gave the highest particle size i.e. 615 nm and also the highest % conversion of monomer i.e. 97%. The more concentration of monomer was seeded to initial charge gave greater particle size and greater poly dispersity index.

  11. Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions.

    Science.gov (United States)

    Abate, Adam R; Weitz, David A

    2011-03-16

    We present a simple method for creating monodisperse emulsions with microfluidic devices. Unlike conventional approaches that require bulky pumps, control computers, and expertise with device physics to operate devices, our method requires only the microfluidic device and a hand-operated syringe. The fluids needed for the emulsion are loaded into the device inlets, while the syringe is used to create a vacuum at the device outlet; this sucks the fluids through the channels, generating the drops. By controlling the hydrodynamic resistances of the channels using hydrodynamic resistors and valves, we are able to control the properties of the drops. This provides a simple and highly portable method for creating monodisperse emulsions.

  12. Chemistry and technology of emulsion polymerisation

    NARCIS (Netherlands)

    Herk, van A.M.

    2005-01-01

    Emulsion polymerisation produces high value polymers in a low cost, environmentally friendly process. The drive to develop environmentally benign production methods for polymers has resulted in widespread development and implementation of the emulsion polymerisation technique. In addition, when

  13. Scaling in multiplicity distributions of heavy, black and grey prongs in nuclear emulsions

    International Nuclear Information System (INIS)

    Nieminen, M.; Torsti, J.J.; Valtonen, E.

    1979-01-01

    The validity of Koba-Nielsen-Olesen scaling hypothesis was examined in the case of heavy, black, and grey prongs in proton-emulsion collisions ('heavy' means 'either black or grey'). The average multiplicities of these prongs were computed in the region 0.1-400 GeV for the nuclei C, N, O, S, Br, Ag, and I. After the inclusion of the energy-dependent excitation probability of the nuclei of the form P* = b 0 + b 1 ln E 0 into the model, experimental multiplicity distributions in the energy region 6-300 GeV agreed satisfactorily with the scaling hypothesis. The ratio of the dispersion D (D = √ 2 >- 2 ) to the average multiplicity in the scaling functions of heavy, balck, and grey prongs was estimated to be 0.86, 0.84, and 1.04, respectively, in the high energy region. (Auth.)

  14. Comparative study of DNA encapsulation into PLGA microparticles using modified double emulsion methods and spray drying techniques.

    Science.gov (United States)

    Oster, C G; Kissel, T

    2005-05-01

    Recently, several research groups have shown the potential of microencapsulated DNA as adjuvant for DNA immunization and in tissue engineering approaches. Among techniques generally used for microencapsulation of hydrophilic drug substances into hydrophobic polymers, modified WOW double emulsion method and spray drying of water-in-oil dispersions take a prominent position. The key parameters for optimized microspheres are particle size, encapsulation efficiency, continuous DNA release and stabilization of DNA against enzymatic and mechanical degradation. This study investigates the possibility to encapsulate DNA avoiding shear forces which readily degrade DNA during this microencapsulation. DNA microparticles were prepared with polyethylenimine (PEI) as a complexation agent for DNA. Polycations are capable of stabilizing DNA against enzymatic, as well as mechanical degradation. Further, complexation was hypothesized to facilitate the encapsulation by reducing the size of the macromolecule. This study additionally evaluated the possibility of encapsulating lyophilized DNA and lyophilized DNA/PEI complexes. For this purpose, the spray drying and double emulsion techniques were compared. The size of the microparticles was characterized by laser diffractometry and the particles were visualized by scanning electron microscopy (SEM). DNA encapsulation efficiencies were investigated photometrically after complete hydrolysis of the particles. Finally, the DNA release characteristics from the particles were studied. Particles with a size of <10 microm which represent the threshold for phagocytic uptake could be prepared with these techniques. The encapsulation efficiency ranged from 100-35% for low theoretical DNA loadings. DNA complexation with PEI 25?kDa prior to the encapsulation process reduced the initial burst release of DNA for all techniques used. Spray-dried particles without PEI exhibited high burst releases, whereas double emulsion techniques showed continuous

  15. Nuclear emulsion and high-energy physics

    International Nuclear Information System (INIS)

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  16. Photographic emulsion versus bubble chambers in charm and beauty searches

    International Nuclear Information System (INIS)

    Sacton, J.

    1984-01-01

    This chapter discusses the use of visual detectors in the search for charm and other flavors. The photographic emulsion and the bubble chamber techniques are compared. The main difficulties encounted in searching for charmed and beautiful hadrons are related to the short lifetimes of these particles and to their small production cross-sections, even at SPS energies. Resolution, visibility, the data analysis rate, and exposure time are considered. Most of the charmed hadrons present a large variety of decay modes of which only a fraction has been identified to date. First results from CESR indicate that the average charged particle multiplicity in the hadronic decay of beautiful hadrons is as high as 6.31 + or - 0.35; no B meson decay has yet been kinematically reconstructed. The case of hadronic charmed particle production at SPS energies is examined. The data show that 1) the bubble chamber technique (high resolution or holographic optics) is well suited to the study of charmed hadrons with lifetimes in the range 10 -13 to 10 -12 s; 2) searches for beautiful hadrons remain presently a domain for triggered emulsion experiments due to the smallness of the production cross-sections (provided the lifetime is not much shorter than 10 -14 s); and 3) for particles of lifetimes shorter than a few times 10 -14 s the emulsion technique is still without competitor

  17. An Overview of Food Emulsions: Description, Classification and Recent Potential Applications

    Directory of Open Access Journals (Sweden)

    Meltem Serdaroğlu

    2015-03-01

    Full Text Available Emulsions take place partially or completely in the structures of many natural and processed foods or some foods are already emulsified in certain stages of production. In general “emulsion” is described as a structure created through the dispersion of one of two immiscible liquids within the other one in form of little droplets. Many terms are available to describe different emulsion types and it is very important to define and clarify these terms like “macro emulsion”, “nanoemulsion” and “multiple emulsion”. Nanoemulsions become increasingly important in food industry as an innovative approach in carrying functional agents. Application potential of multiple emulsions (W/O/W is also stated to be very high in food industry. The two main strategic purposes of utilization of multiple emulsions in food applications are to encapsulate various aromas, bioactive compounds or sensitive food compounds and to allow the production of the low-fat products. This review provides an overview to the general terms of emulsion types, the role of various emulsifying agents, and the application potential of emulsions in food industry.

  18. Influence Of Initiator Types And Emulsion Polymerization Techniques To Particle Size Of Copolymerization Styrene-Butyl Acrylate-Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Ariyanti Sarwono

    2008-11-01

    Full Text Available Influence of initiator types and emulsion polymerization techniques to particle size of copolymerization styrene-butyl acrylate-methyl methacrylate. Copoly(styrene/butyl acrylic/methyl methacrylic was prepared by emulsion polymerization method. This paper describes effect of insiator types i.e. ammonium persulfate (APS, hydrogen peroxide, ters-butyl peroxide (TBHP, initiator redox (H2O2/ascorbic acid and polymerization techniques i.e. batch and semicontinue to particle size distribution of copoly(styrene/butyl acrylic/methyl methacrylic. Initiator TBHP and H2O2 could not initiate copolymerization properly, but initiator APS and redox initiate copolymerization with batch and semi continue techniques could well perform. The higher concentration of APS, the greater particle size of the copolymer, but the copolymer is polymodal. Initiator redox (H2O2/ascorbic acid produced greater particle size than initiator redox (ascorbic acid/ H2O2.

  19. British patent 580,504 and Ilford nuclear emulsions

    International Nuclear Information System (INIS)

    Waller, C.

    1988-01-01

    By a new technique disclosed in British Patent 580,504, gelatin with silver halide is precipitated from emulsion by adding a surface active agent. This technique was used from 1945 to produce emulsions with about eight times the normal ratio of silver halide to gelatin. The technique also facilitated the combined use of production and laboratory resources for their reliable manufacture on a fairly large scale. (author)

  20. Effects of spray-drying on w/o/w multiple emulsions prepared from a stearic acid matrix

    Directory of Open Access Journals (Sweden)

    Mlalila N

    2014-12-01

    Full Text Available Nichrous Mlalila,1 Hulda Swai,2 Lonji Kalombo,2 Askwar Hilonga3 1School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania; 2Materials Science and Manufacturing, Council for Scientific and Industrial Research, Pretoria, South Africa; 3Department of Materials Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania Abstract: The goal of this study was to explore the effects of spray-drying on w/o/w double emulsions of methyltestosterone (MT loaded in a stearic acid matrix. MT-loaded nanoparticles were formulated by a water-in-oil-in-water emulsion technique using 50, 75, and 100 mg of stearic acid, 2% and 3% w/v polyvinyl alcohol, 5% w/v lactose, and 0.2% w/v chitosan. The emulsions were immediately spray-dried based on an optimized model of inlet temperature and pump rate, and characterized for optimized responses with regard to particle size, polydispersity index, and zeta potential, for both emulsion and powder samples. Dynamic light scattering analysis shown that the nanoparticles increased in size with increasing concentrations of polyvinyl alcohol and stearic acid. Scanning electron microscopy indicated that the MT-loaded nanoparticles were spherical in shape, had a smooth surface, and were in an amorphous state, which was confirmed by differential scanning calorimetry. These MT-loaded nanoparticles are a promising candidate carrier for the delivery of MT; however, further studies are needed in order to establish the stability of the system and the cargo release profile under normal conditions of use. Keywords: double emulsions, nanoparticles, pump rate, spray-drying, testosterone

  1. Emulsification technique affects oxidative stability of fish oil-in-water emulsion

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jensen, Louise Helene Søgaard

    of this study was therefore to compare lipid oxidation in 10% fish oil-in-water emulsions prepared by two different kinds of high pressure homogenizers i.e. a microfluidizer and a two valve high pressure homogenizer. Emulsions were made with equal droplet sizes, and with either 1% sodium caseinate or 1% whey...

  2. Emulsification technique affects oxidative stability of fish oil-in-water emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jensen, Louise Helene Søgaard

    of this study was to compare lipid oxidation in 10% fish oil-in-water emulsions prepared by two different kinds of high pressure homogenizers i.e. a microfluidizer and a two valve high pressure homogenizer. Emulsions were made with equal droplet sizes, and with either 1% sodium caseinate or 1% whey protein...

  3. Fine grained nuclear emulsion for higher resolution tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Naka, T., E-mail: naka@flab.phys.nagoya-u.ac.jp [Institute of Advanced Research, Nagoya University, Nagoya (Japan); Asada, T.; Katsuragawa, T.; Hakamata, K.; Yoshimoto, M.; Kuwabara, K.; Nakamura, M.; Sato, O.; Nakano, T. [Graduated School of Science, Nagoya University, Nagoya (Japan); Tawara, Y. [Division of Energy Science, EcoTopia Science Institute, Nagoya University, Nagoya (Japan); De Lellis, G. [INFN Sezione di Napoli, Napoli (Italy); Sirignano, C. [INFN Sezione di Padova, Padova (Italy); D' Ambrossio, N. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (L' Aquila) (Italy)

    2013-08-01

    Fine grained nuclear emulsion with several 10 nm silver halide crystals can detect submicron tracks. This detector is expected to be worked as dark matter detector with directional sensitive. Now, nuclear emulsion became possible to be produced at Nagoya University, and extreme fine grained nuclear emulsion with 20 nm diameter was produced. Using this emulsion and new reading out technique with expansion technique, for optical selection and X-ray microscopy, recoiled tracks induced by dark matter can be detected automatically. Then, readout efficiency is larger than 80% at 120 nm, and angular resolution for final confirmation with X-ray microscopy is 20°. In addition, we started to construct the R and D underground facility in Gran Sasso.

  4. Lithium aluminate spheroids prepared by emulsion procedure

    International Nuclear Information System (INIS)

    Mateos, A.G.; DiBello, P.M.; Zaleski, A.B.

    1991-01-01

    Lithium aluminate powders were prepared by emulsion evaporation method. The procedure involved preparation of water-in-oil emulsion, with the aqueous phase being a solution of Li and Al nitrates. The mixed salts precursor crystallized to gamma-LiAlO 2 at 700C. Single phase LiAlO 2 occurred as μm spherical particles with average crystallite size of 81 angstrom and surface area of 14 M 2 /g. After prolonged heating at 900C, the aluminate powder crystallite size grew by 5 times with a reduction in particle porosity. The emulsion technique promotes close control of particle size and shape of product and the technique facilitates chemical reaction of constituents and sinterability of resulting product

  5. Recent applications of nuclear track emulsion technique

    Energy Technology Data Exchange (ETDEWEB)

    Zarubin, P. I., E-mail: zarubin@lhe.jinr.ru [Joint Institute for Nuclear Research, Veksler and Baldin Laboratory of High Energy Physics (Russian Federation)

    2016-12-15

    A survey of recent results obtained using the nuclear track emulsion (NTE) technique in low energy applications is given. NTE irradiation with 60 MeV {sup 8}He nuclei provides identification of their decays at stopping, evaluation of the possibility of α range spectrometry, and observation of drift of thermalized {sup 8}He atoms. Correlations of α particles studied in {sup 12}C → 3α splitting induced by 14.1 MeV neutrons indicate the presence of a superposition of 0{sup +} and 2{sup +} states of the {sup 8}Be nucleus in the ground state of {sup 12}C. Angular correlations of fragments are studied in boron-enriched NTE, and the prospects of NTE application in radioactivity and nuclear fission research are discussed. It is proposed to use an automated microscope to search for collinear tripartition of heavy nuclei implanted in NTE. Surface irradiation of NTE by a {sup 252}Cf source is started. Planar events containing fragment pairs and long range α particles, as well as fragment triples, are studied. NTE samples are calibrated using Kr and Xe ions with an energy of 1.2 and 3 A MeV.

  6. Neutrino Interactions in a Hybrid Emulsion - Bubble Chamber Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbladt, Robert Ludwig [Univ. of Washington, Seattle, WA (United States)

    1981-05-01

    target consisting of 22 - 1 liter stacks of cryogenically sensitive nuclear emulsion has been exposed inside the 15 Foot Bubble Chamber to the Fermilab wide-band neutrino beam. A hybrid system of emulsion plus bubble chamber was used to find and analyze neutrino interactions with nuclei in the emulsion target. The average multiplicity of charged minimum ionization tracks of the 45 events was found to be 6.8 ± 0.5. The normalized multiplicity with respect to neutrino - proton interactions at the same average hadronic center of mass energy was found to be 1.3 ± 0.2. When compared to neutrino - proton interactions, the rapidity distribution shows a clear signal for intranuclear cascading in the target fragmentation region. Measured rapidity and multiplicity distributions are compared with predictions of the Growth of Longitudinal Distances Model of Nikolaev and the Coherent Tube Model.

  7. Integrated, Continuous Emulsion Creamer.

    Science.gov (United States)

    Cochrane, Wesley G; Hackler, Amber L; Cavett, Valerie J; Price, Alexander K; Paegel, Brian M

    2017-12-19

    Automated and reproducible sample handling is a key requirement for high-throughput compound screening and currently demands heavy reliance on expensive robotics in screening centers. Integrated droplet microfluidic screening processors are poised to replace robotic automation by miniaturizing biochemical reactions to the droplet scale. These processors must generate, incubate, and sort droplets for continuous droplet screening, passively handling millions of droplets with complete uniformity, especially during the key step of sample incubation. Here, we disclose an integrated microfluidic emulsion creamer that packs ("creams") assay droplets by draining away excess oil through microfabricated drain channels. The drained oil coflows with creamed emulsion and then reintroduces the oil to disperse the droplets at the circuit terminus for analysis. Creamed emulsion assay incubation time dispersion was 1.7%, 3-fold less than other reported incubators. The integrated, continuous emulsion creamer (ICEcreamer) was used to miniaturize and optimize measurements of various enzymatic activities (phosphodiesterase, kinase, bacterial translation) under multiple- and single-turnover conditions. Combining the ICEcreamer with current integrated microfluidic DNA-encoded library bead processors eliminates potentially cumbersome instrumentation engineering challenges and is compatible with assays of diverse target class activities commonly investigated in drug discovery.

  8. Emulsions from Aerosol Sprays

    Science.gov (United States)

    Hengelmolen; Vincent; Hassall

    1997-12-01

    An electrostatic emulsification apparatus has been designed for the purpose of studying diffusion from oil droplets which have a mean size in the range of approximately 1.5-3.5 &mgr;m, with standard deviations of 40-50%. The emulsification technique involves the collection of a spray of electrically charged oil droplets onto a rotating water film which is sustained from a reservoir. In this way, emulsions with volume fractions of approximately 10(-3) are produced within several minutes at oil flow rates of around 10(-2) ml min-1. Phase-Doppler anemometry (PDA) was used to assess droplet size distributions for the sprays and emulsions. Results show that the mean emulsion droplet size was smaller than the mean spray droplet size by several orders of magnitude. At flow rates around 10(-2) ml min-1, the spray droplet size distribution was little affected by the applied potential between about -4.20 and -4.65 kV (mean droplet size between approximately 7.6 and 7.8 &mgr;m, with standard deviations of approximately 20%), whereas the mean droplet size of the corresponding emulsion decreased more rapidly with applied potential. Above an applied potential of approximately -4.30 kV, which corresponded to an emulsion droplet size below approximately 2 &mgr;m, the measured volume fraction of the emulsion decreased with respect to the volume fraction as calculated on the basis of total amount of injected oil. Copyright 1997 Academic Press. Copyright 1997Academic Press

  9. Development of novel zein-sodium caseinate nanoparticle (ZP)-stabilized emulsion films for improved water barrier properties via emulsion/solvent evaporation.

    Science.gov (United States)

    Wang, Li-Juan; Yin, Ye-Chong; Yin, Shou-Wei; Yang, Xiao-Quan; Shi, Wei-Jian; Tang, Chuan-He; Wang, Jin-Mei

    2013-11-20

    This work attempted to develop novel high barrier zein/SC nanoparticle (ZP)-stabilized emulsion films through microfluidic emulsification (ZPE films) or in combination with solvent (ethyl acetate) evaporation techniques (ZPE-EA films). Some physical properties, including tensile and optical properties, water vapor permeability (WVP), and surface hydrophobicity, as well as the microstructure of ZP-stabilized emulsion films were evaluated and compared with SC emulsion (SCE) films. The emulsion/solvent evaporation approach reduced lipid droplets of ZP-stabilized emulsions, and lipid droplets of ZP-stabilized emulsions were similar to or slightly lower than that of SC emulsions. However, ZP- and SC-stabilized emulsion films exhibited a completely different microstructure, nanoscalar lipid droplets were homogeneously distributed in the ZPE film matrix and interpenetrating protein-oil complex networks occurred within ZPE-EA films, whereas SCE films presented a heterogeneous microstructure. The different stabilization mechanisms against creaming or coalescence during film formation accounted for the preceding discrepancy of the microstructures between ZP-and SC-stabilized emulsion films. Interestingly, ZP-stabilized emulsion films exhibited a better water barrier efficiency, and the WVP values were only 40-50% of SCE films. A schematic representation for the formation of ZP-stabilized emulsion films was proposed to relate the physical performance of the films with their microstructure and to elucidate the possible forming mechanism of the films.

  10. Emulsion Inks for 3D Printing of High Porosity Materials.

    Science.gov (United States)

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Charged particles multiplicity in interactions of 3.7 A GeV 28Si with light and heavy target nuclei in nuclear emulsions

    International Nuclear Information System (INIS)

    Singh, B.K.; Tuli, S.K.

    1998-01-01

    Results from measurement of multiplicity of different charged particles emitted from the interactions of 3.7 A GeV 28 Si with different target groups in nuclear emulsion and correlations among them are presented. The nature of the dependence of multiplicities of charged particles on the impact parameter is examined. Analysis of data in terms of specific multiplicity for different target groups is performed and the results are discussed in the light of superposition model. (author)

  12. The hypertriglyceridemic clamp technique. Studies using long-chain and structured triglyceride emulsions in healthy subjects.

    Science.gov (United States)

    Nordenström, Jörgen; Thörne, Anders; Aberg, Wiveca; Carneheim, Claes; Olivecrona, Thomas

    2006-11-01

    In a randomized crossover study, plasma kinetics of 2 different types of fat emulsions were studied in 8 healthy volunteers by using a hypertriglyceridemic clamp technique. The method involves the stabilization of serum triglyceride (TG) concentration during 180 minutes at a predetermined level (4 mmol/L) by adjustment of TG infusion rate by repeated online measurements of serum TG concentration. The fat emulsions under study were a long-chain fatty acid triglyceride (LCT) emulsion (Intralipid 20%, Fresenius Kabi, Sweden) and a structured triglyceride (STG) emulsion (Structolipid 20%, Fresenius Kabi) where medium- and long-chain fatty acids have been interesterified within a TG molecule. The hypertriglyceridemic clamp was found to have acceptable reproducibility when tested in 3 healthy individuals on 2 different occasions, as similar steady-state TG levels were obtained by infusing similar amounts of fat. The average (+/-SEM) TG concentration during the 180-minute clamp was similar for STGs and LCTs (4.0 +/- 0.1 vs 3.9 +/- 0.1 mmol/L; not significant), but the amount of fat that had to be infused was significantly higher during STG than during LCT clamping (0.31 +/- 0.04 vs 0.21 +/- 0.02 g TG per minute; P < .05). Higher serum levels of free fatty acids (1.80 +/- 0.13 vs 0.96 +/- 0.09 mmol/L; P < .05), free glycerol (1.30 +/- 0.07 vs 0.76 +/- 0.08 mmol/L; P < .001), and beta-OH butyrate (1.61 +/- 0.44 vs 1.17 +/- 0.23 mmol/L; not significant) were obtained at the end of the clamp during infusion of STGs compared with LCTs. During infusion of STGs the medium-chain fatty acids octanoic (C:8) and decanoic acid (C:10) constituted approximately half of circulating fatty acids that correspond to the compositional ratio of the emulsion. Plasma lipoprotein lipase (LPL) concentration was higher during STG than during LCT clamping (6.06 +/- 0.62 vs 3.15 +/- 0.40 mU/mL; P < .05), and there was a positive correlation between the mean LPL concentration and the amount of

  13. Charm studies in emulsion

    CERN Document Server

    Kalinin, Sergey

    Neutrino-nucleon scattering is an effective way to investigate the inner structure of the nucleon, to extract the Standard Model parameters and to explore heavy quarks production dynamics. In the last decades, several experiments have been constructed to study weak interactions of neutrinos with nucleons. One of them was CERN-WA95 experiment operated by the CHORUS collaboration. It is based on a hybrid detector with nuclear emulsion as a target followed by electronic devices. Nuclear emulsion provides three dimensional spatial information with an outstanding resolution of the order of one micron. Therefore, it is ideal to detect short-lived particles. A special technique has been developed to reconstruct events in the emulsion which allows to perform a detailed investigation of events such as charmed hadrons production by neutrinos. As a result, the backround in the selected charm sample is up to six times lower compared to similar experiments. Such a method also permits to make direct measurements of some qu...

  14. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    Science.gov (United States)

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-08-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  15. Measurement and three dimensional reconstruction of particle tracks in emulsion chambers

    International Nuclear Information System (INIS)

    Persson, S.

    1989-01-01

    A software package for making fast and accurate measurements of particle tracks in emulsion chambers is described. In a chamber, which is designed for high particle multiplicities, the emulsion layers are interspersed with air and placed perpendicular to the beam direction during exposure. (orig.)

  16. A two emulsion autoradiographic technique and the discriminating of the three different types of labelling after double labelling with 3H- and 14C-thymidine

    International Nuclear Information System (INIS)

    Schultze, B.; Maurer, W.; Hagenbusch, H.

    1976-01-01

    The first part of the paper deals with a two emulsion autoradiographic technique for double labelling experiments with 3 H- and 14 C-thymidine which permits a clear discrimination of the different types of labelling. In the second part the application of this technique to cell kinetics studies is discussed. Accurate discrimination between the different types of labelling, namely purely 3 H-, purely 14 C- and double ( 3 H + 14 C) labelling, is only possible if the activity ratio of 3 H- to 14 C-thymidine is sufficiently high. This condition is necessary for a reliable distinction between those grains in the first emulsion which are due to true 3 H-labelling and spurious grains which are simultaneously produced in the same emulsion by 14 C-β- particles. Experiments are described to determine the required activity ratio of 3 H- to 14 C-thymidine. (author)

  17. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    International Nuclear Information System (INIS)

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-01-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R and D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion

  18. Invert emulsion: Method of preparation and application as proper formulation of entomopathogenic fungi.

    Science.gov (United States)

    Batta, Yacoub A

    2016-01-01

    The present article describes the technique used for preparing the invert emulsion (water-in-oil type) then, selecting the most proper formulation of invert emulsion for being used as a carrier formulation of entomopathogenic fungi. It also describes the method used for testing the efficacy of the formulated fungi as biocontrol agents of targeted insects. Detailed examples demonstrating the efficacy of formulated strains of entomopathogenic fungi against certain species of insect pests were included in the present article. The techniques and methods described in this article are reproducible and helpful in enhancing the effectiveness of formulated fungi against wide range of targeted insects in comparison with the unformulated form of these fungi. Also, these techniques and methods can be used effectively in crop protection and in the integrated pest management programs. Finally, it is important to indicate that the ingredients used for preparation of the invert emulsion have no environmental side-effects or health risks since these ingredients are safe to use and can be used in manufacturing of cosmetics or as food additives.•Description of method used for preparation of invert emulsion (water-in-oil type) and selecting the most stable and non-viscous emulsion.•Description of technique used for introducing the entomopathogenic fungi into the selected stable and non-viscous invert emulsion.•Description of method for testing the efficacy of introduced entomopathogenic fungus into the selected invert emulsion against targeted insects with detailed examples on the efficacy testing.

  19. Multiplicity distributions of projectile fragments in interactions of nuclei with emulsion at 4.1-4.5 A GeV/c

    International Nuclear Information System (INIS)

    Fakhraddin, S; Rahim, Magda A

    2008-01-01

    The results of our systematic studies of projectile fragments (PFs) multiplicity distributions in interactions of 4 He, 12 C, 16 O, 22 Ne and 28 Si with emulsion at 4.1-4.5 A GeV/c are presented in this paper. The mean values for the three different multiplicities of PFs at nearly the same energy are given. The dependence of these mean values on the projectile mass number A p , as well as the dependence of the PFs on target groups (H, CNO and AgBr), has been investigated

  20. Oil-in-oil emulsions stabilised solely by solid particles.

    Science.gov (United States)

    Binks, Bernard P; Tyowua, Andrew T

    2016-01-21

    A brief review of the stabilisation of emulsions of two immiscible oils is given. We then describe the use of fumed silica particles coated with either hydrocarbon or fluorocarbon groups in acting as sole stabilisers of emulsions of various vegetable oils with linear silicone oils (PDMS) of different viscosity. Transitional phase inversion of emulsions, containing equal volumes of the two oils, from silicone-in-vegetable (S/V) to vegetable-in-silicone (V/S) occurs upon increasing the hydrophobicity of the particles. Close to inversion, emulsions are stable to coalescence and gravity-induced separation for at least one year. Increasing the viscosity of the silicone oil enables stable S/V emulsions to be prepared even with relatively hydrophilic particles. Predictions of emulsion type from calculated contact angles of a silica particle at the oil-oil interface are in agreement with experiment provided a small polar contribution to the surface energy of the oils is included. We also show that stable multiple emulsions of V/S/V can be prepared in a two-step procedure using two particle types of different hydrophobicity. At fixed particle concentration, catastrophic phase inversion of emulsions from V/S to S/V can be effected by increasing the volume fraction of vegetable oil. Finally, in the case of sunflower oil + 20 cS PDMS, the study is extended to particles other than silica which differ in chemical type, particle size and particle shape. Consistent with the above findings, we find that only sufficiently hydrophobic particles (clay, zinc oxide, silicone, calcium carbonate) can act as efficient V/S emulsion stabilisers.

  1. Method validation and stability study of quercetin in topical emulsions

    Directory of Open Access Journals (Sweden)

    Rúbia Casagrande

    2009-01-01

    Full Text Available This study validated a high performance liquid chromatography (HPLC method for the quantitative evaluation of quercetin in topical emulsions. The method was linear within 0.05 - 200 μg/mL range with a correlation coefficient of 0.9997, and without interference in the quercetin peak. The detection and quantitation limits were 18 and 29 ng/mL, respectively. The intra- and inter-assay precisions presented R.S.D. values lower than 2%. An average of 93% and 94% of quercetin was recovered for non-ionic and anionic emulsions, respectively. The raw material and anionic emulsion, but not non-ionic emulsion, were stable in all storage conditions for one year. The method reported is a fast and reliable HPLC technique useful for quercetin determination in topical emulsions.

  2. Recent Emulsion Technologies

    International Nuclear Information System (INIS)

    Ariga, A.

    2011-01-01

    Emulsion technologies are very much developed in the last decade and still developing in both the emulsion gel and the data taking. Emulsion detectors are suitable for the neutrino experiments because they can distinguish all 3 flavors of neutrino. The OPERA experiment, a recent pillar in the emulsion experiments aiming at the first observation of the neutrino oscillation in CNGS beam in appearance mode, is running, showing the good capability to separate 3 flavor neutrino interactions. In this poster, the recent developments and prospects of the emulsions for the next generation experiments are reported.

  3. Formulation and stability of topical water in oil emulsion containing ...

    African Journals Online (AJOL)

    Purpose: To formulate the water in oil (W/O) emulsion of corn silk (CS) extract and to evaluate its stability at various storage conditions. Methods: Ethanol CS extract was prepared using maceration (cold) technique. A 4 % CS emulsion was prepared using varying concentrations of liquid paraffin, ABIL EM90 and water.

  4. Multiplicity distributions of projectile fragments in interactions of nuclei with emulsion at 4.1-4.5 A GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Fakhraddin, S; Rahim, Magda A [Physics Department, Faculty of Science, Sana' a University, Republic of Yemen (Yemen)], E-mail: sakinafa1@hotmail.com, E-mail: dr.magda2006@hotmail.com

    2008-07-15

    The results of our systematic studies of projectile fragments (PFs) multiplicity distributions in interactions of {sup 4}He, {sup 12}C, {sup 16}O, {sup 22}Ne and {sup 28}Si with emulsion at 4.1-4.5 A GeV/c are presented in this paper. The mean values for the three different multiplicities of PFs at nearly the same energy are given. The dependence of these mean values on the projectile mass number A{sub p}, as well as the dependence of the PFs on target groups (H, CNO and AgBr), has been investigated.

  5. Scaling properties of charged particle multiplicity distributions in oxygen induced emulsion interactions at 14.6, 60 and 200 A GeV

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Aggarwal, M.M.; Arora, R.

    1988-12-01

    The multiplicity distributions of shower particles (n s ) are measured in inclusive inelastic oxygen emulsion interactions. Scaling in observed in the normalized variable n s / ave.(n s ) for 14.6, 60 and 200 A GeV. The dependence of ave. (n s ) on the charge flow in the forward direction (Q ZD ) and the distribution of the number of participating projectile protons is examined. The normalized multiplicities as a function of Q ZD seem also to be independent of incident energies. A comparison with the Lund Model Fritiof yields satisfactory agreement. (authors)

  6. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    International Nuclear Information System (INIS)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-01-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3 , the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  7. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Daniel M.; Lima, Claudio F. [Departamento de Quimica, Universidade Federal de Vicosa, A. Peter Henry Rolfs s/n, Vicosa/MG, 36570-000 (Brazil); Robaina, Nicolle F. [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil); Fonseca, Teresa Cristina O. [Petrobras, Cenpes/PDEDS/QM, Av. Horacio Macedo 950, Ilha do Fundao, Rio de Janeiro/RJ, 21941-915 (Brazil); Cassella, Ricardo J., E-mail: cassella@vm.uff.br [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil)

    2011-05-15

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO{sub 3}, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO{sub 3} medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  8. Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects.

    Science.gov (United States)

    Chung, Cheryl; Smith, Gordon; Degner, Brian; McClements, David Julian

    2016-01-01

    Fat plays multiple important roles in imparting desirable sensory attributes to emulsion-based food products, such as sauces, dressings, soups, beverages, and desserts. However, there is concern that over consumption of fats leads to increased incidences of chronic diseases, such as obesity, coronary heart disease, and diabetes. Consequently, there is a need to develop reduced fat products with desirable sensory profiles that match those of their full-fat counterparts. The successful design of high quality reduced-fat products requires an understanding of the many roles that fat plays in determining the sensory attributes of food emulsions, and of appropriate strategies to replace some or all of these attributes. This paper reviews our current understanding of the influence of fat on the physicochemical and physiological attributes of food emulsions, and highlights some of the main approaches that can be used to create high quality emulsion-based food products with reduced fat contents.

  9. Generation of colloidal granules and capsules from double emulsion drops

    Science.gov (United States)

    Hess, Kathryn S.

    Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals

  10. Progression of radical reactions on microscopic scale in food emulsions

    DEFF Research Database (Denmark)

    Raudsepp, Piret

    Understanding the progression of lipid oxidation in oil-in-water emulsions from the aspect of the food quality and safety, consumer satisfaction and cleaner food label is of importance, because most of the food emulsions are oil-in-water emulsions. There is an increasing tendency in the food...... industry to incorporate unsaturated oils into food products, but that results in shortened shelf-life. Therefore, studying the factors and consequences of the oxidative instability provides beneficial insight into prolonging the antioxidative stage and inhibiting undergoing oxidation processes to improve...... the food quality and increase the shelflife of the food products. In the present work, lipid oxidation in oil-in-water emulsions was studied via conventional analytical and via novel state-of-the-art techniques. For the first time, the effect of mixing emulsions made of saturated medium-chain triglyceride...

  11. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.

    Science.gov (United States)

    Chen, Qijing; Deng, Xiaoyong; An, Zesheng

    2014-06-01

    A pH-responsive core cross-linked star (CCS) polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1-9.3, ordinary water-in-oil emulsions were formed. Intermediate multiple emulsions of oil-in-water-in-oil and water-in-oil-in-water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil-in-water type in the pH range of 6.4-0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Use of olive oil-in-water gelled emulsions in model turkey breast emulsions

    Science.gov (United States)

    Serdaroğlu, M.; Öztürk, B.

    2017-09-01

    Today, gelled emulsion systems offer a novel possibility in lipid modification of meat products. In this study, we aimed to investigate the quality characteristics of model turkey emulsions that were prepared with olive oil-in-water gelled emulsion (GE) as partial or total beef fat replacer. The results indicated that while most of the GE treatments showed equivalent emulsion characteristics in terms of emulsion stability, water-holding capacity and cook yield, utilization of 100% GE as the lipid source could increase total expressible fluid of the model turkey emulsion and thus negatively affect the quality. Utilization of GE was effective in total fat reduction, as the model turkey emulsions formulated with more than 50% GE had significantly lower fat content compared to full-beef fat control model emulsion. However, beef fat replacement with GE produced considerable changes in colour parameters. Finally, it was concluded that utilization of GE as a partial beef fat replacer has good potential to enhance stability and reduce total fat in turkey meat emulsion products.

  13. Effects of green tea extract and α-tocopherol on the lipid oxidation rate of omega-3 oils, incorporated into table spreads, prepared using multiple emulsion technology.

    Science.gov (United States)

    Dwyer, Sandra P O'; O'Beirne, David; Ní Eidhin, Deirdre; O'Kennedy, Brendan T

    2012-12-01

    This study examined the effectiveness of fat and water soluble antioxidants on the oxidative stability of omega (ω)-3 rich table spreads, produced using novel multiple emulsion technology. Table spreads were produced by dispersing an oil-in-water (O/W) emulsion (500 g/kg 85 camelina/15 fish oil blend) in a hardstock/rapeseed oil blend, using sodium caseinate and polyglycerol polyricinoleate as emulsifiers. The O/W and oil-in-water-in-oil (O/W/O) emulsions contained either a water soluble antioxidant (green tea extract [GTE]), an oil soluble antioxidant (α-Tocopherol), or both. Spreads containing α-Tocopherol had the highest lipid hydroperoxide values, whereas spreads containing GTE had the lowest (P < 0.05), during storage at 5°C, while p-Anisidine values did not differ significantly. Particle size was generally unaffected by antioxidant type (P < 0.05). Double emulsion (O/W/O) structures were clearly seen in confocal images of the spreads. By the end of storage, none of the spreads had significantly different G' values. Firmness (Newtons) of all spreads generally increased during storage (P < 0.05). © 2012 Institute of Food Technologists®

  14. Forward-backward multiplicity correlations of target fragments in nucleus-emulsion collisions at a few hundred MeV/u

    International Nuclear Information System (INIS)

    Zhang Donghai; Chen Yanling; Wang Guorong; Li Wangdong; Wang Qing; Yao Jijie; Zhou Jianguo; Li Rong; Li Junsheng; Li Huiling

    2015-01-01

    The forward-backward multiplicity and correlations of a target evaporated fragment (black track particle) and target recoiled proton (grey track particle) emitted from 150 A MeV "4He, 290 A MeV "1"2C, 400 A MeV "1"2C, 400 A MeV "2"0Ne and 500 A MeV "5"6Fe induced different types of nuclear emulsion target interactions are investigated. It is found that the forward and backward averaged multiplicity of a grey, black and heavily ionized track particle increases with the increase of the target size. The averaged multiplicity of a forward black track particle, backward black track particle, and backward grey track particle do not depend on the projectile size and energy, but the averaged multiplicity of a forward grey track particle increases with an increase of projectile size and energy. The backward grey track particle multiplicity distribution follows an exponential decay law and the decay constant decreases with an increase of target size. The backward-forward multiplicity correlations follow linear law which is independent of the projectile size and energy, and the saturation effect is observed in some heavy target data sets. (authors)

  15. Rheology of attractive emulsions.

    Science.gov (United States)

    Datta, Sujit S; Gerrard, Dustin D; Rhodes, Travers S; Mason, Thomas G; Weitz, David A

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φ(RCP), can form soft gel-like elastic solids. However, above φ(RCP), attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φ(RCP), also undergo droplet configurational rearrangements.

  16. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation

    International Nuclear Information System (INIS)

    Sultana, Naznin; Wang Min

    2012-01-01

    Tissue engineering combines living cells with biodegradable materials and/or bioactive components. Composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramic with suitable properties are promising for bone tissue regeneration. In this paper, based on blending two biodegradable and biocompatible polymers, namely poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(l-lactic acid) (PLLA) with incorporated nano hydroxyapatite (HA), three-dimensional composite scaffolds with controlled microstructures and an interconnected porous structure, together with high porosity, were fabricated using an emulsion freezing/freeze-drying technique. The influence of various parameters involved in the emulsion freezing/freeze-drying technique was studied for the fabrication of good-quality polymer scaffolds based on PHBV polymers. The morphology, mechanical properties and crystallinity of PHBV/PLLA and HA in PHBV/PLLA composite scaffolds and PHBV polymer scaffolds were studied. The scaffolds were coated with collagen in order to improve wettability. During in vitro biological evaluation study, it was observed that SaOS-2 cells had high attachment on collagen-coated scaffolds. Significant improvement in cell proliferation and alkaline phosphatase activity for HA-incorporated composite scaffolds was observed due to the incorporation of HA. After 3 and 7 days of culture on all scaffolds, SaOS-2 cells also had normal morphology and growth. These results indicated that PHBV/PLLA-based scaffolds fabricated via an emulsion freezing/freeze-drying technique were favorable sites for osteoblastic cells and are promising for the applications of bone tissue engineering.

  17. Charge identification of highly ionizing particles in desensitized nuclear emulsion using high speed read-out system

    International Nuclear Information System (INIS)

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; Koi, T.; Fukushima, C.; Ogawa, S.; Shibasaki, M.; Shibuya, H.

    2006-01-01

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles

  18. Interactions of 400 GeV proton with Different target nuclei in emulsion

    International Nuclear Information System (INIS)

    El-Nadi, M.; Abdel-Halim, S.M.; Yasin, M.N.; El-Nagdy, M.S.

    1995-01-01

    The interaction characteristics of 400 GeV proton with emulsion nuclei were studied and discussed. The multiplicity distributions of secondary charged particles have been measured for 480 inelastic events and are compared with the results obtained in p-emulsion collisions at different energies. The integral distribution of the number of disintegrated particles from the target nuclei N h are used to separate the number of the inelastic interactions of proton with light (Cno) and heavy (Ag Br) nuclei in the emulsion. The interaction characteristics of proton (400 GeV) with different groups of target nuclei have been investigated

  19. Interactions of 400 GeV protons with different target nuclei in emulsion

    International Nuclear Information System (INIS)

    El-Nadi, M.; Abdel Halim, S.M.; Yasin, M.N.; El-Nagdy, M.S.

    1996-01-01

    The interaction characteristics of 400 GeV protons with emulsion nuclei were studied and discussed. The multiplicity distributions of secondary charged particles have been measured for 480 inelastic events and are compared with the results obtained in p-emulsion (P-Em) collisions at different energies. The integral distribution of the number of disintegrated particles from the target nuclei N h is used to separate the number of the inelastic interactions of proton with light (CNO) and heavy (AgBR) nuclei in the emulsion. The interaction characteristics of protons (400 GeV) with different groups of target nuclei have been investigated. (author)

  20. Synthesis of polyanthranilic acid–Au nanocomposites by emulsion ...

    Indian Academy of Sciences (India)

    Administrator

    PANA–Au nanocomposites are characterized by SEM, equipped with EDS, TGA, FT–IR, XRD and electrochemical techniques. XRD of ... Polyanthranilic acid; nanocomposite; in situ polymerization; emulsion polymerization; nano- particles. 1.

  1. Nuclear emulsion experiments on particle production at high energies

    International Nuclear Information System (INIS)

    Otterlund, I.

    1976-08-01

    Various experimental results, including multiplicities of shower-particles and heavy prong particles, correlations between them and single particle distributions, from proton-emulsion nucleus reactions in the energy range 200-400 GeV are presented. (Auth.)

  2. Rheological characterization of gel-in-oil-in-gel type structured emulsions

    OpenAIRE

    Patel, Ashok; Dumlu, Pinar; Vermeir, Lien; Lewille, Benny; Lesaffer, Ans; Dewettinck, Koen

    2015-01-01

    We report the fabrication of multiple emulsions where both the enclosed and the external water phases are structured using a combination of two non-gelling biopolymers. Emulsions (with gelled inner water droplets and gelled water continuous phase) were created using a simple 'one-step' process where the oil phase (triglyceride oil and polyglycerol polyricinoleate) and the water phase (containing a combination of locust bean gum and carrageenan) were emulsified at an elevated temperature (70 d...

  3. Innovative Natural Ingredients-Based Multiple Emulsions: The Effect on Human Skin Moisture, Sebum Content, Pore Size and Pigmentation

    Directory of Open Access Journals (Sweden)

    Ugne Cizauskaite

    2018-06-01

    Full Text Available The increased interest in natural cosmetics has resulted in a higher market demand for preservative-free products based on herbal ingredients. An innovative W/O/W type emulsions containing herbal extracts were prepared directly; its cation form was induced by an ethanolic rosemary extract and stabilized using weak herbal gels. Due to the wide phytochemical composition of herbal extracts and the presence of alcohol in the emulsion system, which can cause skin irritation, sensitization or dryness when applied topically, the safety of the investigated drug delivery system is necessary. The aim of our study was to estimate the potential of W/O/W emulsions based on natural ingredients for skin irritation and phototoxicity using reconstructed 3D epidermis models in vitro and to evaluate in vivo its effect on human skin moisture, sebum content and pigmentation by biomedical examination using a dermatoscopic camera and corneometer. According to the results obtained after in vitro cell viability test the investigated emulsion was neither irritant nor phototoxic to human skin keratinocytes. W/O/W emulsion did not cause skin dryness in vivo, despite the fact that it contained ethanol. We can conclude that the emulsion is safe for use as a leave-on product due to the positive effect on human skin characteristics or as a semisolid pharmaceutical base where active compounds could be encapsulated.

  4. Quantitative Analysis of Micro-Structure in Meat Emulsions from Grating-Based Multimodal X-Ray Tomography

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Nielsen, Mikkel Schou; Miklos, Rikke

    2013-01-01

    Using novel X-ray techniques, based on grating-interferometry, new imaging modalities can be obtained simultaneously with absorption computed tomography (CT). These modalities, called phase contrast and dark field imaging, measure the electron density and the diffusion length of the sample....... Enhanced contrast capabilities of this X-ray technique makes studies on materials with similar attenuation properties possible. In this paper the focus is set on processing grating-based X-ray tomograms of meat emulsions to quantitatively measure micro-structural changes due to heat treatment. The emulsion...... samples were imaged both in a raw and cooked state. Additionally, different fat types were used in the emulsions in order to compare micro-structural differences when either pork fat or sunflower oil was used. From the reconstructed tomograms the different ingredients in the emulsions were segmented using...

  5. Stabilization of Model Crude Oil Emulsion using Different ...

    African Journals Online (AJOL)

    MBI

    2015-12-31

    Dec 31, 2015 ... interaction of asphaltene with the prepared model oils can be used as a ... techniques, microscopy, interfacial pressure, and ... conclusion that these compounds were asphaltene .... The emulsion may invert from oil in water.

  6. Demulsification based on the thermal treatment (cooling and heating of W/O emulsions

    Directory of Open Access Journals (Sweden)

    Rajaković Vladana N.

    2004-01-01

    Full Text Available An important step in waste water treatment is the removal of oil from an O/W emulsion and the separation of oil and water into two phases, a process usually called demulsification. Modern methods of oil removal from waste water were described in the present study. Typical demulsification techniques include thermal, electrical, chemical, acoustic, or mechanical methods of emulsion treatment. The freeze/thaw process was found to be very effective for demulsification. In the freeze/thaw process, water removal from the W/O emulsion depends on the initial oil content, freezing temperature, freezing time, thawing rate and temperature. The described method is a non-destructive and physical method of emulsion treatment and because there is no addition of chemical agents there is no problem of further waste water treatment, which usually exists when chemicals are applied for demulsification. Different methods for oil content determination in the O/W emulsion were also applied and compared in this study (gravimetric, volumetric, measurement of oxygen consumption and emulsion pH, IR analysis of the emulsion, electro analytical measurement.

  7. Influence of pH value on microstructure of oil-in-water emulsions stabilized by chickpea protein flour.

    Science.gov (United States)

    Felix, Manuel; Isurralde, Nadia; Romero, Alberto; Guerrero, Antonio

    2018-01-01

    Food industry is highly interested in the development of healthier formulations of oil-in-water emulsions, stabilized by plant proteins instead of egg or milk proteins. These emulsions would avoid allergic issues or animal fat. Among other plant proteins, legumes are a cost-competitive product. This work evaluates the influence of pH value (2.5, 5.0 and 7.5) on emulsions stabilized by chickpea-based emulsions at two different protein concentration (2.0 and 4.0 wt%). Microstructure of chickpea-based emulsions is assessed by means of backscattering, droplet size distributions and small amplitude oscillatory shear measurements. Visual appearances as well as confocal laser scanning microscopy images are obtained to provide useful information on the emulsions structure. Interestingly, results indicate that the pH value and protein concentration have a strong influence on emulsion microstructure and stability. Thus, the system which contains protein surfaces positively charged shows the highest viscoelastic properties, a good droplet size distribution profile and non-apparent destabilization phenomena. Interestingly, results also reveal the importance of rheological measurements in the prediction of protein interactions and emulsion stability since this technique is able to predict destabilization mechanisms sooner than other techniques such as backscattering or droplet size distribution measurements.

  8. Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials

    Directory of Open Access Journals (Sweden)

    Ivana M. Geremias-Andrade

    2016-08-01

    Full Text Available Emulsion-filled gels are classified as soft solid materials and are complex colloids formed by matrices of polymeric gels into which emulsion droplets are incorporated. Several structural aspects of these gels have been studied in the past few years, including their applications in food, which is the focus of this review. Knowledge of the rheological behavior of emulsion-filled gels is extremely important because it can measure interferences promoted by droplets or particle inclusion on the textural properties of the gelled systems. Dynamic oscillatory tests, more specifically, small amplitude oscillatory shear, creep-recovery tests, and large deformation experiments, are discussed in this review as techniques present in the literature to characterize rheological behavior of emulsion-filled gels. Moreover, the correlation of mechanical properties with sensory aspects of emulsion-filled gels appearing in recent studies is discussed, demonstrating the applicability of these parameters in understanding mastication processes.

  9. Efficiency of emulsifier-free emulsions and emulsions containing rapeseed lecithin as delivery systems for vectorization and release of coenzyme Q10: physico-chemical properties and in vitro evaluation.

    Science.gov (United States)

    Kaci, M; Arab-Tehrany, E; Dostert, G; Desjardins, I; Velot, E; Desobry, S

    2016-11-01

    To improve the encapsulation and release of coenzyme Q10 (CoQ10), emulsifier-free-emulsions were developed with a new emulsification process using high-frequency ultrasound (HFU) at 1.7MHz. Nano-emulsions containing CoQ10 were prepared with or without rapeseed lecithin as an emulsifier. The emulsions prepared with HFU were compared with an emulsion of CoQ10 containing emulsifier prepared with the same emulsification technique as well as with emulsions prepared with low-frequency ultrasound coupled with high-pressure homogenization (LFU+HPH). The physico-chemical properties of the emulsions were determined by average droplet size measurement with nano-droplet tracking analysis, droplet surface charge with ζ potential measurement, surface tension and rheological behaviour. Emulsions made by LFU+HPH with an emulsifier showed lower droplet sizes due to cavitation generated by the HFU process. Surface tension results showed that there was no significant difference between emulsions containing lecithin emulsifier regardless of the preparation process or the inclusion of CoQ10. In vitro biocompatibility tests were performed on human mesenchymal stem cells in order to show the cytotoxicity of various formulations and the efficiency of CoQ10-loaded emulsions. In vitro tests proved that the vectors were not toxic. Furthermore, CoQ10 facilitated a high rate of cell proliferation and metabolic activity especially when in an emulsifier-free formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. How emulsions composition and structure affect sensory perception of low-viscosity model emulsions

    NARCIS (Netherlands)

    Vingerhoeds, M.H.; Wijk, de R.A.; Zoet, F.D.; Nixdorf, R.R.; Aken, van G.A.

    2008-01-01

    The oral residence time of low-viscosity emulsions, like milk, is relatively short. Despite this short residence time, people can easily perceive differences between these emulsions. Our research is dedicated to unravel the oral behaviour of emulsions in relation to sensory perception. The aim of

  11. Demulsification of crude oil-in-water emulsions by means of fungal spores.

    Directory of Open Access Journals (Sweden)

    Alba Adriana Vallejo-Cardona

    Full Text Available The present feature describes for the first time the application of spores from Aspergillus sp. IMPMS7 to break out crude oil-in-water emulsions (O/W. The fungal spores were isolated from marine sediments polluted with petroleum hydrocarbons. The spores exhibited the ability to destabilize different O/W emulsions prepared with medium, heavy or extra-heavy Mexican crude oils with specific gravities between 10.1 and 21.2°API. The isolated fungal spores showed a high hydrophobic power of 89.3 ± 1.9% and with 2 g of spores per liter of emulsion, the half-life for emulsion destabilization was roughly 3.5 and 0.7 h for extra-heavy and medium crude oil, respectively. Then, the kinetics of water separation and the breaking of the O/W emulsion prepared with heavy oil through a spectrofluorometric technique were studied. A decrease in the fluorescence ratio at 339 and 326 nm (I339/I326 was observed in emulsions treated with spores, which is similar to previously reported results using chemical demulsifiers.

  12. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique.

    Science.gov (United States)

    Viswanathan, N B; Thomas, P A; Pandit, J K; Kulkarni, M G; Mashelkar, R A

    1999-03-08

    Emulsification-solvent removal methods have been widely used for encapsulating bioactive macromolecules like proteins and polypeptides in biodegradable polymers. We report, a (water-in-oil)-in-oil emulsion technique wherein proteins and polypeptides differing in molecular weight and shape were encapsulated in polymers of current biomedical interest. When an oil was used as the processing medium in combination with a carefully selected mixed solvent system such that a stable (w/o1/o2 emulsion is formed and solvents are removed by a combination of extraction and evaporation, the entrapment efficiency was high and the product nonporous. The entrapment efficiency of globular proteins exceeded 90% while that of fibrous proteins was around 70%. Fracture studies revealed that the polymer matrix was dense. The mechanism of entrapment involved solvent-induced precipitation of the protein as the microspheres were being formed. The principle of the method will find use in preparation of non-porous polymer microparticles with reduced burst effect.

  13. Rheology of unstable mineral emulsions

    Directory of Open Access Journals (Sweden)

    Sokolović Dunja S.

    2013-01-01

    Full Text Available In this paper, the rheology of mineral oils and their unstable water emulsion were investigated. The oil samples were domestic crude oil UA, its fractions UA1, UA4 and blend semi-product UP1, while the concentration of oil in water emulsions was in the range from 1 up to 30%. The results were analyzed based on shear stress. The oil samples UA, UA1 and UP1 are Newtonian fluids, while UA4 is pseudoplastic fluid. The samples UA and UA4 show higher value of shear stress (83.75 Pa, 297 Pa, then other two samples UA1 and UP1 (18.41 Pa, 17.52 Pa. Rheology of investigated oils due to its complex chemical composition should be analyzed as a simultaneous effect of all their components. Therefore, structural composition of the oils was determined, namely content of paraffins, naphthenes, aromatics and asphaltenes. All samples contain paraffins, naphthenes and aromatics but only oils UA and UA4 contain asphaltenes as well. All investigated emulsions except 30% EUA4 are Newtonian fluids. The EUA4 30% emulsion shows pseudoplastic behaviour, and it is the only 30% emulsion among investigated ones that achieves lower shear stress then its oil. The characteristics of oil samples that could have an influence on their properties and their emulsion rheology, were determined. These characteristics are: neutralization number, interfacial tension, dielectric constant, and emulsivity. Oil samples UA and UA4 have significantly higher values of neutralization number, dielectric constants, and emulsivity. The sample UA has the lowest value of interface tension and the greatest emulsivity, indicating that this oil, among all investigated, has the highest preference for building emulsion. This could be the reason why 20% and 30% emulsions of the oil UA achieve the highest shear stress among all investigated emulsions.

  14. Generation of emulsion droplets and micro-bubbles in microfluidic devices

    KAUST Repository

    Zhang, Jiaming

    2016-04-01

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology to manipulate small amounts of liquid samples. In addition to microdroplets, microbubbles are also needed for various pro- cesses in the food, healthcare and cosmetic industries. Polydimethylsiloxane (PDMS) soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. In ad- dition, current methods have the limited capabilities for fabrication of microfluidic devices within three dimensional (3D) structures. Novel methods for fabrication of droplet-based microfluidic devices for the generation microdroplets and microbubbles are therefore of great interest in current research. In this thesis, we have developed several simple, rapid and low-cost methods for fabrication of microfluidic devices, especially for generation of microdroplets and mi- crobubbles. We first report an inexpensive full-glass microfluidic devices with as- sembly of glass capillaries, for generating monodisperse multiple emulsions. Different types of devices have been designed and tested and the experimental results demon- strated the robust capability of preparing monodisperse single, double, triple and multi-component emulsions. Second, we propose a similar full-glass device for generation of microbubbles, but with assembly of a much smaller nozzle of a glass capillary. Highly monodisperse microbubbles with diameter range from 3.5 to 60 microns have been successfully produced, at rates up to 40 kHz. A simple scaling law based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. Recently, the emergent 3D printing technology provides an attractive fabrication technique, due to its simplicity and low cost. A handful of studies have already demonstrated droplet production through 3D-printed microfluidic devices. However, two

  15. Front-face fluorescence spectroscopy study of globular proteins in emulsions: influence of droplet flocculation.

    Science.gov (United States)

    Rampon, V; Genot, C; Riaublanc, A; Anton, M; Axelos, M A V; McClements, D J

    2003-04-23

    Measurement of the intensity (I(MAX)) and/or wavelength (lambda(MAX)) of the maximum in the tryptophan (TRP) emission spectrum using front-face fluorescence spectroscopy (FFFS) can be used to provide information about the molecular environment of proteins in nondiluted emulsions. Many protein-stabilized emulsions in the food industry are flocculated, and therefore, we examined the influence of droplet flocculation on FFFS. Stock oil-in-water emulsions stabilized by bovine serum albumin were prepared by high-pressure valve homogenization (30 wt % n-hexadecane, 0.35 wt % BSA, pH 7). These emulsions were used to create model systems with different degrees of droplet flocculation, either by changing the pH, adding surfactant, or adding xanthan. Emulsions (21 wt % n-hexadecane, 0.22 wt % BSA) with different pH (5 and 7) and molar ratios of Tween 20 to BSA (R = 0-131) were prepared by dilution of the stock emulsion. As the surfactant concentration was increased, the protein was displaced from the droplet surfaces, which caused an increase in both I(MAX) and lambda(MAX), because of the change in TRP environment. The dependence of I(MAX) and lambda(MAX) on surfactant concentration followed a similar pattern in emulsions that were initially flocculated (pH 5) and nonflocculated (pH 7). Relatively small changes in FFFS emission spectra were observed in emulsions (21 wt % n-hexadecane, 0.22 wt % BSA, pH 7) with different levels of depletion flocculation induced by adding xanthan. These results suggested that droplet flocculation did not have a major impact on FFFS. This study shows that FFFS is a powerful technique for nondestructively providing information about the molecular environment of proteins in concentrated and flocculated protein-stabilized emulsions. Nevertheless, in general the suitability of the technique may also depend on protein type and the nature of the physicochemical matrix surrounding the proteins.

