WorldWideScience

Sample records for multiple dipole resonances

  1. Dipole Resonances of 76Ge

    Science.gov (United States)

    Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.

    2013-10-01

    Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.

  2. Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction

    Science.gov (United States)

    Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing

    2018-06-01

    We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.

  3. Induced dipole-dipole coupling between two atoms at a migration resonance

    Science.gov (United States)

    Kaur, Maninder; Mian, Mahmood

    2018-05-01

    Results of numerical simulations for the resonant energy exchange phenomenon called Migration reaction between two cold Rydberg atoms are presented. The effect of spatial interatomic distance on the onset of peculiar coherent mechanism is investigated. Observation of Rabi-like population inversion oscillation at the resonance provides a clear signature of dipole induced exchange of electronic excitations between the atoms. Further we present the results for the dependence of expectation value of the interaction hamiltonian on the interatomic distance, which is responsible for energy exchange process. The results of this observation endorse the range of inter atomic distance within which the excitation exchange process occurs completely or partially. Migration process enhance the Rydberg-Rydberg interaction in the absence of an external field, under the condition of the zero permanent dipole moments. Our next observation sheds light on the fundamental mechanism of induced electric fields initiated by the oscillating dipoles in such energy exchange processes. We explore the dependence of induced electric field on the interatomic distance and angle between the dipoles highlighting the inverse power law dependence and anisotropic property of the field. We put forward an idea to utilise the coherent energy exchange process to build efficient and fast energy transfer channels by incorporating more atoms organised at successive distances with decreasing distance gradient.

  4. Giant dipole resonance by many levels theory

    International Nuclear Information System (INIS)

    Mondaini, R.P.

    1977-01-01

    The many levels theory is applied to photonuclear effect, in particular, in giant dipole resonance. A review about photonuclear dipole absorption, comparing with atomic case is done. The derivation of sum rules; their modifications by introduction of the concepts of effective charges and mass and the Siegert theorem. The experimental distributions are compared with results obtained by curve adjustment. (M.C.K.) [pt

  5. Photon scattering by the giant dipole resonance

    International Nuclear Information System (INIS)

    Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.

    1979-01-01

    Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables

  6. Giant dipole resonance in hot nuclei

    International Nuclear Information System (INIS)

    Mau, N.V.

    1993-01-01

    Giant resonances built on an excited state of the nucleus at a finite temperature T are studied. The following questions are investigated: how long such collective effects occur in a nucleus when T increases. How the properties of the giant resonances vary when the temperature increases. How the study of giant resonances in hot nuclei can give information on the structure of the nucleus in a highly excited state. The special case of the giant dipole resonance is studied. Some of the experimental results are reviewed and in their theoretical interpretation is discussed. (K.A.). 56 refs., 20 figs., 4 tabs

  7. Structure of the pygmy dipole resonance in Sn-124

    NARCIS (Netherlands)

    Endres, J.; Savran, D.; Butler, P. A.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R. -D.; Kruecken, R.; Lagoyannis, A.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Popescu, L.; Ring, P.; Scheck, M.; Schlueter, F.; Sonnabend, K.; Stoica, V. I.; Zilges, A.; Wortche, Heinrich

    2012-01-01

    Background: In atomic nuclei, a concentration of electric dipole strength around the particle threshold, commonly denoted as pygmy dipole resonance, may have a significant impact on nuclear structure properties and astrophysical scenarios. A clear identification of these states and the structure of

  8. The pygmy dipole resonance in neutron-rich nuclei

    International Nuclear Information System (INIS)

    Hung, Nguyen Quang; Kiet, Hoang Anh Tuan; Duc, Huynh Ngoc; Chuong, Nguyen Thi

    2016-01-01

    The pygmy dipole resonance (PDR), which has been observed via the enhancement of the electric dipole strength E 1 of atomic nuclei, is studied within a microscopic collective model. The latter employs the Hartree-Fock (HF) method with effective nucleon-nucleon interactions of the Skyrme types plus the random-phase approximation (RPA). The results of the calculations obtained for various even-even nuclei such as "1"6"-"2"8O, "4"0"-"5"8Ca, "1"0"0"-"1"2"0Sn, and "1"8"2"-"2"1"8Pb show that the PDR is significantly enhanced when the number of neutrons outside the stable core of the nucleus is increased, that is, in the neutron-rich nuclei. As the result, the relative ratio between the energy weighted sum of the strength of the PDR and that of the GDR (giant dipole resonance) does not exceed 4%. The collectivity of the PDR and GDR states will be also discussed. (paper)

  9. Isovector giant dipole resonance in hot rotating light nuclei in the calcium region

    International Nuclear Information System (INIS)

    Shanmugam, G.; Thiagasundaram, M.

    1989-01-01

    The isovector giant dipole resonances in hot rotating light nuclei in the calcium region are studied using a rotating anisotropic harmonic oscillator potential and a separable dipole-dipole residual interaction. The influence of temperature on the isovector giant dipole resonance is assumed to occur through the change of deformation of the average field only. Calculations are performed for the three nuclei /sup 40,42/Ca and /sup 46/Ti which have spherical, oblate, and prolate ground states, respectively, to see how their shape transitions at higher excited states affect the isovector giant resonance frequencies built on them. It is seen that, while the width fluctuations present at T = 0 vanish at T = 0.5 MeV in /sup 40,42/Ca, they persist up to T = 1.5 MeV in the case of /sup 46/Ti. This behavior brings out the role of temperature on shell effects which in turn affects the isovector giant dipole resonance widths

  10. Giant dipole resonances built on excited states

    International Nuclear Information System (INIS)

    Snover, K.A.

    1983-01-01

    The properties of giant dipole resonances built on excited nuclear states are reviewed, with emphasis on recent results. Nonstatistical (p,γ) reactions in light nuclei, and statistical complex-particle reactions in light and heavy nuclei are discussed. 27 references

  11. Spectral structure of the pygmy dipole resonance.

    Science.gov (United States)

    Tonchev, A P; Hammond, S L; Kelley, J H; Kwan, E; Lenske, H; Rusev, G; Tornow, W; Tsoneva, N

    2010-02-19

    High-sensitivity studies of E1 and M1 transitions observed in the reaction 138Ba(gamma,gamma{'}) at energies below the one-neutron separation energy have been performed using the nearly monoenergetic and 100% linearly polarized photon beams of the HIgammaS facility. The electric dipole character of the so-called "pygmy" dipole resonance was experimentally verified for excitations from 4.0 to 8.6 MeV. The fine structure of the M1 "spin-flip" mode was observed for the first time in N=82 nuclei.

  12. Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Novikov, S. M.; Zywietz, U.

    2012-01-01

    Strong resonant light scattering by individual spherical Si nanoparticles is experimentally demonstrated, revealing pronounced resonances associated with the excitation of magnetic and electric modes in these nanoparticles. It is shown that the low-frequency resonance corresponds to the magnetic...... dipole excitation. Due to high permittivity, the magnetic dipole resonance is observed in the visible spectral range for Si nanoparticles with diameters of similar to 200 nm, thereby opening a way to the realization of isotropic optical metamaterials with strong magnetic responses in the visible region....

  13. Multipole resonance in the interaction of a spherical Ag nanoparticle with an emitting dipole

    International Nuclear Information System (INIS)

    Liu Jia-Dong; Song Feng; Zhang Jun; Wang Feng-Xiao; Wang Li-Chao; Liu Shu-Jing

    2014-01-01

    The effect of multipole resonance in the interaction between a spherical metallic nanoparticle (MNP) and an emitting dipole is studied with the Mie theory. The results show that the absorption peak of the MNP with respect to the field of the emitting dipole is blue-shifted with the decrease of the spacing between MNP and emitting dipole due to the enhanced multipole resonance. At a short distance, the enhanced multipole terms of scattering are not obvious compared with the dipole term. For the decay rate of the emitting dipole, multipole resonance brings about the enhancement of it largely at short spacing. For the radiative decay rate, the behavior is quite different. The dipole term is dominant at a short spacing, and the multipole term is dominant at a larger spacing. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Fragmentation of giant dipole resonance at finite temperature

    International Nuclear Information System (INIS)

    Vdovin, A.

    2005-01-01

    It is well known that the main part of a width of a collective giant resonance built on the ground state in heavy nuclei is due to coupling of one-phonon vibrational states with more complex ones like two phonon or two-particle - two-hole. So it seems natural that the same idea was also explored in studying of the formation and dependence on temperature of a width of giant resonances built on a compound nuclear state. The first microscopic calculations of a giant dipole resonance width at finite temperature have demonstrated its weak dependence on T whereas the experimental width Γ exp strongly increases up to T≤3 MeV. The observed thermal behaviour of Γ exp was attributed mainly to thermal fluctuations of a nuclear shape at finite T . However, further theoretical studies of the problem have shown a strengthening of the GDR spreading with T. We calculate a fragmentation of the giant dipole resonance in hot spherical nuclei within the approach based on the quasiparticle-phonon model extended to finite temperature in with the formalism of thermofield dynamics. The fragmentation of collective giant dipole vibrations at finite T is due to the coupling with 'two-thermal phonon' configurations. The energies and structures of thermal phonon states are calculated from the thermal RPA temperature dependence of the variance σ th of a theoretical E1 strength function and the experimental GDR width Γ exp in 120 Sn. The coupling of thermal phonons is determined by their fermionic structure. The variance σ th of the E1 strength function is found continuously increasing with temperature. The main reason of this behavior is the coupling of the dipole phonons with very low-lying particle-particle (hole-hole) thermal phonons. These phonons are noncollective ones and they appear only at T≠0. The calculated T dependence of σ th is quite similar to that of the experimental width Γ exp in 120 Sn and 208 Pb

  15. On field line resonances of hydromagnetic Alfven waves in dipole magnetic field

    International Nuclear Information System (INIS)

    Chen, Liu; Cowley, S.C.

    1989-07-01

    Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs

  16. Stability of the giant dipole resonance

    International Nuclear Information System (INIS)

    Espino, J.M.; Gallardo, M.

    1987-01-01

    The Giant Dipole Resonance (GDR), because of its stability and its typical period of vibration, can be used as a test for compound nucleus reactions at high temperatures. This stability is studied in a simple model up to 6 MeV of temperature. The experimental methods for getting the properties of the GDR at T ≠ 0 are also commented. (author)

  17. Spin dipole and quadrupole resonances in 40Ca

    International Nuclear Information System (INIS)

    Baker, F.T.; Love, W.G.; Bimbot, L.; Fergerson, R.W.; Glashausser, C.; Green, A.; Jones, K.; Nanda, S.

    1989-01-01

    Angular distributions of the double differential cross section d 2 σ/dΩ dE(σ) and the spin-flip probability S nn have been measured for inclusive proton inelastic scattering from 40 Ca at 319 MeV. Excitation energies (ω) up to about 40 MeV have been investigated over the angular range from 3.5 degree to 12 degree in the laboratory (0.3 to 0.9 fm -1 ). Here, multipole decompositions of angular distributions of σS nn for the 40 Ca(rvec p,rvec p ') reaction at 319 MeV have been performed in order to compare ΔS=1 strength observed with sum rules. In contrast to the well-known quenching of Gamow-Teller and M1 resonances, the spin-dipole resonance has a total measured strength which is larger than that predicted by the energy-weighted sum rule. The spin-dipole strength distribution supports asymmetric widths predicted by calculations including 2p-2h mixing. The spin-quadrupole resonance is observed near ω=35 MeV and its total strength for ω<40 MeV estimated

  18. 750 GeV diphoton resonance and electric dipole moments

    Directory of Open Access Journals (Sweden)

    Kiwoon Choi

    2016-09-01

    Full Text Available We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O(10−1. An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O(10−3. For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu–Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α∼(750 GeV/ΛHC2θHC, where θHC is the hypercolor vacuum angle.

  19. Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders

    DEFF Research Database (Denmark)

    Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav

    2011-01-01

    An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...

  20. The decay pattern of the Pygmy Dipole Resonance of 140Ce

    Directory of Open Access Journals (Sweden)

    B. Löher

    2016-05-01

    Full Text Available The decay properties of the Pygmy Dipole Resonance (PDR have been investigated in the semi-magic N=82 nucleus 140Ce using a novel combination of nuclear resonance fluorescence and γ–γ coincidence techniques. Branching ratios for transitions to low-lying excited states are determined in a direct and model-independent way both for individual excited states and for excitation energy intervals. Comparison of the experimental results to microscopic calculations in the quasi-particle phonon model exhibits an excellent agreement, supporting the observation that the Pygmy Dipole Resonance couples to the ground state as well as to low-lying excited states. A 10% mixing of the PDR and the [21+×PDR] is extracted.

  1. The decay pattern of the Pygmy Dipole Resonance of 140Ce

    Science.gov (United States)

    Löher, B.; Savran, D.; Aumann, T.; Beller, J.; Bhike, M.; Cooper, N.; Derya, V.; Duchêne, M.; Endres, J.; Hennig, A.; Humby, P.; Isaak, J.; Kelley, J. H.; Knörzer, M.; Pietralla, N.; Ponomarev, V. Yu.; Romig, C.; Scheck, M.; Scheit, H.; Silva, J.; Tonchev, A. P.; Tornow, W.; Wamers, F.; Weller, H.; Werner, V.; Zilges, A.

    2016-05-01

    The decay properties of the Pygmy Dipole Resonance (PDR) have been investigated in the semi-magic N = 82 nucleus 140Ce using a novel combination of nuclear resonance fluorescence and γ-γ coincidence techniques. Branching ratios for transitions to low-lying excited states are determined in a direct and model-independent way both for individual excited states and for excitation energy intervals. Comparison of the experimental results to microscopic calculations in the quasi-particle phonon model exhibits an excellent agreement, supporting the observation that the Pygmy Dipole Resonance couples to the ground state as well as to low-lying excited states. A 10% mixing of the PDR and the [21+ × PDR ] is extracted.

  2. Splitting of the Pygmy Dipole Resonance

    International Nuclear Information System (INIS)

    Endres, J.; Zilges, A.; Butler, P.; Herzberg, R.-D.; Scheck, M.; Harakeh, M. N.; Harissopulos, S.; Lagoyannis, A.; Kruecken, R.; Ring, P.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Sonnabend, K.; Popescu, L.; Savran, D.; Stoica, V. I.; Woertche, H. J.

    2011-01-01

    In recent years investigations have been made to study the electric Pygmy Dipole Resonance (PDR) systematically, mainly in semi-magic nuclei. For this purpose the well understood high resolution (γ,γ') photon scattering method is used. In complementary (α,α'γ) coincidence experiments at E α = 136 MeV a similar γ-energy resolution and a high selectivity to E1 transitions can be obtained at the Big-Bite Spectrometer (BBS) at KVI, Groningen. In comparison to the (γ,γ') method a structural splitting of the PDR is observed in the N = 82 nuclei 138 Ba and 140 Ce and in the Z = 50 nucleus 124 Sn. The low energy part is excited in (γ,γ') as well as in (α,α'γ) while the high energy part is observed in (γ,γ') only. The experimental results together with theoretical QPM and RQTBA calculations on 124 Sn which are able to reproduce the splitting of the PDR qualitatively are presented. The low-lying group of J π = 1 - states seem to represent the more isoscalar neutron-skin oscillation of the PDR while the energetically higher-lying states seemingly belong to the transitional region between the PDR and the isovector Giant Dipole Resonance (IVGDR).

  3. Introduction to magnetic resonance and its application to dipole magnet testing

    International Nuclear Information System (INIS)

    Clark, W.G.

    1992-01-01

    An introduction to the features of magnetic resonance that are essential for understanding its application to testing accelerator dipole magnets is presented, including the accuracy that can be expected in field measurements and the factors that limit it. The use of an array of coils to measure the multipole moments of dipole magnets is discussed

  4. High temperature giant dipole and isoscalar resonances

    International Nuclear Information System (INIS)

    Navarro, J.; Barranco, M.; Garcias, F.; Suraud, E.

    1990-01-01

    We present a systematic study of the Giant Dipole Resonance (GDR) at high temperatures (T > ∼ 4 MeV) in the framework of a semi-classical approximation that uses the m 1 and m 3 RPA sum rules to estimate the GDR mean energy. We focus on the evolution with T of the collective nature of the GDR and of the L = 0,2,3 and 4 isoscalar resonances. We find that the GDR remains particularly collective at high T, suggesting that it might be possible to observe it experimentally even at temperatures close to the maximum one a nucleus can sustain

  5. Resonant Dipole Nanoantenna Arrays for Enhanced Terahertz Spectroscopy

    KAUST Repository

    Toma, A.

    2015-08-04

    Our recent studies on dipole nanoantenna arrays resonating in the terahertz frequency range (0.1 – 10 THz) will be presented. The main near- and far-field properties of these nanostructures will be shown and their application in enhanced terahertz spectroscopy of tiny quantities of nanomaterials will be discussed.

  6. Investigation of the Pygmy Dipole Resonance in (alpha, alpha 'gamma) coincidence experiments

    NARCIS (Netherlands)

    Savran, D.; Babilon, M.; van den Berg, A. M.; Harakeh, M. N.; Hasper, J.; Wortche, H. J.; Zilges, A.

    2007-01-01

    We report on first results from experiments using the (alpha, alpha'gamma) reaction at E alpha = 136 MeV to investigate bound electric dipole (El) excitations building the so-called Pygmy Dipole Resonance (PDR) in the semi-magic nucleus Ce-140. The method of (alpha, alpha'gamma) allows the

  7. Simulation of a resonant-type ring magnet power supply with multiple resonant cells and energy storage chokes

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Blackmore, E.W.; Reiniger, K.W.

    1992-01-01

    For the TRIUMF KAON Factory Booster Ring, a resonant-type magnet power supply has been proposed for the dipole magnet excitation. The Booster Ring magnet power supply system based on resonant circuits, coupled with distributed energy make-up networks, is a complex system, sensitive to many system parameters. When multiple resonant cells, each with its own energy make-up network, are connected in a ring, it is very difficult to derive closed-form solutions to determine the operating conditions of the power supply system. A meaningful way to understand and analyze such a complex system is to use a simulation tool. This paper presents the analysis of operating conditions of the resonant-type ring magnet power supply with multiple resonant cells, using the circuit simulation tool, SPICE. The focus of the study is on the effect of circuit parameter variations in energy storage chokes

  8. Vacuum fluctuations and radiation reaction contributions to the resonance dipole-dipole interaction between two atoms near a reflecting boundary

    Science.gov (United States)

    Zhou, Wenting; Rizzuto, Lucia; Passante, Roberto

    2018-04-01

    We investigate the resonance dipole-dipole interaction energy between two identical atoms, one in the ground state and the other in the excited state, interacting with the electromagnetic field in the presence of a perfectly reflecting plane boundary. The atoms are prepared in a correlated (symmetric or antisymmetric) Bell-type state. Following a procedure due to Dalibard et al. [J. Dalibard et al., J. Phys. (Paris) 43, 1617 (1982);, 10.1051/jphys:0198200430110161700 J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], we separate the contributions of vacuum fluctuations and radiation reaction (source) field to the resonance interaction energy between the two atoms and show that only the source field contributes to the interatomic interaction, while vacuum field fluctuations do not. By considering specific geometric configurations of the two-atom system with respect to the mirror and specific choices of dipole orientations, we show that the presence of the mirror significantly affects the resonance interaction energy and that different features appear with respect to the case of atoms in free space, for example, a change in the spatial dependence of the interaction. Our findings also suggest that the presence of a boundary can be exploited to tailor and control the resonance interaction between two atoms, as well as the related energy transfer process. The possibility of observing these phenomena is also discussed.

  9. Influence of complex particle emission on properties of giant dipole resonance of hot nuclei

    International Nuclear Information System (INIS)

    Wen Wanxin; Jin Genming

    2003-01-01

    The possible reasons for the discrepancy between calculation results based on the statistical evaporation model and experimental data of giant dipole resonance of very hot nuclei are discussed. Both of simulations with the standard CASCADE code and the code coupling complex particle emission are carried out. It is shown that the complex particle emission affects the properties of giant dipole resonance of very hot nuclei

  10. Optical resonator for a standing wave dipole trap for fermionic lithium atoms

    International Nuclear Information System (INIS)

    Elsaesser, T.

    2000-01-01

    This thesis reports on the the construction of an optical resonator for a new resonator dipole trap to store the fermionic 6 Li-isotope and to investigate its scattering properties. It was demonstrated that the resonator enhances the energy density of a (1064 nm and 40 mW) laser beam by a factor of more than 100. A fused silica vacuum cell is positioned inside the resonator under Brewster's angle. The losses of the resonator depend mainly on the optical quality of the cell. The expected trap depth of the dipole trap is 200 μK and the photon scattering rate is expected to be about 0.4 s -1 . The resonator is stabilized by means of a polarization spectroscopy method. Due to high trap frequencies, which are produced by the tight enclosure of the standing wave in the resonator, the axial motion must be quantized. A simple model to describe this quantization has been developed. A magneto-optical trap, which serves as a source of cold lithium atoms, was put in operation. (orig.)

  11. Collective Hamiltonians for dipole giant resonances

    International Nuclear Information System (INIS)

    Weiss, L.I.

    1991-07-01

    The collective hamiltonian for the Giant Dipole resonance (GDR), in the Goldhaber-Teller-Model, is analytically constructed using the semiclassical and generator coordinates method. Initially a conveniently parametrized set of many body wave functions and a microscopic hamiltonian, the Skyrme hamiltonian - are used. These collective Hamiltonians are applied to the investigation of the GDR, in He 4 , O 16 and Ca 40 nuclei. Also the energies and spectra of the GDR are obtained in these nuclei. The two sets of results are compared, and the zero point energy effects analysed. (author)

  12. QPM Analysis of 205Tl Nuclear Excitations below the Giant Dipole Resonance

    Directory of Open Access Journals (Sweden)

    Benouaret N.

    2015-01-01

    Full Text Available We analysed our experimental recent findings of the dipole response of the odd-mass stable nucleus 205Tl within the quasi-particle phonon model. Using the phonon basis constructed for the neighbouring 204Hg and wave function configurations for 205Tl consisting of a mixture of quasiparticle ⊗ N-phonon configurations (N=0,1,2, only one group of fragmented dipole excited states has been reproduced at 5.5 MeV in comparison to the experimental distribution which shows a second group at about 5 MeV. The computed dipole transition strengths are mainly of E1 character which could be associated to the pygmy dipole resonance.

  13. QPM Analysis of 205Tl Nuclear Excitations below the Giant Dipole Resonance

    Science.gov (United States)

    Benouaret, N.; Beller, J.; Isaak, J.; Kelley, J. H.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.

    2015-05-01

    We analysed our experimental recent findings of the dipole response of the odd-mass stable nucleus 205Tl within the quasi-particle phonon model. Using the phonon basis constructed for the neighbouring 204Hg and wave function configurations for 205Tl consisting of a mixture of quasiparticle ⊗ N-phonon configurations (N=0,1,2), only one group of fragmented dipole excited states has been reproduced at 5.5 MeV in comparison to the experimental distribution which shows a second group at about 5 MeV. The computed dipole transition strengths are mainly of E1 character which could be associated to the pygmy dipole resonance.

  14. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials.

    Science.gov (United States)

    Chen, Min; Singh, Leena; Xu, Ningning; Singh, Ranjan; Zhang, Weili; Xie, Lijuan

    2017-06-26

    Terahertz sensing of highly absorptive aqueous solutions remains challenging due to strong absorption of water in the terahertz regime. Here, we experimentally demonstrate a cost-effective metamaterial-based sensor integrated with terahertz time-domain spectroscopy for highly absorptive water-methanol mixture sensing. This metamaterial has simple asymmetric wire structures that support multiple resonances including a fundamental Fano resonance and higher order dipolar resonance in the terahertz regime. Both the resonance modes have strong intensity in the transmission spectra which we exploit for detection of the highly absorptive water-methanol mixtures. The experimentally characterized sensitivities of the Fano and dipole resonances for the water-methanol mixtures are found to be 160 and 305 GHz/RIU, respectively. This method provides a robust route for metamaterial-assisted terahertz sensing of highly absorptive chemical and biochemical materials with multiple resonances and high accuracy.

  15. Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region

    Science.gov (United States)

    Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.

    2014-11-01

    The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.

  16. Survey of the (3He,t) reaction: Excitation of the isobaric analog of the giant dipole resonance

    International Nuclear Information System (INIS)

    Tabor, S.L.; Chang, C.C.; Collins, M.T.; Wagner, G.J.; Wu, J.R.; Halderson, D.W.; Petrovich, F.

    1982-01-01

    The ( 3 He,t) reaction at 130 and 170 MeV has been investigated on targets of 12 C, 16 O, 27 Al, 28 Si, 40 Ca, 46 Ti, and 90 Zr. Data for the ( 3 He, 3 He') reaction were measured simultaneously for reference purposes. Structure is observed in the spectra from the ( 3 He, 3 He') and ( 3 He,t) reaction at the expected positions of the giant quadrupole resonance and the isobaric analog of the giant dipole resonance, respectively. An angular distribution was measured for the suspected giant dipole resonance structure in the 40 Ca( 3 He,t) 40 Sc reaction at 130 MeV. The data are reasonably described by a collective model calculation based on the Goldhaber-Teller model for the giant dipole resonance. Several other strong peaks at excitation energies below the giant dipole resonance are observed in the ( 3 He,t) spectra. Most notable of these are the ones at the expected positions for analogs of well known 1 + states and 1hω stretched states in the targets

  17. Temperature dependence of giant dipole resonance width

    International Nuclear Information System (INIS)

    Vdovin, A.I.; Storozhenko, A.N.

    2005-01-01

    The quasiparticle-phonon nuclear model extended to finite temperature within the framework of the thermo field dynamics is applied to calculate a temperature dependence of the spreading width Γ d own of a giant dipole resonance. Numerical calculations are made for 12S n and 208 Pb nuclei. It is found that the width Γ d own increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones existing in the literature

  18. Dipole resonances in light neutron-rich nuclei studied with time-dependent calculations of antisymmetrized molecular dynamics

    International Nuclear Information System (INIS)

    Kanada-En'yo, Y.; Kimura, M.

    2005-01-01

    To study isovector dipole responses of neutron-rich nuclei, we applied a time-dependent method of antisymmetrized molecular dynamics. The dipole resonances in Be, B, and C isotopes were investigated. In 10 Be, 15 B, and 16 C, collective modes of the vibration between a core and valence neutrons cause soft resonances at the excitation energy E x =10-15 MeV below the giant dipole resonance (GDR). In 16 C, we found that a remarkable peak at E x =14 MeV corresponds to the coherent motion of four valence neutrons against a 12 C core, whereas the GDR arises in the E x >20 MeV region because of vibration within the core. In 17 B and 18 C, the dipole strengths in the low-energy region decline compared with those in 15 B and 16 C. We also discuss the energy-weighted sum rule for the E1 transitions

  19. Main channels of the decay of the giant dipole resonance in the 20,22Ne nuclei and isospin splitting of the giant dipole resonance in the 22Ne nucleus

    International Nuclear Information System (INIS)

    Varlamov, V.V.; Stepanov, M.E.

    2002-01-01

    Data published in the literature on various photonuclear reactions for the 20,22 Ne isotopes and for their natural mixture are analyzed with the aim of exploring special features of the decay of giant-dipole-resonance states in these two isotopes. With the aid of data on the abundances of the isotopes and on the energy reaction thresholds, the cross sections for the reactions 20,22 Ne[(γ, n) + (γ, np)] and 20,22 Ne[(γ, p) + (γ, np)] are broken down into the contributions from the one-nucleon reactions (γ, n) and (γ, p) and the contributions from the reactions (γ, np). The cross sections evaporation model used here to treat the deexcitation of residual nucle(γ, p) 19,21 F in the energy range E γ = 16.0-28.0 MeV and the cross sections for the reactions 20,22 Ne(γ, np) 18,20 F in the energy range E γ = 23.3-28.0 MeV are estimated. The behavior of the cross-section ratio r = σ(γ, p)/σ(γ, n) for the 22 Ne nucleus as a function of energy is analyzed, and the isospin components of the giant dipole resonance in the 22 Ne nucleus are identified. The contributions of the isospin components of the giant dipole resonance in the 22 Ne nucleus to the cross sections for various photonuclear reactions are determined on the basis of an analysis of the diagram of the excitation and decay of pure isospin states in the 22 Ne nucleus and in nuclei neighboring it, which are members of the corresponding isospin multiplets. The isospin splitting of the giant dipole resonance and the ratio of the intensities of the isospin components are determined to be ΔE = 4.57 ± 0.69 MeV and R = 0.24 ± 0.04, respectively

  20. Isospin Character of the Pygmy Dipole Resonance in Sn-124

    NARCIS (Netherlands)

    Endres, J.; Litvinova, E.; Savran, D.; Butler, P. A.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R. -D.; Kruecken, R.; Lagoyannis, A.; Pietralla, N.; Ponomarev, V. Yu; Popescu, L.; Ring, P.; Scheck, M.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.

    2010-01-01

    The pygmy dipole resonance has been studied in the proton-magic nucleus Sn-124 with the (alpha, alpha'gamma) coincidence method at E-alpha = 136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structure: one group of states

  1. The natural line shape of the giant dipole resonance

    International Nuclear Information System (INIS)

    Gordon, E.F.; Pitthan, R.

    1977-01-01

    Investigation of photoabsorption experiments in the spherical nucleus 141 Pr, the quasispherical dynamically deformed 197 Au, and the statically deformed 165 Ho showed that the function which describes best the energy dependence of the reduced transition probability is given by the Breit-Wigner form rather than the Lorentz form. However, the form of the resulting measured cross section is approximately of the Lorentz type. The dependence of the giant resonance width GAMMA on the excitation energy was also investigated, and found to be less than 1% per MeV if one considered the known isovector E2 resonance above the giant dipole resonance. Best fit values of the reduced transition probabilities for the three nuclei are given and compared to (e,e') results. (Auth.)

  2. Magnetosonic resonance in a dipole-like magnetosphere

    Directory of Open Access Journals (Sweden)

    A. S. Leonovich

    2006-09-01

    Full Text Available A theory of resonant conversion of fast magnetosonic (FMS waves into slow magnetosonic (SMS oscillations in a magnetosphere with dipole-like magnetic field has been constructed. Monochromatic FMS waves are shown to drive standing (along magnetic field lines SMS oscillations, narrowly localized across magnetic shells. The longitudinal and transverse structures, as well as spectrum of resonant SMS waves are determined. Frequencies of fundamental harmonics of standing SMS waves lie in the range of 0.1–1 mHz, and are about two orders of magnitude lower than frequencies of similar Alfvén field line resonance harmonics. This difference makes an effective interaction between these MHD modes impossible. The amplitude of SMS oscillations rapidly decreases along the field lines from the magnetospheric equator towards the ionosphere. In this context, magnetospheric SMS oscillations cannot be observed on the ground, and the ionosphere does not play any role either in their generation or dissipation. The theory developed can be used to interpret the occurrence of compressional Pc5 waves in a quiet magnetosphere with a weak ring current.

  3. Magnetic dipole strength in {sup 128}Xe and {sup 134}Xe in the spin-flip resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Massarczyk, R. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rusev, G. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Schwengner, R.; Doenau, F. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Bathia, C. [McMaster University, Hamilton, Ontario L8S4L8 (Canada); Gooden, M.E.; Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Tonchev, A.P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Duke University, Durham, NC 27708 (United States)

    2015-07-01

    The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in {sup 128}Xe and {sup 134}Xe using quasimonoenergetic and linearly polarized γ-ray beams at the High-Intensity γ-Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with model predictions.

  4. Sub-wavelength metamaterial cylinders with multiple dipole resonances

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2009-01-01

    It has been shown that the sub-wavelength resonances of the individual MTM cylinders also occur for electrically small configurations combining 2 or 4 cylinders. For the 2-and 4-cylinder configurations the overall size is 1/20 and 1/12.5 of the smallest wavelength, respectively. These MTM...... configuration thus offer the possibility for multi-resonant electrically small configurations....

  5. Data systematics and semidirect decay probability of the giant dipole resonance

    International Nuclear Information System (INIS)

    Ishkhanov, B.S.; Kapitonov, I.M.; Tutyn', I.A.