  16. Radiation dosimetry by neutron or X ray fluorescence activation of residual silver in ionographic emulsions

    International Nuclear Information System (INIS)

    Heilmann, C.

    1987-01-01

    A global measuring technique which is sensitive enough to detect small silver contents in films for dosimetry applications is presented. The applications studied are neutron dosimetry by measuring residual silver due to recoil protons in developed emulsions and high dose dosimetry by the detection of photolytic silver in fixed emulsions. An individual fast neutron dosimeter which can be used in radiation protection was developed, along with an automatic data analysis and readout system. Application of this technique to the measurement of high radiation doses (100 to 1 million Gy) via the measurement of photolytic silver in fixed, but undeveloped, emulsions confirms the usefulness of the method [fr

  17. Radiation processing of polymer emulsion, (4). Radiation-induced emulsion polymerization of methyl methacrylate at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo; Katakai, Akio; Ito, Hiroshi; Hayakawa, Naohiro; Araki, Kunio (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment)

    1983-06-01

    Methyl methacrylate was polymerized in emulsion by Co-60 ..gamma..-rays below 19 deg C in a batch reactor by using sodium lauryl sulfate as emulsifier. The conversion-time curves of the polymerization system showed two rate regions, i.e., a fact conversion rate in early stage, and a much slower rate in latter stage. The change in rate occurred at about 70 % conversion. The molecular weight of product polymer decreased with increasing conversion during the course of polymerization in latter stage, in contrast to the behavior in early stage. The distribution of the monomer in emulsion in latter stage was evaluated by nuclear magnetic resonance technique. The decrease of the molecular weight with conversion is due to the radiation-induced degradation of product polymer accelerated by the monomers absorbed in the polymer particles.

  18. Tri-fuel (diesel-biodiesel-ethanol) emulsion characterization, stability and the corrosion effect

    Science.gov (United States)

    Low, M. H.; Mukhtar, N. A. M.; Yohaness Hagos, Ftwi; Noor, M. M.

    2017-10-01

    This paper presents the result of experimenting emulsified tri-fuel in term of stability, physico-chemical properties and corrosion effect on three common metals. The results were interpreted in terms of the impact of five minutes emulsification approach. Tri-fuel emulsions were varied in proportion ratio consist of biodiesel; 0%, 5%, 10%, and ethanol; 5%, 10%, 15%. Fuel characterization includes density, calorific value, flash point, and kinematic viscosity. Flash point of tri-fuel emulsion came with range catalog. Calorific value of tri-fuel emulsion appeared in declining pattern as more ethanol and biodiesel were added. Biodiesel promoted flow resistance while ethanol with opposite effect. 15% ethanol content in tri-fuel emulsion separated faster than 10% ethanol content but ethanol content with 5% yield no phase separation at all. Close cap under static immersion with various ratio of tri-fuel emulsions for over a month, corrosiveness attack was detected via weight loss technique on aluminum, stainless steel and mild steel.

  19. A novel headspace gas chromatographic method for in situ monitoring of monomer conversion during polymerization in an emulsion environment.

    Science.gov (United States)

    Chai, Xin-Sheng; Zhong, Jin-Feng; Hu, Hui-Chao

    2012-05-18

    This paper describes a novel multiple-headspace extraction/gas chromatographic (MHE-GC) technique for monitoring monomer conversion during a polymerization reaction in a water-based emulsion environment. The polymerization reaction of methyl methacrylate (MMA) in an aqueous emulsion is used as an example. The reaction was performed in a closed headspace sample vial (as a mini-reactor), with pentane as a tracer. In situ monitoring of the vapor concentration of the tracer, employing a multiple headspace extraction (sampling) scheme, coupled to a GC, makes it possible to quantitatively follow the conversion of MMA during the early stages of polymerization. Data on the integrated amount of the tracer vapor released from the monomer droplet phase during the polymerization is described by a mathematic equation from which the monomer conversion can be calculated. The present method is simple, automated and economical, and provides an efficient tool in the investigation of the reaction kinetics and effects of the reaction conditions on the early stage of polymerization. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. On the production of thick pellicles of Kodak NTB-3 nuclear track emulsion

    International Nuclear Information System (INIS)

    Claesson, G.; Soederstroem, K.; Ingelman, G.

    1980-11-01

    We describe procedures for making thick pellicles of Kodak NTB-3 nuclear emulsion. The technique has successfully been applied for the production of a 15 liter emulsion target, consisting of 600 μm thick pellicles. Melting and pouring of the gel is discussed as well as the conditions during the drying and processing. (author)

  1. Tannin-based monoliths from emulsion-templating

    International Nuclear Information System (INIS)

    Szczurek, A.; Martinez de Yuso, A.; Fierro, V.; Pizzi, A.; Celzard, A.

    2015-01-01

    Highlights: • Efficient preparation procedures are presented for new and “green” tannin-based organic polyHIPEs. • Highest homogeneity and strength are obtained at an oil fraction near the close-packing value. • Structural and mechanical properties abruptly change above such critical value. - Abstract: Highly porous monoliths prepared by emulsion-templating, frequently called polymerised High Internal Phase Emulsions (polyHIPEs) in the literature, were prepared from “green” precursors such as Mimosa bark extract, sunflower oil and ethoxylated castor oil. Various oil fractions, ranging from 43 to 80 vol.%, were used and shown to have a dramatic impact on the resultant porous structure. A critical oil fraction around 70 vol.% was found to exist, close to the theoretical values of 64% and 74% for random and compact sphere packing, respectively, at which the properties of both emulsions and derived porous monoliths changed. Such change of behaviour was observed by many different techniques such as viscosity, electron microscopy, mercury intrusion, and mechanical studies. We show and explain why this critical oil fraction is the one leading to the strongest and most homogeneous porous monoliths

  2. Bulk-loaded emulsion explosives technology

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.G. [Blasting Analysis International, Inc., Allentown, PA (United States)

    1995-01-01

    The largest use of emulsion explosives and emulsion-Anfo blends is in surface mining operations. An emulsion explosive is a two-phase system: the inner phase is madeup of an oxidizer solution; the outer phase is made up of oils or an oil/wax blend. Emulsion Anfo blends have been used to expand drill patterns, increase fragmentation, and provide extra energy for blast casting. 3 tabs.

  3. Study of Particle Production and Nuclear Fragmentation in Collisions of $^{16}$O Beams with Emulsion Nuclei at 13-200 A GeV

    CERN Multimedia

    2002-01-01

    .SK 2\\\\ \\\\ The aim of the experiment is to study, on an event by event basis, multiplicities of produced charged particles, pseudo-rapidity density distributions globally and in selected regions of pseudo-rapidity, density fluctuations, multiplicity and angular distributions of nuclear fragments and recoiling protons (30-400~A~MeV) and cross sections for production and interation of light and medium (Z=2-8) projectile fragments. \\\\ \\\\ The detectors are emulsion chambers as well as conventional emulsion stacks. The emulsion chambers consist of several layers of a plastic substrate, each coated with nuclear emulsion on both sides. Since the best measurement accuracy is obtained for the particles with the smallest emission angles, this design is especially suited for the pseudo-rapidity determination. The emulsion stacks, of both high and low sensitivity, have been exposed in the conventional way, with the beam parallel to the emulsion sheets. These stacks are used to study the fragmentation of the interaction n...

  4. Emulsion Science Basic Principles

    CERN Document Server

    Leal-Calderon, Fernando; Schmitt, Véronique

    2007-01-01

    Emulsions are generally made out of two immiscible fluids like oil and water, one being dispersed in the second in the presence of surface-active compounds.They are used as intermediate or end products in a huge range of areas including the food, chemical, cosmetic, pharmaceutical, paint, and coating industries. Besides the broad domain of technological interest, emulsions are raising a variety of fundamental questions at the frontier between physics and chemistry. This book aims to give an overview of the most recent advances in emulsion science. The basic principles, covering aspects of emulsions from their preparation to their destruction, are presented in close relation to both the fundamental physics and the applications of these materials. The book is intended to help scientists and engineers in formulating new materials by giving them the basics of emulsion science.

  5. ICAMS: a new system for automated emulsion data acquisition and analysis

    International Nuclear Information System (INIS)

    Arthur, A.A.; Brown, W.L. Jr.; Friedlander, E.M.; Heckman, H.H.; Jones, R.W.; Karant, Y.J.; Turney, A.D.

    1984-01-01

    A general difficulty with visual techniques in high energy physics has been the relatively slow data-taking rate caused by the labor-intensive nature of the experiments and the resulting low statistics of the final data base. On the other hand, visual techniques, and especially research emulsion, have the intrinsic advantages of essentially complete 4π coverage of all charged particles from the target-, mid-, and projectile-rapidity regions. Emulsion has excellent charge resolution, since in one target/detector, charges of minimum ionizing tracks from charge 1 to charge 92 can be determined. With these intrinsic advantages of emulsion, it seemed reasonable to use modern data acquisition and reduction techniques to relieve the labor-intensive functions. The Interactive Computer Assisted Measurement System (ICAMS) is the answer to this. It is a distributed network system. The system has two major components, the central computer and individual data-taking stations, called Optical Data Stations (ODS). The central computer is a Digital Equipment Corporation PDP 11/23 with a 22-bit address space (of which 1 Mbyte is currently implemented) running under RSX-11M V4

  6. An alkyl polyglucoside-mixed emulsifier as stabilizer of emulsion systems: the influence of colloidal structure on emulsions skin hydration potential.

    Science.gov (United States)

    Savic, Snezana; Lukic, Milica; Jaksic, Ivana; Reichl, Stephan; Tamburic, Slobodanka; Müller-Goymann, Christel

    2011-06-01

    To be considered as a suitable vehicle for drugs/cosmetic actives, an emulsion system should have a number of desirable properties mainly dependent on surfactant used for its stabilization. In the current study, C(12-14) alkyl polyglucoside (APG)-mixed emulsifier of natural origin has been investigated in a series of binary (emulsifier concentration 10-25% (w/w)) and ternary systems with fixed emulsifier content (15% (w/w)) with or without glycerol. To elucidate the systems' colloidal structure the following physicochemical techniques were employed: polarization and transmission electron microscopy, X-ray diffraction (WAXD and SAXD), thermal analysis (DSC and TGA), complex rheological, pH, and conductivity measurements. Additionally, the emulsion vehicles' skin hydration potential was tested in vivo, on human skin under occlusion. In a series of binary systems with fixed emulsifier/water ratios ranging from 10/90 to 25/75 the predominance of a lamellar mesophase was found, changing its character from a liquid crystalline to a gel crystalline type. The same was observed in gel emulsions containing equal amounts of emulsifier and oil (15% (w/w)), but varying in glycerol content (0-25%). Different emulsion samples exhibited different water distribution modes in the structure, reflecting their rheological behavior and also their skin hydration capacity. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Radiation processing of polymer emulsion, (4)

    International Nuclear Information System (INIS)

    Makuuchi, Keizo; Katakai, Akio; Ito, Hiroshi; Hayakawa, Naohiro; Araki, Kunio

    1983-01-01

    Methyl methacrylate was polymerized in emulsion by Co-60 γ-rays below 19 deg C in a batch reactor by using sodium lauryl sulfate as emulsifier. The conversion-time curves of the polymerization system showed two rate regions, i.e., a fact conversion rate in early stage, and a much slower rate in latter stage. The change in rate occurred at about 70 % conversion. The molecular weight of product polymer decreased with increasing conversion during the course of polymerization in latter stage, in contrast to the behavior in early stage. The distribution of the monomer in emulsion in latter stage was evaluated by nuclear magnetic resonance technique. The decrease of the molecular weight with conversion is due to the radiation-induced degradation of product polymer accelerated by the monomers absorbed in the polymer particles. (author)

  8. Modification of natural leather by grafting emulsion copolymerization technique

    International Nuclear Information System (INIS)

    Badran, A.S.; Nasr, H.E.; El-Halawany, N.R.; Mohamed, W.S.

    2005-01-01

    Grafting emulsion copolymerization of methyl methacrylate (MMA) with butyl acrylate of different molar ratios onto natural leather with different molar ratios was carried out using developed redox initiation system of potassium persulphate (PPS) as an oxidizing agent and some sodium bisulphite adducts as reducing agent, as well as sodium dodecyl sulphate (SDS) was used as an anionic emulsifier. The grafted leather was characterized via FTIR, SEM and thermal gravimetric analysis. Moreover, the grafted leather was evaluated through water absorption, tensile strength, dyeing performance and hardness measurements. The obtained results revealed that the physical and mechanical properties of the modified leather were enhanced

  9. PHYSICAL AND CHEMICAL STABILITY ANALYSIS OF COSMETIC MULTI- PLE EMULSIONS LOADED WITH ASCORBYL PALMITATE AND SODIUM ASCORBYL PHOSPHATE SALTS.

    Science.gov (United States)

    Khan, Hira; Akhtar, Naveed; Ali, Atif; Khan, Haji M Shoaib; Sohail, Muhammad; Naeem, Muhammad; Nawaz, Zarqa

    2016-09-01

    Stability of hydrophilic and lipophilic vitamin C derivatives for quenching synergistic antioxidant activities and to treat oxidative related diseases is a major issue. This study was aimed to encapsulate hydrophilic and lipophilic vitamin C derivatives (ascorbyl palmitate and sodium ascorbyl phosphate) as functional ingredients in a newly formulated multiple emulsion of the W//W type to attain the synergistic antioxidant effects and the resultant system's long term physical and chemical stability. Several multiple emulsions using the same concentration of emulsifiers but different concentrations of ascorbyl palmitate and sodium ascorbyl phosphate were developed. Three finally selected multiple emulsions (ME₁, ME₂ and ME₃) were evaluated for physical stability in terms of rheology, microscopy, conductivity, pH, and organoleptic characteristics under different storage conditions for 3 months. Chemical stability was determined by HPLC on Sykam GmbH HPLC system (Germany), equipped with a variable UV detector. Results showed that at accelerated storage conditions all the three multiple emulsions had shear thinning behavior of varying shear stress with no influence of location of functional ingredients in a carrier system. Conductivity values increased and pH values remained within the skin pH range for 3 months. Microscopic analysis showed an increase in globule size with the passage of time, especially at higher temperatures while decreased at low temperatures. Centrifugation test did not cause phase separation till the 45th day, but little effects after 2 months. Chemical stability analysis by HPLC at the end of 3 months showed that ascorbyl palmitate and sodium ascorbyl phosphate were almost stable in all multiple emulsions with no influence of their location in a carrier system. Multiple emulsions were found a stable carrier for hydrophilic and lipophilic vitamin C derivatives to enhance their desired effects. Considering that many topical formulations

  10. Emulsion characteristics, chemical and textural properties of meat systems produced with double emulsions as beef fat replacers.

    Science.gov (United States)

    Serdaroğlu, Meltem; Öztürk, Burcu; Urgu, Müge

    2016-07-01

    In recent years, double emulsions are stated to have a promising potential in low-fat food production, however, there are very few studies on their possible applications in meat matrices. We aimed to investigate the quality of beef emulsion systems in which beef fat was totally replaced by double emulsions (W1/O/W2) prepared with olive oil and sodium caseinate (SC) by two-step emulsification procedure. Incorporation of W1/O/W2 emulsion resulted in reduced lipid, increased protein content, and modified fatty acid composition. W1/O/W2 emulsion treatments had lower jelly and fat separation, higher water-holding capacity and higher emulsion stability than control samples with beef fat. Increased concentrations of W1/O/W2 emulsions resulted in significant changes in texture parameters. TBA values were lower in W1/O/W2 emulsion treatments than control treatment after 60days of storage. In conclusion, our study confirms that double emulsions had promising impacts on modifying fatty acid composition and developing both technologically and oxidatively stable beef emulsion systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Asphalt emulsion; Asphalt nyuzai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Toa Doro Kogyo Co. Ltd., Tokyo (Japan)

    1994-12-28

    The emulsification, manufacture, type, applications, etc. of asphalt emulsion were introduced. The emulsification of asphalt is obtained by mixing heated asphalt into an emulsification liquid where emulsifier is added to water and then agitating it. The emulsifier has both hydrophilic and lipophilic parts in the same molecule, prevents collision between asphalt particles after being arranged properly on the surface of asphalt particles, and prevent separation into water and asphalt. The emulsion is available for penetration and for mixing depending on applications and can be classified into cation emulsion, anion emulsion, and nonionic emulsion according to the property. The emulsion is mainly applied to road pavement, reaching approximately 90 % of the total manufactured emulsion. It is also used for other areas such as the filler of a slab race of each bullet train of Sanyo, Tohoku, and Jyoetsu and is also applied to the formation of a water-proof layer by spraying a high-concentration emulsion with rubber, agricultural water channels using asphalt emulsion and nonwoven cloth, etc. in civil engineering and agricultural fields. 2 refs., 13 figs., 8 tabs.

  12. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles

    Science.gov (United States)

    Vengsarkar, Pranav S.; Roberts, Christopher B.

    2014-10-01

    Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic-lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20-40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.

  13. The identification method of the nuclear fragments in emulsions

    International Nuclear Information System (INIS)

    Jipa, Alexandru; Ocheseanu, Silvia; Caramarcu, Costin; Calin, Marius; Constantin, Florin; Stan, Emil

    2003-01-01

    The visualization detectors have been successfully used from the beginning of the study of the relativistic nuclear collisions. One of these detectors used in such experiments is the nuclear emulsion. To increase the speed of the passage from pictures to experimental data different methods and tools have been proposed during the time. For identifying the nuclear fragments obtained in the relativistic radioactive beams multiple layers of nuclear emulsions have been exposed in experiments performed at the Synchrophasotron from the JINR Dubna (BECQUEREL Collaboration). The nuclear fragments have been identified using PAVICOM scanning and measuring system. In the present work an identification method based on a real time image processing machine and a reconstruction algorithm based on special conformal transforms is proposed. The results obtained by this method are compared with those obtained using PAVICOM device. Because in this study only pictures have been used, not initial nuclear emulsions, some difficulties in the identification of the nuclear fragments with higher polar angles can appear. Generally, comparable results have been obtained. The authors thank Dr. Pavel Zarubin from JINR Dubna, Laboratory of High Energy Physics, and Dr. Maria Haiduc, Institute of Space Sciences Bucharest-Magurele, for the pictures of the nuclear emulsions exposed in these experiments. (authors)

  14. The separation of stable water-in-oil emulsions

    International Nuclear Information System (INIS)

    Velicogna, D.; Koundakjiian, A.; Beausejour, I.

    1993-01-01

    Stable oil-in-water emulsions are a major problem in the recovery of spilled oils. Such emulsions can contain as little as 10% oil and can have properties very different from the original oils, making their storage and disposal difficult. These problems have led to experiments testing the feasibility of a process for separating these stable emulsions into dischargeable water and reusable oil. The technique investigated involves use of a recyclable solvent to remove the oil and subsequent distillation and/or membrane treatment to recover the oil and recycle the solvent. Results of preliminary tests show that stable water-in-oil emulsions can be separated quite readily with a regenerated solvent system. The only products of these systems are oil, which can be sent to a refinery, and dischargeable water. The recycled solvent can be used many times without any significant decrease in separation efficiency. In order to enhance the throughput of the system, a solvent vapor stripping method was invented. This stripping method also improves the quality of the products and the recycled solvent. Membrane methods can be used as a post-treatment for the produced water in order to achieve more adequate compliance with discharge limits. 4 refs., 3 figs., 5 tabs

  15. Synthesis of hydroxyapatite nanopowders by sol–gel emulsion ...

    Indian Academy of Sciences (India)

    Administrator

    gel emulsion technique, where the sol (water medium) is emulsified, in a support ... The sol was prepared by mixing a 2 M solution of calcium acetate dissolved in ... powder using a punch and die set and a KBr press (model. M-15) with a ...

  16. Formation of random and regular relief-phase structures on silver halide photographic emulsions by holographic methods

    Science.gov (United States)

    Ganzherli, N. M.; Gulyaev, S. N.; Gurin, A. S.; Kramushchenko, D. D.; Maurer, I. A.; Chernykh, D. F.

    2009-07-01

    The formation of diffusers and microlens rasters on silver halide emulsions by holographic methods is considered. Two techniques for converting amplitude holographic recording to relief-phase recording, selective curing and irradiation of the emulsion gelatin by short-wavelength UV radiation, are compared.

  17. Utilisation de la DSC pour la caractérisation de la stabilité des émulsions eau dans pétrole Use of the Dsc Technique to Characterize Water-In-Crude Oil Emulsions Stability

    Directory of Open Access Journals (Sweden)

    Dalmazzone C.

    2006-12-01

    Full Text Available La technique DSC (Differential Scanning Calorimetry a été appliquée à l'étude des émulsions eau dans pétrole, qui se forment naturellement après un déversement de pétrole en mer. Ces émulsions, également appelées mousses au chocolat , peuvent contenir de 50 à 80% d'eau et se présentent souvent sous la forme d'un produit visqueux, difficile à récupérer mécaniquement, à traiter ou à brûler. Il est par conséquent important de pouvoir estimer leur stabilité pour optimiser le choix du traitement. Un grand nombre de techniques, généralement fondées sur l'analyse de la distribution de tailles de gouttes, peuvent être utilisées pour estimer la stabilité d'une émulsion. Malheureusement, la plupart ne sont pas adaptées à l'étude des émulsions eau dans huile opaques. La méthode la plus utilisée pour caractériser la stabilité de ce type d'émulsions est le bottle test. Elle consiste à mesurer la séparation de phases en fonction du temps. Ce test est la source d'une quantité d'informations appréciables quant à la stabilité de l'émulsion et à la qualité de la phase aqueuse séparée, mais il reste très empirique. La technique DSC est généralement utilisée pour déterminer la composition des émulsions eau dans huile, car elle permet de distinguer l'eau libre de l'eau émulsifiée. Cette étude a montré qu'il s'agit d'une technique très utile qui permet à la fois l'étude de l'évolution de la taille des gouttes dans l'émulsion, et une détermination précise de la quantité d'eau. The DSC technique (Differential Scanning Calorimetry was applied to the study of water-in-crude oil emulsions, which naturally form after an oil spill. The resulting emulsions contain between 50 and 80% seawater and they are often heavy materials, hard to recover mechanically, treat or burn. It is therefore important to assess their stability in order to optimize their treatments. A great variety of techniques are available for

  18. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    Science.gov (United States)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Characterization of flaxseed oil emulsions.

    Science.gov (United States)

    Lee, Pei-En; Choo, Wee-Sim

    2015-07-01

    The emulsifying capacity of surfactants (polysorbate 20, polysorbate 80 and soy lecithin) and proteins (soy protein isolate and whey protein isolate) in flaxseed oil was measured based on 1 % (w/w) of emulsifier. Surfactants showed significantly higher emulsifying capacity compared to the proteins (soy protein isolate and whey protein isolate) in flaxseed oil. The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a mixer was ranked in the following order: 1,000 rpm (58 min) ≈ 1,000 rpm (29 min) ≈ 2,000 rpm (35 min) >2,000 rpm (17.5 min). The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a homogenizer (Ultra Turrax) was independent of the speed and mixing time. The mean particle size of the flaxseed oil emulsions prepared using the two mixing devices ranged from 23.99 ± 1.34 μm to 47.22 ± 1.99 μm where else the particle size distribution and microstructure of the flaxseed oil emulsions demonstrated using microscopic imaging were quite similar. The flaxseed oil emulsions had a similar apparent viscosity and exhibited shear thinning (pseudoplastic) behavior. The flaxseed oil emulsions had L* value above 70 and was in the red-yellow color region (positive a* and b* values).

  20. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    Science.gov (United States)

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Investigation the physicochemical properties and stability of w/o emulsion

    International Nuclear Information System (INIS)

    Iqbal, S.; Baloch, M.K.; Hameed, G.

    2014-01-01

    The study aims to investigate the stability of W/O emulsions with respect to coalescence time. The various concentrations of water were dispersed in oil phase (soybean oil). The compositions of organic and aqueous phases were varied by adding emulsifier (Monoglyceride), sodium chloride and thickening agent (mango's pulp). The technique employed for the mixing of two phases was homogenization. The Emulsion Stability Index (ESI), Viscosity changes, separation of organic and aqueous phases as a function of storage time have been studied. It has been found that monoglyceride increases the stability and decreases the emulsion stability index (ESI) and also decreases the viscosity changes with storage time while electrolytes and mango's pulp encourage the coalescence process and enhance the instability of the system. On the other hand the system that contained all the organic and aqueous ingredients showed high stability. (author)

  2. Hot-wire ignition of AN-based emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, Richard; Goldthorp, Sandra; Badeen, Christopher M. [Canadian Explosives Research Laboratory, Natural Resources Canada, Ottawa, Ontario, K1A 0G1 (Canada); Chan, Sek Kwan [Orica Canada Inc., Brownsburg-Chatham, Quebec (Canada)

    2008-12-15

    Emulsions based on ammonium nitrate (AN) and water locally ignited by a heat source do not undergo sustained combustion when the pressure is lower than some threshold value usually called the Minimum Burning Pressure (MBP). This concept is now being used by some manufacturers as a basis of safety. However, before a technique to reliably measure MBP values can be designed, one must have a better understanding of the ignition mechanism. Clearly, this is required to avoid under ignitions which could lead to the erroneous interpretation of failures to ignite as failures to propagate. In the present work, facilities to prepare and characterize emulsions were implemented at the Canadian Explosives Research Laboratory. A calibrated hot-wire ignition system operated in a high-pressure vessel was also built. The system was used to study the ignition characteristics of five emulsion formulations as a function of pressure and ignition source current. It was found that these mixtures exhibit complicated pre-ignition stages and that the appearance of endotherms when the pressure is lowered below some threshold value correlates with the MBP. Thermal conductivity measurements using this hot-wire system are also reported. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  3. Synthesis of polyanthranilic acid–Au nanocomposites by emulsion ...

    Indian Academy of Sciences (India)

    Polyanthranilic acid (PANA) and polyanthranilic acid–gold (PANA–Au) nanocomposites have been synthesized through emulsion polymerization technique. Use of gold chloride as an oxidant for anthranilic acid not only provides a new route for chemical synthesis of PANA, but also explores a facile method for the formation ...

  4. High-speed particle tracking in nuclear emulsion by last-generation automatic microscopes

    International Nuclear Information System (INIS)

    Armenise, N.; De Serio, M.; Ieva, M.; Muciaccia, M.T.; Pastore, A.; Simone, S.; Damet, J.; Kreslo, I.; Savvinov, N.; Waelchli, T.; Consiglio, L.; Cozzi, M.; Di Ferdinando, D.; Esposito, L.S.; Giacomelli, G.; Giorgini, M.; Mandrioli, G.; Patrizii, L.; Sioli, M.; Sirri, G.; Arrabito, L.; Laktineh, I.; Royole-Degieux, P.; Buontempo, S.; D'Ambrosio, N.; De Lellis, G.; De Rosa, G.; Di Capua, F.; Coppola, D.; Formisano, F.; Marotta, A.; Migliozzi, P.; Pistillo, C.; Scotto Lavina, L.; Sorrentino, G.; Strolin, P.; Tioukov, V.; Juget, F.; Hauger, M.; Rosa, G.; Barbuto, E.; Bozza, C.; Grella, G.; Romano, G.; Sirignano, C.

    2005-01-01

    The technique of nuclear emulsions for high-energy physics experiments is being revived, thanks to the remarkable progress in measurement automation achieved in the past years. The present paper describes the features and performances of the European Scanning System, a last-generation automatic microscope working at a scanning speed of 20cm 2 /h. The system has been developed in the framework of the OPERA experiment, designed to unambigously detect ν μ ->ν τ oscillations in nuclear emulsions

  5. Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Moradi

    2011-07-01

    Full Text Available Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require adjustments of water chemistry, mainly by lowering the ionic strength of the solution or by decreasing hardness. The decreased ionic strength of EOR solutions can give rise to more stable water-in-oil emulsions, which are speculated to improve mobility ratio between the injectant and the displaced oil. The first step toward understanding the connection between the emulsions and EOR mechanisms is to show that EOR conditions, such as salinity and hardness requirements, among others, are conducive to stabilizing emulsions. In order to do this, adequate stability proxies are required. This paper reviews commonly used emulsion stability proxies and explains the advantages and disadvantage of methods reviewed. This paper also reviews aqueous-based EOR processes with focus on heavy oil to contextualize in-situ emulsion stabilization conditions. This context sets the basis for comparison of emulsion stability proxies.

  6. A Comparative Study of the Physicochemical Properties of a Virgin Coconut Oil Emulsion and Commercial Food Supplement Emulsions

    Directory of Open Access Journals (Sweden)

    Yih Phing Khor

    2014-07-01

    Full Text Available Food manufacturers are interested in developing emulsion-based products into nutritional foods by using beneficial oils, such as fish oil and virgin coconut oil (VCO. In this study, the physicochemical properties of a VCO oil-in-water emulsion was investigated and compared to other commercial oil-in-water emulsion products (C1, C2, C3, and C4. C3 exhibited the smallest droplet size of 3.25 µm. The pH for the emulsion samples ranged from 2.52 to 4.38 and thus were categorised as acidic. In a texture analysis, C2 was described as the most firm, very adhesive and cohesive, as well as having high compressibility properties. From a rheological viewpoint, all the emulsion samples exhibited non-Newtonian behaviour, which manifested as a shear-thinning property. The G'G'' crossover illustrated by the VCO emulsion in the amplitude sweep graph but not the other commercial samples illustrated that the VCO emulsion had a better mouthfeel. In this context, the VCO emulsion yielded the highest zeta potential (64.86 mV, which was attributed to its strong repulsive forces, leading to a good dispersion system. C2 comprised the highest percentage of fat among all emulsion samples, followed by the VCO emulsion, with 18.44% and 6.59%, respectively.

  7. A simple and low-cost fully 3D-printed non-planar emulsion generator

    KAUST Repository

    Zhang, Jiaming

    2015-12-23

    Droplet-based microfluidic devices provide a powerful platform for material, chemical and biological applications based on droplet templates. The technique traditionally utilized to fabricate microfluidic emulsion generators, i.e. soft-lithography, is complex and expensive for producing three-dimensional (3D) structures. The emergent 3D printing technology provides an attractive alternative due to its simplicity and low-cost. Recently a handful of studies have already demonstrated droplet production through 3D-printed microfluidic devices. However, these devices invariably use purely two-dimensional (2D) flow structures. Herein we apply 3D printing technology to fabricate simple and low-cost 3D miniaturized fluidic devices for droplet generation (single emulsion) and droplet-in-droplet (double emulsion) without need for surface treatment of the channel walls. This is accomplished by varying the channel diameters at the junction, so the inner liquid does not touch the outer walls. This 3D-printed emulsion generator has been successfully tested over a range of conditions. We also formulate and demonstrate, for the first time, uniform scaling laws for the emulsion drop sizes generated in different regimes, by incorporating the dynamic contact angle effects during the drop formation. Magnetically responsive microspheres are also produced with our emulsion templates, demonstrating the potential applications of this 3D emulsion generator in chemical and material engineering.

  8. Study of v interactions and background estimation in the OPERA emulsion film detector

    CERN Document Server

    Janicskó-Csáthy, József

    The OPERA (Oscillation Project with Emulsion tRacking Apparatus ) experiment or CNGS1 was approved in 2001 by CERN and presently is under construction. Data-taking is expected to start in 2006. The experiment is designated to the νμ  ντ oscillation search. OPERA is a hybrid detector comprising a number of electronic detectors and a specially designed nuclear emulsion stack interlaced with lead plates. The total target mass of the detector will be about 1.8 kt. This impressive mass needed for neutrino detection is combined with an even more impressive spatial resolution of about a m , characteristic of the nuclear emulsion technique. The detection of ντ is based on the observation of the decay of the τ lepton. The fine grained structure of nuclear emulsions offers the possibility to directly observe such a decay and by the means of kinematical analysis can be clearly separated from background events. Nuclear emulsions will be produced and processed in industrial quantities and the readout will be don...

  9. Kinetics of Crystallization in Polydisperse Emulsions.

    Science.gov (United States)

    Kashchiev; Kaneko; Sato

    1998-12-01

    The kinetics of isothermal crystallization of the droplets in polydisperse emulsions are analyzed under the condition that each emulsion droplet gives birth to one nucleus only. Expressions are derived for the time dependences of the number of crystallized droplets and the fraction of crystallized droplet volume in the cases of either volume or surface nucleation of the crystals in the droplets. The time for half-crystallization is determined as a function of the emulsion polydispersity, and it is found that the more polydisperse the emulsion, the shorter this time in comparison with that for the corresponding monodisperse emulsion. Formulae are also obtained for the change of the velocity Kv of propagation of ultrasound through polydisperse emulsions during the time t of isothermal crystallization of the droplets in them. Good agreement is found between theory and experiment in an analysis of available Kv(t) data for crystallization in polydisperse palm oil-in-water and n-hexadecane-in-water emulsions. The results obtained are directly applicable to devitrification and polymorphic transformation of disperse solid phases. Copyright 1998 Academic Press.

  10. Steroidal Compounds in Commercial Parenteral Lipid Emulsions

    Science.gov (United States)

    Xu, Zhidong; Harvey, Kevin A.; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P.; Siddiqui, Rafat A.

    2012-01-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction. PMID:23016123

  11. Steroidal compounds in commercial parenteral lipid emulsions.

    Science.gov (United States)

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P; Siddiqui, Rafat A

    2012-08-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn(®) II, Liposyn(®) III, Lipofundin(®) MCT, Lipofundin(®) N, Structolipid(®), Intralipid(®), Ivelip(®) and ClinOleic(®). Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction.

  12. Electrochemically driven emulsion inversion

    Science.gov (United States)

    Johans, Christoffer; Kontturi, Kyösti

    2007-09-01

    It is shown that emulsions stabilized by ionic surfactants can be inverted by controlling the electrical potential across the oil-water interface. The potential dependent partitioning of sodium dodecyl sulfate (SDS) was studied by cyclic voltammetry at the 1,2-dichlorobenzene|water interface. In the emulsion the potential control was achieved by using a potential-determining salt. The inversion of a 1,2-dichlorobenzene-in-water (O/W) emulsion stabilized by SDS was followed by conductometry as a function of added tetrapropylammonium chloride. A sudden drop in conductivity was observed, indicating the change of the continuous phase from water to 1,2-dichlorobenzene, i.e. a water-in-1,2-dichlorobenzene emulsion was formed. The inversion potential is well in accordance with that predicted by the hydrophilic-lipophilic deviation if the interfacial potential is appropriately accounted for.

  13. Fast helium production in interactions of 3.7 A GeV 24Mg with emulsion nuclei

    International Nuclear Information System (INIS)

    Jilany, M.A.

    2004-01-01

    We have studied the properties of the relativistic helium fragments emitted from the projectile in the interactions of 24 Mg ions accelerated at an energy of 3.7 A GeV with emulsion nuclei. The total, partial nuclear cross-sections and production rates of helium fragmentation channels in relativistic nucleus-nucleus collisions and their dependence on the mass and energy of the incident projectile nucleus are investigated. The yields of multiple helium projectile fragments disrupted from the interactions of 24 Mg projectile nuclei with hydrogen H, light CNO and heavy AgBr groups of target emulsion nuclei are discussed and they indicate that the breakup mechanism of the projectile seems to be independent of the target mass. Limiting fragmentation behavior of fast-moving helium fragments is observed in both the projectile and target nuclei. The multiplicity distributions of helium projectile fragments emitted in the interactions of 24 Mg projectile nuclei with the different target nuclei of the emulsion are well described by the KNO scaling presentation. The mean multiplicities of the different charged secondary particles, normally defined shower, grey and black (left angle n s right angle, left angle n g right angle and left angle n b right angle) emitted in the interactions of 3.7 A GeV 24 Mg with the different groups of emulsion nuclei at different ranges of projectile fragments are decreasing when the number of He fragments stripped from projectile increases. These values of left angle n i right angle (i=s, g, band h particles) in the events where the emission of fast helium fragments were accompanied by heavy fragments having Z≥3 seem to be constant as the He multiplicity increases, and exhibit a behavior independent of the He multiplicity. (orig.)

  14. Study of the effects induced by lead on the emulsion films of the OPERA experiment

    CERN Document Server

    Anokhina, A.; Ariga, A.; Arrabito, L.; Autiero, D.; Badertscher, A.; Bay, F.; Bergnoli, A.; Bersani Greggio, F.; Besnier, M.; Bick, D.; Bozza, C.; Brugiere, T.; Brugnera, R.; Brunetti, G.; Buontempo, S.; Carrara, E.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chon-Sen, N.; Chukanov, A.; Consiglio, L.; Cozzi, M.; Dal Corso, F.; D'Amato, G.; D'Ambrosio, N.; De Lellis, G.; Declais, Y.; De Serio, M.; Di Capua, F.; Di Ferdinando, D.; Di Giovanni, A.; Di Marco, N.; Di Troia, C.; Dmitrievski, S.; Dominjon, A.; Dracos, M.; Duchesneau, D.; Dulach, B.; Dusini, S.; Ebert, J.; Egorov, O.; Enikeev, R.; Ereditato, A.; Esposito, L.S.; Favier, J.; Felici, G.; Ferber, T.; Fini, R.; Franceschi, A.; Fukuda, T.; Fukushima, C.; Galkin, V.I.; Galkin, V.A.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Goellnitz, C.; Golubkov, D.; Gornoushkin, Y.; Grella, G.; Grianti, F.; Guler, M.; Gusev, G.; Gustavino, C.; Hagner, Caren; Hara, T.; Hierholzer, M.; Hiramatsu, S.; Hoshino, Kaoru; Ieva, M.; Jakovcic, K.; Janicsko Csathy, J.; Janutta, B.; Jollet, C.; Juget, F.; Kawai, T.; Kazuyama, M.; Kim, S.H.; Kimura, M.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Laktineh, I.; Lazzaro, C.; Lenkeit, J.; Ljubicic, A.; Longhin, Andrea; Lutter, G.; Manai, K.; Mandrioli, G.; Manzoor, S.; Marotta, A.; Marteau, J.; Matsuoka, H.; Mauri, N.; Meisel, F.; Meregaglia, A.; Messina, M.; Migliozzi, P.; Miyamoto, S.; Monacelli, P.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakamura, T.; Nakano, T.; Nikitina, V.; Niwa, K.; Nonoyama, Y.; Ogawa, S.; Osedlo, V.; Ossetski, D.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Publichenko, P.; Pupilli, F.; Roganova, T.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryazhskaya, O.; Ryzhikov, D.; Sato, Y.; Sato, O.; Saveliev, V.; Sazhina, G.; Schembri, A.; Scotto Lavina, L.; Shibuya, H.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strauss, T.; Strolin, Paolo Emilio; Sugonyaev, V.; Taira, Y.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Togo, V.; Tolun, P.; Tsarev, V.; Tufanli, S.; Ushida, N.; Valieri, C.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.L.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yoon, C.S.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.; Zimmermann, R.

    2008-01-01

    The OPERA neutrino oscillation experiment is based on the use of the Emulsion Cloud Chamber (ECC). In the OPERA ECC, nuclear emulsion films acting as very high precision tracking detectors are interleaved with lead plates providing a massive target for neutrino interactions. We report on studies related to the effects occurring from the contact between emulsion and lead. A low radioactivity lead is required in order to minimize the number of background tracks in emulsions and to achieve the required performance in the reconstruction of neutrino events. It was observed that adding other chemical elements to the lead, in order to improve the mechanical properties, may significantly increase the level of radioactivity on the emulsions. A detailed study was made in order to choose a lead alloy with good mechanical properties and an appropriate packing technique so as to have a low enough effective radioactivity.

  15. Monitoring emulsion homopolymerization reactions using FT-Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    M. M. Reis

    2005-03-01

    Full Text Available The present work describes a methodology for estimation of monomer concentration during homopolymerization reactions by Raman spectroscopy. The estimation is done using linear models based on two different approaches: a univariate approach and a multivariate approach (with principal component regression, PCR, or partial least squares regression, PLS. The linear models are fitted with data from spectra collected from synthetic samples, i.e., samples prepared by dispersing a known concentration of monomer in polymer emulsions. Homopolymerizations of butyl acrylate and of vinyl acetate were monitored by collecting samples from the reactor, and results show that the methodology is efficient for the model fitting and that Raman spectroscopy is a promising technique for on-line monitoring of the emulsion polymerization process.

  16. Lycopene in Beverage Emulsions: Optimizing Formulation Design and Processing Effects for Enhanced Delivery

    Directory of Open Access Journals (Sweden)

    Erika Meroni

    2018-02-01

    Full Text Available Lycopene is a desired ingredient in food formulations, yet its beneficial effects on human health remain largely underexploited due to its poor chemical stability and bioavailability. Oil-in-water emulsions may offer multiple advantages for the incorporation and delivery of this carotenoid species. Engineering and processing aspects for the development of emulsion-based delivery systems are of paramount importance for maintaining the structural integrity of lycopene. The selection of emulsifiers, pH, temperature, oil phase, particle size, homogenization conditions and presence of other antioxidants are major determinants for enhancing lycopene stability and delivery from a food emulsion. Process and formulation optimization of the delivery system is product-specific and should be tailored accordingly. Further research is required to better understand the underlying mechanisms of lycopene absorption by the human digestive system.

  17. Study on some characteristics of nuclear emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Yonglian, Liu; Jinqin, Han; Huichang, Liu [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1993-11-01

    The authors describe the variation of some characteristics of the nuclear emulsion such as sensitivity, fog density and latent image stability influenced by adding ascorbic acid into the finished emulsion N-4. A comparative study of latent image stability is made between Fuji ET-7B nuclear emulsion and authors' under different temperature and relative humidity. The result indicates that the addition of ascorbic acid obviously improves the latent image stability of the emulsion N-4. The Fuji ET-7B emulsion and the emulsion N-4 containing ascorbic acid have similar latent image fading quality at lower temperature while the Japanese sample does have better quality at room temperature.

  18. Steroidal Compounds in Commercial Parenteral Lipid Emulsions

    Directory of Open Access Journals (Sweden)

    Rafat A. Siddiqui

    2012-08-01

    Full Text Available Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction.

  19. Distribution of cyclosporine A in ocular tissues after topical administration of cyclosporine A cationic emulsions to pigmented rabbits.

    Science.gov (United States)

    Daull, Philippe; Lallemand, Frédéric; Philips, Betty; Lambert, Grégory; Buggage, Ronald; Garrigue, Jean-Sébastien

    2013-03-01

    The aim of this study was to compare the ocular and systemic distribution of cyclosporine A (CsA) in rabbits after the instillation of preservative-free CsA cationic and anionic emulsions. For the single-dose pharmacokinetic (PK) study, rabbits were instilled with 50 μL of the test material. For the multiple-dose PK study, rabbits were instilled twice daily with Restasis or once daily with NOVA22007 for 10 days. At each time point, the cornea, conjunctiva, and whole blood were harvested for CsA quantification. Ocular and systemic distribution were determined after 4 times daily instillations with 50 μL of 3H-CsA cationic and anionic emulsions for 7 days. Restasis was used as a reference in all studies. Single-dose PK data demonstrated that NOVA22007 0.1% and 0.05% delivered higher CsA concentrations to the cornea than Restasis [concentration maximum (C max): 2692, 1372, and 748 ng/g, respectively] and have a better exposition (area under the curve). Conjunctival Cmax values were 1914, 696, and 849 ng/g and area under the curve values were 3984, 2796, and 2515 ng/g · h, for either dose of the cationic emulsions and Restasis, respectively. The multiple-dose PK and the 3H-CsA distribution data demonstrated that the systemic distribution after repeated instillations was low and comparable for all emulsions. These data demonstrate that the CsA cationic emulsions were more effective than Restasis at delivering CsA to target tissues, thus confirming the potential advantage of cationic emulsions over anionic emulsions as vehicle for ocular drug delivery for the treatment of ocular surface diseases.

  20. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions.

    Science.gov (United States)

    Assadpour, Elham; Maghsoudlou, Yahya; Jafari, Seid-Mahdi; Ghorbani, Mohammad; Aalami, Mehran

    2016-05-01

    Due to susceptibility of folic acid like many other vitamins to environmental and processing conditions, it is necessary to protect it by highly efficient methods such as micro/nano-encapsulation. Our aim was to prepare and optimize real water in oil nano-emulsions containing folic acid by a low energy (spontaneous) emulsification technique so that the final product could be encapsulated within maltodextrin-whey protein double emulsions. A non ionic surfactant (Span 80) was used for making nano-emulsions at three dispersed phase/surfactant ratios of 0.2, 0.6, and 1.0. Folic acid content was 1.0, 2.0, and 3.0mg/mL of dispersed phase by a volume fraction of 5.0, 8.5, and 12%. The final optimum nano-emulsion formulation with 12% dispersed phase, a water to surfactant ratio of 0.9 and folic acid content of 3mg/mL in dispersed phase was encapsulated within maltodextrin-whey protein double emulsions. It was found that the emulsification time for preparing nano-emulsions was between 4 to 16 h based on formulation variables. Droplet size decreased at higher surfactant contents and final nano-emulsions had a droplet size<100 nm. Shear viscosity was higher for those formulations containing more surfactant. Our results revealed that spontaneous method could be used successfully for preparing stable W/O nano-emulsions containing folic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Organic Thin Films Deposited by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Fundamentals and Applications

    Science.gov (United States)

    Ge, Wangyao

    Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised. The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern

  2. Microfluidic methods to study emulsion formation

    NARCIS (Netherlands)

    Muijlwijk, Kelly

    2017-01-01

    Emulsions are dispersions of one liquid in another that are commonly used in various products, and methods such as high-pressure homogenisers and colloid mills are used to form emulsions. The size and size distribution of emulsion droplets are important for the final product properties and thus

  3. Modelling of Emulsion Flow in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [UAE University (United Arab Emirates); Farouq Ali, S.M. [UAE University (United Arab Emirates)

    1995-06-01

    Oil recovery methods predominantly involve emulsion formation. Oil recovery simulation requires the incorporation of emulsion characteristics and flow in porous media, in order to optimize oil recovery from petroleum reservoirs. This paper explored the nature and rheology of emulsions, and evaluated several models of flow of Newtonian and non-Newtonian fluids in porous media. It also summarized in situ emulsion formation in porous media. A model for both Newtonian and non-Newtonian emulsion fluid flow was proposed, with special emphasis on pore size, and tortuosity in the porous media.

  4. Nanocellulose-stabilized Pickering emulsions and their applications.

    Science.gov (United States)

    Fujisawa, Shuji; Togawa, Eiji; Kuroda, Katsushi

    2017-01-01

    Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g. chemical stability, biodegradability, biocompatibility, and renewability). In this review, the preparation and properties of nanocellulose-stabilized Pickering emulsions are summarized. We also provide future perspectives on their applications, such as drug delivery, food, and composite materials.

  5. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    International Nuclear Information System (INIS)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-01-01

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS_2(s) + 91NH_4NO_3(s) → 52NO(g) + 26SO_2(g) + 6Fe_2O_3(s) + 78NH_3(g) + 26N_2O(g) + 2FeSO_4(s) + 65H_2O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO_2, NH_3, SO_2 and N_2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  6. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhi-Xiang; Wang, Qian [School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013 (China); Fu, Xiao-Qi, E-mail: xzx19820708@163.com [School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 (China)

    2015-12-30

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS{sub 2}(s) + 91NH{sub 4}NO{sub 3}(s) → 52NO(g) + 26SO{sub 2}(g) + 6Fe{sub 2}O{sub 3}(s) + 78NH{sub 3}(g) + 26N{sub 2}O(g) + 2FeSO{sub 4}(s) + 65H{sub 2}O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO{sub 2}, NH{sub 3}, SO{sub 2} and N{sub 2}O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  7. Emulsion Polymerization of Etyl Acrylate: The Effect of Surfactant, Initiator Concentration and PolymerizationTechnique on Particle Size Distribution

    Directory of Open Access Journals (Sweden)

    Nitri Arinda

    2009-04-01

    Full Text Available Emulsion polymerization was conducted using ethyl acrylate monomer. Theeffect of sodium lauryl sulfate concentration, ammonium persulfate concentration, the various of polymerizationtechniques and feeding time to the conversion, particle size and its distribution were observed. The purpose of thisresearch is to obtain the optimum condition of ethyl acrylate homopolymer with particle size around 100 nm, to get theparticle size distribution monodisperse and to get solid content value of the experiment closed to its theoretical value.The optimum condition then could be applied in shell polymerization of core-shell polymers. The results of the researchshowed that semicontinuous technique obtained optimum sodium lauryl sulfate concentration at 20 CMC (criticalmicelle concentration and ammonium persulfate concentration is 3%. By using batch technique that the biggestparticle size is 123 nm with conversion 95.8% and monodisperse. The shorter of feeding time the more monomer ofethyl acrylate being polymerized, it is showed by the higher conversion up to 94.4% and the bigger particle size is107.9 nm.

  8. Studies of water-in-oil emulsions : testing of emulsion formation in OHMSETT

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.

    2001-01-01

    A study was conducted to determine the stability of water-in-oil emulsions in the OHMSETT tank facility. The results were then compared with previous laboratory studies which suggested that the stability of emulsions can be grouped into four categories, stable, unstable, meso-stable and entrained. It has been determined that entrained emulsions can retain oil by viscous forces long enough for interfacial agents, resins and asphaltenes to stabilize the droplets. This paper also described the difference in viscosity between the 4 categories of emulsion stability. The OHMSETT tests were conducted in two series of one week each. The first series of tests were conducted in July and involved 12 experiments on 2 different types of oils which were placed at varying thicknesses on the water. The second set of tests were conducted in November and involved 12 experiments on 6 oils. The rheological properties of the oils were measured and compared to the same oils undergoing emulsification in the laboratory. The oils and water-in-oil states produced were found to have analogous properties between the laboratory and the first set of tests at the OHMSETT facility. All the oils tested produced entrained water-in-oil states in both the laboratory and the test tank. The energy in the two test conditions was found to be similar, with the OHMSETT emulsions similar to one produced in the laboratory at high energies. The second series of tests at OHMSETT did not result in the expected water in-oil- states. This unexpected result was most likely due to the residual surfactant from an earlier dispersant experiment. The study showed that the conditions for emulsion formation are analogous in the OHMSETT tank and in the laboratory tests. The level of energy is considered to be the major variant. It was concluded that the energy levels between the laboratory mixing experiments and the OHMSETT is similar. It was shown that surfactants left over from dispersant testing inhibited the formation

  9. Food enrichment with marine phospholipid emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    marine PL emulsions with and without addition of fish oil. The oxidative stability of marine PL emulsions was significantly influenced by the chemical composition of marine PL used for emulsions preparation. For instance, emulsions with good oxidative stability could be obtained when using raw materials...... with high purity, low fish oil content and high PL, cholesterol and α-tocopherol content. In addition, non-enzymatic browning reactions may also affect the oxidative stability of the marine PL emulsion. These reactions included Strecker degradation and pyrrolization, and their occurrence were due......Many studies have shown that marine phospholipids (PL) provide more advantages than fish oil. They seem to have better bioavailability, better resistance towards oxidation and higher content of eicosapentaenoic acids and docosahexaenoic acids than fish oil, which essentially contains triglycerides...

  10. The role of lecithin degradation on the pH dependent stability of halofantrine encapsulated fat nano-emulsions.

    Science.gov (United States)

    Haidar, Iman; Harding, Ian H; Bowater, Ian C; Eldridge, Daniel S; Charman, William N

    2017-08-07

    We report on the successful incorporation of the antimalarial drug, halofantrine, into laboratory based soybean oil emulsions which were designed to mimic the commercially available parenteral fat emulsion, Intralipid ® . A high pH (minimum of pH 9, preferable pH of 11) was required for the drug laden emulsion to remain stable on storage and also to resist breaking under various stresses. Ageing of lecithin samples on storage was noted to result in degradation and a decrease in pH. We argue that this is the main reason for a similar decrease in pH for lecithin based emulsions and subsequent instability in drug laden emulsions. As expected, incorporation of the drug (halofantrine) resulted in lower stability. The (intensity weighted) particle size increased from 281nm for the drug free emulsion to 550nm following a loading of 1gL -1 of halofantrine, indicative of a lowering in stability and this was reflected in a shorter shelf life. Interestingly, incorporation of even higher concentrations of drug then resulted in better stability albeit never as stable as the drug free emulsion. We also report on unusual and complex surface tension behaviour for fresh lecithin where multiple critical concentration points were observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Energy spectra of fast neutrons by nuclear emulsion method

    International Nuclear Information System (INIS)

    Quaresma, A.A.

    1977-01-01

    An experimental method which uses nuclear emulsion plates to determine the energy spectrum of fission neutrons is described. By using this technique, we have obtained the energy distribution of neutrons from spontaneous fission of Cf 2 5 2 . The results are in good agreement with whose obtained previously by others authors who have used different detection techniques, and they are consistent with a Maxwellian distribution as expected by Weisskopf's nuclear evaporation theory. (author)

  12. Track following of Ξ"- hyperons in nuclear emulsion for the E07 experiment

    International Nuclear Information System (INIS)

    Mishina, Akihiro; Endo, Yoko; Hoshino, Kaoru

    2015-01-01

    The E07 experiment is expected to provide knowledge of S = -2 systems with ten times more statistics than that of the past E373 experiment. To achieve this in a reasonable time, an automated track following system is very important. This system consists of three techniques, 'emulsion surface detection', 'alignment of plate by plate connection with K"- beams' and 'followed track recognition in nuclear emulsion'. Ξ"- hyperon candidate tracks are followed from the entrance to the end point in the emulsion. If the system operates properly such that one track is processed in each plate within one minute, all Ξ"- candidate tracks can be followed successfully to their stopping points in a year. The development of softwares for the system is ongoing. (author)

  13. Heavy ion and hadron reactions in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.

    1979-04-01

    Recent results from heavy ion and hadron reactions in emulsion are reviewed. General properties of hadron-reaction multiplicities and their correlation to the production of recoiling protons are given. Properties of pseudo-rapidity distributions of shower-particles especially the particle production in the central region of pseudo-rapidity will be discussed. Non-peripheral heavy ion reactions are compared to recent participant-spectator model calculations. Very energetic cosmic ray events will be examined in the light of recent results from hadron-nucleus reactions. (author)

  14. Response of nuclear emulsions to ionizing radiations

    International Nuclear Information System (INIS)

    Katz, R.; Pinkerton, F.E.

    1975-01-01

    Heavy ion tracks in Ilford K-2 emulsion are simulated with a computer program which makes use of the delta-ray theory of track structure, and the special assumption that the response of this emulsion to gamma-rays is 8-or-more hit. The Ilford K-series of nuclear emulsions is produced from a parent stock called K.0 emulsion, sensitized to become K.1 to K.5, and desensitized to become K-1 to K-3. Our simulations demonstrate that the emulsions K.5 through K.0 to K-1 are 1-or-more hit detectors, while K-2 is an 8-or-more hit detector. We have no data for K-3 emulsion. It would appear that emulsions of intermediate hittedness might be produced by an intermediate desensitization, to mimic or match the RBE-LET variations of biological cells, perhaps to produce a ''rem-dosimeter''. In the K-2 emulsion no developable gains are produced by stopping H, He, and Li ions. The emulsion has ''threshold-like'' properties, resembling etchable track detectors. It should prove useful in the measurement of high LET dose in a strong low LET background, as for pions or neutrons. Since it can be expected to accumulate and repair ''sub-lethal damage'', to display the ion-kill and gamma-kill inactivation modes, the grain-count and track width regimes, it may serve to model biological effects. (auth)

  15. Structured triglyceride emulsions in parenteral nutrition.

    Science.gov (United States)

    Chambrier, C; Lauverjat, M; Bouletreau, P

    2006-08-01

    Over the past 3 decades, various concepts for IV fat emulsions (IVFE) have been developed. A randomized, structured-lipid emulsion based on an old technology has recently become available. This structured-lipid emulsion is produced by mixing medium-chain triglycerides and long-chain triglycerides, then allowing hydrolysis to form free fatty acids, followed by random transesterification of the fatty acids into mixed triglyceride molecules. Studies in animals have shown an improvement in nitrogen balance with the use of these lipid emulsions. Only 8 human clinical studies with these products have been performed. The results of these human clinical studies have been less promising than the animal studies; however, an improvement in nitrogen balance and lipid metabolism exceeds results associated with infusion of long-chain triglycerides (LCT) or a physical mixture of long-chain triglycerides and medium-chain triglycerides (LCT-MCT). Structured-lipid emulsion seems to induce less elevation in serum liver function values compared with standard IVFEs. In addition, structured-lipid emulsions have no detrimental effect on the reticuloendothelial system. Further studies are necessary in order to recommend the use of structured-lipid emulsions. The clinical community hopes that chemically defined structured triglycerides will make it possible to determine the distribution of specific fatty acids on a specific position on the glycerol core and therefore obtain specific activity for a specific clinical situation.

  16. Photoacoustic monitoring of inhomogeneous curing processes in polystyrene emulsions

    International Nuclear Information System (INIS)

    Vargas-Luna, M.; Gutierrez-Juarez, G.; Rodriguez-Vizcaino, J.M.; Varela-Nsjera, J.B.; Rodriguez-Palencia, J.M.; Bernal-Alvarado, J.; Sosa, M.; Alvarado-Gil, J.J.

    2002-01-01

    The time evolution of the inhomogeneous curing process of polystyrene emulsions is studied using a variant of the conventional photoacoustic (PA) technique. The thermal effusivity, as a function of time, is determined in order to monitor the sintering process of a styrene emulsion in different steps of the manufacturing procedure. PA measurements of thermal effusivity show a sigmoidal growth as a function of time during the curing process. The parameterization of these curves permits the determination of the characteristic curing time and velocity of the process. A decreasing of the curing time and an increasing curing velocity for the final steps of the manufacturing process are observed. The feasibility of our approach and its potentiality for the characterization of other curing process are discussed. (author)

  17. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process.