    1998-01-01

    Information on probability of semidirect decay of giant dipole resonance of nuclei of sd- and fp-shells (A = 16-58) is elaborated on the base of the recent (γ, χγ ' ) experimental results. The shell effect in A-dependence of this probability is discovered

  6. Nuclear Resonance Fluorescence off 54Cr: The Onset of the Pygmy Dipole Resonance

    Science.gov (United States)

    Ries, P. C.; Beck, T.; Beller, J.; Krishichayan; Gayer, U.; Isaak, J.; Löher, B.; Mertes, L.; Pai, H.; Pietralla, N.; Romig, C.; Savran, D.; Schilling, M.; Tornow, W.; Werner, V.; Zweidinger, M.

    2016-06-01

    Low-lying electric and magnetic dipole excitations (E1 and M1) below the neutron separation threshold, particularly the Pygmy Dipole Resonance (PDR), have drawn considerable attention in the last years. So far, mostly moderately heavy nuclei in the mass regions around A = 90 and A = 140 were examined with respect to the PDR. In the present work, the systematics of the PDR have been extended by measuring excitation strengths and parity quantum numbers of J = 1 states in lighter nuclei near A = 50 in order to gather information on the onset of the PDR. The nuclei 50,52,54Cr and 48,50Ti were examined via bremsstrahlung produced at the DArmstadt Superconducting electron Linear Accelerator (S-DALINAC) with photon energies up to 9.7 MeV with the method of nuclear resonance fluorescence. Numerous excited states were observed, many of which for the first time. The parity quantum numbers of these states have been determined at the High Intensity Gamma-ray Source (HIγS) of the Triangle Universities Nuclear Laboratory in Durham, NC, USA. Informations to the methods and the experimental setups will be provided and the results on 54Cr achieved will be discussed with respect to the onset of the PDR.

  7. General classical and quantum-mechanical description of magnetic resonance: an application to electric-dipole-moment experiments

    Energy Technology Data Exchange (ETDEWEB)

    Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)

    2017-05-15

    A general theoretical description of a magnetic resonance is presented. This description is necessary for a detailed analysis of spin dynamics in electric-dipole-moment experiments in storage rings. General formulas describing a behavior of all components of the polarization vector at the magnetic resonance are obtained for an arbitrary initial polarization. These formulas are exact on condition that the nonresonance rotating field is neglected. The spin dynamics is also calculated at frequencies far from resonance with allowance for both rotating fields. A general quantum-mechanical analysis of the spin evolution at the magnetic resonance is fulfilled and the full agreement between the classical and quantum-mechanical approaches is shown. Quasimagnetic resonances for particles and nuclei moving in noncontinuous perturbing fields of accelerators and storage rings are considered. Distinguishing features of quasimagnetic resonances in storage ring electric-dipole-moment experiments are investigated in detail. The exact formulas for the effect caused by the electric dipole moment are derived. The difference between the resonance effects conditioned by the rf electric-field flipper and the rf Wien filter is found and is calculated for the first time. The existence of this difference is crucial for the establishment of a consent between analytical derivations and computer simulations and for checking spin tracking programs. The main systematical errors are considered. (orig.)

  8. Can we learn about the spin-flip giant dipole resonances with pions

    International Nuclear Information System (INIS)

    Baer, H.W.

    1982-01-01

    Data and calculations for the 40 Ca(π+-,π 0 ) reactions at 164 MeV are shown which indicate that pion scattering possesses a unique signature for separately identifying the 1 - and 2 - spin-isospin components of the giant dipole resonance

  9. Vibrational Fano resonances in the photodetachment of dipole-bound anions

    International Nuclear Information System (INIS)

    Edwards, Stephen T; Tully, John C; Johnson, Mark A

    2012-01-01

    A simple model for the photodetachment of dipole-bound anions is proposed where non-adiabatic coupling of vibrational states leads to a Fano resonance in the spectrum. It is found that the shape of the photodetachment spectrum depends significantly on the parameter representing molecular polarizability. The model is also applied to a Fano profile observed in the photodetachment of small water cluster anions.

  10. Giant dipole resonances in hot nuclear matter in the model of self-relaxing mean field

    International Nuclear Information System (INIS)

    Okolowicz, J.; Ploszajczak, M.; Drozdz, S.; Caurier, E.

    1989-01-01

    The extended time-dependent Hartree-Fock approach is applied for the description of the isovector giant dipole resonance in 40 Ca at finite temperatures. The thermalization process is described using the relaxation-time ansatz for the collision integral. Strong inhibition of the giant-dipole-resonance γ-decay is found due to the fast vaporization of the nuclear surface for thermal excitation energies above E * /A ≅ 4.5 MeV. This pre-equilibrium emission of particles in the vapor phase is associated with the radial expansion of nucleus and with the vanishing particle binding energies mainly for protons. (orig.)

  11. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish

    Science.gov (United States)

    Jun, James Jaeyoon; Longtin, André; Maler, Leonard

    2013-01-01

    In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal’s positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source

  12. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish.

    Directory of Open Access Journals (Sweden)

    James Jaeyoon Jun

    Full Text Available In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal's positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole

  13. Photoexcitation by gamma-ray scattering near threshold and giant dipole resonance

    International Nuclear Information System (INIS)

    Lakosi, L.; Safar, J.; Veres, A.; Sekine, T.; Kaji, H.; Yoshihara, K.

    1993-01-01

    Photoexcitation of 4.5 h half-life 115m In and 56 min half-life 103m Rh isomers by inelastic gamma-ray scattering near threshold and in the giant dipole resonance region has been reviewed. In disagreement with earlier experimental results available in the literature, but in good agreement with our experiments published recently, present calculations indicate that above the photoneutron emission threshold the isomer excitation drops abruptly and remains orders of magnitude smaller than at the threshold, even around resonance maximum. (author)

  14. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance.

    Science.gov (United States)

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-12

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.

  15. Temperature dependence of spreading width of giant dipole resonance

    International Nuclear Information System (INIS)

    Storozhenko, A.N.; Vdovin, A.I.; Ventura, A.; Blokhin, A.I.

    2002-01-01

    The Quasiparticle-Phonon Nuclear Model extended to finite temperature within the framework of Thermo Field Dynamics is applied to calculate a temperature dependence of the spreading width Γ ↓ of a giant dipole resonance. Numerical calculations are made for 120 Sn and 208 Pb nuclei. It is found that Γ ↓ increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones, existing in the literature

  16. The width of the giant dipole resonance at finite temperature

    International Nuclear Information System (INIS)

    Mau, N.V.

    1992-01-01

    A method is proposed to evaluate the effect of the change of the Fermi sea on the width of the giant dipole resonance at finite temperature. In a schematic model it is found that, indeed, in 208 Pb the width increases very sharply up to about T=4 MeV but shows a much weaker variation for higher temperature. (author) 26 refs., 7 figs., 2 tabs

  17. Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, E.; Massarczyk, R. [Technische Universitaet Dresden, Institute of Nuclear and Particle Physics, Dresden (Germany); Junghans, A.R. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany)

    2017-11-15

    A recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated in energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected. (orig.)

  18. Giant dipole resonance in hot rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.R. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Dinh Dang, N. [RIKEN, Nishina Centre for Accelerator-based Science, Saitama (Japan); VINATOM, Institute of Nuclear Science and Technique, Hanoi (Viet Nam); Datar, V.M. [Tata Institute of Fundamental Research, INO Cell, Mumbai (India)

    2016-05-15

    Over the last several decades, extensive experimental and theoretical work has been done on the giant dipole resonance (GDR) in excited nuclei covering a wide range of temperature (T), angular momentum (J) and nuclear mass. A reasonable stability of the GDR centroid energy and an increase of the GDR width with T (in the range∝1-3 MeV) and J are the two well-established results. Some experiments have indicated the saturation of the GDR width at high T. The gradual disappearance of the GDR vibration at much higher T has been observed. Experiments on the Jacobi transition and the GDR built on superdeformed shapes at high rotational frequencies have been reported in a few cases. Theoretical calculations on the damping of the collective dipole vibration, characterised by the GDR width, have been carried out within various models such as the thermal shape fluctuation model and the phonon damping model. These models offer different interpretations of the variation of the GDR width with T and J and have met with varying degrees of success in explaining the experimental data. In this review, the present experimental and theoretical status in this field is discussed along with the future outlook. The interesting phenomenon of the pre-equilibrium GDR excitation in nuclear reactions is briefly addressed. (orig.)

  19. Electromagnetic excitation of the two-phonon giant dipole resonance

    International Nuclear Information System (INIS)

    Emling, H.

    1994-03-01

    It is the aim of this article to summarize our present knowledge on the double isovector giant dipole resonance (DGDR) and our understanding of the electromagnetic excitation mechanism in heavy ion collisions in the relativistic energy regime. In the following chapter, a brief resume on the history of giant resonances is given and, based on their understanding, conclusions on the expected properties of multi-phonon resonances are drawn. In chapter 2, the essential features of electromagnetic heavy ion interactions at (near) relativistic velocities will be illuminated and the theoretical framework is presented, which describes such processes. New experimental methods were required for an appropriate study of Coulomb dissociation processes, which are discussed in chapter 3 together with the experimental results. Chapter 4 is dedicated to summarize the results from electromagnetic excitation studies, to compare with those from alternative methods and, in particular, to contrast experimental findings with theoretical predictions and to address open problems. (orig.)

  20. Thermal and rotational effect on giant dipole resonances in rotating nuclei at high temperature

    International Nuclear Information System (INIS)

    Sugawara-Tanabe, Kazuko; Tanabe, Kosai.

    1986-01-01

    Microscopic calculations are carried out for the giant dipole resonances excited on the thermal high spin states in 162 Er and 166 Er based on the thermal linear response theory with realistic forces and large single-particle space. The dynamical strength function is compared with the experimental γ-ray absorption cross section. The general trend that the resonance energy decreases and the resonance width increases with increasing angular momentum and temperature is well reproduced by the calculations. (author)

  1. The temperature dependence of the width of the giant-dipole resonance

    International Nuclear Information System (INIS)

    Ormand, W.E.; Bortignon, P.F.; Broglia, R.A.

    1996-01-01

    The giant-dipole resonance (GDR) in 120 Sn and 208 Pb is studied as a function of excitation energy, angular momentum, and intrinsic width within the context of the adiabatic model. Theoretical evaluations of the full-width-at-half-maximum (FWHM) for the GDR strength function are compared with recent experimental data and are found to be in good agreement. (orig.)

  2. Multiple photon resonances

    International Nuclear Information System (INIS)

    Elliott, C.J.; Feldman, B.J.

    1979-02-01

    A detailed theoretical analysis is presented of the interaction of intense near-resonant monochromatic radiation with an N-level anharmonic oscillator. In particular, the phenomenon of multiple photon resonance, the process by which an N-level system resonantly absorbs two or more photons simultaneously, is investigated. Starting from the Schroedinger equation, diagrammatic techniques are developed that allow the resonant process to be analyzed quantitatively, in analogy with well-known two-level coherent phenomena. In addition, multiple photon Stark shifts of the resonances, shifts absent in two-level theory, are obtained from the diagrams. Insights into the nature of multiple photon resonances are gained by comparing the quantum mechanical system with classical coupled pendulums whose equations of motion possess identical eigenvalues and eigenvectors. In certain limiting cases, including that of the resonantly excited N-level harmonic oscillator and that of the equally spaced N-level system with equal matrix elements, analytic results are derived. The influence of population relaxation and phase-disrupting collisions on the multiple photon process are also analyzed, the latter by extension of the diagrammatic technique to the density matrix equations of motion. 11 figures

  3. Precision polarization measurements of atoms in a far-off-resonance optical dipole trap

    International Nuclear Information System (INIS)

    Fang, F.; Vieira, D. J.; Zhao, X.

    2011-01-01

    Precision measurement of atomic and nuclear polarization is an essential step for beta-asymmetry measurement of radioactive atoms. In this paper, we report the polarization measurement of Rb atoms in an yttrium-aluminum-garnet (YAG) far-off-resonance optical dipole trap. We have prepared a cold cloud of polarized Rb atoms in the YAG dipole trap by optical pumping and achieved an initial nuclear polarization of up to 97.2(5)%. The initial atom distribution in different Zeeman levels is measured by using a combination of microwave excitation, laser pushing, and atomic retrap techniques. The nuclear-spin polarization is further purified to 99.2(2)% in 10 s and maintained above 99% because the two-body collision loss rate between atoms in mixed spin states is greater than the one-body trap loss rate. Systematic effects on the nuclear polarization, including the off-resonance Raman scattering, magnetic field gradient, and background gas collisions, are discussed.

  4. Investigation of High-Efficiency Wireless Power Transfer Criteria of Resonantly-Coupled Loops and Dipoles through Analysis of the Figure of Merit

    Directory of Open Access Journals (Sweden)

    Charles Moorey

    2015-10-01

    Full Text Available The efficiency of a Wireless Power Transfer (WPT system is greatly dependent on both the geometry and operating frequency of the transmitting and receiving structures. By using Coupled Mode Theory (CMT, the figure of merit is calculated for resonantly-coupled loop and dipole systems. An in-depth analysis of the figure of merit is performed with respect to the key geometric parameters of the loops and dipoles, along with the resonant frequency, in order to identify the key relationships leading to high-efficiency WPT. For systems consisting of two identical single-turn loops, it is shown that the choice of both the loop radius and resonant frequency are essential in achieving high-efficiency WPT. For the dipole geometries studied, it is shown that the choice of length is largely irrelevant and that as a result of their capacitive nature, low-MHz frequency dipoles are able to produce significantly higher figures of merit than those of the loops considered. The results of the figure of merit analysis are used to propose and subsequently compare two mid-range loop and dipole WPT systems of equal size and operating frequency, where it is shown that the dipole system is able to achieve higher efficiencies than the loop system of the distance range examined.

  5. Multiple transparency windows and Fano interferences induced by dipole-dipole couplings

    Science.gov (United States)

    Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.

    2018-04-01

    We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.

  6. Decay properties of the Pygmy dipole resonance

    Energy Technology Data Exchange (ETDEWEB)

    Isaak, J.; Savran, D.; Silva, J. [EMMI, Darmstadt (Germany); FIAS, Frankfurt (Germany); Aumann, T.; Loeher, B. [IKP, TU Darmstadt (Germany); GSI, Darmstadt (Germany); Beck, T.; Gayer, U.; Pietralla, N.; Romig, C.; Scheit, H.; Werner, V.; Zweidinger, M. [IKP, TU Darmstadt (Germany); Cooper, N. [WNSL, Yale University, New Haven (United States); Derya, V.; Zilges, A. [IKP, Universitaet zu Koeln (Germany); Kelley, J. [Department of Physics, Duke University, TUNL (United States); Department of Physics, NCSU (United States); Scheck, M. [School of Engineering, UWS, Paisley (United Kingdom); SUPA, Glasgow (United Kingdom); Tornow, W.; Weller, H. [Department of Physics, Duke University, TUNL (United States)

    2015-07-01

    The so-called Pygmy Dipole Resonance (PDR) has been investigated in stable and in a few unstable nuclei in the past decades. So far, decay properties have been determined only in an indirect or model-dependent way. An excellent tool to extend the study of the decay pattern of the PDR is provided by the γ{sup 3}-setup at the High Intensity γ-ray Source (HIγS). The combination of the γ-γ-coincidence method and the quasi-monochromatic photon beam at HIγS allows to observe primary transitions directly with high sensitivity and to obtain information on the decay behavior of individual states as well as extracting averaged quantities in a model-independent way. Recent experimental results for nuclei in the Z=50 and N=82 mass region are presented.

  7. The giant-dipole-resonance effect in coulomb excitation of 10B

    International Nuclear Information System (INIS)

    Vermeer, W.J.; Zabel, T.H.; Esat, M.T.; Kuehner, J.A.; Spear, R.H.; Baxter, A.M.

    1982-04-01

    Coulomb excitation of the 0.718-MeV, Jsup(π) = 1 + , first excited state of 10 B has been studied using projectile excitation by 208 Pb and observing the backward scattered particles. The results give a clear indication of the virtual excitation of the giant dipole resonance as a second-order effect. The observed magnitude is consistent with the usual hydrodynamic model estimate and with a recent shell-model calculation

  8. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  9. b-dipole transitions in trans-HOCO observed by far infrared laser magnetic resonance

    International Nuclear Information System (INIS)

    Sears, T.J.; Radford, H.E.; Moore, M.A.

    1993-01-01

    Far infrared laser magnetic resonance spectroscopy is used to measure components of 12 rotational transitions in the ground state of the HOCO radical. The transitions are all b-dipole in character in contrast to the a-dipole rotational spectrum previously reported [Radford, Wei, and Sears, J. Chem. Phys. 97, 3989 (1992)]. The new data determine the A rotational constant to high precision and allow the determination of several centrifugal distortion constants for the first time. The hyperfine coupling in the radical leads to observable splittings in several of the observed transitions and these are used to estimate two of the four expected nonzero hyperfine parameters in the radical

  10. Time-dependent shape fluctuations and the giant dipole resonance in hot nuclei: Realistic calculations

    International Nuclear Information System (INIS)

    Alhassid, Y.; Bush, B.; Yale Univ., New Haven, CT

    1990-01-01

    The effects of time-dependent shape fluctuations on the giant dipole resonance (GDR) in hot rotating nuclei are investigated. Using the framework of the Landau theory of shape transitions we develop a realistic macroscopic stochastic model to describe the quadrupole time-dependent shape fluctuations and their coupling to the dipole degrees of freedom. In the adiabatic limit the theory reduces to a previous adiabatic theory of static fluctuations in which the GDR cross section is calculated by averaging over the equilibrium distribution with the unitary invariant metric. Nonadiabatic effects are investigated in this model and found to cause structural changes in the resonance cross section and motional narrowing. Comparisons with experimental data are made and deviations from the adiabatic calculations can be explained. In these cases it is possible to determine from the data the damping of the quadrupole motion at finite temperature. (orig.)

  11. Dipole and quadrupole magnetic resonances in nuclei of Ni isotopes

    International Nuclear Information System (INIS)

    Goncharova, N.G.; Mishchenko, G.M.; Ehramzhyan, R.A.

    1982-01-01

    Basing on a microscopic approach to the nuclear shell model, magnetic resonances following the electron excitation of the 58 Ni and 60 Ni nuclei are considered. 0h/2π#betta# and 2h/2π#betta#-transitions are taken into accoun for the M1-excitations. For the M2-states, transitions to the next shell are considered only. For the magnetic excitations the form factors and electron-excitation cross sections are calculated, and the effect of the lower 2 1+ , 2 2+ , 3 - , 4 + phonon excitations on the position and structure of the M1- and M2-resonances is traced. +he energies and mean equilibrium deformations are presented for the phonons taken into account. The structure and position of the main magnetic resonance maxima, in difference with the giant dipole resonance in photoabsorption, have proven to be weakly dependent on the isotope choice. For the M1-resonance this effect is related with the fact that the lower excitation states, located in the energy range E 60 Ni and 58 Ni, respectively. A strongly collectivized state, acquiring a notable strength of the M-1 transitions, is located at approximately 32 MeV. The form factor for this level attains the maximum at q=160-190 MeV/c

  12. Neutron-skin thickness from the study of the anti-analog giant dipole resonance

    NARCIS (Netherlands)

    Krasznahorkay, A.; Stuhl, L.; Csatlós, M.; Algora, A.; Gulyás, J.; Timár, J.; Paar, N.; Vretenar, D.; Boretzky, K.; Heil, M.; Litvinov, Yu A.; Rossi, D.; Scheidenberger, C.; Simon, H.; Weick, H.; Bracco, A.; Brambilla, S.; Blasi, N.; Camera, F.; Giaz, A.; Million, B.; Pellegri, L.; Riboldi, S.; Wieland, O.; Altstadt, S.; Fonseca, M.; Glorius, J.; Göbel, K.; Heftrich, T.; Koloczek, A.; Kräckmann, S.; Langer, C.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Schmidt, S.; Sonnabend, K.; Weigand, M.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Rigollet, C.; Bagchi, S.; Najafi, M. A.; Aumann, T.; Atar, L.; Heine, M.; Holl, M.; Movsesyan, A.; Schrock, P.; Volkov, V.; Wamers, F.; Fiori, E.; Löher, B.; Marganiec, J.; Savran, D.; Johansson, H. T.; Fernández, P. Diaz; Garg, U.; Balabanski, D. L.

    2012-01-01

    The gamma-decay of the anti-analog of the giant dipole resonance (AGDR) has been measured to the isobaric analog state excited in the p(124Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent random-phase

  13. CO2-laser-microwave double-resonance spectroscopy of D2CO: precise measurement of the dipole moment in the ground state

    International Nuclear Information System (INIS)

    Tanaka, K.; Nakahara, Y.; Yamaguchi, M.; Tanaka, T.

    1987-01-01

    The method of CO 2 -laser-microwave double resonance (LMDR) with an intense electric field was used to measure Stark shifts of ground-state microwave transitions of D 2 CO. Thirty LMDR signals originating from 15 K-doublet transitions were observed, associated with the infrared transitions of the ν 4 and ν 6 bands. Least-squares analysis of the observed LMDR signals yields precise values of the coefficients in the dipole-moment expansion, μ 0 +μ/sub J/ J(J+1)+μ/sub K/ K 2 : μ 0 , 2.347 134(8) D; μ/sub j/, -4.76(10) x 10 -6 D; μ/sub K/, -28.7(18) x 10 -6 D; where one-standard-deviation uncertainties are given in parentheses. The infrared--infrared double-resonance signals of PH 3 , which were calibrated against the OCS dipole moment, were used for the electric-field calibration, allowing us to determine the dipole moment with a precision of 10 parts in 10 6 (ppm). However, the absolute accuracy of the dipole moment obtained is 50 ppm, as limited by the uncertainty of the OCS dipole moment. The effective dipole moment for the 1/sub 1.0/ reverse arrow 1/sub 1.1/ transition measured in the present study agrees well with the effective dipole moment for the 1/sub 1.0/ rotational level from a molecular-beam electric resonance experiment. The μ/sub J/ and μ/sub K/ coefficients calculated from Watson's θ/sub γ//sup α//sup β/ constants agree well with the experimental values

  14. Investigation of the Pygmy Dipole Resonance in {sup 60}Ni

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, Matthias; Pietralla, Norbert; Romig, Christopher; Savran, Deniz; Sonnabend, Kerstin [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Rusev, Gencho; Tonchev, Anton P.; Tornow, Werner; Weller, Henry R. [Triangle Universities Nuclear Laboratory, Duke University, Durham, NC (United States); Zilges, Andreas [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2009-07-01

    At the High Intensity Photon Setup (HIPS) at S-DALINAC in Darmstadt {sup 60}Ni was investigated with unpolarized bremsstrahlung with energies up to 8.0 MeV and 9.9 MeV, respectively. Determination of spin and parity quantum numbers and absolute transition strengths was possible, using HPGe detectors placed under different angles. To assign also parity quantum numbers, the polarized photon beam of the High Intensity Gamma Source (HI{gamma}S) at Duke University was used. With the combined results, evidence of the Pygmy Dipole Resonance in {sup 60}Ni was found.

  15. Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2005-01-01

    Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....

  16. Search for magnetic dipole strength and giant spin-flip resonances in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Horen, D. J. [Oak Ridge National Lab., TN (USA); Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    A description is given of the use of high resolution (n, n) scattering and the (p, n) reaction as tools to investigate highly excited states with emphasis on information pertaining to magnetic dipole strength and giant spin-flip resonances in heavy nuclei. It is shown how the ability to uniquely determine the spins and parities of resonances observed in neutron scattering has been instrumental to an understanding of the distribution of M1 strength in sup(207,208)Pb. Some recent results of (p, n) studies with intermediate energy protons are discussed. Energy systematics of the giant Gamow-Teller (GT) resonance as well as a new ..delta..l = 1, ..delta..S = 1 resonance with J sup(..pi..) = (1,2)/sup -/ are presented. It is shown how the (p, n) reaction might be useful to locate M1 strength in heavy nuclei.

  17. Decay pattern of the Pygmy Dipole Resonance in 130Te

    Science.gov (United States)

    Isaak, J.; Beller, J.; Fiori, E.; Krtička, M.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Savran, D.; Scheck, M.; Silva, J.; Sonnabend, K.; Tonchev, A.; Tornow, W.; Weller, H.; Zweidinger, M.

    2014-03-01

    The electric dipole strength distribution in 130Te has been investigated using the method of Nuclear Resonance Fluorescence. The experiments were performed at the Darmstadt High Intensity Photon Setup using bremsstrahlung as photon source and at the High Intensity overrightarrow γ -Ray Source, where quasi-monochromatic and polarized photon beams are provided. Average decay properties of 130Te below the neutron separation energy are determined. Comparing the experimental data to the predictions of the statistical model indicate, that nuclear structure effects play an important role even at sufficiently high excitation energies. Preliminary results will be presented.

  18. Decay pattern of the Pygmy Dipole Resonance in 130Te

    Directory of Open Access Journals (Sweden)

    Isaak J.

    2014-03-01

    Full Text Available The electric dipole strength distribution in 130Te has been investigated using the method of Nuclear Resonance Fluorescence. The experiments were performed at the Darmstadt High Intensity Photon Setup using bremsstrahlung as photon source and at the High Intensity γ→$\\overrightarrow \\gamma $-Ray Source, where quasi-monochromatic and polarized photon beams are provided. Average decay properties of 130Te below the neutron separation energy are determined. Comparing the experimental data to the predictions of the statistical model indicate, that nuclear structure effects play an important role even at sufficiently high excitation energies. Preliminary results will be presented.

  19. Inhibition of two-photon absorption due to dipole-dipole interaction in nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)], E-mail: msingh@uwo.ca

    2008-07-21

    We have investigated the inhibition of two-photon absorption in photonic crystals doped with an ensemble of four-level nanoparticles. The particles are interacting with one another by the dipole-dipole interaction. Dipoles in nanoparticles are induced by a selected transition. Numerical simulations have been performed for an isotropic photonic crystal. Interesting phenomena have been predicted such as the inhibition of the two-photon absorption due to the dipole-dipole interaction. It has also been found that the inhibition effect can be switched on and off by tuning a decay resonance energy within the energy band of the crystal. A theory of dressed states has been used to explain the results.

  20. Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.

    Science.gov (United States)

    Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q

    2018-02-02

    We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.

  1. Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2004-01-01

    A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...

  2. Development of the new gamma-ray calorimeter for the measurement of Pigmy Dipole Resonance

    Science.gov (United States)

    Shikata, Mizuki; Nakamura, Takashi; Togano, Yasuhiro; Kondo, Yosuke

    2014-09-01

    A new γ-ray calorimeter CATANA (CAlorimeter for gamma γ-ray Transition in Atomic Nuclei at high isospin Asynmetry) has been developed to measure highly excited states like the pygmy dipole resonance and the giant dipole resonance. CATANA will be used with the SAMURAI spectrometer at RIBF. The excitation energy spectrum will be reconstructed combining the invariant mass of the reaction products measured by SAMURAI and γ-ray energies from CATANA. CATANA has focused on achieving a high detection efficiency. It is calculated as 56% for 1 MeV γ-rays from beam with a velocity of β = 0.6. The CATANA array consists of 200 CsI(Na) crystals and covers angles from 10 to 120 degrees along the beam axis. In this study, we have tested prototype crystals of CATANA to evaluate their performance. A position dependence of the light input have been measured and compared with a Monte-Carlo simulation based on GEANT4. In this talk, we will report the design of CATANA and the result of the tests and the simulation.

  3. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen

    2017-12-22

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  4. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen; Schuster, Gerard T.

    2017-01-01

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  5. The isoscalar giant dipole resonance and nuclear incompressibility

    International Nuclear Information System (INIS)

    Garg, U.

    2000-01-01

    Complete text of publication follows. The current status of the experimental work on the ISOSCALAR giant dipole resonance (ISGDR) will be reviewed. ISGDR is an exotic mode of collective nuclear vibration and can be described as a hydrodynamical density oscillation in which the volume of the nucleus remains constant and the state can be visualized in the form of a compression wave-analogous to a sound wave-oscillating back and forth through the nucleus. [1] Convincing evidence for the ISGDR has now been obtained in inelastic α-scattering measurements at 200 MeV (IUCF) [2], 240 MeV (Texas A and M) [3] and 400 MeV (RCNP, Osaka) [4]. In all nuclei studied so far, the ISGDR strength is observed to be spread over a rather wide excitation-energy range (up to ∼ 15 MeV). The excitation energy of the ISGDR is related to the nuclear incompressibility, K ∞ . The ISGDR results so far point to a value for K ∞ that is ∼ 30-40% lower than the obtained from the energies of the other compressional mode, the giant monopole resonance. Results from recent theoretical attempts to reconcile this difference will be presented. This work has been supported in part by the U.S. National Science Foundation. (author)

  6. Damping of isovector giant dipole resonances in hot even-even spherical nuclei

    International Nuclear Information System (INIS)

    Dang, N.D.

    1989-01-01

    An approach based on the finite temperature quasiparticle phonon nuclear model (FT-QPNM) with the couplings to (2p2h) states at finite temperature taken into account is suggested for calculations of the damping of giant multipole resonances in hot even-even spherical nuclei. The strength functions for the isovector giant dipole resonance (IV-GDR) are calculated in 58 Ni and 90 Zr for a range of temperatures up to 3 MeV. The results show that the contribution of the interactions with (2p2h) configurations to the IV-GDR spreading width changes weakly with varying temperature. The IV-GDR centroid energy decreases slightly with increasing temperature. The nonvanishing superfluid pairing gap due to thermal fluctuations is included. (orig.)

  7. Multiple Signal Classification Algorithm Based Electric Dipole Source Localization Method in an Underwater Environment

    Directory of Open Access Journals (Sweden)

    Yidong Xu

    2017-10-01

    Full Text Available A novel localization method based on multiple signal classification (MUSIC algorithm is proposed for positioning an electric dipole source in a confined underwater environment by using electric dipole-receiving antenna array. In this method, the boundary element method (BEM is introduced to analyze the boundary of the confined region by use of a matrix equation. The voltage of each dipole pair is used as spatial-temporal localization data, and it does not need to obtain the field component in each direction compared with the conventional fields based localization method, which can be easily implemented in practical engineering applications. Then, a global-multiple region-conjugate gradient (CG hybrid search method is used to reduce the computation burden and to improve the operation speed. Two localization simulation models and a physical experiment are conducted. Both the simulation results and physical experiment result provide accurate positioning performance, with the help to verify the effectiveness of the proposed localization method in underwater environments.

  8. The dipole response of {sup 132}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, Philipp; Aumann, Thomas; Johansen, Jacob; Schindler, Fabia [IKP, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Rossi, Dominic [Michigan State University (United States); Collaboration: R3B-Collaboration

    2015-07-01

    The Isovector Giant Dipole Resonance (IVGDR) is a well-known collective excitation in which all protons oscillate against all neutrons of a nucleus. In neutron-rich nuclei an additional low-lying dipole excitation occurs, often denoted as Pygmy Dipole Resonance (PDR). To study the PDR in exotic Sn-isotopes, an experiment has been successfully performed with the upgraded R{sup 3}B-LAND setup at GSI. The complete-kinematics measurement of all reaction participants allows for the reconstuction of the excitation energy and, hence, the extraction of the dipole strength. Presented are the main features of the experiment, the analysis concept and the current status of the analysis of the dipole response of the doubly-magic isotope {sup 132}Sn.

  9. Derivative corrections to the symmetry energy and the isovector dipole-resonance structure in nuclei

    International Nuclear Information System (INIS)

    Blocki, J P; Magner, A G; Ring, P

    2015-01-01

    The effective surface approximation is extended accounting for derivatives of the symmetry energy density per particle. The new expressions for the isovector surface energy constants are used for calculations of improved energies and sum rules of the isovector dipole-resonance strength structure within the Fermi-liquid droplet model. Our results are in reasonable agreement with experimental data and with other theoretical approaches. (paper)

  10. A collective model description of the low lying and giant dipole resonant properties of 40424446Ca

    International Nuclear Information System (INIS)

    Weise, J.I.

    1982-01-01

    The low-lying and giant dipole resonant properties of the even-even calcium isotopes are calculated within the framework of the Gneuss-Greiner model and compared with the experimental data. In the low energy region, comparison is also made with the predictions of a coexistence model

  11. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  12. Study of the pygmy dipole resonance in {sup 94}Mo using the (α,α{sup ′}γ) coincidence technique

    Energy Technology Data Exchange (ETDEWEB)

    Derya, V., E-mail: derya@ikp.uni-koeln.de [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany); Endres, J.; Elvers, M. [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany); Harakeh, M.N. [Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); Pietralla, N.; Romig, C. [Institut für Kernphysik, TU Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt (Germany); Savran, D. [ExtreMe Matter Institute EMMI and Research Division, GSI, Planckstraße 1, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main (Germany); Scheck, M.; Siebenhühner, F. [Institut für Kernphysik, TU Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt (Germany); Stoica, V.I. [Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); Department of Sociology/ICS, Rijksuniversiteit Groningen, Grote Rozenstraat 31, 9712 TG Groningen (Netherlands); Wörtche, H.J. [Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); and others

    2013-05-15

    The (α,α{sup ′}γ) reaction at E{sub α}=136 MeV was used to study the electric dipole response in the open-shell vibrational nucleus {sup 94}Mo below the neutron-separation threshold. The coincidence experiment has been performed at the Kernfysisch Versneller Instituut in Groningen, The Netherlands, exploiting the Big-Bite Spectrometer and an array of large volume High-Purity Germanium (HPGe) detectors. Due to the excellent energy resolution and high selectivity to transitions stemming from the pygmy dipole resonance, singles α-scattering cross sections could be determined for individual electric dipole excitations between 4 and 8 MeV. For three of the excited low-lying J{sup π}=1{sup −} states in {sup 94}Mo a γ-decay branch into the J{sup π}=2{sub 1}{sup +} state could be observed. The experiment extends the systematic studies of the pygmy dipole resonance by real-photon scattering (γ,γ{sup ′}) experiments and (α,α{sup ′}γ) experiments. Recently, a (γ,γ{sup ′}) experiment on {sup 94}Mo was performed at the Darmstadt High-Intensity Photon Setup at the S-DALINAC in Darmstadt, Germany, permitting the comparison of B(E1)↑ strength distribution and α-scattering cross sections.

  13. Dipole strength distribution below the giant dipole resonance in {sup 92}Mo, {sup 98}Mo and {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G.Y.

    2006-07-01

    Investigations of the dipole-strength distributions in {sup 92}Mo, {sup 98}Mo and {sup 100}Mo were carried out by means of the method of nuclear resonance fluorescence. The low-lying excitations in the nuclides {sup 92}Mo, {sup 98}Mo and {sup 100}Mo have been studied in photon-scattering experiments at an electron energy of 6 MeV at the ELBE accelerator and at electron energies from 3.2 to 3.8 MeV at the Dynamitron accelerator. Five levels were observed in {sup 92}Mo. Five levels in {sup 98}Mo and 14 in {sup 100}Mo were identified for the first time in the energy range from 2 to 4 MeV. Dipole-strength distributions up to the neutron-separation energies in the nuclides {sup 92}Mo, {sup 98}Mo and {sup 100}Mo have been investigated at the ELBE accelerator. Because of the possible observation of transitions in the neighboring nuclei produced via ({gamma},n) reaction, additional measurements at electron energies of 8.4 and 7.8 MeV, below the neutron-separation energy, were performed on {sup 98}Mo and {sup 100}Mo, respectively. The number of transitions assigned to {sup 92}Mo, {sup 98}Mo and {sup 100}Mo is 340, 485 and 499, respectively, the main part of them being dipole transitions. Statistical properties of the observed transitions are obtained. The continuum contains the ground-state transitions as well as the branching transitions to the low-lying levels and the subsequent deexcitations of these levels. (orig.)

  14. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    Science.gov (United States)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  15. Dipole-resonance assisted isomerization in the electronic ground state using few-cycle infrared pulses.

    Science.gov (United States)

    Skocek, Oliver; Uiberacker, Christoph; Jakubetz, Werner

    2011-06-30

    A computational investigation of HCN → HNC isomerization in the electronic ground state by one- and few-cycle infrared pulses is presented. Starting from a vibrationally pre-excited reagent state, isomerization yields of more than 50% are obtained using single one- to five-cycle pulses. The principal mechanism includes two steps of population transfer by dipole-resonance (DR), and hence, the success of the method is closely linked to the polarity of the system and, in particular, the stepwise change of the dipole moment from reactant to transition state and on to products. The yield drops massively if the diagonal dipole matrix elements are artificially set to zero. In detail, the mechanism includes DR-induced preparation of a delocalized vibrational wavepacket, which traverses the barrier region and is finally trapped in the product well by DR-dominated de-excitation. The excitation and de-excitation steps are triggered by pulse lobes of opposite field direction. As the number of optical cycles is increased, the leading field lobes prepare a vibrational superposition state by off-resonant ladder climbing, which is then subjected to the three steps of the principal isomerization mechanism. DR excitation is more efficient from a preformed vibrational wavepacket than from a molecular eigenstate. The entire process can be loosely described as Tannor-Kosloff-Rice type transfer mechanism on a single potential surface effected by a single pulse, individual field lobes assuming the roles of pump- and dump-pulses. Pre-excitation to a transient wavepacket can be enhanced by applying a separate, comparatively weak few-cycle prepulse, in which the prepulse prepares a vibrational wavepacket. The two-pulse setup corresponds to a double Tannor-Kosloff-Rice control scheme on a single potential surface.

  16. Spin-flipping a stored polarized proton beam with an rf dipole

    International Nuclear Information System (INIS)

    Blinov, B.B.; Derbenev, Ya.S.; Kageya, T.; Kantsyrev, D.Yu.; Krisch, A.D.; Morozov, V.S.; Sivers, D.W.; Wong, V.K.; Anferov, V.A.; Schwandt, P.; Przewoski, B. von

    2000-01-01

    Frequent polarization reversals, or spin-flips, of a stored polarized high-energy beam may greatly reduce systematic errors of spin asymmetry measurements in a scattering asymmetry experiment. We studied the spin-flipping of a 120 MeV horizontally-polarized proton beam stored in the IUCF Cooler Ring by ramping an rf-dipole magnet's frequency through an rf-induced depolarizing resonance in the presence of a nearly-full Siberian snake. After optimizing the frequency ramp parameters, we used multiple spin-flips to measure a spin-flip efficiency of 86.5±0.5%. The spin-flip efficiency was apparently limited by the rf-dipole's field strength. This result indicates that an efficient spin-flipping a stored polarized beam should be possible in high energy rings such as RHIC and HERA where Siberian snakes are certainly needed and only dipole rf-flipper-magnets are practical

  17. Broadband electromagnetic dipole scattering by coupled multiple nanospheres

    Science.gov (United States)

    Jing, Xufeng; Ye, Qiufeng; Hong, Zhi; Zhu, Dongshuo; Shi, Guohua

    2017-11-01

    With the development of nanotechnology, the ability to manipulate light at the nanoscale is critical to future optical functional devices. The use of high refractive index dielectric single silicon nanoparticle can achieve electromagnetic dipole resonant properties. Compared with single nanosphere, the use of dimer and trimer introduces an additional dimension (gap size) for improving the performance of dielectric optical devices through the coupling between closely connected silicon nanospheres. When changing the gap size between the nanospheres, the interaction between the particles can be from weak to strong. Compared with single nanospheres, dimerized or trimeric nanospheres exhibit more pronounced broadband scattering properties. In addition, by introducing more complex interaction, the trimericed silicon nanospheres exhibit a more significant increase in bandwidth than expected. In addition, the presence of the substrate will also contribute to the increase in the bandwidth of the nanospheres. The broadband response in dielectric nanostructures can be effectively applied to broadband applications such as dielectric nanoantennas or solar cells.

  18. Self-organised aggregation of a pair of particles with different resonant frequencies and electric dipole moments of transitions, controlled by an external quasi-resonant field

    Energy Technology Data Exchange (ETDEWEB)

    Slabko, V V; Tsipotan, A S; Aleksandrovsky, A S [Institute of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk (Russian Federation)

    2013-05-31

    The influence of the oscillation phases of the dipole moments induced in metal nanoparticles and quantum dots by an external laser field on their interaction energy is considered. It is shown that a difference in resonant frequencies leads to the formation of additional minima and maxima, which are absent in the spectral dependence of the interaction energy of identical particles at similar orientations of the pair of particles with respect to the plane of polarisation of radiation. These features are due to the fact that the oscillation phase difference of the induced dipole moments of particles reaches values close to {pi}. (interaction of laser radiation with matter. laser plasma)

  19. Prediction and Migration of Surface-related Resonant Multiples

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Surface-related resonant multiples can be migrated to achieve better resolution than migrating primary reflections. We now derive the formula for migrating surface-related resonant multiples, and show its super-resolution characteristics. Moreover, a method is proposed to predict surface-related resonant multiples with zero-offset primary reflections. The prediction can be used to indentify and extract the true resonant multiple from other events. Both synthetic and field data are used to validate this prediction.

  20. Heavy ion coulomb excitation and gamma decay studies of the one and two phonon giant dipole resonances in 208Pb and 209Bi

    International Nuclear Information System (INIS)

    Mueller, P.E.; Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Olive, D.H.; Varner, R.L.; Sherrill, B.; Thoennessen, M.; Lautridou, P.; Lefevre, F.; Marques, M.; Matulewicz, T.; Mittig, W.; Ostendorf, R.; Roussel-Chomaz, P.; Schutz, Y.; Pol, J. van; Wilschut, H.W.; Diaz, J.; Ferrero, J.L.; Marin, A.

    1994-01-01

    Projectile - phonon coincidences were measured for the scattering of an 80 MeV/nucleon 64 Zn beam from 208 Pb and 209 Bi targets at the GANIL heavy ion accelerator facility. Projectile-like particles between 0.5 and 4.5 relative to the incident beam direction were detected in the SPEG energy loss spectrometer where their momentum, charge, and mass were determined. Photons were detected in the BaF 2 scintillation detector array TAPS. Light charged particles produced in the reaction were detected in the KVI Forward Wall. The analysis of the data acquired in this experiment is focused on three different phenomena: (1) the two phonon giant dipole resonance, (2) time dependence of the decay of the one phonon giant dipole resonance, and (3) giant resonance strength in projectile nuclei. (orig.)

  1. Relativistic Coulomb excitation of giant resonances in the hydrodynamic model

    International Nuclear Information System (INIS)

    Vasconcellos Gomes, Ana Cristina de.

    1990-05-01

    We investigate the Coulomb excitation of giant dipole resonances in relativistic heavy ion collisions using a macroscopic hydrodynamical model for the harmonic vibrations of the nuclear fluid. The motion is treated as a combination of the Goldhaber-Teller displacement mode and the Steinwedel-Jensen acoustic mode, and the restoring forces are calculated using the droplet model. This model is used as input to study the characteristics of multiple excitation of giant dipole resonances in nuclei. Possible signatures for the existence of such states are also discussed quantitatively. (author). 52 refs., 14 figs., 3 tabs

  2. Soft spin-dipole resonances in 40Ca

    International Nuclear Information System (INIS)

    Stuhl, L; Krasznahorkay, A; Csatlós, M; Gulyás, J; Marketin, T; Litvinova, E; Adachi, T; Fujita, H; Hatanaka, K; Hirota, K; Ong, H J; Ishikawa, D; Matsubara, H; Algora, A; Estevez, E; Molina, F; Daeven, J; Guess, C; Meharchand, R; Fujita, Y

    2012-01-01

    High resolution experimental data has been obtained for the 40,42,44,48 Ca( 3 He,t)Sc charge exchange reaction at 420 MeV beam energy, which favors the spin-isospin excitations. The measured angular distributions were analyzed for each state separately, and the relative spin dipole strength has been extracted for the first time. The low-lying spin-dipole strength distribution in 40 Sc shows some interesting periodic gross feature. It resembles to a soft, damped multi-phonon vibrational band with hω= 1.8 MeV, which might be associated to pairing vibrations around 40 Ca.

  3. New results on multiple excitations of giant resonances

    International Nuclear Information System (INIS)

    Mordechai, S.; Texas Univ., Austin, TX; Moore, C.F.

    1993-01-01

    Exotic excitations like the double giant dipole were predicted for many years but not observed experimentally until recently. Several experiments have been carried out at Los Alamos National laboratory to search for these new collective modes of the nucleus. The results discover two previously unobserved types of double giant resonances. This work presents the recent pion double charge exchange data and the analysis that support the existence of two such exotic vibrational nuclear modes

  4. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging.

    Science.gov (United States)

    Schmidt, Rita; Webb, Andrew

    2017-10-11

    Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities.

  5. Test of the Brink-Axel Hypothesis for the Pygmy Dipole Resonance

    Science.gov (United States)

    Martin, D.; von Neumann-Cosel, P.; Tamii, A.; Aoi, N.; Bassauer, S.; Bertulani, C. A.; Carter, J.; Donaldson, L.; Fujita, H.; Fujita, Y.; Hashimoto, T.; Hatanaka, K.; Ito, T.; Krugmann, A.; Liu, B.; Maeda, Y.; Miki, K.; Neveling, R.; Pietralla, N.; Poltoratska, I.; Ponomarev, V. Yu.; Richter, A.; Shima, T.; Yamamoto, T.; Zweidinger, M.

    2017-11-01

    The gamma strength function and level density of 1- states in 96Mo have been extracted from a high-resolution study of the (p → , p→ ' ) reaction at 295 MeV and extreme forward angles. By comparison with compound nucleus γ decay experiments, this allows a test of the generalized Brink-Axel hypothesis in the energy region of the pygmy dipole resonance. The Brink-Axel hypothesis is commonly assumed in astrophysical reaction network calculations and states that the gamma strength function in nuclei is independent of the structure of the initial and final state. The present results validate the Brink-Axel hypothesis for 96Mo and provide independent confirmation of the methods used to separate gamma strength function and level density in γ decay experiments.

  6. Statistical decay of dipole-excited states of Zr isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Gayer, Udo; Zweidinger, Markus; Beck, Tobias; Mertes, Laura; Pai, Haridas; Pietralla, Norbert; Ries, Philipp; Romig, Christopher; Werner, Volker [IKP, TU Darmstadt (Germany); Cooper, Nathan [University of Richmond, Richmond (United States); Isaak, Johann [EMMI, GSI, Darmstadt (Germany); FIAS, Frankfurt (Germany); Loeher, Bastian; Savran, Deniz [GSI, Darmstadt (Germany); Scheck, Marcus [School of Engineering, UWS, Paisley (United Kingdom); SUPA, Glasgow (United Kingdom); Tornow, Werner [Duke University, Durham (United States)

    2016-07-01

    Decay properties of electric dipole excitations below the neutron separation threshold of {sup 92,94,96}Zr have been determined in several (γ,γ') and (vector γ,γ') experiments at the Darmstadt High Intensity Photon Setup and the High-Intensity Gamma-Ray Source in Durham, USA. The model of statistical decay is used to guide an interpretation of this low-lying dipole strength which is frequently discussed to arise from the low-energy tail of the giant dipole resonance and potentially an additional resonance structure often referred to as the pygmy dipole resonance. The availability of three complete data sets in the Zr isotopic chain allowed for a precise test of these extrapolations to low energies using different models for the level density and the photon strength function. In the talk, data and calculations are presented, and the suitability of photon scattering data for this kind of analysis is discussed.

  7. Multiple coil pulsed magnetic resonance method for measuring cold SSC dipole magnet field quality

    International Nuclear Information System (INIS)

    Clark, W.G.; Moore, J.M.; Wong, W.H.

    1990-01-01

    The operating principles and system architecture for a method to measure the magnetic field multipole expansion coefficients are described in the context of the needs of SSC dipole magnets. The operation of an 8-coil prototype system is discussed. Several of the most important technological issues that influence the design are identified and the basis of their resolution is explained. The new features of a 32-coil system presently under construction are described, along with estimates of its requirements for measurement time and data storage capacity

  8. Deformation dependence of the isovector giant dipole resonance: The neodymium isotopic chain revisited

    Science.gov (United States)

    Donaldson, L. M.; Bertulani, C. A.; Carter, J.; Nesterenko, V. O.; von Neumann-Cosel, P.; Neveling, R.; Ponomarev, V. Yu.; Reinhard, P.-G.; Usman, I. T.; Adsley, P.; Brummer, J. W.; Buthelezi, E. Z.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; Jingo, M.; Kleinig, W.; Kureba, C. O.; Kvasil, J.; Latif, M.; Li, K. C. W.; Mira, J. P.; Nemulodi, F.; Papka, P.; Pellegri, L.; Pietralla, N.; Richter, A.; Sideras-Haddad, E.; Smit, F. D.; Steyn, G. F.; Swartz, J. A.; Tamii, A.

    2018-01-01

    Proton inelastic scattering experiments at energy Ep = 200 MeV and a spectrometer scattering angle of 0° were performed on 144,146,148,150Nd and 152Sm exciting the IsoVector Giant Dipole Resonance (IVGDR). Comparison with results from photo-absorption experiments reveals a shift of resonance maxima towards higher energies for vibrational and transitional nuclei. The extracted photo-absorption cross sections in the most deformed nuclei, 150Nd and 152Sm, exhibit a pronounced asymmetry rather than a distinct double-hump structure expected as a signature of K-splitting. This behaviour may be related to the proximity of these nuclei to the critical point of the phase shape transition from vibrators to rotors with a soft quadrupole deformation potential. Self-consistent random-phase approximation (RPA) calculations using the SLy6 Skyrme force provide a relevant description of the IVGDR shapes deduced from the present data.

  9. Width and strength of the hot giant dipole resonance. The role of the life time of the compound nucleus and the transition from order to chaos

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    A bump in the γ decay spectrum is observed at high energies which is due to the excitation of the Giant Dipole Resonance (GDR) in the compound nucleus. The fact is discussed that the total width of the γ-ray spectrum of the GDR transitions must contain twice the width of the compound nucleus levels. This implies that one must except a rapid increase of the width of the GDR. This increase contributes to the observed saturation of the photon multiplicity. A new suppression factor due to the lost of collectivity induced by the fast particle emission is proposed. (K.A.)

  10. Effect of finite detection efficiency on the observation of the dipole-dipole interaction of a few Rydberg atoms

    International Nuclear Information System (INIS)

    Ryabtsev, I. I.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.

    2007-01-01

    We have developed a simple analytical model describing multiatom signals that are measured in experiments on dipole-dipole interaction at resonant collisions of a few Rydberg atoms. It has been shown that finite efficiency of the selective field-ionization detector leads to the mixing up of the spectra of resonant collisions registered for various numbers of Rydberg atoms. The formulas which help to estimate an appropriate mean Rydberg atom number for a given detection efficiency are presented. We have found that a measurement of the relation between the amplitudes of collisional resonances observed in the one- and two-atom signals provides a straightforward determination of the absolute detection efficiency and mean Rydberg atom number. We also performed a testing experiment on resonant collisions in a small excitation volume of a sodium atomic beam. The resonances observed for 1-4 detected Rydberg atoms have been analyzed and compared with theory

  11. Dipole polarizability and neutron skin in {sup 68}Ni

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Dominic [GSI Darmstadt (Germany); Univ. Mainz (Germany); NSCL, MSU (United States); Aumann, Thomas [TU Darmstadt (Germany); Boretzky, Konstanze [GSI Darmstadt (Germany); Collaboration: R3B-Collaboration

    2014-07-01

    The symmetry energy term E{sub sym} of the nuclear equation-of-state describes fundamental phenomena both in nuclear physics and in astrophysics. The electric dipole (E1) response of nuclei as a function of the isospin asymmetry is driven by E{sub sym} and in particular by its density dependence. Studies of the Pygmy Dipole Resonance (PDR) in exotic nuclei have been used to constrain E{sub sym} or the neutron skin thickness ΔR{sub n,p}. The electric dipole polarizability α{sub D}, being very sensitive to the low-lying E1 strength, is correlated to ΔR{sub n,p} in a robust and only moderately less model-dependent manner [PRC 81, 051303 (2010)]. Recently, for the stable nucleus, 208Pb the neutron skin thickness was extracted from the measured αD. Here, a first experimental determination of α{sub D} in an unstable nucleus and the derivation of its ΔR{sub n,p} will be reported. Coulomb excitation in inverse kinematics at the R3B-LAND setup at GSI allows for the investigation of the dipole strength distribution in the neutron-rich {sup 68}Ni covering the pygmy (PDR) and giant dipole resonance (GDR). The E1 strength distribution in the neutron-rich {sup 68}Ni covering the pygmy (PDR) and giant dipole resonance (GDR) s investigated using the R3B-LAND setup at GSI. From the E1 strength distribution in {sup 68}Ni measured using the R3B-LAND setup at GSI, the resonance parameters for the observed PDR at 9.55(17) MeV and the giant dipole resonance at 17.1(2) MeV are determined. In combination with results from Wieland et al. [PRL 102, 092502 (2009)] an unexpectedly large direct photon-decay branching ratio of 7(2) is observed for the PDR. The measured α{sub D} of 3.40(23) fm{sup 3} is compared to relativistic RPA calculations yielding ΔR{sub n,p} of 0.17(2) fm for {sup 68}Ni.

  12. Piezoelectric components wirelessly driven by dipole antenna-like electric field generator

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, S., E-mail: elesatya@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Kumar, R.; Panda, S.K. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Hu, J. [Lab of Precision Drive, Nanjing University of Aeronautics and Astronautics, Nanjing 210026 (China)

    2011-08-25

    Highlights: > Wireless energy transmission technique. > Dipole antenna-like electric field generator. > Piezoelecctric resonance. > Finite element analyses. > Simulations and experimental verifications. - Abstract: A new technique of transmitting electric energy wirelessly to piezoelectric components by using a dipole antenna-like electric field generator is explored. Two square size brass plate-shaped live and ground electrodes are used to form a dipole antenna-like electric field generator. When the dipole antenna-like electric field generator in electric resonance with an inductor, a maximum output power of 2.72 mW and an energy conversion efficiency of 0.0174% have been achieved wirelessly by the piezoelectric plate area of 40 mm{sup 2} operating in the thickness vibration mode, placed at the center 4 mm away from the antenna plane with an optimum electrical load of 1365 {Omega}, resonant frequency of 782 kHz, 1 cm electrodes separation, 2500 cm{sup 2} electrode area of dipole antenna-like structure, and input ac source power of 15.58 W applied to the series of dipole antenna-like structure and inductor. The theoretically calculated results have been validated by the experimental studies. It is seen that at the resonance frequency and optimum electrical load, the output power of the wirelessly driven piezoelectric component decreases with the size of piezoelectric component, distance of piezoelectric component from the electrode of antenna plane, but increases with the antenna electrode area.

  13. Dipole response of 76Se above 4 MeV

    Science.gov (United States)

    Goddard, P. M.; Cooper, N.; Werner, V.; Rusev, G.; Stevenson, P. D.; Rios, A.; Bernards, C.; Chakraborty, A.; Crider, B. P.; Glorius, J.; Ilieva, R. S.; Kelley, J. H.; Kwan, E.; Peters, E. E.; Pietralla, N.; Raut, R.; Romig, C.; Savran, D.; Schnorrenberger, L.; Smith, M. K.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Yates, S. W.

    2013-12-01

    The dipole response of 3476Se in the energy range from 4 to 9 MeV has been analyzed using a (γ⃗,γ') polarized photon scattering technique, performed at the High Intensity γ-Ray Source facility at Triangle Universities Nuclear Laboratory, to complement previous work performed using unpolarized photons. The results of this work offer both an enhanced sensitivity scan of the dipole response and an unambiguous determination of the parities of the observed J=1 states. The dipole response is found to be dominated by E1 excitations, and can reasonably be attributed to a pygmy dipole resonance. Evidence is presented to suggest that a significant amount of directly unobserved excitation strength is present in the region, due to unobserved branching transitions in the decays of resonantly excited states. The dipole response of the region is underestimated when considering only ground state decay branches. We investigate the electric dipole response theoretically, performing calculations in a three-dimensional (3D) Cartesian-basis time-dependent Skyrme-Hartree-Fock framework.

  14. Deformation dependence of the isovector giant dipole resonance: The neodymium isotopic chain revisited

    Directory of Open Access Journals (Sweden)

    L.M. Donaldson

    2018-01-01

    Full Text Available Proton inelastic scattering experiments at energy Ep=200 MeV and a spectrometer scattering angle of 0° were performed on 144,146,148,150Nd and 152Sm exciting the IsoVector Giant Dipole Resonance (IVGDR. Comparison with results from photo-absorption experiments reveals a shift of resonance maxima towards higher energies for vibrational and transitional nuclei. The extracted photo-absorption cross sections in the most deformed nuclei, 150Nd and 152Sm, exhibit a pronounced asymmetry rather than a distinct double-hump structure expected as a signature of K-splitting. This behaviour may be related to the proximity of these nuclei to the critical point of the phase shape transition from vibrators to rotors with a soft quadrupole deformation potential. Self-consistent random-phase approximation (RPA calculations using the SLy6 Skyrme force provide a relevant description of the IVGDR shapes deduced from the present data.

  15. The 132Sn giant dipole resonance as a constraint on nuclear matter properties

    Science.gov (United States)

    Roach, Brandon; Bonasera, Giacomo; Shlomo, Shalom

    2015-10-01

    Nuclear giant resonances provide a sensitive method for constraining the properties of nuclear matter (NM) - many of which have large uncertainties - and thereby improve the nuclear energy-density functional. In this work, self-consistent Hartree-Fock random-phase approximation (HF-RPA) theory was employed to calculate the strength function and energy of the isovector giant dipole resonance (IVGDR) in the doubly-magic 132Sn nucleus. Several (17) commonly-used Skyrme-type interactions were employed. The correlations between the IVGDR centroid energy and each nuclear matter property were explored, as were correlations between the nuclear matter properties and the 132Sn neutron skin thickness rn -rp . Experimental data for the IVGDR centroid energy was used to constrain the symmetry energy density, the symmetry energy, and its first and second derivatives, respectively, of NM. Further investigation, particularly of nuclides far from stability, will be needed to extend the nuclear energy-density functional to the extremes of density and neutron abundance found in neutron stars and astrophysical nucleosynthesis environments.

  16. Electric Dipole States and Time Reversal Violation in Nuclei

    International Nuclear Information System (INIS)

    Auerbach, N.

    2016-01-01

    The nuclear Schiff moment is essential in the mechanism that induces a parity and time reversal violation in the atom. In this presentation we explore theoretically the properties and systematics of the isoscalar dipole in nuclei with the emphasis on the low-energy strength and the inverse energy weighted sum which determines the Schiff moment. We also study the influence of the isovector dipole strength distribution on the Schiff moment. The influence of a large neutron excess in nuclei is examined. The centroid energies of the isoscalar giant resonance (ISGDR) and the overtone of the isovector giant dipole resonance (OIVGDR) are given for a range of nuclei. (paper)

  17. Atlas of giant dipole resonances. Parameters and graphs of photonuclear reaction cross sections

    International Nuclear Information System (INIS)

    Varlamov, A.V.; Varlamov, V.V.; Rudenko, D.S.; Stepanov, M.E.

    1999-01-01

    Parameters of giant dipole resonances (GDR) observed in photonuclear reaction cross sections using various beams of incident photons are presented. Data, given for 200 stable isotopes from 2 H to 243 Am including their natural compositions, were collected from papers published over the years 1951-1996. GDR parameters, such as energy positions, amplitudes and widths, are included into the table and organized by element, isotope and reaction. Graphs of the majority of the photonuclear reaction cross sections, included in the international nuclear data library EXFOR by the end of 1998, are presented. The graphs are provided for 182 stable isotopes and natural compositions. (author)

  18. Dipole-dipole dispersion interactions between neutrons

    OpenAIRE

    Babb, James F.; Higa, Renato; Hussein, Mahir S.

    2016-01-01

    We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the $\\Delta$-resonance ($J^{\\pi}$ = + 3/2, I = 3/2). We found b...

  19. Nuclear spin cooling by electric dipole spin resonance and coherent population trapping

    Science.gov (United States)

    Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei

    2017-09-01

    Nuclear spin fluctuation suppression is a key issue in preserving electron coherence for quantum information/computation. We propose an efficient way of nuclear spin cooling in semiconductor quantum dots (QDs) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. The EDSR can enhance the spin flip-flop rate and may bring out bistability under certain conditions. By tuning the optical fields, we can avoid the EDSR induced bistability and obtain highly polarized nuclear spin state, which results in long electron coherence time. With the help of CPT and EDSR, an enhancement of 1500 times of the electron coherence time can been obtained after a 500 ns preparation time.

  20. Far-field super-resolution imaging of resonant multiples

    KAUST Repository

    Guo, Bowen

    2016-05-20

    We demonstrate for the first time that seismic resonant multiples, usually considered as noise, can be used for super-resolution imaging in the far-field region of sources and receivers. Tests with both synthetic data and field data show that resonant multiples can image reflector boundaries with resolutions more than twice the classical resolution limit. Resolution increases with the order of the resonant multiples. This procedure has important applications in earthquake and exploration seismology, radar, sonar, LIDAR (light detection and ranging), and ultrasound imaging, where the multiples can be used to make high-resolution images.

  1. A study of the giant dipole resonance in doubly even tellurium and cerium isotopes

    International Nuclear Information System (INIS)

    Lepretre, A.; Beil, H.; Bergere, R.; Carlos, P.; Fagot, J.; Miniac, A. de; Veyssiere, A.

    1976-01-01

    The partial photoneutron cross sections [sigma(γ,n)+sigma(γ,pn)] and sigma(γ,2n) of 124 Te, 126 Te, 128 Te, 130 Te and 140 Ce, 142 Ce were measured in the giant dipole resonance region by means of the monochromatic photon beam installation at SACLAY. Absolute total photoneutron cross sections, Lorentz line parameters and integrated cross sections are evaluated. The experimental behaviour of the GDR for the above nuclei and in particular its spreading, is then tentatively interpreted in terms of the improved dynamic collective model using the concept of potential energy surfaces. (Auth.)

  2. Photoresponse of 60Ni below 10-MeV excitation energy: Evolution of dipole resonances in fp-shell nuclei near N=Z

    Science.gov (United States)

    Scheck, M.; Ponomarev, V. Yu.; Fritzsche, M.; Joubert, J.; Aumann, T.; Beller, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Schorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.

    2013-10-01

    Background: Within the last decade, below the giant dipole resonance the existence of a concentration of additional electric dipole strength has been established. This accumulation of low-lying E1 strength is commonly referred to as pygmy dipole resonance (PDR).Purpose: The photoresponse of 60Ni has been investigated experimentally and theoretically to test the evolution of the PDR in a nucleus with only a small neutron excess. Furthermore, the isoscalar and isovector M1 resonances were investigated.Method: Spin-1 states were excited by exploiting the (γ,γ') nuclear resonance fluorescence technique with unpolarized continuous bremsstrahlung as well as with fully linearly polarized, quasimonochromatic, Compton-backscattered laser photons in the entrance channel of the reaction.Results: Up to 10 MeV a detailed picture of J=1 levels was obtained. For the preponderant number of the individual levels spin and parity were firmly assigned. Furthermore, branching ratios, transition widths, and reduced B(E1) or B(M1) excitation probability were calculated from the measured scattering cross sections. A comparison with theoretical results obtained within the quasiparticle phonon model allows an insight into the microscopic structure of the observed states.Conclusions: Below 10 MeV the directly observed E1 strength [∑B(E1)↑=(153.8±9.5) e2(fm)2] exhausts 0.5% of the Thomas-Reiche-Kuhn sum rule. This value increases to 0.8% of the sum rule [∑B(E1)↑=(250.9±31.1) e2(fm)2] when indirectly observed branches to lower-lying levels are considered. Two accumulations of M1 excited spin-1 states near 8 and 9 MeV excitation energy are identified as isoscalar and isovector M1 resonances dominated by proton and neutron f7/2→f5/2 spin-flip excitations. The B(M1)↑ strength of these structures accumulates to 3.94(27)μN2.