    Science.gov (United States)

    Hosseini, Seyede Marzieh; Hosseini, Hedayat; Mohammadifar, Mohammad Amin; Mortazavian, Amir Mohammad; Mohammadi, Abdorreza; Khosravi-Darani, Kianoosh; Shojaee-Aliabadi, Saeedeh; Dehghan, Solmaz; Khaksar, Ramin

    2013-11-01

    In this study, an o/w/o multiple emulsion/ionic gelation method was developed for production of alginate microparticles loaded with Satureja hortensis essential oil (SEO). It was found that the essential oil concentration has significant influence on encapsulation efficiency (EE), loading capacity (LC) and size of microparticles. The values of EE, LC and particle mean diameter were about 52-66%, 20-26%, and 47-117 μm, respectively, when the initial SEO content was 1-3% (v/v) .The essential oil-loaded microparticles were porous, as displayed by scanning electron micrograph. The presence of SEO in alginate microparticles was confirmed by Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) analyses. SEO-loaded microparticles showed good antioxidant (with DPPH radical scavenging activity of 40.7-73.5%) and antibacterial properties; this effect was greatly improved when the concentration of SEO was 3% (v/v). S. aureus was found to be the most sensitive bacterium to SEO and showed a highest inhibition zone of 304.37 mm(2) in the microparticles incorporated with 3% (v/v) SEO. In vitro release studies showed an initial burst release and followed by a slow release. In addition, the release of SEO from the microparticles followed Fickian diffusion with acceptable release. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. 3D confocal Raman imaging of oil-rich emulsion from enzyme-assisted aqueous extraction of extruded soybean powder.

    Science.gov (United States)

    Wu, Longkun; Wang, Limin; Qi, Baokun; Zhang, Xiaonan; Chen, Fusheng; Li, Yang; Sui, Xiaonan; Jiang, Lianzhou

    2018-05-30

    The understanding of the structure morphology of oil-rich emulsion from enzyme-assisted extraction processing (EAEP) was a critical step to break the oil-rich emulsion structure in order to recover oil. Albeit EAEP method has been applied as an alternative way to conventional solvent extraction method, the structure morphology of oil-rich emulsion was still unclear. The current study aimed to investigate the structure morphology of oil-rich emulsion from EAEP using 3D confocal Raman imaging technique. With increasing the enzymatic hydrolysis duration from 1 to 3 h, the stability of oil-rich emulsion was decreased as visualized in the 3D confocal Raman images that the protein and oil were mixed together. The subsequent Raman spectrum analysis further revealed that the decreased stability of oil-rich emulsion was due to the protein aggregations via SS bonds or protein-lipid interactions. The conformational transfer in protein indicated the formation of a compact structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparison of two methods for extraction of volatiles from marine PL emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Jacobsen, Charlotte

    2013-01-01

    The dynamic headspace (DHS) thermal desorption principle using Tenax GR tube, as well as the solid phase micro‐extraction (SPME) tool with carboxen/polydimethylsiloxane 50/30 µm CAR/PDMS SPME fiber, both coupled to GC/MS were implemented for the isolation and identification of both lipid...... and Strecker derived volatiles in marine phospholipids (PL) emulsions. Comparison of volatile extraction efficiency was made between the methods. For marine PL emulsions with a highly complex composition of volatiles headspace, a fiber saturation problem was encountered when using CAR/PDMS‐SPME for volatiles...... analysis. However, the CAR/PDMS‐SPME technique was efficient for lipid oxidation analysis in emulsions of less complex headspace. The SPME method extracted volatiles of lower molecular weights more efficient than the DHS method. On the other hand, DHS Tenax GR appeared to be more efficient in extracting...

  20. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    Science.gov (United States)

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion.

  1. Encapsulating acetaminophen into poly(L-lactide) microcapsules by solvent-evaporation technique in an O/W emulsion.

    Science.gov (United States)

    Lai, M-K; Tsiang, R C-C

    2004-05-01

    Microencapsulation of acetaminophen in poly(L-lactide) was studied using the oil-in-water emulsification solvent-evaporation technique. Methylene chloride was used as the dispersed medium and water as the dispersing medium. The thermogravimetric analysis and differential scanning calorimetry data indicated that the acetaminophen was encapsulated and uniformly distributed in the poly(L-lactide) microcapsules. The addition of either gelatin or polyvinyl alcohol as the protective colloid to the emulsion was found to have a significant impact on the resulting microcapsules. Increasing the concentration of either protective colloid in the dispersing medium increased the recovery and the release rate of acetaminophen, but reduced the particle size and loading efficiency of the microcapsules. Scanning electron micrographs manifested that all the microcapsules attained a nearly round shape. While gelatin imparted a smooth topography to the surface of the microcapsules, PVA made the surface of the microcapsules bumpy and humped.

  2. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    Science.gov (United States)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  3. A simple and low-cost fully 3D-printed non-planar emulsion generator

    KAUST Repository

    Zhang, Jiaming; Li, Erqiang; Aguirre-Pablo, Andres A.; Thoroddsen, Sigurdur T

    2015-01-01

    Droplet-based microfluidic devices provide a powerful platform for material, chemical and biological applications based on droplet templates. The technique traditionally utilized to fabricate microfluidic emulsion generators, i.e. soft

  4. Enhancing saltiness in emulsion based foods

    Directory of Open Access Journals (Sweden)

    Lad Mita

    2012-07-01

    Full Text Available Abstract Background The concept of enhancing saltiness perception in emulsions and a liquid food formulated with the emulsions (ambient vegetable soup through increasing salt concentration in the continuous phase while retaining the fat content of the (aqueous continuous product was evaluated. This was accomplished by increasing the droplet phase volume using duplex emulsion technology. Viscosity and droplet size distribution was measured. Saltiness evaluation was based on simple paired comparison testing (2-Alternate Forced Choice tests, BS ISO 5495:2007. Results Single and duplex emulsions and emulsion-based products had comparable mean oil droplet diameters (25 to 30 μm; however, viscosity of the duplex emulsion systems was considerably higher. Sensory assessment of saltiness of emulsion pairs (2AFC indicated duplex technology enhanced saltiness perception compared to a single emulsion product at the same salt content (6.3 g/100 g in both simple emulsions and the formulated food product (P = 0.0596 and 0.0004 respectively although assessors noted the increased viscosity of the duplex systems. The formulated food product also contained pea starch particles which may have aided product mixing with saliva and thus accelerated tastant transport to the taste buds. Lowering salt content in the duplex systems (to levels of aqueous phase salt concentration similar to the level in the single systems resulted in duplex systems being perceived as less salty than the single system. It appears that the higher viscosity of the duplex systems could not be “overruled” by enhanced mixing through increased droplet phase volume at lowered salt content. Conclusions The results showed that salt reduction may be possible despite the added technology of duplex systems increasing the overall measured viscosity of the product. The changes in viscosity behavior impact mouthfeel, which may be exploitable in addition to the contribution towards salt

  5. Emulsion properties of sunflower (Helianthus annuus) proteins

    NARCIS (Netherlands)

    Gonzalez-Perez, S.; Koningsveld, van G.A.; Vereijken, J.M.; Merck, K.B.; Gruppen, H.; Voragen, A.G.J.

    2005-01-01

    Emulsions were made with sunflower protein isolate (SI), helianthinin, and sunflower albumins (SFAs). Emulsion formation and stabilization were studied as a function of pH and ionic strength and after heat treatment of the proteins. The emulsions were characterized with respect to average droplet

  6. Rheology essentials of cosmetic and food emulsions

    CERN Document Server

    Brummer, Rüdiger

    2006-01-01

    Cosmetic emulsions exist today in many forms for a wide variety of applications, including face and hand creams for normal, dry or oily skin, body milks and lotions, as well as sun-block products. Keeping track of them and their properties is not always easy despite informative product names or partial names (e.g. hand or face cream) that clearly indicate their use and properties. This practical manual provides a detailed overview that describes the key properties and explains how to measure them using modern techniques. Written by an expert in flows and flow properties, it focuses on the application of rheological (flow) measurements to cosmetic and food emulsions and the correlation of these results with findings from other tests. Beginning with a brief history of rheology and some fundamental principles, the manual describes in detail the use of modern viscometers and rheometers, including concise explanations of the different available instruments. But the focus remains on practical everyday lab procedure...

  7. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2016-11-01

    Full Text Available Pickering emulsions with the use of particles as emulsifiers have been extensively used in scientific research and industrial production due to their edge in biocompatibility and stability compared with traditional emulsions. The control over Pickering emulsion stability and type plays a significant role in these applications. Among the present methods to build controllable Pickering emulsions, tuning the amphiphilicity of particles is comparatively effective and has attracted enormous attention. In this review, we highlight some recent advances in tuning the amphiphilicity of particles for controlling the stability and type of Pickering emulsions. The amphiphilicity of three types of particles including rigid particles, soft particles, and Janus particles are tailored by means of different mechanisms and discussed here in detail. The stabilization-destabilization interconversion and phase inversion of Pickering emulsions have been successfully achieved by changing the surface properties of these particles. This article provides a comprehensive review of controllable Pickering emulsions, which is expected to stimulate inspiration for designing and preparing novel Pickering emulsions, and ultimately directing the preparation of functional materials.

  8. Thermal Behavior and Free-Radical-Scavenging Activity of Phytic Acid Alone and Incorporated in Cosmetic Emulsions

    Directory of Open Access Journals (Sweden)

    André Luis Máximo Daneluti

    2015-07-01

    Full Text Available Phytic acid is a natural compound widely used as depigmenting agent in cosmetic emulsions. Few studies are available in the literature covering the stability and the antioxidating property of this substance, used alone or into emulsions. Therefore, the purpose of this work was to investigate the thermal behavior and antioxidant properties of phytic acid alone and into cosmetic emulsions. The thermal behavior of this substance was evaluated by thermogravimetry (TG/derivative thermogravimetry (DTG and differential scanning calorimetry (DSC and the free-radical-scavenging activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH. TG/DTG and DSC curves allowed evaluation of the thermal behavior of phytic acid. These results showed that the substance presented four stages of mass loss. Thermal decomposition of the material initiated at 150 °C. Thermal behavior of the cosmetic emulsions detected that the addition of phytic acid decreased the thermal stability of the system. DPPH free-radical-scavenging activity showed that phytic acid incorporated into emulsion had no antioxidant capacity compared to BHT. In summary, we concluded that the thermoanalytical techniques (TG and DSC were efficient and reliable in the characterization of phytic acid alone and incorporated into cosmetic emulsions.

  9. On the production of shower particles from light (Cno) and heavy (Ag Br) emulsion nuclei at Dubna energy

    International Nuclear Information System (INIS)

    EI-Nagdy, M.S.; Abdel-Waged, Kh; Abdel-Halim, S.M.; Khalil, E.I.

    2000-01-01

    The reaction cross sections for p, d, He, C, Mg and S beams with different chemical components of emulsion nuclei at 4.5 A GeV/c have been studied with high statistics, and were compared with the calculations according to Glauber model. The multiplicity distributions of shower produced particles from these interactions with light and heavy emulsion nuclei are analyzed in terms of the negative binomial and Poisson distribution laws

  10. Destabilization of emulsions by natural minerals.

    Science.gov (United States)

    Yuan, Songhu; Tong, Man; Wu, Gaoming

    2011-09-15

    This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Microemulsion systems applied to breakdown petroleum emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Neuma de Castro Dantas, Tereza; Avelino Dantas Neto, Afonso; Ferreira Moura, Everlane [Deptos de Quimica e Eng. Quimica, Universidade Federal do Rio Grande do Norte, Campus Universitario s/n, 59072.970, Natal/RN Campinas (Brazil)

    2001-12-29

    Microemulsion systems obtained using commercial surfactants with demulsifier and emulsion prevention properties have been employed to break down Brazilian crude water-in-oil (W/O) emulsions. These crude oils were supplied by the Brazilian oil company-PETROBRAS-and were characterized by the different Balance sheet of Sediment and Water (BSW) values of 48%, 36%, and 32%. The microemulsion systems formed in this study were composed of an aqueous phase (HCl 5.2% solution); an oil phase (toluene); a cosurfactant/surfactant (C/S) phase (isopropyl alcohol (C)/surfactants (S) with a ratio C/S of 9.0). The microemulsion efficiency to break down oil emulsions was evaluated by a direct contact method between the microemulsions and crude (W/O) emulsions. The Scheffe net statistical planning for mixtures was used to relate the component mass fractions to the relative breakdown of petroleum emulsions. The best composition of the microemulsion system for the complete breakdown of oil emulsions with high BSW values had the lowest C/S phase percentage.

  12. Breaking emulsions in Navy bilge collection and treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.C.; Patterson, R.L.

    1978-05-01

    A new bilge waste collection and treatment system, which serves as the collector, transporter, and gravity separator for ship's bilge waste, was used as a medium for the application of chemical demulsification techniques to emulsified oily wastes that are reluctant to separate into the constituent phases. Laboratory tests on 27 demulsifying agents showed that three cation active quaternary ammonium salts were acceptable. They were effective in breaking 5% oil-in-sea-water emulsions over a 20 hr period at 4/sup 0/-45/sup 0/C. The demuslifier concentration required to break the emulsions generally ranged from 1-2% at 4/sup 0/C to 0.1-0.2% at 45/sup 0/C. At 4/sup 0/C, the oil concentration in the separated water was in the 100-500 ppm range; at 45/sup 0/C, no more than 55 ppm was observed with most oil level readings of the order of 25 ppm or less. The demulsifiers were useful in breaking emulsions of Navy distillate oil, used motor oil, turbine oil, and bilge wastes containing unknown oil mixtures. A field demonstration supported the laboratory tests.

  13. Characteristics of Nano-emulsion for Cold Thermal Storage

    Science.gov (United States)

    Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi

    Phase change emulsion (PCE) is novel kind of heat storage and heat transfer fluids. It has characteristics as follows; greater apparent specific heat and higher heat transfer abilities in the phase change temperature range than conventional single phase heat transfer fluid. In this paper, a phase change emulsion, which has droplet diameter distribution of nanometer, were prepared. The Nano-emulsion was formed by low energy emulsification methods, as known the phase inversion temperature (PIT) method. Physical properties, such as viscosity, diameter and its distribution of emulsion were investigated. Especially, the relationships between preparation method and the concentration of surfactant have been discussed in detail. The results show that the viscosity of the Nano-emulsion is lower than the micro-emulsion, which was made by same mixing ratio of surfactant and concentration of phase change material. In addition, the Nano-emulsion clarified that stability was higher than microemulsions.

  14. Kinematical analysis with the Emulsion Cloud Chamber in the OPERA experiment

    CERN Document Server

    Di Capua, F

    2010-01-01

    The OPERA experiment aims at measuring for the first time neutrino oscil- lation in appearance mode through the detection of ni-tau in an almost pure niμ beam produced at CERN SPS (CNGS), 730 km far from the detector. The ni-tau appearance signal is identified through the measurement of the decay daughter particles of the " lepton produced in CC ni-tau interactions. Since the short-lived " particle has, at the energy of the beam, an average decay length shorter than a 1 mm, a micrometric detection resolution is needed. The OPERA appara- tus is hybrid, using nuclear emulsion as high precision tracker and electronic detectors for the time stamp, event localization in the target and muon recon- struction. The Emulsion Cloud Chamber technique fulfils the requirement of a microscopic resolution together with a large target mass. The kinematical analysis allowed by this technique is described.

  15. Multiple-energy Techniques in Industrial Computerized Tomography

    Science.gov (United States)

    Schneberk, D.; Martz, H.; Azevedo, S.

    1990-08-01

    Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.

  16. W/O Emulsions in High Electric Fields as Studied by Means of Time Domain Dielectric Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Foerdedal, Harald

    1995-11-01

    Since oil and brine coexist in the oil reservoirs, the crude oil produced contains free and emulsified water. The type of emulsion formed, water-in-oil or vice versa, generally depends on the amounts of water and oil before mixing. However, the presence of stabilisers, which occur naturally in crude oil, is also of major importance. It is found that dielectric spectroscopy is an appropriate experimental technique for investigating water-in-oil emulsion. When the instrumentation is equipped with an external power supply, information about the coalescence process can be obtained when the critical electric field is approached. Two distinctly different behaviours are observed. In model emulsions stabilised by commercial liquid surfactants a decrease in the static permittivity is observed as the electric field is applied. On the other hand, model emulsions stabilised by indigenous surfactants extracted from crude oils show an increase in the static permittivity as they are exposed to the external electric field. A quantitative parameter is derived for the emulsion stability. The value of the critical electric field is found to be sensitive to changes in the interfacial conditions, and multivariate analysis proves to be suitable for obtaining information about the general trends of variables on the emulsion stability. The stability of emulsions depends on several parameters, such as the amount and properties of the phases, the properties of the stabiliser, etc. Multivariate analysis reveals what variables are most important in characterising the stability/instability of emulsions.

  17. Extending temporary storage capacity with emulsion breakers

    International Nuclear Information System (INIS)

    Buist, I.; Guarino, A.; DeVitis, D.; Nolan, K.; Lewis, A.; Smith, B.; Lane, J.

    2002-01-01

    The use of emulsion breakers injected into an oil spill recovery system was examined in both laboratory testing and at the OHMSETT test facility. The tests were designed to assess the injection/mixing/settling regimes needed for optimum water-removal performance from a meso-stable water-in-oil emulsion with an oil spill demulsifier. Different types of injection locations and mixing technologies were examined, including skimmer heads, cargo lines, tank inlets, as well as static in-line and mechanical technologies. During laboratory testing, water-in-oil emulsions and free water was pumped through various lengths of piping loops, an in-line mixer and 8 settling tanks. Following the injection of a demulsifier, the fluid was decanted to observe the emulsion breaking. At the OHMSETT test facility, a Desmi Terminator skimmer recovered the same emulsion from a polluted water surface. Different slick thicknesses, wave heights and recovery rates were used. A demulsifier was also injected into the recovered fluid which was allowed to separate in recovery tanks. The demulsifier efficiency was then measured. It was determined that the demulsifier significantly reduced the volume of water in the recovery tanks and the water content of the remaining emulsion. If free water content was greater than 60 per cent, then the effect of the surfactant was greatly reduced. If no free water was present, the level of turbulence was insufficient to promote emulsion breaking. More than 33 per cent free water content is needed to reduce the bulk viscosity of the fluid and to promote emulsion breaking. The degree of emulsion breaking also increased with increasing mixing energy. 10 refs., 5 tabs., 8 figs

  18. The comparison of oxidative thermokinetics between emulsion and microemulsion diesel fuel

    International Nuclear Information System (INIS)

    Leng, Lijian; Yuan, Xingzhong; Zeng, Guangming; Wang, Hou; Huang, Huajun; Chen, Xiaohong

    2015-01-01

    Highlights: • Microemulsion fuel (>90 days) was much more stable than emulsion (≈2 days). • Microemulsification decreased activation energy of the fuel system by 5 kJ mol −1 . • Emulsification increased activation energy of the fuel system by 15 kJ mol −1 . • Microemulsification was more competitive for fuel upgrading than emulsification. - Abstract: Water fuel emulsion has been widely studied with the advantages of saving energy, enhancing engine torque, improving engine performance, and reducing the pollutant emissions. However, it has unfavorable disadvantages such as phase separation and long ignition delay. Water fuel microemulsion with rhamnolipid as the surfactant was formed in this study and characterized in comparison to water fuel emulsion. Water fuel microemulsion was thermodynamically stable without phase separation after 90 days vs. the milky-white emulsion fuel, separated within 2 days. In the thermogravimetric analysis, the TG and DTG curves were shifted to higher temperatures as the increment of heating rate. However, the shift for emulsion at 40 K min −1 was inconspicuous, which implies the reduction in heat transfer, mass transfer, and vaporization rates and further the lengthened ignition delay upon combustion in diesel engine. The activation energies (E a ) predicted by Ozawa–Flynn–Wall (OFW), Kissinger–Akhira–Sunose (KAS), and Starink’s methods indicate that the formation of microemulsion could decrease the activation energy of the fuel by about 5 kJ mol −1 , while the formation of emulsion would increase by 15 kJ mol −1 . The lower activation energy of microemulsion fuel is an indication of easy ignition or shortened ignition delay. Thus, microemulsification may be a more competitive technique for fuel upgrading compared to emulsification

  19. Cleaning fluid emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Prikryl, J; Kotyza, R; Krulikovsky, J; Mjartan, V; Valisova, I

    1981-09-15

    Composition of cleaning fluid emulsion are presented for drilling small diameter wells in clay soils, at high drill bit rotation velocity. The emulsions have lubricating properties and the abilty to improve stability of the drilled soil. The given fluids have a high fatty acid content with 12-24 carbon atoms in a single molecule, with a predominance of resinous acids 1-5% in mass, and having been emulsified in water or clay suspension without additives, or in a clay suspension with high-molecular polymer additives (glycobate cellulose compounds and/or polysaccharides, and/or their derivatives) in an amount of 0.1-3% per mass; thinning agents - huminite or lignite compounds in the amount of 0.01 to 0.5% in mass; weighting material - barite or lime 0.01 to 50% per mass; medium stabilizers - organic poly-electrolyte with polyacrylate in the amount of 0.05 to 2% in mass, or alkaline chloride/alkaline-ground metals 1-10% per mass. A cleaning emulsion fluid was prepared in the laboratory according to the given method. Add 3 kg tall oil to a solution of 1 kg K/sub 2/CO/sub 3/ per 100 l of water. Dynamic viscosity was equal to 1.4 x 10-/sup 3/ Pa/s. When drilling in compacted clay soils, when the emulsions require improved stability, it is necessary to add the maximum amount of tall oil whose molecules are absorbed by the clay soil and increase its durability.

  20. Green polyurethane synthesis by emulsion technique: a magnetic composite for oil spill removal

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Raphael Maria Dias da; Hungerbühler, Gabriela; Saraiva, Thiago; De Jong, Gabriel; Moraes, Rafael Silva; Ferreira, Luciana Spinelli; Souza Junior, Fernando Gomes de, E-mail: fgsj@ufrj.br [Universidade Federal do Rio de Janeiro (LaBioS/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Biopolímeros e Sensores; Furtado, Evandro Goncalves [Alfa Rio Química Ltda., Duque de Caxias, RJ (Brazil); Silva, Fabrício Machado [Universidade de Brasília (UnB), Brasília, DF (Brazil); Oliveira, Geiza Esperandio de [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    After the consolidation of the Brazilian biodiesel industry, issues related to the final destination of the glycerin, the by-product from the biodiesel industrial process, drawing the attention of several researchers. There are several uses to this byproduct. Among them, the obtaining of polymers, such as polyurethane (PU), are very encouraged since the glycerin ca be used, as well as the castor oil, in the replacement of petrochemical polyols. The aim of this work was to propose a new route for the obtainment of a petroleum sorbent based on polyurethane resin from glycerin and castor oil, through the emulsion technique. In addition, maghemite (γ-Fe{sub 2}O{sub 3}) was mixed to the polymer matrix, producing a magnetic composite, able to make easier the oil cleanup process. The products synthesized were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, simultaneous Thermogravimetry (TGA) and Differential scanning calorimetry (DSC), Optical microscopy, Scanning electron microscopy (SEM). In addition, magnetic force and oil removal capability tests were also performed. The magnetic material was used to remove oil from water, exhibited a good oil removal capability. In a typical test, 1g of the composite containing 5wt% of maghemite was able to remove 10g of oil from water. (author)

  1. Green polyurethane synthesis by emulsion technique: a magnetic composite for oil spill removal

    International Nuclear Information System (INIS)

    Costa, Raphael Maria Dias da; Hungerbühler, Gabriela; Saraiva, Thiago; De Jong, Gabriel; Moraes, Rafael Silva; Ferreira, Luciana Spinelli; Souza Junior, Fernando Gomes de; Silva, Fabrício Machado; Oliveira, Geiza Esperandio de

    2017-01-01

    After the consolidation of the Brazilian biodiesel industry, issues related to the final destination of the glycerin, the by-product from the biodiesel industrial process, drawing the attention of several researchers. There are several uses to this byproduct. Among them, the obtaining of polymers, such as polyurethane (PU), are very encouraged since the glycerin ca be used, as well as the castor oil, in the replacement of petrochemical polyols. The aim of this work was to propose a new route for the obtainment of a petroleum sorbent based on polyurethane resin from glycerin and castor oil, through the emulsion technique. In addition, maghemite (γ-Fe 2 O 3 ) was mixed to the polymer matrix, producing a magnetic composite, able to make easier the oil cleanup process. The products synthesized were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, simultaneous Thermogravimetry (TGA) and Differential scanning calorimetry (DSC), Optical microscopy, Scanning electron microscopy (SEM). In addition, magnetic force and oil removal capability tests were also performed. The magnetic material was used to remove oil from water, exhibited a good oil removal capability. In a typical test, 1g of the composite containing 5wt% of maghemite was able to remove 10g of oil from water. (author)

  2. Laboratory effectiveness testing of water-in-oil emulsion breakers

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Bier, I.; Conrod, D.; Tennyson, E.

    1995-01-01

    The physics and chemistry of water-in-oil emulsions dominate the development of effectiveness tests. Emulsions are variable in stability--this variability is largely dependent on oil type and degree of weathering. These factors complicate the development of a test. Emulsions which have low stability will apparently break easily with chemical emulsion breakers. Broken emulsions will form a foam-like material, called rag, which retains water which is not part of the stable emulsions. Analytical methods used to determine the final stability of the broken or unbroken emulsion were evaluated. Measurements of water content and viscosity measurements show correlation to emulsion stability. Viscosity provides a more reliable measure of emulsion stability but water content measurements are more convenient and are largely used in this study. Twelve tests were developed in the past. Two testing methods have been developed to a usable stage. These tests are described and data using them provided. The effects of mixing time, agent amount, settling time and mixing energy on effectiveness results are presented

  3. Microfluidic methods to study emulsion formation

    OpenAIRE

    Muijlwijk, Kelly

    2017-01-01

    Emulsions are dispersions of one liquid in another that are commonly used in various products, and methods such as high-pressure homogenisers and colloid mills are used to form emulsions. The size and size distribution of emulsion droplets are important for the final product properties and thus need to be controlled. Rapid coalescence of droplets during emulsification increases droplet size and widens the size distribution, and therefore needs to be prevented. To increase stability of emulsio...

  4. Homogenization Effect on Nanostructure and Conductivity of Polyaniline Nanofibre Synthesis by Mini-Emulsion Polymerization Technique

    Science.gov (United States)

    Mohammad, M.; Kamarudin, S.; Mohamed, N. H.; Asim, N.; Sopian, K.

    2017-12-01

    Nanofibre polyaniline (n-PANI) was synthesized by mini-emulsion polymerization technique between aniline monomer and ammonium persulfate as an oxidant using homogenizer. The synthesis was performed by optimizing mixing speed from 10,000 to 30,000 rpm and time reaction between 0.5 to 24 hours at fixed monomer to oxidant molar ratio 4:1. An attempt has been made to investigate on how the speed of homogenizer affects the size and conductivity of n-PANI. The formation of n-PANI chain was confirmed by Fourier transform infrared spectroscopy (FTIR). The X-ray diffraction (XRD) spectra revealed PANI crystalline nature. Hall effect measurement used indicated that the electrical conductivity of n-PANI is increased with homogenizer speed from 5.2 to 17.5 Scm-1. The morphological properties of n-PANI performed by scanning electron microscopy (SEM) show the decreasing size of n-PANI from 50-60 nm to 20-30 nm with the increment homogenizer speed. This study indicated the optimum speed parameter of homogenizer play a role in reducing the nanostructured size and thus, increasing the electrical conductivity of n-PANI.

  5. In-situ burning of emulsions: The effects of varying water content and degree of evaporation

    International Nuclear Information System (INIS)

    Bech, C.; Sveum, P.; Buist, I.

    1992-01-01

    In-situ burning of oil is considered to be one of the most promising techniques for rapid removal of large quantities of oil at sea, particularly in ice-infested waters. A series of field experiments was conducted in Spitsbergen, circular basins cut in sea ice, to study the effect of water content, evaporation, thickness of the emulsion layer, and environmental factors on the burn efficiency of Statfjord crude oil and emulsions. Results from the experiments are presented along with preliminary results concerning the dynamics of burning emulsions and the efficiency of conventional and novel igniters. Water-in-oil emulsions with 40% water content could be burned. However, for oils evaporated more than 18% and with a water content of over 20%, conventional gelled gasoline was not a very effective igniter. Ignition success was improved when gelled crude oil was used as the igniter. The results imply that for practical in-situ burning, the igniter technology needs to be improved. 5 refs., 11 figs., 3 tabs

  6. Food emulsions as delivery systems for flavor compounds: A review.

    Science.gov (United States)

    Mao, Like; Roos, Yrjö H; Biliaderis, Costas G; Miao, Song

    2017-10-13

    Food flavor is an important attribute of quality food, and it largely determines consumer food preference. Many food products exist as emulsions or experience emulsification during processing, and therefore, a good understanding of flavor release from emulsions is essential to design food with desirable flavor characteristics. Emulsions are biphasic systems, where flavor compounds are partitioning into different phases, and the releases can be modulated through different ways. Emulsion ingredients, such as oils, emulsifiers, thickening agents, can interact with flavor compounds, thus modifying the thermodynamic behavior of flavor compounds. Emulsion structures, including droplet size and size distribution, viscosity, interface thickness, etc., can influence flavor component partition and their diffusion in the emulsions, resulting in different release kinetics. When emulsions are consumed in the mouth, both emulsion ingredients and structures undergo significant changes, resulting in different flavor perception. Special design of emulsion structures in the water phase, oil phase, and interface provides emulsions with great potential as delivery systems to control flavor release in wider applications. This review provides an overview of the current understanding of flavor release from emulsions, and how emulsions can behave as delivery systems for flavor compounds to better design novel food products with enhanced sensorial and nutritional attributes.

  7. Mathematical Approach in Rheological Characterizing of Asphalt Emulsion Residues

    Directory of Open Access Journals (Sweden)

    Seong Hwan Cho

    2015-01-01

    Full Text Available Three different emulsion residues, such as SS1HP, HFE90, and SS-1VH (trackless, and a base asphalt binder (PG 64-22 are compared to characterize rheological properties by using DSR test. In order to capture the emulsion properties, different frequencies (from 1 to 100 rad/sec at a 10% constant shear rate and temperatures (from −45°C to 75°C with 15°C increments were applied. Then, a master curve for shear modulus was plotted for each emulsion. The transition of the HFE90 emulsion from viscous to elastic behavior occurs at lower temperatures, compared to the other materials. This emulsion is known for performing in a wider temperature range as shown in the results. The trackless emulsion presents an elastic behavior at intermediate temperatures. This product is known as having very fast setting and high resistance to shear stresses. The trackless emulsion presents the highest viscous and elastic modulus, followed by the PG 64-22 binder, SS1HP, and HFE90 emulsion. Shear strength test results show a behavior between trackless emulsion and SS1HP similar to the frequency sweep test results performed by DSR.

  8. Cold in-place recycling using solventless emulsion - phase IV (emulsion qualification and long-term field performance).

    Science.gov (United States)

    2016-05-01

    This report looks into how a successful Cold In-Place solventless emulsion behaves and how the emulsion : break test developed in Phase III of this project demonstrates that behavior. Modifications to the test have been : made to improve the consiste...

  9. Storage stability of marine phospholipids emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline Pascale

    Marine phospholipids (MPL) are believed to provide more advantages than fish oil from the same source. They are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of polyunsaturated fatty acids such as eicosapentaenoic (EPA) and docosahexaenoic...... acids (DHA) than oily triglycerides (fish oil). Therefore, the objective of this study is to explore the feasibility of using marine phospholipids emulsions as delivery system through investigation of the physical, oxidative and hydrolytic stability of MPL emulsions with or without addition of fish oil....... The effect of initial Peroxide Value, total lipids, phospholipids and antioxidants content on stability of MPL emulsions were studied. The physical stability was investigated through measurement of particle size distribution and creaming stability, which involve measurement of changes (%) in emulsion volume...

  10. Effectiveness of perfluorochemical emulsions and carbogen breathing with fractionated irradiation

    International Nuclear Information System (INIS)

    Moulder, J.E.; Fish, B.L.

    1987-01-01

    Oxygen-carrying perfluorochemical emulsions have been shown to enhance the response of experimental tumors to large single doses of radiation. Clinically, however, perfluorochemical emulsions will be used with only some fractions of multiple fraction radiation courses. To test the efficacy of a perfluorochemical emulsion (Fluosol-DA 20%, supplied by Alpha Therapeutic Co) under these conditions, BA1112 rat sarcomas were treated with three fractions/week of 6.25 Gy/fraction. Once a week, animals were given Fluosol-DA at 15 ml/kg, and allowed to breathe 95% O/sub 2/:5% CO/sub 2/ (carbogen) for 30 min prior to and during irradiation. The tumor regression rate during treatment was significantly greater in the Fluosol arm than in the control arm. Preliminary data analysis shows a 50% tumor control dose of 86.0 Gy (95% cl:78.0 - 94.3 Gy) in the control arm compared to 69.1 Gy (95% cl:58.3 - 77.3 Gy) in the Fluosol arm. The dose modification factor for intermittent Fluosol and carbogen breathing is 1.26 (95% cl:1.08 - 1.50). In the same fractionated schedule 0.4 mg/kg misonidazole, given once per week, gave a sensitizer enhancement ratio of 1.15 (95% cl:1.03 - 1.33)

  11. Synthesis of Covalently Cross-Linked Colloidosomes from Peroxidized Pickering Emulsions

    Directory of Open Access Journals (Sweden)

    Nadiya Popadyuk

    2016-10-01

    Full Text Available A new approach to the formation of cross-linked colloidosomes was developed on the basis of Pickering emulsions that were stabilized exclusively by peroxidized colloidal particles. Free radical polymerization and a soft template technique were used to convert droplets of a Pickering emulsion into colloidosomes. The peroxidized latex particles were synthesized in the emulsion polymerization process using amphiphilic polyperoxide copolymers poly(2-tert-butylperoxy-2-methyl-5-hexen-3-ine-co-maleic acid (PM-1-MAc or poly[N-(tert-butylperoxymethylacrylamide]-co-maleic acid (PM-2-MAc, which were applied as both initiators and surfactants (inisurfs. The polymerization in the presence of the inisurfs results in latexes with a controllable amount of peroxide and carboxyl groups at the particle surface. Peroxidized polystyrene latex particles with a covalently grafted layer of inisurf PM-1-MAc or PM-2-MAc were used as Pickering stabilizers to form Pickering emulsions. A mixture of styrene and/or butyl acrylate with divinylbenzene and hexadecane was applied as a template for the synthesis of colloidosomes. Peroxidized latex particles located at the interface are involved in the radical reactions of colloidosomes formation. As a result, covalently cross-linked colloidosomes were obtained. It was demonstrated that the structure of the synthesized (using peroxidized latex particles colloidosomes depends on the amount of functional groups and pH during the synthesis. Therefore, the size and morphology of colloidosomes can be controlled by latex particle surface properties.

  12. Emulsifier development for high-concentrated reverse emulsions

    Directory of Open Access Journals (Sweden)

    I.L. Kovalenko

    2016-05-01

    Full Text Available The reverse emulsions have found broad application in ore mining industry as matrixes of emulsion explosive substances and boring washing waters. The defining characteristic of reverse emulsions of industrial explosive substances is the high stability and immunity to crystallization. Aim: The aim of this work is to assess the mechanism of emulsifiers effect like SMO and some PIBSA-derivatives, that are most abundantly used in world practice, and also to develop an effective domestic emulsifier of reverse emulsions. Materials and methods: Using the semi-dynamic method with use of the reverse stalagmometer it was determined the decreasing in interfacial tension on “water / diesel fuel” border in the presence of 0.5 wt % sorbitan monooleate of various producers. Emulsions with use of the chosen emulsifiers using the dynamic mixer on the basis of monosolution of ammonium nitrate and diesel fuel have been produced. The emulsions have the following composition, wt %: ammonium nitrate – 76.8; water – 15.6; diesel fuel – 6.0; emulsifier – 1.6. Results: By the researches results of the interfacial tension “surfactant water / solution in diesel fuel”, the stability of emulsions using monosolution of ammonium nitrate and the IR spectrums of SMO of various producers it is established that presence in product of impurity of oleic acid, di- and trioleates leads to decreasing in interphase activity, increasing of emulsifier oil solubility and decreasing the resistance of emulsions to crystallization. On the basis of the spectral data analysis it is suggested about possibility of specific interaction on the mechanism of “spectral resonance” between emulsifiers of the PIBSA-MEA, LZX type and crystals nucleus of NH4NO3 ammonium nitrate in dispersed phase of emulsion. Amidation of vegetable oils by monoethanol amine is implemented at the reduced temperatures (90…100 °C. It was proved the availability mainly of fatty acids amides in product

  13. Multiple production around 1000 TeV observed in the emulsion chamber experiments at Mt. Fuji and linkage experiments with air shower

    International Nuclear Information System (INIS)

    Torii, Syoji

    1980-01-01

    The multiple production around 1000 TeV is discussed in this paper by using the experimental data at Mt. Fuji and the results of the Monte Carlo simulation. Six events with the total energy more than 1000 TeV were observed in the emulsion chamber (EC) exposed for 600 m 2 year at Mt. Fuji. Various Monte Carlo calculations with the scaling model were performed. The relation between the transverse momentum and The Feynman scaling law is discussed. The frequency of the total gamma energy spectrum and the lateral distribution of the family were compared with the calculation. In the case that protons are dominant in primary cosmic ray, the multiplicity in the interaction increased according to 1/4 th power of energy. In the case of heavy nuclei, the experimental results can be reproduced by assuming the increase of cross-section, when the scaling holds. It is still hard to make definite conclusion on the break of scaling. Simultaneous observation of air family and air shower is proposed. (Kato, T.)

  14. Long-term characteristics of nuclear emulsion

    International Nuclear Information System (INIS)

    Naganawa, N; Kuwabara, K

    2010-01-01

    Long-term characteristics of the nuclear emulsion so called 'OPERA film' used in the neutrino oscillation experiment, OPERA, has been studied for 8 years since its production or refreshing after it. In the results, it turned out to be excellent in sensitivity, amount of random noise, and refreshing characteristics. The retention capacity of latent image of tracks was also studied. The result will open the way to the recycling of 7,000,000 emulsion films which will remain not developed after 5 years of OPERA's run, and other long-term experiments with emulsion.

  15. Long-term characteristics of nuclear emulsion

    Science.gov (United States)

    Naganawa, N.; Kuwabara, K.

    2010-02-01

    Long-term characteristics of the nuclear emulsion so called ``OPERA film'' used in the neutrino oscillation experiment, OPERA, has been studied for 8 years since its production or refreshing after it. In the results, it turned out to be excellent in sensitivity, amount of random noise, and refreshing characteristics. The retention capacity of latent image of tracks was also studied. The result will open the way to the recycling of 7,000,000 emulsion films which will remain not developed after 5 years of OPERA's run, and other long-term experiments with emulsion.

  16. On the new technique of X-ray-emulsion chamber data processing

    International Nuclear Information System (INIS)

    Chilingaryan, A.A.

    1982-01-01

    The modern installations for cosmic ray studies register the spatial and energy characteristics of various particles. One has to solve the problems of selecting the strong interaction models or determining the primary radiation chemical composition under conditions of high a priori uncertainty, when there is practically nothing known about the probability distribution function form in the indication space. In this paper the universal methods are reported that allow one with most confidence to select the optimal feature complexes and to make statistical decisions on the experimental data relation to one or the other model. The methods are tested on the problem of discriminating #betta#-families produced by primary protons or iron nuclei and registered by X-ray emulsion chambers

  17. Immunological consequences of using three different clinical/laboratory techniques of emulsifying peptide-based vaccines in incomplete Freund's adjuvant

    Directory of Open Access Journals (Sweden)

    Kast W Martin

    2006-10-01

    Full Text Available Abstract Incomplete Freund's adjuvant (IFA serves as a carrier for water-in-oil emulsion (W/O vaccines. The stability of such emulsions greatly affects vaccine safety and efficacy since continued presence of antigen depots at lymphoid organs releasing low-level antigens is known to stimulate a potent immune response and high-level systemic release of antigens can lead to tolerance. W/O emulsions for the purpose of clinical and laboratory peptide-based vaccinations have been prepared using the techniques of syringe extrusion, vortex or high-speed homogenization. There is no consensus in the field over which technique would be best to use and no immunological data are available that compare the three techniques. In this study, we compared the immune responses induced by a peptide-based vaccine prepared using vortex, syringe-extrusion and homogenization. The vaccination led to tumor rejection by mice vaccinated with the peptide-based vaccine prepared using all three techniques. The immunological data from the in vivo cytotoxicity assay showed a trend for lower responses and a higher variability and greater range in the immune responses induced by a vaccine that was emulsified by the vortex or homogenizer techniques as compared to the syringe-extrusion technique. There were statistically significant lower numbers of IFNγ-secreting cells induced when the mice were vaccinated with a peptide-based vaccine emulsion prepared using the vortex compared to the syringe-extrusion technique. At a suboptimal vaccine dose, the mice vaccinated with a peptide-based vaccine emulsion prepared using the vortex technique had the largest tumors compared to the syringe-extrusion or the homogenizer technique. In the setting of a busy pharmacy that prepares peptide-based vaccine emulsions for clinical studies, the vortex technique can still be used but we urge investigators to take special care in their choice of mixing vessels for the vortex technique as that can

  18. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    Science.gov (United States)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  19. Effects of spray-drying on w/o/w multiple emulsions prepared from a stearic acid matrix

    CSIR Research Space (South Africa)

    Mlalila, N

    2014-12-01

    Full Text Available , 75, and 100 mg of stearic acid, 2% and 3% w/v polyvinyl alcohol, 5% w/v lactose, and 0.2% w/v chitosan. The emulsions were immediately spray-dried based on an optimized model of inlet temperature and pump rate, and characterized for optimized...

  20. Development of soy lecithin based novel self-assembled emulsion hydrogels.

    Science.gov (United States)

    Singh, Vinay K; Pandey, Preeti M; Agarwal, Tarun; Kumar, Dilip; Banerjee, Indranil; Anis, Arfat; Pal, Kunal

    2015-03-01

    The current study reports the development and characterization of soy lecithin based novel self-assembled emulsion hydrogels. Sesame oil was used as the representative oil phase. Emulsion gels were formed when the concentration of soy lecithin was >40% w/w. Metronidazole was used as the model drug for the drug release and the antimicrobial tests. Microscopic study showed the apolar dispersed phase in an aqueous continuum phase, suggesting the formation of emulsion hydrogels. FTIR study indicated the formation of intermolecular hydrogen bonding, whereas, the XRD study indicated predominantly amorphous nature of the emulsion gels. Composition dependent mechanical and drug release properties of the emulsion gels were observed. In-depth analyses of the mechanical studies were done using Ostwald-de Waele power-law, Kohlrausch and Weichert models, whereas, the drug release profiles were modeled using Korsmeyer-Peppas and Peppas-Sahlin models. The mechanical analyses indicated viscoelastic nature of the emulsion gels. The release of the drug from the emulsion gels was diffusion mediated. The drug loaded emulsion gels showed good antimicrobial activity. The biocompatibility test using HaCaT cells (human keratinocytes) suggested biocompatibility of the emulsion gels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Field testing of asphalt-emulsion radon-barrier system

    International Nuclear Information System (INIS)

    Hartley, J.N.; Freeman, H.D.; Baker, E.G.; Elmore, M.R.; Nelson, D.A.; Voss, C.F.; Koehmstedt, P.L.

    1981-09-01

    Three years of laboratory and field testing have demonstrated that asphalt emulsion seals are effective radon diffusion barriers. Both laboratory and field tests in 1979, 1980 and 1981 have shown that an asphalt emulsion seal can reduce radon fluxes by greater than 99.9%. The effective diffusion coefficient for the various asphalt emulsion admix seals averages about 10 -6 cm 2 /s. The 1981 joint field test is a culmination of all the technology developed to date for asphalt emulsion radon barrier systems. Preliminary results of this field test and the results of the 1980 field test are presented. 18 figures, 6 tables

  2. Characterisation of crude oil components, asphaltene aggregation and emulsion stability by means of near infrared spectroscopy and multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aske, Narve

    2002-06-01

    Effective separation of water-in-crude oil emulsions is a central challenge for the oil industry on the Norwegian Continental Shelf, especially with the future increase in subsea and even down-hole processing of well fluids. The mechanisms and properties governing emulsion stability are far from fully understood but the indigenous surface active crude oil components are believed to play a major role. In this work a thorough physico-chemical characterisation of a set of crude oils originating from a variety of production fields has been performed. Crude oil properties responsible for emulsion stability were identified by use of multivariate analysis techniques like partial least squares regression (PLS) and principal component analysis (PCA). Interfacial elasticity along with both asphaltene content and asphaltene aggregation state were found to be main contributors to emulsion stability. Information on a crude oils ability to form elastic crude oil-water interfaces was found to be especially crucial when discussing emulsion stability. However, measured values of interfacial elasticity were highly dependent on asphaltene aggregation state. Several experimental techniques was utilised and partly developed for the crude oil characterisation. A high-pressure liquid chromatography (HPLC) scheme was developed for SARA-fractionation of crude oils and an oscillating pendant drop tensiometer was used for characterisation of interfacial rheological properties. For emulsion stability a cell for determining the stability as a function of applied electric fields was used. In addition, near infrared spectroscopy (NIR) was used throughout the work both for chemical and physical characterisation of crude oils and model systems. High pressure NIR was used to study the aggregation of asphaltenes by pressure depletion. A new technique for detection of asphaltene aggregation onset pressures based on NIR combined with PCA was developed. It was also found that asphaltene aggregation is

  3. Imaging of Nuclear Fragmentation in Nuclear Track Emulsion Relativistic Nuclei

    International Nuclear Information System (INIS)

    Zarubina, I.G. JINR

    2011-01-01

    The method of nuclear track emulsion provides a uniquely complete observation of multiple fragment systems produced in dissociation of relativistic nuclei. The most valuable events of coherent dissociation of nuclei in narrow jets of light and the lightest nuclei with a net charge as in the initial nucleus, occurring without the production of fragments of the target nuclei and mesons (the so-called w hite s tars), comprise a few percent among the observed interactions. The data on this phenomenon are fragmented, and the interpretation is not offered. The dissociation degree of light O, Ne, Mg and Si, and as well as heavy Au, Pb and U nuclei may reach a complete destruction to light and the lightest nuclei and nucleons, resulting in cluster systems of an unprecedented complexity. Studies with relativistic neutron-deficient nuclei have special advantages due to more complete observations. An extensive collection of macro videos of such interactions in nuclear track emulsion gathered by the Becquerel collaboration is presented

  4. Phase recording for formation of holographic optical elements on silver-halide photographic emulsions

    Science.gov (United States)

    Ganzherli, Nina M.; Gulyaev, Sergey N.; Maurer, Irina A.; Chernykh, Dmitrii F.

    2009-05-01

    Holographic fabrication methods of regular and nonregular relief-phase structures on silver-halide photographic emulsions are considered. Methods of gelatin photodestruction under short-wave ultra-violet radiation and chemical hardening with the help of dichromated solutions were used as a technique for surface relief formation. The developed techniques permitted us to study specimens of holographic diffusers and microlens rasters with small absorption and high light efficiency.

  5. A lyophilized etoposide submicron emulsion with a high drug loading for intravenous injection: preparation, evaluation, and pharmacokinetics in rats.

    Science.gov (United States)

    Chen, Hao; Shi, Shuai; Zhao, Mingming; Zhang, Ling; He, Haibing; Tang, Xing

    2010-12-01

    To develop a submicron emulsion for etoposide with a high drug loading capacity using a drug-phospholipid complex combined with drug freeze-drying techniques. An etoposide-phospholipid complex (EPC) was prepared and its structure was confirmed by X-ray diffraction and differential scanning calorimetry analysis. A freeze-drying technique was used to produce lyophilized etoposide emulsions (LEPE), and LEPE was investigated with regard to their appearance, particle size, and zeta potential. The pharmacokinetic study in vivo was determined by the UPLC/MS/MS system. It showed that EPC significantly improved the liposolubility of etoposide, indicating a high drug loading intravenous emulsion could be easily prepared by EPC. Moreover, the obtained loading of etoposide in the submicron emulsion was 3.0 mg/mL, which was three times higher than that of the previous liquid emulsions. The optimum cryoprotectant was trehalose (15%) in freeze-drying test. The median diameter, polydispersity index, and zeta potential of the optimum formulation of LEPE were 226.1 ± 5.1 nm, 0.107 ± 0.011, and -36.20 ± 1.13 mV, respectively. In addition, these parameters had no significant change during 6 months storage at 4 ± 2°C. The main pharmacokinetic parameters exhibited no significant differences between LEPE and etoposide commercial solution except for area under the concentration-time curve and clearance. The stable etoposide emulsion with a high drug loading was successfully prepared, indicating the amount of excipients such as the oil phase and emulsifiers significantly decreased following administration of the same dose of drug, effectively reducing the metabolism by patients while increasing their compliance. Therefore, LEPE has a great potential for clinical applications.

  6. A simplified approach for the simulation of water-in-oil emulsions in gravity separators

    Energy Technology Data Exchange (ETDEWEB)

    Lakehal, D.; Narayanan, C. [ASCOMP GmbH, Zurich (Switzerland); Vilagines, R.; Akhras, A.R. [Saudi Aramco, Dhahran (Saudi Arabia). Research and Development Center

    2009-07-01

    A new method of simulating 3-phase flow separation processes in a crude oil product was presented. The aim of the study was to increase the liquid capacity of the vessels and develop methods of testing variable flow entry procedures. The simulated system was based on gravity separation. Oil well streams were injected into large tanks where gas, oil and water were separated under the action of inertia and gravity. An interface tracking technique was combined with a Euler-Euler model developed as part of a computational fluid dynamics (CFD) program. Emulsion physics were modelled by interface tracking between the gas and oil-in-water liquid mixture. Additional scalar transport equations were solved in order to account for the diffusive process between the oil and water. Various settling velocity models were used to consider the settling of the dispersed water phase in oil. Changes in viscosity and non-Newtonian emulsion behaviour were also considered. The study showed that the interface tracking technique accurately predicted flow when combined with an emulsion model designed to account for the settling of water in the oil phase. Further research is now being conducted to validate computational results against in situ measurements. 13 refs., 1 tab., 8 figs.

  7. A new generation of models for water-in-oil emulsion formation

    International Nuclear Information System (INIS)

    Fingas, M.

    2009-01-01

    Water-in-oil emulsions form after oil or petroleum products are spilled, and can make the cleanup of oil spills difficult. This paper discussed new modelling schemes designed for the formation of water-in-oil emulsions. Density, viscosity, asphaltene and resin contents were used to compute a class index for unstable, entrained water-in-oil states, meso-stable, or stable emulsions. Prediction schemes were used to estimate the water content and viscosity of the water-in-oil states and the time to formation with wave height inputs. A numerical values was used for each type of water-in-oil type. The properties of the starting oil were correlated with the numerical scheme. New regressions were then performed using a Gaussian-style regression expansion technique. Data obtained from the models suggested that water-in-oil types are stabilized by both asphaltenes and resins. The optimized model was then compared with earlier models. The study showed that the new model has the capacity to accurately predict oil-in-water types approximately 90 per cent of the time using only resin, saturate, asphaltene, viscosity, and density data. 17 refs., 8 tabs., 8 figs

  8. Binding of long-lasting local anesthetics to lipid emulsions.

    Science.gov (United States)

    Mazoit, Jean-Xavier; Le Guen, Régine; Beloeil, Hélène; Benhamou, Dan

    2009-02-01

    Rapid infusion of lipid emulsion has been proposed to treat local anesthetic toxicity. The authors wanted to test the buffering properties of two commercially available emulsions made of long- and of long- and medium-chain triglycerides. Using the shake-flask method, the authors measured the solubility and binding of racemic bupivacaine, levobupivacaine, and ropivacaine to diluted Intralipid (Fresenius Kabi, Paris, France) and Medialipide (B-Braun, Boulogne, France). The apparent distribution coefficient expressed as the ratio of mole fraction was 823 +/- 198 and 320 +/- 65 for racemic bupivacaine and levobupivacaine, and ropivacaine, respectively, at 500 mg in the Medialipide/buffer emulsion; and 1,870 +/- 92 and 1,240 +/- 14 for racemic bupivacaine and levobupivacaine, and ropivacaine, respectively, in the Intralipid/buffer emulsion. Decreasing the pH from 7.40 to 7.00 of the Medialipide/buffer emulsion led to a decrease in ratio of molar concentration from 121 +/- 3.8 to 46 +/- 2.8 for bupivacaine, and to a lesser extent from 51 +/- 4.0 to 31 +/- 1.6 for ropivacaine. The capacity of the 1% emulsions was 871 and 2,200 microM for the 1% Medialipide and Intralipid emulsions, respectively. The dissociation constant was 818 and 2,120 microM for racemic bupivacaine and levobupivacaine, and ropivacaine, respectively. Increasing the temperature from 20 to 37 degrees C led to a greater increase in affinity for ropivacaine (55%) than for bupivacaine (27%). When the pH of the buffer was decreased from 7.40 to 7.00, the affinity was decreased by a factor of 1.68, similar for both anesthetics. The solubility of long-acting local anesthetics in lipid emulsions and the high capacity of binding of these emulsions most probably explain their clinical efficacy in case of toxicity. The long-chain triglyceride emulsion Intralipid appears to be about 2.5 times more efficacious than the 50/50 medium-chain/long-chain Medialipide emulsion. Also, because of their higher hydrophobicity

  9. Aging properties of Kodak type 101 emulsions

    Science.gov (United States)

    Dohne, B.; Feldman, U.; Neupert, W.

    1984-01-01

    Aging tests for several batches of Kodak type 101 emulsion show that storage conditions significantly influence how well the film will maintain its sensitometric properties, with sensitivity and density increasing to a maximum during this period. Any further aging may result in higher fog levels and sensitivity loss. It is noted that storage in an environment free of photographically active compounds allows film property optimization, and that film batches with different sensitivities age differently. Emulsions with maximum 1700-A sensitivity are 2.5 times faster than those at the low end of the sensitivity scale. These sensitive emulsions exhibit significantly accelerated changes in aging properties. Their use in space applications requires careful consideration of time and temperature profiles, encouraging the use of less sensitive emulsions when the controllability of these factors is limited.

  10. Sardine Fish Oil By Sentrifugation and Adsorbent for Emulsion

    Directory of Open Access Journals (Sweden)

    Kristina Haryati

    2017-04-01

    Full Text Available Sardine fish meal by-product contain eicosapentaenoic acid (EPA and docosahexaenoic (DHA and it can be made as emulsion. The purpose of this study were to determine the best fish oil emulsion by mixingthe oil phase (lecithin 3% and oil and water phase (carboxymethyl cellulose/CMC 2% and fruit juice and then stored until creaming, and the emulsion is analyzed their viscosity, pH, percent of stability and longseparation. Sardine oil is separated from the emulsion and tested oxidation parameters. The best emulsion was fish oil emulsion after refined without citric acid (RTS with viscosity (2470.31 cP, pH (5.64, percent of stability (56.14% and long separation (14 days. Primary and secondary oxidation parameters of RTS  were FFA (14.87%, PV (14.43 meq/kg, AV (32.57 meq KOH/g, AnV (17.3 meq/kg, and Totox (46.16 meq/kg.

  11. The role of electrostatics in saliva-induced emulsion flocculation

    NARCIS (Netherlands)

    Silletti, Erika; Vingerhoeds, Monique H.; Norde, Willem; Van Aken, George A.

    Upon consumption food emulsions undergo different processes, including mixing with saliva. It has been shown that whole saliva induces emulsion flocculation [van Aken, G. A., Vingerhoeds, M. H., & de Hoog, E. H. A. (2005). Colloidal behaviour of food emulsions under oral conditions. In E. Dickinson

  12. The FEDRA-Framework for emulsion data reconstruction and analysis in the OPERA experiment

    International Nuclear Information System (INIS)

    Tioukov, V.; Kreslo, I.; Petukhov, Y.; Sirri, G.