  3. Study of the Pygmy Dipole Resonance in 124Sn by means of the (α,α'γ) reaction

    International Nuclear Information System (INIS)

    Endres, J.; Zilges, A.; Pietralla, N.; Savran, D.; Sonnabend, K.; Harakeh, M. N.; Stoica, V.; Woertche, H.; Butler, P.; Herzberg, R. D.; Scheck, M.; Kruecken, R.; Popescu, L.; Harissopulos, S.; Lagoyannis, A.

    2009-01-01

    In recent years α-γ coincidence experiments at 136 MeV incident energy on 48 Ca, 140 Ce, 138 Ba and 124 Sn were performed at the KVI in Groningen to study the isospin character of electric dipole excitations below the particle threshold, frequently called Pygmy Dipole Resonance (PDR). An array of HPGe γ-detectors has been used in coincidence with the Big-Bite Spectrometer (BBS) and a resolution of about 10 keV in the γ-ray energy has been achieved. The results show that the excitation patterns of the PDR in the (α,α') reaction seem to differ significantly from results obtained in Nuclear Resonance Fluorescence (NRF)(γ,γ') measurements. The PDR, which until now has been assigned to one excitation mode, splits up into two parts: One that is excited in (α,α'γ) and (γ,γ') reactions (denoting a dominant isoscalar character), and one that is only excited in (γ,γ')(denoting a dominant isovector character). This indicates that two different excitation mechanisms produce these low-lying E1 excitations [1], The preliminary results of the latest measurements on the N = 82 nucleus 138 Ba and the Z = 50 nucleus 124 Sn show that this break up into two parts is a common feature of the PDR in semi-magic nuclei.

  4. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...

  5. Prediction and Migration of Surface-related Resonant Multiples

    KAUST Repository

    Guo, Bowen; Schuster, Gerard T.; Huang, Yunsong

    2015-01-01

    Surface-related resonant multiples can be migrated to achieve better resolution than migrating primary reflections. We now derive the formula for migrating surface-related resonant multiples, and show its super-resolution characteristics. Moreover

  6. Resonances and anti-resonances in the material parameters of 2-D dielectric ENG, MNG, and DNG materials

    DEFF Research Database (Denmark)

    Wu, Yunqiu; Arslanagic, Samel

    The resonant/anti-resonant behavior of parameters extracted by the S-parameter method for two-dimensional epsilon-, mu- and double-negative (ENG, MNG, DNG) materials is investigated. The unit cells consist of infinite dielectric cylinders supporting electric dipole, magnetic dipole, or both....... It is shown that the extraction procedure yields one resonant material parameter, and one anti-resonant material parameter in MNG and ENG configurations. However, both parameters display an over-all resonant response in DNG configurations where electric and magnetic dipole modes are excited simultaneously....

  7. Basic dynamics at a multiple resonance

    International Nuclear Information System (INIS)

    Ferraz-Mello, S.; Yokoyama, T.

    The problem of multiple resonance is dealt with as it occurs in Celestial Mechanics and in non-linear Mechanics. In perturbation theory small divisors occur as a consequence of the fact that the flows in the phase space of the real system and the flows in the phase space of the so-called undisturbed system are not homeomorphic at all. Whatever the perturbation technique we adopt, the first step is to correct the topology of the undisturbed flows. It is shown that at a multiple resonance we are led to dynamical systems that are generally non-integrable. The basic representatives of these systems are the n-pendulums theta sup(:) sub(k) = σ sub(j)A sub(jk) sin theta sub(j). Multiple resonances are classified as syndetic or asyndetic following the eigenvalues of a quadratic form. Some degenerate cases are also presented. (Author) [pt

  8. Electromagnetic moments and electric dipole transitions in carbon isotopes

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-01-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12 C, 13 C, and 14 C, both in the low energy region below (ℎ/2π)ω=14 MeV and in the high energy giant resonance region (14 MeV 15 C is found to exhaust about 12-16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50-80 % of the cluster sum rule value

  9. Quantum calculation of dipole excitation in fusion reaction

    International Nuclear Information System (INIS)

    Simenel, C.; Chomaz, Ph.; De France, G.

    2000-01-01

    The excitation of the giant dipole resonance by fusion is studied with N/Z asymmetry in the entrance channel. The TDHF solution exhibits a strong dipole vibration which can be associated with a giant vibration along the main axis of a fluctuating prolate shape. The consequences on the gamma-ray emission from hot compound nuclei are discussed. (author)

  10. Non-foster impedance matching sensitivity of electrically small electric and magnetic spherical dipole antennas

    DEFF Research Database (Denmark)

    Yoon, Ick-Jae; Christensen, S.; Zhurbenko, Vitaliy

    2016-01-01

    The impedance bandwidth (BW) improvement property of a self-resonant folded spherical helix electric dipole and a spherical split ring (SSR) magnetic dipole is compared when a negative reactance element is loaded on the parasitic resonator of the antennas. They have the same electrical size of ka...

  11. Empty-electronic-state evolution for Sc and electron dynamics at the 3p-3d giant dipole resonance

    International Nuclear Information System (INIS)

    Hu, Y.; Wagener, T.J.; Gao, Y.; Weaver, J.H.

    1989-01-01

    Inverse photoemission has been used to study the developing electronic states of an early transition metal, Sc, during thin-film growth and to investigate the effects of these states on the 3p-3d giant dipole resonance. Energy- and coverage-dependent intensity variations of the empty Sc states show that the 3d maximum moves 1.1 eV toward the Fermi level as the thickness of the Sc film increases from 1 to 300 A as measured with an incident electron energy of 41.25 eV, an effect attributed to metallic band formation via hybridization of atomic 4s and 3d states. Incident-energy-dependent intensity variations for these empty Sc features show resonant photon emission for incident electron energies above the 3p threshold, with maxima at 43 and 44 eV for 300- and 5-A-thick films, respectively. Considerations of hybridization-induced energy shifts of the empty Sc 3d states demonstrate that the radiative energy changes very little with Sc coverages. These studies indicate coupling of decay channels involving the inverse photoemission continuum and the recombination of the atomic 3p-3d giant dipole transition, the energy of the latter being determined by atomic 3p-3d excitation processes

  12. Modification of electric and magnetic dipole emission in anisotropic plasmonic systems.

    Science.gov (United States)

    Noginova, N; Hussain, R; Noginov, M A; Vella, J; Urbas, A

    2013-10-07

    In order to investigate the effects of plasmonic environments on spontaneous emission of magnetic and electric dipoles, we have studied luminescence of Eu³⁺ ions in close vicinity to gold nanostrip arrays. Significant changes in the emission kinetics, emission polarization, and radiation patterns have been observed in the wavelength range corresponding to the plasmonic resonance. The effect of the plasmonic resonance on the magnetic dipole transition ⁵D₀-->⁷F₁ is found to be very different from its effect on the electric dipole transitions. This makes Eu³⁺₋ containing complexes promising for mapping local distributions of magnetic and electric fields in metamaterials and plasmonic systems.

  13. Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation

    International Nuclear Information System (INIS)

    Li, Rui

    2016-01-01

    The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin; the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field. (paper)

  14. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    International Nuclear Information System (INIS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-01-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  15. Damping width of giant dipole resonances of cold and hot nuclei: A macroscopic model

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Sonzogni, A.A.

    2002-01-01

    A phenomenological macroscopic model of the giant dipole resonance (GDR) damping width of cold and hot nuclei with ground-state spherical and near-spherical shapes is developed. The model is based on a generalized Fermi liquid model which takes into account the nuclear surface dynamics. The temperature dependence of the GDR damping width is accounted for in terms of surface and volume components. Parameter-free expressions for the damping width and the effective deformation are obtained. The model is validated with GDR measurements of the following nuclides: 39,40 K, 42 Ca, 45 Sc, 59,63 Cu, 109-120 Sn, 147 Eu, 194 Hg, and 208 Pb, and is compared with the predictions of other models

  16. Achieving 99.9% proton spin-flip efficiency at higher energy with a small rf dipole

    CERN Document Server

    Leonova, M A; Gebel, R; Hinterberger, F; Krisch, A D; Lehrach, A; Lorentz, B; Maier, R; Morozov, V S; Prasuhn, D; Raymond, R S; Schnase, A; Stockhorst, H; Ulbrich, K; Wong, V K; 10.1103/PhysRevLett.93.224801

    2004-01-01

    We recently used a new ferrite rf dipole to study spin flipping of a 2.1 GeV/c vertically polarized proton beam stored in the COSY Cooler Synchrotron in Julich, Germany. We swept the rf dipole's frequency through an rf-induced spin resonance to flip the beam's polarization direction. After determining the resonance's frequency, we varied the frequency range, frequency ramp time, and number of flips. At the rf dipole's maximum strength and optimum frequency range and ramp time, we measured a spin-flip efficiency of 99.92+or-0.04%. This result, along with a similar 0.49 GeV/c IUCF result, indicates that, due to the Lorentz invariance of an rf dipole's transverse integral Bdl and the weak energy dependence of its spin-resonance strength, an only 35% stronger rf dipole should allow efficient spin flipping in the 100 GeV BNL RHIC Collider or even the 7 TeV CERN Large Hadron Collider.

  17. Tunnel-induced Dipolar Resonances in a Double-well Potential.

    Science.gov (United States)

    Schulz, Bruno; Saenz, Alejandro

    2016-11-18

    A system of two dipolar particles that are confined in a double-well potential and interact via a realistic isotropic interaction potential is investigated as a protoype for ultracold atoms with a magnetic dipole moment or ultracold dipolar heteronuclear diatomic molecules in double-well traps or in optical lattices. The resulting energy spectrum is discussed as a function of the dipole-dipole interaction strength. The variation of the strength of the dipole-dipole interaction is found to lead to various resonance phenomena. Among those are the previously discussed inelastic confinement-induced resonances as well as the dipole-induced resonances. It is found that the double-well potential gives rise to a new type of resonances, tunnel-induced dipolar ones. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Measurements of ground motion and SSC dipole vibrations

    International Nuclear Information System (INIS)

    Parkhomchuk, V.V.; Shiltsev, V.D.; Weaver, H.J.

    1993-06-01

    The results of seismic ground measurements at the Superconducting Super Collider (SSC) site and investigations of vibrational properties of superconducting dipoles for the SSC are presented. Spectral analysis of the data obtained in the large frequency band from 0.05 Hz to 2000 Hz is done. Resonant behavior and the dipole-to-ground transform ratio are investigated. The influence of measured vibrations on SSC operations is considered

  19. Magnetic resonance imaging in clinically-definite multiple sclerosis

    International Nuclear Information System (INIS)

    Noakes, J.B.; Herkes, G.K.; Frith, J.A.

    1990-01-01

    Forty-two patients with clinically-definite multiple sclerosis were examined by magnetic resonance imaging using a 1.5-T instrument. Magnetic resonance imaging detected an abnormality in 90% of patients. In four patients, no lesions were demonstrated. The number, size and site of the lesions by magnetic resonance imaging were compared with the patients' clinical status and other variables. The Kurtzke disability status scale score increased in patients with corpus callosum atrophy, brainstem and basal ganglia lesions, and correlated with the total number of lesions. No correlation was shown between the findings of magnetic resonance imaging and disease duration, age, sex or pattern-reversal visual-evoked potentials. The variety of magnetic resonance images that could be obtained in patients with clinically-definite multiple sclerosis is highlighted. 24 refs., 8 figs., 1 tab

  20. Dipole rescattering and the nuclear structure function

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F. [Depto de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, SP (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Navarra, F. S.; Oliveira, E. G. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil)

    2013-03-25

    In the framework of the dipole model, we study the effects of the dipole multiple scatterings in a nuclear target and compute the nuclear structure function. We compare different unitarization schemes and confront our results with the E665 data.

  1. Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven LC Resonator Metamaterials

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-01

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  2. Polarized photon scattering of 52Cr: Determining the parity of dipole states

    Science.gov (United States)

    Krishichayan, Fnu; Bhike, M.; Tornow, W.

    2014-03-01

    Observation of dipole states in nuclei are important because they provide information on various collective and single-particle nuclear excitation modes, e.g., pygmy dipole resonance (PDR) and spin-flip M1 resonance. The PDR has been extensively studied in the higher and medium mass region, whereas not much information is available around the low mass (A ~ 50) region where, apparently,the PDR starts to form. The present photoresponse of 52Cr has been investigated to test the evolution of the PDR in a nucleus with a small number of excess neutrons as well as to look for spin-flip M1 resonance excitation mode. Spin-1 states in 52Cr between 5.0 to 9.5 MeV excitation energy were excited by exploiting fully polarized photons using the (γ ,γ') nuclear resonance fluorescence technique, a completely model-independent electromagnetic method. The de-excitation γ-rays were detected using a HPGe array. The experiment was carried out using the HIGS facility at TUNL. Results of unambiguous parity determinations of dipole states in 52Cr will be presented.

  3. Concentration dependence of the wings of a dipole-broadened magnetic resonance line in magnetically diluted lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zobov, V. E., E-mail: rsa@iph.krasn.ru [Russian Academy of Sciences, Kirenskii Institute of Physics, Siberian Branch (Russian Federation); Kucherov, M. M. [Siberian Federal University, Institute of Space and Information Technologies (Russian Federation)

    2017-01-15

    The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components are described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different {sup 29}Si concentrations in magnetic fields directed along three crystallographic axes is considered.

  4. Spreading effects on the isovector dipole strength distribution in 208Pb

    International Nuclear Information System (INIS)

    Adachi, S.; Nguyen van Giai

    1984-01-01

    There is seemingly a difficulty with all Hartree-Fock RPA calculations to describe correctly the distribution of dipole strength in heavy nuclei above the giant dipole region. We investigate in a consistent framework the effects of damping into more complex configurations. We show that in 208 Pb, this damping leads to a smooth distribution at higher energies while it gives a satisfactory description of the spreading width of the giant dipole resonance. (orig.)

  5. Multiple-state Feshbach resonances mediated by high-order couplings

    International Nuclear Information System (INIS)

    Hemming, Christopher J.; Krems, Roman V.

    2008-01-01

    We present a study of multistate Feshbach resonances mediated by high-order couplings. Our analysis focuses on a system with one open scattering state and multiple bound states. The scattering state is coupled to one off-resonant bound state and multiple Feshbach resonances are induced by a sequence of indirect couplings between the closed channels. We derive a general recursive expression that can be used to fit the experimental data on multistate Feshbach resonances involving one continuum state and several bound states and present numerical solutions for several model systems. Our results elucidate general features of multistate Feshbach resonances induced by high-order couplings and suggest mechanisms for controlling collisions of ultracold atoms and molecules with external fields

  6. Studies of photonuclear reactions and photon activation analysis in the giant dipole resonance region using microtrons

    International Nuclear Information System (INIS)

    Tran Duc Thiep; Nguyen Van Do; Nguyen Khac Thi; Truong Thi An; Nguyen Ngoc Son

    2004-01-01

    Microtrons are accelerators of electrons and are simultaneous source of Bremsstrahlung photon flux and fission neutrons. In 1982, a microtron of seventeen trajectories Microtron MT - 17 was put into operation at the National Institute of Physics of Vietnam. Though very modest, microtrons are very useful for developing countries such as Vietnam in both fundamental and applied physics research. During the recent years by using the above mentioned MT - 17 and microtrons from other institutes we have carried out different investigation. In this report we present some results obtained in the studies of photonuclear reactions and photon activation analysis in the giant dipole resonance region. (author)

  7. Destructive interference between electric and toroidal dipole moments in TiO2 cylinders and frustums with coaxial voids

    Science.gov (United States)

    Terekhov, P. D.; Baryshnikova, K. V.; Evlyukhin, A. B.; Shalin, A. S.

    2017-11-01

    We demonstrate numerically the possibility of multipole interference in the TiO2 (titanium dioxide) microcylinders and microfrustums in the wavelength range 210-300 μm. Resonantly strong destructive interference between toroidal and electric dipole contributions to the scattered field is achieved by a geometry tuning. The toroidal and electric dipole mode overlapping at the resonant wavelength with almost total suppression of the total electric dipole moment is achieved.

  8. Pressure profiles of plasmas confined in the field of a magnetic dipole

    International Nuclear Information System (INIS)

    Davis, Matthew S; Mauel, M E; Garnier, Darren T; Kesner, Jay

    2014-01-01

    Equilibrium pressure profiles of plasmas confined in the field of a dipole magnet are reconstructed using magnetic and x-ray measurements on the levitated dipole experiment (LDX). LDX operates in two distinct modes: with the dipole mechanically supported and with the dipole magnetically levitated. When the dipole is mechanically supported, thermal particles are lost along the field to the supports, and the plasma pressure is highly peaked and consists of energetic, mirror-trapped electrons that are created by electron cyclotron resonance heating. By contrast, when the dipole is magnetically levitated losses to the supports are eliminated and particles are lost via slower cross-field transport that results in broader, but still peaked, plasma pressure profiles. (paper)

  9. Silicon Mie resonators for highly directional light emission from monolayer MoS2

    Science.gov (United States)

    Cihan, Ahmet Fatih; Curto, Alberto G.; Raza, Søren; Kik, Pieter G.; Brongersma, Mark L.

    2018-05-01

    Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire.

  10. Origin of fine structure of the giant dipole resonance in s d -shell nuclei

    Science.gov (United States)

    Fearick, R. W.; Erler, B.; Matsubara, H.; von Neumann-Cosel, P.; Richter, A.; Roth, R.; Tamii, A.

    2018-04-01

    A set of high-resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the giant dipole resonance (GDR) in s d -shell nuclei. Understanding is achieved by comparison with random phase approximation calculations for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows one to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement for scales in the range of a few hundred keV supports the surmise that the fine structure arises from ground-state deformation driven by α clustering.

  11. Strong electric and magnetic dipole excitations in deformed nuclei

    International Nuclear Information System (INIS)

    Kneissl, U.

    1993-01-01

    Systematic nuclear resonance fluorescence (NRF) experiments have been performed at the bremsstrahlung facility of the Stutgart dynamitron to investigate the distribution of magnetic and electric dipole excitations in deformed nuclei

  12. Quantal and thermal dampings of the hot giant dipole resonance due to complex configuration mixing

    CERN Document Server

    Dang, N D; Arima, A

    1999-01-01

    An approach is presented to study the width of the giant dipole resonance (GDR) at non-zero temperature T, which includes all forward-going processes up to two-phonon ones. Calculations are performed in sup 1 sup 2 sup 0 Sn and sup 2 sup 0 sup 8 Pb. An overall agreement between theory and experiment is found. The total width of the GDR due to coupling of the GDR phonon to all ph, pp and hh configurations increases sharply as T increases up to T approx 3 MeV and saturates at T approx 4-6 MeV. The quantal width GAMMA sub Q due to coupling to ph configurations decreases with increasing T. It is almost independent of T if the contribution of two-phonon processes at T not =0 is omitted.

  13. Selectivity in multiple quantum nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible

  14. Selectivity in multiple quantum nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Warren Sloan [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  15. Beam Manipulation with an RF Dipole

    International Nuclear Information System (INIS)

    Bai, M.

    1999-01-01

    Coherent betatron motion adiabatically excited by an RF dipole has been successfully employed to overcome strong intrinsic spin depolarization resonances in the AGS, while a solenoid partial snake has been used to correct imperfection spin resonances. The experimental results showed that a full spin flip was obtained in passing through an intrinsic spin resonance when all the beam particles were forced to oscillate coherently at a large amplitude without diluting the beam emittance. With this method, they have successfully accelerated polarized beam up to 23.5 GeV/c. A new type of second order spin resonances was also discovered. As a non-destructive manipulation, this method can also be used for nonlinear beam dynamics studies and beam diagnosis such as measuring phase advance and betatron amplitude function

  16. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals

    Science.gov (United States)

    Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-12-01

    The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.

  17. Elastic and Raman scattering of photons from the giant dipole resonance

    International Nuclear Information System (INIS)

    Bar-Noy, T.

    1978-12-01

    In the present work we investigated nuclear Raman and elastic scattering of photons from the Giant Dipole Resonance (GDR) of medium and heavy nuclei. The photons beams were obtained from thermal neutron capture on V, Fe, Ni, Cu and Cr discs, utilizing the IRR-2 reactor. Nine targets, 159 Tb, 165 Ho, 175 Lu, 181 Ta, 197 Au, 209 Bi, 232 Th, 237 Np, and 238 U, representing all spherical and deformed nuclei in the region of medium and heavy nuclei, were used. As preliminary works, we discovered and investigated the 11.4 MeV γ-line, measured the attenuation coefficients at 9 and 11.4 MeV, performed a numerical calculation of Delbrueck amplitudes and modified the Simple Rotator Model (SRM). The absolute scattering cross-sections were measured for each scatterer at 4-8 different energies, and angular distributions in the range 90 deg to 140 deg were carried out at 9 MeV and 11.4 MeV. The experimental results were compared with theoretical predictions of the modified SRM and the Dynamic Collective Model (DCM). The results proved that the modified SRM describes appropriately the scattering from the GDR, including elastic and Raman absolute cross-sections and their angular distributions. (author)

  18. Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanics

    Science.gov (United States)

    Ullah, Kamran; Jing, Hui; Saif, Farhan

    2018-03-01

    We show multiple electromechanically-induced transparency (EMIT) windows in a hybrid nano-electro-optomechanical system in the presence of two-level atoms coupled to a single-mode cavity field. The multiple EMIT-window profile can be observed by controlling the atom field coupling as well as Coulomb coupling between the two charged mechanical resonators. We derive the analytical expression of the multiple-EMIT-windows profile and describe the splitting of multiple EMIT windows as a function of optomechanical coupling, atom-field coupling, and Coulomb coupling. In particular, we discuss the robustness of the system against the cavity decay rate. We compare the results of identical mechanical resonators to different mechanical resonators. We further show how the hybrid nano-electro-optomechanics coupled system can lead to the splitting of the multiple Fano resonances (MFR). The Fano resonances are very sensitive to decay terms in such systems, i.e., atoms, cavities, and the mechanical resonators.

  19. Autapse-induced multiple stochastic resonances in a modular neuronal network

    Science.gov (United States)

    Yang, XiaoLi; Yu, YanHu; Sun, ZhongKui

    2017-08-01

    This study investigates the nontrivial effects of autapse on stochastic resonance in a modular neuronal network subjected to bounded noise. The resonance effect of autapse is detected by imposing a self-feedback loop with autaptic strength and autaptic time delay to each constituent neuron. Numerical simulations have demonstrated that bounded noise with the proper level of amplitude can induce stochastic resonance; moreover, the noise induced resonance dynamics can be significantly shaped by the autapse. In detail, for a specific range of autaptic strength, multiple stochastic resonances can be induced when the autaptic time delays are appropriately adjusted. These appropriately adjusted delays are detected to nearly approach integer multiples of the period of the external weak signal when the autaptic strength is very near zero; otherwise, they do not match the period of the external weak signal when the autaptic strength is slightly greater than zero. Surprisingly, in both cases, the differences between arbitrary two adjacent adjusted autaptic delays are always approximately equal to the period of the weak signal. The phenomenon of autaptic delay induced multiple stochastic resonances is further confirmed to be robust against the period of the external weak signal and the intramodule probability of subnetwork. These findings could have important implications for weak signal detection and information propagation in realistic neural systems.

  20. ACCELERATION OF POLARIZED BEAMS USING MULTIPLE STRONG PARTIAL SIBERIAN SNAKES

    International Nuclear Information System (INIS)

    ROSER, T.; AHRENS, L.; BAI, M.

    2004-01-01

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult since depolarizing spin resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions. Using a 20-30% partial Siberian snake both imperfection and intrinsic resonances can be overcome. Such a strong partial Siberian snake was designed for the Brookhaven AGS using a dual pitch helical superconducting dipole. Multiple strong partial snakes are also discussed for spin matching at beam injection and extraction

  1. Complete dipole response in 208Pb from high-resolution polarized proton scattering at 0 deg

    International Nuclear Information System (INIS)

    Neumann-Cosel, P. von; Kalmykov, Y.; Poltoratska, I.; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Adachi, T.; Fujita, Y.; Matsubara, H.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Yosoi, M.; Bertulani, C. A.; Carter, J.; Fujita, H.; Dozono, M.; Fujita, K.; Hashimoto, H.; Hatanaka, K.

    2009-01-01

    The structure of electric and magnetic dipole modes in 208 Pb is investigated in a high-resolution measurement of the (p-vector,p-vector') reaction under 0 deg. First results on the E1 strength in the region of the pygmy dipole resonance are reported.

  2. Giant nuclear resonances

    International Nuclear Information System (INIS)

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  3. Magnetic field of a dipole and the dipole-dipole interaction

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R 3 law for the magnetic field and the 1/R 4 law for the interaction force between two dipoles, as well as their angular dependences

  4. Nuclear isovector giant resonances excited by pion single charge exchange

    International Nuclear Information System (INIS)

    King, B.H.

    1993-07-01

    This thesis is an experimental study of isovector giant resonances in light nuclei excited by pion single charge exchange reactions. Giant dipole resonances in light nuclei are known to be highly structured. For the mass 9 and 13 giant dipole resonances, isospin considerations were found to be very important to understanding this structure. by comparing the excitation functions from cross section measurements of the (π + , π 0 ) and (π, π 0 ) inclusive reactions, the authors determined the dominant isospin structure of the analog IVGR's. The comparison was made after decomposing the cross section into resonant and non-resonant components. This decomposition is made in the framework of strong absorption and quasi-free scattering. Measurements in the region of the isovector giant dipole resonances (IVGDR) were made to cover the inclusive angular distributions out to the second minimum. Study of the giant resonance decay process provides further understanding of the resonances. This study was carried out by observing the (π + , π 0 p) coincident reactions involving the resonances of 9 B and 13 N excited from 9 Be and 13 C nuclei. These measurements determined the spectra of the decay protons. This method also permitted a decomposition of the giant resonances into their isospin components. The multipolarities of the resonances were revealed by the decay proton angular correlations which, for dipoles, are of the form 1 + A 2 P 2 (cos θ)

  5. Electric-dipole absorption resonating with longitudinal optical phonon-plasmon system and its effect on dispersion relations of interface phonon polariton modes in metal/semiconductor-stripe structures

    Science.gov (United States)

    Sakamoto, Hironori; Takeuchi, Eito; Yoshida, Kouki; Morita, Ken; Ma, Bei; Ishitani, Yoshihiro

    2018-01-01

    Interface phonon polaritons (IPhPs) in nano-structures excluding metal components are thoroughly investigated because they have lower loss in optical emission or absorption and higher quality factors than surface plasmon polaritons. In previous reports, it is found that strong infrared (IR) absorption is based on the interaction of p-polarized light and materials, and the resonance photon energy highly depends on the structure size and angle of incidence. We report the optical absorption by metal/semiconductor (bulk-GaAs and thin film-AlN)-stripe structures in THz to mid-IR region for the electric field of light perpendicular to the stripes, where both of s- and p-polarized light are absorbed. The absorption resonates with longitudinal optical (LO) phonon or LO phonon-plasmon coupling (LOPC) modes, and thus is independent of the angle of incidence or structure size. This absorption is attributed to the electric dipoles by the optically induced polarization charges at the metal/semiconductor, heterointerfaces, or interfaces of high electron density layers and depression ones. The electric permittivity is modified by the formation of these dipoles. It is found to be indispensable to utilize our form of altered permittivity to explain the experimental dispersion relations of metal/semiconductor-IPhP and SPhP in these samples. This analysis reveals that the IPhPs in the stripe structures of metal/AlN-film on a SiC substrate are highly confined in the AlN film, while the permittivity of the structures of metal/bulk-GaAs is partially affected by the electric-dipoles. The quality factors of the electric-dipole absorption are found to be 42-54 for undoped samples, and the value of 62 is obtained for Al/AlN-IPhP. It is thought that metal-contained structures are not obstacles to mode energy selectivity in phonon energy region of semiconductors.

  6. Visualizing dipole radiation

    International Nuclear Information System (INIS)

    Girwidz, Raimund V

    2016-01-01

    The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures. (paper)

  7. Enhanced terahertz magnetic dipole response by subwavelength fiber

    Directory of Open Access Journals (Sweden)

    Shaghik Atakaramians

    2018-05-01

    Full Text Available Dielectric sub-wavelength particles have opened up a new platform for realization of magnetic light. Recently, we have demonstrated that a dipole emitter by a sub-wavelength fiber leads to an enhanced magnetic response. Here, we experimentally demonstrate an enhanced magnetic dipole source in the terahertz frequency range. By placing the fiber next to the hole in a metal screen, we find that the radiation power can be enhanced more than one order of magnitude. The enhancement is due to the excitation of the Mie-type resonances in the fiber. We demonstrate that such a system is equivalent to a double-fiber system excited by a magnetic source. This coupled magnetic dipole and optical fiber system can be considered a unit cell of metasurfaces for manipulation of terahertz radiation and is a proof-of-concept of a possibility to achieve enhanced radiation of a dipole source in proximity of a sub-wavelength fiber. It can also be scaled down to optical frequencies opening up promising avenues for developing integrated nanophotonic devices such as nanoantennas or lasers on fibers.

  8. Dipole-dipole dispersion interactions between neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Babb, James F. [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Higa, Renato [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Hussein, Mahir S. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Universidade de Sao Paulo, Instituto de Estudos Avancados, Sao Paulo (Brazil); Departamento de Fisica, Instituto Tecnologico de Aeronautica, CTA, Sao Jose dos Campos (Brazil)

    2017-06-15

    We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the Δ-resonance (J{sup π} = +3/2, I = 3/2). We found both dynamical effects to be quite relevant for distances r between ∝ 50 fm up to ∝ 10{sup 3} fm in the nn system, the neutron-wall system and in the wall-neutron-wall system, reaching the expected asymptotic limit beyond that. Relevance of our findings to the confinement of ultra cold neutrons inside bottles is discussed. (orig.)

  9. SPS Dipole Multipactor Test and TEWave Diagnostics

    CERN Document Server

    Caspers, F; Edwards, P; Federmann, S; Holz, M; Taborelli, M

    2013-01-01

    Electron cloud accumulation in particle accelerators can be mitigated by coating the vacuum beam pipe with thin films of low secondary electron yield (SEY) material. The SEY of small coated samples are usually measured in the laboratory. To further test the properties of different coating materials, RF-induced multipacting in a coaxial waveguide configuration can be performed. The technique is applied to two main bending dipoles of the SPS, where the RF power is fed through a tungsten wire stretched along the vacuum chamber (6.4 m). A dipole with a bare stainless steel chamber shows a clear power threshold initiating an abrupt rise in reflected power and pressure. The effect is enhanced at RF frequencies corresponding to electron cyclotron resonances for given magnetic fields. Preliminary results show that the dipole with a carbon coated vacuum chamber does not exhibit any pressure rise or reflected RF power up to the maximum available input power. In the case of a large scale coating production this techniqu...

  10. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan, E-mail: liyan@mail.tsinghua.edu.cn [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China)

    2016-09-15

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  11. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    International Nuclear Information System (INIS)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2016-01-01

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  12. Electric dipole strength and dipole polarizability in 48Ca within a fully self-consistent second random–phase approximation

    Directory of Open Access Journals (Sweden)

    D. Gambacurta

    2018-02-01

    Full Text Available The second random–phase–approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random–phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.

  13. Electric dipole strength and dipole polarizability in 48Ca within a fully self-consistent second random-phase approximation

    Science.gov (United States)

    Gambacurta, D.; Grasso, M.; Vasseur, O.

    2018-02-01

    The second random-phase-approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random-phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.

  14. Search for a neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J [Rutherford Appleton Laboratory, Chilton (U.K.)

    1984-03-01

    To search for evidence of a breakdown of symmetry under the time reversal transformation, a magnetic resonance measurement is made to detect an electric dipole moment (EDM) of ultracold neutrons stored for periods approximately= 60s in the presence of a strong electric field. The measured neutron EDM is (0.3 +- 4.8) x 10/sup -25/ ecm.

  15. Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole.