    2006-01-01

    OPERA is a massive lead/emulsion target for a long-baseline neutrino oscillation search. More than 90% of the useful experimental data in OPERA will be produced by the scanning of emulsion plates with the automatic microscopes. The main goal of the data processing in OPERA will be the search, analysis and identification of primary and secondary vertices produced by neutrino in lead-emulsion target. The volume of middle- and high-level data to be analysed and stored is expected to be of the order of several Gb per event. The storage, calibration, reconstruction, analysis and visualization of this data is the task of FEDRA system written in C ++ and based on ROOT framework. The system is now actively used for processing of test beams and simulation data. Several interesting algorithmic solutions permits us to make effective code for fast pattern recognition in heavy signal/noise conditions. The system consists of the storage part, intercalibration and segments linking part, track finding and fitting, vertex finding and fitting and kinematical analysis parts. Kalman Filtering technique is used for tracks and vertex fitting. ROOT-based event display is used for interactive analysis of the special events. iltering technique is used for tracks and vertex fitting. ROOT-based event display is used for interactive analysis of the special events

  13. Influence of the oil globule fraction on the release rate profiles from multiple W/O/W emulsions.

    Science.gov (United States)

    Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Monteil, Julien; Anton, Marc; Leal-Calderon, Fernando

    2010-06-15

    Water-in-oil-in-water (W/O/W) double emulsions were prepared and the kinetics of release of magnesium ions from the internal to the external water phase was investigated as a function of the formulation and the globule volume fraction. All the emulsions were formulated using the same surface-active species (polyglycerol polyricinoleate and sodium caseinate). Also, the internal droplet and oil globule diameters were almost identical for all the systems. Two types of W/O/W emulsions were prepared based either on a synthetic oil (miglyol) or on an edible oil (olive oil). The globule volume fraction varied from 11% to 72%. At constant temperature (T=25 degrees C) and irrespective of the oil type, the percentage of magnesium released was lowered by increasing the globule fraction. In all cases, magnesium leakage occurred without film rupturing (no coalescence). Thus, the experimental data were interpreted within the frame of a model based on diffusion. The rate of release was determined by the permeation coefficient of magnesium across the oil phase and by the binding (chelation) of magnesium by caseinate molecules. The data could be adequately fitted by considering a time-dependant permeation coefficient. The better retention of magnesium at high globule fractions could account for two distinct phenomena: (i) the reduction of the relative volume of the outer phase, and (ii) the attenuation of the permeation coefficient over time induced by interfacial magnesium binding, all the more important than the globule fraction increased. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Effect of Formulation and Process Parameters on Chitosan Microparticles Prepared by an Emulsion Crosslinking Technique.

    Science.gov (United States)

    Rodriguez, Lidia B; Avalos, Abraham; Chiaia, Nicholas; Nadarajah, Arunan

    2017-05-01

    There are many studies about the synthesis of chitosan microparticles; however, most of them have very low production rate, have wide size distribution, are difficult to reproduce, and use harsh crosslinking agents. Uniform microparticles are necessary to obtain repeatable drug release behavior. The main focus of this investigation was to study the effect of the process and formulation parameters during the preparation of chitosan microparticles in order to produce particles with narrow size distribution. The technique evaluated during this study was emulsion crosslinking technique. Chitosan is a biocompatible and biodegradable material but lacks good mechanical properties; for that reason, chitosan was ionically crosslinked with sodium tripolyphosphate (TPP) at three different ratios (32, 64, and 100%). The model drug used was acetylsalicylic acid (ASA). During the preparation of the microparticles, chitosan was first mixed with ASA and then dispersed in oil containing an emulsifier. The evaporation of the solvents hardened the hydrophilic droplets forming microparticles with spherical shape. The process and formulation parameters were varied, and the microparticles were characterized by their morphology, particle size, drug loading efficiency, and drug release behavior. The higher drug loading efficiency was achieved by using 32% mass ratio of TPP to chitosan. The average microparticle size was 18.7 μm. The optimum formulation conditions to prepare uniform spherical microparticles were determined and represented by a region in a triangular phase diagram. The drug release analyses were evaluated in phosphate buffer solution at pH 7.4 and were mainly completed at 24 h.

  15. The role of nuclear emulsions in the institutionalization of research in experimental physics in Brazil

    International Nuclear Information System (INIS)

    Vieira, Cassio Leite; Videira, Antonio A.P.

    2011-01-01

    In this paper, we describe and analyze the introduction and the use of the nuclear emulsions technique in Brazil. Even though consistent researches in cosmic ray physics had been done since the forties of the last century in this country, physicists here only began using this technique after Cesar Lattes' works in Bristol (England) and Berkeley (US). Despite being the implantation of the technique in this country posterior to the origin of the method itself dated from late 1900s, Brazilian scientists were quickly familiarized with it and adopted it not only in cosmic rays, but also in particle physics and nuclear physics, employing it until recently. In our work, we will be concerned with the reasons of this longevity. In other words, why were the nuclear emulsions technique employed for so many years in Brazil, even after its vanishing in physics researches centers in the world? We advance here that the answer to this question involves the institutionalization of science in Brazil mainly physics and economical, social, and geographic reasons. (author)

  16. Emulsion-Based RIR-MAPLE Deposition of Conjugated Polymers: Primary Solvent Effect and Its Implications on Organic Solar Cell Performance.

    Science.gov (United States)

    Ge, Wangyao; Li, Nan K; McCormick, Ryan D; Lichtenberg, Eli; Yingling, Yaroslava G; Stiff-Roberts, Adrienne D

    2016-08-03

    Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications.

  17. CMS emulsion pictures during LS1

    CERN Multimedia

    Di Ferdinando, Donato

    2013-01-01

    These images were taken at the CMS experimental cavern during Long Shutdown 1, installing pinhole cameras at different points of the cavern and exposing them for days. The development of the film was done by Donato di Ferdinando from INFN Bologna. A pinhole camera is a light-tight box where a small hole is made (diameter of the order of microns); a light-sensitive material is set in the back of the hole. As sensitive material a nuclear emulsion film from the OPERA experiment was used. It is a special photographic emulsion optimized (silver grains enriched) for the detection of charged particles. A very large amount of nuclear emulsions where used in Opera experiment, at the Gran Sasso Underground Labs; nuclear emulsions must detect the charged tau-leptons emerging from the interaction between the "oscillated" tau-neutrino coming from the pure muon-neutrino beam produced at CERN (the CNGS beam). The oscillations theory of neutrino expects that muon neutrinos oscillate to tau-neutrinos and due to this behavior ...

  18. chemical studies on the extraction of certain metal ions from aqueous solution by liquid emulsion membrane

    International Nuclear Information System (INIS)

    Kassem, A.T.

    2011-01-01

    In this thesis four systems are addressed related to the use of liquid emulsion membranes (ELM) based on Co(III)dicarbiolide and. The system was dedicated for permeation of cadmium , cobalt Nickel and lead for use of this system for preconcentration and separation of cadmium, cobalt, nickel and lead. The work carried out in this thesis is presented in three parts, namely; introduction, experimental and results and discussion.The first chapter is the introduction which includes aim of work, basic concepts of liquid membranes; liquid emulsion membranes; different models of emulsion permeation, literature survey of extraction chemistry of cadmium, cobalt, nickel and lead. Chapter two includes the experimental part. In this part detailed outlines on the chemicals and different elements used were given. Different instruments as well as analytical techniques were outlines. The preparation of liquid emulsion membrane and the permeation techniques were presented in details. The third chapter deals with the results and discussion. This chapter is divided into four main parts, the four parts is concerned with cadmium/Co(III) dicarbolide/NTA, EDTA, DPTA and DCTA systems. In this part the permeation of Cd(II) aqueous solution by the membrane used was experimented based on liquid-liquid extraction studies of cadmium from different sodium chloride molarities (from 0.01 to 0.1 M) by 0.01 M Cobalt(III) dicarbolides. It was found that the extraction of with cadmium is higher following in the first system, the permeation of the toxic elements, Cd(II) from HCl/sodium chloride medium was carried out using liquid emulsion membrane containing Co(III)dicarbiolide in xylene as carrier, Spain 80/ Spain 85(1:3) as surfactant and NTA, EDTA, DPTA and DCTA as a stripping solutions.

  19. Irradiation and development of the nuclear emulsions exposed to intense fluxes of thermal neutrons with {gamma} rays; Irradiation et developpement des emulsions nucleaires exposees a des flux intenses de neutrons thermiques, accompagnes de rayons {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, H; Bonnet, A; Cohen, J [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    The thermal neutron fluxes provided by nuclear reactors permit the survey of relatively rare phenomenons, and dosage of very weak quantities of some elements. One of the most favorable detection technique are constituted by the use of the nuclear emulsions. one can mention: - the dosage of uranium by counting in the emulsion the number of traces due to fission fragments after irradiation. - The dosage of the lithium and the boron as trace amounts with the help of nuclear reactions (n, {alpha}) and thermal neutrons. - The research of reactions (n, {alpha}) or (n, p) of very weak cross section for middle or heavy elements. These different applications require however important neutrons fluxes. It had therefore obliged us to search for the most favorable irradiation and development of the emulsions conditions, to get the best visibility of the trajectories and decrease the phenomena of fog on the emulsion, which prevents any observation. (M.B.) [French] Les flux de neutrons thermiques fournis par les reacteurs nucleaires permettent l'etude de phenomenes relativement rares, et le dosage de tres faibles quantites de certains elements. Un des moyens de detection les plus favorables est constitue par l'utilisation des emulsions nucleaires. on peut citer: - le dosage de l'uranium par comptage dans l'emulsion du nombre de traces dues aux fragments de fission apres irradiation. - Le dosage du lithium et du bore a l'etat de traces a l'aide des reactions (n, {alpha}) sous l'action des neutrons thermiques. - La recherche de reactions (n,{alpha}) ou (n,p) de tres faible section efficace pour des elements moyens ou lourds. Ces differentes applications necessite cependant des flux de neutrons important. On a donc ete amene a rechercher les conditions les plus favorables d'irradiation et de developpement des emulsions, de maniere a obtenir la meilleure visibilite des trajectoires et diminuer les phenomenes de voile de l'emulsion, qui empeche toute observation. (M.B.)

  20. Irradiation and development of the nuclear emulsions exposed to intense fluxes of thermal neutrons with {gamma} rays; Irradiation et developpement des emulsions nucleaires exposees a des flux intenses de neutrons thermiques, accompagnes de rayons {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, H.; Bonnet, A.; Cohen, J. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    The thermal neutron fluxes provided by nuclear reactors permit the survey of relatively rare phenomenons, and dosage of very weak quantities of some elements. One of the most favorable detection technique are constituted by the use of the nuclear emulsions. one can mention: - the dosage of uranium by counting in the emulsion the number of traces due to fission fragments after irradiation. - The dosage of the lithium and the boron as trace amounts with the help of nuclear reactions (n, {alpha}) and thermal neutrons. - The research of reactions (n, {alpha}) or (n, p) of very weak cross section for middle or heavy elements. These different applications require however important neutrons fluxes. It had therefore obliged us to search for the most favorable irradiation and development of the emulsions conditions, to get the best visibility of the trajectories and decrease the phenomena of fog on the emulsion, which prevents any observation. (M.B.) [French] Les flux de neutrons thermiques fournis par les reacteurs nucleaires permettent l'etude de phenomenes relativement rares, et le dosage de tres faibles quantites de certains elements. Un des moyens de detection les plus favorables est constitue par l'utilisation des emulsions nucleaires. on peut citer: - le dosage de l'uranium par comptage dans l'emulsion du nombre de traces dues aux fragments de fission apres irradiation. - Le dosage du lithium et du bore a l'etat de traces a l'aide des reactions (n, {alpha}) sous l'action des neutrons thermiques. - La recherche de reactions (n,{alpha}) ou (n,p) de tres faible section efficace pour des elements moyens ou lourds. Ces differentes applications necessite cependant des flux de neutrons important. On a donc ete amene a rechercher les conditions les plus favorables d'irradiation et de developpement des emulsions, de maniere a obtenir la meilleure visibilite des trajectoires et diminuer les phenomenes de voile de l'emulsion, qui

  1. Studies with a safflower oil emulsion in total parenteral nutrition.

    Science.gov (United States)

    Wong, K. H.; Deitel, M.

    1981-01-01

    The prevention of essential fatty acid deficiency and the provision of adequate amounts of energy are two major concerns in total parenteral nutrition. Since earlier preparations of fat emulsion used to supplement the usual regimen of hypertonic glucose and amino acids have widely varying clinical acceptability, a new product, a safflower oil emulsion available in two concentrations (Liposyn), was evaluated. In four clinical trials the emulsion was used as a supplement to total parenteral nutrition. In five surgical patients 500 ml of the 10% emulsion infused every third day prevented or corrected essential fatty acid deficiency; however, in some cases in infusion every other day may be necessary. In 40 patients in severe catabolic states the emulsion provided 30% to 50% of the energy required daily: 10 patients received the 10% emulsion for 14 to 42 days, 9 patients received each emulsion in turn for 7 days, and 21 patient received the 20% emulsion for 14 to 28 days. All the patients survived and tolerated the lipid well; no adverse clinical effects were attributable to the lipid infusions. Transient mild, apparently clinically insignificant abnormalities in the results of one or more liver function tests and eosinophilia were observed in some patients. Thus, the safflower oil emulsion, at both concentrations, was safe and effective as a source of 30% to 50% of the energy required daily by seriously ill patients. PMID:6799182

  2. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    Science.gov (United States)

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  3. Co-delivery of antigen and a lipophilic anti-inflammatory drug to cells via a tailorable nanocarrier emulsion.

    Science.gov (United States)

    Chuan, Yap Pang; Zeng, Bi Yun; O'Sullivan, Brendan; Thomas, Ranjeny; Middelberg, Anton P J

    2012-02-15

    Nanotechnology promises new drug carriers that can be tailored to specific applications. Here we report a new approach to drug delivery based on tailorable nanocarrier emulsions (TNEs), motivated by a need to co-deliver a protein antigen and a lipophilic drug for specific inhibition of nuclear factor kappa B (NF-κB) in antigen presenting cells (APCs). Co-delivery for NF-κB inhibition holds promise as a strategy for the treatment of rheumatoid arthritis. We used a highly surface-active peptide (SAP) to prepare a nanosized emulsion having defined surface properties predictable from the SAP sequence. Incorporating the lipophilic drug into the oil phase at the time of emulsion formation enabled its facile packaging. The SAP is depleted from bulk during emulsification, allowing simple subsequent addition of the drug-loaded oil-in-water emulsion to a solution of protein antigen. Decoration of emulsion surface with antigen was achieved via electrostatic deposition. In vitro data showed that the TNE prepared this way was internalized and well-tolerated by model APCs, and that good suppression of NF-κB expression was achieved. This work reports a new type of nanotechnology-based carrier, a TNE, which can potentially be tailored for co-delivery of multiple therapeutic components, and can be made using simple methods using only biocompatible materials. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Track theory and nuclear photographic emulsions for Dark Matter searches

    International Nuclear Information System (INIS)

    Ditlov, V.A.

    2013-01-01

    This work is devoted to the analysis of possibilities of nuclear emulsions for Dark Matter search, particles of which can produce slow recoil-nuclei. Tracks of such recoil-nuclei in developed nuclear emulsion consist from several emulsion grains. The analysis was carried out with Monte-Carlo calculations made on the basis of the Track Theory and the various factors influencing Dark Matter particles registration efficiency were investigated. Problems, which should be solved for optimal utilization of nuclear emulsions in Dark Matter search, were formulated. B ody - Highlights: ► Specific features of Dark Matter Search in nuclear photographic emulsions. ► Track theory for WIMP search in nuclear emulsions. ► Primary efficiency for single WIMP registration. ► Properties of primary WIMP registration efficiency. ► Primary registration efficiency of WIMP flow

  5. Fragmentation of Relativistic 56Fe Nuclei in Emulsion

    International Nuclear Information System (INIS)

    Chernov, G.M.; Gulamov, K.G.; Gulyamov, U.G.; Navotny, V.Sh.; Petrov, N.V.; Svechnikova, L.N.; Jakobsson, B.; Oskarsson, A.; Otterlund, I.

    1983-03-01

    Experimental data on general characteristics of projectile fragments in inelastic interactions of relativistic 56 Fe nuclei in emulsion (multiplicities, transverse momentum distributions, azimuthal correlations) are presented and discussed. A strong dependence on the mass number of the projectile nucleus is observed for the transverse momenta of the emitted projectile fragments. These fragments exhibit an azimuthal asymmetry caused by the transverse motion of the fragmenting residue, but it is shown that this motion can be responsible only for a part of the increase in the average transverse momentum of the fragments with increasing mass of the projectile. (author)

  6. Use of Synthetic Polymers in Nuclear Emulsions for Fast-Neutron Dosimetry

    International Nuclear Information System (INIS)

    Bradna, F.

    1967-01-01

    The paper describes the results of tests on the properties of hydrogen-enriched nuclear-track emulsions for detecting fast neutrons, which were prepared in the Radiological Dosimetry Laboratory of the Czechoslovak Academy of Sciences Nuclear Research Institute. It also compares the dosimetric characteristics of these new emulsions with those of the gelatin emulsions used up to the present. The most promising of the series of polymers synthesized in the laboratory were: (1) Polyvinylacetal of 2,4-disulphonic acid benzaldehyde (polymer No. 1); (2) The co-polymer of a-acetylaminoacrylic acid and N-vinylpyrrolidone (polymer No. 2). The author also studied the possibility of using polyvinyl alcohol solutions with a higher hydrogen content than the above polymers for saturating polymer-gelatin emulsions and for preparing from them films for use as proton radiators. Polymers No. 1 and No. 2 were tested beforehand in an ammonia emulsion. It was established that polymer No. 1 has no marked effect on the photochemical properties of the emulsions, whereas the physical and mechanical.properties of the polymer-gelatin emulsions are considerably better than those of normal gelatin emulsions. The polymers have good protective properties, and polymer No. 2; can be used even during physical ageing, since it retards this process only to a small extent. The photochemical properties of the polymer-gelatin emulsions remain practically unchanged during natural ageing, and their mechanical strength is still further increased. After these preliminary tests, polymers No.-1 and No. 2 were used as fillers for a nuclear-track emulsion, in quantities ranging from 50 to 70% of the total amount of protective colloid, the silver content of the emulsion remaining unchanged. To increase their efficiency further, the polymer-gelatin emulsions were saturated with hydrogen, which was passed through the liquid emulsion for a short period of time. When prepared, the emulsions were poured on a tri

  7. Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Shree Krishna Sharma

    2016-01-01

    Full Text Available The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks.

  8. Hydrophilic Surface Modification of PDMS Microchannel for O/W and W/O/W Emulsions

    Directory of Open Access Journals (Sweden)

    Shazia Bashir

    2015-09-01

    Full Text Available A surface modification method for bonded polydimethylsiloxane (PDMS microchannels is presented herein. Polymerization of acrylic acid was performed on the surface of a microchannel using an inline atmospheric pressure dielectric barrier microplasma technique. The surface treatment changes the wettability of the microchannel from hydrophobic to hydrophilic. This is a challenging task due to the fast hydrophobic recovery of the PDMS surface after modification. This modification allows the formation of highly monodisperse oil-in-water (O/W droplets. The generation of water-in-oil-in-water (W/O/W double emulsions was successfully achieved by connecting in series a hydrophobic microchip with a modified hydrophilic microchip. An original channel blocking technique to pattern the surface wettability of a specific section of a microchip using a viscous liquid comprising a mixture of honey and glycerol, is also presented for generating W/O/W emulsions on a single chip.

  9. Submicron Emulsions and Their Applications in Oral Delivery.

    Science.gov (United States)

    Mundada, Veenu; Patel, Mitali; Sawant, Krutika

    2016-01-01

    A "submicron emulsion" is an isotropic mixture of drug, lipids, and surfactants, usually with hydrophilic cosolvents and with droplet diameters ranging from 10 to 500 nm. Submicron emulsions are of increasing interest in medicine due to their kinetic stability, high solubilizing capacity, and tiny globule size. Because of these properties, they have been applied in various fields, such as personal care, cosmetics, health care, pharmaceuticals, and agrochemicals. Submicron emulsions are by far the most advanced nanoparticulate systems for the systemic delivery of biologically active agents for controlled drug delivery and targeting. They are designed mainly for pharmaceutical formulations suitable for various routes of administration like parenteral, ocular, transdermal, and oral. This review article describes the marked potential of submicron emulsions for oral drug delivery owing to their numerous advantages like reduced first pass metabolism, inhibition of P-glycoprotein efflux system, and enhanced absorption via intestinal lymphatic pathway. To overcome the limitations of liquid dosage forms, submicron emulsions can be formulated into solid dosage forms such as solid self-emulsifying systems. This article covers various types of submicron emulsions like microemulsion, nanoemulsion, and self-emulsifying drug delivery system (SEDDS), and their potential pharmaceutical applications in oral delivery with emphasis on their advantages, limitations, and advancements.

  10. Immunomodulatory and Physical Effects of Oil Composition in Vaccine Adjuvant Emulsions

    Science.gov (United States)

    Fox, Christopher B.; Baldwin, Susan L.; Duthie, Malcolm S.; Reed, Steven G.; Vedvick, Thomas S.

    2011-01-01

    Squalene-based oil-in-water emulsions have been used for years in some seasonal and pandemic influenza vaccines. However, concerns have been expressed regarding squalene source and potential biological activities. Little information is available regarding the immunomodulatory activity of squalene in comparison with other metabolizable oils in the context of oil-in-water emulsions formulated with vaccines. The present work describes the manufacture and physical characterization of emulsions composed of different classes of oils, including squalene, long chain triglycerides, a medium chain triglyceride, and a perfluorocarbon, all emulsified with egg phosphatidylcholine. Some differences were apparent among the non-squalene oils in terms of emulsion stability, including higher size polydispersity in the perfluorocarbon emulsion, more rapid visual instability at 60 °C for the long-chain triglyceride and perfluorocarbon emulsions, and an increased creaming rate in the medium-chain triglyceride emulsion at 60 °C as detected by laser scattering optical profiling. The biological activity of each of these emulsions was compared when formulated with either a recombinant malaria antigen or a split-virus inactivated influenza vaccine. Overall, vaccines containing the squalene emulsion elicited higher antibody titers and more abundant long-lived plasma cells than vaccines containing emulsions based on other oils. Since squalene-based emulsions show higher adjuvant potency compared to the other oils tested, non-squalene oils may be more suitable as carriers of amphiphilic or hydrophobic immunostimulatory molecules (such as TLR agonists) rather than as stand-alone adjuvants. PMID:21906648

  11. Centrifugal Pump Effect on Average Particle Diameter of Oil-Water Emulsion

    Science.gov (United States)

    Morozova, A.; Eskin, A.

    2017-11-01

    In this paper we review the process of oil-water emulsion particles fragmentation in a turbulent flow created by a centrifugal pump. We examined the influence of time necessary for oil-water emulsion preparation on the particle size of oil products and the dependence of a centrifugal pump emulsifying capacity on the initial emulsion dispersion. The investigated emulsion contained the brand fuel oil M-100 and tap water; it was sprayed with a nozzle in a gas-water flare. After preparation of the emulsion, the centrifugal pump was turned on and the emulsion samples were taken before and after the pump passing in 15, 30 and 45 minutes of spraying. To determine the effect the centrifugal pump has on the dispersion of the oil-water emulsion, the mean particle diameter of the emulsion particles was determined by the optical and microscopic method before and after the pump passing. A dispersion analysis of the particles contained in the emulsion was carried out by a laser diffraction analyzer. By analyzing the pictures of the emulsion samples, it was determined that after the centrifugal pump operation a particle size of oil products decreases. This result is also confirmed by the distribution of the obtained analyzer where the content of fine particles with a diameter less than 10 μm increased from 12% to 23%. In case of increasing emulsion preparation time, a particle size of petroleum products also decreases.

  12. Minimum pressure for sustained combustion in AN-based emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Goldthorp, S.; Turcotte, R.; Badeen, C.M. [Natural Resources Canada, Ottawa, ON (Canada). Canadian Explosives Research Laboratory; Chan, S.K. [Orica Canada Inc., Brownsburg-Chatham, PQ (Canada)

    2008-04-15

    AN-based emulsions have been involved in a relatively high number of accidental explosions related to pumping operations during their manufacture, transfer and handling. The minimum burning pressure (MBP) of emulsions is used to estimate safe operating pressures for pumping and mixing equipment. This study examined testing protocols conducted to measure MBP values. Factors contributing to uncertainties in MBP data were examined, and a measurement methodology designed to incorporate the uncertainties was presented. MBP measurements obtained for 5 different AN-based emulsions in high pressure vessels were also provided, and the impact of various ingredients on MBP values was discussed. Bench-scale experiments and time current pulse tests were conducted to examine thermal ignition behaviour. The emulsions exhibited MBP values that ranged from 580 to 6510 kPa. Results of the study suggested that ingredients play a significant role on MBP values. A relatively high energy flux was required to induce stable combustion fronts in the emulsions. Large air voids containing flammable atmospheres were able to provide sufficient energy to ignite the emulsions. It was concluded that a knowledge of the MBP of emulsions is needed to ensure that corresponding pumping operations are conducted at pressures below the MBP. 11 refs., 2 tabs., 8 figs.

  13. Nonionic emulsion-mediated synthesis of zeolite beta

    Indian Academy of Sciences (India)

    Zeolite beta synthesis was first carried out in a newly developed emulsion system containing nonionic polyoxyethylated alkylphenol surfactant, which showed interesting non-conventional features. Compared to the conventional hydrothermal synthesis of zeolite beta, the reported nonionic emulsion system showed a faster ...

  14. Development of water-borne thermosetting paint by radiation-induced emulsion polymerization

    International Nuclear Information System (INIS)

    Makuuchi, K.; Katakai, A.; Nakayama, H.

    1981-01-01

    In previous papers the features of γ-ray induced emulsion polymerization were studied to use the emulsion as vehicles for water-borne paint. In this paper, the physical properties of thermosetting paints made with emulsions containing N-(n-butoxymethyl)acrylamide (NBM) and hydroxyl and carboxyl functionality were investigated. Since NBM moieties can react with amide, hydroxyl, and carboxyl groups, NBM copolymer emulsions prepared in this study have the self-crosslinking capability. As far as it was investigated, it was difficult to prepare a stable emulsion containing 10% of NBM by the conventional emulsion polymerization by using a water soluble radical initiator such as persulfate. In addition to 1-liter reactor, a pilot-scale plant of 70 liters reactor was used for γ-ray induced emulsion polymerization. Experimental details are given, and results are discussed. (author)

  15. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions of 1.4 GeV/c incident momentum observed in photographic emulsions

    International Nuclear Information System (INIS)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1983-12-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum were studied by means of the emulsion technique. A group of short range charged particles was observed. For the events with one short track, a backward and transversal emission was seen, probably due to some very fast process. For the events with two short tracks, a back-to-back emission was seen, indicating some two-body decay where the target nucleus possibly behaves spectator-like. The rates and forward collimations suggest that the same physical process causes the different multiplicities

  16. Ultrasonic Studies of Emulsion Stability in the Presence of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Józefczak

    2015-01-01

    Full Text Available Pickering emulsions are made of solid particle-stabilized droplets suspended in an immiscible continuous liquid phase. A magnetic emulsion can be obtained using magnetic particles. Solid magnetic nanoparticles are adsorbed strongly at the oil-water interface and are able to stabilize emulsions of oil and water. In this work emulsions stabilized by magnetite nanoparticles were obtained using high-energy ultrasound waves and a cavitation mechanism and, next, their stability in time was tested by means of acoustic waves with a low energy, without affecting the structure. An acoustic study showed high stability in time of magnetic emulsions stabilized by magnetite particles. The study also showed a strong influence of an external magnetic field, which can lead to changes of the emulsion properties. It is possible to control Pickering emulsion stability with the help of an external stimulus—a magnetic field.

  17. A Nuclear Emulsion Detector for the Muon Radiography of a Glacier Structure

    Directory of Open Access Journals (Sweden)

    Akitaka Ariga

    2018-04-01

    Full Text Available Cosmic ray muons can be used to image the interior of geological sites provided that one employs detectors able to operate in the specific harsh conditions of the mountain environment. We designed and developed a detector exploiting the nuclear emulsion technique to assess the bedrock profile underneath an alpine glacier. Nuclear emulsions do not need any electric power supply or maintenance and allow for the measurement of the muon flux and direction behind a large target volume. The 3D density distribution of the material traversed by muons can then be assessed, bringing relevant information on the shape of the boundary between the glacial ice and the underlying bedrock. This new methodology in the geological field was recently tested in a campaign of measurements in the Jungfrau region of the central Swiss Alps. It was shown that the bedrock surface position can be measured with a resolution of about 5 % when the traversed target is about 100 m thick. Characteristics and performance of the method are reported here and demonstrate that muon radiography based on emulsion detectors represents a powerful tool for the geological study of glaciers.

  18. Increasing of registering capacity of nuclear emulsion for autoradiography

    International Nuclear Information System (INIS)

    Romanovskaya, K.M.; Savvateeva, J.P.; Tolkacheva, E.N.

    1977-01-01

    The ways of increasing detecting power of the type M nuclear emulsion gel have been investigated in these studies. There have been found conditions under which type M emulsion sensitivity increased by 15 to 20% without increasing fog grain background. The stability of photographic sensitivity during emulsion gel storage increased by two times. The prevention of latent image fading (by means of layer moisture content) decreased to 1.2% and increasing the detecting power of the emulsion (by means of exposure temperature) by up to 37 0 C. The exposure time of tritium labelled autographs has been decreased to about 20%. (author)

  19. α-Tocopherol/chitosan-based nanoparticles: characterization and preliminary investigations for emulsion systems application

    Science.gov (United States)

    Aresta, Antonella; Calvano, Cosima Damiana; Trapani, Adriana; Zambonin, Carlo Giorgio; De Giglio, Elvira

    2014-02-01

    The processes of lipids oxidation represent a great concern for the consumer health because they are one of the major causes of quality deterioration in fat-containing products. One of the most effective methods of delaying lipid oxidation consists in incorporating antioxidants. The present investigation describes the formulation of chitosan and novel glycol chitosan nanoparticles (NPs) loaded with α-Tocopherol (αToc-NPs). The obtained NPs were characterized by various techniques, such as particle size (showing mean diameters in the range 335-503 nm) and zeta potential measurements, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The NPs were, then, added in the preparation of oil-in-water simple emulsion both to make the lipophilic αToc available in an aqueous medium and to prevent emulsion oxidation. For this purpose, a new highly sensitive, simple and solvent-free method based on a solid phase microextraction (SPME) coupled to gas chromatography mass spectrometry was developed for the determination of αToc in aqueous medium. All the parameters influencing SPME, including fiber coating, time and temperature extraction, pH, ionic strength and desorption conditions, have been carefully screened. The method was successfully applied to the determination of vitamin in the αToc-NPs and its release from NPs-enriched simple emulsion formulations. SPME provided high recovery yields and the limits of detection and of quantification in emulsion were 0.1 and 0.5 μg/mg, respectively. The precision of the method has been also estimated. The delay of the lipid oxidation by the proposed formulations has been evaluated exploiting the Kreis test on αToc-NPs-enriched emulsions.

  20. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    Science.gov (United States)

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  1. Front-face fluorescence spectroscopy study of globular proteins in emulsions: displacement of BSA by a nonionic surfactant.

    Science.gov (United States)

    Rampon, V; Genot, C; Riaublanc, A; Anton, M; Axelos, M A V; McClements, D J

    2003-04-23

    The displacement of a globular protein (bovine serum albumin, BSA) from the surface of oil droplets in concentrated oil-in-water emulsions by a nonionic surfactant (polyoxyethylene sorbitan monolauarate, Tween 20) was studied using front-face fluorescence spectroscopy (FFFS). This method relies on measurement of the change in intensity (I(MAX)) and wavelength (lambda(MAX)) of the maximum in the tryptophan emission spectrum. A series of oil-in-water emulsions (21 wt % n-hexadecane, 0.22 wt % BSA, pH 7.0) containing different molar ratios of Tween 20 to BSA (R = 0-131) were prepared. As the surfactant concentration was increased, the protein was progressively displaced from the droplet surfaces. At R > or = 66, the protein was completely displaced from the droplet surfaces. There was an increase in both I(MAX) and lambda(MAX) with increasing Tween 20 concentration up to R = 66, which correlated with the increase in the ratio of nonadsorbed to adsorbed protein. In contrast, there was a decrease in I(MAX) and lambda(MAX) with Tween 20 concentration in protein solutions and for R > or = 66 in the emulsions, which was attributed to binding of the surfactant to the protein. This study shows that FFFS is a powerful technique for nondestructively providing information about the interfacial composition of droplets in concentrated protein-stabilized emulsions in situ. Nevertheless, in general the suitability of the technique may also depend on protein type and the nature of the physicochemical matrix surrounding the proteins.

  2. Interactions between Parenteral Lipid Emulsions and Container Surfaces.

    Science.gov (United States)

    Gonyon, Thomas; Tomaso, Anthony E; Kotha, Priyanka; Owen, Heather; Patel, Dipa; Carter, Phillip W; Cronin, Jim; Green, John-Bruce D

    2013-01-01

    To evaluate the relationship between changes in emulsion globule size distributions and container uptake of lipid emulsions in total nutrient admixtures. A total nutrient admixture was prepared from a commercial lipid emulsion, 20% ClinOleic®, separated into glass (borosilicate) and ethylene vinyl acetate (EVA) plastic containers, and then stored at ambient conditions for approximately 24 h. The large globule size distribution was monitored continuously for both containers, and the quantity of triglycerides associated with both containers was measured by liquid chromatography. The changes in mass of the EVA containers were also measured gravimetrically. The volume percent of globules greater than 5 microns in diameter (PFAT5) levels for an emulsion admixture in EVA containers showed a 75% reduction compared to a marginal decrease of PFAT5 when in the glass container. Extraction of the containers showed that the quantity of triglycerides associated with the EVA surfaces steadily increased with emulsion exposure time, while the glass showed a significantly lower triglyceride content compared to the EVA. Gravimetric measurements confirmed that the EVA containers gained significant mass during exposure to the emulsion admixture. A time-dependent decrease in PFAT5 values for an emulsion admixture was associated with container triglyceride absorption where EVA containers had a greater uptake than glass containers. The larger globules appear to absorb preferentially, and the admixture globule size distribution fraction represented by PFAT5 accounts for 15-20% of the total triglyceride adsorption to the container. The goal of this work is to evaluate how emulsions in total nutrition admixtures are affected by the containers within which they are stored. Specifically, the study examines how the emulsion globule size distribution in different containers is related to adsorption or absorption of the lipids onto or into the container. The admixtures were prepared from a

  3. KINETICS OF SUSPENDED EMULSION POLYMERIZATION OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Cheng-xi Wang; Zhi-ming Huang; Zhi-xue Weng

    2004-01-01

    The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0 ∝ [I]0.73[S]0.32 and Rp ∝ [I]0.71[S]0.23. The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methyl methacrylate) decreased as the polymerization temperature, [I] and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.

  4. Automatic read out system for superheated emulsion based neutron detector

    International Nuclear Information System (INIS)

    Meena, J.P.; Parihar, A.; Vaijapurkar, S.G.; Mohan, Anand

    2010-01-01

    Full text: Defence Laboratory, Jodhpur (DLJ) has developed superheated emulsion technology for neutron and gamma measurements. The laboratory has attempted to develop reader system to display neutron dose and dose rate based on acoustic technique. The paper presents a microcontroller based automatic reader system for neutron measurements using indigenously developed superheated emulsion detector. The system is designed for real time counting of bubbles formed in superheated emulsion detector. A piezoelectric transducer is used for sensing bubble acoustic. The front end of system is mainly consisting of specially designed signal conditioning unit consisted of piezoelectric transducer, an amplifier, a high-pass filter, a differentiator, a comparator and monostable multivibrator. The system is based on PIC 18F6520 microcontroller having large internal SRAM, 10-bit internal ADC, I 2 C interface, UART/USART modules. The paper also describes the design of following peripheral units interfaced to microcontroller temperature and battery monitoring, display, keypad and a serial communication. The reader system measures and displays neutron dose and dose rate, number of bubble and elapsed time. The developed system can be used for detecting very low neutron leakage in the accelerators, nuclear reactors and nuclear submarines. The important features of system are compact, light weight, cost effective and high neutron sensitivity. The prototype was tested and evaluated by exposing to 241 Am-Be neutron source and results have been reported

  5. Investigation of Central Pb-Pb Interactions at Energies of 160 GeV/Nucleon with the Help of the Emulsion Magnetic Chamber

    CERN Multimedia

    2002-01-01

    % EMU15 \\\\ \\\\ The aim of this experiment is to investigate high energy heavy ion central collisions by the use of emulsion magnetic chamber with high spatial resolution. The emulsion chamber consists of 50~emulsion layers 50~microns thick each coated on 25~microns mylar base. A thin lead target plate 300~microns thick is installed immediately in front of the first emulsion layer. It is placed in the transverse magnetic field B~$\\sim$~2~Tesla and is to be installed perpendicularly to Pb nucleus beam. This set-up enables to measure full 3-momenta and charge signs of secondary particles. \\\\ \\\\Specific goal is to carry out detailed analysis of individual events with super high multiplicity of secondaries. These data are to be used for investigation of properties of super hot/dense matter, in particular to look for and analyze possible manifestations of quark-gluon plasma in central Pb-Pb collisions at energies of 160~GeV/nucleon.

  6. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants.

    Science.gov (United States)

    Fox, Christopher B; Haensler, Jean

    2013-07-01

    With the exception of alum, emulsion-based vaccine adjuvants have been administered to far more people than any other adjuvant, especially since the 2009 H1N1 influenza pandemic. The number of clinical safety and immunogenicity evaluations of vaccines containing emulsion adjuvants has correspondingly mushroomed. In this review, the authors introduce emulsion adjuvant composition and history before detailing the most recent findings from clinical and postmarketing data regarding the effects of emulsion adjuvants on vaccine immunogenicity and safety, with emphasis on the most widely distributed emulsion adjuvants, MF59® and AS03. The authors also present a summary of other emulsion adjuvants in clinical development and indicate promising avenues for future emulsion-based adjuvant development. Overall, emulsion adjuvants have demonstrated potent adjuvant activity across a number of disease indications along with acceptable safety profiles.

  7. Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry

    Science.gov (United States)

    Charlier, N.; Driesschaert, B.; Wauthoz, N.; Beghein, N.; Préat, V.; Amighi, K.; Marchand-Brynaert, J.; Gallez, B.

    2009-04-01

    This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected.

  8. Emulsions inside Gargamelle

    CERN Multimedia

    1978-01-01

    A feasibility test was made with a 2.5 litre emulsion stack installed within the chamber. The stack was contained in a thermally insulated aluminium alloy pressure vessel (photo). See Annual Report 1978 p. 79 Fig. 5.

  9. Application of D-optimal experimental design method to optimize the formulation of O/W cosmetic emulsions.

    Science.gov (United States)

    Djuris, J; Vasiljevic, D; Jokic, S; Ibric, S

    2014-02-01

    This study investigates the application of D-optimal mixture experimental design in optimization of O/W cosmetic emulsions. Cetearyl glucoside was used as a natural, biodegradable non-ionic emulsifier in the relatively low concentration (1%), and the mixture of co-emulsifiers (stearic acid, cetyl alcohol, stearyl alcohol and glyceryl stearate) was used to stabilize the formulations. To determine the optimal composition of co-emulsifiers mixture, D-optimal mixture experimental design was used. Prepared emulsions were characterized with rheological measurements, centrifugation test, specific conductivity and pH value measurements. All prepared samples appeared as white and homogenous creams, except for one homogenous and viscous lotion co-stabilized by stearic acid alone. Centrifugation testing revealed some phase separation only in the case of sample co-stabilized using glyceryl stearate alone. The obtained pH values indicated that all samples expressed mild acid value acceptable for cosmetic preparations. Specific conductivity values are attributed to the multiple phases O/W emulsions with high percentages of fixed water. Results of the rheological measurements have shown that the investigated samples exhibited non-Newtonian thixotropic behaviour. To determine the influence of each of the co-emulsifiers on emulsions properties, the obtained results were evaluated by the means of statistical analysis (ANOVA test). On the basis of comparison of statistical parameters for each of the studied responses, mixture reduced quadratic model was selected over the linear model implying that interactions between co-emulsifiers play the significant role in overall influence of co-emulsifiers on emulsions properties. Glyceryl stearate was found to be the dominant co-emulsifier affecting emulsions properties. Interactions between the glyceryl stearate and other co-emulsifiers were also found to significantly influence emulsions properties. These findings are especially important

  10. Radiation processing of polymer emulsion, 8

    International Nuclear Information System (INIS)

    Makuuchi, Keizo; Katakai, Akio; Hagiwara, Miyuki

    1983-01-01

    Radiation induced emulsion copolymerization of strong acid monomer was investigated to reduce the curing temperature of core shell particle emulsion having N-(n-butoxymethyl) acrylamide (NBM) moities in shell part. The strong acid monomers used were 3-chloro-2-acidphosphoxypropyl methacrylate, acid-phosphoxyethyl methacrylate, 2-acrylamide-2-methyl-propane sulfonic acid, and sodium p-styrenesulfonate. Curing was remarkably promoted by the presence of copolymerized strong acid monomer in shell part. Tensile strength of the film cured at 120 0 C was identical with that of conventional NBM core-shell emulsion film cured at 160 0 C. However, the water absorbing capacity of the film cured at 120 0 C was extremely high. The water resistance was found to increase with decreasing the amount of adsorbed polyelectrolyte on the particle surface. (author)

  11. Instant polysaccharide-based emulsions: impact of microstructure on lipolysis.

    Science.gov (United States)

    Torcello-Gómez, Amelia; Foster, Timothy J

    2017-06-21

    The development of emulsion-based products through optimisation of ingredients, reduction in energy-input during manufacture, while fulfilling healthy attributes, are major objectives within the food industry. Instant emulsions can meet these features, but comprehensive studies are necessary to investigate the effect of the initial formulation on the final microstructure and, in turn, on the in vitro lipolysis, comprising the double aim of this work. The instant emulsion is formed within 1.5-3 min after pouring the aqueous phase into the oil phase which contains a mixture of emulsifier (Tween 20), swelling particles (Sephadex) and thickeners (hydroxypropylmethylcellulose, HPMC, and guar gum, GG) under mild shearing (180 rpm). The creation of oil-in-water emulsions is monitored in situ by viscosity analysis, the final microstructure visualised by microscopy and the release of free fatty acids under simulated intestinal conditions quantified by titration. Increasing the concentration and molecular weight (M w ) of GG leads to smaller emulsion droplets due to increased bulk viscosity upon shearing. This droplet size reduction is magnified when increasing the M w of HPMC or swelling capacity of viscosifying particles. In addition, in the absence of the emulsifier Tween 20, the sole use of high-Mw HPMC is effective in emulsification due to combined increased bulk viscosity and interfacial activity. Hence, optimisation of the ingredient choice and usage level is possible when designing microstructures. Finally, emulsions with larger droplet size (>20 μm) display a slower rate and lower extent of lipolysis, while finer emulsions (droplet size ≤20 μm) exhibit maximum rate and extent profiles. This correlates with the extent of emulsion destabilisation observed under intestinal conditions.

  12. Synthesis of Calcium Phosphate Composite Organogels by Using Emulsion Method for Dentine Occlusion Materials

    Science.gov (United States)

    Nopteeranupharp, C.; Akkarachaneeyakorn, K.; Songsasaen, A.

    2018-03-01

    Dentinal hypersensitivity (DH) is one of the most human’s problems caused by the erosion of enamel. There are many methods and materials to solve this problem. Calcium phosphate is an excellent alternative for curing this symptom because of its osteoconductivity, and biocompatibility properties. The low-cost and low-toxicity calcium phosphate nanogel was fabricated by using emulsion method and characterized by using TEM, EDX, and DLS techniques. The results showed that P123 (poly (ethylene oxide)19-block-Poly (propylene oxide)69-block-poly (ethylene oxide)19) has played a major role as template and gel formation, SDS was used as a surfactant to form water-in-oil emulsion nanodroplets with circle-like shape. Moreover, the ability of synthesised organogel to occlude the exposed dentine tubules was tested on the model of human’s dentine slices. The results showed that calcium phosphate composite organogel can be efficiently occluded on dentine slice, characterized by SEM technique, after 1 day.

  13. Multiple sectioning and perforation techniques for TEM sub-surface studies

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.

    1978-01-01

    Techniques for preparing multiple electron transparent regions at several depth levels below the surface of a metal disk specimen are described. These techniques are relatively rapid and find application in many areas involving surface studies. Examples are shown of multiple thin areas produced at intervals of approximately 200 nm below the original surface of a stainless steel bombarded with 4 MeV Ni +2 ions for void swelling studies

  14. Structure- and oil type-based efficacy of emulsion adjuvants.

    Science.gov (United States)

    Jansen, Theo; Hofmans, Marij P M; Theelen, Marc J G; Manders, Frans; Schijns, Virgil E J C

    2006-06-29

    Oil-based emulsions are well-known immunopotentiators for inactivated, "killed" vaccines. We addressed the relationship between emulsion structure and levels of in vivo antibody formation to inactivated New Castle Disease virus (NDV) and Infectious Bronchitis virus (IBV) as antigens in 3-week-old chickens. The use of a polymeric emulsifier allowed for direct comparison of three types of emulsions, water-in-oil (W/O), oil-in-water (O/W) and W/O-in-water (W/O/W), while maintaining an identical content of components for each vehicle. They were prepared with either non-metabolizable, mineral oil or metabolizable, Miglyol 840. In addition, we assessed the inherent release capacity of each emulsion variant in vitro. Remarkably, we noted that W/O-type emulsions induced the best immune responses, while they released no antigen during 3 weeks. In general, mineral oil vaccines showed superior efficacy compared to Miglyol 840-based vaccines.

  15. Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles.

    Science.gov (United States)

    Binks, Bernard P; Clint, John H; Whitby, Catherine P

    2005-06-07

    A study of the rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles is described. Concentrated emulsions were prepared and diluted at constant particle concentration to investigate the effect of drop volume fraction on the viscosity and viscoelastic response of the emulsions. The influence of the structure of the hydrophobic clay particles in the oil has also been studied by using oils in which the clay swells to very different extents. Emulsions prepared from isopropyl myristate, in which the particles do not swell, are increasingly flocculated as the drop volume fraction increases and the viscosity of the emulsions increases accordingly. The concentrated emulsions are viscoelastic and the elastic storage and viscous loss moduli also increase with increasing drop volume fraction. Emulsions prepared from toluene, in which the clay particles swell to form tactoids, are highly structured due to the formation of an integrated network of clay tactoids and drops, and the moduli of the emulsions are significantly larger than those of the emulsions prepared from isopropyl myristate.

  16. Vinyl Acetate/butyl acrylate/acrylate Research of Ternary Soap-free Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang

    2016-01-01

    Full Text Available Through the vinyl acetate/butyl acrylate/acrylic acrylic emulsion preparation without soap vinegar, with solid content, gel, emulsion stability and film forming properties and tensile strength as the main index to study the effect of raw materials on the properties of emulsion. Through the infrared spectrometer soap-free emulsion for microscopic analysis research. Study of the ternary soap-free vinegar acrylic emulsion with good performance.

  17. The influence of emulsion structure on the Maillard reaction of ghee.

    Science.gov (United States)

    Newton, Angela E; Fairbanks, Antony J; Golding, Matt; Andrewes, Paul; Gerrard, Juliet A

    2015-04-15

    Food systems, such as cream and butter, have an emulsion or emulsion-like structure. When these food emulsions are heated to high temperatures to make products such as ghee, the Maillard reaction forms a range of volatile flavour compounds. The objective of this paper was to unravel the specific influence of emulsion structure on the Maillard reaction pathways that occur during the cooking of ghee using model systems. Switching the dispersed phase from oil to water provided a means of altering the ratios of volatile compounds produced in the cooked samples. The oil-in-water emulsion generated a volatile compound profile similar to that of the fat containing two phase model matrix, whereas the water-in-oil emulsion produced a different ratio of these compounds. The ability to generate different volatile compound profiles through the use of inverted emulsion structures could point to a new avenue for control of the Maillard reaction in high temperature food systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Multilayer Oil-in-Water Emulsions: Formation, Characteristics and Application as the Carriers for Lipophilic Bioactive Food Components – a Review

    Directory of Open Access Journals (Sweden)

    Bortnowska Grażyna

    2015-09-01

    Full Text Available This review article demonstrates fundamentals regarding the manufacturing of multilayer oil-in-water (M-O/W emulsions and factors affecting stability of these systems. Moreover, characteristics of major bioactive lipophilic components and ingredients mostly applied to form multilayered membranes as well analytical methods used to examine properties of M-O/W emulsions are specified. It has been shown that production of M-O/W systems is based on the layer-by-layer (LbL electrostatic deposition technique which makes use of the electrostatic attraction of oppositely charged surfactants and biopolymers to form multicomposite protective layers around emulsion droplets. Finally, limitations regarding studies of M-O/W systems which should be developed are specified.

  19. Nuclear interactions of 400 GeV protons in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.; Stenlund, E.; Andersson, B.

    1978-04-01

    We report on 400 GeV proton-emulsion nucleus reactions and compare the results to hadron-nucleus reactions at smaller energies. In particular we present results on the emission of fast target protons (essentially grey track particles) and on their correlation with the number of collisions inside the nucleus, ν, with the number of charged evaporated particles (essentially black particles) and with the number of pions produced (essentially shower particles). We observe that the main features of the 200-400 GeV data are very similar. However, we find that the mean shower-particle multiplicity at 400 GeV is essentially higher than expected from the simple independent particle model prediction = [1 + 0.5 ( - 1)]. The shower particle multiplicities do not seem to follow a target mass dependence of the form = A sup(α) with α = 0.19 as has been suggested in the literature. The pseudo-rapidity distribution shows limiting target and projectile fragmentation. The shower particle multiplicity in the ''central region'' increases linearily with but faster than 0.5 times the corresponding multiplicity in pp-reactions. (author)

  20. Nuclear interactions of 400 GeV protons in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.; Stenlund, E.; Andersson, B.

    1978-04-01

    We report on 400 GeV proton-emulsion nucleus reactions and compare the results to hadron-nucleus reactions at smaller energies. In particular we present results on the emission of fast target protons (essentially grey track particles) and on their correlation with the number of collisions inside the nucleus, ν, with the number of charged evaporated particles (essentially black track particles) and with the number of pions produced (essentially shower particles). We observe that the main features of the 200-400 GeV data are very similar. However, we find that the mean shower-particle multiplicity at 400 GeV is essentially higher than expected from the simple independent particle model prediction = [1 + 0.5 ( - 1)]. The shower particle multiplicities do not seem to follow a target mass dependence of the form = Asup(α) with α = 0.14 or α = 0.19 as has been suggested in the literature. The pseudo-rapidity distribution shows limiting target and projectile fragmentation. The shower particle multiplicity in the ''central region'' increases linearily with but faster than 0.5 times the corresponding multiplicity in pp-reactions. (author)

  1. Rheological Behaviour of Water-in-Light Crude Oil Emulsion

    Science.gov (United States)

    Husin, H.; Taju Ariffin, T. S.; Yahya, E.

    2018-05-01

    Basically, emulsions consist of two immiscible liquids which have different density. In petroleum industry, emulsions are undesirable due to their various costly problems in term of transportation difficulties and production loss. A study of the rheological behaviour of light crude oil and its mixture from Terengganu were carried out using Antoon Paar MCR 301 rheometer operated at pressure of 2.5 bar at temperature C. Water in oil emulsions were prepared by mixing light crude oil with different water volume fractions (20%, 30% and 40%). The objectives of present paper are to study the rheological behaviour of emulsion as a fuction of shear rate and model analysis that fitted with the experimental data. The rheological models of Ostwald-De-Waele and Herschel-Bulkley were fitted to the experimental results. All models represented well the rheological data, with high values for the correlation coefficients. The result indicated that variation of water content influenced shear rate-shear stress rheogram of the prepared emulsions. In the case of 100% light crude oil, the study demonstrated non-Newtonian shear thickening behavior. However, for emulsion with different volume water ratios, the rheological behaviour could be well described by Herschel-Bulkley models due to the present of yield stress parameter (R2 = 0.99807). As a conclusion, rheological studies showed that volume water ratio have a great impact on the shear stress and viscosity of water in oil emulsion and it is important to understand these factors to avoid various costly problems.

  2. Study of Particle Production and Nuclear Fragmentation in Relativistic Heavy-Ion Collisions in Nuclear Emulsions

    CERN Multimedia

    2002-01-01

    % EMU11 \\\\ \\\\ We propose to use nuclear emulsions for the study of nuclear collisions of $^{207}$Pb, $^{197}$Au, and any other heavy-ion beams when they are available. We have, in the past, used $^{32}$S at 200A~GeV and $^{16}$O at 200A and 60A~GeV from CERN (Experiment EMU08) and at present the analysis is going on with $^{28}$Si beam from BNL at 14.5A~GeV. It will be important to compare the previous and the present investigations with the new $^{207}$Pb beam at 60-160A~GeV. We want to measure in nuclear emulsion, on an event by event basis, shower particle multiplicity, pseudorapidity density and density fluctuations of charged particles, charge multiplicity and angular distributions of projectile fragments, production and interaction cross-sections of heavily ionizing particles emitted from the target fragmentation. Special emphasis will be placed on the analysis of events produced in the central collisions which are selected on the basis of low energy fragments emitted from the target excitation. It woul...

  3. Molecular and functional assessment of multicellular cancer spheroids produced in double emulsions enabled by efficient airway resistance based selective surface treatment

    Science.gov (United States)

    Ma, Xiao; Leth Jepsen, Morten; Ivarsen, Anne Kathrine R.; Knudsen, Birgitta R.; Ho, Yi-Ping

    2017-09-01

    Multicellular spheroids have garnered significant attention as an in vitro three-dimensional cancer model which can mimick the in vivo microenvironmental features. While microfluidics generated double emulsions have become a potential method to generate spheroids, challenges remain on the tedious procedures. Enabled by a novel ‘airway resistance’ based selective surface treatment, this study presents an easy and facile generation of double emulsions for the initiation and cultivation of multicellular spheroids in a scaffold-free format. Combining with our previously developed DNA nanosensors, intestinal spheroids produced in the double emulsions have shown an elevated activities of an essential DNA modifying enzyme, the topoisomerase I. The observed molecular and functional characteristics of spheroids produced in double emulsions are similar to the counterparts produced by the commercially available ultra-low attachment plates. However, the double emulsions excel for their improved uniformity, and the consistency of the results obtained by subsequent analysis of the spheroids. The presented technique is expected to ease the burden of producing spheroids and to promote the spheroids model for cancer or stem cell study.

  4. Emulsion design for the delivery of β-carotene in complex food systems.

    Science.gov (United States)

    Mao, Like; Wang, Di; Liu, Fuguo; Gao, Yanxiang

    2018-03-24

    β-Carotene has been widely investigated both in the industry and academia, due to its unique bioactive attributes as an antioxidant and pro-vitamin A. Many attempts were made to design delivery systems for β-carotene to improve its dispersant state and chemical stability, and finally to enhance the functionality. Different types of oil-in-water emulsions were proved to be effective delivery systems for lipophilic bioactive ingredients, and intensive studies were performed on β-carotene emulsions in the last decade. Emulsions are thermodynamically unstable, and emulsions with intact structures are preferable in delivering β-carotene during processing and storage. β-Carotene in emulsions with smaller particle size has poor stability, and protein-type emulsifiers and additional antioxidants are effective in protecting β-carotene from degradation. Recent development in the design of protein-polyphenol conjugates has provided a novel approach to improve the stability of β-carotene emulsions. When β-carotene is consumed, its bioaccessibility is highly influenced by the digestion of lipids, and β-carotene in smaller oil droplets containing long-chain fatty acids has a higher bioaccessibility. In order to better deliver β-carotene in complex food products, some novel emulsions with tailor-made structures have been developed, e.g., multilayer emulsions, solid lipid particles, Pickering emulsions. This review summarizes the updated understanding of emulsion-based delivery systems for β-carotene, and how emulsions can be better designed to fulfill the benefits of β-carotene in functional foods.

  5. Concentrated emulsion pathway to novel composite polymeric membranes and their use in pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ruckenstein, E.; Sun, F. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemical Engineering

    1995-10-01

    Pervaporation is becoming recognized as an energy-efficient alternative to distillation and other separation methods of liquid mixtures, especially in cases in which the traditional separation techniques are not efficient, such as the separation of azeotropic mixtures, close-boiling-point components, isomeric components, and recovery or removal of trace organic substances from aqueous solutions. Novel composite polymeric membranes have been prepared, using concentrated emulsions as precursors, and employed in the pervaporation of various liquid mixtures. In order to improve the stability of the concentrated emulsion, the hydrophilicity and/or the hydrophobicity of the phases involved must be increased by replacing them with their solutions in water and/or in a hydrocarbon, respectively. Another possibility of improving the stability is to increase the viscosity of the phases, by partial polymerization of one or both phases before preparing the concentrated emulsion. The emulsion gel was subsequently transformed into a polymer composite by polymerizing both phases. The dispersed phase should be selected to yield a hydrophobic (hydrophilic) polymer which is compatible with the components selected for separation and incompatible with the other components, while the continuous phase should be selected to yield a hydrophilic (hydrophobic) polymer which is incompatible with all of the components of the mixture, and thus it can ensure the integrity of the membrane. As examples, several composite polymeric membranes were designed, prepared, and employed in the separation by pervaporation of water-ethanol,aromatics-paraffinics, and aromatics-alcohol mixtures.

  6. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  7. The choice of homogenisation equipment affects lipid oxidation in emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jensen, Louise Helene Søgaard

    2012-01-01

    in emulsions has been shown to be affected by the emulsification conditions. The objective of this study was to investigate the influence of homogenisation equipment (microfluidizer vs. two-stage valve homogeniser) on lipid oxidation in 10% fish oil-in-water emulsions prepared with two different milk proteins....... Emulsions were prepared at pH 7 with similar droplet sizes. Results showed that the oxidative stability of emulsions prepared with sodium caseinate was not influenced by the type of homogeniser used. In contrast, the type of homogenisation equipment significantly influenced lipid oxidation when whey protein...