    Science.gov (United States)

    Panaretos, Anastasios H; Werner, Douglas H

    2015-04-06

    In this paper we theoretically investigate the feasibility of creating a dual-mode plasmonic nanorod antenna. The proposed design methodology relies on adapting to optical wavelengths the principles of operation of trapped dipole antennas, which have been widely used in the low MHz frequency range. This type of antenna typically employs parallel LC circuits, also referred to as "traps", which are connected along the two arms of the dipole. By judiciously choosing the resonant frequency of these traps, as well as their position along the arms of the dipole, it is feasible to excite the λ/2 resonance of both the original dipole as well as the shorter section defined by the length of wire between the two traps. This effectively enables the dipole antenna to have a dual-mode of operation. Our analysis reveals that the implementation of this concept at the nanoscale requires that two cylindrical pockets (i.e. loading volumes) be introduced along the length of the nanoantenna, inside which plasmonic core-shell particles are embedded. By properly selecting the geometry and constitution of the core-shell particle as well as the constitution of the host material of the two loading volumes and their position along the nanorod, the equivalent effect of a resonant parallel LC circuit can be realized. This effectively enables a dual-mode operation of the nanorod antenna. The proposed methodology introduces a compact approach for the realization of dual-mode optical sensors while at the same time it clearly illustrates the inherent tuning capabilities that core-shell particles can offer in a practical framework.

  16. Manipulating the strength and broadband of the resonators in the terahertz metamaterials

    Science.gov (United States)

    Liu, Changxiang; Zhou, Qingli; Li, Chenyu; Zhang, Cunlin

    2018-01-01

    We investigate two dipoles which are attached or separated with the orthogonal arrangement in the terahertz frequency. These results show that the metasurface could achieve the resonance coupling and polarization conversion effect. There are two resonance dips in the transmission spectra, when these two dipoles are attached to form the L-shaped structure. With the spacing between vertical and horizontal dipoles separated, the broadband of the resonator becomes narrower and resonance dips merge into one deeper dip due to the superposition of the interaction of two dipoles. The loss of the energy is not only coupled to the free space but also converted to the cross-polarization. The broadband and the strength of the crosspolarization are modulated by changing the distance between the vertical and horizontal dipoles. Tuning the spacing, we control the co- and cross polarization of the broadband and the strength at the same time. This modulation provides the functionally potential applications in the terahertz modulators and filters.

  17. Tightly confined atoms in optical dipole traps

    International Nuclear Information System (INIS)

    Schulz, M.

    2002-12-01

    This thesis reports on the design and setup of a new atom trap apparatus, which is developed to confine few rubidium atoms in ultrahigh vacuum and make them available for controlled manipulations. To maintain low background pressure, atoms of a vapour cell are transferred into a cold atomic beam by laser cooling techniques, and accumulated by a magneto-optic trap (MOT) in a separate part of the vacuum system. The laser cooled atoms are then transferred into dipole traps made of focused far-off-resonant laser fields in single- or crossed-beam geometry, which are superimposed with the center of the MOT. Gaussian as well as hollow Laguerre-Gaussian (LG$ ( 01)$) beam profiles are used with red-detuned or blue-detuned light, respectively. Microfabricated dielectric phase objects allow efficient and robust mode conversion of Gaussian into Laguerre-Gaussian laser beams. Trap geometries can easily be changed due to the highly flexible experimental setup. The dipole trap laser beams are focused to below 10 microns at a power of several hundred milliwatts. Typical trap parameters, at a detuning of several ten nanometers from the atomic resonance, are trag depths of few millikelvin, trap frequencies near 30-kHz, trap light scattering rates of few hundred photons per atom and second, and lifetimes of several seconds. The number of dipole-trapped atoms ranges from more than ten thousand to below ten. The dipole-trapped atoms are detected either by a photon counting system with very efficient straylight discrimination, or by recapture into the MOT, which is imaged onto a sensitive photodiode and a CCD-camera. Due to the strong AC-Stark shift imposed by the high intensity trapping light, energy-selective resonant excitation and detection of the atoms is possible. The measured energy distribution is consistent with a harmonic potential shape and allows the determination of temperatures and heating rates. In first measurements, the thermal energy is found to be about 10 % of the

  18. Determination of the electromagnetic character of soft dipole modes solely based on quasicontinuous γ spectroscopy

    International Nuclear Information System (INIS)

    Voinov, A.; Schiller, A.; Guttormsen, M.; Rekstad, J.; Siem, S.

    2003-01-01

    We show that the combined analysis of quasicontinuous γ spectra from the ( 3 He,α) and (n th ,2γ) reactions gives the possibility to measure the electromagnetic character of soft dipole resonances. Two-step γ-cascade spectra have been calculated, using level densities and radiative strength functions from the ( 3 He,αγ) reaction. The calculations show that the intensity of the two-step cascades depends on the electromagnetic character of the soft dipole resonance under study. The difference reaches 40-100% which can be measured experimentally

  19. Optimum condition for spatial ion cyclotron resonance in a multiple magnetic mirror field

    International Nuclear Information System (INIS)

    Mieno, Tetsu; Hatakeyama, Rikizo; Sato, Noriyoshi

    1988-01-01

    A Spatial cyclotron resonance of ion beams passing through a multiple magnetic mirror field is investigated experimentally by varying parameters of the multiple mirror field. The optimum resonance condition is realized with a decrease in the cell length of the multiple mirror along the beams to satisfy the local condition of the spatial ion cyclotron resonance. The results show a remarkable increase of nonadiabatic transfer of the beam energy into the transverse direction to the magnetic field. (author)

  20. Study of the giant dipole resonance built on highly excited states in Sn and Dy nuclei

    International Nuclear Information System (INIS)

    Stolk, A.

    1988-01-01

    A study is presented of the giant dipole resonance built on highly excited states. The aim is to get more detailed information on the properties of the GDR and to use it as a tool for the investigation of nuclear structure at high excitation energy. The high energy γ-rays seen from the decay of excited state GDRs in heavy ion fusion reactions reflect the average properties of the states populated by the γ-emission. The measurements at different initial excitation energies of 114 Sn provide information on the nuclear level density near the particle separation energy at an average angular momentum of 10ℎ. The study of shape changes at very high spin in 152-156 Dy nuclei is presented. A theoretical model developed to describe fusion-evaporation reactions is presented. 149 refs.; 63 figs.; 13 tabs

  1. Comment on 'Angular momentum gated giant dipole resonance measurements in the reaction 28Si+58Ni at E(28Si)=100 and 125 MeV'

    International Nuclear Information System (INIS)

    Heckman, P.; Thoennessen, M.

    2003-01-01

    In a recent paper, the giant dipole resonance width was studied as a function of angular momentum in the nucleus 86 Mo. The width of the resonance was found to be constant over a spin range of (0-40)(ℎ/2π). It was concluded that the angular momentum dependence for 86 Mo differs from that of Sn isotopes. We compared both datasets with a phenomenological formula based on the thermal fluctuation theory. The 86 Mo data are inconsistent with the formula in contrast to the previously analyzed Sn data, which seems to indicate that the angular momentum dependence of the phenomenological model is not universally applicable

  2. Applicability of point-dipoles approximation to all-dielectric metamaterials

    DEFF Research Database (Denmark)

    Kuznetsova, S. M.; Andryieuski, Andrei; Lavrinenko, Andrei

    2015-01-01

    All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta......-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to approximate to 0.8 of the lattice constant. The results provide important...... guidelines for design and optimization of all-dielectric metamaterials....

  3. Dipole-dipole interaction of dust grains in plasmas

    International Nuclear Information System (INIS)

    Tskhakaya, D.D.; Shukla, P.K.

    2005-01-01

    Complete screening of the negative dust grain charge by a cloud of trapped ions in plasmas is investigated. In the external electric field, the compound dust particle - 'dust grain + ion cloud' acquires a dipole moment due to displacement of the centers of positive and negative charges in the opposite directions. By analogy to the Van der Waals potential, the dipole-dipole interaction of the compound dust particles can have an attractive behavior. It is shown that the dipole-dipole attractive force can exceed the shadowing force that is connected with the reciprocal interception of ions by the neighboring dust grains

  4. A 2:1 MUX Based on Multiple MEMS Resonators

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-01-09

    Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. This paper reports a realization of a 2:1 MUX, a concatenable digital logic element, based on electrothermal frequency tuning of electrically connected multiple arch resonators. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.

  5. A 2:1 MUX Based on Multiple MEMS Resonators

    KAUST Repository

    Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.; Fariborzi, Hossein

    2017-01-01

    Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. This paper reports a realization of a 2:1 MUX, a concatenable digital logic element, based on electrothermal frequency tuning of electrically connected multiple arch resonators. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.

  6. Passive wireless structural health monitoring sensor made with a flexible planar dipole antenna

    International Nuclear Information System (INIS)

    Jang, Sang-Dong; Kim, Jaehwan

    2012-01-01

    Cheap and efficient wireless sensors have been widely studied by electronics and communication technology development. In this paper, a flexible planar dipole antenna based passive wireless strain sensor has been investigated. The planar dipole antenna is designed for X band and made on a flexible polymer substrate using a conventional photolithography process. The fabricated dipole antenna is attached to a nonmetallic cantilever beam and monitors its bending strain. Mechanical strain and load impedance of the dipole antenna can change its resonance frequency, return loss and reflected signal. The return loss and reflected signals of the dipole antenna sensor are characterized by using a network analyzer. The strain sensitivity of the sensor is proportional to the return loss variation with the bending strain of the cantilever beam. The magnitude of reflected signals increases as the bending strain increases. (technical note)

  7. Engineering electric and magnetic dipole coupling in arrays of dielectric nanoparticles

    Science.gov (United States)

    Li, Jiaqi; Verellen, Niels; Van Dorpe, Pol

    2018-02-01

    Dielectric nanoparticles with both strong electric and magnetic dipole (ED and MD) resonances offer unique opportunities for efficient manipulation of light-matter interactions. Here, based on numerical simulations, we show far-field diffractive coupling of the ED and MD modes in a periodic rectangular array. By using unequal periodicities in the orthogonal directions, each dipole mode is separately coupled and strongly tuned. With this method, the electric and magnetic response of the dielectric nanoparticles can be deliberately engineered to accomplish various optical functionalities. Remarkably, an ultra-sharp MD resonance with sub-10 nm linewidth is achieved with a large enhancement factor for the magnetic field intensity on the order of ˜103. Our results will find useful applications for the detection of chemical and biological molecules as well as the design of novel photonic metadevices.

  8. The electric dipole response of neutron rich tin isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, Andrea; Aumann, Thomas; Rossi, Dominic; Schindler, Fabia [Institut fuer Kernphysik, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Johansen, Jacob [Aarhus University (Denmark); Schrock, Philipp [The University of Tokyo (Japan); Collaboration: R3B-Collaboration

    2016-07-01

    Studies of the dipole response in medium heavy and heavy neutron rich nuclei reveal valuable information about the isospin dependence of the nuclear equation of state. Therefore an experimental campaign investigating both the electric dipole response via Coulomb excitation and neutron removal along the tin isotope chain ({sup 124-134}Sn) has been carried out at the R3B (Reactions with Relativistic Radioactive Beams) setup at GSI (Helmholtzzentrum fuer Schwerionenforschung) for which the analysis is ongoing. The E1 response was induced via relativistic Coulomb scattering by a lead target in inverse kinematics, and calls for a kinematically complete determination of all reaction products in order to reconstruct the excitation energy by means of the invariant mass method. The goal is to obtain the Coulomb excitation cross section up to the adiabatic cut-off energy, covering the giant dipole resonance (GDR) range.

  9. Multiple systems atrophy: Differentiation and findings by Magnetic resonance

    International Nuclear Information System (INIS)

    Vargas Velez, Sergio Alberto; Alzate Betancur, Catalina Maria

    2006-01-01

    Multiple system atrophy (MSA) is a neuro degenerative disorder of undetermined cause, characterized clinically by Parkinson's, autonomic, cerebellar or pyramidal sing and symptoms. lts differentiation from Parkinson's disease may be difficult, mainly in the early stages owing to overlapping features. Magnetic resonance imaging has demonstrated usefulness in MSA diagnosis and in differentiation with Parkinson's disease. One case with magnetic resonance findings is described

  10. Dipole polarizability of neutron rich nuclei and the symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, Andrea; Johansen, Jacob; Miki, Kenjiro; Schindler, Fabia; Schrock, Philipp [IKP, TU Darmstadt (Germany); Aumann, Thomas [IKP, TU Darmstadt (Germany); GSI, Darmstadt (Germany); Boretzky, Konstanze [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    As a part of a systematic investigation of the dipole response of stable up to very neutron rich tin isotopes, nuclear and electromagnetic excitation of {sup 124}Sn-{sup 134}Sn has been investigated at relativistic energies in inverse kinematics induced by carbon and lead targets at the LAND-R3B setup at GSI in Darmstadt. The electric dipole response and the nuclear reaction cross section, total and charge-changing, are obtained from the kinematically complete determination of momenta of all particles on an event by event basis. The dipole polarizability is extracted from the Coulomb excitation interaction channel, in order to make use of relevant correlations of this observable with nuclear matter properties such as the symmetry energy at saturation density (J) and it's slope (L). The systematics of the low-lying ''pygmy'' dipole strength, the giant dipole resonance (GDR) and the neutron skin thickness are determined with respect to increasing isospin asymmetry. This talk also discusses the correlations and sensitivities of these variables and observables obtained within the framework of nuclear energy density functional theory.

  11. Two-phonon giant resonances in 136Xe, 208Pb, and 238U

    International Nuclear Information System (INIS)

    Boretzky, K.; Gruenschloss, A.; Ilievski, S.; Adrich, P.; Aumann, T.; Bertulani, C.A.; Cub, J.; Dostal, W.; Eberlein, B.; Elze, T.W.; Emling, H.; Fallot, M.; Holeczek, J.; Holzmann, R.; Kozhuharov, C.; Kratz, J.V.; Kulessa, R.; Leifels, Y.; Leistenschneider, A.; Lubkiewicz, E.; Mordechai, S.; Ohtsuki, T.; Reiter, P.; Simon, H.; Stelzer, K.; Stroth, J.; Suemmerer, K.; Surowiec, A.; Wajda, E.; Walus, W.

    2003-07-01

    The excitation of the double-phonon giant dipole resonance was observed in heavy projectile nuclei impinging on targets of high nuclear charge with energies of 500-700 MeV/nucleon. New experimental data are presented for 136 Xe and 238 U together with further analysis of earlier data on 208 Pb. Differential cross sections dσ/dE * and dσ/dθ for electromagnetic excitations were deduced. Depending on the isotope, cross sections appear to be enhanced in comparison to those expected from a purely harmonic nuclear dipole response. The cumulative effect of excitations of two-phonon states composed of one dipole and one quadrupole phonon, of predicted anharmoniticies in the double-phonon dipole response, and of damping of the dipole resonance during the collision may account for the discrepancy. In addition, decay properties of two-phonon resonances were studied and compared to that of a statistical decay. (orig.)

  12. Magnetic resonance appearance of monoclonal gammopathies of unknown significance and multiple myeloma. The GRI Study Group.

    Science.gov (United States)

    Bellaïche, L; Laredo, J D; Lioté, F; Koeger, A C; Hamze, B; Ziza, J M; Pertuiset, E; Bardin, T; Tubiana, J M

    1997-11-01

    A prospective multicenter study. To evaluate the use of magnetic resonance imaging, in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. Although multiple myeloma has been studied extensively with magnetic resonance imaging, to the authors' knowledge, no study has evaluated the clinical interest of magnetic resonance imaging in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. The magnetic resonance examinations of the thoracolumbar spine in 24 patients with newly diagnosed monoclonal gammopathies of unknown significance were compared with those performed in 44 patients with newly diagnosed nontreated multiple myeloma. All findings on magnetic resonance examination performed in patients with monoclonal gammopathies of unknown significance were normal, whereas findings on 38 (86%) of the 44 magnetic resonance examinations performed in patients with multiple myeloma were abnormal. Magnetic resonance imaging can be considered as an additional diagnostic tool in differentiating between monoclonal gammopathies of unknown significance and multiple myeloma, which may be helpful when routine criteria are not sufficient. An abnormal finding on magnetic resonance examination in a patient with monoclonal gammopathies of unknown significance should suggest the diagnosis of multiple myeloma after other causes of marrow signal abnormalities are excluded. Magnetic resonance imaging also may be proposed in the long-term follow-up of monoclonal gammopathies of unknown significance when a new biologic or clinical event suggests the diagnosis of malignant monoclonal gammopathy.

  13. Magnetic resonance imaging in the diagnostics of multiple sclerosis

    International Nuclear Information System (INIS)

    Larsen, J.P.; Tjoerstad, K.; Kaass, B.; Oedegaard, H.

    1987-01-01

    Multiple sclerosis is an important and frequent neurological disease and the diagnosis might be difficult. The clinical criteria of multiple sclerosis and the role of laboratory examinations in the diagnosis of the disease are discussed. In particular the help offered by the magnetic resonance imaging method is the subject of this paper. Three patients are reported and discussed

  14. ACOL dipoles

    International Nuclear Information System (INIS)

    Vlogaert, J.

    1987-01-01

    This paper describes the general design of ACOL dipoles, including the special injection area dipole. A list of mechanical, electrical and magnetic parameters and results of magnetic measurements are presented. Particular attention is paid to the proximity effects between quadrupoles and dipoles

  15. The LHC AC Dipole system: an introduction

    CERN Document Server

    Serrano, J; CERN. Geneva. BE Department

    2010-01-01

    The LHC AC Dipole is an instrument to study properties of the LHC lattice by inducing large transverse displacements in the beam. These displacements are generated by exciting the beam with an oscillating magnetic field at a frequency close to the tune. This paper presents the system requirements and the technical solution chosen to meet them, based of high-power audio amplifiers and a resonant parallel RLC circuit.

  16. Superdirective Magnetic Dipole Array as a First-Order Probe for Spherical Near-Field Antenna Measurements

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Pivnenko, Sergey; Breinbjerg, Olav

    2012-01-01

    The theory as well as numerical and experimental results are presented for a superdirective array composed of closely spaced electrically small resonant magnetic dipole elements. The array operates on a metal ground plane and can exhibit a maximum directivity of 11.5 dBi, 15.2 dBi, and 17.8 d......Bi (including 3 dB due to the ground plane), for 2, 3, and 4 magnetic dipoles, respectively. The array is self-resonant and is directly excited by a 50-ohm coaxial cable through the ground plane. The array radiates essentially the $\\vert\\mu\\vert=1$ spherical modes, which, despite a narrow bandwidth, makes...

  17. Magnetic resonance in multiple sclerose twins

    International Nuclear Information System (INIS)

    Polman, C.H.; UitdeHaag, B.M.J.; Koetsier, C.J.; Valk, J.; Lucas, C.J.

    1989-01-01

    Magnetic resonance imaging (MR) examinations were performed in a series of 7 twin sets (4 monozygotic and 3 dizygotic) and one triplet set who were clinically discordant for multiple sclerosis (MS). MRI abnormalities were detected in a number of the unaffected members of the nonzygotic twin pairs. The authors discuss the possible implications of their findings for the present view on the aetiology of MS. (author). 3 refs.; 1 fig.; 1 tab

  18. Finite temperature effects on monopole and dipole excitations

    International Nuclear Information System (INIS)

    Niu, Y F; Paar, N; Vretenar, D; Meng, J

    2011-01-01

    The relativistic random phase approximation based on effective Lagrangian with density dependent meson-nucleon couplings has been extended to finite temperature and employed in studies of multipole excitations within the temperature range T = 1 - 2 MeV. The model calculations showed that isoscalar giant monopole and isovector giant dipole resonances are only slightly modified with temperature, but additional transition strength appears at low energies because of thermal unblocking of single-particle orbitals close to the Fermi level. The analysis of low-lying states shows that isoscalar monopole response in 132 Sn results from single particle transitions, while the isovector dipole strength for 60 Ni, located around 10 MeV, is composed of several single particle transitions, accumulating a small degree of collectivity.

  19. Prototype and proposed ISABELLE dipoles

    International Nuclear Information System (INIS)

    McInturff, A.D.; Sampson, W.B.; Robins, K.E.; Dahl, P.F.; Damm, R.

    1977-01-01

    Data are presented on the latest dipole prototypes to update the operational parameters possible for ISABELLE. This data base will constantly expand until the start of construction of the storage rings. The data will include field quality, stray field magnitudes, quench temperature and propagation times, protection capabilities singly and in multiple units, maximum central fields obtained and training behavior. Performance of the dipoles versus temperature and mode of refrigeration will be discussed. The single layer cosine theta turns distribution coils' parameters are better than those required for the operation of the 200 x 200 GeV version of ISABELLE. The double layer prototype has exceeded the magnetic field performance and two dimensional quality of field needed for the 400 x 400 GeV version of ISABELLE

  20. Heat Dissipation of Resonant Absorption in Metal Nanoparticle-Polymer Films Described at Particle Separation Near Resonant Wavelength

    Directory of Open Access Journals (Sweden)

    Jeremy R. Dunklin

    2017-01-01

    Full Text Available Polymer films containing plasmonic nanostructures are of increasing interest for development of responsive energy, sensing, and therapeutic systems. The present work evaluates heat dissipated from power absorbed by resonant gold (Au nanoparticles (NP with negligible Rayleigh scattering cross sections randomly dispersed in polydimethylsiloxane (PDMS films. Finite element analysis (FEA of heat transport was coordinated with characterization of resonant absorption by Mie theory and coupled dipole approximation (CDA. At AuNP particle separation greater than resonant wavelength, correspondence was observed between measured and CDA-predicted optical absorption and FEA-derived power dissipation. At AuNP particle separation less than resonant wavelength, measured extinction increased relative to predicted values, while FEA-derived power dissipation remained comparable to CDA-predicted power absorption before lagging observed extinguished power at higher AuNP content and resulting particle separation. Effects of isolated particles, for example, scattering, and particle-particle interactions, for example, multiple scattering, aggregation on observed optothermal activity were evaluated. These complementary approaches to distinguish contributions to resonant heat dissipation from isolated particle absorption and interparticle interactions support design and adaptive control of thermoplasmonic materials for a variety of implementations.

  1. Self-consistent treatment of nuclear collective motion with an application to the giant-dipole resonance

    International Nuclear Information System (INIS)

    Liran, S.; Technion-Israel Inst. of Tech., Haifa. Dept. of Physics)

    1977-01-01

    This paper extends the recent theory of Liran, Scheefer, Scheid and Greiner on non-adiabatic cranking and nuclear collective motion. In the present work we show the self-consistency conditions for the collective motion, which are indicated by appropriate time-dependent Lagrange multipliers, can be treated explicitly. The energy conservation and the self-consistency condition in the case of one collective degree of freedom are expressed in differential form. This leads to a set of coupled differential equations in time for the many-body wave function, for the collective variable and for the Lagrange multiplier. An iteration procedure similar to that of the previous work is also presented. As an illustrative example, we investigate Brink's single-particle description of the giant-dipole resonance. In this case, the important role played by non-adiabaticity and self-consistency in determining the collective motion is demonstrated and discussed. We also consider the fact that in this example of a fast collective motion, the adiabatic cranking model of Inglis gives the correct mass parameter. (orig.) [de

  2. Dipole-bound states as doorways in (dissociative) electron attachment

    International Nuclear Information System (INIS)

    Sommerfeld, Thomas

    2005-01-01

    This communication starts with a comparison of dissociative recombination and dissociative attachment placing emphasis on the role of resonances as reactive intermediates. The main focus is then the mechanism of electron attachment to polar molecules at very low energies (100 meV). The scheme considered consists of two steps: First, an electron is captured in a diffuse dipole-bound state depositing its energy in the vibrational degrees of freedom, in other words, a vibrational Feshbach resonance is formed. Then, owing to the coupling with a valence state, the electron is transferred into a compact valence orbital, and depending on the electron affinities of the valence state and possible dissociation products, as well as on the details of the intramolecular redistribution of vibrational energy, long-lived anions can be generated or dissociation reactions can be initiated. The key property in this context is the electronic coupling strength between the diffuse dipole-bound and the compact valence states. We describe how the coupling strength can be extracted from ab initio data, and present results for Nitromethane, Uracil and Cyanoacetylene

  3. Single and multiple electromagnetic scattering by dielectric obstacles from a resonance perspective

    International Nuclear Information System (INIS)

    Riley, D.J.

    1987-03-01

    A new application of the singularity expansion method (SEM) is explored. This application combines the classical theory of wave propagation through a multiple-scattering environment and the SEM. Because the SEM is generally considered to be a theory for describing surface currents on conducting scatters, extensions are made which permit, under certain conditions, a singularity expansion representation for the electromagnetic field scattered by a dielectric scatterer. Application of this expansion is then made to the multiple-scattering case using both single and multiple interactions. A resonance scattering tensor form is used for the SEM description which leds to an associated tensor form for the solution to the multiple-scattering problem with each SEM pole effect appearing explicitly. The coherent field is determined for both spatial and SEM parameter random variations. A numerical example for the case of an ensemble of dielectric spheres which possess frequency-dependent loss is also made. Accurate resonance expansions for the single-scattering problem are derived, and resonance trajectories based on the Debye relaxation model for the refractive index are introduced. Application of these resonance expansions is then made to the multiple-scattering results for a slab containing a distribution of spheres with varying radii. Conditions are discussed which describe when the hybrid theory is appropriate. 53 refs., 21 figs., 9 tabs

  4. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    Science.gov (United States)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  5. Low-lying dipole strength of the open-shell nucleus 94Mo

    Science.gov (United States)

    Romig, C.; Beller, J.; Glorius, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Ponomarev, V. Yu.; Sauerwein, A.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.

    2013-10-01

    The low-lying dipole strength of the open-shell nucleus 94Mo was studied via the nuclear resonance fluorescence technique up to 8.7 MeV excitation energy at the bremsstrahlung facility at the Superconducting Darmstadt Electron Linear Accelerator (S-DALINAC), and with Compton backscattered photons at the High Intensity γ-ray Source (HIγS) facility. In total, 83 excited states were identified. Exploiting polarized quasi-monoenergetic photons at HIγS, parity quantum numbers were assigned to 41 states excited by dipole transitions. The electric dipole-strength distribution was determined up to 8.7 MeV and compared to microscopic calculations within the quasiparticle phonon model. Calculations and experimental data are in good agreement for the fragmentation, as well as for the integrated strength. The average decay pattern of the excited states was investigated exploiting the HIγS measurements at five energy settings. Mean branching ratios to the ground state and first excited 21+ state were extracted from the measurements with quasi-monoenergetic photons and compared to γ-cascade simulations within the statistical model. The experimentally deduced mean branching ratios exhibit a resonance-like maximum at 6.4 MeV which cannot be reproduced within the statistical model. This indicates a nonstatistical structure in the energy range between 5.5 and 7.5 MeV.

  6. Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils

    Science.gov (United States)

    Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.

    2017-09-01

    In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.

  7. Magnetic field modification of optical magnetic dipoles.

    Science.gov (United States)

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  8. Relativistic quasiparticle time blocking approximation: Dipole response of open-shell nuclei

    International Nuclear Information System (INIS)

    Litvinova, E.; Ring, P.; Tselyaev, V.

    2008-01-01

    The self-consistent relativistic quasiparticle random-phase approximation (RQRPA) is extended by the quasiparticle-phonon coupling (QPC) model using the quasiparticle time blocking approximation (QTBA). The method is formulated in terms of the Bethe-Salpeter equation (BSE) in the two-quasiparticle space with an energy-dependent two-quasiparticle residual interaction. This equation is solved either in the basis of Dirac states forming the self-consistent solution of the ground state or in the momentum representation. Pairing correlations are treated within the Bardeen-Cooper-Schrieffer (BCS) model with a monopole-monopole interaction. The same NL3 set of the coupling constants generates the Dirac-Hartree-BCS single-quasiparticle spectrum, the static part of the residual two-quasiparticle interaction and the quasiparticle-phonon coupling amplitudes. A quantitative description of electric dipole excitations in the chain of tin isotopes (Z=50) with the mass numbers A=100,106,114,116,120, and 130 and in the chain of isotones with (N=50) 88 Sr, 90 Zr, 92 Mo is performed within this framework. The RQRPA extended by the coupling to collective vibrations generates spectra with a multitude of 2q x phonon (two quasiparticles plus phonon) states providing a noticeable fragmentation of the giant dipole resonance as well as of the soft dipole mode (pygmy resonance) in the nuclei under investigation. The results obtained for the photo absorption cross sections and for the integrated contributions of the low-lying strength to the calculated dipole spectra agree very well with the available experimental data

  9. Electric and magnetic dipole moments of the neutron

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    1977-01-01

    Experiments to measure the electric and magnetic dipole moments of the neutron are described. The apparatus used in this experiment is one to measure with high precision the precessional frequency of the neutron spin in a weak magnetic field with a neutron beam magnetic resonance apparatus similar to that used for measuring the magnetic moment of the neutron. Results of the measurement are presented. 52 references

  10. Increasing Benefit of Magnetic Resonance Imaging in Multiple Sclerosis

    International Nuclear Information System (INIS)

    Pyhtinen, J.; Karttunen, A.; Tikkakoski, T.

    2006-01-01

    Magnetic resonance imaging (MRI) has emerged as an essential tool of multiple sclerosis (MS) diagnosis and has opened up completely new prospects in MS research and treatment trials. It is a sensitive method that gives direct evidence of tissue pathology and has greatly increased our knowledge of MS. In clinical work, MRI is used to confirm and exclude the diagnosis of MS. The international recommendation is that every suspected MS patient should undergo at least one brain MRI. T2-weighted images are the standard tool in clinical work, and functional imaging methods are mainly used in MS research. The subtypes and the course of the disease cause variation in MRI findings. Here, we present a general overview of MR findings in MS. Brain, magnetic resonance imaging, multiple sclerosis, spinal cord

  11. Increasing Benefit of Magnetic Resonance Imaging in Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Pyhtinen, J.; Karttunen, A.; Tikkakoski, T. [Radiologian Klinikka, Oulu (Finland)

    2006-11-15

    Magnetic resonance imaging (MRI) has emerged as an essential tool of multiple sclerosis (MS) diagnosis and has opened up completely new prospects in MS research and treatment trials. It is a sensitive method that gives direct evidence of tissue pathology and has greatly increased our knowledge of MS. In clinical work, MRI is used to confirm and exclude the diagnosis of MS. The international recommendation is that every suspected MS patient should undergo at least one brain MRI. T2-weighted images are the standard tool in clinical work, and functional imaging methods are mainly used in MS research. The subtypes and the course of the disease cause variation in MRI findings. Here, we present a general overview of MR findings in MS. Brain, magnetic resonance imaging, multiple sclerosis, spinal cord.

  12. Derivation of the electric dipole--dipole interaction as an electric hyperfine interaction

    International Nuclear Information System (INIS)

    Parker, G.W.

    1986-01-01

    The electric dipole--dipole interaction is derived by assuming that the electron and proton in hydrogen have intrinsic electric dipole moments that interact to give an electric hyperfine interaction. The electric field at the proton due to the electron's presumed dipole moment then gives rise to a contact type term for l = 0 and the normal dipole--dipole term for lnot =0. When combined with our previous derivation of the magnetic hyperfine interaction [Am. J. Phys. 52, 36 (1984)], which used a similar approach, these derivations provide a unified treatment of the interaction of electric and magnetic dipoles. As an application of these results, the product of the electron's and proton's dipole moments is estimated to be less than 10 -29 e 2 cm 2

  13. AutoDipole - Automated generation of dipole subtraction terms

    International Nuclear Information System (INIS)

    Hasegawa, K.; Uwer, P.

    2009-11-01

    We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)

  14. AutoDipole - Automated generation of dipole subtraction terms

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, K.; Uwer, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-11-15

    We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)

  15. Effect of large neutron excess in the region of the Giant Dipole and Quadrupole Resonance

    CERN Document Server

    Lanza, E G

    1999-01-01

    We study the dipole and quadrupole modes of neutron rich nuclei within the selfconsistent HF + RPA. The presence of neutron skin enhances the mixing of isoscalar and isovector modes. Then it is possible to excite modes of isovector character by an isoscalar probe. In particular we analize the excitation of dipole modes by alpha scattering. The excitation of compressional isoscalar mode is also studied.

  16. A wideband (3 to 5 GHz) wide-scan connected array of dipoles with low cross polarization

    NARCIS (Netherlands)

    Cavallo, D.; Neto, A.; Gerini, G.

    2012-01-01

    A wideband, wide-scan prototype phased array of connected dipoles has been manufactured and tested from 3 to 5 GHz. The array comprises 7 × 7 elements, each fed by a loop-shaped transformer to avoid common-mode resonances. Such resonances typically affect this type of arrays, with consequent

  17. Conceptual design of Dipole Research Experiment (DREX)

    Science.gov (United States)

    Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  18. 4He(γ,n)3He photodisintegration and the properties of O+-resonance of 4He by the resonating group method

    International Nuclear Information System (INIS)

    Filippov, G.F.; Vasilevsky, V.S.; Kovalenko, T.P.

    1984-01-01

    The reaction of 4 He electrodisintegration at small momenta transfered to the nucleus by electrons is considered on the basis of an algebraic version of the resonating group method. The calculated matrix element of the monopole transition from the ground state of 4 He into the O + -resonance state and the calculated monopole energy weighted sum rules confirm the assumption on the cluster nature of O + -resonance. In the dipole approximation the photonuclear reaction of 4 He(γ, n)He 3 at small energies of γ-quanta is studied. The obtained values of the electric dipole transition probabilities and the effective cross sections reveal a good agreement with experimental data

  19. Effect of dipole-quadrupole Robinson mode coupling upon the beam response to radio-frequency phase noise

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2006-09-01

    Full Text Available In an electron storage ring, coupling between dipole and quadrupole Robinson oscillations modifies the spectrum of longitudinal beam oscillations driven by radio-frequency (rf generator phase noise. In addition to the main peak at the resonant frequency of the coupled dipole Robinson mode, another peak occurs at the resonant frequency of the coupled quadrupole mode. To describe these peaks analytically for a quadratic synchrotron potential, we include the dipole and quadrupole modes when calculating the beam response to generator noise. We thereby obtain the transfer function from generator-noise phase modulation to beam phase modulation with and without phase feedback. For Robinson-stable bunches confined in a synchrotron potential with a single minimum, the calculated transfer function agrees with measurements at the Aladdin 800-MeV electron storage ring. The transfer function is useful in evaluating phase feedback that suppresses Robinson oscillations in order to obtain quiet operation of an infrared beam line.

  20. Magnetic resonance in multiple sclerosis

    International Nuclear Information System (INIS)

    Scotti, G.; Caputo, D.; Cazzullo, C.L.

    1986-01-01

    Magnetic Resonance Imaging was performed in more than 200 patients with clinical suspicion or knowledge of Multiple Sclerosis. One hundred and forty-seven (60 males and 87 females) had MR evidence of multiple sclerosis lesions. The MR signal of demyelinating plaques characteristically has prolonged T1 and T2 relaxation times and the T2-weighted spin-echo sequences are generally superior to the T1-weighted images because the lesions are better visualized as areas of increased signal intensity. MR is also able to detect plaques in the brainstem, cerebellum and within the cervical spinal cord. MR appears to be an important, non-invasive method for the diagnosis of Multiple Sclerosis and has proven to be diagnostically superior to CT, evoked potentials (EP) and CSF examination. In a selected group of 30 patients, with the whole battery of the relevant MS studies, MR was positive in 100%, CT in 33,3%, EP in 56% and CSF examination in 60%. In patients clinically presenting only with signs of spinal cord involvement or optic neuritis or when the clinical presentation is uncertain MR has proven to be a very useful diagnostic tool for diagnosis of MS by demonstrating unsuspected lesions in the cerebral hemispheres. (orig.)

  1. Isomeric ratios in photonuclear reactions of molybdenum isotopes induced by bremsstrahlung in the giant dipole resonance region

    International Nuclear Information System (INIS)

    Tran Duc Thiep; Truong Thi An; Phan Viet Cuong; Nguyen The Vinh; Bui Minh Hue; Belov, A.G.; Maslov, O.D.; Mishinsky, G.V.; Zhemenik, V.I.

    2017-01-01

    We have determined the isomeric ratios of isomeric pairs "9"7"m","gNb, "9"5"m","gNb and "9"1"m","gMo produced in "9"8Mo(γ, p)"9"7"m","gNb, "9"6Mo(γ, p)"9"5"m","gNb and "9"2Mo(γ, n)"9"1"m","gMo photonuclear reactions in the giant dipole resonance (GDR) region by the activation method. The results were analyzed, discussed and compared with the similar data from literature to examine the role of excitation energy, neutron configuration, channel effect, and direct and pre-equilibrium processes in (γ, p) photonuclear reactions. In this work the isomeric ratios for "9"7"m","gNb from 14 to 19 MeV, for "1"9"5"m","gNb from 14 to 24 MeV except 20 and 23.5 MeV and for "9"1"m","gMo at 14 and 15 MeV were first measured.

  2. Effect of multiple plasmon excitation on single, double and multiple ionizations of C{sub 60} in collisions with fast highly charged Si ions

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Kadhane, U; Misra, D; Kumar, A; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai -5 (India)

    2007-06-28

    We have investigated the single and multiple ionizations of the C{sub 60} molecule in collisions with fast Si{sup q+} projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.

  3. Investigation of low-lying dipole strength in {sup 124}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Symochko, D.; Aumann, T.; Duchene, M.; Knoerzer, M.; Pietralla, N.; Scheit, H. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Bhike, M.; Kelley, J.; Tornow, W. [Department for Physics, Duke University (United States); Derya, V.; Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Isaak, J.; Loeher, B.; Savran, D. [ExtreMe Matter Institute EMMI and Research Division, Darmstadt (Germany); Tonchev, A. [Lawrence Livermore National Laboratory (United States); Werner, V. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); WNSL, Yale University (United States)

    2014-07-01

    Dipole excitations in the semi-magic {sup 124}Sn nucleus were studied in (γ,γ') reactions using the γ{sup 3}-high-efficiency detector setup. The experiment was carried out with quasimonoenergetic photon beams provided by the HIγS facility at the TUNL in the energy range from 5.2 to 8.6 MeV at 15 different energies. Measurements allowed to identify near 80 new transitions to the ground state, obtain reduced transition probabilities and assign parity quantum numbers to the observed excited states. Besides, the γ-γ coincidence technique gave access to the γ-decay pattern of the Pygmy Dipole Resonance, e.g. it was possible to analyse the branching ratios to the first excited 2{sup +} state. Investigations were made as a part of the experimental campaign aimed to obtain a complete picture of dipole strength function evolution in Sn isotopes - from stable {sup 112}Sn to short-lived {sup 134}Sn.

  4. Nuclear magnetic and electric dipole moments of neon-19

    International Nuclear Information System (INIS)

    MacArthur, D.W.

    1983-01-01

    This thesis presents a detailed discussion of a series of experiments designed to measure the magnetic and electric dipole moments of the β-emitting nucleus 19 Ne. The 19 Ne is generated in the reaction 19 F(p,n) 19 Ne and is polarized by a ''stern-Gerlach'' magnet in a rare gas atomic beams machine. The atoms are stored in a cell for many seconds without depolarizing. The parity violating asymmetry in the β angular distribution is used to monitor the nuclear polarization. The polarized atoms are stored in a cell in a uniform magnetic field. The β-asymmetry is monitored by a pair of β-detectors located on either side of the cell. Transitions between the M/sub J/ = +1/2 and M/sub J/ = -1/2 spin states are induced by an rf field generated by a small Helmholtz coil pair surrounding the cell. Nuclear magnetic resonance lines are observed and the magnetic moment of 19 Ne measured to be μ( 19 Ne) = -1.88542(8)μ/sub N/. A new magnet, cell and detectors were designed to give narrow resonance lines. The equipment is described in detail and several resonance line shapes are discussed. The narrowest resonance line achieved with this system was 0.043 Hz FWHM. This width is primarily due to the 19 Ne lifetime. Pulsed NMR lineshapes were also observed. The narrow NMR lines observed in the previous experiment were then used as a probe to look for an electric dipole moment (EDM) in 19 Ne. Any shift in the resonance frequency correlated with changes in an externally applied electric field would be evidence for an EDM. The EDM of the 19 Ne atom was measured to (7.2 +/- 6.2 X 10 -22 e-cm. This experiment and possible improvements are discussed in detail

  5. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  6. Benefits and limitations of imaging multiples: Interferometric and resonant migration

    KAUST Repository

    Guo, Bowen

    2015-07-01

    The benefits and limitations of imaging multiples are reviewed for interferometric migration and resonant migration. Synthetic and field data examples are used to characterize the effectiveness of the methods.

  7. Benefits and limitations of imaging multiples: Interferometric and resonant migration

    KAUST Repository

    Guo, Bowen; Yu, Jianhua; Huang, Yunsong; Hanafy, Sherif M.; Schuster, Gerard T.

    2015-01-01

    The benefits and limitations of imaging multiples are reviewed for interferometric migration and resonant migration. Synthetic and field data examples are used to characterize the effectiveness of the methods.

  8. Polarization and angle independent magneto-electric Fano resonance in multilayer hetero-nanoshells

    Science.gov (United States)

    Wang, Wudeng; Xiong, Li; Zheng, Li; Li, Wei; Shi, Ying; Qi, Jianguang

    2018-05-01

    In this work, we have demonstrated that the Si-SiO2 -Au multilayer hetero-nanoshells can support the polarization and angle independent magneto-electric Fano resonance. Such Fano resonance arises from the direct destructive interference between the orthogonal electric dipole mode of Au core and magnetic dipole mode of the Si shell and is independent of the angle due to the high structural symmetry. In contrast to metal particle arrays, here is a possibility to generate controllable interaction between the electric and magnetic dipole resonances of individual nanoshell with the structural features. The discrete magnetic responses provided directly by the Si shell pave the groundwork for designing the magnetic responses at optical frequencies and enable many fascinating applications in nanophotonics.

  9. Radiation induced luminescence from a dipole immersed in a thin film

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1990-08-01

    Luminescence is modelled as electromagnetic radiation from a dipole immersed in a thin film. Maxwell's equations are solved for the cases when the dipole in the thin film is oriented normal and parallel to the interfaces. Expressions for emitted electric fields outside the thin film are derived and are found to have a resonant denominator that vanishes at the surface polariton excitation frequencies for a thin film. Luminescent spectra are plotted and peaks are found that are identified to be associated with both surface response and bulk response. Numerical results are presented to illustrate the model by considering a vacuum-GaP-sapphire system. (author). 9 refs, 5 figs

  10. Decay pattern of the Pygmy Dipole Resonance in 140Ce

    Science.gov (United States)

    Isaak, J.; Löher, B.; Savran, D.; Aumann, T.; Beller, J.; Cooper, N.; Derya, V.; Duchêne, M.; Endres, J.; Fiori, E.; Kelley, J. H.; Knörzer, M.; Pietralla, N.; Ponomarev, V. Yu.; Romig, C.; Scheck, M.; Scheit, H.; Silva, J.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Werner, V.; Zilges, A.; Zweidinger, M.

    2015-05-01

    The decay behavior of low-lying dipole states in 140Ce was investigated exploiting the γ3-setup at the HIγS facility using quasi-monochromatic photon beams. Branching ratios of individual excited states as well as average branching ratios to low-lying states have been extracted using γ - γ coincidence measurements. The comparison of the average branching ratios to QPM calculations shows a remarkable agreement between experiment and theory in the energy range from 5.0 to 8.5 MeV.

  11. Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis

    KAUST Repository

    Guo, Bowen

    2017-08-28

    Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the

  12. Multiple Literacies Theory: Discourse, Sensation, Resonance and Becoming

    Science.gov (United States)

    Masny, Diana

    2012-01-01

    This thematic issue on education and the politics of becoming focuses on how a Multiple Literacies Theory (MLT) plugs into practice in education. MLT does this by creating an assemblage between discourse, text, resonance and sensations. What does this produce? Becoming AND how one might live are the product of an assemblage (May, 2005; Semetsky,…

  13. Permanent Electric Dipole-Dipole Interactions in Lyotropic Polypeptide Liquid Crystals

    OpenAIRE

    MORI, Norio; Norio, MORI; Research Associate, Department of Industrial Chemistry

    1981-01-01

    The interaction energy between two adjacent α-helical molecules was calculated taking into account for permanent electric dipoles locating orl the helical core of a polymer mainchain in order to explain the cholesteric structure of lyotropic polypeptide liquid crystals. It was concluded that the dipole-dipole interactions were responsible for the formation of the cholesteric structure.

  14. Dissipation-induced dipole blockade and antiblockade in driven Rydberg systems

    Science.gov (United States)

    Young, Jeremy T.; Boulier, Thomas; Magnan, Eric; Goldschmidt, Elizabeth A.; Wilson, Ryan M.; Rolston, Steven L.; Porto, James V.; Gorshkov, Alexey V.

    2018-02-01

    We study theoretically and experimentally the competing blockade and antiblockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole interactions and play a crucial role in the system's behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental results. We further predict that as the atomic density is increased, the Rydberg population's dependence on Rabi frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior experimentally by observing this crossover at two different atomic densities. We confirm that the larger density system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate-equation model to the experimental observations [E. A. Goldschmidt et al., Phys. Rev. Lett. 116, 113001 (2016), 10.1103/PhysRevLett.116.113001] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drives.

  15. Decay pattern of the Pygmy Dipole Resonance in 140Ce

    Directory of Open Access Journals (Sweden)

    Isaak J.

    2015-01-01

    Full Text Available The decay behavior of low-lying dipole states in 140Ce was investigated exploiting the γ3-setup at the HIγS facility using quasi-monochromatic photon beams. Branching ratios of individual excited states as well as average branching ratios to low-lying states have been extracted using γ – γ coincidence measurements. The comparison of the average branching ratios to QPM calculations shows a remarkable agreement between experiment and theory in the energy range from 5.0 to 8.5 MeV.

  16. Polarization of nuclear spins by a cold nanoscale resonator

    International Nuclear Information System (INIS)

    Butler, Mark C.; Weitekamp, Daniel P.

    2011-01-01

    A cold nanoscale resonator coupled to a system of nuclear spins can induce spin relaxation. In the low-temperature limit where spin-lattice interactions are ''frozen out,'' spontaneous emission by nuclear spins into a resonant mechanical mode can become the dominant mechanism for cooling the spins to thermal equilibrium with their environment. We provide a theoretical framework for the study of resonator-induced cooling of nuclear spins in this low-temperature regime. Relaxation equations are derived from first principles, in the limit where energy donated by the spins to the resonator is quickly dissipated into the cold bath that damps it. A physical interpretation of the processes contributing to spin polarization is given. For a system of spins that have identical couplings to the resonator, the interaction Hamiltonian conserves spin angular momentum, and the resonator cannot relax the spins to thermal equilibrium unless this symmetry is broken by the spin Hamiltonian. The mechanism by which such a spin system becomes ''trapped'' away from thermal equilibrium can be visualized using a semiclassical model, which shows how an indirect spin-spin interaction arises from the coupling of multiple spins to one resonator. The internal spin Hamiltonian can affect the polarization process in two ways: (1) By modifying the structure of the spin-spin correlations in the energy eigenstates, and (2) by splitting the degeneracy within a manifold of energy eigenstates, so that zero-frequency off-diagonal terms in the density matrix are converted to oscillating coherences. Shifting the frequencies of these coherences sufficiently far from zero suppresses the development of resonator-induced correlations within the manifold during polarization from a totally disordered state. Modification of the spin-spin correlations by means of either mechanism affects the strength of the fluctuating spin dipole that drives the resonator. In the case where product states can be chosen as energy

  17. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    International Nuclear Information System (INIS)

    Li Yu-Ye; Ding Xue-Li

    2014-01-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns. (interdisciplinary physics and related areas of science and technology)

  18. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    Science.gov (United States)

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  19. Dipole-dipole van der Waals interaction in alkali halides

    International Nuclear Information System (INIS)

    Thakur, B.N.; Thakur, K.P.

    1978-01-01

    Values of van der Waals dipole-dipole constants and interaction energetics of alkali halides are reported using the recent data. The values obtained are somewhat larger than those of earlier workers. (orig.) [de

  20. Collective dipole motion in highly excited (272)Hs (Z=108) nuclei

    NARCIS (Netherlands)

    Tveter, TS; Gaardhoje, JJ; Maj, A; Ramsay, T; Atac, A; Bacelar, J; Bracco, A; Buda, A; Camera, F; Herskind, B; Korten, W; Krolas, W; Menthe, A; Million, B; Nifenecker, H; Pignanelli, M; Pinston, JA; vanderPloeg, H; Schussler, F; Sletten, G

    1996-01-01

    The heavy nucleus (272)(108)Hs (Z = 108) and its evaporation daughters were produced using the reaction Th-232(Ar-40, gamma xn) with beam energies 10.5 and 15.0 MeV/A. The giant dipole resonance gamma radiation from the hot composite system prior to fission has been isolated using a differential

  1. Rotation Detection Using the Precession of Molecular Electric Dipole Moment

    Science.gov (United States)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2017-11-01

    We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.

  2. Improvement of photoneutron spectrum measurement produced by bombardment of 2 GeV electrons above giant dipole resonance region

    International Nuclear Information System (INIS)

    Lee, H. S.; Park, J. S.; Choi, H. D.; Sato, Tatsuhiko; Shin, Kasuo; Ban, Syuichi

    2000-01-01

    Above the Giant Dipole Resonance (GDR) region, high energy photoneutron spectra produced by irradiation of 2.04 GeV electrons into Pb target were measured by Time-of-Flight (TOF) technique. The differential photoneutron yields were obtained at a fixed angle of 90 degrees to the electron beam direction. The TOF system consists of Pilot-U plastic scintillation detector, which has fast response time, and the high speed multiscaler or CAMAC TDC. In the improvement of experimental setup to extend the flight distance to 10.4 m lead to make the measurable energy to 500 MeV from 300 MeV. And using the TDC based electronics lead to use a veto counter. The results were compared with the calculated one by using EGS4 and Modified PICA95. The characteristics of this TOF system was introduced in this paper and the results for several measuring conditions, which are flight distance, TOF electronics, and type of neutron detector, were discussed to improve the accuracy of this measurement

  3. Magnetic dipole moment of a moving electric dipole

    OpenAIRE

    Hnizdo, V.

    2012-01-01

    The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.

  4. New properties of giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1991-01-01

    Studies on the giant dipole resonance in very hot nuclei investigated in heavy ion-induced particle-γ coincidence experiments are reviewed. A signature is found in the γ-decay of excited nuceli which shows direct decay of the giant dipole resonance. This provides a new dimension in giant resonance studies and the possibility to study the dependence of giant resonance energy, width and sum rule strength on excitation energy and rotation of the system. Further, the fact that the giant resonance splits in deformed nuclei provides a unique way to get information on the shape of hot nuclei. First results are obtained on the following questions: (i)What is the nuclear shape at high temperature (T≥2 MeV)? (ii)Is there a phase transition in the nuclear shape at T∼1.7 MeV? (iii)Does motional narrowing exist in hot nuclei? (author). 19 refs., 11 figs

  5. Pygmy and core polarization dipole modes in 206Pb: Connecting nuclear structure to stellar nucleosynthesis

    Science.gov (United States)

    Tonchev, A. P.; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2017-10-01

    A high-resolution study of the electromagnetic response of 206Pb below the neutron separation energy is performed using a (γ → ,γ‧) experiment at the HI γ → S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in 206Pb from 4.9 to 8.1 MeV. The extracted ΣB (E 1) ↑ and ΣB (M 1) ↑ values for the total electric and magnetic dipole strength below the neutron separation energy are 0.9 ± 0.2 e2fm2 and 8.3 ± 2.0 μN2, respectively. These measurements are found to be in very good agreement with the predictions from an energy-density functional (EDF) plus quasiparticle phonon model (QPM). Such a detailed theoretical analysis allows to separate the pygmy dipole resonance from both the tail of the giant dipole resonance and multi-phonon excitations. Combined with earlier photonuclear experiments above the neutron separation energy, one extracts a value for the electric dipole polarizability of 206Pb of αD = 122 ± 10 mb /MeV. When compared to predictions from both the EDF+QPM and accurately calibrated relativistic EDFs, one deduces a range for the neutron-skin thickness of Rskin206 = 0.12- 0.19 fm and a corresponding range for the slope of the symmetry energy of L = 48- 60 MeV. This newly obtained information is also used to estimate the Maxwellian-averaged radiative cross section 205Pb (n , γ)206Pb at 30 keV to be σ = 130 ± 25 mb. The astrophysical impact of this measurement-on both the s-process in stellar nucleosynthesis and on the equation of state of neutron-rich matter-is discussed.

  6. Schottky-contact plasmonic dipole rectenna concept for biosensing.

    Science.gov (United States)

    Alavirad, Mohammad; Mousavi, Saba Siadat; Roy, Langis; Berini, Pierre

    2013-02-25

    Nanoantennas are key optical components for several applications including photodetection and biosensing. Here we present an array of metal nano-dipoles supporting surface plasmon polaritons (SPPs) integrated into a silicon-based Schottky-contact photodetector. Incident photons coupled to the array excite SPPs on the Au nanowires of the antennas which decay by creating "hot" carriers in the metal. The hot carriers may then be injected over the potential barrier at the Au-Si interface resulting in a photocurrent. High responsivities of 100 mA/W and practical minimum detectable powers of -12 dBm should be achievable in the infra-red (1310 nm). The device was then investigated for use as a biosensor by computing its bulk and surface sensitivities. Sensitivities of ∼ 250 nm/RIU (bulk) and ∼ 8 nm/nm (surface) in water are predicted. We identify the mode propagating and resonating along the nanowires of the antennas, we apply a transmission line model to describe the performance of the antennas, and we extract two useful formulas to predict their bulk and surface sensitivities. We prove that the sensitivities of dipoles are much greater than those of similar monopoles and we show that this difference comes from the gap in dipole antennas where electric fields are strongly enhanced.

  7. Collisional transfer of coherence by electric dipole-dipole interaction

    OpenAIRE

    Gough , W.

    1983-01-01

    An expression is derived for the contribution from dipole-dipole interaction to the intensity of sensitized fluorescence, from the results of a theory by Chiu. Tensor operator methods are used. The degree of polarization is deduced for certain particular cases.

  8. Add-drop double bus microresonator array local oscillators for sharp multiple Fano resonance engineering

    Science.gov (United States)

    Li, Jiahua; Qu, Ye; Wu, Ying

    2018-03-01

    Asymmetric resonances are currently the subject of considerable research efforts in photonic nanostructures. Here we propose a feasible method to achieve multiple Fano resonances and their control in an optical compound system consisting of an array of on-chip microresonators without mutual coupling and two parallel fiber waveguides side-coupled to the microresonator array by means of a local oscillator. We derive analytical and transparent expressions for the power transmission function summing over the two light transporting paths within the framework of quantum optics. It is clearly shown that introducing the local oscillator as an additional light propagating path plays an important role in the formation of narrow and multiple Fano resonance lineshapes. The power transmission spectrum through the combination of both the microresonator array and the local oscillator is very sensitive to the system parameters, for example, the intrinsic decay rate of the resonator, the phase shift factor of the local oscillator, the transmission coefficient of the fiber beam splitter, and the total number of the microresonators. Through detailed analysis, we identify the optimums for generating Fano resonance lineshapes. Also, we assess the experimental feasibility of the scheme using currently available technology. The proposed method is relatively straightforward as it requires only one local oscillator as one interferometer arm and it is mostly fiber-based. We believe that our work will help to understand and improve multiple Fano resonance engineering.

  9. Confinement improvement with magnetic levitation of a superconducting dipole

    International Nuclear Information System (INIS)

    Garnier, D.T.; Mauel, M.E.; Boxer, A.C.; Ellsworth, J.L.; Kesner, J.

    2009-01-01

    We report the first production of high beta plasma confined in a fully levitated laboratory dipole using neutral gas fuelling and electron cyclotron resonance heating. As compared with previous studies in which the internal coil was supported, levitation results in improved confinement that allows higher-density, higher-beta discharges to be maintained at significantly reduced gas fuelling. Contrary to previous supported dipole plasma results which had the stored energy consisting in a hot electron population, a significant plasma stored energy is shown to reside in the bulk plasma. By eliminating supports used in previous studies, cross-field transport becomes the main loss channel for both the hot and the background species. This leads to a significant improvement in bulk plasma confinement and a dramatic peaking of the density profile. Improved particle confinement assures stability of the hot electron component at reduced neutral pressure.

  10. Point interactions of the dipole type defined through a three-parametric power regularization

    International Nuclear Information System (INIS)

    Zolotaryuk, A V

    2010-01-01

    A family of point interactions of the dipole type is studied in one dimension using a regularization by rectangles in the form of a barrier and a well separated by a finite distance. The rectangles and the distance are parametrized by a squeezing parameter ε → 0 with three powers μ, ν and τ describing the squeezing rates for the barrier, the well and the distance, respectively. This parametrization allows us to construct a whole family of point potentials of the dipole type including some other point interactions, such as e.g. δ-potentials. Varying the power τ, it is possible to obtain in the zero-range limit the following two cases: (i) the limiting δ'-potential is opaque (the conventional result obtained earlier by some authors) or (ii) this potential admits a resonant tunneling (the opposite result obtained recently by other authors). The structure of resonances (if any) also depends on a regularizing sequence. The sets of the {μ, ν, τ}-space where a non-zero (resonant or non-resonant) transmission occurs are found. For all these cases in the zero-range limit the transfer matrix is shown to be with real parameters χ and g depending on a regularizing sequence. Those cases when χ ≠ 1 and g ≠ 0 mean that the corresponding δ'-potential is accompanied by an effective δ-potential.

  11. 'Bi-modal' isoscalar giant dipole strength in 58Ni

    International Nuclear Information System (INIS)

    Nayak, B.K.; Garg, U.; Hedden, M.; Koss, M.; Li, T.; Liu, Y.; Madhusudhana Rao, P.V.; Zhu, S.; Itoh, M.; Sakaguchi, H.; Takeda, H.; Uchida, M.; Yasuda, Y.; Yosoi, M.; Fujimura, H.; Fujiwara, M.; Hara, K.; Kawabata, T.; Akimune, H.; Harakeh, M.N.

    2006-01-01

    The strength distribution of the isoscalar giant dipole resonance (ISGDR) in 58 Ni has been obtained over the energy range 10.5-49.5 MeV via extreme forward angle scattering (including 0 deg.) of 386 MeV α particles. We observe a 'bi-modal' E1 strength distribution for the first time in an A<90 nucleus. The observed ISGDR strength distribution is in reasonable agreement with the predictions of a recent RPA calculation

  12. Terahertz response of fractal meta-atoms based on concentric rectangular square resonators

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhiqiang; Zhao, Zhenyu, E-mail: zyzhao@shnu.edu.cn; Shi, Wangzhou [Department of Physics, Shanghai Normal University, Shanghai 200234 (China); Peng, Wei [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-21

    We investigate the terahertz electromagnetic responses of fractal meta-atoms (MAs) induced by different mode coupling mechanisms. Two types of MAs based on concentric rectangular square (CRS) resonators are presented: independent CRS (I-CRS) and junctional-CRS (J-CRS). In I-CRS, each resonator works as an independent dipole so as to result in the multiple resonance modes when the fractal level is above 1. In J-CRS, however, the generated layer is rotated by π/2 radius to the adjacent CRS in one MA. The multiple resonance modes are coupled into a single mode resonance. The fractal level increasing induces resonance modes redshift in I-CRS while blueshift in J-CRS. When the fractal level is below 4, the mode Q factor of J-CRS is in between the two modes of I-CRS; when the fractal level is 4 or above, the mode Q factor of J-CRS exceeds the two modes of I-CRS. Furthermore, the modulation depth (MD) decreases in I-CRS while it increases in J-CRS with the increase in fractal levels. The surface currents analysis reveals that the capacitive coupling of modes in I-CRS results in the modes redshift, while the conductive coupling of modes in J-CRS induces the mode blueshift. A high Q mode with large MD can be achieved via conductive coupling between the resonators of different scales in a fractal MA.

  13. Many particle magnetic dipole-dipole and hydrodynamic interactions in magnetizable stent assisted magnetic drug targeting

    International Nuclear Information System (INIS)

    Cregg, P.J.; Murphy, Kieran; Mardinoglu, Adil; Prina-Mello, Adriele

    2010-01-01

    The implant assisted magnetic targeted drug delivery system of Aviles, Ebner and Ritter is considered both experimentally (in vitro) and theoretically. The results of a 2D mathematical model are compared with 3D experimental results for a magnetizable wire stent. In this experiment a ferromagnetic, coiled wire stent is implanted to aid collection of particles which consist of single domain magnetic nanoparticles (radius ∼10nm). In order to model the agglomeration of particles known to occur in this system, the magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included. Simulations based on this mathematical model were performed using open source C++ code. Different initial positions are considered and the system performance is assessed in terms of collection efficiency. The results of this model show closer agreement with the measured in vitro experimental results and with the literature. The implications in nanotechnology and nanomedicine are based on the prediction of the particle efficiency, in conjunction with the magnetizable stent, for targeted drug delivery.

  14. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders.

    Science.gov (United States)

    van de Haar, Marie Anne; van de Groep, Jorik; Brenny, Benjamin J M; Polman, Albert

    2016-02-08

    We propose a dielectric nanoresonator geometry consisting of hollow dielectric nanocylinders which support geometrical resonances. We fabricate such hollow Si particles with an outer diameter of 108-251 nm on a Si substrate, and determine their resonant modes with cathodo-luminescence (CL) spectroscopy and optical dark-field (DF) scattering measurements. The scattering behavior is numerically investigated in a systematic fashion as a function of wavelength and particle geometry. We find that the additional design parameter as a result of the introduction of a center gap can be used to control the relative spectral spacing of the resonant modes, which will enable additional control over the angular radiation pattern of the scatterers. Furthermore, the gap offers direct access to the enhanced magnetic dipole modal field in the center of the particle.

  15. Theory of enhanced second-harmonic generation by the quadrupole-dipole hybrid exciton

    International Nuclear Information System (INIS)

    Roslyak, Oleksiy; Birman, Joseph L

    2008-01-01

    We report calculated substantial enhancement of the second-harmonic generation (SHG) in cuprous oxide crystals, resonantly hybridized with an appropriate organic material (DCM2:CA:PS 'solid state solvent'). The quadrupole origin of the inorganic part of the quadrupole-dipole hybrid provides inversion symmetry breaking and the organic part contributes to the oscillator strength of the hybrid. We show that the enhancement of the SHG, compared to the bulk cuprous oxide crystal, is proportional to the ratio of the DCM2 dipole moment and the effective dipole moment of the quadrupole transitions in the cuprous oxide. It is also inversely proportional to the line-width of the hybrid and bulk excitons. The enhancement may be regulated by adjusting the organic blend (mutual concentration of the DCM2 and CA part of the solvent) and pumping conditions (varying the angle of incidence in the case of optical pumping or populating the minimum of the lower branch of the hybrid in the case of electrical pumping)

  16. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    International Nuclear Information System (INIS)

    Buckingham, A. David

    2014-01-01

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection

  17. Dynamics of nonstationary dipole vortices

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nycander, J.

    1993-01-01

    The dynamics of tilted dipole vortices in the equivalent barotropic vorticity (or Hasegawa-Mima) equation is studied. A recent theory is compared with numerical simulations and found to describe the short time behavior of dipole vortices well. In the long time limit the dipoles are found to eithe...... disintegrate or relax toward a steady eastward propagating dipole vortex. This relaxation is a consequence of nonviscous enstrophy loss by the dipole vortex....

  18. Investigation of the dipole response of nickel isotopes in the presence of a high-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Rossi, Dominic M.