  8. Physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata algae polysaccharide.

    Science.gov (United States)

    Shao, Ping; Ma, Huiling; Qiu, Qiang; Jing, Weiping

    2016-11-01

    The physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata polysaccharide (UFP) was investigated in this study. Emulsion physical stability was evaluated under different polysaccharide concentrations (1%-5%, wt/wt) and pH values (3.0-11.0). The stability of R-(+)-Limonene emulsions was demonstrated by droplet size distribution, rheological properties, zeta potential and visual phase separation. R-(+)-Limonene emulsions displayed monomodal droplet size distributions, high absolute values of zeta potential and good storage stability when 3% (wt/wt) UFP was used. The rheological properties and stability of R-(+)-Limonene emulsions appeared to be dependent on polysaccharide concentration. The emulsion stability was impacted by pH. Higher zeta potential (-52.6mV) and smaller mean droplet diameter (2.45μm) were achieved in neutral liquid environment (pH 7.0). Extreme acidity caused the flocculation of emulsions, which was manifested as phase separation, while emulsions were quite stable in an alkaline environment. Through comparing the stabilities of emulsions stabilized by different emulsifiers (i.e. UFP, GA and Gelatin), the result suggested that UFP was the best emulsifying agent among them. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Tweens demulsification effects on heavy crude oil/water emulsion

    Directory of Open Access Journals (Sweden)

    Nastaran Hayati Roodbari

    2016-09-01

    Full Text Available The demulsification role of Tweens (nonionic polymers was determined in the separation of water from heavy crude oil emulsion. According to the previous researches, these nonionic polymers, having hydrophilic and lipophilic groups, are appropriate for making oil in water emulsion. In this research their effects in certain concentrations on demulsifying of water in crude oil emulsion were proved. High molecular weight, alkenes’ chains and groups of ketone and ester in these polymers can improve their performance for the demulsification of water in crude oil emulsion. Their efficiencies are improved with electronegative groups such as oxygen. They leave no corrosion effect because they are neutral and do not leave counter ions.

  10. Water-Resistant Material from Recovered Fibers and Acrylic Emulsion Terpolymer

    Directory of Open Access Journals (Sweden)

    Fushan Chen

    2014-01-01

    Full Text Available Styrene (SM, methyl methacrylate (MMA, and butyl acrylate (BA were used to synthesize a polyacrylic emulsion by core-shell emulsion polymerization. The solid content of the emulsion reached 40% using reasonable reactive emulsifier contents and feeding modes. Then, the emulsion and a fiber were dispersed, coated, and dried together. Finally, fiber-based water-resistant material was successfully fabricated. The experimental results showed that under the conditions of a monomer mass ratio of 1:1:1 and a mass ratio of polyacrylic emulsion to fiber of 2:1, the Cobb value of the material reached 5.0 g/m2. The tensile strength, elongation, and breaking length were 7.4225 kN/m, 1.0%, and 11.706 km, respectively. Using scanning electron microscopy (SEM to analyze the surface morphology and internal structure of products, the reasons for the high water resistance of fiber-based material was due to the bonding and filling effects of the polyacrylic emulsion on the fibers. For tightly bound fibers, the porous structures formed in fiber-based boards were reduced. On the other hand, the polyacrylic emulsion filled the gaps between fibers. This filling effect led to a continuous structure, and the water resistance of the material was further enhanced.

  11. Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2017-03-01

    Full Text Available Diesel engines occupy a crucial position in automobile industry due to their high thermal efficiency and high power to weight ratio. However, they lag behind in controlling air polluting components coming out of the engine exhaust. Therefore, diesel consumption should be analyzed for future energy consumption and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines, which include biodiesel, alcohol-diesel emulsions and diesel water emulsions. Among them the diesel water emulsion is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency. But the major problem associated with emulsions is the ignition delay, since this is responsible for the power and torque loss. A reduction in NOx emission was observed due to reduction in combustion chamber temperature as the water concentration increases. However the side effect of emulsified diesel is a reduction in power which can be compensated by oxygen enrichment. The present study investigates the effects of oxygen concentration on the performance characteristics of a diesel engine when the intake air is enriched to 27% of oxygen and fueled by 10% of water diesel emulsion. It was found that the brake thermal efficiency was enhanced, combustion characteristics improved and there is also a reduction in HC emissions.

  12. Formulation, Characterization and Properties of Hemp Seed Oil and Its Emulsions

    Directory of Open Access Journals (Sweden)

    Veronika Mikulcová

    2017-04-01

    Full Text Available The formulation, characterization, and anticipated antibacterial properties of hemp seed oil and its emulsions were investigated. The oil obtained from the seeds of Cannabis sativa L. in refined and unrefined form was characterized using iodine, saponification, acid values, and gas chromatography, and was employed for the preparation of stable oil-in-water emulsions. The emulsions were prepared using pairs of non-ionic surfactants (Tween, Span. The effects of the emulsification method (spontaneous emulsification vs. high-intensity stirring, hydrophilic lipophilic balance (HLB, type and concentration of surfactant, and oil type on the size and distribution of the emulsion particles were investigated. It was found that the ability to form stable emulsions with small, initial particle sizes is primarily dependent on the given method of preparation and the HLB value. The most efficient method of emulsification that afforded the best emulsions with the smallest particles (151 ± 1 nm comprised the high-energy method, and emulsions stable over the long-term were observed at HBL 9 with 10 wt % concentration of surfactants. Under high-intensity emulsification, refined and unrefined oils performed similarly. The oils as well as their emulsions were tested against the growth of selected bacteria using the disk diffusion and broth microdilution methods. The antibacterial effect of hemp seed oil was documented against Micrococcus luteus and Staphylococcus aureus subsp. aureus. The formulated emulsions did not exhibit the antibacterial activity that had been anticipated.

  13. Effects of Partial Beef Fat Replacement with Gelled Emulsion on Functional and Quality Properties of Model System Meat Emulsions.

    Science.gov (United States)

    Serdaroğlu, Meltem; Nacak, Berker; Karabıyıkoğlu, Merve; Keser, Gökçen

    2016-01-01

    The objective of this study was to investigate the effects of partial beef fat replacement (0, 30, 50, 100%) with gelled emulsion (GE) prepared with olive oil on functional and quality properties of model system meat emulsion (MSME). GE consisted of inulin and gelatin as gelling agent and characteristics of gelled and model system meat emulsions were investigated. GE showed good initial stability against centrifugation forces and thermal stability at different temperatures. GE addition decreased the pH with respect to increase in GE concentration. Addition of GE increased lightness and yellowness but reduced redness compared to control samples. The results of the study showed that partial replacement of beef fat with GE could be used for improving cooking yield without negative effects on water holding capacity and emulsion stability compared to C samples when replacement level is up to 50%. The presence of GE significantly affected textural behaviors of samples ( p <0.05). In conclusion, our study showed that GE have promising impacts on developing healthier meat product formulations besides improving technological characteristics.

  14. Preparation of Lipid Nano emulsions Incorporating Curcumin for Cancer Therapy

    International Nuclear Information System (INIS)

    Anuchapreeda, S.; Anuchapreeda, S.; Fukumori, Y.; Ichikawa, H.; Okonogi, S.

    2012-01-01

    The aim of this study was to develop a new formulation of a curcumin lipid nano emulsion having the smallest particle size, the highest loading, and a good physical stability for cancer chemotherapy. Curcumin lipid nano emulsions were prepared by a modified thin-film hydration method followed by sonication. Soybean oil, hydrogenated L-α-phosphatidylcholine from egg yolk, and co surfactants were used to formulate the emulsions. The resultant nano emulsions showed mean particle diameter of 47-55 nm, could incorporate 23-28 mg curcumin per 30 mL, and were stable in particle size for 60 days at 4 degree C. The cytotoxicity studies of curucumin solution and curcumin-loaded nano emulsion using B16F10 and leukemic cell lines showed IC 50 values ranging from 3.5 to 30.1 and 22.2 to 53.7μM, respectively. These results demonstrated the successful incorporation of curcumin into lipid nano emulsion particles with small particle size, high loading capacity, good physical stability, and preserved cytotoxicity

  15. A study of recording possibilities of emulsions in autoradiography conditions

    International Nuclear Information System (INIS)

    Bogomolov, C.S.; Razorenova, I.F.; Ruditskaya, I.A.; Khruliova, L.S.

    1976-01-01

    The autoradiography method is widely used in various fields of science and technique and particularly, in medico-biological and medical researches. Combination of autoradiography method and electron microscopy allowed to carry out researches with qualitatively new level and to study radioactive labels, for example, in separate elements of a cell structure. In the present paper there has been carried out a study of nuclear emulsion properties with reference to electron-microscopic autoradiography conditions. (orig./ORU) [de

  16. Multi-responsive ionic liquid emulsions stabilized by microgels

    NARCIS (Netherlands)

    Monteillet, H.; Workamp, M.; Li, X.; Schuur, Boelo; Kleijn, J.M.; Leermakers, F.; Sprakel, J.

    2014-01-01

    We present a complete toolbox to use responsive ionic liquid (IL) emulsions for extraction purposes. IL emulsions stabilized by responsive microgels are shown to allow rapid extraction and reversible breaking and re-emulsification. Moreover, by using a paramagnetic ionic liquid, droplets can be

  17. Oxidative Stability and Shelf Life of Food Emulsions

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte

    2016-01-01

    Lipid oxidation and antioxidant effects in food emulsions are influenced by many different factors, such as the composition of the aqueous phase and interface, the partitioning of the antioxidants between the different phases of the emulsion system, the antioxidant properties, and others. This ch...

  18. Analysis of micro-structure in raw and heat treated meat emulsions from multimodal X-ray microtomography

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Nielsen, Mikkel Schou; Miklos, Rikke

    2014-01-01

    This study presents a novel non-destructive X-ray technique for analyzing meat emulsions before and after heat treatment. The method is based on X-ray grating-interferometry where three complementary imaging modalities are obtained simultaneously measuring the absorption, refraction and scatterin...

  19. Superhydrophobic cellulose-based bionanocomposite films from Pickering emulsions

    Science.gov (United States)

    Bayer, Ilker S.; Steele, Adam; Martorana, Philip J.; Loth, Eric; Miller, Lance

    2009-04-01

    Inherently superhydrophobic and flexible cellulose-based bionanocomposites were fabricated from solid stabilized (Pickering) emulsions. Emulsions were formed by dispersing cyclosiloxanes in water stabilized by layered silicate particles and were subsequently modified by blending into a zinc oxide nanofluid. The polymer matrix was a blend of cellulose nitrate and fluoroacrylic polymer (Zonyl 8740) precompatibilized in solution. Coatings were spray cast onto aluminum substrates from polymer blends dispersed in modified Pickering emulsions. No postsurface treatment was required to induce superhydrophobicity. Effect of antiseptic additives on bionanocomposite superhydrophobicity is also discussed. Replacing cellulose nitrate with commercial liquid bandage solutions produced identical superhydrophobic coatings.

  20. Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions.

    Science.gov (United States)

    Fernández-Ávila, C; Escriu, R; Trujillo, A J

    2015-09-01

    The effect of Ultra-High Pressure Homogenization (UHPH, 100-300MPa) on the physicochemical properties of oil-in-water emulsions prepared with 4.0% (w/v) of soy protein isolate (SPI) and soybean oil (10 and 20%, v/v) was studied and compared to emulsions treated by conventional homogenization (CH, 15MPa). CH emulsions were prepared with non-heated and heated (95°C for 15min) SPI dispersions. Emulsions were characterized by particle size determination with laser diffraction, rheological properties using a rotational rheometer by applying measurements of flow curve and by transmission electron microscopy. The variation on particle size and creaming was assessed by Turbiscan® analysis, and visual observation of the emulsions was also carried out. UHPH emulsions showed much smaller d 3.2 values and greater physical stability than CH emulsions. The thermal treatment of SPI prior CH process did not improve physical stability properties. In addition, emulsions containing 20% of oil exhibited greater physical stability compared to emulsions containing 10% of oil. Particularly, UHPH emulsions treated at 100 and 200MPa with 20% of oil were the most stable due to low particle size values (d 3.2 and Span), greater viscosity and partial protein denaturation. These results address the physical stability improvement of protein isolate-stabilized emulsions by using the emerging UHPH technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A Scalable Method toward Superhydrophilic and Underwater Superoleophobic PVDF Membranes for Effective Oil/Water Emulsion Separation.

    Science.gov (United States)

    Yuan, Tao; Meng, Jianqiang; Hao, Tingyu; Wang, Zihong; Zhang, Yufeng

    2015-07-15

    A superhydrophilic and underwater superoleophobic PVDF membrane (PVDFAH) has been prepared by surface-coating of a hydrogel onto the membrane surface, and its superior performance for oil/water emulsion separation has been demonstrated. The coated hydrogel was constructed by an interfacial polymerization based on the thiol-epoxy reaction of pentaerythritol tetrakis (3-mercaptopropionate) (PETMP) with diethylene glycol diglycidyl ether (PEGDGE) and simultaneously tethered on an alkaline-treated commercial PVDF membrane surface via the thio-ene reaction. The PVDFAH membranes can be fabricated in a few minutes under mild conditions and show superhydrophilic and underwater superoleophobic properties for a series of organic solvents. Energy dispersive X-ray (EDX) analysis shows that the hydrogel coating was efficient throughout the pore lumen. The membrane shows superior oil/water emulsion separation performance, including high water permeation, quantitative oil rejection, and robust antifouling performance in a series oil/water emulsions, including that prepared from crude oil. In addition, a 24 h Soxhlet-extraction experiment with ethanol/water solution (50:50, v/v) was conducted to test the tethered hydrogel stability. We see that the membrane maintained the water contact angle below 5°, indicating the covalent tethering stability. This technique shows great promise for scalable fabrication of membrane materials for handling practical oil emulsion purification.

  2. Synthesis of metallic nanoshells on porphyrin-stabilized emulsions

    Science.gov (United States)

    Wang, Haorong [Albuquerque, NM; Song, Yujiang [Albuquerque, NM; Shelnutt, John A [Tijeras, NM; Medforth, Craig J [Winters, CA

    2011-12-13

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  3. Fabrication, Rheology and Antioxidant Activity of Palm Esters-based Emulsions Loaded with Tocotrienol

    Directory of Open Access Journals (Sweden)

    S.H NG

    2014-06-01

    The yield stress of the emulsions increased with increasing acoustic amplitudes. The viscoelasticity of the emulsions were enhanced by the increase in the oil and surfactant concentrations. The emulsions with higher oil phase concentration [30% (w/w] showed greater elasticity which implied strong dynamic rigidity of the emulsions. The cohesive energy increased significantly with surfactant concentration especially for the emulsions with 30% (w/w oil phase concentration. The palm oil esters emulsions containing tocotrienol gave higher Trolox equivalent antioxidant capacity values which implied higher antioxidant capability. The tocotrienol in emulsion with 30% (w/w dispersed phase showed that they were the most stable with longest shelf life and exhibited greater inhibitory effects on the ABTS".

  4. Use of micro-emulsion technology for the directed evolution of antibodies.

    Science.gov (United States)

    Buhr, Diane L; Acca, Felicity E; Holland, Erika G; Johnson, Katie; Maksymiuk, Gail M; Vaill, Ada; Kay, Brian K; Weitz, David A; Weiner, Michael P; Kiss, Margaret M

    2012-09-01

    Affinity reagents, such as antibodies, are needed to study protein expression patterns, sub-cellular localization, and post-translational modifications in complex mixtures and tissues. Phage Emulsion, Secretion, and Capture (ESCape) is a novel micro-emulsion technology that utilizes water-in-oil (W/O) emulsions for the identification and isolation of cells secreting phage particles that display desirable antibodies. Using this method, a large library of antibody-displaying phage will bind to beads in individual compartments. Rather than using biopanning on a large mixed population, phage micro-emulsion technology allows us to individually query clonal populations of amplified phage against the antigen. The use of emulsions to generate microdroplets has the promise of accelerating phage selection experiments by permitting fine discrimination of kinetic parameters for binding to targets. In this study, we demonstrate the ability of phage micro-emulsion technology to distinguish two scFvs with a 300-fold difference in binding affinities (100nM and 300pM, respectively). In addition, we describe the application of phage micro-emulsion technology for the selection of scFvs that are resistant to elevated temperatures. Copyright © 2012. Published by Elsevier Inc.

  5. Impact of Protein Gel Porosity on the Digestion of Lipid Emulsions.

    Science.gov (United States)

    Sarkar, Anwesha; Juan, Jean-Marc; Kolodziejczyk, Eric; Acquistapace, Simone; Donato-Capel, Laurence; Wooster, Tim J

    2015-10-14

    The present study sought to understand how the microstructure of protein gels impacts lipolysis of gelled emulsions. The selected system consisted of an oil-in-water (o/w) emulsion embedded within gelatin gels. The gelatin-gelled emulsions consisted of a discontinuous network of aggregated emulsion droplets (mesoscale), dispersed within a continuous network of gelatin (microscale). The viscoelastic properties of the gelled emulsions were dominated by the rheological behavior of the gelatin, suggesting a gelatin continuous microstructure rather than a bicontinuous gel. A direct relationship between the speed of fat digestion and gel average mesh size was found, indicating that the digestion of fat within gelatin-gelled emulsions is controlled by the ability of the gel's microstructure to slow lipase diffusion to the interface of fat droplets. Digestion of fat was facilitated by gradual breakdown of the gelatin network, which mainly occurred via surface erosion catalyzed by proteases. Overall, this work has demonstrated that the lipolysis kinetics of gelled emulsions is driven by the microstructure of protein gels; this knowledge is key for the future development of microstructures to control fat digestion and/or the delivery of nutrients to different parts of the gastrointestinal tract.

  6. Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion.

    Directory of Open Access Journals (Sweden)

    Hylde Zirpoli

    Full Text Available Dietary n-3 fatty acids (FAs may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD, and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT. In the LAD model, mice treated with n-3 TG emulsion (1.5 g/kg body weight, immediately after ischemia and 1 h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05. In the LT model, administration of n-3 TG emulsion (300 mg TG/100 ml during reperfusion significantly improved functional recovery (p<0.05. In both models, lactate dehydrogenase (LDH levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05. Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05. Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05. Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction.

  7. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    Science.gov (United States)

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  8. Selective boron delivery by intra-arterial injection of BSH-WOW emulsion in hepatic cancer model for neutron capture therapy.

    Science.gov (United States)

    Yanagie, Hironobu; Dewi, Novriana; Higashi, Syushi; Ikushima, Ichiro; Seguchi, Koji; Mizumachi, Ryoji; Murata, Yuji; Morishita, Yasuyuki; Shinohara, Atsuko; Mikado, Shoji; Yasuda, Nakahiro; Fujihara, Mitsuteru; Sakurai, Yuriko; Mouri, Kikue; Yanagawa, Masashi; Iizuka, Tomoya; Suzuki, Minoru; Sakurai, Yoshinori; Masunaga, Shin-Ichiro; Tanaka, Hiroki; Matsukawa, Takehisa; Yokoyama, Kazuhito; Fujino, Takashi; Ogura, Koichi; Nonaka, Yasumasa; Sugiyama, Hirotaka; Kajiyama, Tetsuya; Yui, Sho; Nishimura, Ryohei; Ono, Koji; Takamoto, Sinichi; Nakajima, Jun; Ono, Minoru; Eriguchi, Masazumi; Hasumi, Kenichiro; Takahashi, Hiroyuki

    2017-06-01

    Boron neutron-capture therapy (BNCT) has been used to inhibit the growth of various types of cancers. In this study, we developed a 10 BSH-entrapped water-in-oil-in-water (WOW) emulsion, evaluated it as a selective boron carrier for the possible application of BNCT in hepatocellular carcinoma treatment. We prepared the 10 BSH-entrapped WOW emulsion using double emulsification technique and then evaluated the delivery efficacy by performing biodistribution experiment on VX-2 rabbit hepatic tumour model with comparison to iodized poppy-seed oil mix conventional emulsion. Neutron irradiation was carried out at Kyoto University Research Reactor with an average thermal neutron fluence of 5 × 10 12  n cm -2 . Morphological and pathological analyses were performed on Day 14 after neutron irradiation. Biodistribution results have revealed that 10 B atoms delivery with WOW emulsion was superior compared with those using iodized poppy-seed oil conventional emulsion. There was no dissemination in abdomen or lung metastasis observed after neutron irradiation in the groups treated with 10 BSH-entrapped WOW emulsion, whereas many tumour nodules were recognized in the liver, abdominal cavity, peritoneum and bilateral lobes of the lung in the non-injected group. Tumour growth suppression and cancer-cell-killing effect was observed from the morphological and pathological analyses of the 10 BSH-entrapped WOW emulsion-injected group, indicating its feasibility to be applied as a novel intra-arterial boron carrier for BNCT. Advances in knowledge: The results of the current study have shown that entrapped 10 BSH has the potential to increase the range of therapies available for hepatocellular carcinoma which is considered to be one of the most difficult tumours to cure.

  9. Whey protein isolate modified by transglutaminase aggregation and emulsion gel properties

    Science.gov (United States)

    Qi, Weiwei; Chen, Chong; Liu, Mujun; Yu, Guoping; Cai, Xinghang; Guo, Peipei; Yao, Yuxiu; Mei, Sijie

    2015-07-01

    Whey protein isolate and commercial soybean salad oil were used to produce the WPI emulsion dispersions. The properties of TG-catalyzed emulsion gelation produced from WPI emulsion dispersions were investigated by the amount of TG, temperature, pH and reaction time. Specifically, the texture properties (hardness and springiness), water-holding capacity and rheological properties (G' and G") were assessed. The result of Orthogonal tests showed WPI emulsion can form better hardness and springiness gel when the ratio of TG and WPI was 20U/g, pH 7.5, treatment temperature and time were 50°C and 3 h, respectively. The microstructure of TG emulsion gels was more compact, gel pore is smaller, distribution more uniform, the oil droplets size smaller compared with untreated emulsion gels. Compared to the control of rheological properties, G' and G" were significantly increased and G' > G", results showed that the gel was solid state, and TG speeded up the process of gelation.

  10. Oil-in-water emulsions flow through constricted micro-capillarities

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Oswaldo Robles; Carvalho, Marcio da Silveira [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering

    2010-07-01

    The effect of the oil concentration and the drop size distribution on the characteristics of the flow of an emulsion through a constricted capillary was experimentally analyzed and quantified by the ratio of the pressure drop of the continuous phase flow to the pressure drop of the emulsion flow, at the same flow rate. The results confirm that the ratio between the capillary constriction diameter and the oil drop size is one of the most important parameters for this flow. For large oil drop size emulsions, the deformation of the drop as it flows through the constriction leads to a high extra pressure drop at low capillary numbers. For small oil drop size emulsions, the extra pressure drop is a function of the viscosity ratio and the disperse phase concentration. (author)

  11. 21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524... ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications. Each milliliter contains 5 milligrams (mg) enrofloxacin and 10 mg silver sulfadiazine. (b) Sponsor. See No. 000859 in § 510...

  12. A novel automatic film changer for high-speed analysis of nuclear emulsions

    International Nuclear Information System (INIS)

    Borer, K.; Damet, J.; Hess, M.; Kreslo, I.; Moser, U.; Pretzl, K.; Savvinov, N.; Schuetz, H.-U.; Waelchli, T.; Weber, M.

    2006-01-01

    This paper describes the recent development of a novel automatic computer-controlled manipulator for emulsion sheet placement and removal at the microscope object table (also called stage). The manipulator is designed for mass scanning of emulsions for the OPERA neutrino oscillation experiment and provides emulsion changing time shorter than 30s with an emulsion sheet positioning accuracy as good as 20μm RMS

  13. Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J.; Vandekamp, R.

    2011-02-10

    Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

  14. Acquisition of Co metal from spent lithium-ion battery using emulsion liquid membrane technology and emulsion stability test

    Science.gov (United States)

    Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.

  15. Spreading of oil from protein stabilised emulsions at air/water interfaces

    NARCIS (Netherlands)

    Schokker, E.P.; Bos, M.A.; Kuijpers, A.J.; Wijnen, M.E.; Walstra, P.

    2002-01-01

    Spreading of a drop of an emulsion made with milk proteins on air/water interfaces was studied. From an unheated emulsion, all oil molecules could spread onto the air/water interface, indicating that the protein layers around the oil globules in the emulsion droplet were not coherent enough to

  16. Particles identification using nuclear emulsion in OPERA; Identification des particules par les emulsions nucleaires dans OPERA

    Energy Technology Data Exchange (ETDEWEB)

    Manai, K

    2007-10-15

    The Opera experiment will try to confirm the {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillations by the appearance of the {nu}{sub {tau}} in a pure {nu}{sub {mu}} beam. Indeed, a neutrino beam almost pure is produced at CERN (CNGS Beam) and sent to the Opera detector. The detector is composed of two muons spectrometers and a target formed by walls of bricks. Each brick is an alternation of lead plates and emulsions. This modular structure allows to reconstruct the kink topology of the {tau} lepton decay with a high spatial resolution. The great challenge of the Opera experiment is to detect the {nu}{sub {tau}} interactions with the less uncertainty. To reduce this uncertainty it is essential to identify with the greatest efficiency any background event not including a tau particle. My work permits to reduce background. My principal contribution concerns the selection development, the reconstruction and the muons identification at low energy. This work is based on the setting of variables related to the deposit energy and the multiple scattering. Previously, only deposit energy was used in the analyses of pion/muon separation. This study allows doubling the muon identification efficiency at low energy. This leads to increase the background events rejection in Opera and to decrease the contamination by 30%. I also studied the nuclear emulsions capacity to identify charged particles through the analysis of a test beam carried out by the Nagoya group. This test contains protons and pions with different energies. My work proves that the European scan system gives comparable results with those obtained by the Japanese scan system. (author)

  17. Spectral analysis in overmodulated holographic reflection gratings recorded with BB640 ultrafine grain emulsion

    Science.gov (United States)

    Mas-Abellán, P.; Madrigal, R.; Fimia, A.

    2015-05-01

    Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation. We studied the influence of the grating thickness on the overmodulation and its effects on the transmission spectra for a wide exposure range by use of two different thickness ultrafine grain emulsion BB640, thin films (6 μm) and thick films (9 μm), exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index could offer some benefits such as high diffraction efficiency (reaching 90 %), increase of grating bandwidth (close to 80 nm), making lighter holograms, or diffraction spectra deformation, transforming the spectrum from sinusoidal to approximation of square shape. Based on these results, we demonstrate that holographic reflection gratings spectra recorded with overmodulation of refractive index is formed by the combination of several non-linear components due to very high overmodulation. This study is the first step to develop a new easy multiplexing technique based on the use of high index modulation reflection gratings.

  18. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    Directory of Open Access Journals (Sweden)

    Stojce Dimov Ilcev

    2013-12-01

    Full Text Available In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC between ships and Coast Earth Station (CES via Geostationary Earth Orbit (GEO or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multipoint mobile satellite users can be solved by using MA technique, such as Frequency Division Multiple Access (FDMA, Time Division Multiple Access (TDMA, Code Division Multiple Access (CDMA, Space Division Multiple Access (SDMA and Random (Packet Division Multiple Access (RDMA. Since the resources of the systems such as the transmitting power and the bandwidth are limited, it is advisable to use the channels with complete charge and to create a different MA to the channel. This generates a problem of summation and separation of signals in the transmission and reception parts, respectively. Deciding this problem consists in the development of orthogonal channels of transmission in order to divide signals from various users unambiguously on the reception part.

  19. Multiple-walled BN nanotubes obtained with a mechanical alloying technique

    International Nuclear Information System (INIS)

    Rosas, G.; Sistos, J.; Ascencio, J.A.; Medina, A.; Perez, R.

    2005-01-01

    An experimental method to obtain multiple-walled nanotubes of BN using low energy is presented. The method is based on the use of mechanical alloying techniques with elemental boron powders and nitrogen gas mixed in an autoclave at room temperature. The chemical and structural characteristics of the multiple-walled nanotubes were obtained using different techniques, such as X-ray diffraction, transmission electron microscopy, EELS microanalysis, high-resolution electron microscopy images and theoretical simulations based on the multisliced approach of the electron diffraction theory. This investigation clearly illustrates the production of multiple-wall BN nanotubes at room temperature. These results open up a new kind of synthesis method with low expense and important perspectives for use in large-quantity production. (orig.)

  20. STUDY REGARDING THE DESTABILIZATION OF STABLE EMULSIONS FROM SUPLAC AREA

    Directory of Open Access Journals (Sweden)

    IULIANA VERONICA GHEŢIU

    2016-12-01

    Full Text Available Emulsions from the wells in the Suplac area create great difficulties in removing water due to their specifications. A complex study was conducted in order to eliminate water from emulsions using alkaline-surfactants. The choice of surfactant was made after the chromatographic SARA analysis of emulsions and the determination of their physical properties: density, viscosity, organic acidity. The samples were taken from two wells in the Suplac area. In the case of samples from A well the variation of density is 907 - 955 kg·m-3 for crude oil and 928 - 970 kg·m-3 for emulsion, while the rheological behavior of the emulsion varies between 0.680 to 0.995 Pa·s at a temperature of 25 °C and between 0.049 to 0.328 Pa·s at a temperature of 80 °C. For samples from B well the variation of density is 855 - 905 kg·m-3 for crude oil and 939 - 970 kg·m-3 for emulsion, while the rheological behavior of the emulsion varies between 0.149 to 0.797 Pa·s at a temperature of 25 °C and between 0.014 to 0.397 Pa·s at a temperature of 80 °C. The justification for choosing R - DP surfactant like reagent was based on laboratory tests which showed a maximum efficiency at 80 °C (95.69 for B and 98.75 % for A.

  1. Organic Based Glutinous Corn (Zea maize Supplemented With Seaweeds Emulsion

    Directory of Open Access Journals (Sweden)

    Jayrome S. Butay

    2017-11-01

    Full Text Available The study was therefore design to generate scientific information that are vital for organic farming advocates as it uses natural organic farm inputs in the production of corn. It was conducted because of the insurmountable rising cost of inorganic fertilizers perspective the farmers have to look for alternative measures to sustain the profitability of their farming business by evaluating the efficacy of seaweeds emulsion (Carrageenan as nutrient supplement to organic fertilizer on glutinous corn production, a study was conducted at the Cagayan State University – Lal-lo, Cagayan from July 17 to September 25, 2016with the following treatments: T1- Control, T2 – 3 tons Organic Fertilizer, T3 - 1.5 liters Seaweeds Emulsion ha-1 , T4 - 3 liters Seaweeds Emulsion ha-1 , T5 - 4.5 liters Seaweeds Emulsion ha-1 and T6 - 6 liters Seaweeds Emulsion ha-1 arranged in Randomized Complete Block Design with three replications. The treatments have no significant effect on plant height. Application of seaweed emulsion affected the grain development as manifested by longer and heavier corn ear. Higher rates (3-6 li ha-1 proved to more efficient as indicated by the bigger ear, highest yield and ROI of 909.62 percent. The study revealed that 3 tons Organic Fertilizer with liters of seaweed emulsion improved glutinous corn production. Further study is recommended to validate the result and come up with a more reliable conclusion.

  2. Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.

    Science.gov (United States)

    Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-07-23

    Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills.

  3. On-line characterization of emulsions aiming equipment sizing and definition of primary processing conditions; Caracterizacao em tempo real de emulsoes visando o dimensionamento de equipamentos e a definicao das condicoes de processamento primario

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Gloria M.S. [Fundacao Gorceix, Ouro Preto, MG (Brazil); Oliveira, Roberto C.G. de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    In this work are presented the results of the test of emulsion generation, carried out in the Experimental Nucleus of PETROBRAS in Atalaia city Brazil, in which equipment for on-line measurement of droplet size distribution was tested, whose operation principle is of acoustic attenuation. One of the objectives of this study was the validation of this technology for on-line characterization of petroleum emulsions, aiming at the optimization of the sub sea or top side processing equipment. The emulsions had been on-line monitored by the acoustic spectrometer, installed downstream of a choke valve. Samples of generated emulsions had been collected in different points of the circuit and characterized off-line how much its stability, droplet size distribution (DSD), water cut and viscosity. Moreover, in some stages of the test a demulsifier was injected so as to verify the behavior of emulsions. The acoustic spectrometry technique demonstrated to be efficient in the on-line characterization of the droplet size distributions of emulsions generated in different operational conditions. The acoustic technique presented satisfactory performance, in view of the comparison of the values of median gotten on-line and off-line. (author)

  4. Nuclear interactions of 400 GeV protons in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.; Stenlund, E.; Andersson, B.; Nilsson, G.; Adamovic, O.; Juric, M.; Areti, H.; Hebert, C.J.D.; Hebert, J.; Baumann, G.; Devienne, R.; Bolta, J.M.; Sanchis, M.A.; Bravo, L.; Niembro, R.; Ruiz, A.; Villar, E.

    1978-01-01

    The authors report on 400 GeV proton-emulsion nuclei reactions and compare the results to hadron-nucleus reactions at smaller energies. In particular they present results on the emission of fast target protons (essentially grey track particles) and on their correlation with the number of collisions inside the nucleus, γ, with the number of charged evaporated particles (essentially black track particles) and with the number of pions produced (essentially shower particles). It is observed that the main features of the 200-400 GeV data are very similar. However, it is found that the mean shower-particle multiplicity at 400 GeV is essentially higher than expected from the simple independent particle model prediction = [1+0.5( )-1)]. The shower particle multiplicities do not seem to follow a target mass dependence of the form =nsub(ch)>Asup(α) with α=0.14 or α=0.19 as has been suggested in the literature. The pseudo-rapidity distribution shows limiting target and projectile fragmentation. The shower-particle multiplicity in the 'central region' increases linearly with but faster than 0.5(γ) times the corresponding multiplicity in pp reactions. (Auth.)

  5. Separation kinetics of an oil-in-water emulsion under enhanced gravity

    NARCIS (Netherlands)

    Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.

    2012-01-01

    The breakup of crude oil emulsions to produce clean oil and water phases is an important task in crude oil processing. We have investigated the demulsification kinetics of a model oil-in-water emulsion in a centrifugal field to mimic the forces acting on emulsion droplets in oil/water separators

  6. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Science.gov (United States)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-10-01

    Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  7. Preparation and characterization of quercetin-loaded silica microspheres stabilized by combined multiple emulsion and sol-gel processes

    Directory of Open Access Journals (Sweden)

    Kim Young Ho

    2015-01-01

    Full Text Available Despite exhibiting a wide spectrum of cosmeceutical properties, flavonoids and related compounds have some limitations related to their stability and solubility in distilledwater. In this project, we prepared silica microspheres using a novel method that uses polyol-in-oil-in-water (P/O/W emulsion and sol-gel methods as techniques for stabilizing quercetin. A stable microsphere suspension was successfully preparedusing a mixed solvent system comprising a polyol-phase medium for performing the sol-gel processing of tetraethyl orthosilicate (TEOS as an inorganic precursor with outer water phase. The morphology of the microsphere was evaluated using a scanning electron microscope (SEM, which showed a characteristic spherical particle shape with a smooth surface. Furthermore, SEM/EDSanalysis of a representative microsphere demonstrated that the inner structure of the silica microspheres was filled with quercetin. The mean diameter of the microsphere was in the range 20.6-35.0 μm, and the encapsulation efficiency ranged from 17.8% to 27.5%. The free and encapsulated quercetin samples were incubated in separateaqueous solutions at 25 and 42°C for 28 days. The residualcontent of the quercetin encapsulated by silica microspheres was 82% at 42°C. In contrast, that of the free quercetin stored at 42°C decreased to ~24%.

  8. Antioxidant Behavior of Olive Phenolics in Oil-in-Water Emulsions.

    Science.gov (United States)

    Paradiso, Vito Michele; Di Mattia, Carla; Giarnetti, Mariagrazia; Chiarini, Marco; Andrich, Lucia; Caponio, Francesco

    2016-07-27

    The effect of the surrounding molecular environment (β-lactoglobulin as an emulsion stabilizer and maltodextrin as a viscosity modifier) on the antioxidant activity of three olive oil phenolic compounds (PCs) in olive oil-in-water emulsions was investigated. Oxidation potential, phenolic partitioning, and radical quenching capacity were assessed in solution and in emulsion for oleuropein, hydroxytyrosol, and tyrosol; the influence of β-lactoglobulin and maltodextrin concentration was also evaluated. Finally, the observed properties were related to the oxidative stability of the emulsions containing the PCs to explain their behavior. The order hydroxytyrosol > oleuropein > tyrosol was observed among the antioxidants for both oxidation potential and radical quenching activity. Radical quenching capacity in emulsion and anodic potential were complementary indices of antioxidant effectiveness. As the intrinsic susceptibility of an antioxidant to oxidation expressed by its anodic potential decreased, the environmental conditions (molecular interactions and changes in continuous phase viscosity) played a major role in the antioxidant effectiveness in preventing hydroperoxide decomposition.

  9. Influence of processing parameters on morphology of polymethoxyflavone in emulsions.

    Science.gov (United States)

    Ting, Yuwen; Li, Colin C; Wang, Yin; Ho, Chi-Tang; Huang, Qingrong

    2015-01-21

    Polymethoxyflavones (PMFs) are groups of compounds isolated from citrus peels that have been documented with wide arrays of health-promoting bioactivities. Because of their hydrophobic structure and high melting point, crystallized PMFs usually have poor systemic bioavailability when consumed orally. To improve the oral efficiency of PMFs, a viscoelastic emulsion system was formulated. Because of the crystalline nature, the inclusion of PMFs into the emulsion system faces great challenges in having sufficient loading capacity and stabilities. In this study, the process of optimizing the quality of emulsion-based formulation intended for PMF oral delivery was systematically studied. With alteration of the PMF loading concentration, processing temperature, and pressure, the emulsion with the desired droplet and crystal size can be effectively fabricated. Moreover, storage temperatures significantly influenced the stability of the crystal-containing emulsion system. The results from this study are a good illustration of system optimization and serve as a great reference for future formulation design of other hydrophobic crystalline compounds.

  10. Dual function of tributyrin emulsion: solubilization and enhancement of anticancer effect of celecoxib.

    Science.gov (United States)

    Kang, Sung Nam; Hong, Soon-Seok; Lee, Mi-Kyung; Lim, Soo-Jeong

    2012-05-30

    Tributyrin, a triglyceride analogue of butyrate, can act as a prodrug of an anticancer agent butyrate after being cleaved by intracellular enzymes. We recently demonstrated that the emulsion containing tributyrin as an inner oil phase possesses a potent anticancer activity. Herein we sought to develop tributyrin emulsion as a carrier of celecoxib, a poorly-water soluble drug with anticancer activity. Combined treatment of human HCT116 colon cancer cells with free celecoxib plus tributyrin emulsion inhibited the cellular proliferation more effectively than that of each drug alone, suggesting the possibility of tributyrin emulsion as a potential celecoxib carrier. The mean droplet size of emulsions tended to increase as the tributyrin content in emulsion increases and the concentration of celecoxib loaded in emulsions was affected by tributyrin content and the initial amount of celecoxib, but not by the total amount of surfactant mixture. The concentration of celecoxib required to inhibit the growth of HCT116 and B16-F10 cancer cells by 50% was 2.6- and 3.1-fold lowered by loading celecoxib in tributyrin emulsions, compared with free celecoxib. These data suggest that the anticancer activity of celecoxib was enhanced by loading in tributyrin emulsions, probably due to the solubilization capacity and anticancer activity of tributyrin emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Water-in-oil emulsions results of formation studies and applicability to oil spill modelling

    International Nuclear Information System (INIS)

    Fingas, Merv; Fieldhouse, Ben; Mullin, Joe

    1999-01-01

    This paper summarises studies of water-in-oil emulsions, their stability, and modelling of their formation. Studies show that water-in-oil emulsions might be characterised into three categories (stable, mesostable and unstable). These categories were established by visual appearance, elasticity and viscosity difference. It was also shown that water content was not an important factor. A fourth category of water-in-oil exists, that of water entrainment, which is not an emulsion. Water-in-oil emulsions made from crude oils have different classes of stabilities as a result of the asphaltene and resin contents. The differences in the emulsion types are readily distinguished both by their rheological properties, and simply by appearance. The apparent viscosity of a stable emulsion at a shear rate of one reciprocal second, is at least three orders-of-magnitude greater than the starting oil. An unstable emulsion usually has a viscosity no more than one order-of-magnitude greater than that of the starting oil. A stable emulsion has a significant elasticity, whereas an unstable emulsion does not. Stable emulsions have sufficient asphaltenes (>∼7%) to establish films of these compounds around water droplets. Mesostable emulsions have insufficient asphaltenes to render them completely stable. Stability is achieved by visco-elastic retention of water and secondarily by the presence of asphaltene or resin films. Mesostable emulsions display apparent viscosities of about 80-600 times that of the starting oil and true viscosities of 20-200 times that of the starting oil. Mesostable emulsions have an asphaltene and resin content greater than 3%. Entrained water occurs when a viscous oil retains larger water droplets, but conditions are not suitable for the formation of an emulsion. Entrained water may have a viscosity that is similar or slightly greater (∼ 2-10 times) than the starting oil. It was found that emulsion formation occurs at a threshold energy, however this energy

  12. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    Science.gov (United States)

    Fan, Yuting; Yokoyama, Wally; Yi, Jiang

    2017-01-01

    The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM) of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery. PMID:29072633

  13. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    Directory of Open Access Journals (Sweden)

    Yuting Fan

    2017-10-01

    Full Text Available The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery.

  14. Cosmetic emulsion from virgin olive oil: Formulation and bio ...

    African Journals Online (AJOL)

    Cosmetic emulsion from virgin olive oil: Formulation and bio-physical ... virgin olive oil was developed by entrapping it in the oily phase of oil-in-water (o/w) emulsion. ... The evaluation parameters consisted of color, smell, phase separation, ...

  15. Automated batch emulsion copolymerization of styrene and butyl acrylate

    NARCIS (Netherlands)

    Mballa Mballa, M.A.; Schubert, U.S.; Heuts, J.P.A.; Herk, van A.M.

    2011-01-01

    This article describes a method for carrying out emulsion copolymerization using an automated synthesizer. For this purpose, batch emulsion copolymerizations of styrene and butyl acrylate were investigated. The optimization of the polymerization system required tuning the liquid transfer method,

  16. From water-in-oil to oil-in-water emulsions to optimize the production of fatty acids using ionic liquids in micellar systems.

    Science.gov (United States)

    Santos, Luísa D F; Coutinho, João A P; Ventura, Sónia P M

    2015-01-01

    Biocatalysis is nowadays considered as one of the most important tools in green chemistry. The elimination of multiple steps involved in some of the most complex chemical synthesis, reducing the amounts of wastes and hazards, thus increasing the reaction yields and decreasing the intrinsic costs, are the major advantages of biocatalysis. This work aims at improving the enzymatic hydrolysis of olive oil to produce valuable fatty acids through emulsion systems formed by long alkyl chain ionic liquids (ILs). The optimization of the emulsion and the best conditions to maximize the production of fatty acids were investigated. The stability of the emulsion was characterized considering the effect of several parameters, namely, the IL and its concentration and different water/olive oil volumetric ratios. ILs from the imidazolium and phosphonium families were evaluated. The results suggest that the ILs effect on the hydrolysis performance varies with the water concentration and the emulsion system formed, that is, water-in-oil or oil-in-water emulsion. Although at low water concentrations, the presence of ILs does not present any advantages for the hydrolysis reaction, at high water contents (in oil-in-water emulsions), the imidazolium-based IL acts as an enhancer of the lipase catalytic capacity, super-activating 1.8 times the enzyme, and consequently promoting the complete hydrolysis of the olive oil for the highest water contents [85% (v/v)]. © 2015 American Institute of Chemical Engineers.

  17. High-Speed Automatic Microscopy for Real Time Tracks Reconstruction in Nuclear Emulsion

    Science.gov (United States)

    D'Ambrosio, N.

    2006-06-01

    The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) experiment will use a massive nuclear emulsion detector to search for /spl nu//sub /spl mu///spl rarr//spl nu//sub /spl tau// oscillation by identifying /spl tau/ leptons through the direct detection of their decay topology. The feasibility of experiments using a large mass emulsion detector is linked to the impressive progress under way in the development of automatic emulsion analysis. A new generation of scanning systems requires the development of fast automatic microscopes for emulsion scanning and image analysis to reconstruct tracks of elementary particles. The paper presents the European Scanning System (ESS) developed in the framework of OPERA collaboration.

  18. Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Xiao, Huining; Qian, Liying

    2014-01-01

    Graphical abstract: - Highlights: • The water vapor barrier efficiency of paper was enhanced via green-based emulsion coating. • Extremely high lipid content in the emulsion coating layer was firstly utilized to reduce WVTR in emulsion-based film. • A controlled WVTR of beeswax–chitosan emulsion coating could be obtained by dying at specific temperature. - Abstract: For lipid–hydrocolloid emulsion based film, the increase of lipid amount would improve its water vapor barrier property, but also reduce the mechanical strength of the film in the meantime thus leading to a compromised lipid content in the film. However, when the emulsion is coated on paper surface, more lipid could be used for emulsion preparation to enhance the moisture resistance without considering the weakened strength of the film induced by lipid, because the mechanical properties of emulsion coated paper is mainly governed by the strength of base paper instead of the coating layer. In this study, beeswax–chitosan emulsion was first prepared and then coated on paper surface to improve paper's water vapor barrier and water resistance properties. The range and variance analysis of orthogonal test design showed that the order of priorities of the factors accordingly was beeswax solid content, drying temperature and chitosan concentration. The effect of drying temperature on water vapor transmission rate (WVTR) and water contact angle of coated paper was further investigated using 1.2 wt% chitosan and 96% beeswax solid content in the coating layer. The results indicated that water vapor barrier property was in accordance with the density of the coating layer. Atomic force microscope (AFM) was also used to characterize the surface morphology and explain the hydrophobicity of beeswax–chitosan coated paper. It was found that surface beeswax particles melted to wrinkle at high drying temperatures, while roughness values maintained at micro-scale over the temperature range investigated

  19. New insights about flocculation process in sodium caseinate-stabilized emulsions.

    Science.gov (United States)

    Huck-Iriart, Cristián; Montes-de-Oca-Ávalos, Juan; Herrera, María Lidia; Candal, Roberto Jorge; Pinto-de-Oliveira, Cristiano Luis; Linares-Torriani, Iris

    2016-11-01

    Flocculation process was studied in emulsions formulated with 10wt.% sunflower oil, 2, 5 or 7.5wt.% NaCas, and with or without addition of sucrose (0, 5, 10, 15, 20 or 30wt.%). Two different processing conditions were used to prepare emulsions: ultraturrax homogenization or further homogenization by ultrasound. Emulsions with droplets with diameters above (coarse) or below (fine) 1μm were obtained. Emulsions were analyzed for droplet size distribution by static light scattering (SLS), stability by Turbiscan, and structure by confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). SAXS data were fitted by a theoretical model that considered a system composed of poly dispersed spheres with repulsive interaction and presence of aggregates. Flocculation behavior was caused by the self-assembly properties of NaCas, but the process was more closely related to interfacial protein content than micelles concentration in the aqueous phase. The results indicated that casein aggregation was strongly affected by disaccharide addition, hydrophobic interaction of the emulsion droplets, and interactions among interfacial protein molecules. The structural changes detected in the protein micelles in different environments allowed understanding the macroscopic physical behavior observed in concentrated NaCas emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Oxygen carrying perfluorochemical emulsion as an adjuvant to radiation therapy

    International Nuclear Information System (INIS)

    Teicher, B.A.; Rose, C.M.

    1984-01-01

    The potential of a perfluorochemical emulsion which as an excellent carrying capacity for oxygen to enhance the ability of radiation therapy to delay the growth of Lewis lung tumor was examined. There was a highly significant effect produced by the addition of perfluorochemical emulsion and carbogen breathing in combination with irradiation. With single dose x-ray treatment the dose of perfluorochemical emulsion was varied from 0.05-0.6 ml addition to the blood volume of the animals. The dose response effect was very broad peaking at 0.3-0.4 ml which gave a dose modifying effect of 2.8 +- 0.6 with 1000 rad of x-rays. The addition of 0.3 ml of perfluorochemical free annex solution with carbogen breathing produced a small enhancement in tumor growth delay addition of the same volume of the complete emulsion increased the tumor growth delay time about 3-fold compared to the annex solution. When the perfluorochemical emulsion was added to a fractionated course of radiation therapy a dose modifying effect of 1.8 +- 0.3 was obtained. Oxygen carrying perfluorochemical emulsions may provide a nontoxic clinically useful means of increasing the effectiveness of radiation therapy and of certain chemotherapeutic agents

  1. Preparation and Application of Water-in-Oil Emulsions Stabilized by Modified Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Xiaoma Fei

    2016-08-01

    Full Text Available A series of alkyl chain modified graphene oxides (AmGO with different alkyl chain length and content was fabricated using a reducing reaction between graphene oxide (GO and alkyl amine. Then AmGO was used as a graphene-based particle emulsifier to stabilize Pickering emulsion. Compared with the emulsion stabilized by GO, which was oil-in-water type, all the emulsions stabilized by AmGO were water-in-oil type. The effects of alkyl chain length and alkyl chain content on the emulsion properties of AmGO were investigated. The emulsions stabilized by AmGO showed good stability within a wide range of pH (from pH = 1 to pH = 13 and salt concentrations (from 0.1 to 1000 mM. In addition, the application of water-in-oil emulsions stabilized by AmGO was investigated. AmGO/polyaniline nanocomposite (AmGO/PANi was prepared through an emulsion approach, and its supercapacitor performance was investigated. This research broadens the application of AmGO as a water-in-oil type emulsion stabilizer and in preparing graphene-based functional materials.

  2. Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception.

    Science.gov (United States)

    Zahn, Susann; Hoppert, Karin; Ullrich, Franziska; Rohm, Harald

    2013-11-27

    In complex emulsions, viscosity or viscosity-associated sensory attributes such as creaminess are important for quality assessment and product differentiation. Two sets of emulsions with fat or locust bean gum content being varied at seven levels were developed; the two emulsions at each level had similar apparent viscosity. Additionally, sugar concentration was kept constant either with respect to total emulsion, or with respect to the aqueous phase. Series of two-alternative forced choice tests were performed with one constant stimulus, and just noticeable differences were calculated using probability regression. The results show that, when viscosity was not compensated, it was easy for the subjects to (a) distinguish emulsions with different fat content when the fat content was addressed in the question, and to (b) distinguish emulsions with different fat or locust bean gum content when creaminess was addressed. For the latter descriptor, it is of minor importance whether viscosity is altered by fat content or a thickener. Weber fractions that were calculated for viscosity were approximately 0.20. The quantitative effects of viscosity on sweetness, however, depend on how product rheology was modified.

  3. Pickering Emulsions for Food Applications: Background, Trends, and Challenges

    NARCIS (Netherlands)

    Berton-Carabin, C.C.; Schroën, C.G.P.H.

    2015-01-01

    Particle-stabilized emulsions, also referred to as Pickering emulsions, have garnered exponentially increasing interest in recent years. This has also led to the first food applications, although the number of related publications is still rather low. The involved stabilization mechanisms are

  4. Showing Emulsion Properties with Common Dairy Foods

    Science.gov (United States)

    Bravo-Diaz, Carlos; Gonzalez-Romero, Elisa

    1996-09-01

    Foods are mixtures of different chemical compounds, and the quality we sense (taste, texture, color, etc.) are all manifestations of its chemical properties. Some of them can be visualized with the aid of simple, safe and inexpensive experiments using dairy products that can be found in any kitchen and using almost exclusively kitchen utensils. In this paper we propose some of them related with food emulsions. Food emulsions cover an extremely wide area of daily-life applications such as milk, sauces, dressings and beverages. Experimentation with some culinary recipes to prepare them and the analyisis of the observed results is close to ideal subject for the introduction of chemical principles, allowing to discuss about the nature and composition of foods, the effects of additives, etc. At the same time it allows to get insights into the scientific reasons that underlie on the recipes (something that it is not usually found in most cookbooks). For example, when making an emulsion like mayonnaise, why the egg yolks and water are the first materials in the bowl , and the oil is added to them rather than in the other way around? How you can "rescue" separate emulsions (mayonnaise)? Which parameters affect emulsion stability? Since safety, in its broad sense, is the first requisite for any food, concerns about food exist throughout the world and the more we are aware of our everyday life, the more likely we will be to deal productively with the consequences. On the other hand, understanding what foods are and how cooking works destroys no delightful mystery of the art of cuisine, instead the mystery expands.

  5. Preparation of LDPE/LNR Blend Via Emulsion Dispersion

    International Nuclear Information System (INIS)

    Rusli Daik; Yee Lee Ching

    2007-01-01

    Low density polyethylene (LDPE)/ liquid natural rubber (LNR) blends with the composition of 100LDPE/ 0LNR, 70LDPE/ 30LNR, 60LDPE/ 40LNR and 40LDPE/ 60LNR were prepared via dispersion of LDPE and LNR emulsion. LNR was obtained via photochemical sensitization of natural rubber (NR). Emulsion of LNR was prepared by using sodium dodecyl sulfate (SDS) and 1-hexanol as the emulsifier and co- emulsifier respectively. Emulsion of LDPE was prepared in the same way by using LDPE solution in carbon tetrachloride, SDS and 1-hexanol. LDPE/ LNR blends were prepared via mixing of LNR and LDPE emulsions. Mechanical properties of the blends were analyzed by tensile, hardness and impact test. Optimum mechanical properties were observed for composite with composition of 60LDPE/ 40LNR that showed the maximum value of stress and strain. The glass transition temperature, T g , of the blends as obtained from differential scanning calorimetric (DSC) showed that the blends were homogeneous. Morphology study by using scanning electron microscopy (SEM) also indicates the homogeneity of LDPE/ LNR blends produced. (author)

  6. Perfluorocarbon (PFC) emulsions as potential drug carriers

    International Nuclear Information System (INIS)

    Yuhas, J.M.; Goodman, R.L.; Moore, R.E.

    1984-01-01

    PFC emulsions have excellent oxygen transporting properties and have been reported to enhance the response of murine tumors to both radiation and BCNU. While the presently available emulsions are far too toxic to the immune system to be used in cancer therapy, they can be used to investigate the overall potential of this approach. As an example, the authors have found that these emulsions can alter drug availability. The lipophilicity of both the PFC and the drug in question determine the partitioning of the drug between the organic and aqueous phases of an emulsion. In vitro, this can reduce drug effectiveness by reducing the amount of drug available to the cells. In vivo, however, this partitioning may produce sustained drug exposure, which could be of benefit in cancer therapy and other applications. In brief, as the drug is absorbed from the circulating aqueous phase, additional drug would leach from the PFC, thereby providing a sustained drug exposure similar to that obtained with liposomes. While a great deal more work will be required to evaluate the practicality of this approach, the existence of this phenomenon must be taken into account in both the design and interpretation of efficacy studies in which anesthetics, chemotherapeutics, etc are employed

  7. Interactions of $^{16}$O Projectile and its Fragments in Nuclear Emulsion at about 60 and 200 GeV/nucleon

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the multiplicity ``$ n _{s} $'' and pseudo-rapidity ``$\\eta$'' of the shower particles ($\\beta$~$\\geq$~0.7) produced in different types of collisions (peripheral, semi-central and central), of $^{16}$O and $^{32}$S in nuclear emulsions. The multiplicities and angular distributions of both the grey ``$ n _{g} $'' (mainly due to knock- on and recoil protons), and black ``$ n _{b} $'' (slow evaporated target fragments) particles, and the inter-correlation between them are studied. \\\\ \\\\ The yield, charge and angular distributions of produced relativistic projectile fragments P.F.S., for $ Z _{P} . _{F} . $ $\\geq$~2 are measured and their interactions in emulsions are investigated. \\\\ \\\\ The study of the mean free paths for the projectile fragments with Z $\\geq$ 3 produced from 200~A~GeV $^{16}$ 0 interactions were performed, which show the absence of the anomalous phenomena. \\\\ \\\\ The possible production of zero-spin light neutral scaler bosons and pseudoscaler bosons from...

  8. Structure and stability of human hemoglobin microparticles prepared with a double emulsion technique.

    Science.gov (United States)

    Cedrati, N; Bonneaux, F; Labrude, P; Maincent, P

    1997-09-01

    Hemoglobin solutions can be used as blood substitutes but they present some disadvantages often due to their rapid removal from the bloodstream after injection. A possible way of overcoming this problem is to trap hemoglobin inside particles. This study deals with the preparation, structure and stability of poly(lactic acid) and ethylcellulose microparticles containing human hemoglobin obtained with a double emulsion technique. We investigated the manufacturing process of these particles in order to increase the encapsulation ratio of hemoglobin. For this purpose, some parameters involved in the procedure were optimized, such as hemoglobin concentration and duration of stirring: hemoglobin loading increases with its concentration in the preparation and well-defined stirring time avoids a leakage of hemoglobin. Hemoglobin concentration, surfactant concentration i.e. poly(vinylic alcohol), amounts of polymer and solvent (methylene chloride), duration and speed of stirring. The microparticles were prepared with satisfactory yields (60 to 73%). They were spherical and their mean size was lower than 200 microns. The functional properties of entrapped hemoglobin were studied. The encapsulation did not alter hemoglobin and the oxygen affinity of the hemoglobin remained unmodified (P50 about 13.9 mm Hg in a Bis-Tris buffer pH 7.4 at 37 degrees C). Moreover, only low levels of methemoglobin could be detected (less than 3%). Besides, about 90% of encapsulated hemoglobin could be released from microparticles, with a speed related to the internal structure of the particles. The prepared microparticles were stored during one month at +4 degrees C. No degradation of the particle structure occurred and the functional properties of hemoglobin were preserved. These particles could provide a potential source of oxygen in the field of biotechnologies but any application for a transfusional purpose would first require a drastic reduction in particle size.