    2010-01-01

    The electric dipole response of neutron-rich nickel isotopes has been investigated using the LAND setup at GSI in Darmstadt (Germany). Relativistic secondary beams of 56-57 Ni and 67-72 Ni at approximately 500 AMeV have been generated using projectile fragmentation of stable ions on a 4 g/cm 2 Be target and subsequent separation in the magnetic dipole fields of the FRagment Separator (FRS). After reaching the LAND setup in Cave C, the radioactive ions were excited electromagnetically in the electric field of a Pb target. The decay products have been measured in inverse kinematics using various detectors. Neutron-rich 67-69 Ni isotopes decay by the emission of neutrons, which are detected in the LAND detector. The present analysis concentrates on the (γ,n) and (γ,2n) channels in these nuclei, since the proton and three-neutron thresholds are unlikely to be reached considering the virtual photon spectrum for nickel ions at 500 AMeV. A measurement of the stable 58 Ni isotope is used as a benchmark to check the accuracy of the present results with previously published data. The measured (γ,n) and (γ,np) channels are compared with an inclusive photoneutron measurement by Fultz and coworkers, which are consistent within the respective errors. The measured excitation energy distributions of 67-69 Ni contain a large portion of the Giant Dipole Resonance (GDR) strength predicted by the Thomas-Reiche-Kuhn energy-weighted sum rule, as well as a significant amount of low-lying E1 strength, that cannot be attributed to the GDR alone. The GDR distribution parameters are calculated using well-established semi-empirical systematic models, providing the peak energies and widths. The GDR strength is extracted from the χ 2 minimization of the model GDR to the measured data of the (γ,2n) channel, thereby excluding any influence of eventual low-lying strength. The subtraction of the obtained GDR distribution from the total measured E1 strength provides the low-lying E1 strength

  19. Investigation of the dipole response of nickel isotopes in the presence of a high-frequency electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Dominic M.

    2010-01-25

    The electric dipole response of neutron-rich nickel isotopes has been investigated using the LAND setup at GSI in Darmstadt (Germany). Relativistic secondary beams of {sup 56-57}Ni and {sup 67-72}Ni at approximately 500 AMeV have been generated using projectile fragmentation of stable ions on a 4 g/cm{sup 2} Be target and subsequent separation in the magnetic dipole fields of the FRagment Separator (FRS). After reaching the LAND setup in Cave C, the radioactive ions were excited electromagnetically in the electric field of a Pb target. The decay products have been measured in inverse kinematics using various detectors. Neutron-rich {sup 67-69}Ni isotopes decay by the emission of neutrons, which are detected in the LAND detector. The present analysis concentrates on the ({gamma},n) and ({gamma},2n) channels in these nuclei, since the proton and three-neutron thresholds are unlikely to be reached considering the virtual photon spectrum for nickel ions at 500 AMeV. A measurement of the stable {sup 58}Ni isotope is used as a benchmark to check the accuracy of the present results with previously published data. The measured ({gamma},n) and ({gamma},np) channels are compared with an inclusive photoneutron measurement by Fultz and coworkers, which are consistent within the respective errors. The measured excitation energy distributions of {sup 67-69}Ni contain a large portion of the Giant Dipole Resonance (GDR) strength predicted by the Thomas-Reiche-Kuhn energy-weighted sum rule, as well as a significant amount of low-lying E1 strength, that cannot be attributed to the GDR alone. The GDR distribution parameters are calculated using well-established semi-empirical systematic models, providing the peak energies and widths. The GDR strength is extracted from the {chi}{sup 2} minimization of the model GDR to the measured data of the ({gamma},2n) channel, thereby excluding any influence of eventual low-lying strength. The subtraction of the obtained GDR distribution from the

  20. Neutral Pion Electroproduction in the Δ Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    Villano, Anthony [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2007-11-01

    The electroproduction of baryon resonances at high Q2 is examined. Analysis focuses on the Δ(1232) resonance via exclusive pseudoscalar meson production of π0 particles. Differential cross sections are extracted for exclusive π0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Δ(1232) resonance. The transition to pQCD is discussed in terms of E2/M1 and other multipoles. The helicity amplitude A3/2 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Δ region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor G$*\\atop{M}$ is extracted along with the scalar to magnetic dipole ratio C2/M1.

  1. Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Eriksen, R. L.; Cheng, W.

    2014-01-01

    . Multipole analysis of the experimental scattering spectra, based on the decomposed discrete dipole approximation, confirms resonant excitation of electric and magnetic dipole modes in the Si nanocylinders. Influences of light polarization and incident angle on the scattering properties of the nanocylinders...... are studied. It is shown that the dependence of resonant excitation of the electric and magnetic modes in the nanocylinders on incident angle and polarization of light allows controlling and manipulating the scattered light in this system. The demonstrated properties of Si nanocylinders can be used...

  2. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    International Nuclear Information System (INIS)

    Zhang, Jingdi; Averitt, Richard D.; Zhao, Xiaoguang; Fan, Kebin; Wang, Xiaoning; Zhang, Xin; Zhang, Gu-Feng; Geng, Kun

    2015-01-01

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm −1 , THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light

  3. The giant resonances in hot nuclei. Linear response calculations

    International Nuclear Information System (INIS)

    Braghin, F.L.; Vautherin, D.; Abada, A.

    1995-01-01

    The isovector response function of hot nuclear matter is calculated using various effective Skyrme interactions. For Skyrme forces with a small effective mass the strength distribution is found to be nearly independent of temperature, and shows little collective effects. In contrast effective forces with an effective mass close to unity produce at zero temperature sizeable collective effects which disappear at temperatures of a few MeV. The relevance of these results for the saturation of the multiplicity of photons emitted by the giant dipole resonance in hot nuclei observed in recent experiments beyond T = 3 MeV is discussed. (authors). 12 refs., 3 figs

  4. Inclusive gluon production in the dipole approach: Abramovskii-Gribov-Kancheli (AGK) cutting rules

    International Nuclear Information System (INIS)

    Levin, Eugene; Prygarin, Alex

    2008-01-01

    We consider single gluon production in the dipole model and reproduce the result of Kovchegov and Tuchin for the adjoint (gluonic) dipole structure of the inclusive cross section. We show the validity of the adjoint dipole structure to any order of evolution by deriving and solving the nonlinear evolution for the nondiagonal cross section of a dipole scattering off the target. The form of the solution to this equation restores the dipole interpretation for nondiagonal cross sections that appear in gluon production. Using this formalism, we analyze the single inclusive production cross section in terms of the contributions of different multiplicities, and we derive the Abramovskii-Gribov-Kancheli (AGK) cutting rules for two-Pomeron exchange. The cutting rules, which were found in this formalism, fully reproduce the original AGK rules for the total cross section. However, for the case of gluon production, the AGK rules are violated already for one-gluon emission from the vertex

  5. The dipole-dipole dispersion forces for small, intermediate and large distances

    International Nuclear Information System (INIS)

    Antonio, J.C.

    1986-10-01

    An improved expression is obtained for the dipole-dipole London dispersion force between closed shell atoms for small, intermediate and large distances compared with their linear dimensions. (Author) [pt

  6. Soft dipole mode of 11Li in approximation of asymptotic potential

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lashko, Yu.A.

    2001-01-01

    The soft dipole mode of 11 Li is studied in the frame of microscopic tri-cluster model and in the asymptotic potential approximation. The theory reproduces well the ground state energy, matter radius and the behaviour of the effective photodisintegration cross section in the range of low energies above the decay threshold of 11 Li. Our calculations point two resonant states in this range [ru

  7. Spiral Waves and Multiple Spatial Coherence Resonances Induced by Colored Noise in Neuronal Network

    International Nuclear Information System (INIS)

    Tang Zhao; Li Yuye; Xi Lei; Jia Bing; Gu Huaguang

    2012-01-01

    Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied. Each neuron is at resting state near a saddle-node bifurcation on invariant circle, coupled to its nearest neighbors by electronic coupling. Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity. By calculating spatial structure function and signal-to-noise ratio (SNR), it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered, respectively. SNR manifest multiple local maximal peaks, indicating that the colored noise can induce multiple spatial coherence resonances. The maximal SNR values decrease as the correlation time of the noise increases. These results not only provide an example of multiple resonances, but also show that Gaussian colored noise play constructive roles in neuronal network. (general)

  8. The isomeric ratios in photonuclear reactions of natural barium induced by bremsstrahlungs with endpoint energies in the giant dipole resonance region

    International Nuclear Information System (INIS)

    Tran Duc Thiep; Truong Thi An; Phan Viet Cuong; Nguyen The Vinh

    2012-01-01

    We have determined the isomeric ratios in 130 Ba(γ, n) 129m,g Ba, 132 Ba(γ, n) 131m,g Ba and 134 Ba(γ, n) 133m,g Ba photonuclear reactions of natural barium induced by bremsstrahlungs with end-point energies in the giant dipole resonance region. The investigated samples were irradiated at electron accelerator Microtron MT-25 of the Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, Dubna, Russia. The gamma spectra of the samples irradiated were measured with spectroscopic system consisting of 8192 channel analyzer and high-energy resolution (180 keV at gamma ray 1332 keV of 60 Co) HP(Ge) semiconductor detector Canberra. The GENIE2000 (Canberra) computer program was used for data processing. The results were discussed and compared with those of other authors. (author)

  9. Clinical diagnostic criteria of multiple sclerosis: the role of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Belair, M.; Girard, M.

    2004-01-01

    The objective of this article is to summarize the diagnostic criteria recommended by the International Panel on the Diagnosis of Multiple Sclerosis in 2001. The recommendations of another working group, the Consortium of Multiple Sclerosis Centers Consensus Meeting, which met in Vancouver in 2001, concerning the diagnosis and follow-up of patients with multiple sclerosis are also presented in an effort to standardize the protocols for magnetic resonance imaging of these patients. (author)

  10. Active cancellation of probing in linear dipole phased array

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2015-01-01

    In this book, a modified improved LMS algorithm is employed for weight adaptation of dipole array for the generation of beam pattern in multiple signal environments. In phased arrays, the generation of adapted pattern according to the signal scenario requires an efficient adaptive algorithm. The antenna array is expected to maintain sufficient gain towards each of the desired source while at the same time suppress the probing sources. This cancels the signal transmission towards each of the hostile probing sources leading to active cancellation. In the book, the performance of dipole phased array is demonstrated in terms of fast convergence, output noise power and output signal-to-interference-and noise ratio. The mutual coupling effect and role of edge elements are taken into account. It is established that dipole array along with an efficient algorithm is able to maintain multilobe beamforming with accurate and deep nulls towards each probing source. This work has application to the active radar cross secti...

  11. Resonant Rayleigh scattering of exciton-polaritons in multiple quantum wells

    DEFF Research Database (Denmark)

    Malpuech, Guillaume; Kavokin, Alexey; Langbein, Wolfgang Werner

    2000-01-01

    A theoretical concept of resonant Rayleigh scattering (RRS) of exciton-polaritons in multiple quantum wells (QWs) is presented. The optical coupling between excitons in different QWs can strongly affect the RRS dynamics, giving rise to characteristic temporal oscillations on a picosecond scale....... Bragg and anti-Bragg arranged QW structures with the same excitonic parameters are predicted to have drastically different RRS spectra. Experimental data on the RRS from multiple QWs show the predicted strong temporal oscillations at small scattering angles, which are well explained by the presented...

  12. UNK superconducting dipole development

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Balbekov, V.I.

    1987-01-01

    For choozing the design of superconducting dipoles (SCD) for the IHEP UNK the test results for SCD with warm and cold iron are given. The main parameters of dipoles are presented. The SCD designs are described. At present works on SP magnet simulation for UNK are carried out in two directions. Tests are conducted on a rig with a chain of series dipoles with a warm magnetic screen. The purpose of these tests is to study heat exchange and hydraulics in magnets, energy and helium evacuation in emergency magnet transition into normal conditions, simulation of possible cooling and heating schemes. Another direction involves production of short and full-scale dipole models with cold iron and their testing on rigs. The final choice of the dipole design for commercial production is planned for 1987

  13. Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Theory

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Kim, Oleksiy S.

    2009-01-01

    The stored energies, radiated power, and quality factor of a magnetic-dipole antenna, consisting of a spherical electrical surface current density enclosing a magnetic core, is obtained through direct spatial integration of the internally and externally radiated field expressed in terms...... of spherical vector waves. The obtained quality factor agrees with that of Wheeler and Thal for vanishing free-space electric radius but holds also for larger radii and facilitates the optimal choice of permeability in the presence of the resonances....

  14. γ transitions from 30P and 32S nuclei resonance levels

    International Nuclear Information System (INIS)

    Kostin, V.Ya.; Kopanets, E.G.; Koval', A.A.

    1977-01-01

    The probability distributions of dipole and quadrupole electromagnetic transitions from resonance excitation-energy range from 6.2 to 8.3 MeV and from 9.2 to 12.0 MeV respectively, were obtained. An analysis of the distributions shows that isovector dipole electic and magnetic transitions are comparable in magnitude with transitions between bound states. Isoscalar dipole transitions are stronger by an order of magnitude than transitions between bound states. This may be attributed to the increase in isospin mixing in the resonance range of excitation of atomic nuclei. Quadrupole electrical transitions have strengths comparable with those of transitions between bound states. For magnetic quadrupole transitions, a strong increase in transition probabilities compared with transitions between bound states is noted. The isospin selection rules for γ transitions in self-conjugate nuclei are discussed

  15. The Over-Barrier Resonant States and Multi-Channel Scattering in Multiple Quantum Wells

    Directory of Open Access Journals (Sweden)

    A Polupanov

    2016-09-01

    Full Text Available We demonstrate an explicit numerical method for accurate calculation of the scattering matrix and its poles, and apply this method to describe the multi-channel scattering in the multiple quantum-wells structures. The S-matrix is continued analytically to the unphysical region of complex energy values. Results of calculations show that there exist one or more S-matrix poles, corresponding to the over-barrier resonant states critical for the effect of the absolute reflection of holes in the energy range where only the heavy ones may propagate over barriers in a structure. Light- and heavy-hole states are described by the Luttinger Hamiltonian matrix. In contrast to the single quantum-well case, at some parameters of a multiple quantum-wells structure the number of S-matrix poles may exceed that of the absolute reflection peaks, and at different values of parameters the absolute reflection peak corresponds to different resonant states. The imaginary parts of the S-matrix poles and hence the lifetimes of resonant states as well as the widths of resonant peaks of absolute reflection depend drastically on the quantum-well potential depth. In the case of shallow quantum wells there is in fact a long-living over-barrier resonant hole state.

  16. The AGL equation from the dipole picture

    International Nuclear Information System (INIS)

    Gay Ducati, M.B.; Goncalves, V.P.

    1999-01-01

    The AGL equation includes all multiple pomeron exchanges in the double logarithmic approximation (DLA) limit, leading to a unitarized gluon distribution in the small x regime. This equation was originally obtained using the Glauber-Mueller approach. We demonstrate in this paper that the AGL equation and, consequently, the GLR equation, can also be obtained from the dipole picture in the double logarithmic limit, using an evolution equation, recently proposed, which includes all multiple pomeron exchanges in the leading logarithmic approximation. Our conclusion is that the AGL equation is a good candidate for a unitarized evolution equation at small x in the DLA limit

  17. A Resonant Scanning Dipole-Antenna Probe for Enhanced Nanoscale Imaging

    NARCIS (Netherlands)

    Neumann, L.; van 't Oever, Jan Joannes Frederik; van Hulst, N.F.

    2013-01-01

    We present a scanning antenna probe that provides 35 nm optical hotspots with a 16-fold excitation enhancement. A resonant optical antenna, tuned to operation in the visible, is carved into the aluminum-coated scanning probe. The antenna resonances, field localization, excitation, and polarization

  18. Low-lying dipole strength in the well-deformed nucleus {sup 156}Gd

    Energy Technology Data Exchange (ETDEWEB)

    Tamkas, M. [ExtreMe Matter Institute (EMMI), GSI, Darmstadt (Germany); Graduate School of Natural and Applied Sciences, Yildiz Technical University, Istanbul (Turkey); Isaak, J.; Silva, J. [ExtreMe Matter Institute (EMMI), GSI, Darmstadt (Germany); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Savran, D. [ExtreMe Matter Institute (EMMI), GSI, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Loeher, B. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Aciksoz, E. [Department of Physics, Akdeniz University (Turkey); Beck, T.; Beller, J.; Gayer, U.; Pietralla, N.; Romig, C.; Werner, V.; Zweidinger, M. [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Tornow, W.; Weller, H. [Department of Physics, Duke University, TUNL, Durham (United States); Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany)

    2016-07-01

    In this study the dipole strength has been investigated in the well-deformed nucleus {sup 156}Gd using the method of Nuclear Resonance Fluorescence (NRF). The NRF experiment was performed at the High Intensity vector γ-ray Source at Duke University in combination with the γ{sup 3} setup using a mono-energetic and linearly polarised beam. The dipole strength of {sup 156}Gd has been studied with photon beam energies between 3 MeV and 6.2 MeV. The parity quantum numbers of J=1 states have been determined for the energy region above ∝3 MeV for the first time. Recent results of the {sup 156}Gd(vector γ,γ') experiment are presented and discussed.

  19. High-q microring resonator with narrow free spectral range for pulse repetition rate multiplication

    DEFF Research Database (Denmark)

    Pu, Minhao; Ji, Hua; Frandsen, Lars Hagedorn

    2009-01-01

    We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz.......We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz....

  20. Changes in earth's dipole.

    Science.gov (United States)

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  1. Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers.

    Science.gov (United States)

    Verre, R; Yang, Z J; Shegai, T; Käll, M

    2015-03-11

    The possibility of achieving optical magnetism at visible frequencies using plasmonic nanostructures has recently been a subject of great interest. The concept is based on designing structures that support plasmon modes with electron oscillation patterns that imitate current loops, that is, magnetic dipoles. However, the magnetic resonances are typically spectrally narrow, thereby limiting their applicability in, for example, metamaterial designs. We show that a significantly broader magnetic response can be realized in plasmonic pentamers constructed from metal-insulator-metal (MIM) sandwich particles. Each MIM unit acts as a magnetic meta-atom and the optical magnetism is rendered quasi-broadband through hybridization of the in-plane modes. We demonstrate that scattering spectra of individual MIM pentamers exhibit multiple Fano resonances and a broad subradiant spectral window that signals the magnetic interaction and a hierarchy of coupling effects in these intricate three-dimensional nanoparticle oligomers.

  2. Nuclear Deformation and Neutron Excess as Competing Effects for Dipole Strength in the Pygmy Region

    Science.gov (United States)

    Massarczyk, R.; Schwengner, R.; Dönau, F.; Frauendorf, S.; Anders, M.; Bemmerer, D.; Beyer, R.; Bhatia, C.; Birgersson, E.; Butterling, M.; Elekes, Z.; Ferrari, A.; Gooden, M. E.; Hannaske, R.; Junghans, A. R.; Kempe, M.; Kelley, J. H.; Kögler, T.; Matic, A.; Menzel, M. L.; Müller, S.; Reinhardt, T. P.; Röder, M.; Rusev, G.; Schilling, K. D.; Schmidt, K.; Schramm, G.; Tonchev, A. P.; Tornow, W.; Wagner, A.

    2014-02-01

    The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A =124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

  3. Nuclear deformation and neutron excess as competing effects for dipole strength in the pygmy region.

    Science.gov (United States)

    Massarczyk, R; Schwengner, R; Dönau, F; Frauendorf, S; Anders, M; Bemmerer, D; Beyer, R; Bhatia, C; Birgersson, E; Butterling, M; Elekes, Z; Ferrari, A; Gooden, M E; Hannaske, R; Junghans, A R; Kempe, M; Kelley, J H; Kögler, T; Matic, A; Menzel, M L; Müller, S; Reinhardt, T P; Röder, M; Rusev, G; Schilling, K D; Schmidt, K; Schramm, G; Tonchev, A P; Tornow, W; Wagner, A

    2014-02-21

    The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A=124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

  4. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  5. Stimulated resonance Raman spectroscopy: An alternative to laser-rf double resonance for ion spectroscopy

    International Nuclear Information System (INIS)

    Young, L.; Dinneen, T.; Mansour, N.B.

    1988-01-01

    Stimulated resonance Raman spectroscopy is presented as an alternative to laser-rf double resonance for obtaining high-precision measurements in ion beams. By use of a single-phase modulated laser beam to derive the two required fields, the laser--ion-beam alignment is significantly simplified. In addition, this method is especially useful in the low-frequency regime where the laser-rf double-resonance method encounters difficulties due to modifications of the ion-beam velocity distribution. These modifications, which result from interaction with the traveling rf wave used to induce magnetic dipole transitions, are observed and quantitatively modeled

  6. Localized surface plasmon resonance properties of Ag nanorod arrays on graphene-coated Au substrate

    Science.gov (United States)

    Mu, Haiwei; Lv, Jingwei; Liu, Chao; Sun, Tao; Chu, Paul K.; Zhang, Jingping

    2017-11-01

    Localized surface plasmon resonance (LSPR) on silver nanorod (SNR) arrays deposited on a graphene-coated Au substrate is investigated by the discrete dipole approximation (DDA) method. The resonance peaks in the extinction spectra of the SNR/graphene/Au structure show significantly different profiles as SNR height, and refractive index of the surrounding medium are varied gradually. Numerical simulation reveals that the shifts in the resonance peaks arise from hybridization of multiple plasmon modes as a result of coupling between the SNR arrays and graphene-coated Au substrate. Moreover, the LSPR modes blue-shifts from 800 nm to 700 nm when the thickness of the graphene layer in the metal nanoparticle (NP) - graphene hybrid nanostructure increases from 1 nm to 5 nm, which attribute to charge transfer between the graphene layer and SNR arrays. The results provide insights into metal NP-graphene hybrid nanostructures which have potential applications in plasmonics.

  7. Electromagnetic dipole and Gamow-Teller responses of even and odd {sup 90-94}{sub 40}Zr isotopes in QRPA calculations with the D1M Gogny force

    Energy Technology Data Exchange (ETDEWEB)

    Deloncle, I. [CSNSM, CNRS et Universite Paris-Sud, Orsay (France); CEA, DAM, DIF, Arpajon (France); Peru, S. [CEA, DAM, DIF, Arpajon (France); Martini, M. [ESNT, CEA-Saclay, DSM, Irfu, Service de Physique Nucleaire, Gif-sur-Yvette (France)

    2017-08-15

    In this paper we present theoretical results on the dipole response in the proton spin-saturated {sup 90-94}Zr isotopes. The electric and magnetic dipole excitations are obtained in Hartree-Fock-Bogolyubov plus Quasi-particle Random Phase Approximation (QRPA) calculations performed with the D1M Gogny force. A pnQRPA charge exchange code is used to study the Gamow-Teller response. The results on the pygmy, the giant dipole resonances as well as those on the magnetic nuclear spin-flip excitation and the Gamow-Teller transitions are compared with available experimental or theoretical information. In our approach, the proton pairing plays a role in the phonon excitations, in particular in the M1 nuclear spin-flip resonance. (orig.)

  8. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.; Tuccio, S.; Prato, M.; De Donato, F.; Perucchi, A.; Di Pietro, P.; Marras, S.; Liberale, Carlo; Zaccaria, R. Proietti; De Angelis, F.; Manna, L.; Lupi, S.; Di Fabrizio, Enzo M.; Razzari, L.

    2015-01-01

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number

  9. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Measurement of global and local resonance terms

    CERN Document Server

    Tomás, R; Calaga, R; Fischer, W; Franchi, A; Rumolo, Giovanni

    2005-01-01

    Recently, resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC from the Fourier spectrum of beam position monitor (BPM) data. Based on these measurements a new analysis has been derived to extract truly local observables from BPM data. These local observables are called local resonance terms since they share some similarities with the global resonance terms. In this paper we derive these local terms analytically and present experimental measurements of sextupolar global and local resonance terms in RHIC. Nondestructive measurements of these terms using ac dipoles are also presented.

  11. Lepton dipole moments

    CERN Document Server

    Marciano, William J

    2010-01-01

    This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o

  12. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    International Nuclear Information System (INIS)

    Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro

    2015-01-01

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs

  13. Unexpected enhancements and reductions of rf spin resonance strengths

    Directory of Open Access Journals (Sweden)

    M. A. Leonova

    2006-05-01

    Full Text Available We recently analyzed all available data on spin-flipping stored beams of polarized protons, electrons, and deuterons. Fitting the modified Froissart-Stora equation to the measured polarization data after crossing an rf-induced spin resonance, we found 10–20-fold deviations from the depolarizing resonance strength equations used for many years. The polarization was typically manipulated by linearly sweeping the frequency of an rf dipole or rf solenoid through an rf-induced spin resonance; spin-flip efficiencies of up to 99.9% were obtained. The Lorentz invariance of an rf dipole’s transverse ∫Bdl and the weak energy dependence of its spin resonance strength E together imply that even a small rf dipole should allow efficient spin flipping in 100 GeV or even TeV storage rings; thus, it is important to understand these large deviations. Therefore, we recently studied the resonance strength deviations experimentally by varying the size and vertical betatron tune of a 2.1  GeV/c polarized proton beam stored in COSY. We found no dependence of E on beam size, but we did find almost 100-fold enhancements when the rf spin resonance was near an intrinsic spin resonance.

  14. Design considerations for a large aperture high field superconducting dipole

    International Nuclear Information System (INIS)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab

  15. Design considerations for a large aperture high field superconducting dipole

    Energy Technology Data Exchange (ETDEWEB)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab.

  16. Measurements and applications of neutron multiple scattering in resonance region

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    1977-02-01

    Capture yield of neutrons impinging on a thick material is complicated due to self-shielding and multiple scattering, especially in the resonance region. When the incident neutron energy is equal to a resonance energy of the material, capture probability of the neutron increases with sample thickness and reaches a saturation value P sub(CO). There is a simple relation between P sub(CO) and GAMMA sub(n)/GAMMA and the recoil energy by the Monte-Carlo calculation. To examine validity of the relation, P sub(CO) was measured for 19 resonances in 12 nuclides with thick samples, using a JAERI linac time-of-flight spectrometer with Moxon-Rae type gamma ray detector and transmission type neutron flux monitor. Results of the measurements confirmed the validity. With this relation, the GAMMA sub(n)/GAMMA or GAMMA sub(γ)/GAMMA value can be obtained from the measured P sub(CO), and also the level spins be determined by combining the transmission data. Because of the definition of P sub(CO), determination of the resonance parameters is not sensitive to the sample thickness as far as it is sufficiently thick. (auth.)

  17. GLOBAL AND LOCAL COUPLING COMPENSATION EXPERIMENTS IN RHIC USING AC DIPOLES

    International Nuclear Information System (INIS)

    CALAGA, R.; FRANCHI, A., TOMAS, R.; CERN)

    2006-01-01

    Compensation of transverse coupling during the RHIC energy ramp has been proven to be non-trivial and tedious. The lack of accurate knowledge of the coupling sources has initiated several efforts to develop fast techniques using turn-by-turn BPM data to identify and compensate these sources. This paper aims to summarize the beam experiments performed to measure the coupling, matrix and resonance driving terms with the aid of RHIC ac dipoles at injection energy

  18. Neutron electric dipole moment and possibilities of increasing accuracy of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M. [National Research Centre “Kurchatov Institute”, Petersburg Nuclear Physics Institute (Russian Federation); Aleksandrov, E. B.; Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Geltenbort, P.; Ivanov, S. N.; Zimmer, O. [Institut Max von Laue–Paul Langevin (France)

    2016-01-15

    The paper reports the results of an experiment on searching for the neutron electric dipole moment (EDM), performed on the ILL reactor (Grenoble, France). The double-chamber magnetic resonance spectrometer (Petersburg Nuclear Physics Institute (PNPI)) with prolonged holding of ultra cold neutrons has been used. Sources of possible systematic errors are analyzed, and their influence on the measurement results is estimated. The ways and prospects of increasing accuracy of the experiment are discussed.

  19. A Note on the Dipole Coordinates

    OpenAIRE

    Kageyama, Akira; Sugiyama, Tooru; Watanabe, Kunihiko; Sato, Tetsuya

    2004-01-01

    A couple of orthogonal coordinates for dipole geometry are proposed for numerical simulations of plasma geophysics in the Earth's dipole magnetic field. These coordinates have proper metric profiles along field lines in contrast to the standard dipole coordinate system that is commonly used in analytical studies for dipole geometry.

  20. Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules.

    Science.gov (United States)

    Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2016-02-17

    We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work.

  1. Spatiotemporal multiple coherence resonances and calcium waves in a coupled hepatocyte system

    International Nuclear Information System (INIS)

    Bao-Hua, Wang; Qi-Shao, Lu; Shu-Juan, Lü; Xiu-Feng, Lang

    2009-01-01

    Spatiotemporal multiple coherence resonances for calcium activities induced by weak Gaussian white noise in coupled hepatocytes are studied. It is shown that bi-resonances in hepatocytes are induced by the interplay and competition between noise and coupling of cells, in other words, the cell in network can be excited either by noise or by its neighbour via gap junction which can transfer calcium ions between cells. Furthermore, the intercellular annular calcium waves induced by noise are observed, in which the wave length decreases with noise intensity augmenting but increases monotonically with coupling strength increasing. And for a fixed noise level, there is an optimal coupling strength that makes the coherence resonance reach maximum. (general)

  2. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.

    2015-11-12

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.

  3. Suppression of Growth by Multiplicative White Noise in a Parametric Resonant System

    Science.gov (United States)

    Ishihara, Masamichi

    2015-02-01

    The growth of the amplitude in a Mathieu-like equation with multiplicative white noise is studied. To obtain an approximate analytical expression for the exponent at the extremum on parametric resonance regions, a time-interval width is introduced. To determine the exponents numerically, the stochastic differential equations are solved by a symplectic numerical method. The Mathieu-like equation contains a parameter α determined by the intensity of noise and the strength of the coupling between the variable and noise; without loss of generality, only non-negative α can be considered. The exponent is shown to decrease with α, reach a minimum and increase after that. The minimum exponent is obtained analytically and numerically. As a function of α, the minimum at α≠0, occurs on the parametric resonance regions of α=0. This minimum indicates suppression of growth by multiplicative white noise.

  4. Multivertebral and epidural involvement of the multiple myeloma, as confirmed by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasuhiro; Tamaki, Norihiko; Hosoda, Koukichi; Ehara, Kazumasa; Matsumoto, Satoshi

    1987-08-01

    A case is reported of a multiple myeloma exhibiting symptoms of paraparesis as an initial manifestation following tetraparesis, but with no particular common symptoms of multiple myeloma. Laboratory findings, however, strongly suggested multiple myeloma, and this was confirmed by a biopsy. Radiological investigations could not show all the features of this tumor invasion, but revealed only the osteosclerotic and destructive changes in the cervical and thoracic spine, plus a complete block at the C2 level. Magnetic resonance imaging, however, disclosed entire lesions. There existed multiple vertebral involvements and an epidural invasion of the tumor, continuing to an extraspinal mass. Multiple myeloma is a disorder with varied manifestations; it is rarely present as a primary neuropathological entity. Among these manifestations, initial neurological manifestations in the form of peripheral neuropathy have been reported most commonly. Unusual clinical presentations such as in our case may result in an erroneous and delayed diagnosis unless an early and correct identification of the lesion is made. Magnetic resonance imaging is thought to be the most useful technique to detect such a multiple lesion in the spinal canal with no invasive manipulation.

  5. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface

    Energy Technology Data Exchange (ETDEWEB)

    Przepioski, Joshua [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-28

    This work correlates resonant peaks from first principles calculation on ammonia (NH3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH3NH3PbI3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.

  6. Overtones of isoscalar giant resonances studied in direct particle decay measurements

    NARCIS (Netherlands)

    Hunyadi, M; van den Berg, AM; Csatlos, M; Csige, L; Davids, B; Garg, U; Gulyas, J; Harakeh, MN; de Huu, MA; Krasznahorkay, A; Sohler, D; Wortche, HJ

    The isoscalar giant dipole resonance (ISGDR), which is the lowest-energy overtone mode of the isoscalar giant resonances, has been studied in some medium-heavy and heavy nuclei in coincidence measurements. The observation of the direct nucleon decay channels significantly helped to enhance giant

  7. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  8. On Landau Vlasov simulations of giant resonances

    International Nuclear Information System (INIS)

    Pi, M.; Schuck, P.; Suraud, E.; Gregoire, C.; Remaud, B.; Sebille, F.