  9. Microfluidic emulsion separation-simultaneous separation and sensing by multilayer nanofilm structures

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, P; Truman, P; Stamm, M [Leibniz-Institut fuer Polymerforschung Dresden e V, Hohe Strasse 6, 01069 Dresden (Germany); Varnik, F; Zikos, G [Ruhr Universitaet Bochum, Stiepeler Strasse 129, 44801 Bochum (Germany); Moulin, J-F; Mueller-Buschbaum, P, E-mail: uhlmannp@ipfdd.de [Technische Universitaet Muenchen, Physik-Department, LS E13, James-Franck-Strasse 1, 85748 Garching (Germany)

    2011-05-11

    Emulsion separation is of high relevance for filtration applications, liquid-liquid-partitioning of biomolecules like proteins and recovery of products from droplet microreactors. Selective interaction of various components of an emulsion with substrates is used to design microfluidic flow chambers for efficient separation of emulsions into their individual components. Our lab-on-a-chip device consists of an emulsion separation cell with an integrated silicon sensor chip, the latter allowing the detection of liquid motion via the field-effect signal. Thus, within our lab-on-a-chip device, emulsions can be separated while the separation process is monitored simultaneously. For emulsion separation a surface energy step gradient, namely a sharp interface between the hydrophobic and hydrophilic parts of the separation chamber, is used. The key component of the lab-on-a-chip system is a multilayer and multifunctional nanofilm structure which not only provides the surface energy step gradient for emulsion separation but also constitutes the functional parts of the field-effect transistors. The proof-of-principle was performed using a model emulsion consisting of immiscible aqueous and organic solvent components. Droplet coalescence was identified as a key aspect influencing the separation process, with quite different effects during separation on open surfaces as compared to slit geometry. For a detailed description of this observation, an analytical model was derived and lattice Boltzmann computer simulations were performed. By use of grazing incidence small angle x-ray scattering (GISAXS) interfacial nanostructures during gold nanoparticle deposition in a flow field were probed to demonstrate the potential of GISAXS for in situ investigations during flow.

  10. Study of Some Technical Problems in Nuclear Emulsions

    International Nuclear Information System (INIS)

    Tarrega Tornero, M. P.

    1967-01-01

    A methodological study of various technical aspects of photographic emulsions is presented. This study enables the emulsion method to be used in certain physical problems, and can be summarized under the following headings. 1) Variation of different ionization indices with the degree of development. A measure of the degree of development is introduced. This measure called the α -mark, is based on the average width of tracks due to α-particles. Using the α-mack the influence of several factors such as the duration, temperature and concentration of the developing liquid are investigated. A comparative study of the sensitivity of llford C 2 and K 2 emulsions is given. (Author) 9 refs

  11. Application of pork fat diacylglycerols in meat emulsions

    DEFF Research Database (Denmark)

    Miklos, Rikke; Xu, Xuebing; Lametsch, Rene

    2011-01-01

    The properties of fat are of major importance when meat products are produced. By enzymatic modification triacylglycerols (TAGs) can be converted to diacylglycerols (DAGs) resulting in changes of the physical and chemical properties of the fat. In this study the texture as well as the hydration...... and binding properties were investigated in meat emulsions prepared with lard substituted with different amounts of DAGs derived from the lard. In emulsions prepared with DAGs the percentage of total expressible fluid decreased from 28.2% in products prepared with lard to 11.8% in emulsions prepared with 100....... The results suggest future opportunities for the application of DAGs to improve the quality of meat products....

  12. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-10-30

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  13. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-01-01

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES

  14. Volatile release from self-assembly structured emulsions: effect of monoglyceride content, oil content, and oil type.

    Science.gov (United States)

    Mao, Like; Roos, Yrjö H; Miao, Song

    2013-02-20

    Monoglycerides (MGs) can form self-assembled structures in emulsions, which can be used to control volatile release. In this study, initial headspace concentrations (C(initial)), maximum headspace concentrations (C(max)), release rates, and partition coefficients of propanol, diacetyl, hexanal, and limonene were determined in MG structured oil-in-water emulsions using dynamic and static headspace analyses. For all of the volatile compounds, C(initial) values above structured emulsions were significantly lower than those above unstructured emulsions and decreased with increasing MG contents (p triglyceride emulsions than in soybean oil emulsions (p structured emulsions than in unstructured emulsions (p structured emulsions can be potentially used as delivery systems to modulate volatile release.

  15. Effect of capillary number on the oil recovery using oil-water emulsion injection in core flooding experiments

    Energy Technology Data Exchange (ETDEWEB)

    Guillen Nunez, Victor Raul; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msn@puc-rio.br; Basante, Vladimir Alvarado [University of Wyoming, Laramie, WY (United States). Dept. of Chemical/Petroleum Engineering], E-mail: valvard@uwyo.edu

    2010-07-01

    The Water injection flooding is a common method to improve reservoir sweep and pressure maintenance. The heavy-oil-recovery efficiency is in part limited by the high water-to-oil mobility ratio. Several enhanced oil recovery methods are being developed as more efficient alternatives to water flooding. Dispersion injection, in particular oil-water emulsion injection, has been tried with relative success as an enhanced oil recovery method, but the technique is not fully developed or understood. If emulsion injection proves to be an effective EOR method, its use would bring the added benefit of disposing produced water with small oil content that could be modified to serve as the injected oil-water emulsion. The use of such methods requires a detailed analysis of the different flow regimes of emulsions through the porous space of a reservoir rock. If the drop size of the disperse phase is of the same order of magnitude as the pore size, the drops may agglomerate and partially block water flow through pores. This flow regime may be used to control the mobility of the injected liquid, leading to higher recovery factor. We have shown in recent experiments of oil displacement in a sandstone core that, the oil recovery factor could be raised from approximately 40 %, obtained with water injection only, up to approximately 75 % by alternating water and emulsion injection. Although these results clearly show the improvement in the recovery factor, the mechanisms responsible for the phenomenon have not been clearly elucidated. In this work, two sandstone cores were used to demonstrate the effect of flow rate (capillary number) on the mobility control by emulsion injection. Figure 1 shows a schematic representation of the experiment set-up. The experiments show that raising the flow rate by a factor of 10 (0.03 ml/min to 0.3 ml/min), the oil recovered factor decreases considerably. (author)

  16. Dietary protein and fat emulsions, processed by ultrasound and pulsed magnetic field

    Directory of Open Access Journals (Sweden)

    E. I. Verboloz

    2017-01-01

    Full Text Available For the baking of baked goods in order to save fats, different types of endorsement and protein-fatty emulsions which are used as ingredients in goods and for the protection of metal moulds from burning. Usually emulsion is prepared on bakery enterprises by National State Standard Р 51785–2001, involving mechanical beating up of ingredients. The authors suggested and studied the way of manufacturing of more stable food protein-fatty emulsions using ultrasonic transmitter with rigid neodymium magnets on its thickener. As ingredients, there were applied curd whey diluted with water, unpurified sunflower oil and sunflower phosphatides. Ratio of whey and water is 1:7. Physical effects of ultrasound and field of magnets in contact layer of liquid ingredients being dispersed have increased the viscosity and dispersion of protein-fatty emulsions. Hypothesis of increase of stability and sterility of protein-fatty emulsion by the selection of parameters of magnetic field and power of ultrasound transmitter is confirmed experimentally. Microscopic analysis shows high degree of homogeneity of emulsion under the time of processing 3-4 minutes and intensity of ultrasound 2 W/cm2, that is energetically profitable. There was revealed synergism of influence of physical effects of ultrasound and magnetic field on the durability and steadiness of emulsion to mechanical and temperature effect and also cidal effect, prolonging terms of product using. Manufacture of emulsions by the declared way using the ultrasound and magnetic field of constant neodymium magnets decreases number of injected elements-emulsifiers by 3-4 times or excludes their use at all. Existing piezoelectric ultrasound units as well as neodymium magnets have small sizes and low energy consumption, easily built into the line of continuous manufacture of emulsion for the bread production. Such emulsions are less demanding to the storage and transportation.

  17. Special photographic emulsions for high LET dosimetry

    International Nuclear Information System (INIS)

    Katz, R.

    1978-12-01

    The purpose of these investigations into photographic emulsion dosimetry is to attempt to use the photographic emulsion to mimic the response of human tissues to high LET radiations. The program therefore requires that a systematic understanding of the response of mammalian cells to ionizing radiations be achieved. We have been concerned with differences in RBE and in radiation response to both high and LET radiations, and in the interrelationship between observations with these different radiations

  18. Further study of helium production at large impact parameters in 6.4 TeV 32S emulsion reactions

    International Nuclear Information System (INIS)

    Kamel, S.

    1999-01-01

    Further study of helium production in electromagnetic and inelastic peripheral interactions of 32 S nuclei at 200 AGeV in nuclear emulsion is presented. The multiplicities, transverse momentum distributions of relativistic He fragments, and their parameters in both interactions are measured. The effect of the multiple helium production on the present obtained evidence of two different temperatures is investigated. The main characteristics of transverse momentum distributions show a certain dependence on the peripherality degree of the interactions

  19. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion.

    Science.gov (United States)

    Borreani, Jennifer; Espert, María; Salvador, Ana; Sanz, Teresa; Quiles, Amparo; Hernando, Isabel

    2017-04-19

    The effect of cellulose ethers in oil-in-water emulsions on stability during storage and on texture, microstructure and lipid digestibility during in vitro gastrointestinal digestion was investigated. All the cellulose ether emulsions showed good physical and oxidative stability during storage. In particular, the methylcellulose with high methoxyl substituents (HMC) made it possible to obtain emulsions with high consistency which remained almost unchanged during gastric digestion, and thus could enhance fullness and satiety perceptions at gastric level. Moreover, the HMC emulsion slowed down lipid digestion to a greater extent than a conventional protein emulsion or the emulsions stabilised by the other cellulose ethers. Therefore, HMC emulsions could be used in weight management to increase satiation capacity and decrease lipid digestion.

  20. Stability and in vitro digestibility of emulsions containing lecithin and whey proteins.

    Science.gov (United States)

    Mantovani, Raphaela Araujo; Cavallieri, Ângelo Luiz Fazani; Netto, Flavia Maria; Cunha, Rosiane Lopes

    2013-09-01

    The effect of pH and high-pressure homogenization on the properties of oil-in-water (O/W) emulsions stabilized by lecithin and/or whey proteins (WPI) was evaluated. For this purpose, emulsions were characterized by visual analysis, droplet size distribution, zeta potential, electrophoresis, rheological measurements and their response to in vitro digestion. Lecithin emulsions were stable even after 7 days of storage and WPI emulsions were unstable only at pH values close to the isoelectric point (pI) of proteins. Systems containing the mixture of lecithin and WPI showed high kinetic instability at pH 3, which was attributed to the electrostatic interaction between the emulsifiers oppositely charged at this pH value. At pH 5.5 and 7, the mixture led to reduction of the droplet size with enhanced emulsion stability compared to the systems with WPI or lecithin. The stability of WPI emulsions after the addition of lecithin, especially at pH 5.5, was associated with the increase of droplet surface charge density. The in vitro digestion evaluation showed that WPI emulsion was more stable against gastrointestinal conditions.

  1. Destabilization of Oil-in-Water Emulsions Formed Using Highly Hydrolyzed Whey Proteins.

    Science.gov (United States)

    Agboola; Singh; Munro; Dalgleish; Singh

    1998-01-19

    Oil-in-water emulsions (4 wt % soy oil) were prepared with 0.5-5 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis), in a two-stage homogenizer using various first-stage pressures of 10.3, 20.6, and 34.3 MPa and a constant second-stage pressure of 3.4 MPa. Destabilization studies on the emulsions were carried out for up to 24 h, using both laser light scattering and confocal laser microscopy. It was found that emulsions formed with oiling off and coalescence at all homogenization pressures. Emulsions formed with 2, 3, and 4% WPH showed coalescence and creaming only, while slight flocculation but no creaming occurred in emulsions formed with 5% WPH. Furthermore, the apparent rate of coalescence increased with homogenization pressure but decreased with WPH concentration. In contrast, the surface concentration of WPH increased with the WPH concentration in the emulsions but decreased with homogenization pressure. Analysis of WPH by high-performance liquid chromatography showed an increase in the concentration of high molecular weight peptides at the droplet surface compared to the WPH solution. This was considered very important for the stability of these oil-in-water emulsions.

  2. Oil-in-Water Emulsions Stabilized by Saponified Epoxidized Soybean Oil-Grafted Hydroxyethyl Cellulose.

    Science.gov (United States)

    Huang, Xujuan; Li, Qiaoguang; Liu, He; Shang, Shibin; Shen, Minggui; Song, Jie

    2017-05-03

    An oil-in-water emulsion stabilized by saponified epoxidized soybean oil-grafted hydroxyethyl cellulose (H-ESO-HEC) was investigated. By using an ultrasonic method, oil-in-water emulsions were prepared by blending 50 wt % soybean oil and 50 wt % H-ESO-HEC aqueous suspensions. The influence of H-ESO-HEC concentrations on the properties of oil-in-water emulsions was examined. The H-ESO-HEC concentrations in the aqueous phase varied from 0.02 to 0.40 wt %. When the H-ESO-HEC concentration was 0.4 wt %, the emulsion remained stable for >80 days. The mean droplet sizes of the emulsions decreased by increasing the H-ESO-HEC concentration and extending the ultrasonic time. The adsorption amounts of H-ESO-HEC at the oil-water interface increased when the H-ESO-HEC concentrations in the aqueous phase increased. The rheological property revealed that the apparent viscosity of the H-ESO-HEC-stabilized oil-in-water emulsions increased when the H-ESO-HEC concentrations increased. Steady flow curves indicated an interfacial film formation in the emulsions. The evolution of G', G″, and tan η indicated the predominantly elastic behaviors of all the emulsions.

  3. Stabilization of heavy oil-water emulsions using a bio/chemical emulsifier mixture

    Energy Technology Data Exchange (ETDEWEB)

    Farahbakhsh, A.; Taghizadeh, M.; Movagharnejad, K. [Chemical Engineering Department, Babol University of Technology, Babol (Iran, Islamic Republic of); Yakhchali, B. [National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of)

    2011-11-15

    In this study, the viscosity reduction of heavy oil has been investigated through the formation of oil-water emulsion using a bio/chemical emulsifier mixture. Four bioemulsifiers from indigenous Rhodococcus ergthropolis and Bacillus licheniformis strains were used to stabilize a highly-viscous oil-in-water emulsion. The Taguchi method with an L{sub 9} orthogonal array design was used to investigate the effect of various control factors on the formation of the oil/water emulsions. An emulsion with lowest viscosity was formed using ACO4 strain. The substantial stability of the oil-in-water emulsion allows the heavy oil to be transported practically over long distances or remain stationary for a considerable period of time prior to utilization. As the result of Taguchi analysis, the temperature and concentration of the emulsifier had a significant influence on viscosity reduction of the emulsion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Particles identification using nuclear emulsion in OPERA

    International Nuclear Information System (INIS)

    Manai, K.

    2007-10-01

    The Opera experiment will try to confirm the ν μ → ν τ oscillations by the appearance of the ν τ in a pure ν μ beam. Indeed, a neutrino beam almost pure is produced at CERN (CNGS Beam) and sent to the Opera detector. The detector is composed of two muons spectrometers and a target formed by walls of bricks. Each brick is an alternation of lead plates and emulsions. This modular structure allows to reconstruct the kink topology of the τ lepton decay with a high spatial resolution. The great challenge of the Opera experiment is to detect the ν τ interactions with the less uncertainty. To reduce this uncertainty it is essential to identify with the greatest efficiency any background event not including a tau particle. My work permits to reduce background. My principal contribution concerns the selection development, the reconstruction and the muons identification at low energy. This work is based on the setting of variables related to the deposit energy and the multiple scattering. Previously, only deposit energy was used in the analyses of pion/muon separation. This study allows doubling the muon identification efficiency at low energy. This leads to increase the background events rejection in Opera and to decrease the contamination by 30%. I also studied the nuclear emulsions capacity to identify charged particles through the analysis of a test beam carried out by the Nagoya group. This test contains protons and pions with different energies. My work proves that the European scan system gives comparable results with those obtained by the Japanese scan system. (author)

  5. Effects of NOx-inhibitor agent on fuel properties of three-phase biodiesel emulsions

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan; Lin, Hsiu-An

    2008-01-01

    Biodiesel is one of the more promising alternative clean fuels to fossil fuel, which can reduce the emissions of fossil fuel burning, and possibly resolve the energy crisis caused by the exhaustion of petroleum resources in the near future. The burning of biodiesel emits much less gaseous emissions and particulate matter primarily because of its dominant combustion efficiency. However, the high oxygen content in biodiesel not only promotes the burning process but also enhances NO x formation when biodiesel is used as fuel. Biodiesel emulsion and the additive of NO x -inhibitor agent are considered to reduce levels of NO x emissions in this experimental study. The biodiesel was produced by transesterification reaction accompanied with peroxidation process. A three-phase biodiesel emulsion of oil-in water drops-in oil (O/W/O) and an O/W/O biodiesel emulsion containing aqueous ammonia were prepared afterwards. The effect of the existence of NO x -inhibitor agent on the fuel properties and the emulsion characteristics of the O/W/O biodiesel emulsions were investigated. The experimental results show that the burning of the O/W/O biodiesel emulsion and the O/W/O biodiesel emulsion containing aqueous ammonia had larger fraction of fuel burnt and thus larger heat release than the neat biodiesel if water content is not considered for the calculation of heating value. The addition of aqueous ammonia within the dispersed phase of the O/W/O biodiesel emulsion appeared to deteriorate the emulsification characteristics. A smaller quantity of emulsion and greater kinematic viscosity were formed while a larger carbon residue and actual reaction-heat release also appeared for this O/W/O biodiesel emulsion. Aqueous ammonia in the O/W/O biodiesel emulsion produces a higher pH value as well. In addition, the number as well as the volumetric fraction of the dispersed water droplets is reduced for the O/W/O biodiesel emulsion that contains aqueous ammonia. (author)

  6. Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception

    Directory of Open Access Journals (Sweden)

    Susann Zahn

    2013-11-01

    Full Text Available In complex emulsions, viscosity or viscosity-associated sensory attributes such as creaminess are important for quality assessment and product differentiation. Two sets of emulsions with fat or locust bean gum content being varied at seven levels were developed; the two emulsions at each level had similar apparent viscosity. Additionally, sugar concentration was kept constant either with respect to total emulsion, or with respect to the aqueous phase. Series of two-alternative forced choice tests were performed with one constant stimulus, and just noticeable differences were calculated using probability regression. The results show that, when viscosity was not compensated, it was easy for the subjects to (a distinguish emulsions with different fat content when the fat content was addressed in the question, and to (b distinguish emulsions with different fat or locust bean gum content when creaminess was addressed. For the latter descriptor, it is of minor importance whether viscosity is altered by fat content or a thickener. Weber fractions that were calculated for viscosity were approximately 0.20. The quantitative effects of viscosity on sweetness, however, depend on how product rheology was modified.

  7. Strippable core-shell polymer emulsion for decontamination of radioactive surface contamination

    International Nuclear Information System (INIS)

    Hwang, Ho-Sang; Seo, Bum-Kyoung; Lee, Kune-Woo

    2011-01-01

    In this study, the core-shell composite polymer for decontamination from the surface contamination was synthesized by the method of emulsion polymerization and blends of polymers. The strippable polymer emulsion is composed of the poly(styrene-ethyl acrylate) [poly(St-EA)] composite polymer, poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP). The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS) as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SDS) as an emulsifier using ammonium persulfate (APS) as an initiator. Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by FT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Decontamination factors of the strippable polymeric emulsion were evaluated with the polymer blend contents. (author)

  8. Supralinearity and particle discrimination in nuclear emulsion

    International Nuclear Information System (INIS)

    Katz, R.; Larsson, L.; Pinkerton, F.E.; Benton, E.V.

    1977-01-01

    Nuclear emulsions may be desensitized in manufacture and/or may be so processed as to discriminate against small latent image sites; to yield supralinear sensitometric response after x-irradiation; and to discriminate against lightly ionizing radiations in favor of heavily ionizing particles. In a circumstance where one electron passing through an emulsion grain is unlikely to generate a latent image sufficiently large to yield a visible grain after development, some larger number of electrons is required, resulting in 'many-hit' statistics, supralinearity, and particle discrimination: for lightly ionizing particles are not likely to generate more than one delta-ray (secondary electron) in their passage through or near a grain. Since these properties are analogous to the response of many biological cells to ionizing radiations, such emulsion-developer combinations have the potential to mimic the response of biological systems to particulate radiations of different charge and speed. (author)

  9. Interstitial administration of perfluorochemical emulsions for reoxygenation of hypoxic tumor cells

    International Nuclear Information System (INIS)

    Woo, D.V.; Seegenschmiedt, H.; Schweighardt, F.K.; Emrich, J.; McGarvey, K.; Caridi, M.; Brady, L.W.

    1987-01-01

    Microparticulate perfluorochemical (PFC) emulsions have the capacity to solubilize significant quantities of oxygen compared to water. Although systemic administration of such emulsions may enhance oxygen delivery to some tissues, hypoxic tumor cells have marginal vascular supplies. The authors report studies which directly attempt to oxygenate hypoxic tumor cells by interstitial administration of oxygenated PFC emulsions followed by radiation therapy. Fortner MMI malignant melanomas (21 day old) grown in Syrian Golden hamsters were injected directly with either oxygenated PFC emulsions or Ringers solution. The volume of test substance administered was equal to 50% of the tumor volume. The tumors were immediately irradiated with 25 Gy of 10 MeV photons (Clinac 18). The tumor dimensions were measured daily post irradiation and the tumor doubling time determined. The results suggest that interstitial administration of oxygenated PFC emulsions directly into tumors followed by radiation therapy may increase the likelihood of killing hypoxic tumor cells

  10. Using multiple linear regression techniques to quantify carbon ...

    African Journals Online (AJOL)

    Fallow ecosystems provide a significant carbon stock that can be quantified for inclusion in the accounts of global carbon budgets. Process and statistical models of productivity, though useful, are often technically rigid as the conditions for their application are not easy to satisfy. Multiple regression techniques have been ...

  11. Production of slow particle in 1.7 AGeV 84Kr induced emulsion interaction

    International Nuclear Information System (INIS)

    Li Huiling; Zhang Donghai; Li Xueqin; Jia Huiming

    2008-01-01

    The production of slow particle in 1.7 AGeV 84 Kr induced emulsion interaction was studied. The experimental results show that the average multiplicity of black, grey and heavily ionized track particle increases with the increase of impact centrality and target size. The average multiplicity of grey track particle and heavily ionized track particle increases with the increase of the number of black track particle. The average multiplicity of heavily ionized track particle increases with the increase of the number of grey track particle, but average multiplicity of black track particle increases with the increase of the number of grey track particle and then saturated. The average multiplicity of grey track particle increases with the increase of the number of heavily ionized track particle, but average multiplicity of black track particle increases with the increase of the number of heavily ionized track particle and then saturated. Those experimental results can be well explained by using the nuclear impact geometry model. (authors)

  12. Excretion and organic distribution of 57Co-bleomycin emulsions

    International Nuclear Information System (INIS)

    Lathan, B.

    1982-01-01

    Excretion and organic distributions of 57 Co-bleomycin were studied in normal and tumour-bearing mice with the objective of obtaining high 57 Co-bleomycin concentrations in the tumour and the regional lymph nodes. Aqueous 57 Co-bleomycin and various 57 Co-bleomycin emulsions were used for the studies and applied either locally or systemically. Excretion of 57 Co-bleomycin was slowest after local administration of 57 Co-bleomycin oil-in-water emulsion and fastest after systemic application of aqueous 57 Co-bleomycin. Organic distribution studies showed the highest values in the tumour and the regional lymph nodes after local injection of 57 Co-bleomycin oil-in-water emulsion while the lowest values were measured after systemic application of aqueous 57 Co-bleomycin. These kinetic studies suggest that intratumoral treatment with oil-in-water emulsions of bleomycin may be a new approach in the therapy of epithelial tumours with lymphogenic metastases. (orig.) [de

  13. Pickering interfacial catalysis for biphasic systems: from emulsion design to green reactions.

    Science.gov (United States)

    Pera-Titus, Marc; Leclercq, Loïc; Clacens, Jean-Marc; De Campo, Floryan; Nardello-Rataj, Véronique

    2015-02-09

    Pickering emulsions are surfactant-free dispersions of two immiscible fluids that are kinetically stabilized by colloidal particles. For ecological reasons, these systems have undergone a resurgence of interest to mitigate the use of synthetic surfactants and solvents. Moreover, the use of colloidal particles as stabilizers provides emulsions with original properties compared to surfactant-stabilized emulsions, microemulsions, and micellar systems. Despite these specific advantages, the application of Pickering emulsions to catalysis has been rarely explored. This Minireview describes very recent examples of hybrid and composite amphiphilic materials for the design of interfacial catalysts in Pickering emulsions with special emphasis on their assets and challenges for industrially relevant biphasic reactions in fine chemistry, biofuel upgrading, and depollution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A new multiple noncontinuous puncture (pointage technique for corneal tattooing

    Directory of Open Access Journals (Sweden)

    Jin Hyoung Park

    2015-10-01

    Full Text Available AIM:To assess the safety and cosmetic efficacy of a new multiple noncontinuous transepithelial puncture technique for tattooing a decompensated cornea.METHODS:It was anon-comparative clinical case series study.The study examines 33 eyes in 33 patients with total corneal opacity due to corneal decompensation, which developed following intraocular surgery.Corneal tattooing was performed using the multiple noncontinuous transepithelial puncture technique (i.e. pointage. The safety of this new surgical strategy was assessed by occurrence of adverse events for the follow-up period. The cosmetic efficacy was determined by the patient’s cosmetic satisfaction and independent observer’s opinion about patient appearance.RESULTS:Seven women and 26 men were included in the study. The mean age was 46.4±17.5y (range:7-67. In total, 30 of 33 patients (91% reported cosmetic satisfaction within the follow-up period. Only 3 patients (9% required additional tattooing due to cosmetic unsatisfaction. Cosmetic outcomes were analyzed and classified as excellent or good in 13 (39% and 17 (52% patients, respectively. No serious adverse events developed, except delayed epithelial healing in 3 cases.CONCLUSION:The cosmetic outcomes of the multiple noncontinuous transepithelial puncture technique for corneal tattooing were good. The safety of this method is higher than conventional procedures. This new procedure also provides improved cost-effectiveness and safety over current corneal tattooing techniques.

  15. Conventional and dense gas techniques for the production of liposomes: a review.

    Science.gov (United States)

    Meure, Louise A; Foster, Neil R; Dehghani, Fariba

    2008-01-01

    The aim of this review paper is to compare the potential of various techniques developed for production of homogenous, stable liposomes. Traditional techniques, such as Bangham, detergent depletion, ether/ethanol injection, reverse-phase evaporation and emulsion methods, were compared with the recent advanced techniques developed for liposome formation. The major hurdles for scaling up the traditional methods are the consumption of large quantities of volatile organic solvent, the stability and homogeneity of the liposomal product, as well as the lengthy multiple steps involved. The new methods have been designed to alleviate the current issues for liposome formulation. Dense gas liposome techniques are still in their infancy, however they have remarkable advantages in reducing the use of organic solvents, providing fast, single-stage production and producing stable, uniform liposomes. Techniques such as the membrane contactor and heating methods are also promising as they eliminate the use of organic solvent, however high temperature is still required for processing.

  16. Oxidative enzymatic gelation of sugar beet pectin for emulsion stabilization

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Meyer, Anne S.

    2013-01-01

    Pectin from sugar beet is derived from the sugar beet pulp residue which results when sugar beets are processed for sucrose extraction. The sugar beet pectin has poor gelationability by the classic divalentcation molecular mechanism because of a relatively high acetylation degree and short...... polygalacturonate backbone chain length. However, due to the feruloyl-substitutions on the side chains, the sugar beet pectic polysaccharides can be cross-linked via enzyme catalyzed oxidation. The enzyme kinetics and functionality of such oxidativelycross-linked sugar beet pectin, in relation to stabilizing...... emulsions has recently been investigated in model food emulsions. This paper reviews the pectin chemistry, enzymatic oxidative gelation mechanisms, interaction mechanisms of the sugar beet pectin with the emulsion droplets and explores how the gelation affects the rheology and stability of emulsion systems...

  17. Antioxidant Activity of Potato Peel Extracts in a Fish-RapeseedOil Mixture and in Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Nielsen, Nina Skall; Jacobsen, Charlotte

    2010-01-01

    The objectives of the present work were (a) to extract the phenolic fraction from the peels of two Danish varieties of potatoes, viz. Sava and Bintje, and examine their antioxidant capacity in in-vitro systems (b) to evaluate the effect of these extracts on the storage stability of a fish- rapeseed...... oil mixture and oil-in-water emulsions. Multiple antioxidant activity of the potato peel extracts was evident from in-vitro systems as they showed strong reducing power, radical scavenging ability, ferrous ion chelating activity and prevented oxidation in a liposome model system. The Sava variety...... in emulsions. Thus, the results of the present study show the possibility of utilizing waste potato peel as a promising source of natural antioxidants for retarding lipid oxidation....

  18. Radiation dosimetry and spectrometry with superheated emulsions

    International Nuclear Information System (INIS)

    D'Errico, Francesco

    2001-01-01

    Detectors based on emulsions of overexpanded halocarbon droplets in tissue equivalent aqueous gels or soft polymers, known as 'superheated drop detectors' or 'bubble (damage) detectors', have been used in radiation detection, dosimetry and spectrometry for over two decades. Recent technological advances have led to the introduction of several instruments for individual and area monitoring: passive integrating meters based on the optical or volumetric registration of the bubbles, and active counters detecting bubble nucleations acoustically. These advances in the instrumentation have been matched by the progress made in the production of stable and well-specified emulsions of superheated droplets. A variety of halocarbons are employed in the formulation of the detectors, and this permits a wide range of applications. In particular, halocarbons with a moderate degree of superheat, i.e. a relatively small difference between their operating temperature and boiling point, can be used in neutron dosimetry and spectrometry since they are only nucleated by energetic heavy ions such as those produced by fast neutrons. More recently, halocarbons with an elevated degree of superheat have been utilised to produce emulsions that nucleate with much smaller energy deposition and detect low linear energy transfer radiations, such as photons and electrons. This paper reviews the detector physics of superheated emulsions and their applications in radiation measurements, particularly in neutron dosimetry and spectrometry

  19. Interplay between Colloids and Interfaces : Emulsions, Foams and Microtubes

    NARCIS (Netherlands)

    de Folter, J.W.J.

    2013-01-01

    The central theme of this thesis is the interplay between colloids and interfaces. The adsorption of colloids at fluid-fluid interfaces is the main topic and covers Chapters 2-6. Pickering emulsions where colloidal particles act as emulsion stabilizers in the absence of surfactants are studied in a

  20. Evaluation of short-term and long-term stability of emulsions by centrifugation and NMR

    International Nuclear Information System (INIS)

    Tcholakova, S.; Denkov, N.; Ivanov, I.; Marinov, R.

    2004-01-01

    The effect of storage time on the coalescence stability and drop size distribution of egg yolk and whey protein concentrate stabilized emulsions is studied. The emulsion stability is evaluated by centrifugation, whereas the drop size distribution is measured by means of NMR and optical microscopy. The experimental results show that there is no general relation between the emulsion stability and the changes in the mean drop diameter upon shelf-storage of protein emulsions. On the other hand, it is shown that the higher short-term stability, measured by centrifugation immediately after emulsion preparation, corresponds to higher long-term stability (after their self-storage up to 60 days) for emulsions stabilized by the same type of emulsifier. In this way, we are able to obtain information for the long-term stability of emulsions in a relatively short period of time.(authors)

  1. Effects of a fish oil-based emulsion on rat hepatoma cell invasion in culture.

    Science.gov (United States)

    Hagi, Akifumi; Nakayama, Mitsuo; Miura, Yutaka; Yagasaki, Kazumi

    2007-01-01

    Total parenteral nutrition containing a lipid emulsion is often employed after surgical tumor resection. This study investigated the effects of a fish oil-based infusion on rat hepatoma cell invasion. Rat ascites hepatoma cell line AH109A was precultured with a fish oil-based or safflower oil-based emulsion for 48 h. Changes in membranous fatty acid composition were evaluated by gas chromatography. The invasiveness of hepatoma cells was assessed by coculturing with mesentery-derived mesothelial cells. To examine ex vivo effects of the fish oil-based infusion on hepatoma invasion, sera were prepared from rats infused with fish oil- or safflower oil-based emulsion and the effects of these sera were assessed. To clarify the mechanism of inhibition of invasion by the fish oil-based emulsion, the effects of prostaglandin (PG) E(2) and PGE(3) on invasion were examined. Pretreatment with the fish oil-based emulsion reduced invasiveness without affecting growth compared with the safflower oil-based emulsion. Pretreatment with the sera from rats infused with the fish oil-based emulsion also reduced invasiveness compared with the sera from rats infused with the safflower oil-based emulsion. The addition of PGE(2) eliminated the inhibitory effect of the fish oil-based emulsion, and the addition of PGE(3) reduced the invasiveness of hepatoma cells pretreated with the safflower oil-based emulsion. These results suggest that the fish oil-based emulsion may have anti-invasive effects. Changes in the membranous fatty acid composition and consequent changes in the prostaglandins produced may be involved in this inhibitory effect.

  2. Study of the diffusion of some emulsions in the human skin by pulsed photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Lahjomri, F; Benamar, N; Chatri, E; Leblanc, R M

    2003-01-01

    We previously used pulsed photoacoustic spectroscopy (PPAS) to quantify sunscreen diffusion into human skin, and suggested a methodology to evaluate the time and the depth diffusion profile. These results were obtained by the analysis of the photoacoustic maximum response signal P max decrease, the time delay t max and the Fourier transform representation of the photoacoustic signal. In this study we present the results obtained for diffusion of four typical emulsions used in sunscreen compositions that show, for the first time, a particular behaviour for one of these emulsions due to a chemical reaction inside the skin during the diffusion process. This result provides a particularly interesting technique through the PPAS, to evaluate in situ the eventual chemical reactions that can occur during drug diffusion into human skin

  3. Stability of bisphenol A (BPA) in oil-in water emulsions under riboflavin photosensitization.

    Science.gov (United States)

    Jang, Eun Yeong; Park, Chan Uk; Kim, Mi-Ja; Lee, JaeHwan

    2012-08-01

    Effects of riboflavin photosensitization on the degradation of bisphenol A (BPA) were determined in oil-in-water (O/W) emulsions containing ethylenediaminetetraacetic acid (EDTA) or sodium azide, which are a metal chelator or a singlet oxygen quencher, respectively. Also, the distribution of BPA between the continuous and dispersed phases in O/W emulsions was analyzed by high-performance liquid chromatography (HPLC). The concentration of BPA in O/W emulsions significantly decreased by 38.6% after 2 h under visible light irradiation and in the presence of riboflavin (P riboflavin photosensitization (P riboflavin photodegradation in O/W emulsions. Concentration of BPA, an endocrine disrupting chemical, was decreased significantly in oil-in-water emulsions under riboflavin and visible light irradiation. BPA in continuous aqueous phase was major target of riboflavin photosensitization. However, BPA was distributed more densely in lipid phase and more protected from riboflavin photosensitized O/W emulsions. This study can help to decrease the level of BPA in foods made of O/W emulsions containing riboflavin, which could be displayed under visible light irradiation. © 2012 Institute of Food Technologists®

  4. Solvent-free formation of hydroxyapatite coated biodegradable particles via nanoparticle-stabilized emulsion route

    International Nuclear Information System (INIS)

    Okada, Masahiro; Fujii, Syuji; Nishimura, Taiki; Nakamura, Yoshinobu; Takeda, Shoji; Furuzono, Tsutomu

    2012-01-01

    Highlights: ► Hydroxyapatite (HAp) nanoparticles stabilized polymer melt-in-water emulsions without any molecular surfactants. ► Interaction between polymer and HAp played a crucial role. ► HAp-coated polymer particles were obtained from the emulsions without any organic solvents. - Abstract: Hydroxyapatite (HAp) nanoparticle-coated biodegradable polymer particles were fabricated from a nanoparticle-stabilized emulsion in the absence of any molecular surfactants or organic solvents. First, a polymer melt-in-water emulsion was prepared by mixing a water phase containing nanosized HAp particles as a particulate emulsifier and an oil phase consisting of poly(ε-caprolactone) (PCL) or poly(L-lactide-co-ε-caprolactone) (P(LLA-CL)) above its melting point. It was clarified that the interaction between ester/carboxyl groups of the polymers and the HAp nanoparticles at the polymer–water interface played a crucial role to prepare the nanoparticle-stabilized emulsion. The HAp nanoparticle-coated biodegradable polymer particle (a polymer solid-in-water emulsion) was fabricated by cooling the emulsion. The particle morphology and particle size were evaluated using scanning electron microscope.

  5. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking

    NARCIS (Netherlands)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-01-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80. °C for 15. min. During heating of w/o emulsions containing 10% (w/v) WPI

  6. Kinetic advantages of using microwaves in the emulsion polymerization of MMA

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil); Santos, A.F.; Fortuny, M. [Programa de Mestrado em Engenharia de Processos, Universidade Tiradentes, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300, CEP: 49032-490, Aracaju, SE (Brazil); Araujo, P.H.H. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil); Sayer, C. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil)], E-mail: csayer@enq.ufsc.br

    2009-03-01

    Microwave irradiation has been an interesting alternative for heating systems and several chemical reactions. In polymerization processes, microwaves can enhance reaction rates or improve specific characteristics of the formed polymer. In this work, the use of microwave irradiation in emulsion polymerization reactions has been studied, using a commercial microwave reactor, which is able to perform syntheses under controlled conditions of temperature and power. Methyl methacrylate emulsion polymerization reactions were faster, resulting in smaller polymer particles, in comparison to the conventional heating method (reactions in a jacketed reactor). Different effects were observed in the emulsion polymerization of butyl acrylate. To study the effect of high power microwave irradiation upon the emulsion polymerization, a pulsed irradiation strategy was developed, in which the samples were repeatedly heated within short intervals of time (about 27 s) at the maximum microwave power. A significant reduction of the total time of irradiation was observed in reactions carried out under the pulsed scheme, showing the kinetic advantages of using microwaves in emulsion polymerization processes.

  7. The development of polyurethane modified bitumen emulsions for cold mix applications

    OpenAIRE

    Carrera Páez, Virginia; Cuadri Vega, Antonio Abad; García Morales, Moisés; Partal López, Pedro

    2015-01-01

    Bitumen emulsions stand for an alternative paving practice to the traditional hot-mix asphalts. In addition, modified bitumen emulsions show a better performance than unmodified ones. This work studies the feasibility of obtaining polyurethane modified bitumen emulsions, in which an isocyanate-functionalized polyol constitutes the bitumen modifier (in varying concentration from 1 to 4 wt.%). Storage stability and high in-service performance are evaluated by means of evolution of droplet size ...

  8. Synthesis of nanocrystalline CeO2 particles by different emulsion methods

    International Nuclear Information System (INIS)

    Supakanapitak, Sunisa; Boonamnuayvitaya, Virote; Jarudilokkul, Somnuk

    2012-01-01

    Cerium oxide nanoparticles were synthesized using three different methods of emulsion: (1) reversed micelle (RM); (2) emulsion liquid membrane (ELM); and (3) colloidal emulsion aphrons (CEAs). Ammonium cerium nitrate and polyoxyethylene-4-lauryl ether (PE4LE) were used as cerium and surfactant sources in this study. The powder was calcined at 500 °C to obtain CeO 2 . The effect of the preparation procedure on the particle size, surface area, and the morphology of the prepared powders were investigated. The obtained powders are highly crystalline, and nearly spherical in shape. The average particle size and the specific surface area of the powders from the three methods were in the range of 4–10 nm and 5.32–145.73 m 2 /g, respectively. The CeO 2 powders synthesized by the CEAs are the smallest average particle size, and the highest surface area. Finally, the CeO 2 prepared by the CEAs using different cerium sources and surfactant types were studied. It was found that the surface tensions of cerium solution and the type of surfactant affect the particle size of CeO 2 . - Graphical Abstract: The emulsion droplet size distribution and the TEM images of CeO 2 prepared by different methods: reversed micelle (RM), emulsion liquid membrane (ELM) and colloidal emulsion aphrons (CEAs). Highlights: ► Nano-sized CeO 2 was successfully prepared by three different emulsion methods. ► The colloidal emulsion aphrons method producing CeO 2 with the highest surface area. ► The surface tensions of a cerium solution have slightly effect on the particle size. ► The size control could be interpreted in terms of the adsorption of the surfactant.

  9. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    Science.gov (United States)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  10. To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.

    Science.gov (United States)

    Bravo-Díaz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria José; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Sánchez-Paz, Verónica; Zhang, Yongliang; Dar, Aijaz Ahmad

    2015-08-25

    Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with

  11. Evaluation of Soybean–Navy Bean Emulsions Using Different Processing Technologies

    Directory of Open Access Journals (Sweden)

    Sean X. Liu

    2017-05-01

    Full Text Available In this study, an innovative emulsion made from soybean and navy bean blends of different proportionalities was developed. In addition, two processing methods were used: traditional cooking and jet-cooking. The physical attributes and storage stability were measured and compared. This study found that the high content of starch and fiber in navy bean flour contributes to the increase in viscosity of the emulsions, at both room and refrigeration temperatures, as the proportion of navy bean flour in the blends increased. The steam jet-cooked emulsions with higher soybean content has better shelf life stability, smaller particle size, higher fat, lower starch, and lower viscosity, whereas the traditional kettle cooking method is better in reducing anti-nutritional components. No significant difference was found between the two cooking methods in terms of nutritional contents in the emulsions, such as protein, crude fat, and total starch. The traditional kettle cooking, with its longer cooking time, seems to reduce more trypsin inhibitor in the emulsions than those prepared with the steam jet-cooking. This exploratory study is the first to report soybean–navy bean beverage prototypes having desirable nutritional value and the potential for functional beverage market.

  12. Teaching Multiple Online Sections/Courses: Tactics and Techniques

    Science.gov (United States)

    Bates, Rodger; LaBrecque, Bryan; Fortner, Emily

    2016-01-01

    The challenge of teaching online increases as the number of sections or courses increase in a semester. The tactics and techniques which enrich online instruction in the tradition of quality matters can be modified and adapted to the demands of multiple instructional needs during a semester. This paper addresses time management and instructional…

  13. Discourse of the form and concentration of surfactants to ensure the sustainability foam-emulsive products

    Directory of Open Access Journals (Sweden)

    O. Kotlyar

    2015-05-01

    Full Text Available Introduction. Development of dry mixes for making spumy and emulsion products are topical, because nowadays there is a tendency to minimize the time spent on the process of cooking, which is achieved by the use of semi finished products high degree of readiness. Materials and methods. Foaming ability was determined by the method of multiplicity of the foam, the stability of unstable foam-by the half-life method of foam, highly resistant foam - as a ratio of the height of the column of foam after exposure for 24 hours. Results. Was determined the influence of sunflower oil on the foaming ability and half-life foam of systems «sodium caseinate-oil». It was found that getting systems with high index of foaming capacity and foam stability in the presence of oil in the system is impossible without the use of low molecular weight surfactants. Substantiated recommendations regarding the feasibility of using two surfactants in systems «sodium caseinate-surfactants-oil», which provide the necessary kinship surfaces air, fat and water phases. it has been found that the use of 2,5...3,5% mono-and diglycerides of fatty acid sand Lecithin’s 0.15...0.25% in the content of sodium caseinate about 0.5% allows to receive the stable foam-emulsive systems containing sunflower oil 7...8% and foaming ability about 640±1%. Conclusions. It is established that for ensuring high indicators foaming capacity and stability of foam-emulsive systems required the use of low-molecular surfactants. The research results, is recommended to use when developing technology of foam-emulsive products. Introduction

  14. Discourse of the form and concentration of surfactants to ensure the sustainability foam-emulsive products

    Directory of Open Access Journals (Sweden)

    Oleg

    2015-05-01

    Full Text Available Introduction. Development of dry mixes for making spumy and emulsion products are topical, because nowadays there is a tendency to minimize the time spent on the process of cooking, which is achieved by the use of semi finished products high degree of readiness. Materials and methods. Foaming ability was determined by the method of multiplicity of the foam, the stability of unstable foam-by the half-life method of foam, highly resistant foam - as a ratio of the height of the column of foam after exposure for 24 hours. Results. Was determined the influence of sunflower oil on the foaming ability and half-life foam of systems «sodium caseinate-oil». It was found that getting systems with high index of foaming capacity and foam stability in the presence of oil in the system is impossible without the use of low molecular weight surfactants. Substantiated recommendations regarding the feasibility of using two surfactants in systems «sodium caseinate-surfactants-oil», which provide the necessary kinship surfaces air, fat and water phases. it has been found that the use of 2,5...3,5% mono-and diglycerides of fatty acid sand Lecithin’s 0.15...0.25% in the content of sodium caseinate about 0.5% allows to receive the stable foam-emulsive systems containing sunflower oil 7...8% and foaming ability about 640±1%. Conclusions. It is established that for ensuring high indicators foaming capacity and stability of foam-emulsive systems required the use of low-molecular surfactants. The research results, is recommended to use when developing technology of foam-emulsive products.

  15. Characteristics of W/O emulsions containing polymeric emulsifier PEG 30-dipolyhydroxystearate

    Directory of Open Access Journals (Sweden)

    Milinković Jelena R.

    2016-01-01

    Full Text Available Water-in-oil (W/O emulsions are dispersed systems which are often used in the pharmaceutical, cosmetic and food industries as products, or as carriers of active substances. It is well known that they are very unstable, so that selection of the emulsifier and properties of the oil and water phase are main factors affecting their stability. The aim of this paper was to examine the possibility of application of a lipophilic, polymeric emulsifier, PEG 30-dipolyhydroxystearate (CithrolTM DPHS, for stabilization of W/O emulsions. Behaviour of the emulsifier at W/O interfaces was determined by means of tensiometry. A series of emulsions were prepared with 20% (w/w of water and different types of oil. Droplet size, droplet size distribution, viscosity, and sedimentation stability during 30 days of storage at room temperature of the emulsions prepared with paraffin oil, olive oil, grape seed oil, and medium-chain triglycerides, stabilized with 1% CithrolTM DPHS, were determined. All investigated emulsions were stable for 30 days, except the one prepared with paraffin oil. The results of this study confirmed that PEG 30-dipolyhydroxylstearate is a good emulsifier and stabilizer of W/O emulsions which contain different types of oil. [Projekat Ministarstva nauke Republike Srbije, br. III46010

  16. Pickering emulsions for skin decontamination.

    Science.gov (United States)

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Performance, emissions and lubricant oil analysis of diesel engine running on emulsion fuel

    International Nuclear Information System (INIS)

    Hasannuddin, A.K.; Wira, J.Y.; Sarah, S.; Wan Syaidatul Aqma, W.M.N.; Abdul Hadi, A.R.; Hirofumi, N.; Aizam, S.A.; Aiman, M.A.B.; Watanabe, S.; Ahmad, M.I.; Azrin, M.A.

    2016-01-01

    Highlights: • The rate of NO x and PM reduction was lower than the rate of CO increase when using emulsion fuel. • The lubricant oil viscosity variation did not exceed the limits during the engine operation. • Emulsion fuel offers beneficial properties in terms of lower wear and friction. • Average depletions of lubricant oil additives were found at the lowest level for emulsion fuel in compared with D2. - Abstract: Emulsion fuel is one of the alternative fuels for diesel engines which are well-known for simultaneous reduction of Particulate Matter (PM) and Nitrogen Oxides (NO x ) emissions. However lack of studies have been conducted to investigate the effect of emulsion fuel usage for long run. Therefore, this study aims to investigate the effect of lubricant oil in diesel engine that operated using emulsion fuels for 200 h in comparison with Malaysian conventional diesel fuel (D2). Two emulsion fuels were used in the experiment comprising of water, low grade diesel fuel and surfactant; with ratio of 10:89:1 v/v% (E10) and 20:79:1 v/v% (E20). Engine tests were focused on fuel consumption, NO x , PM, Carbon Monoxide (CO), Carbon Dioxide (CO 2 ), Oxygen (O 2 ) and exhaust temperature. Parameters for the lubricant oil analysis measured were included kinematic viscosity, Total Acid Number (TAN), ash, water content, flash point, soot, wear metals and additive elements. The findings showed the fuel consumption were up to 33.33% (including water) and lower 9.57% (without water) using emulsion. The NO x and PM were reduced by 51% and 14% respectively by using emulsion fuel. Kinematic viscosity, TAN, ash, water content, flash point and soot for emulsion fuel were observed to be better or no changes in comparison to D2. The emulsion fuel did not cause any excessive amount of metals or degraded the additive. The average percentage of wear debris concentration reduction by emulsion fuel were 8.2%, 9.1%, 16.3% and 21.0% for Iron (Fe) Aluminum (Al), Copper (Cu) and

  18. Variation Of The Effects Of Adopol EVS-9279X On The Emulsion ...

    African Journals Online (AJOL)

    The effects of Adopol EVS-9279X on the emulsion and film properties of emulsion paint using 5%-10% w/w sample formulations have been examined. Variation of these effects with time was investigated in this study using the same 5%-10% w/w sample formulations. The emulsion and film properties were measured at four ...

  19. High-conversion emulsion polymerization

    NARCIS (Netherlands)

    Maxwell, I.A.; Verdurmen, E.M.F.J.; German, A.L.

    1992-01-01

    The four important factors that det. the rate of emulsion polymn. are the propagation rate coeff., the latex-particle concn., the monomer concn. in the latex particles, and the free-radical concn. in the latex particles. Both theor. considerations and exptl. evidence suggested that the important

  20. Aqueous polymer emulsions by chemical modifications of thermosetting alternating polyketones

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, A. A.; Picchioni, F.

    2007-01-01

    Aqueous polymer emulsions were prepared by chemical modifications of thermosetting alternating polyketones in a one-pot reaction. Polymeric amines derived from the polyketones can act as polymeric surfactants for the self-emulsification of polyketones. The stability and structure of the emulsions

  1. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF Membranes

    Directory of Open Access Journals (Sweden)

    Kanji Matsumoto

    2013-06-01

    Full Text Available Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  2. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes

    Science.gov (United States)

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-01-01

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model. PMID:24958621

  3. Radiation induced emulsion polymerization

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1990-01-01

    High energy radiation is particularly favored for the initiation of emulsion polymerization. The yield of free radicals, for example, from the radiolysis of the aqueous phase, is high; G(radical) values of 5-7. In addition, the rather special kinetics associated with emulsion polymerization lead, in general, to very large kinetic chain lengths, even with 'non-ideal' monomers such as vinyl acetate. Together, high polymerization rates at low doses become possible. There are some important advantages of radiation polymerization compared with chemical initiators, such as potassium persulfate. Perhaps the most important among them is the temperature independence of the initiation step. This makes low temperature polymerization very accessible. With monomers such as vinyl acetate, where chain termination to monomer is predominant, low temperatures lead to often highly desirable higher molecular weights. With styrene, the classical ideally behaved monomer, there are the advantages such as, for example, the feasibility of using cationic monomers. These and some attendant disadvantages are discussed in detail, including pilot plant studies

  4. Heavy Hyperfragments produced by 800 MeV/c k in Nuclear Emulsions

    International Nuclear Information System (INIS)

    Marcial, P.

    1967-01-01

    A statistical and phenomenological survey of nearly 1200 heavy hyperfragments produced by interaction of 800 MeV/c K with the heavy nuclei of llford K 5 emulsion is presented. The emulsion was exposed A statistical and phenomenological survey of nearly 1200 heavy hyperfragments produced by interaction of 800 MeV/c K tilde with the heavy nuclei of llford K5 emulsion is presented. The emulsion was exposed in Berkeley. The variation of long list of parameters dealing with both the production and desintegration of the hyperfragments, with the size of the primary interaction is given. (Author)

  5. High-Surface-Area, Emulsion-Templated Carbon Foams by Activation of polyHIPEs Derived from Pickering Emulsions

    Directory of Open Access Journals (Sweden)

    Robert T. Woodward

    2016-09-01

    Full Text Available Carbon foams displaying hierarchical porosity and excellent surface areas of >1400 m2/g can be produced by the activation of macroporous poly(divinylbenzene. Poly(divinylbenzene was synthesized from the polymerization of the continuous, but minority, phase of a simple high internal phase Pickering emulsion. By the addition of KOH, chemical activation of the materials is induced during carbonization, producing Pickering-emulsion-templated carbon foams, or carboHIPEs, with tailorable macropore diameters and surface areas almost triple that of those previously reported. The retention of the customizable, macroporous open-cell structure of the poly(divinylbenzene precursor and the production of a large degree of microporosity during activation leads to tailorable carboHIPEs with excellent surface areas.

  6. Performance of single cylinder, direct injection Diesel engine using water fuel emulsions

    International Nuclear Information System (INIS)

    Abu-Zaid, M.

    2004-01-01

    A single cylinder Diesel engine study of water-in-Diesel emulsions was conducted to investigate the effect of water emulsification on the engine performance and gases exhaust temperature. Emulsified Diesel fuels of 0, 5, 10, 15 and 20 water/Diesel ratios by volume, were used in a single cylinder, direct injection Diesel engine, operating at 1200-3300 rpm. The results indicate that the addition of water in the form of emulsion improves combustion efficiency. The engine torque, power and brake thermal efficiency increase as the water percentage in the emulsion increases. The average increase in the brake thermal efficiency for 20% water emulsion is approximately 3.5% over the use of Diesel for the engine speed range studied. The proper brake specific fuel consumption and gases exhaust temperature decrease as the percentage of water in the emulsion increases

  7. Effect of citronella essential oil fractions as oil phase on emulsion stability

    Science.gov (United States)

    Septiyanti, Melati; Meliana, Yenny; Agustian, Egi

    2017-11-01

    The emulsion system consists of water, oil and surfactant. In order to create stable emulsion system, the composition and formulation between water phase, surfactant and oil phase are very important. Essential oil such as citronella oil has been known as active ingredient which has ability as insect repellent. This research studied the effect of citronella oil and its fraction as oil phase on emulsion stability. The cycle stability test was conducted to check the emulsion stability and it was monitored by pH, density, viscosity, particle size, refractive index, zeta potential, physical appearance and FTIR for 4 weeks. Citronellal fraction has better stability compared to citronella oil and rhodinol fraction with slight change of physical and chemical properties before and after the cycle stability test. However, it is need further study to enhance the stability of the emulsion stability for this formulation.

  8. Numerical simulation and experimental verification of oil recovery by macro-emulsion floods

    Energy Technology Data Exchange (ETDEWEB)

    Khamharatana, F. [Chulalongkorn Univ., Bangkok (Thailand); Thomas, S.; Farouq Ali, S. M. [Alberta Univ., Edmonton, AB (Canada)

    1997-08-01

    The process of emulsion flooding as an enhanced oil recovery method was described. The process involves several mechanisms that occur at the same time during displacement, therefore, simulation by emulsion flooding requires a good understanding of flow mechanics of emulsions in porous media. This paper provides a description of the process and its mathematical representation. Emulsion rheology, droplet capture and surfactant adsorption are represented mathematically and incorporated into a one-dimensional, three-phase mathematical model to account for interactions of surfactant, oil, water and the rock matrix. The simulator was validated by comparing simulation results with the results from linear core floods performed in the laboratory. Best match was achieved by a multi-phase non-Newtonian rheological model of an emulsion with interfacial tension-dependent relative permeabilities and time-dependent capture. 13 refs., 1 tab., 42 figs.

  9. A novel approach for fast scanning of nuclear emulsions with continuous motion of the microscope stage

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, A., E-mail: andrey@na.infn.it [INFN sezione di Napoli, I-80125 Napoli (Italy); LPI - Lebedev Physical Institute of the Russian Academy of Sciences, RUS-119991 Moscow (Russian Federation); Tioukov, V. [INFN sezione di Napoli, I-80125 Napoli (Italy)

    2013-08-01

    Nuclear emulsions have been used in particle physics experiments for many decades because of their unique spatial resolution. The use of nuclear emulsions as precise tracking detectors in large experiments has recently been made possible due to advances in the production of emulsion films and to the development of very fast automatic scanning devices. The present scanning speed of the European Scanning System (ESS), which has been developed within the OPERA Collaboration, is about 20 cm{sup 2}/h. In addition to the scanning of OPERA films, the ESS is used for other applications with ever-growing demands for scanning speed, such as the muon radiography of volcanoes. In order to further increase the scanning speed of the ESS, we are testing a novel approach different from the standard stop-and-go motion of the microscope stage in the horizontal plane. Indeed we perform data acquisition with the stage moving at constant speed, using an objective lens with wide field of view. Unlike the implementation realized in Japan where the movement of objective lens and stage are synchronized to pile up images of the same view in a vertical stack, in this approach only the stage is moving horizontally. Thus images at different depths are not fully overlapped and special care is needed in the reconstruction. This approach can give a substantial increase in the scanning speed, especially for thin emulsion layers and wide field of view. In this paper we demonstrate that, after applying special corrections, the emulsion data quality can be as good as with the standard stop-and-go approach. This technique allows to double the scanning speed of the ESS, bringing it to 40 cm{sup 2}/h without any hardware modification.

  10. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae-ik [Proton Therapy Center, National Cancer Center (Korea, Republic of); Division of Heavy Ion Clinical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul (Korea, Republic of); Park, Seyjoon [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Kim, Haksoo; Kim, Meyoung [Proton Therapy Center, National Cancer Center (Korea, Republic of); Jeong, Chiyoung [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Cho, Sungkoo [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Lim, Young Kyung; Shin, Dongho [Proton Therapy Center, National Cancer Center (Korea, Republic of); Lee, Se Byeong, E-mail: sblee@ncc.re.kr [Proton Therapy Center, National Cancer Center (Korea, Republic of); Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu [Department of Physics, Nagoya University, Nagoya (Japan); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sung Hyun [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon (Korea, Republic of); Cho, Jung Sook [Department of refinement education, Dongseo University, Busan (Korea, Republic of); Ahn, Jung Keun [Department of Physics, Korea University, Seoul (Korea, Republic of); Kim, Ji Hyun; Yoon, Chun Sil [Gyeongsang National University, Jinju (Korea, Republic of); Incerti, Sebastien [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France)

    2015-04-15

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  11. Interactions of flavoured oil in-water emulsions with polylactide.

    Science.gov (United States)

    Salazar, Rómulo; Domenek, Sandra; Ducruet, Violette

    2014-04-01

    Polylactide (PLA), a biobased polymer, might prove suitable as eco-friendly packaging, if it proves efficient at maintaining food quality. To assess interactions between PLA and food, an oïl in-water model emulsion was formulated containing aroma compounds representing different chemical structure classes (ethyl esters, 2-nonanone, benzaldehyde) at a concentration typically found in foodstuff (100 ppm). To study non-equilibrium effects during food shelf life, the emulsions were stored in a PLA pack (tray and lid). To assess equilibrium effects, PLA was conditioned in vapour contact with the aroma compounds at concentrations comparable to headspace conditions of real foods. PLA/emulsion interactions showed minor oil and aroma compound sorption in the packaging. Among tested aroma compounds, benzaldehyde and ethyl acetate were most sorbed and preferentially into the lid through the emulsion headspace. Equilibrium effects showed synergy of ethyl acetate and benzaldehyde, favouring sorption of additional aroma compounds in PLA. This should be anticipated during the formulation of food products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    International Nuclear Information System (INIS)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-01-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion

  13. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    Science.gov (United States)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-04-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  14. Application of multiplicative array techniques for multibeam sounder systems

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    modification in terms of additional computation or hardware for improved array gain. The present work is devoted towards the study of a better beamforming method i.e. a multiplicative array technique with some modification proposEd. by Brown and Rowland...

  15. Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion.

    Science.gov (United States)

    Yanagie, Hironobu; Kumada, Hiroaki; Nakamura, Takemi; Higashi, Syushi; Ikushima, Ichiro; Morishita, Yasuyuki; Shinohara, Atsuko; Fijihara, Mitsuteru; Suzuki, Minoru; Sakurai, Yoshinori; Sugiyama, Hirotaka; Kajiyama, Tetsuya; Nishimura, Ryohei; Ono, Koji; Nakajima, Jun; Ono, Minoru; Eriguchi, Masazumi; Takahashi, Hiroyuki

    2011-12-01

    Hepatocellular carcinoma (HCC) is one of the most difficult to cure with surgery, chemotherapy, or other combinational therapies. In the treatment of HCC, only 30% patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between (10)B atoms and thermal neutrons, so it is necessary to accumulate a sufficient quantity of (10)B atoms in tumour cells for effective tumour cell destruction by BNCT. Water-in-oil-in-water (WOW) emulsion has been used as the carrier of anti-cancer agents on intra-arterial injections in clinical. In this study, we prepared (10)BSH entrapped WOW emulsion by double emulsifying technique using iodized poppy-seed oil (IPSO), (10)BSH and surfactant, for selective intra-arterial infusion to HCC, and performed simulations of the irradiation in order to calculate the dose delivered to the patients. WOW emulsion was administrated with intra-arterial injections via proper hepatic artery on VX-2 rabbit hepatic tumour models. We simulated the irradiation of epithermal neutron and calculated the dose delivered to the tissues with JAEA computational dosimetry system (JCDS) at JRR4 reactor of Japan Atomic Research Institute, using the CT scans of a HCC patient. The (10)B concentrations in VX-2 tumour obtained by delivery with WOW emulsion were superior to those by conventional IPSO mix emulsion. According to the rabbit model, the boron concentrations (ppm) in tumour, normal liver tissue, and blood are 61.7, 4.3, and 0.1, respectively. The results of the simulations show that normal liver biologically weighted dose is restricted to 4.9 Gy-Eq (CBE; liver tumour: 2.5, normal liver: 0.94); the maximum, minimum, and mean tumour weighted dose are 43.1, 7.3, and 21.8 Gy-Eq, respectively, in 40 min irradiation. In this study, we show that (10)B entrapped WOW emulsion could be applied to novel intra-arterial boron delivery carrier

  16. FORMULATION AND CHARACTERIZATION OF A MULTIPLE ...

    African Journals Online (AJOL)

    Preferred Customer

    Vitamin C, was incorporated into the inner aqueous phase of water-in-oil-in-water ... Multiple emulsion was prepared by two step method. ... that there was no significant change (p > 0.05) in globule sizes in most of the samples ... advantages of prolonged release of active agent, incorporation of incompatible materials and.

  17. Coalescence kinetics of oil-in-water emulsions studied with microfluidics

    NARCIS (Netherlands)

    Krebs, T.; Schroen, C.G.P.H.; Boom, R.M.

    2013-01-01

    We report the results of experiments on the coalescence dynamics in flowing oil-in-water emulsions using an integrated microfluidic device. The microfluidic circuit permits direct observation of shear-induced collisions and coalescence events between emulsion droplets. Three mineral oils with a

  18. Experimental study on heat capacity of paraffin/water phase change emulsion

    International Nuclear Information System (INIS)

    Huang, L.; Noeres, P.; Petermann, M.; Doetsch, C.

    2010-01-01

    A paraffin/water phase change emulsion is a multifunctional fluid in which fine paraffin droplets are dispersed in water by a surfactant. This paper presents an experimental study on the heat capacity of an emulsion containing 30 wt.% paraffin in a test rig. The results show that the heat capacity of the emulsion consists of the sensible heat capacity of water and that of the paraffin as well as the latent heat capacity of the paraffin during the phase transition solid-liquid. The emulsion is an attractive alternative to chilled water for comfort cooling applications, because it has a heat capacity of 50 kJ/kg from 5 to 11 deg. C, which is two times as high as that of water in the same temperature range.

  19. Emulsions, Foams, and Suspensions: The Microscience of the Beverage Industry

    Directory of Open Access Journals (Sweden)

    Alice Vilela

    2018-03-01

    Full Text Available Emulsions and foams form the basis of an extensive variety of materials used in the beverage industry. One of the characteristics of beverage emulsions is that they are rather diluted, contain little amounts of a dispersed oil phase in the finished product, and must remain physically stable for long periods of time. Nowadays, the consumers ask for more than a drink. Thus, in the market, we can find a vast variety of beverages, where emulsion science seems to be the main factor for controlling flavor, color, the presence of constituents of technological or nutritional value, nutraceutical/bioactive components and, also, turbidity. This work intends to make an overview of the recent advances in beverage-emulsions technology. Some examples are given within the very large world of the beverage industry, from cream liqueurs, soft drinks, and functional beverages, to bottled water, fruit drinks, sparkling wine, and beer.

  20. Properties of emulsions stabilised by sodium caseinate–chitosan complexes

    NARCIS (Netherlands)

    Zinoviadou, K.; Scholten, E.; Moschakis, T.; Biliaderis, C.G.

    2012-01-01

    Oil-in-water emulsions (10%, w/w, oil) were prepared at pH 5.7 by using electrostatically formed complexes of 0.5% (w/w) sodium caseinate (Na-CAS) and 0–0.6% (w/w) chitosan. Emulsions stabilized by complexes with increased levels of chitosan (>0.2% w/w) had a smaller average droplet size and

  1. Rheology and microstructure of gluten and soya-based o/w emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Bengoechea, Carlos; Cordobes, Felipe; Guerrero, Antonio [Universidad de Sevilla, Departamento de Ingenieria Quimica, Sevilla (Spain)

    2006-10-15

    Highly concentrated oil-in-water (o/w) emulsion stabilised by means of gluten and soya protein isolate (SPI) at low pH have been characterized by means of linear dynamic viscoelasticity and droplet size distribution analysis (DSD). The microstructure of these emulsions has been characterized at a colloidal level by using confocal laser scanning microscopy (CLSM) and light microscopy (LM). These emulsions always exhibited a behaviour characteristic of highly flocculated emulsions with a mechanical spectrum showing a well-developed plateau region. DSD results generally showed log normal bimodal profiles. Microstructure images revealed occurrence of a close packing of droplets with a broad distribution of sizes participating in the formation of a three dimensional flocculated network. The Mason model of elasticity of compressed emulsions has been used to correlate viscoelastic and microstructural parameters giving adequate fitting but underestimating the elastic properties obtained for the highest concentration of gluten. These deviations may be explained in terms of an enhancement of the elastic network formed in the aqueous phase in which the glutenin fraction must play an important role. (orig.)

  2. Study of nuclear interactions of 400 GeV protons in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.; Kullberg, R.; Stenlund, E.; Andersson, B.; Nilsson, G.; Kim, C.O.; Lorry, J.; Meton, C.; Schune, D.; Chu, T.; Villot, B.; Kaiser, R.; Vincent, M.A.; Baumann, G.; Devienne, R.; Schmitt, R.; Adamovic, O.; Juric, M.; Bolta, J.M.; Sanchis, M.A.; Bravo, L.; Niembro, R.; Ruiz, A.; Villar, E.

    1977-05-01

    400 GeV inelastic proton-emulsion nucleus interactions from an International Emulsion Group experiment at Fermilab are reported. The results are compared with the corresponding data at 67-300 GeV. (Auth.)

  3. Preparation and characterization of film of poly vinyl acetate ethylene copolymer emulsion

    International Nuclear Information System (INIS)

    Zhang, Yanhua; Gu, Jiyou; Tan, Haiyan; Shi, Junyou; Di, Mingwei; Zuo, Yingfeng; Qiu, Si

    2013-01-01

    In order to improve the storage modulus and water resistance of poly (vinyl acetate), the vinyl acetate and poly (vinyl alcohol) (PVA) were respectively used as monomers and protective colloid to prepare a new kind of polyvinyl acetate emulsion adhesive by continuous emulsion polymerization. The dynamic mechanics, particle distribution, glass transition temperature, polymer emulsion structure of both polymerized and copolymerized emulsion were analyzed by SEM, DMA and XPS, respectively. The results indicated that the copolymerized emulsion has the appropriate particle size and the uniform particle distribution, the glass transition temperature increased from 50 °C to 70 °C, compared with poly (vinyl acetate). It could be seen from XPS spectra of copolymerized emulsion that key characteristic peak of C=O was still existent. X-ray photoelectron spectra revealed that the addition of EVA did not generate the new bond, whereas the maximum percentage increases in ester was determined in the composite film with the introduction of EVA of 25%, which indicated that the composite film has copolymer structure. The storage modulus and water resistance of poly (vinyl acetate) were improved due to the introduction of the EVA.

  4. Large angle tracking and high discriminating tracking in nuclear emulsion

    International Nuclear Information System (INIS)

    Matsuo, Tomokazu; Shibuya, Hiroshi; Ogawa, Satoru; Fukuda, Tsutomu; Mikado, Shoji

    2015-01-01

    Nuclear emulsion is a high resolution and re-analyzable detector. Conventional “Track Selector” which have angle acceptance |tan θ|<0.6 are widely used to find tracks in emulsion. We made a new track selector “Fine Track Selector” (FTS) which has large angle acceptance and high discriminating ability. The FTS reduces fake tracks using new algorithms, navigation etc. FTS also keeps finding efficiency of tracks around 90% in an angle range of |tan θ| < 3.5. FTS was applied to the τ candidate in OPERA and no additional tracks found. FTS will be useful to our new J-PARC emulsion experiment.

  5. Measurement of charge of heavy ions in emulsion using a CCD camera

    CERN Document Server

    Kudzia, D; Dabrowska, A; Deines-Jones, P; Holynski, R; Olszewski, A; Nilsen, B S; Sen-Gupta, K; Szarska, M; Trzupek, A; Waddington, C J; Wefel, J P; Wilczynska, B; Wilczynski, H; Wolter, W; Wosiek, B; Wozniak, K

    1999-01-01

    A system has been developed for semi-automated determination of the charges of heavy ions recorded in nuclear emulsions. The profiles of various heavy ion tracks in emulsion, both accelerator beam ions and fragments of heavy projectiles, were obtained with a CCD camera mounted on a microscope. The dependence of track profiles on illumination, emulsion grain size and density, background in emulsion, and track geometry was analyzed. Charges of the fragments of heavy projectiles were estimated independently by the delta ray counting method. A calibration of both width and height of track profiles against ion charges was made with ions of known charges ranging from helium to gold nuclei. (author)

  6. Controlled release of insect sex pheromones from paraffin wax and emulsions.

    Science.gov (United States)

    Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M

    1999-02-22

    Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin.

  7. Homogenization Pressure and Temperature Affect Protein Partitioning and Oxidative Stability of Emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Barouh, Nathalie; Nielsen, Nina Skall

    2013-01-01

    The oxidative stability of 10 % fish oil-in-water emulsions was investigated for emulsions prepared under different homogenization conditions. Homogenization was conducted at two different pressures (5 or 22.5 MPa), and at two different temperatures (22 and 72 °C). Milk proteins were used...... prior to homogenization did not have any clear effect on lipid oxidation in either of the two types of emulsions....

  8. Measurement of antiproton annihilation on Cu, Ag and Au with emulsion films

    International Nuclear Information System (INIS)

    Aghion, S.; Consolati, G.; Evans, C.; Ferragut, R.; Amsler, C.; Ariga, A.; Ariga, T.; Ereditato, A.; Bonomi, G.; Bräunig, P.; Demetrio, A.; Brusa, R.S.; Cabaret, L.; Comparat, D.; Caccia, M.; Castelli, F.; Caravita, R.; Noto, L. Di; Cerchiari, G.; Doser, M.

    2017-01-01

    The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERN's Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles.

  9. Measurement of antiproton annihilation on Cu, Ag and Au with emulsion films

    Science.gov (United States)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Huse, T.; Kawada, J.; Kellerbauer, A.; Kimura, M.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienaecker, B.; RØhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Vamosi, S.; Vladymyrov, M.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.

    2017-04-01

    The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERN's Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles.

  10. Microencapsulation techniques to develop formulations of insulin for oral delivery: a review.

    Science.gov (United States)

    Cárdenas-Bailón, Fernando; Osorio-Revilla, Guillermo; Gallardo-Velázquez, Tzayhrí

    2013-01-01

    Oral insulin delivery represents one of the most challenging goals for pharmaceutical industry. In general, it is accepted that oral administration of insulin would be more accepted by patients and insulin would be delivered in a more physiological way than the parenteral route. From all strategies to deliverer insulin orally, microencapsulation or nanoencapsulation of insulin are the most promising approaches because these techniques protect insulin from enzymatic degradation in stomach, show a good release profile at intestine pH values, maintain biological activity during formulation and enhance intestinal permeation at certain extent. From different microencapsulation techniques, it seems that complex coacervation, multiple emulsion and internal gelation are the most appropriate techniques to encapsulate insulin due to their relative ease of preparation. Besides that, the use of organic solvents is not required and can be scaled up at low cost; however, relative oral bioavailability still needs to be improved.

  11. On-line measurement with automatic emulsion analysis system and off-line data processing (E531 neutrino experiment)

    International Nuclear Information System (INIS)

    Miyanishi, Motoaki

    1984-01-01

    The automatic emulsion analysis system developed by Nagoya cosmic ray observation group was practically used for the experiment (FNAL-E531) on determining the lifetime of charm particles for the first time in the world, and achieved a great successful result. The system consists of four large precise coordinate-measuring stages capable of conducting simultaneous measurement and multiple (currently four) DOMS (digitized on-line microscope), supported with one mini-computer (ECLIPS S/130). The purpose of E531 experiment was the determination of charm particle lifetime. The experiment was carried out at FNAL, USA, and by the irradiation of wide band ν sub(μ) beam equivalent to 7 x 10 18 of 350 GeV/c protons. The detector was a hybrid system of emulsions and a counter spectrometer. The scan of neutrino reaction, the scan of charm particles, and charm event measurement were analyzed in emulsions, and the on-line programs for-respective analyses were created. Nagoya group has found 726 neutrino reactions in the first run, obtained 37 charm particle candidates, and found 1442 neutrino reactions in the second run, and obtained 56 charm particle candidates. The capability of the automatic emulsion analysis system in terms of the time equired for analysis is in total 3.5 hours per event; 15 minutes for C.S. scan, 15 minutes for coupling to module, 20 minutes for tracing to vertex, 1 hour for neutrino reaction measurement, 10 minutes for offline data processing and 1.5 hours for charm particle scanning. (Wakatsuki, Y.)

  12. Relations between interfacial properties and heavy crude oil emulsions stability; Relations entre les proprietes interfaciales et la stabilite des emulsions de brut lourd

    Energy Technology Data Exchange (ETDEWEB)

    Hoebler-Poteau, S.

    2006-02-15

    Oil in water emulsions are currently being investigated to facilitate the transport of viscous heavy oils. The behavior of these emulsions is largely controlled by oil / water interfaces. The surface-active components of crude oil such as asphaltenes and naphthenic acids compete among themselves at these interfaces and also with possibly added synthetic surfactant emulsifier.Here, we present a study of dynamic interfacial tension and rheology of interfaces between water and a model oil (toluene) in which asphaltenes and other surface active molecules from crude oil are dissolved. We show that different parameters such as aging of the interface, asphaltenes concentration, the pH and salinity of the aqueous phase have a strong influence on interfacial properties of asphaltenes at the oil/water interface. Several micro-pipette experiments, in which micrometric drops have been manipulated, are described as well as small angle neutron scattering measurements. The influence of lower molecular weight surface-active species, such as the natural naphthenic acids contained in maltenes (crude oil without asphaltenes) has been investigated, and an interaction between asphaltenes and maltenes which facilitates molecular arrangement at the interface was detected. The microscopic properties of the different interfaces and the stability of the corresponding emulsions are determined to be correlated.The results obtained on model emulsions and model oil/water interfaces were found to be helpful in order to explain and predict the behavior of heavy crude oil emulsions. (author)

  13. Determination of Cu, Mn, Ni and Sn in gasoline by electrothermal vaporization inductively coupled plasma mass spectrometry, and emulsion sample introduction

    International Nuclear Information System (INIS)

    Saint'Pierre, Tatiana D.; Dias, Lucia Felicidade; Pozebon, Dirce; Aucelio, Ricardo Q.; Curtius, Adilson J.; Welz, Bernhard

    2002-01-01

    Trace metals in fuels, except in the case of additives, are usually undesirable and normally they occur in very low concentrations in gasoline, requiring sensitive techniques for their determination. Coupling of electrothermal vaporization with inductively coupled plasma mass spectrometry minimizes the problems related to the introduction of organic solvents into the plasma. Furthermore, sample preparation as oil-in-water emulsions reduces problems related to gasoline analysis. In this work, a method for determination of Cu, Mn, Ni and Sn in gasoline is proposed. Samples were prepared by forming a 10-fold diluted emulsion with a surfactant (Triton X-100), after treatment with concentrated HNO 3 . The sample emulsion was pre-concentrated in the graphite tube by repeated pipetting and drying. External calibration was used with aqueous standards in a purified gasoline emulsion. Six samples from different gas stations were analyzed, and the analyte concentrations were found to be in the μg l -1 range or below. The limits of detection were 0.22, 0.02, 0.38 and 0.03 μg l -1 for Cu, Mn, Ni and Sn, respectively. The accuracy of the method was estimated using a recovery test

  14. A general computation model based on inverse analysis principle used for rheological analysis of W/O rapeseed and soybean oil emulsions

    Science.gov (United States)

    Vintila, Iuliana; Gavrus, Adinel

    2017-10-01

    The present research paper proposes the validation of a rigorous computation model used as a numerical tool to identify rheological behavior of complex emulsions W/O. Considering a three-dimensional description of a general viscoplastic flow it is detailed the thermo-mechanical equations used to identify fluid or soft material's rheological laws starting from global experimental measurements. Analyses are conducted for complex emulsions W/O having generally a Bingham behavior using the shear stress - strain rate dependency based on a power law and using an improved analytical model. Experimental results are investigated in case of rheological behavior for crude and refined rapeseed/soybean oils and four types of corresponding W/O emulsions using different physical-chemical composition. The rheological behavior model was correlated with the thermo-mechanical analysis of a plane-plane rheometer, oil content, chemical composition, particle size and emulsifier's concentration. The parameters of rheological laws describing the industrial oils and the W/O concentrated emulsions behavior were computed from estimated shear stresses using a non-linear regression technique and from experimental torques using the inverse analysis tool designed by A. Gavrus (1992-2000).

  15. Matrix properties affect the sensory perception of emulsion-filled gels

    NARCIS (Netherlands)

    Sala, G.; Wijk, de R.A.; Velde, van de F.; Aken, van G.A.

    2008-01-01

    The breakdown properties and sensory perception of emulsion-filled gels with different matrices were studied at varying emulsion concentrations. The gel matrices used were cold-set whey protein isolate (WPI), gelatin, ¿-carrageenan and a mixture of ¿-carrageenan and ¿-carrageenan. The oil-in-water

  16. Emulsion Polymerization of Etyl Acrylate: The Effect of Surfactant, Initiator Concentration and PolymerizationTechnique on Particle Size Distribution

    OpenAIRE

    Nitri Arinda; Emil Budianto; Helmiyati

    2009-01-01

    Emulsion polymerization was conducted using ethyl acrylate monomer. Theeffect of sodium lauryl sulfate concentration, ammonium persulfate concentration, the various of polymerizationtechniques and feeding time to the conversion, particle size and its distribution were observed. The purpose of thisresearch is to obtain the optimum condition of ethyl acrylate homopolymer with particle size around 100 nm, to get theparticle size distribution monodisperse and to get solid content value of the exp...

  17. Distribution of Tocopherols and Tocotrienols in Guinea Pig Tissues Following Parenteral Lipid Emulsion Infusion.

    Science.gov (United States)

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2016-07-01

    Tocopherols and tocotrienols possess vitamin E activity and function as the major lipid-soluble antioxidants in the human body. Commercial lipid emulsions are composed of different oils and supply different amounts of vitamin E. The objective of this study was to measure all 8 vitamin E homologs within 4 different commercial lipid emulsions and evaluate their distribution in guinea pig tissues. The distribution of vitamin E homologs within plasma and guinea pig tissues was determined using a high-performance liquid chromatography (HPLC) system. Lipid hydroperoxides in lipid emulsions were determined using a commercial kit (Cayman Chemical Company, Ann Arbor, MI), and malondialdehyde tissue levels were determined using an HPLC system. The lipid emulsions contained variable amounts of tocopherols, which were significantly different between emulsions. Tocotrienols were present at very low concentrations (≤0.3%). We found no correlation between the amount of vitamin E present in the lipid emulsions and lipid peroxidation. Hydroperoxides were the lowest with an olive oil-based emulsion and highest with a fish oil emulsion. The predominant vitamin E homolog in guinea pig tissues was α-tocopherol. No tissues had detectable levels of tocotrienols. Vitamin E levels (primarily α-tocopherol and γ-tocopherol) were highly variable among organ tissues. Plasma levels were a poor reflection of most tissue levels. Vitamin E levels within different lipid emulsions and plasma/tissues are highly variable, and no one tissue or plasma sample serves as a good proxy for levels in other tissues. All study emulsions were well tolerated and did not significantly increase systemic lipid peroxidation. © 2014 American Society for Parenteral and Enteral Nutrition.

  18. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets.

    Science.gov (United States)

    Nishimura, Kazuya; Suzuki, Hiroaki; Toyota, Taro; Yomo, Tetsuya

    2012-06-15

    The production of giant lipid vesicles with controlled size and structure will be an important technology in the design of quantitative biological assays in cell-mimetic microcompartments. For establishing size control of giant vesicles, we investigated the vesicle formation process, in which inverted emulsion droplets are transformed into giant unilamellar vesicles (GUVs) when they pass through an oil/water interface. The relationship between the size of the template emulsion and the converted GUVs was studied using inverted emulsion droplets with a narrow size distribution, which were prepared by microfluidics. We successfully found an appropriate centrifugal acceleration condition to obtain GUVs that had a desired size and narrow-enough size distribution with an improved yield so that emulsion droplets can become the template for GUVs. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  19. Emulsion sheet doublets as interface trackers for the OPERA experiment

    CERN Document Server

    Anokhina, A.; Ariga, A.; Arrabito, L.; Autiero, D.; Badertscher, A.; Bay, F.; Greggio, F.Bersani; Bertolin, A.; Besnier, M.; Bick, D.; Bozza, C.; Brugiere, T.; Brugnera, R.; Brunetti, G.; Buontempo, S.; Carrara, E.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chon-Sen, N.; Chukanov, A.; Consiglio, L.; Cozzi, M.; Cuha, V.; Dal Corso, F.; D'Amato, G.; D'Ambrosio, N.; De Lellis, G.; Declais, Y.; De Serio, M.; Di Capua, F.; Di Ferdinando, D.; Di Giovanni, A.; Di Marco, N.; Di Troia, C.; Dmitrievski, S.; Dominjon, A.; Dracos, Marcos; Duchesneau, D.; Dusini, S.; Ebert, J.; Egorov, O.; Enikeev, R.; Ereditato, Antonio; Esposito, L.S.; Favier, J.; Felici, G.; Ferber, T.; Fini, R.; Frekers, D.; Fukuda, T.; Galkin, V.I.; Galkin, V.A.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Goellnitz, C.; Goldberg, J.; Golubkov, D.; Gornushkin, Y.; Grella, G.; Grianti, F.; Guler, M.; Gusev, G.; Gustavino, C.; Hagner, Caren; Hara, T.; Hierholzer, M.; Hiramatsu, S.; Hoshino, Kaoru; Ieva, M.; Jakovcic, K.; Janicsko Csathy, J.; Janutta, B.; Jollet, C.; Juget, F.; Kawai, T.; Kazuyama, M.; Kim, S.H.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Laktineh, I.; Lazzaro, C.; Lenkeit, J.; Ljubicic, A.; Longhin, Andrea; Lutter, G.; Manai, K.; Mandrioli, G.; Marotta, A.; Marteau, J.; Matsuo, T.; Matsuoka, H.; Mauri, N.; Meisel, F.; Meregaglia, A.; Messina, M.; Migliozzi, P.; Mikado, S.; Miyamoto, S.; Monacelli, Piero; Morishima, Kunihiro; Moser, U.; Muciaccia, Maria Teresa; Naganawa, N.; Naka, T.; Nakamura, M.; Nakamura, T.; Nakano, T.; Nikitina, V.; Niwa, K.; Nonoyama, Y.; Ogawa, S.; Osedlo, V.; Ossetski, D.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, Klaus P.; Publichenko, P.; Pupilli, F.; Roganova, T.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryazhskaya, O.; Ryzhikov, D.; Sato, O.; Sato, Y.; Saveliev, V.; Sazhina, G.; Schembri, A.; Scotto Lavina, L.; Shibuya, H.; Simone, S.; Sioli, Max; Sirignano, C.; Sirri, G.; Song, J.S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strauss, T.; Strolin, Paolo Emilio; Sugonyaev, V.; Taira, Y.; Takahashi, S.; Tenti, M.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; Tsarev, V.; Tufanli, S.; Ushida, N.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.L.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yoon, C.S.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, Amina; Zimmermann, R.

    2008-01-01

    New methods for efficient and unambiguous interconnection between electronic counters and target units based on nuclear photographic emulsion films have been developed. The application to the OPERA experiment, that aims at detecting oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is reported in this paper. In order to reduce background due to latent tracks collected before installation in the detector, on-site large-scale treatments of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd) packages, each made of a doublet of emulsion films, have been designed, assembled and coupled to the OPERA target units ("ECC bricks"). A device has been built to print X-ray spots for accurate interconnection both within the CSd and between the CSd and the related ECC brick. Sample emulsion films have been extensively scanned with state-of-the-art automated optical microscopes. Efficient track-matching and powerful background rejection have been achieved in tests with electronic...

  20. Pickering emulsions stabilized by paraffin wax and Laponite clay particles.

    Science.gov (United States)

    Li, Caifu; Liu, Qian; Mei, Zhen; Wang, Jun; Xu, Jian; Sun, Dejun

    2009-08-01

    Emulsions containing wax in dispersed droplets stabilized by disc-like Laponite clay particles are prepared. Properties of the emulsions prepared at different temperatures are examined using stability, microscopy and droplet-size analysis. At low temperature, the wax crystals in the oil droplets can protrude through the interface, leading to droplet coalescence. But at higher temperatures, the droplet size decreases with wax concentration. Considering the viscosity of the oil phase and the interfacial tension, we conclude that the wax is liquid-like during the high temperature emulsification process, but during cooling wax crystals appear around the oil/water interface and stabilize the droplets. The oil/water ratio has minimal effect on the emulsions between ratios of 3:7 and 7:3. The Laponite is believed to stabilize the emulsions by increasing the viscosity of the continuous phase and also by adsorbing at the oil/water interface, thus providing a physical barrier to coalescence.

  1. Globule-size distribution in injectable 20% lipid emulsions: Compliance with USP requirements.

    Science.gov (United States)

    Driscoll, David F

    2007-10-01

    The compliance of injectable 20% lipid emulsions with the globule-size limits in chapter 729 of the U.S. Pharmacopeia (USP) was examined. As established in chapter 729, dynamic light scattering was applied to determine mean droplet diameter (MDD), with an upper limit of 500 nm. Light obscuration was used to determine the size of fat globules found in the large-diameter tail, expressed as the volume-weighted percent fat exceeding 5 microm (PFAT(5)), with an upper limit of 0.05%. Compliance of seven different emulsions, six of which were stored in plastic bags, with USP limits was assessed. To avoid reaching coincidence limits during the application of method II from overly concentrated emulsion samples, a variable dilution scheme was used to optimize the globule-size measurements for each emulsion. One-way analysis of variance of globule-size distribution (GSD) data was conducted if any results of method I or II exceeded the respective upper limits. Most injectable lipid emulsions complied with limits established by USP chapter 729, with the exception of those of one manufacturer, which failed limits as proposed for to meet the PFAT(5) three of the emulsions tested. In contrast, all others studied (one packaged in glass and three packaged in plastic) met both criteria. Among seven injectable lipid emulsions tested for GSD, all met USP chapter 729 MDD requirements and three, all from the same manufacturer and packaged in plastic, did not meet PFAT(5) requirements.

  2. Osmosis-driven viscous fingering of oil-in-water emulsions

    Science.gov (United States)

    Liu, Ying; Rallabandi, Bhargav; Baskaran, Mrudhula; Stone, Howard

    2017-11-01

    Viscous fingering occurs when a low viscosity fluid invades a more viscous fluid. Fingering of two miscible fluids is more complicated than that of immiscible fluids in that there is no sharp fluid-fluid interface and diffusion occurs between the phases. We experimentally studied the fingering of two miscible fluids: an oil-in-water emulsion and a sodium chloride solution. When the concentration of sodium chloride in the water phase in the emulsion exceeds that in the sodium chloride solution, the consequent osmotic flow automatically facilitates the occurrence of the fingering. On the contrary, when the sodium chloride solution has higher concentration, the spreading of emulsion is more uniform than the case without the concentration difference. We provide a model to rationalize and quantify these observations.

  3. 40 CFR 467.60 - Applicability; description of the drawing with emulsions or soaps subcategory.

    Science.gov (United States)

    2010-07-01

    ... drawing with emulsions or soaps subcategory. 467.60 Section 467.60 Protection of Environment ENVIRONMENTAL... Drawing With Emulsions or Soaps Subcategory § 467.60 Applicability; description of the drawing with... operations of the drawing with emulsions or soaps subcategory. ...

  4. Fundamental aspects of oily waters treatment from the mineral industries by electrolytic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Merma, A.G.; Gonzales, L.V.; Torem, M.L. [Pontifical Catholic Univ. of Rio de Janeiro, Rio de Janeiro (Brazil). Dept. of Materials Engineering

    2010-07-01

    There is an immediate need to develop innovative and more effective techniques for treatment of wastewaters as regulations on effluent wastewater discharge are becoming increasingly prevalent. The mining and metallurgical industries generate wastewaters that contain stable oil-in-water emulsions, arising from residues of liquid streams that serve the purpose of lubrication, cooling, cleaning and corrosion prevention in the equipment used in those industries. Chemically stabilized oil-water emulsions produced in the mineral industries can be treated using an electrocoagulation technique that considers the effects of operating parameters such as initial pH, current density, reaction time, electrode area/liquid volume ratio and electrode materials on the separation of oil as measured by the chemical oxygen demand. The paper discussed electrocoagulation as well as the materials and methods for the study, including oil in water emulsions; the experimental apparatus; and the experimental procedure. It was concluded that the electrolysis of this kind of oil in water emulsions with aluminum electrodes resulted in pH neutralization regardless of the initial pH tested. 18 refs., 4 figs.

  5. Stabilization of kerosene/water emulsions using bioemulsifiers obtained by fermentation of hemicellulosic sugars with Lactobacillus pentosus.

    Science.gov (United States)

    Portilla-Rivera, Oscar Manuel; Torrado, Ana María; Domínguez, José Manuel; Moldes, Ana Belén

    2010-09-22

    The results of the present study show that Lactobacillus pentosus can produce extracellular bioemulsifiers by utilizing hemicellulosic sugars from grape marc as a source of carbon. The effectiveness of these bioemulsifiers (LPEM) was studied by preparing kerosene/water (K/W) emulsions in the presence and absence of these emulsifiers. Various parameters such as relative emulsion volume (EV), stabilizing capacity (ES), viscosity, and droplet size of K/W emulsions were measured. The EV values for K/W emulsions stabilized by concentrated LPEM were approximately 74.5% after 72 h of emulsion formation, with ES values of 97%. These values were higher than those obtained with dodecyl sodium sulfate as emulsifier (EV=62.3% and ES=87.7%). Additionally, K/W emulsions stabilized by LPEM produced polydisperse emulsions containing droplets of radius between 10 and 40 μm, which were smaller than those obtained for K/W emulsions without LPEM (droplet radius=60-100 μm). Moreover, the viscosity values of the K/W emulsions without and with LPEM were approximately 236 and 495 cP, respectively.

  6. Application of neutron capture autoradiography to Boron Delivery seeking techniques for selective accumulation of boron compounds to tumor with intra-arterial administration of boron entrapped water-in-oil-in-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Mikado, S. [Physical Science Laboratories, College of Industrial Technology, Nihon University, Chiba (Japan)], E-mail: mikado@cit.nihon-u.ac.jp; Yanagie, H. [Department of Nuclear Engineering and Management, University of Tokyo, Tokyo (Japan); Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Yasuda, N. [Fundamental Technology Center, National Institute of Radiological Sciences, Chiba (Japan); Higashi, S.; Ikushima, I. [Miyakonojyo Metropolitan Hospital, Miyazaki (Japan); Mizumachi, R.; Murata, Y. [Department of Pharmacology, Kumamoto Institute Branch, Mitsubishi Chemical Safety Institute Ltd., Kumamoto (Japan); Morishita, Y. [Department of Human and Molecular Pathology, University of Tokyo, Tokyo (Japan); Nishimura, R. [Faculty of Agriculture, Laboratory of Veterinary Surgery, University of Tokyo (Japan); Shinohara, A. [Department of Humanities, The Graduate School of Seisen University, Tokyo (Japan); Ogura, K. [Physical Science Laboratories, College of Industrial Technology, Nihon University, Chiba (Japan); Sugiyama, H. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Iikura, H.; Ando, H. [Japan Atomic Energy Agency, Ibaraki (Japan); Ishimoto, M. [Department of Nuclear Professional School, University of Tokyo (Japan); Takamoto, S. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Department of Cardiac Surgery, University of Tokyo Hospital, Tokyo (Japan); Eriguchi, M. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Department of Microbiology, Syowa University School of Pharmaceutical Sciences, Tokyo (Japan); Takahashi, H. [Department of Nuclear Engineering and Management, University of Tokyo, Tokyo (Japan); Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Kimura, M. [Department of Physics, Toho University, Chiba (Japan)

    2009-06-21

    It is necessary to accumulate the {sup 10}B atoms selectively to the tumor cells for effective Boron Neutron Capture Therapy (BNCT). In order to achieve an accurate measurement of {sup 10}B accumulations in the biological samples, we employed a technique of neutron capture autoradiography (NCAR) of sliced samples of tumor tissues using CR-39 plastic track detectors. The CR-39 track detectors attached with the biological samples were exposed to thermal neutrons in the thermal column of the JRR3 of Japan Atomic Energy Agency (JAEA). We obtained quantitative NCAR images of the samples for VX-2 tumor in rabbit liver after injection of {sup 10}BSH entrapped water-in-oil-in-water (WOW) emulsion by intra-arterial injection via proper hepatic artery. The {sup 10}B accumulations and distributions in VX-2 tumor and normal liver of rabbit were investigated by means of alpha-track density measurements. In this study, we showed the selective accumulation of {sup 10}B atoms in the VX-2 tumor by intra-arterial injection of {sup 10}B entrapped WOW emulsion until 3 days after injection by using digitized NCAR images (i.e. alpha-track mapping)

  7. Application of neutron capture autoradiography to Boron Delivery seeking techniques for selective accumulation of boron compounds to tumor with intra-arterial administration of boron entrapped water-in-oil-in-water emulsion

    Science.gov (United States)

    Mikado, S.; Yanagie, H.; Yasuda, N.; Higashi, S.; Ikushima, I.; Mizumachi, R.; Murata, Y.; Morishita, Y.; Nishimura, R.; Shinohara, A.; Ogura, K.; Sugiyama, H.; Iikura, H.; Ando, H.; Ishimoto, M.; Takamoto, S.; Eriguchi, M.; Takahashi, H.; Kimura, M.

    2009-06-01

    It is necessary to accumulate the 10B atoms selectively to the tumor cells for effective Boron Neutron Capture Therapy (BNCT). In order to achieve an accurate measurement of 10B accumulations in the biological samples, we employed a technique of neutron capture autoradiography (NCAR) of sliced samples of tumor tissues using CR-39 plastic track detectors. The CR-39 track detectors attached with the biological samples were exposed to thermal neutrons in the thermal column of the JRR3 of Japan Atomic Energy Agency (JAEA). We obtained quantitative NCAR images of the samples for VX-2 tumor in rabbit liver after injection of 10BSH entrapped water-in-oil-in-water (WOW) emulsion by intra-arterial injection via proper hepatic artery. The 10B accumulations and distributions in VX-2 tumor and normal liver of rabbit were investigated by means of alpha-track density measurements. In this study, we showed the selective accumulation of 10B atoms in the VX-2 tumor by intra-arterial injection of 10B entrapped WOW emulsion until 3 days after injection by using digitized NCAR images (i.e. alpha-track mapping).

  8. Application of neutron capture autoradiography to Boron Delivery seeking techniques for selective accumulation of boron compounds to tumor with intra-arterial administration of boron entrapped water-in-oil-in-water emulsion

    International Nuclear Information System (INIS)

    Mikado, S.; Yanagie, H.; Yasuda, N.; Higashi, S.; Ikushima, I.; Mizumachi, R.; Murata, Y.; Morishita, Y.; Nishimura, R.; Shinohara, A.; Ogura, K.; Sugiyama, H.; Iikura, H.; Ando, H.; Ishimoto, M.; Takamoto, S.; Eriguchi, M.; Takahashi, H.; Kimura, M.

    2009-01-01

    It is necessary to accumulate the 10 B atoms selectively to the tumor cells for effective Boron Neutron Capture Therapy (BNCT). In order to achieve an accurate measurement of 10 B accumulations in the biological samples, we employed a technique of neutron capture autoradiography (NCAR) of sliced samples of tumor tissues using CR-39 plastic track detectors. The CR-39 track detectors attached with the biological samples were exposed to thermal neutrons in the thermal column of the JRR3 of Japan Atomic Energy Agency (JAEA). We obtained quantitative NCAR images of the samples for VX-2 tumor in rabbit liver after injection of 10 BSH entrapped water-in-oil-in-water (WOW) emulsion by intra-arterial injection via proper hepatic artery. The 10 B accumulations and distributions in VX-2 tumor and normal liver of rabbit were investigated by means of alpha-track density measurements. In this study, we showed the selective accumulation of 10 B atoms in the VX-2 tumor by intra-arterial injection of 10 B entrapped WOW emulsion until 3 days after injection by using digitized NCAR images (i.e. alpha-track mapping).

  9. Fragrance encapsulation in polymeric matrices by emulsion electrospinning

    OpenAIRE

    Camerlo Agathe; Vebert-Nardin Corinne; Rossi René Michel; Popa Ana Maria

    2013-01-01

    We present the successful application of emulsion electrospinning for the encapsulation of a model for highly volatile fragrances namely (R) (+) limonene in a poly(vinyl alcohol) (PVA) fibrous matrix. The influence of the emulsion formulation and of its colloidal properties on the fiber morphology as well as on the limonene encapsulation efficiency is described. The release profile of the fragrance from the electrospun nanofibers over a fifteen days range shows that this type of nanofibrous m...

  10. Structural Characterization and In Vitro Antioxidant Activity of Kojic Dipalmitate Loaded W/O/W Multiple Emulsions Intended for Skin Disorders

    Directory of Open Access Journals (Sweden)

    Maíra Lima Gonçalez

    2015-01-01

    Full Text Available Multiple emulsions (MEs are intensively being studied for drug delivery due to their ability to load and increase the bioavailability of active lipophilic antioxidant, such as kojic dipalmitate (KDP. The aim of this study was to structurally characterize developed MEs by determining the average droplet size (Dnm and zeta potential (ZP, performing macroscopic and microscopic analysis and analyzing their rheological behavior and in vitro bioadhesion. Furthermore, the in vitro safety profile and antioxidant activity of KDP-loaded MEs were evaluated. The developed MEs showed a Dnm of approximately 1 micrometer and a ZP of −13 mV, and no change was observed in Dnm or ZP of the system with the addition of KDP. KDP-unloaded MEs exhibited ‘‘shear thinning’’ flow behavior whereas KDP-loaded MEs exhibited Newtonian behavior, which are both characteristic of antithixotropic materials. MEs have bioadhesion properties that were not influenced by the incorporation of KDP. The results showed that the incorporation of KDP into MEs improved the safety profile of the drug. The in vitro antioxidant activity assay suggested that MEs presented a higher capacity for maintaining the antioxidant activity of KDP. ME-based systems may be a promising platform for the topical application of KDP in the treatment of skin disorders.

  11. Structural characterization and in vitro antioxidant activity of kojic dipalmitate loaded w/o/w multiple emulsions intended for skin disorders.

    Science.gov (United States)

    Gonçalez, Maíra Lima; Marcussi, Diana Gleide; Calixto, Giovana Maria Fioramonti; Corrêa, Marcos Antonio; Chorilli, Marlus

    2015-01-01

    Multiple emulsions (MEs) are intensively being studied for drug delivery due to their ability to load and increase the bioavailability of active lipophilic antioxidant, such as kojic dipalmitate (KDP). The aim of this study was to structurally characterize developed MEs by determining the average droplet size (Dnm) and zeta potential (ZP), performing macroscopic and microscopic analysis and analyzing their rheological behavior and in vitro bioadhesion. Furthermore, the in vitro safety profile and antioxidant activity of KDP-loaded MEs were evaluated. The developed MEs showed a Dnm of approximately 1 micrometer and a ZP of -13 mV, and no change was observed in Dnm or ZP of the system with the addition of KDP. KDP-unloaded MEs exhibited ''shear thinning" flow behavior whereas KDP-loaded MEs exhibited Newtonian behavior, which are both characteristic of antithixotropic materials. MEs have bioadhesion properties that were not influenced by the incorporation of KDP. The results showed that the incorporation of KDP into MEs improved the safety profile of the drug. The in vitro antioxidant activity assay suggested that MEs presented a higher capacity for maintaining the antioxidant activity of KDP. ME-based systems may be a promising platform for the topical application of KDP in the treatment of skin disorders.

  12. Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation of sugar beet pectin

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2013-01-01

    Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w...... larger average particle sizes than the emulsions in which the SBP was homogenized into the emulsion system during emulsion preparation (referred as Mix B). Mix B type emulsions were stable. Enzyme catalyzed oxidative gelation of SBP helped stabilize the emulsions in Mix A. The kinetics of the enzyme...... catalyzed oxidative gelation of SBP was evaluated by small angle oscillatory measurements for horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2) catalysis, respectively. HRP catalyzed gelation rates, determined from the slopes of the increase of elastic modulus (G0) with time, were higher...

  13. Determination of haplotypes at structurally complex regions using emulsion haplotype fusion PCR.

    Science.gov (United States)

    Tyson, Jess; Armour, John A L

    2012-12-11

    Genotyping and massively-parallel sequencing projects result in a vast amount of diploid data that is only rarely resolved into its constituent haplotypes. It is nevertheless this phased information that is transmitted from one generation to the next and is most directly associated with biological function and the genetic causes of biological effects. Despite progress made in genome-wide sequencing and phasing algorithms and methods, problems assembling (and reconstructing linear haplotypes in) regions of repetitive DNA and structural variation remain. These dynamic and structurally complex regions are often poorly understood from a sequence point of view. Regions such as these that are highly similar in their sequence tend to be collapsed onto the genome assembly. This is turn means downstream determination of the true sequence haplotype in these regions poses a particular challenge. For structurally complex regions, a more focussed approach to assembling haplotypes may be required. In order to investigate reconstruction of spatial information at structurally complex regions, we have used an emulsion haplotype fusion PCR approach to reproducibly link sequences of up to 1kb in length to allow phasing of multiple variants from neighbouring loci, using allele-specific PCR and sequencing to detect the phase. By using emulsion systems linking flanking regions to amplicons within the CNV, this led to the reconstruction of a 59kb haplotype across the DEFA1A3 CNV in HapMap individuals. This study has demonstrated a novel use for emulsion haplotype fusion PCR in addressing the issue of reconstructing structural haplotypes at multiallelic copy variable regions, using the DEFA1A3 locus as an example.

  14. Determination of haplotypes at structurally complex regions using emulsion haplotype fusion PCR

    Directory of Open Access Journals (Sweden)

    Tyson Jess

    2012-12-01

    Full Text Available Abstract Background Genotyping and massively-parallel sequencing projects result in a vast amount of diploid data that is only rarely resolved into its constituent haplotypes. It is nevertheless this phased information that is transmitted from one generation to the next and is most directly associated with biological function and the genetic causes of biological effects. Despite progress made in genome-wide sequencing and phasing algorithms and methods, problems assembling (and reconstructing linear haplotypes in regions of repetitive DNA and structural variation remain. These dynamic and structurally complex regions are often poorly understood from a sequence point of view. Regions such as these that are highly similar in their sequence tend to be collapsed onto the genome assembly. This is turn means downstream determination of the true sequence haplotype in these regions poses a particular challenge. For structurally complex regions, a more focussed approach to assembling haplotypes may be required. Results In order to investigate reconstruction of spatial information at structurally complex regions, we have used an emulsion haplotype fusion PCR approach to reproducibly link sequences of up to 1kb in length to allow phasing of multiple variants from neighbouring loci, using allele-specific PCR and sequencing to detect the phase. By using emulsion systems linking flanking regions to amplicons within the CNV, this led to the reconstruction of a 59kb haplotype across the DEFA1A3 CNV in HapMap individuals. Conclusion This study has demonstrated a novel use for emulsion haplotype fusion PCR in addressing the issue of reconstructing structural haplotypes at multiallelic copy variable regions, using the DEFA1A3 locus as an example.

  15. Parenteral nutrition-associated liver disease and lipid emulsions.

    Science.gov (United States)

    Zugasti Murillo, Ana; Petrina Jáuregui, Estrella; Elizondo Armendáriz, Javier

    2015-01-01

    Parenteral nutrition-associated liver disease (PNALD) is a particularly important problem in patients who need this type of nutritional support for a long time. Prevalence of the condition is highly variable depending on the series, and its clinical presentation is different in adults and children. The etiology of PNALD is not well defined, and participation of several factors at the same time has been suggested. When a bilirubin level >2 mg/dl is detected for a long time, other causes of liver disease should be ruled out and risk factors should be minimized. The composition of lipid emulsions used in parenteral nutrition is one of the factors related to PNALD. This article reviews the different types of lipid emulsions and the potential benefits of emulsions enriched with omega-3 fatty acids. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  16. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination

    Science.gov (United States)

    Xia, Yufei; Wu, Jie; Wei, Wei; Du, Yiqun; Wan, Tao; Ma, Xiaowei; An, Wenqi; Guo, Aiying; Miao, Chunyu; Yue, Hua; Li, Shuoguo; Cao, Xuetao; Su, Zhiguo; Ma, Guanghui

    2018-02-01

    A major challenge in vaccine formulations is the stimulation of both the humoral and cellular immune response for well-defined antigens with high efficacy and safety. Adjuvant research has focused on developing particulate carriers to model the sizes, shapes and compositions of microbes or diseased cells, but not antigen fluidity and pliability. Here, we develop Pickering emulsions--that is, particle-stabilized emulsions that retain the force-dependent deformability and lateral mobility of presented antigens while displaying high biosafety and antigen-loading capabilities. Compared with solid particles and conventional surfactant-stabilized emulsions, the optimized Pickering emulsions enhance the recruitment, antigen uptake and activation of antigen-presenting cells, potently stimulating both humoral and cellular adaptive responses, and thus increasing the survival of mice upon lethal challenge. The pliability and lateral mobility of antigen-loaded Pickering emulsions may provide a facile, effective, safe and broadly applicable strategy to enhance adaptive immunity against infections and diseases.

  17. Report: Potential of nano-emulsions as phytochemical delivery system for food preservation.

    Science.gov (United States)

    Mahmood, Zaffar; Jahangir, Muhammad; Liaquat, Muhammad; Shah, Syed Wasim Ahmad; Khan, Muhammad Mumtaz; Stanley, Roger; D'Arcy, Bruce

    2017-11-01

    Nature is a rich source of bioactive phytochemicals. These plant based compounds have rich scope as antioxidants, antimicrobial compounds and food preservatives and so for long time to be used in meat, fruits, vegetables and processed food items, either as added preservative or as coating material in various food applications, but the major limitation is their limited solubility in a food grade medium. Nano-emulsion is a best choice as a medium having vast area of application. The major advantage of nano-emulsion would be the solubility of a vast group of compounds, due to the presence of water and lipid phases. In this way, nano-emulsions can be proved to be the most suitable candidate as phytochemical delivery system for food preservation. In present article, the use of phytochemicals as potent food preservatives has been reviewed, in context of solubility of phytochemicals in nano-emulsion and applications of food grade nano-emulsions to food systems.

  18. Emulsion-Based Intradermal Delivery of Melittin in Rats

    Directory of Open Access Journals (Sweden)

    Sang Mi Han

    2017-05-01

    Full Text Available Bee venom (BV has long been used as a traditional medicine. The aim of the present study was to formulate a BV emulsion with good rheological properties for dermal application and investigate the effect of formulation on the permeation of melittin through dermatomed rat skin. A formulated emulsion containing 1% (w/v BV was prepared. The emulsion was compared with distilled water (DW and 25% (w/v N-methyl-2-pyrrolidone (NMP in DW. Permeation of melittin from aqueous solution through the dermatomed murine skin was evaluated using the Franz diffusion cells. Samples of receptor cells withdrawn at pre-determined time intervals were measured for melittin amount. After the permeation study, the same skin was used for melittin extraction. In addition, a known amount of melittin (5 μg/mL was added to stratum corneum, epidermis, and dermis of the rat skin, and the amount of melittin was measured at pre-determined time points. The measurement of melittin from all samples was done with HPLC-MS/MS. No melittin was detected in the receptor phase at all time points in emulsion, DW, or NMP groups. When the amount of melittin was further analyzed in stratum corneum, epidermis, and dermis from the permeation study, melittin was still not detected. In an additional experiment, the amount of melittin added to all skin matrices was corrected against the amount of melittin recovered. While the total amount of melittin was retained in the stratum corneum, less than 10% of melittin remained in epidermis and dermis within 15 and 30 min, respectively. Skin microporation with BV emulsion facilitates the penetration of melittin across the stratum corneum into epidermis and dermis, where emulsified melittin could have been metabolized by locally-occurring enzymes.

  19. Emulsion-Based Intradermal Delivery of Melittin in Rats.

    Science.gov (United States)

    Han, Sang Mi; Kim, Se Gun; Pak, Sok Cheon

    2017-05-19

    Bee venom (BV) has long been used as a traditional medicine. The aim of the present study was to formulate a BV emulsion with good rheological properties for dermal application and investigate the effect of formulation on the permeation of melittin through dermatomed rat skin. A formulated emulsion containing 1% ( w / v ) BV was prepared. The emulsion was compared with distilled water (DW) and 25% ( w / v ) N -methyl-2-pyrrolidone (NMP) in DW. Permeation of melittin from aqueous solution through the dermatomed murine skin was evaluated using the Franz diffusion cells. Samples of receptor cells withdrawn at pre-determined time intervals were measured for melittin amount. After the permeation study, the same skin was used for melittin extraction. In addition, a known amount of melittin (5 μg/mL) was added to stratum corneum, epidermis, and dermis of the rat skin, and the amount of melittin was measured at pre-determined time points. The measurement of melittin from all samples was done with HPLC-MS/MS. No melittin was detected in the receptor phase at all time points in emulsion, DW, or NMP groups. When the amount of melittin was further analyzed in stratum corneum, epidermis, and dermis from the permeation study, melittin was still not detected. In an additional experiment, the amount of melittin added to all skin matrices was corrected against the amount of melittin recovered. While the total amount of melittin was retained in the stratum corneum, less than 10% of melittin remained in epidermis and dermis within 15 and 30 min, respectively. Skin microporation with BV emulsion facilitates the penetration of melittin across the stratum corneum into epidermis and dermis, where emulsified melittin could have been metabolized by locally-occurring enzymes.

  20. A Novel Submicron Emulsion System Loaded with Doxorubicin Overcome Multi-Drug Resistance in MCF-7/ADR Cells.

    Science.gov (United States)

    Zhou, W P; Hua, H Y; Sun, P C; Zhao, Y X

    2015-01-01

    The purpose of the present study was to develop the Solutol HS15-based doxorubicin submicron emulsion with good stability and overcoming multi-drug resistance. In this study, we prepared doxorubicin submicron emulsion, and examined the stability after autoclaving, the in vitro cytotoxic activity, the intracellular accumulation and apoptpsis of doxorubicin submicron emulsion in MCF-7/ADR cells. The physicochemical properties of doxorubicin submicron emulsion were not significantly affected after autoclaving. The doxorubicin submicron emulsion significantly increased the intracellular accumulation of doxorubicin submicron emulsion and enhanced cytotoxic activity and apoptotic effects of doxorubicin. These results may be correlated to doxorubicin submicron emulsion inhibitory effects on efflux pumps through the progressive release of intracellular free Solutol HS15 from doxorubicin submicron emulsion. Furthermore, these in vitro results suggest that the Solutol HS15-based submicron emulsion may be a potentially useful drug delivery system to circumvent multi-drug resistance of tumor cells.

  1. Variation of emulsion stability in sulfuric acid alkylation of isobutane with olefins

    Energy Technology Data Exchange (ETDEWEB)

    Sumanov, V.T.; Ovsyannikov, V.P.

    1982-09-01

    The makeup of the emulsion and its stability are determined to a great degree by the surface and viscosity properties of the acid. Investigates the dependence of emulsion stability on the properties of the acid circulating in the reactor section of an alkylation unit. Finds that as the surface-active substances that accumulate in the acid tend to lower its surface tension, and this in turn tends to disperse the hydrocarbon feedstock in the acid phase and forms a stable emulsion in the vigorously stirred reactor. Points out that as the acid viscosity increases, the segregation of microdrops of hydrocarbons from the acid phase becomes slower in the settling of the emulsion under natural conditions.

  2. Modulation and Stabilization of Silk Fibroin-Coated Oil-in-Water Emulsions

    Directory of Open Access Journals (Sweden)

    Zhong-Min Chen

    2009-01-01

    Full Text Available The purpose of this study is to prepare and characterize stable oil-in-water emulsions containing droplets coated with silk fibroin. Silk fibroin, a native edible fibrous protein originating from silkworm cocoons, was used to prepare 10 % (by mass corn oil-in-water emulsions at ambient temperature (pH=7.0, 10 mM phosphate buffer. Emulsions with relatively small mean particle diameter (d32=0.47 μm and extremely good creaming stability (>7 days could be produced at silk fibroin concentration of 1 % (by mass. The influence of pH (2–8, thermal processing (60–90 °C, 20 min, and concentration of salt (c(NaCl=0–250 mM on the properties and stability of the emulsions was analyzed using ζ-potential, particle size, and creaming stability measurements. The isoelectric point of droplets stabilized with silk fibroin was pH~4. The emulsions were stable to droplet flocculation and creaming at any pH except intermediate value (pH=4.0 when stored at room temperature, which was attributed to their relatively low ζ-potential. Their ζ-potential went from around 25 to –35 mV as the pH was increased from 2 to 8. The emulsions were also stable to thermal treatment (60 and 90 °C for 20 min, pH=3 and 7, with a slight decrease in the magnitude of ζ-potential at temperatures exceeding 60 °C. The emulsions were unstable to aggregation and creaming even at relatively low salt concentrations (c(NaCl=0–250 mM, pH=3 and 7 as a result of electrostatic screening effects. These results suggest that bulk oil stabilized with silk fibroin has improved physical stability and may provide a new way of creating functional oil products and delivery systems.

  3. Oxidative stability of 70% fish oil‐in‐water emulsions: Impact of emulsifiers and pH

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Andersen, Ulf

    2011-01-01

    The objective of this study was to evaluate the protective effects of five different emulsifiers on lipid oxidation in 70% fish oil‐in‐water emulsions to be used as delivery systems for long chain polyunsaturated omega‐3 fatty acids to foods. The emulsifiers were either phospholipid (PL) based......‐in‐water emulsions prepared with whey protein isolate, sodium caseinate, milk phospholipids, or soy lecithin. The emulsions can be used as delivery systems for fish oil to foods. However, only emulsions prepared with proteins at high pH offered advantages with respect to better oxidative stability during storage...... compared to neat fish oil. Thus, when fish oil is added to a food product in a delivery emulsion, the type of emulsion used should be carefully considered....

  4. Effects of different dairy ingredients on the rheological behaviour and stability of hot cheese emulsions

    DEFF Research Database (Denmark)

    Kelimu, Abulimiti; Felix da Silva, Denise; Geng, Xiaolu

    2017-01-01

    The influence of sodium caseinate (SC), butter milk powder (BMP) and their combinations on particle size, rheological properties, emulsion stability and microstructure of hot cheese emulsions made from mixtures of Cheddar and soft white cheese was studied. All emulsions exhibited shear-thinning f......The influence of sodium caseinate (SC), butter milk powder (BMP) and their combinations on particle size, rheological properties, emulsion stability and microstructure of hot cheese emulsions made from mixtures of Cheddar and soft white cheese was studied. All emulsions exhibited shear......-thinning flow behaviour and increasing SC concentration (1–4%) led to an increase in particle size and a decrease in apparent viscosity. In contrast, increasing BMP concentration caused significant decrease in particle size and slightly reduced the apparent viscosity. Stability against creaming...

  5. Factors Influencing the Effect of Milkbased Emulsifiers on Lipid Oxidation in Omega-3 Emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt

    and thereby protect the fatty acids in an emulsion before they are added to the food product. However, the use of these so-called delivery emulsions in different food products has shown contradictory results. On this background, the overall goal of the present PhD work was to increase our knowledge about...... for preparing the delivery emulsions. Independent of the introduction method of fish oil to cream cheese (neat oil vs a 70% delivery emulsion), the fish oil enriched cream cheese oxidized during a 20 weeks storage period to a degree where the sensory quality of the product was significantly impacted. However......, the aim was to utilize this knowledge for designing delivery emulsions for the addition of fish oil to foods, and thereby achieve oxidatively stable fish oil enriched products. In simple emulsions, sodium caseinate, whey protein isolate, soy lecithin and combinations of milk proteins and milk...

  6. Effects of Adopol EVS-9279X on the emulsion and film properties of ...

    African Journals Online (AJOL)

    The effects of Adopol EVS-9279X on the emulsion and film properties of emulsion paint were investigated using 5% - 10% w/w sample formulations. Results indicate that Adopol EVS-9279X did not alter the apparent viscosities of the emulsion paint samples. It was found to have lowered the specific gravity from 1.53 to 1.47 ...

  7. Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions.

    Science.gov (United States)

    Moran-Valero, María I; Ruiz-Henestrosa, Víctor M Pizones; Pilosof, Ana M R

    2017-03-01

    The effects of the combination of two low-molecular weight emulsifiers (lecithin and glycerol-monostearate (GMS)) on the stability, the dynamic interfacial properties and rheology of emulsions have been studied. Different lecithin/GMS ratios were tested in order to assess their impact in the formation and stabilization of oil in water emulsions. The combination of the two surfactants showed a synergistic behaviour, mainly when combined at the same ratio. The dynamic film properties and ζ-potential showed that lecithin dominated the surface of oil droplets, providing stability to the emulsions against flocculation and coalescence, while allowing the formation of small oil droplets. At long times of adsorption, all of the mixtures showed similar interfacial activity. However, higher values of interfacial pressure at the initial times were reached when lecithin and GMS were at the same ratio. Interfacial viscoelasticity and viscosity of mixed films were also similar to that of lecithin alone. On the other hand, emulsions viscosity was dominated by GMS. The synergistic performance of lecithin-GMS blends as stabilizers of oil/water emulsions is attributed to their interaction both in the bulk and at the interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Thiolated alkyl-modified carbomers: Novel excipients for mucoadhesive emulsions.

    Science.gov (United States)

    Bonengel, Sonja; Hauptstein, Sabine; Leonaviciute, Gintare; Griessinger, Julia; Bernkop-Schnürch, Andreas

    2015-07-30

    The aim of this study was the design and evaluation of mucoadhesive emulsifying polymeric excipients. Three thiol bearing ligands with increasing pKa values of their sulfhydryl group, namely 4-aminothiophenol (pKa=6.86), l-cysteine (pKa=8.4) and d/l-homocysteine (pKa=10.0) were coupled to the polymeric backbone of alkyl-modified carbomer (PA1030). Resulting conjugates displayed 818.5μmol 4-aminothiophenol, 698.5μmol cysteine and 651.5μmol homocysteine per gram polymer and were evaluated regarding the reactivity of thiol groups, emulsifying and mucoadhesive properties. In general, the synthesized conjugates showed a pH dependent reactivity, whereby the fastest oxidation occurred in PA1030-cysteine, as almost no free thiol groups could be detected after 120min. Emulsification of medium chain triglycerides was feasible with all synthesized conjugates leading to oil-in-water-emulsions. Emulsions with PA1030-cysteine displayed the highest stability and the smallest droplet size among the tested formulations. Oxidation and consequently cross-linking of the thiomers prior to the emulsification process led to an overall decreased emulsion stability. Evaluating mucosal residence time of thiomer emulsions on porcine buccal mucosa, a 9.2-fold higher amount of formulation based on PA1030-cysteine remained on the mucosal tissue within 3h compared to the unmodified polymer. According to these results, the highest reactive ligand l-cysteine seems to be most promising in order to obtain thiolated polymers for the preparation of mucoadhesive o/w-emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Development of a coating technique for inertial confinement fusion plastic targets

    International Nuclear Information System (INIS)

    Kubo, U.; Tsubakihara, H.

    1986-01-01

    Deuterated polystyrene as a target material offers several advantages over other polymers because of the following: (1) it is chemically and physically stable at ordinary conditions, (2) it can be easily formed into spherical shells, and (3) it has a very high fraction of D 2 /H 2 (above approx.99%). As in our previous studies, the fabrication method was basically a utilization of the emulsion technique. This method is well suited to mass-producing the polymer targets without microprocessing techniques. We have developed a fabrication method for single shell targets and an extension of this technique also enables us to fabricate double shell targets. This new method is faster and less labor intensive than previous techniques. The development of ICF experiments requires multilayer structure targets; we have developed, moreover, a new fabrication technique called the multicoating method. The polymer coating can be fabricated by the application of an emulsion technique. On the other hand, with metal coating, a nonelectroplating method was used, and nickel was employed as the coating metal. The thickness of the polymer coating layer can be controlled with the rotational speed of a stirrer in the emulsion. In the case of nickel coating, it is achieved by controlling the plating bath temperature and immersion time during the plating process. The experiment resulted in the development of a new technique for the fabrication of multilayer targets and low density, thick polymer-layer-coated targets

  10. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Rodriguez-Abreu, Carlos, E-mail: carlos.rodriguez@inl.int [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)

    2011-10-17

    Highlights: {yields} Polystyrene-divinylbenzene-iron oxide nanocomposites. {yields} Porous magnetic nanocomposites from highly concentrated emulsions. {yields} Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m{sup -3}, which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  11. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    International Nuclear Information System (INIS)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita; Rodriguez-Abreu, Carlos

    2011-01-01

    Highlights: → Polystyrene-divinylbenzene-iron oxide nanocomposites. → Porous magnetic nanocomposites from highly concentrated emulsions. → Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m -3 , which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  12. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.

    Science.gov (United States)

    Pang, Bo; Liu, Huan; Liu, Peiwen; Peng, Xinwen; Zhang, Kai

    2018-03-01

    Hydrophobic particles with static water contact angles larger than 90° are more like to stabilize W/O Pickering emulsions. In particular, high internal phase Pickering emulsions (HIPEs) are of great interest for diverse applications. However, W/O HIPEs have rarely been realized using sustainable biopolymers. Herein, we used stearoylated microcrystalline cellulose (SMCC) to stabilize W/O Pickering emulsions and especially, W/O HIPEs. Moreover, these W/O HIPEs can be further used as platforms for the preparation of porous materials, such as porous foams. Stearoylated microcrystalline cellulose (SMCC) was prepared by modifying MCC with stearoyl chloride under heterogeneous conditions. Using SMCC as emulsifiers, W/O medium and high internal phase Pickering emulsions (MIPEs and HIPEs) with various organic solvents as continuous phases were prepared using one-step and two-step methods, respectively. Polystyrene (PS) foams were prepared after polymerization of oil phase using HIPEs as templates and their oil/water separation capacity were studied. SMCC could efficiently stabilize W/O Pickering emulsions and HIPEs could only be prepared via the two-step method. The internal phase volume fraction of the SMCC-stabilized HIPEs reached as high as 89%. Diverse internal phase volume fractions led to distinct inner structures of foams with closed or open cells. These macroporous polystyrene (PS) foams demonstrated great potential for the effective absorption of organic solvents from underwater. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Physical Stability of Whippable Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Munk, Merete Bøgelund

    Whippable emulsions based on vegetable fat are increasingly used as replacement for dairy whipping creams. One of the quality criteria of whippable emulsions is that it should be low-viscous prior to whipping, but sudden viscosity increase or even solidification during storage and transport...... the impact of ingredient composition, with focus on low-molecular-weight (LMW) emulsifiers. Three monoglyceride-based LMW-emulsifiers were selected: Lactic acid ester of saturated monoglyceride (LACTEM), unsaturated monoglyceride (GMU), and saturated monoglyceride (GMS). LMW-emulsifiers had major impact...

  14. Construction and optimization of an efficient breathing-based isothermal emulsion amplification method

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yanting, E-mail: shenyanting798@126.com [Research Center for Learning Science, Southeast University, Sipailou Road no. 2, Nanjing, Jiangsu Province 210096 (China); State Key Laboratory of Bioelectronics, Southeast University, Sipailou Road no. 2, Nanjing, Jiangsu Province 210096 (China); Tian, Fei, E-mail: 642807827@qq.com [Research Center for Learning Science, Southeast University, Sipailou Road no. 2, Nanjing, Jiangsu Province 210096 (China); Tu, Jing, E-mail: jtu@seu.edu.cn [State Key Laboratory of Bioelectronics, Southeast University, Sipailou Road no. 2, Nanjing, Jiangsu Province 210096 (China); Li, Rui, E-mail: lirui901113@163.com [Research Center for Learning Science, Southeast University, Sipailou Road no. 2, Nanjing, Jiangsu Province 210096 (China); Chen, Zhenzhu, E-mail: zzchen_seu@163.com [Research Center for Learning Science, Southeast University, Sipailou Road no. 2, Nanjing, Jiangsu Province 210096 (China); Bai, Yunfei, E-mail: whitecf@seu.edu.cn [State Key Laboratory of Bioelectronics, Southeast University, Sipailou Road no. 2, Nanjing, Jiangsu Province 210096 (China); Ge, Qinyu, E-mail: geqinyu@seu.edu.cn [State Key Laboratory of Bioelectronics, Southeast University, Sipailou Road no. 2, Nanjing, Jiangsu Province 210096 (China); Lu, Zuhong, E-mail: zhlu@seu.edu.cn [State Key Laboratory of Bioelectronics, Southeast University, Sipailou Road no. 2, Nanjing, Jiangsu Province 210096 (China)

    2017-06-22

    The reaction temperature is one of the main factors that affect the stability of emulsion PCR (emPCR). Focusing on this point, we applied the “DNA breathing” mechanism in BEAMing (Bead, Emulsion, Amplification, and Magnetic) and proposed a more stable emulsion amplification method. Compared to the conventional emPCR, this method provided excellent results. Firstly, more stable emulsion system resulted in higher percentage of single-molecular amplifications (73.17%). Secondly, an ordinary temperature-controlling device was enough. Our outcome showed that the reaction temperature of this method was not strict so that the ordinary temperature-controlling device was enough for it (the heat block sets vs. the PCR instrument: 13.140 ± 0.110 vs. 13.008 ± 0.039, P = 0.120). Thirdly, the single-biotinylated emP{sub 1} coated streptavidin beads were stable enough to be used for this method (the control temperature vs. the reaction temperature: 2967.91 ± 409.045 vs. 3026.22 ± 442.129, P = 0.334), which could replace the double-biotinylated emP{sub 1} coated beads and was benefit for saving cost. In conclusion, the method presented here with stable emulsion system, simplified temperature-controlling device, and decreased investment would be a highly streamlined and inexpensive option for future single-molecular amplification based researches. - Highlights: • A breathing-based isothermal emulsion amplification (BIEA) method was developed. • BIEA showed excellent properties compared with conventional amplification method. • Terminal breathing of DNA duplex was firstly used in emulsion amplification.

  15. Physical and oxidative stability of fish oil-in-water emulsions stabilized with beta-lactoglobulin and pectin.

    Science.gov (United States)

    Katsuda, Marly S; McClements, D J; Miglioranza, Lucia H S; Decker, Eric A

    2008-07-23

    The oxidation of fatty acids can be inhibited by engineering the surface of oil-in-water emulsion droplets to decrease interactions between aqueous phase prooxidants and lipids. The objective of this research was to evaluate whether emulsions stabilized by a multilayer emulsifier systems consisting of beta-lactoglobulin and citrus or sugar beet pectin could produce fish oil-in-water emulsions that had good physical and oxidative stability. Sugar beet pectin was compared to citrus pectin because the sugar beet pectin contains the known antioxidant, ferulic acid. A primary Menhaden oil-in-water emulsion was prepared with beta-lactoglobulin upon which the pectins were electrostatically deposited at pH 3.5. Emulsions prepared with 1% oil, 0.05% beta-lactoglobulin, and 0.06% pectins were physically stable for up to 16 days. As determined by monitoring lipid hydroperoxide and headspace propanal formation, emulsions prepared with the multilayer system of beta-lactoglobulin and citrus pectin were more stable than emulsions stabilized with beta-lactoglobulin alone. Emulsions prepared with the multilayer system of beta-lactoglobulin and sugar beet pectin were less stable than emulsions stabilized with beta-lactoglobulin alone despite the presence of ferulic acid in the sugar beet pectin. The lower oxidative stability of the emulsions with the sugar beet pectin could be due to its higher iron and copper concentrations which would produce oxidative stress that would overcome the antioxidant capacity of ferulic acid. These data suggest that the oxidative stability of oil-in-water emulsions containing omega-3 fatty acids could be improved by the use of multilayer emulsion systems containing pectins with low metal concentrations.

  16. A magnetic nanoparticle stabilized gas containing emulsion for multimodal imaging and triggered drug release.

    Science.gov (United States)

    Guo, Wei; Li, Diancheng; Zhu, Jia-an; Wei, Xiaohui; Men, Weiwei; Yin, Dazhi; Fan, Mingxia; Xu, Yuhong

    2014-06-01

    To develop a multimodal imaging guided and triggered drug delivery system based on a novel emulsion formulation composed of iron oxide nanoparticles, nanoscopic bubbles, and oil containing drugs. Iron oxide paramagnetic nanoparticles were synthesized and modified with surface conjugation of polyethylenimide (PEI) or Bovine Serum Albumin (BSA). Both particles were used to disperse and stabilize oil in water emulsions containing coumarin-6 as the model drug. Sulfur hexafluoride was introduced into the oil phase to form nanoscopic bubbles inside the emulsions. The resulted gas containing emulsions were evaluated for their magnetic resonance (MR) and ultrasound (US) imaging properties. The drug release profile triggered by ultrasound was also examined. We have successfully prepared the highly integrated multi-component emulsion system using the surface modified iron oxide nanoparticles to stabilize the interfaces. The resulted structure had distinctive MR and US imaging properties. Upon application of ultrasound waves, the gas containing emulsion would burst and encapsulated drug could be released. The integrated emulsion formulation was multifunctional with paramagnetic, sono-responsive and drug-carrying characteristics, which may have potential applications for disease diagnosis and imaging guided drug release.

  17. A Computational Study of Internal Flows in a Heated Water-Oil Emulsion Droplet

    KAUST Repository

    Sim, Jaeheon

    2015-01-05

    The vaporization characteristics of water-oil emulsion droplets are investigated by high fidelity computational simulations. One of the key objectives is to identify the physical mechanism for the experimentally observed behavior that the component in the dispersed micro-droplets always vaporizes first, for both oil-in-water and water-in-oil emulsion droplets. The mechanism of this phenomenon has not been clearly understood. In this study, an Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a dynamic adaptive mesh refinement in order to effectively capture the thermo-capillary effect of a micro-droplet in an emulsion droplet efficiently. It is found that the temperature difference in an emulsion droplet creates a surface tension gradient along the micro-droplet surface, inducing surface movement. Subsequently, the outer shear flow and internal flow circulation inside the droplet, referred to as the Marangoni convection, are created. The present study confirms that the Marangoni effect can be sufficiently large to drive the micro-droplets to the emulsion droplet surface at higher temperature, for both water-in-oil and oil-and-water emulsion droplets. A further parametric study with different micro-droplet sizes and temperature gradients demonstrates that larger micro-droplets move faster with larger temperature gradient. The oil micro-droplet in oil-in-water emulsion droplets moves faster due to large temperature gradients by smaller thermal conductivity.

  18. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    Science.gov (United States)

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    Highlights: • Different composition of diesel fuel, biodiesel and bioethanol emulsions were examined. • The fuels were tested in a direct injection diesel engine and parameters were evaluated. • Engine power, torque, exhaust gas temperature & fuel consumptions were compared. • Emulsions fuels emitted lower CO and CO_2 than fossil diesel. • Lower NOx emission was observed at medium engine speeds and loads for emulsion fuels. - Abstract: In this research work, the experimental investigation of the effect of diesel-biodiesel-bioethanol emulsion fuels on combustion, performance and emission of a direct injection (DI) diesel engine are reported. Four kind of emulsion fuels were employed: B (diesel-80%, biodiesel-20% by volume), C (diesel-80%, biodiesel-15%, bioethanol-5%), D (diesel-80%, biodiesel-10%, bioethanol-10%) and E (diesel-80%, biodiesel-5%, bioethanol-15%) to compare its’ performance with the conventional diesel, A. These emulsion fuels were prepared by mechanical homogenizer machine with the help of Tween 80 (1% v/v) and Span 80 (0.5% v/v) as surfactants. The emulsion characteristics were determined by optical electron microscope, emulsification stability test, FTIR, and the physiochemical properties of the emulsion fuels which were all done by following ASTM test methods. The prepared emulsion fuels were then tested in diesel engine test bed to obtain engine performance and exhaust emissions. All the engine experiments were conducted with engine speeds varying from 1600 to 2400 rpm. The results showed the heating value and density of the emulsion fuels decrease as the bioethanol content in the blend increases. The total heating value of the diesel-biodiesel-bioethanol fuels were averagely 21% higher than the total heating value of the pure biodiesel and slightly lower (2%) than diesel fuel. The engine power, torque and exhaust gas temperature were reduced when using emulsion fuels. The brake specific fuel consumption (BSFC) for the emulsion fuels

  20. Stability of O/W Emulsion with Synthetic Perfumes Oxidized by Singlet Oxygen

    Directory of Open Access Journals (Sweden)

    Naoki Watabe

    2013-01-01

    Full Text Available We prepared O/W emulsion composed of a synthetic perfume, n-dodecane, protoporphyrin IX disodium salt (PpIX-2Na, sodium dodecyl sulfate, and water and investigated oxidative decomposition of the synthetic perfume in the emulsion and change in the stability of the emulsion by singlet oxygen (1O2 generated by photosensitization of PpIX-2Na. We used eugenol, linalool, benzyl acetate, α-ionone, α-hexylcinnamaldehyde, and d-limonene as a synthetic perfume. The stability of the O/W emulation including eugenol and linalool significantly decreased with increasing light irradiation time. The decrease in the emulsion stability may be attributable to oxidative decomposition of eugenol and linalool by 1O2 and enlargement of the oil droplet size.

  1. Multi-plane photomicrography of 3-D objects in nuclear emulsions

    International Nuclear Information System (INIS)

    Baranov, V.I.

    1994-01-01

    A new method of photomicrographing charged particle tracks in nuclear emulsions is proposed. It is based on summarizing the inverse (dark field) object partial images, obtained at different emulsion layer depths on one negative. This method permits to get, for example, nuclear event stereo pictures with large image field depth. 5 refs., 5 figs

  2. Single-Cylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions

    Science.gov (United States)

    1978-08-01

    A single-cylinder, four-stroke cycle diesel engine was operated on unstabilized water-in-fuel emulsions. Two prototype devices were used to produce the emulsions on-line with the engine. More than 350 test points were run with baseline diesel fuel an...

  3. Transdermal delivery of forskolin from emulsions differing in droplet size.

    Science.gov (United States)

    Sikora, Elżbieta; Llinas, Meritxell; Garcia-Celma, Maria Jose; Escribano, Elvira; Solans, Conxita

    2015-02-01

    The skin permeation of forskolin, a diterpene isolated from Coleus forsholii, was studied using oil in water (O/W) emulsions as delivery formulations and also an oil solution for comparative purposes. Two forskolin-loaded emulsions of water/Brij 72:Symperonic A7/Miglyol 812:Isohexadecane, at 0.075 wt% forskolin concentration were prepared with the same composition and only differing in droplet size (0.38 μm and 10 μm). The emulsions showed high kinetic stability at 25 °C. In vitro study of forskolin penetration through human skin was carried out using the MicroettePlus(®) system. The concentration of the active in the receptor solution (i.e. ethanol/phosphate buffer 40/60, v/v) was analyzed by high performance liquid chromatography with UV detection. The obtained results showed that forskolin permeation from the emulsions and the oil solution, through human skin, was very high (up to 72.10%), and no effect of droplet size was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of starch as hydrocolloids for formation of a stable emulsion system in food

    Directory of Open Access Journals (Sweden)

    O. Lugovska

    2015-05-01

    Full Text Available Іntroduction. It is necessary to determine the effect of the physicochemical properties of native and modified starches in their use in food. Matherials and methods. Investigated two samples of food emulsions using starches of different nature of origin (native, modified starch. Using laboratory balances, volume of cylinders determined percentage of water separation during freezing and unfreezing emulsions; Brukfild viscometer measured the viscosity increase depending on the time, temperature and pH of food emulsions. Results. When freezing / unfreezing emulsion of native starch in the first cycle of water has been separated by 8% in the second cycle of 38%, the third 50%, in contrast to the emulsion with modified starch water separation starts from the fourth cycle slightly, in the fifth cycle percentage of water separation is 1%, the sixth cycle of 3 %. As a result, studies of viscosity versus time, temperature and pH of food emulsions proved that in an acidic medium at pH 6.5 viscosity emulsion with modified starch is stored and then increases over a longer time compared with the emulsion of native starch where the viscosity at the beginning of the storage period increases and then decreases. Conclusions. Investigated the properties of native starch in the emulsion show that their use in industrial processes can lead to blockage of the heat exchanger, and the viscosity of the output of the production process is unpredictable and varies greatly depending on the combination of temperature and mechanical stress. It makes use in the manufacture of modified starches that combines a combination of two types of modifications: stabilization and crosslinking.

  5. Effects of emulsion droplet sizes on the crystallisation of milk fat.

    Science.gov (United States)

    Truong, Tuyen; Bansal, Nidhi; Sharma, Ranjan; Palmer, Martin; Bhandari, Bhesh

    2014-02-15

    The crystallisation properties of milk fat emulsions containing dairy-based ingredients as functions of emulsion droplet size, cooling rate, and emulsifier type were investigated using a differential scanning calorimeter (DSC). Anhydrous milk fat and its fractions (stearin and olein) were emulsified with whey protein concentrate, sodium caseinate, and Tween80 by homogenisation to produce emulsions in various size ranges (0.13-3.10 μm). Particle size, cooling rate, and types of emulsifier all had an influence on the crystallisation properties of fat in the emulsions. In general, the crystallisation temperature of emulsified fats decreased with decreasing average droplet size and was of an exponent function of size, indicating that the influence of particle size on crystallisation temperature is more pronounced in the sub-micron range. This particle size effect was also verified by electron microscopy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effects of lipid emulsion particle size on satiety and energy intake: a randomised cross-over trial.

    Science.gov (United States)

    Poppitt, Sally D; Budgett, Stephanie C; MacGibbon, Alastair K; Quek, Siew-Young; Kindleysides, Sophie; Wiessing, Katy R

    2018-03-01

    Emulsified lipids, with central lipid core surrounded by polar lipid 'protective coat', have been proposed to stimulate the ileal brake, alter appetite, food intake and aid weight control. In addition to lipid composition, emulsion particle size may contribute to efficacy with small droplets providing a larger surface area for gastrointestinal (GI) lipase action and larger droplets prolonging and delaying digestion in the GI tract. Tube feeding studies delivering emulsions directly into the small intestine show clear effects of smaller particle size on appetite and food intake, but evidence from oral feeding studies is sparse. The objective of this study was to determine the effects of lipid emulsion particle size on appetite response and food intake. In a three-arm randomised cross-over, high-phospholipid (PL) dairy lipid emulsions or matched control were consumed at breakfast within a yoghurt smoothie: (i) large-particle size emulsion, LPE (diameter 0.759 µm, 10 g lipid emulsion, 190 g yoghurt), (ii) small-particle size emulsion, SPE (diameter 0.290 µm, 10 g lipid emulsion, 190 g yoghurt), (iii) control non-emulsion, NE (10 g non-emulsion lipid, 190 g yoghurt). Twenty male participants completed the study, where postprandial appetite response was rated using visual analogue scales (VAS) and ad libitum energy intake at a lunch meal measured 3 h later. There was a trend for LPE to suppress hunger (P = 0.08) and enhance fullness (P = 0.24) relative to both SPE and NE but not statistically significant, and no significant effect of either emulsion on food intake at the lunch meal (P > 0.05). Altering particle size of a high-PL emulsion did not enhance satiety or alter eating behaviour in a group of lean men.

  7. Preparation of Pickering emulsions through interfacial adsorption by soft cyclodextrin nanogels

    Directory of Open Access Journals (Sweden)

    Shintaro Kawano

    2015-11-01

    Full Text Available Background: Emulsions stabilized by colloidal particles are known as Pickering emulsions. To date, soft microgel particles as well as inorganic and organic particles have been utilized as Pickering emulsifiers. Although cyclodextrin (CD works as an attractive emulsion stabilizer through the formation of a CD–oil complex at the oil–water interface, a high concentration of CD is normally required. Our research focuses on an effective Pickering emulsifier based on a soft colloidal CD polymer (CD nanogel with a unique surface-active property.Results: CD nanogels were prepared by crosslinking heptakis(2,6-di-O-methyl-β-cyclodextrin with phenyl diisocyanate and subsequent immersion of the resulting polymer in water. A dynamic light scattering study shows that primary CD nanogels with 30–50 nm diameter assemble into larger CD nanogels with 120 nm diameter by an increase in the concentration of CD nanogel from 0.01 to 0.1 wt %. The CD nanogel has a surface-active property at the air–water interface, which reduces the surface tension of water. The CD nanogel works as an effective Pickering emulsion stabilizer even at a low concentration (0.1 wt %, forming stable oil-in-water emulsions through interfacial adsorption by the CD nanogels.Conclusion: Soft CD nanogel particles adsorb at the oil–water interface with an effective coverage by forming a strong interconnected network and form a stable Pickering emulsion. The adsorption property of CD nanogels on the droplet surface has great potential to become new microcapsule building blocks with porous surfaces. These microcapsules may act as stimuli-responsive nanocarriers and nanocontainers.

  8. Modeling of emulsion copolymer microstructure

    NARCIS (Netherlands)

    van Doremaele, G.H.J.; Herk, van A.M.; German, A.L.

    1992-01-01

    A model is developed to describe stages II and III of batch emulsion copolymn., and its predictive capabilities are investigated by application to the system styrene-Me acrylate. The main reaction site is the monomer-swollen polymer particle. Copolymn. rate and copolymer microstructure (molar

  9. Perfection of the individual photographic emulsion dosimeter; Perfectionnements dans la dosimetrie individuelle par emulsion photographique

    Energy Technology Data Exchange (ETDEWEB)

    Soudain, G [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    A photographic dosimeter making possible the measurement of {gamma} radiation doses of from 10 mr up to 800 r by means of 3 emulsion bands of varying sensitivity stuck to the same support is described. The dosimeter has also a zone for marking and a test film insensitive to radiation. This requires a photometric measurement by diffuse reflection an d makes it possible to measure doses with an accuracy of 20 per cent. (author) [French] On decrit un dosimetre photographique permettant la mesure des doses de rayonnement {gamma} depuis 10 mroentgens jusqu'a 800 roentgens, au moyen de trois bandes d'emulsions de sensibilites differentes collees sur le meme support. Le dosimetre comporte egalement une plage de marquage et un temoin de developpement insensibles au rayonnement. Ceci impose la mesure photometrique par reflexion diffuse et permet l'appreciation visuelle des doses a 20 pour cent pres. (auteur)

  10. Iron-mediated lipid oxidation in 70% fish oil-in-ater emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    2012-01-01

    The objective of this study was to investigate the protective effect of five different emulsifiers on iron‐mediated lipid oxidation in 70% fish oil‐in‐water emulsions. The emulsifiers were either based on protein (whey protein isolate and sodium caseinate) or based on phospholipid (soy lecithin...... and two milk phospholipids with different phospholipid contents, MPL20 and MPL75). Lipid oxidation was studied at pH 4.5 and 7.0, and results were compared to lipid oxidation in neat fish oil. Results showed that all emulsions oxidised more than neat oil. Furthermore, emulsions prepared with proteins...

  11. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  12. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T

    1996-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  13. Ultra-High Pressure Homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions.

    Science.gov (United States)

    Fernandez-Avila, C; Trujillo, A J

    2016-10-15

    Ultra-High Pressure Homogenization (100-300MPa) has great potential for technological, microbiological and nutritional aspects of fluid processing. Its effect on the oxidative stability and interfacial properties of oil-in-water emulsions prepared with 4% (w/v) of soy protein isolate and soybean oil (10 and 20%, v/v) were studied and compared to emulsions treated by conventional homogenization (15MPa). Emulsions were characterized by particle size, emulsifying activity index, surface protein concentration at the interface and by transmission electron microscopy. Primary and secondary lipid oxidation products were evaluated in emulsions upon storage. Emulsions with 20% oil treated at 100 and 200MPa exhibited the most oxidative stability due to higher amount of oil and protein surface load at the interface. This manuscript addresses the improvement in oxidative stability in emulsions treated by UHPH when compared to conventional emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Simple lock-in detection technique utilizing multiple harmonics for digital PGC demodulators.

    Science.gov (United States)

    Duan, Fajie; Huang, Tingting; Jiang, Jiajia; Fu, Xiao; Ma, Ling

    2017-06-01

    A simple lock-in detection technique especially suited for digital phase-generated carrier (PGC) demodulators is proposed in this paper. It mixes the interference signal with rectangular waves whose Fourier expansions contain multiple odd or multiple even harmonics of the carrier to recover the quadrature components needed for interference phase demodulation. In this way, the use of a multiplier is avoided and the efficiency of the algorithm is improved. Noise performance with regard to light intensity variation and circuit noise is analyzed theoretically for both the proposed technique and the traditional lock-in technique, and results show that the former provides a better signal-to-noise ratio than the latter with proper modulation depth and average interference phase. Detailed simulations were conducted and the theoretical analysis was verified. A fiber-optic Michelson interferometer was constructed and the feasibility of the proposed technique is demonstrated.

  15. Arrested of coalescence of emulsion droplets of arbitrary size

    Science.gov (United States)

    Mbanga, Badel L.; Burke, Christopher; Blair, Donald W.; Atherton, Timothy J.

    2013-03-01

    With applications ranging from food products to cosmetics via targeted drug delivery systems, structured anisotropic colloids provide an efficient way to control the structure, properties and functions of emulsions. When two fluid emulsion droplets are brought in contact, a reduction of the interfacial tension drives their coalescence into a larger droplet of the same total volume and reduced exposed area. This coalescence can be partially or totally hindered by the presence of nano or micron-size particles that coat the interface as in Pickering emulsions. We investigate numerically the dependance of the mechanical stability of these arrested shapes on the particles size, their shape anisotropy, their polydispersity, their interaction with the solvent, and the particle-particle interactions. We discuss structural shape changes that can be induced by tuning the particles interactions after arrest occurs, and provide design parameters for the relevant experiments.

  16. Analysis of Multiallelic CNVs by Emulsion Haplotype Fusion PCR.

    Science.gov (United States)

    Tyson, Jess; Armour, John A L

    2017-01-01

    Emulsion-fusion PCR recovers long-range sequence information by combining products in cis from individual genomic DNA molecules. Emulsion droplets act as very numerous small reaction chambers in which different PCR products from a single genomic DNA molecule are condensed into short joint products, to unite sequences in cis from widely separated genomic sites. These products can therefore provide information about the arrangement of sequences and variants at a larger scale than established long-read sequencing methods. The method has been useful in defining the phase of variants in haplotypes, the typing of inversions, and determining the configuration of sequence variants in multiallelic CNVs. In this description we outline the rationale for the application of emulsion-fusion PCR methods to the analysis of multiallelic CNVs, and give practical details for our own implementation of the method in that context.

  17. ICAMS: a new system for automated emulsion data acquisition and analysis

    International Nuclear Information System (INIS)

    Arthur, A.A.; Brown, W.L.; Friedlander, E.M.; Heckman, H.H.; Jones, R.W.; Karant, Y.J.; Turney, A.D.

    1983-01-01

    This chapter describes an Interactive Computer Assisted Measurement System (ICAMS) designed to permit the acquisition and analysis of emulsion scan and measurement data at a rate much faster than any existing manual techniques. The system has two major components, the central computer and individual data-taking stations, called ODS (Optical Data Station). It is a modern distributed network system, where a central PDP-11 computer running under RSX-11M V4 communicates with two-ported UNIBUS memory. Each ODS is equipped with a 6512 microprocessor using the Motorola bus and is also equipped with a Creative Micro Systems 9611 arithmetic processor

  18. Package for the BESM-6 computer for particles momenta measuring in nuclei emulsions by semiautomatic microscope

    International Nuclear Information System (INIS)

    Leskin, V.A.; Saltykov, A.I.; Shabratova, G.S.

    1980-01-01

    Computer codes for using on the BESM-6 computer have been developed. The information obtained by semiautomatic measuring in nuclear emulsions are processed, and then the information from paper tape are checked and the diagnostics are printed if the errors in the information occu.,. Data input to the BESM-6 computer is written to the magnetic tape as the direct access files. The data not containing errors are used in calculations of particle momentum by multiple-scattering method

  19. Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range.

    Science.gov (United States)

    Safari, Hanieh; Adili, Reheman; Holinstat, Michael; Eniola-Adefeso, Omolola

    2018-05-15

    Though the emulsion solvent evaporation (ESE) technique has been previously modified to produce rod-shaped particles, it cannot generate small-sized rods for drug delivery applications due to the inherent coupling and contradicting requirements for the formation versus stretching of droplets. The separation of the droplet formation from the stretching step should enable the creation of submicron droplets that are then stretched in the second stage by manipulation of the system viscosity along with the surface-active molecule and oil-phase solvent. A two-step ESE protocol is evaluated where oil droplets are formed at low viscosity followed by a step increase in the aqueous phase viscosity to stretch droplets. Different surface-active molecules and oil phase solvents were evaluated to optimize the yield of biodegradable PLGA rods. Rods were assessed for drug loading via an imaging agent and vascular-targeted delivery application via blood flow adhesion assays. The two-step ESE method generated PLGA rods with major and minor axis down to 3.2 µm and 700 nm, respectively. Chloroform and sodium metaphosphate was the optimal solvent and surface-active molecule, respectively, for submicron rod fabrication. Rods demonstrated faster release of Nile Red compared to spheres and successfully targeted an inflamed endothelium under shear flow in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Evaluation of stability and viscosity measurement of emulsion from oil from production in northern oilfield in Thailand

    Science.gov (United States)

    Juntarasakul, O.; Maneeintr, K.

    2018-04-01

    Emulsion is normally present in oil due to the mixing occurring during oil recovery. The formation of emulsion can cause some problems in production and transportation. Viscosity and stability of emulsion play a key roles in oil transportation and separation to meet sales specification. Therefore, the aims of this research are to measure the viscosity of oil an emulsion and to evaluate the stability of emulsion of light oil from Fang oilfield in Thailand. The parameters of this study are temperature, shear rate and water cut ranging from 50 to 80 °C, 3.75 to 70 s-1 and 0 to 60%, respectively. These effects of parameters on viscosity and stability of emulsion are required for the design of the process and to increase oil production with various conditions. The results shows that viscosity decreases as temperature and shear rate increase. In contrast, viscosity becomes higher when water cut is lower. Furthermore, droplet sizes of water-in-oil emulsion at different conditions are investigated the stability of emulsion. The droplet sizes become smaller when high shear rate is applied and emulsion becomes more stable. Furthermore, correlations are developed to predict the viscosity and stability of the oil and emulsion from Thailand.

  1. Transition from Spherical to Irregular Dispersed Phase in Water/Oil Emulsions

    NARCIS (Netherlands)

    Schmitt, M.; Limage, S.; Grigoriev, D.O.; Krägel, J.; Dutschk, Victoria; Vincent-Bonnieu, S.; Miller, R.; Antoni, M.

    2014-01-01

    Bulk properties of transparent and dilute water in paraffin oil emulsions stabilized with sodium dodecyl sulfate (SDS) are analyzed by optical scanning tomography. Each scanning shot of the considered emulsions has a precision of 1 mu m. The influence of aluminum oxide nanoparticles in the structure

  2. Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Kumada, Hiroaki; Nakamura, Takemi; Higashi, Syushi; Ikushima, Ichiro; Morishita, Yasuyuki; Shinohara, Atsuko; Fijihara, Mitsuteru; Suzuki, Minoru; Sakurai, Yoshinori; Sugiyama, Hirotaka; Kajiyama, Tetsuya; Nishimura, Ryohei; Ono, Koji; Nakajima, Jun; Ono, Minoru; Eriguchi, Masazumi; Takahashi, Hiroyuki

    2011-01-01

    Introduction: Hepatocellular carcinoma (HCC) is one of the most difficult to cure with surgery, chemotherapy, or other combinational therapies. In the treatment of HCC, only 30% patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10 B atoms and thermal neutrons, so it is necessary to accumulate a sufficient quantity of 10 B atoms in tumour cells for effective tumour cell destruction by BNCT. Water-in-oil-in-water (WOW) emulsion has been used as the carrier of anti-cancer agents on intra-arterial injections in clinical. In this study, we prepared 10 BSH entrapped WOW emulsion by double emulsifying technique using iodized poppy-seed oil (IPSO), 10 BSH and surfactant, for selective intra-arterial infusion to HCC, and performed simulations of the irradiation in order to calculate the dose delivered to the patients. Materials and methods: WOW emulsion was administrated with intra-arterial injections via proper hepatic artery on VX-2 rabbit hepatic tumour models. We simulated the irradiation of epithermal neutron and calculated the dose delivered to the tissues with JAEA computational dosimetry system (JCDS) at JRR4 reactor of Japan Atomic Research Institute, using the CT scans of a HCC patient. Results and discussions: The 10 B concentrations in VX-2 tumour obtained by delivery with WOW emulsion were superior to those by conventional IPSO mix emulsion. According to the rabbit model, the boron concentrations (ppm) in tumour, normal liver tissue, and blood are 61.7, 4.3, and 0.1, respectively. The results of the simulations show that normal liver biologically weighted dose is restricted to 4.9 Gy-Eq (CBE; liver tumour: 2.5, normal liver: 0.94); the maximum, minimum, and mean tumour weighted dose are 43.1, 7.3, and 21.8 Gy-Eq, respectively, in 40 min irradiation. In this study, we show that 10 B entrapped WOW emulsion could be

  3. Cold in-place recycling characterization framework for single or multiple component binder systems

    Science.gov (United States)

    Cox, Benjamin C.

    Cold in-place recycling (CIR) is a pavement rehabilitation technique which has gained momentum in recent years. This momentum is due partly to its economic and sustainability characteristics, which has led to CIR market expansion. When pavement network deterioration is considered alongside increasing material costs, it is not beyond reason to expect demands on CIR to continue to increase. Historically, single component binder (SCB) systems, those with one stabilization binder (or two if the secondary binder dosage is 1% or less), have dominated the CIR market and could be considered the general state of practice. Common stabilization binders are either bituminous or cementitious. Two example SCB systems would be: 1) 3% portland cement, or 2) 3% asphalt emulsion with 1% hydrated lime. While traditional SCB systems have demonstrated positive economic and sustainability impacts, this dissertation focuses on multiple component binder (MCB) systems (bituminous and cementitious combined) which exhibit the potential to provide better overall economics and performance. Use of MCBs has the potential to alleviate SCB issues to some extent (e.g. cracking with cementitious SCBs, rutting with bituminous SCBs). Furthermore, to fairly represent both binders in an MCB system a universal design method which can accommodate multiple binder types is needed. The main objectives of this dissertation are to develop a universal CIR design framework and, using this framework, characterize multiple SCB and MCB systems. Approximately 1500 CIR specimens were tested herein along with approximately 300 asphalt concrete specimens which serve as a reference data set for CIR characterization. A case study of a high-traffic Mississippi CIR project which included cement SCB and emulsion SCB sections is also presented to support laboratory efforts. Individual components needed to comprise a universal design framework, such as curing protocols, were developed. SCB and MCB characterization indicated

  4. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions.

    Science.gov (United States)

    Yesiltas, Betül; Sørensen, Ann-Dorit Moltke; García-Moreno, Pedro J; Anankanbil, Sampson; Guo, Zheng; Jacobsen, Charlotte

    2018-07-30

    Sodium caseinate (CAS) and commercial sodium alginate (CA), long chain modified alginate (LCMA) or short chain modified alginate (SCMA) were used in combination for emulsifying and stabilizing high fat (50-70%) fish oil-in-water emulsions. Physical (creaming, droplet size, viscosity and protein determination) and oxidative (primary and secondary oxidation products) stabilities of the emulsions were studied during 12 days of storage. Creaming stability was higher for emulsions produced with alginates and CAS compared to emulsions prepared with only CAS. Combined use of CAS + LCMA performed better in terms of physical stability compared to emulsions produced with only CAS. However, the oxidative stability of this emulsion was inferior probably due to the presence of an unsaturated carbon chain in LCMA structure. CAS + SCMA emulsions not only showed better physical stability such as smaller droplet size, lower creaming and higher viscosity, but also had an improved oxidative stability than emulsions produced with only CAS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A Robust Oil-in-Oil Emulsion for the Nonaqueous Encapsulation of Hydrophilic Payloads.

    Science.gov (United States)

    Lu, Xiaocun; Katz, Joshua S; Schmitt, Adam K; Moore, Jeffrey S

    2018-03-14

    Compartmentalized structures widely exist in cellular systems (organelles) and perform essential functions in smart composite materials (microcapsules, vasculatures, and micelles) to provide localized functionality and enhance materials' compatibility. An entirely water-free compartmentalization system is of significant value to the materials community as nonaqueous conditions are critical to packaging microcapsules with water-free hydrophilic payloads while avoiding energy-intensive drying steps. Few nonaqueous encapsulation techniques are known, especially when considering just the scalable processes that operate in batch mode. Herein, we report a robust oil-in-oil Pickering emulsion system that is compatible with nonaqueous interfacial reactions as required for encapsulation of hydrophilic payloads. A major conceptual advance of this work is the notion of the partitioning inhibitor-a chemical agent that greatly reduces the payload's distribution between the emulsion's two phases, thus providing appropriate conditions for emulsion-templated interfacial polymerization. As a specific example, an immiscible hydrocarbon-amine pair of liquids is emulsified by the incorporation of guanidinium chloride (GuHCl) as a partitioning inhibitor into the dispersed phase. Polyisobutylene (PIB) is added into the continuous phase as a viscosity modifier for suitable modification of interfacial polymerization kinetics. The combination of GuHCl and PIB is necessary to yield a robust emulsion with stable morphology for 3 weeks. Shell wall formation was accomplished by interfacial polymerization of isocyanates delivered through the continuous phase and polyamines from the droplet core. Diethylenetriamine (DETA)-loaded microcapsules were isolated in good yield, exhibiting high thermal and chemical stabilities with extended shelf-lives even when dispersed into a reactive epoxy resin. The polyamine phase is compatible with a variety of basic and hydrophilic actives, suggesting that this

  6. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3

    OpenAIRE

    Kabri, Tin-hinan; Arab-Tehrany, Elmira; Belhaj, Nabila; Linder, Michel

    2011-01-01

    Abstract Background Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions...

  7. [Effects of sub-micro emulsion composition on cellular disposition of incorporated lipophilic drug].

    Science.gov (United States)

    Sun, Xiao-Yi; Xiang, Zhi-Qiang; Wu, Shuo; Lv, Yuan-Yuan; Liang, Wen-Quan

    2013-09-01

    To investigate the effects of sub-micro emulsion composition on cellular uptake and disposition of incorporated lipophilic drug. Sub-micro emulsions containing 10 % oil, 1.2 % lecithin and 2.25 % glycerol were prepared, and the fluorescent agent coumarin 6 was used as a model drug. The effects of oil types, co-surfactants and cationic lipid on uptake and elimination kinetics of 6-coumarin in HeLa cells were studied. The uptake mechanism of sub-micro emulsions was further investigated. Oil type and Tweens had no influence on the cellular uptake. Modifications of surfactants with Span series increased the cellular influx, among which Span 20 with hydrophilic-lipophilic balance (HLB) value of 8.6 was the best enhancer. The intracellular drug level reached up to (46.09 ± 1.98)ng/μg protein which had significant difference with control group [(38.54 ± 0.34)ng/μg protein]. The positively charged emulsions significantly increased the uptake rate constant and elimination rate constant which were 4 times and 1.5 times of those in anionic groups, respectively. The uptake enhancement was also observed in cationic emulsions, cellular concentrations at plateau were (42.73 ± 0.84)ng/μg protein, which was about 3 times of that in anionic emulsions [(15.71 ± 0.74)ng/μg protein], when extracellular drug concentration kept at 100 ng/ml. Cationic emulsions delivered the payload mainly by direct drug transfer to contacted cells, while the negative ones depended on both drug passive diffusion and clathrin-mediated endocytosis of drug containing oil droplets which accounted for 20% of the intracellular drug. Interfacial characteristic of sub-micro emulsions such as co-surfactants HLB as well as zeta potentials can influence lipophilic drug both in cellular uptake and elimination.

  8. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  9. Quantifying Asphalt Emulsion-Based Chip Seal Curing Times Using Electrical Resistance Measurements.

    Science.gov (United States)

    2017-04-15

    Chip sealing typically consists of covering a pavement surface with asphalt emulsion into which aggregate chips are embedded. The asphalt emulsion cures through the evaporation of water, thus providing mechanical strength to adhere to the pavement wh...

  10. Purified phenolics from hydrothermal treatments of biomass: ability to protect sunflower bulk oil and model food emulsions from oxidation.

    Science.gov (United States)

    Conde, Enma; Moure, Andrés; Domínguez, Herminia; Gordon, Michael H; Parajó, Juan Carlos

    2011-09-14

    The phenolic fractions released during hydrothermal treatment of selected feedstocks (corn cobs, eucalypt wood chips, almond shells, chestnut burs, and white grape pomace) were selectively recovered by extraction with ethyl acetate and washed with ethanol/water solutions. The crude extracts were purified by a relatively simple adsorption technique using a commercial polymeric, nonionic resin. Utilization of 96% ethanol as eluting agent resulted in 47.0-72.6% phenolic desorption, yielding refined products containing 49-60% w/w phenolics (corresponding to 30-58% enrichment with respect to the crude extracts). The refined extracts produced from grape pomace and from chestnut burs were suitable for protecting bulk oil and oil-in-water and water-in-oil emulsions. A synergistic action with bovine serum albumin in the emulsions was observed.

  11. Investigation of inelastic interactions of 400 GeV protons with emulsion nuclei

    International Nuclear Information System (INIS)

    Boos, E.G.

    1978-01-01

    Proton-nucleus (pA) interactions registered in nuclear emulsion irradiated at the Batavian accelerator at 400 GeV/c are analyzed. Presented are energy dependences of some main parameters of hadron-nucleus (hA) interactions using experimental data on pA interactions for lesser energies. Quantitative and qualitative data comparison with predictions of a series of popular models of multiple particle production resulted from collisions with nuclei has been carried out. It is shown that most models can not explain all the experimental results. An analysis of the experimental data obtained permits to suggest that the production mechanism in hA interactions has two- or multi-component character

  12. Ann Modeling for Grey Particles Produced from Interactions of Different Projectiles with Emulsion Nuclei at 4.5 AGEV/C

    International Nuclear Information System (INIS)

    El-Bakry, M.N.Y.; Basha, A.M.; Rashed, N.; Mahmoud, M.A.; Radi, A.

    2008-01-01

    Artificial Neural Network (ANN) is one of the important tools in high energy physics. In this paper, we are using ANN for modeling the multiplicity distributions of grey particles produced from interactions of P, 3 He, 4 He, 6 Li, 12 C, 24 Mg, and 32 S with emulsion nuclei, light nuclei (CNO), and heavy nuclei (Ag Br). The equations of these distributions were obtained

  13. Studies on emulsion-type buffalo meat sausages incorporating skeletal and offal meat with different levels of pork fat.

    Science.gov (United States)

    Krishnan, K R; Sharma, N

    1990-01-01

    Ready-to-eat emulsion-type buffalo meat sausages were developed by using a combination of 80% meat components with 20% pork back fat. The meat components were constituted of 70 parts buffalo skeletal meat and 30 parts offal meat (rumen meat and heart meat in equal proportions). The emulsion stability, cooking losses of emulsions and sausages, composition of cooked sausages, eating quality of sausages and the microscopic characteristics of the raw emulsion and cooked sausages were studied. The light microscope micrograph of the raw emulsion showed uniformly well distributed fat globules embedded in a dense protein gel. The cooked emulsion also showed uniformly sized fat globules well distributed in a fine, compact, coagulated protein gel, which retained their original spherical shape. Good quality emulsion-type sausages could be produced having a high emulsion stability (0·87 ± 0·07 ml fat release/100 g emulsion); a low emulsion cooking loss (9·60 ± 0·60%) and a low sausage cooking loss (8·83 ± 0·48%). The overall acceptability of sausages was also high. Copyright © 1990. Published by Elsevier Ltd.

  14. Tailoring the Wettability of Colloidal Particles for Pickering Emulsions via Surface Modification and Roughness

    Directory of Open Access Journals (Sweden)

    Meina Xiao

    2018-06-01

    Full Text Available Pickering emulsions are water or oil droplets that are stabilized by colloidal particles and have been intensely studied since the late 90s. The surfactant-free nature of these emulsions has little adverse effects such as irritancy and contamination of environment and typically exhibit enhanced stability compared to surfactant-stabilized emulsions. Therefore, they offer promising applications in cosmetics, food science, controlled release, and the manufacturing of microcapsules and porous materials. The wettability of the colloidal particles is the main parameter determining the formation and stability of Pickering emulsions. Tailoring the wettability by surface chemistry or surface roughness offers considerable scope for the design of a variety of hybrid nanoparticles that may serve as novel efficient Pickering emulsion stabilizers. In this review, we will discuss the recent advances in the development of surface modification of nanoparticles.

  15. Electric field induced instabilities in free emulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Tchoukov, P.; Dabros, T. [Natural Resources Canada, Devon, AB (Canada); Mostowfi, F. [Schlumberger DBR Technology Center, Edmonton, AB (Canada); Panchev, N. [Champion Technologies Inc., Houston, TX (United States); Czarnecki, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2009-07-01

    This presentation reported on a study that investigated the mechanism of electric field-induced breakdown of free emulsion films. Instability patterns were observed on the plane of a water-oil-water film following electric polarization. The length-scales of the instabilities were measured by analyzing images immediately after applying the electric field. Linear stability analysis was used to calculate the theoretical dominant wavelengths. The calculated values were found to be in good agreement with measured values. The films were formed in a thin film apparatus modified so that the oil film separated 2 aqueous phase compartments, each in contact with a platinum electrode. This enabled the measurement of disjoining pressure while applying the electric field to the film. It was concluded that breakdown of thin films induced by electric field has many applications, including electrostatic de-emulsification/desalination of crude oil and emulsion stability measurements. It was concluded that electroporation and dielectric breakdown may be responsible for electric field-induced breakdown. This study also presented evidence of an increase in electric field-induced instabilities in emulsion films resulting in rupture. tabs., figs.

  16. Study on removal of cadmium from wastewater by emulsion liquid membrane

    International Nuclear Information System (INIS)

    Mortaheb, Hamid R.; Kosuge, Hitoshi; Mokhtarani, Babak; Amini, Mohammad H.; Banihashemi, Hamid R.

    2009-01-01

    Removal of cadmium from wastewater using emulsion liquid membrane (ELM) is studied in the present study. A polyamine-type surfactant was used for stabilizing the emulsion phase. Tri-iso-octyl amine (TIOA) has been used as a carrier for transferring of cadmium through the membrane. The results show good performance in the separation process. To determine the optimum operation conditions, the effect of several parameters such as surfactant concentration, carrier concentration, pH of external and internal phases, oil to internal phase volume ratio, emulsion to external phase volume ratio, solvent type, solute concentration, presence of iodide and chloride in external phase, and mixing conditions have been investigated.

  17. Study on cosmic ray iron isotopes in an emulsion-plastic detector

    International Nuclear Information System (INIS)

    Scherzer, R.; Enge, W.; Beaujean, R.; Hertzman, S.; Kristiansson, K.; Soederstroem, K.

    1976-01-01

    Combining cellulose nitrate plastics and nuclear emulsions a detector system for mass measurement in the iron group has been designed. The detector operates in an energy interval of 500-700 MeV/Nuc and has been flown in two balloon flights. In the emulsion range and track width are measured. Cone lengths and range are measured in the plastics. The charge of a particle can be determined both in emulsion and in plastics. The mass is determined by relating cone lengths to residual range. One advantage of this detector system is the high rejection of interacting particles. The present status is reported. (orig.) [de

  18. Influence of surfactants on gas-hydrate formation' kinetics in water-oil emulsion

    Science.gov (United States)

    Zemenkov, Yu D.; Shirshova, A. V.; Arinstein, E. A.; Shuvaev, A. N.

    2018-05-01

    The kinetics of gas hydrate formation of propane in a water-oil emulsion is experimentally studied when three types of surfactants (SAA (surface acting agent)) - anionic type emulsifiers - are added to the aqueous phase. It is shown that all three types of surfactants decelerate the growth of the gas-hydrate in the emulsion and can be considered as anti-agglutinating and kinetic low-dose inhibitors. The most effective inhibitor of hydrate formation in water-oil emulsion of SV-102 surfactant was revealed. For comparison, experimental studies of gas-hydrate formation under the same conditions for bulk water have been carried out. It is shown that in bulk water, all the surfactants investigated act as promoters (accelerators) of hydrate formation. A qualitative explanation of the action mechanisms of emulsifiers in the process of gas-hydrate formation in water-oil emulsion is given.

  19. Emulsion stability measurements by single electrode capacitance probe (SeCaP) technology

    International Nuclear Information System (INIS)

    Schüller, R B; Løkra, S; Egelandsdal, B; Salas-Bringas, C; Engebretsen, B

    2008-01-01

    This paper describes a new and novel method for the determination of the stability of emulsions. The method is based on the single electrode capacitance technology (SeCaP). A measuring system consisting of eight individual measuring cells, each with a volume of approximately 10 ml, is described in detail. The system has been tested on an emulsion system based on whey proteins (WPC80), oil and water. Xanthan was added to modify the emulsion stability. The results show that the new measuring system is able to quantify the stability of the emulsion in terms of a differential variable. The whole separation process is observed much faster in the SeCaP system than in a conventional separation column. The complete separation process observed visually over 30 h is seen in less than 1.4 h in the SeCaP system

  20. Fabrication of yttria microcapsules for radiotherapy from water/oil emulsion

    International Nuclear Information System (INIS)

    Miyazaki, Toshiki; Kai, Tomohiro; Ishida, Eiichi; Kawashita, Masakazu; Hiraoka, Masahiro

    2010-01-01

    Radiotherapy using ceramic microparticles that act as β-emitters after neutron bombardment is attractive as a minimally invasive option for cancer treatment. Yttria (Y 2 O 3 ) microcapsules (20-30 μm in diameter) are capable of cutting off the nutrition supply in cancer cells through an embolization effect. In the present study, Y 2 O 3 microcapsules were prepared via precipitation of yttrium hydroxide from a water/oil (W/O) emulsion and a subsequent heat treatment. The emulsion was prepared by dispersing yttrium hydroxide sol in 2-ethyl-1-hexanol. Microcapsules were obtained by an addition of the emulsion in butanol via dehydration and subsequent aggregation of the yttrium hydroxide. The effects of the rotation speed and surfactant concentration on the diameter of the particles were investigated. The diameter of the microcapsules showed a tendency to decrease with increases in rotation speed during emulsion preparation or surfactant concentration in the oil phase. A high yield of the Y 2 O 3 microcapsules with a diameter of 20-30 μm were obtained after a heat treatment at the optimized rotation speed and surfactant concentration. The obtained microcapsules showed high chemical durability in a simulated body environment. (author)