    1987-05-01

    We present VUU calculations of giant resonances obtained in energetic heavy ion collisions. Also is considered the case of the giant dipole in 40 Ca and the possibility of studying the effects of rotation on such collective modes

  9. Single-Chip Multiple-Frequency RF MEMS Resonant Platform for Wireless Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel, single-chip, multiple-frequency platform for RF/IF filtering and clock reference based on contour-mode aluminum nitride (AlN) MEMS piezoelectric resonators...

  10. Isotopic effect giant resonances

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; Perrin, G.; Saintignon, P. de; Chauvin, J.; Duhamel, G.

    1981-10-01

    The systematics of the excitation energy of the giant dipole, monopole, and quadrupole resonances are shown to exhibit an isotopic effect. For a given element, the excitation energy of the transition decreases faster with the increasing neutron number than the empirical laws fitting the overall data. This effect is discussed in terms of the available models

  11. Prompt High Energy Dipole γ Emission

    International Nuclear Information System (INIS)

    Corsi, A.; Giaz, A; Bracco, A.

    2011-01-01

    The study of the collective properties of a nuclear system is a powerful tool to understand the structure which lies inside the nucleus. A successful technique which has been used in this field is the measurement of the γ-decay of the highly collective Giant Dipole Resonance (GDR). In fact, GDR can be used as a probe for the internal structure of hot nuclei and, in addition, constitutes a clock for the thermalization process. Using the fusion-evaporation reaction, it has been recently possible to study (i) the yield of the high-energy γ-ray emission of the Dynamical Dipole which takes place during the fusion process and (ii) the degree of isospin mixing at high temperature in the decay of 80 Zr. In the first case it is important to stress the fact that the predictions of the theoretical models might differ depending on the type of nuclear equation of state (EOS) and on the N-N in-medium cross-section used in the calculations while, in the second physics case, the data are relative to the heaviest N = Z nucleus which has been possible to populate in the I = 0 channel using fusion-evaporation reaction. Both experiments were performed at the Laboratori Nazionali di Legnaro using the HECTOR-GARFIELD array. The high-energy γ-rays were measured in coincidence with light charged particles and fusion-evaporation residues. (author)

  12. Characterization of Harmonic Signal Acquisition with Parallel Dipole and Multipole Detectors

    Science.gov (United States)

    Park, Sung-Gun; Anderson, Gordon A.; Bruce, James E.

    2018-04-01

    Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a powerful instrument for the study of complex biological samples due to its high resolution and mass measurement accuracy. However, the relatively long signal acquisition periods needed to achieve high resolution can serve to limit applications of FTICR-MS. The use of multiple pairs of detector electrodes enables detection of harmonic frequencies present at integer multiples of the fundamental cyclotron frequency, and the obtained resolving power for a given acquisition period increases linearly with the order of harmonic signal. However, harmonic signal detection also increases spectral complexity and presents challenges for interpretation. In the present work, ICR cells with independent dipole and harmonic detection electrodes and preamplifiers are demonstrated. A benefit of this approach is the ability to independently acquire fundamental and multiple harmonic signals in parallel using the same ions under identical conditions, enabling direct comparison of achieved performance as parameters are varied. Spectra from harmonic signals showed generally higher resolving power than spectra acquired with fundamental signals and equal signal duration. In addition, the maximum observed signal to noise (S/N) ratio from harmonic signals exceeded that of fundamental signals by 50 to 100%. Finally, parallel detection of fundamental and harmonic signals enables deconvolution of overlapping harmonic signals since observed fundamental frequencies can be used to unambiguously calculate all possible harmonic frequencies. Thus, the present application of parallel fundamental and harmonic signal acquisition offers a general approach to improve utilization of harmonic signals to yield high-resolution spectra with decreased acquisition time. [Figure not available: see fulltext.

  13. Individual Low-Energy Toroidal Dipole State in Mg 24

    Science.gov (United States)

    Nesterenko, V. O.; Repko, A.; Kvasil, J.; Reinhard, P.-G.

    2018-05-01

    The low-energy dipole excitations in Mg 24 are investigated within the Skyrme quasiparticle random phase approximation for axial nuclei. The calculations with the force SLy6 reveal a remarkable feature: the lowest IπK =1-1 excitation (E =7.92 MeV ) in Mg 24 is a vortical toroidal state (TS) representing a specific vortex-antivortex realization of the well-known spherical Hill's vortex in a strongly deformed axial confinement. This is a striking example of an individual TS which can be much more easily discriminated in experiment than the toroidal dipole resonance embracing many states. The TS acquires the lowest energy due to the huge prolate axial deformation in Mg 24 . The result persists for different Skyrme parametrizations (SLy6, SVbas, SkM*). We analyze spectroscopic properties of the TS and its relation with the cluster structure of Mg 24 . Similar TSs could exist in other highly prolate light nuclei. They could serve as promising tests for various reactions to probe a vortical (toroidal) nuclear flow.

  14. Excitation and photon decay of giant resonances excited by intermediate energy heavy ions

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1987-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon 17 O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the 208 Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab

  15. Permanent dipole moments and damping in nonlinear optics. A quantum electrodynamic description

    International Nuclear Information System (INIS)

    Davila-Smith, L.C.

    1999-01-01

    Based on the well-known transformation of the electric-dipole interaction, different nonlinear optical processes are analysed. The transformation provides a convenient means for ascertaining the effects of permanent dipoles on the optical behaviour of systems with a response dominated by two energy levels. By establishing the general validity of the procedure for parametric and non-parametric processes, it is shown how the detailed structure of the optical nonlinearity can be ascertained, based on a novel interpretation of the relevant quantum electrodynamical Feynman diagrams. This transformation is used to analysed a novel five-wave mixing process, which is also developed in this thesis. This process is of considerable interest for its involvement in the generation of even harmonics in isotropic media. Also, the flexibility in the beam geometry affords considerable scope for the study of the polarisation and angular dependence. Finally, a general study of the effects of resonance in matter-radiation interactions is given, justifying the phenomenological incorporation of the damping addenda. The two alternative convention used when the damping is introduced are discussed, showing that both conventions lead to different physical results. Based on these studies the resonance effects are considered in relation to different multiphoton processes. (author)

  16. Feshbach resonances in cold collisions of potassium atoms

    International Nuclear Information System (INIS)

    Bambini, A.; Geltman, S.

    2002-01-01

    In this paper we briefly review the basic steps that allow the calculation of the scattering length in the collision of two alkali-metal atoms in a well defined magnetic polarization state, and in the presence of a static magnetic field. Calculations are actually done for the low-field seeking state F=1, μ F =-1 of bosonic potassium atoms. The electrostatic potentials obtained through Rydberg-Klein-Rees data are connected to a dispersive, long range tail in which the dominant dipole-dipole C 6 term may take different values within a specified range. We show the occurrence of Feshbach resonances in the ultra cold collision of two identical atoms, belonging either to the bosonic species 39 K or 41 K. Our results demonstrate that there is a range of C 6 values for which the collision of two 39 K atoms displays a single resonance, while for other values of C 6 no resonance occurs. On the other hand, Feshbach resonances are present in the collision of two 41 K atoms for almost all values of the dispersion coefficient C 6 in that range. We also show the origin of the different types of Feshbach resonances that occur in the cold collision of two 41 K atoms. The detection of such resonances can help establish the actual value of the dispersive coefficient

  17. Possible displacement of mercury's dipole

    International Nuclear Information System (INIS)

    Ng, K.H.; Beard, D.B.

    1979-01-01

    Earlier attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field have required the addition of a quadrupole moment to obtain a good fit to space vehicle observations. In this work we obtain an equally satisfactory fit by assuming a null quadrupole moment and least squares fitting of the displacement of the planetary dipole from the center of the planet. We find a best fit for a dipole displacement from the planet center of 0.033 R/sub m/ away from the solar direction, 0.025 R/sub m/ toward dawn in the magnetic equatorial plane, and 0.189 R/sub m/ northward along the magnetic dipole axis, where R/sub m/ is the planet radius. Therefore the presence of a magnetic quadrupole moment is not ruled out. The compressed dipole field more completely represents the field in the present work than in previous work where the intrinsic quadrupole field was not included in the magnetopause surface and field calculations. Moreover, we have corrected a programing error in previous work in the computation of dipole tilt lambda away from the sun. We find a slight increase for the planet dipole moment of 190γR/sub m/ 3 and a dipole tilt angle lambda away from the sun. We find a slight increase for the planet moment of 190γR/sub m/ 3 and a dipole tilt angle lambda of only 1.2 0 away from the sun. All other parameters are essentially unchanged

  18. Two Stochastic Resonances Induced by Two Different Multiplicative Telegraphic Noises for an Electric System

    International Nuclear Information System (INIS)

    Li Jinghui

    2008-01-01

    In this paper, an electric system with two dichotomous resistors is investigated. It is shown that this system can display two stochastic resonances, which are the amplitude of the periodic response as the functions of the two dichotomous resistors strengthes respectively. In the limits of Gaussian white noise and shot white noise (i.e., the two noises are both Gaussian white noise or shot white noise), no phenomena of resonance appear. By further study, we find that when the system is with three or more multiplicative telegraphic noises, there are three or more stochastic resonances

  19. Dipoles at rest

    International Nuclear Information System (INIS)

    Griffiths, D.J.

    1992-01-01

    In a world populated by magnetic monopoles (as well as ordinary electric charges), there are two kinds of electric dipoles: those due to separated electric charges, and those due to current loops of magnetic charge. Similarly, there are two kinds of magnetic dipoles: those due to separated magnetic monopoles, and those due to electric current loops. This paper derives the potentials and fields of each of the four dipole species, and calculates the force, torque, energy, momentum, and angular momentum of each type, when placed (at rest) in a static external field (which may itself be produced by electric charges and currents, magnetic charges and currents, or all of these). Some implications and applications of the various results are discussed

  20. Some dipole shower studies

    Science.gov (United States)

    Cabouat, Baptiste; Sjöstrand, Torbjörn

    2018-03-01

    Parton showers have become a standard component in the description of high-energy collisions. Nowadays most final-state ones are of the dipole character, wherein a pair of partons branches into three, with energy and momentum preserved inside this subsystem. For initial-state showers a dipole picture is also possible and commonly used, but the older global-recoil strategy remains a valid alternative, wherein larger groups of partons share the energy-momentum preservation task. In this article we introduce and implement a dipole picture also for initial-state radiation in Pythia, and compare with the existing global-recoil one, and with data. For the case of Deeply Inelastic Scattering we can directly compare with matrix element expressions and show that the dipole picture gives a very good description over the whole phase space, at least for the first branching.

  1. Magnetic moment oscillation in ammonium perchlorate in a DC SQUID-based magnetic resonance experiment

    International Nuclear Information System (INIS)

    Montero, V.; Cernicchiaro, G.

    2008-01-01

    In this work we describe experimental results in which a DC SQUID (superconducting quantum interference device) is used as free induction decay detector. Measurements of a solid ammonium perchlorate (NH 4 ClO 4 ) sample were performed, in zero field, at 4.2 K. Unexpected magnetic moment oscillations were detected at 1.5 kHz. The computation of the magnetic fields suggests that the proton nuclear magnetic resonance may explain the measured resonance, considering reorientation of the ammonium group by quantum tunneling of protons and a magnetic proton dipole-dipole intermolecular interaction model

  2. Ionization of Rb Rydberg atoms in the attractive nsnp dipole-dipole potential

    International Nuclear Information System (INIS)

    Park, Hyunwook; Shuman, E. S.; Gallagher, T. F.

    2011-01-01

    We have observed the ionization of a cold gas of Rb Rydberg atoms which occurs when nsns van der Waals pairs of ns atoms of n≅ 40 on a weakly repulsive potential are transferred to an attractive dipole-dipole nsnp potential by a microwave transition. Comparing the measurements to a simple model shows that the initial 300-μK thermal velocity of the atoms plays an important role. Excitation to a repulsive dipole-dipole potential does not lead to more ionization on a 15-μs time scale than leaving the atoms in the weakly repulsive nsns state. This observation is slightly surprising since a radiative transition must occur to allow ionization in the latter case. Finally, by power broadening of the microwave transition, to allow transitions from the initial nsns state to the nsnp state over a broad range of internuclear spacings, it is possible to accelerate markedly the evolution to a plasma.

  3. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    Science.gov (United States)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  4. 1s2p resonant inelastic X-ray scattering combined dipole and quadrupole analysis method

    DEFF Research Database (Denmark)

    Bagger, Alexander; Haarman, Ties; Molina, Anna Puig

    2017-01-01

    , it is shown that only in the case of quadrupole excitations being present is additional information gained by RIXS compared with XAS. Combining this knowledge with methods to calculate the dipole contribution in XAS measurements gives scientists the opportunity to plan more effective experiments....

  5. Effect of dipole interaction on collective modes in 3He-A

    International Nuclear Information System (INIS)

    Tewordt, L.; Schopohl, N.; Vollhardt, D.

    1977-01-01

    A general theory for the correlation functions of superfluid 3 He which takes into account rigorously the magnetic dipole interaction is developed. The resulting equations are solved for the Anderson--Brinkman--Morel (ABM) state and for wave vectors q oriented parallel to the energy gap axis. Then the dispersion relations of low-frequency modes, including Fermi liquid corrections and damping due to pair breaking, are calculated in the zero-temperature and zero-field limit. There are two real frequency modes arising from each of the longitudinal and transverse spin density correlation functions: a spin wave and an orbit wave, both exhibiting a frequency gap where that of the spin wave is somewhat modified in comparison to the unperturbed longitudinal nuclear magnetic resonance frequency Ω/sup ABM//sub L/. The orbit wave is damped much more strongly than the spin wave. Further, there are two real frequency modes arising from the density correlation function: the sound wave, having a frequency gap of the order Ω/sup ABM//sub L/, and an orbit wave, exhibiting a gap in wave number of order Ω/sup ABM//sub L//v/sub F/.: The NMR frequency undergoes a small splitting, which is the result of the splitting of the energy gap due to the dipole interaction. One of the two gaps still has nodes.: In addition to these low-frequency modes our equations yield resonances at frequencies of the order of the gap frequency Δ 0 /h, i.e., at ω=1.22Δ 0 /h and at ω=1.58 Δ 0 /h. The damping and the oscillator strengths of these resonances are calculated

  6. Electroexcitation of giant multipole resonances in 208Pb

    International Nuclear Information System (INIS)

    Sasao, M.; Torizuka, Y.

    1977-01-01

    Electroexcitation of the nuclear continuum for 208 Pb at excitation energies up to 100 MeV has been measured at momentum transfers in the range from 0.45 to 1.2 fm -1 . Unfolding of the radiation tail was performed using a tail function which takes into account the multiple-photon emission effect. The spectra at these momentum transfers deviate significantly from the prediction of the Fermi-gas model but are consistent with the sum of the multipole strengths of the random-phase approximation; the excess cross section on the low excitation energy side indicates the excitation of multipole resonances. A series of 208 Pb spectra at low momentum transfers was expanded into E1, E2 (E0), E3, and higher multipole components using the q dependence of the Tassie model for isoscalar modes and the Goldhaber-Teller or Steinwedel-Jensen model for isovector modes. The giant dipole resonance thus obtained is consistent with that from photoreactions. Isoscalar and isovector giant quadrupole resonances are seen, respectively, at 11 and 22.5 MeV and an octupole resonance at 16 MeV. A monopole resonance is suggested at 13.5 MeV. The reduced 2 > 2 , B (E1), B (E2), and B (E3) consume most of the corresponding energy weighted sum rule if the q dependences of the Tassie and Goldhaber-Teller models are assumed. The results with these models are consistent with the random-phase approximation

  7. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  8. Multipole giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Xia Keding; Cai Yanhuang

    1989-01-01

    The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed

  9. Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.

    Science.gov (United States)

    Yu, Hongling; Ho, Tak-San; Rabitz, Herschel

    2018-05-09

    Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.

  10. Translational Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    OpenAIRE

    Opatrny, T.; Deb, B.; Kurizki, G.

    2003-01-01

    We propose and investigate a realization of the position- and momentum-correlated Einstein-Podolsky-Rosen (EPR) states [Phys. Rev. 47, 777 (1935)] that have hitherto eluded detection. The realization involves atom pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The EPR "paradox" with translational variables is then modified by lattice-diffraction effects, and can be verified to a high degree of ...

  11. Measurement of gamma-ray multiplicity spectra and the alpha value for {sup 235}U resonances

    Energy Technology Data Exchange (ETDEWEB)

    Grigor` ev, Yu V [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Georgiev, G P; Stanchik, Kh [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-06-01

    Gamma spectra from 1 to 12 multiplicity were measured on th 500 m flight path of the IBR-30 reactor using a 16-section 32 L NaI(Tl) crystal scintillation detector able to hold 2 metallic samples of 90% {sup 235}U and 10% {sup 238}U 0.00137 atoms/b and 0.00411 atoms/b thick. Multiplicity spectra were obtained for resolved resonances in the E = 1-150 eV energy region. They were used to determine the value of {alpha} = {sigma}{sub {gamma}}/{sigma}{sub f} for 165 resonances of {sup 235}U. (author). 6 refs, 7 figs, 1 tab.

  12. Single and multiple vibrational resonance in a quintic oscillator with monostable potentials.

    Science.gov (United States)

    Jeyakumari, S; Chinnathambi, V; Rajasekar, S; Sanjuan, M A F

    2009-10-01

    We analyze the occurrence of vibrational resonance in a damped quintic oscillator with three cases of single well of the potential V(x)=1/2omega(0)(2)x(2)+1/4betax(4)+1/6gammax(6) driven by both low-frequency force f cos omegat and high-frequency force g cos Omegat with Omega > omega. We restrict our analysis to the parametric choices (i) omega(0)(2), beta, gamma > 0 (single well), (ii) omega(0)(2), gamma > 0, beta 0, beta arbitrary, gamma choice (i) at most one resonance occur while for the other two choices (ii) and (iii) multiple resonance occur. Further, g(VR) is found to be independent of the damping strength d while omega(VR) depends on d. The theoretical predictions are found to be in good agreement with the numerical result. We illustrate that the vibrational resonance can be characterized in terms of width of the orbit also.

  13. A Rotating-Bears Optical Dipole Trap for Cold Aatoms

    International Nuclear Information System (INIS)

    Friedman, N.; Ozeri, R.; Khaykovich, L.; Davidson, N.

    1999-01-01

    In the last few years, several optical dipole traps for cold atoms were demonstrated and used to study cold atomic collisions, long atomic coherence times and quantum collective effects. Blue-detuned dipole traps, where repulsive light forces confines atoms mostly in dark, offer long storage, and photon-scattering times, combined with strong confinement forces. Unfortunately, such blue-detuned dipole traps involve complicated light intensity distributions that require either multiple laser beams or complicated phase elements. Here, we propose and demonstrate a novel configuration for a single-beam blue-detuned dipole trap, which enables larger trapping volume, and fast temporal changes in the trap size and shape. Our trap consists of a tightly-focused laser beam which is rapidly rotated (with rotation frequency up to 400 khz) with two orthogonal acousto optical scanners. For very high rotation frequencies the atoms feel a time-averaged static dipole potential. Therefore, when the radius of rotation is larger than the beam size, a dark volume which is completely surrounded by light is obtained around the focal region. By changing the rotation radius and the trapping laser intensity and detuning, the trap dimensions and oscillation frequency could be changed over a large parameter range. In particular trap diameters were changed between 50 to 220 microns and trap length was changed between 3.5 to 16 mm. ∼10 6 atoms were loaded into the rotating-beam dipole trap from a magneto optical trap. The density of the trapped atoms was 4x10 10 atoms/cm 3 ,their temperature was -6 pK. and the trap (1/e) lifetime was 0.65 sec, limited by collisions with background atoms. When the rotation frequency was decreased below the oscillation frequency of the atoms in the trap, the trap became unstable, and a sharp reduction of the trap lifetime was observed, in agreement with our theoretical analysis. Finally, we demonstrated adiabatic compression of atoms in the trap by decreasing

  14. Encephalic magnetic resonance imaging in spinal clinical forms of multiple sclerosis

    International Nuclear Information System (INIS)

    Lubetzki, C.; Lyon-Caen, O.; Lhermitte, F.; Iba-Zizen, M.T.

    1988-01-01

    The diagnosis of multiple sclerosis (MS) in patients presenting with signs and symptoms of pure spinal cord involvement is always difficult. Previous studies have shown the usefulness of encephalic magnetic resonance imaging (MRI) of the brain in those cases. The aim was to evaluate the diagnosis value of brain MRI in medullar forms of MS. 3 refs

  15. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    Science.gov (United States)

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  16. Stochastic resonance for a metapopulation system driven by multiplicative and additive colored noises

    International Nuclear Information System (INIS)

    Wang Kang-Kang; Liu Xian-Bin

    2014-01-01

    We investigate the stochastic resonance (SR) phenomenon induced by the periodic signal in a metapopulation system with colored noises. The analytical expression of signal-to-noise is derived in the adiabatic limit. By numerical calculation, the effects of the addictive noise intensity, the multiplicative noise intensity and two noise self-correlation times on SNR are respectively discussed. It shows that: (i) in the case that the addictive noise intensity M takes a small value, a SR phenomenon for the curve of SNR appears; however, when M takes a large value, SNR turns into a monotonic function on the multiplicative noise intensity Q. (ii) The resonance peaks in the plots of the multiplicative noise intensity Q versus its self-correlation time τ 1 and the addictive noise intensity M versus its self-correlation time τ 2 translate in parallel. Meanwhile, a parallel translation also appears in the plots of τ 1 versus Q and τ 2 versus M. (iii) The interactive effects between self-correlation times τ 1 and τ 2 are opposite. (general)

  17. Magnetic dipole moments of odd-odd lanthanides

    International Nuclear Information System (INIS)

    Sharma, S.D.; Gandhi, R.

    1988-01-01

    Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs

  18. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    Science.gov (United States)

    Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey

    2012-07-01

    A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.

  19. Magnetic resonance imaging correlates of bee sting induced multiple organ dysfunction syndrome: A case report.

    Science.gov (United States)

    Das, Sushant K; Zeng, Li-Chuan; Li, Bing; Niu, Xiang-Ke; Wang, Jing-Liang; Bhetuwal, Anup; Yang, Han-Feng

    2014-09-28

    Occasionally systemic complications with high risk of death, such as multiple organ dysfunction syndrome (MODS), can occur following multiple bee stings. This case study reports a patient who presented with MODS, i.e., acute kidney injury, hepatic and cardiac dysfunction, after multiple bee stings. The standard clinical findings were then correlated with magnetic resonance imaging (MRI) findings, which demonstrates that MRI may be utilized as a simpler tool to use than other multiple diagnostics.

  20. Suppression of nonlinear frequency-sweeping of resonant interchange modes in a magnetic dipole with applied radio frequency fields

    International Nuclear Information System (INIS)

    Maslovsky, D.; Levitt, B.; Mauel, M. E.

    2003-01-01

    Interchange instabilities excited by energetic electrons trapped by a magnetic dipole nonlinearly saturate and exhibit complex, coherent spectral characteristics and frequency sweeping [H. P. Warren and M. E. Mauel, Phys. Plasmas 2, 4185 (1995)]. When monochromatic radio frequency (rf) fields are applied in the range of 100-1000 MHz, the saturation behavior of the interchange instability changes dramatically. For applied fields of sufficient intensity and pulse-length, coherent interchange fluctuations are suppressed and frequency sweeping is eliminated. When rf fields are switched off, coherent frequency sweeping reappears. Since low frequency interchange instabilities preserve the electron's first and second adiabatic invariants, these observations can be interpreted as resulting from nonlinear resonant wave-particle interactions described within a particle phase-space, (ψ,φ), comprised of the third adiabatic invariant and the azimuthal angle. Self-consistent numerical simulation is used to study (1) the nonlinear development of the instability, (2) the radial mode structure of the interchange instability, and (3) the suppression of frequency sweeping. When the applied rf heating is modeled as an 'rf collisionality', the simulation reproduces frequency sweeping suppression and suggests an explanation for the observations that is consistent with Berk and co-workers [H. L. Berk et al., Phys. Plasmas 6, 3102 (1999)

  1. Electric-dipole moment of CaF by molecular-beam, laser-rf, double-resonance study of Stark splittings

    International Nuclear Information System (INIS)

    Childs, W.J.; Goodman, L.S.; Nielsen, U.; Pfeufer, V.

    1984-01-01

    The electronic structure of diatomic molecules is much more complex for open-shell sytems (radicals) than for the normal closed-shell systems, and the development of an adequate theoretical understanding will require a substantial upgrading of experimental knowledge in both quality and quantity. The alkaline-earth monohalide family of radicals, with only a single electron outside closed-shell cores, would appear to be a logical starting point for such studies, and there has been a great increase in work in this area in the last few years in spite of the special difficulties of working with free radicals. As the work of measuring the vibrational and rotational structure of the electronic states has become more complete, attention has turned to study of the much weaker spin-rotation and hyperfine interactions. Within the last three years, these interactions have been studied systematically at high precision in the calcium monohalide family with the molecular-beam, laser-rf double-resonance technique. The same method has now been modified and extended to make possible measurement of the electric-dipole moments of these molecules through observation of the Stark splittings of radiofrequency transitions. It is hoped that when considered together, the several types of data will make it possible to understand the ground-state electronic wave functions of these molecules at least qualitatively. 2 figures

  2. Dynamics of a nonlinear dipole vortex

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nielsen, A.H.

    1995-01-01

    A localized stationary dipole solution to the Euler equations with a relationship between the vorticity and streamfunction given as omega=-psi+psi(3) is presented. By numerical integration of the Euler equations this dipole is shown to be unstable. However, the initially unstable dipole reorganiz...

  3. Electrostatic-Dipole (ED) Fusion Confinement Studies

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert

    2004-11-01

    The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH

  4. Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

    Science.gov (United States)

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-03-22

    The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due to HSE and DD have been derived. By employing nonlinear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items 1-3 may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions; however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce whether this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A new key aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items 1-3 due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to

  5. Magnetic resonance imaging abnormalities in multiple sclerosis: A review

    International Nuclear Information System (INIS)

    Saharian, M. A.; Shakaouri Rad, A.; Motamedi, M.; Pakdaman, H.; Radue, E. W.

    2007-01-01

    :During the last two decades, magnetic resonance imaging has been widely used In the diagnosis and treatment monitoring of multiple sclerosis. MRI, both conventional and non conventional methods, has transformed all aspects of M S research and clinical practice in recent years. Although advanced imaging methods have added much more to our knowledge about pathogenesis and natural history of the disease but their cost, availability, complexity and lack of validation have limited their use in routine clinical practice. Conventional MR techniques including proton density, T1/T2-Weighted images and fluid- attenuated inversion recovery sequences are now accepted in standard protocols for diagnosis and treatment outcome measures in clinical trials of multiple sclerosis. This review will focus on the type, morphology and evolution of M S lesions regarding conventional MRI and their use for treatment monitoring in daily clinical practice

  6. Structure of the giant dipole resonance in 208Pb

    International Nuclear Information System (INIS)

    El Naggar, N.M.

    1977-01-01

    A new scheme is devised to study the giant resonance in the heavy magic nucleus 208 Pb. The effect of the 4 + and 5 - collective excitations of the nucleus core is demonstrated. The calculated cross section is compared with the experimental data. (author)

  7. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Geltenbort, P.; Ivanov, S. N.; Zimmer, O. [Institut Max von Laue–Paul Langevin (France)

    2015-12-15

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM vertical bar d{sub n} vertical bar < 5.5 × 10{sup –26}e cm at the 90% confidence level.

  8. Operador dipolo-dipolo na base de momento angular: um complemento ao estudo de ressonância magnética nuclear Dipole-dipole operator in angular momentum basis: a complementary study in nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Rita de Cássia de Oliveira Sebastião

    2008-01-01

    Full Text Available The relationship between the magnetic dipole-dipole potential energy function and its quantum analogue is presented in this work. It is assumed the reader is familiar with the classical expression of the dipolar interaction and has basic knowledge of the quantum mechanics of angular momentum. Except for these two points only elementary steps are involved.

  9. Parameter Diversity Induced Multiple Spatial Coherence Resonances and Spiral Waves in Neuronal Network with and Without Noise

    International Nuclear Information System (INIS)

    Li Yuye; Jia Bing; Gu Huaguang; An Shucheng

    2012-01-01

    Diversity in the neurons and noise are inevitable in the real neuronal network. In this paper, parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated. The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified. The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased. The results suggest that natural nervous system might profit from both parameter diversity and noise, provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise. (general)

  10. Astrophysical relevance of the low-energy dipole strength of 206Pb

    Science.gov (United States)

    Tonchev, A. P.; Tsoneva, N.; Goriely, S.; Bhatia, C.; Arnold, C. W.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2018-05-01

    The dipole strength of 206Pb was studied below the neutron separation energy using photon scattering experiments at the HIGS facility. Utilizing the technique of nuclear resonance fluorescence with 100% linearly-polarized photon beams, the spins, parities, branching ratios and decay widths of excited states in 206Pb from 4.9 - 8.1 MeV have been measured. The new experimental information is used to reliably predict the neutron capture cross section of 205Pb, an important branch point nucleus along the s-process path of nucleosynthesis.

  11. An inkjet printed meandered dipole antenna for RF passive sensing applications

    KAUST Repository

    Quddious, Abdul

    2016-04-10

    In this paper, a low cost inkjet printed antenna envisioned for integration with printed and non-printed RF sensors is presented. The proposed meandered dipole dual-loop antenna is designed on a 0.25mm thick paper substrate. The antenna not only gives wireless remote sensing capability but also allows remote identification functionality. The antenna structure consists of an outer loop and an inner loop resonating at 3GHz and 5GHz respectively and used for obtaining unique electromagnetic signature by modifications in their dimensions.

  12. Excitation of the Roper resonance and study of higher baryon resonances

    International Nuclear Information System (INIS)

    Morsch, H.P.; Forschungszentrum Juelich GmbH

    1992-01-01

    The region of the P 11 resonance N(1440) is investigated in inelastic α-scattering on hydrogen using alpha-particles from Saturne with a beam momentum of 7 GeV/c. In the missing mass spectra of the scattered α-particles two effects are observed, excitation of the projectile, preferentially excited to the Δ-resonance, and excitation of the Roper resonance. The large differential cross sections indicate a structure of a compression mode. From this the compressibility of the nucleon K N may be extracted. The Roper resonance excitation corresponds to a surface mode which may be related to an oscillation of the meson cloud. The other monopole mode which corresponds to a vibration of the valence quarks should lie at about 800 MeV of excitation or above. This is the region of the P 11 (1710 MeV) resonance. Therefore experiments are important to measure the monopole strength in this energy region. Another interesting aspect is the scalar polarizability which can be extracted from inelastic dipole excitations (squeezing modes) as excitation energies above 500 MeV

  13. Dipoles on a Two-leg Ladder

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Zinner, Nikolaj Thomas

    2013-01-01

    We study polar molecules with long-range dipole-dipole interactions confined to move on a two-leg ladder for different orientations of the molecular dipole moments with respect to the ladder. Matrix product states are employed to calculate the many-body ground state of the system as function...... that there is a critical angle at which ordering disappears. This angle is slightly larger than the angle at which the dipoles are non-interacting along a single leg. This behavior should be observable using current experimental techniques....

  14. Polar and low polar solvents media effect on dipole moments of some diazo Sudan dyes

    Science.gov (United States)

    Zakerhamidi, M. S.; Golghasemi Sorkhabi, Sh.; Shamkhali, A. N.

    2014-06-01

    Absorption and fluorescence spectra of three Sudan dyes (SudanIII, SudanIV and Sudan black B) were recorded in various solvents with different polarity in the range of 300-800 nm, at room temperature. The solvatochromic method was used to investigate dipole moments of these dyes in ground and excited states, in different media. The solvatochromic behavior of these substances and their solvent-solute interactions were analyzed via solvent polarity parameters. Obtained results express the effects of solvation on tautomerism and molecular configuration (geometry) of Sudan dyes in solvent media with different polarity. Furthermore, analyze of solvent-solute interactions and value of ground and excited states dipole moments suggests different forms of resonance structures for Sudan dyes in polar and low-polar solvents.

  15. MCRTOF, Multiple Scattering of Resonance Region Neutron in Time of Flight Experiments

    International Nuclear Information System (INIS)

    Ohkubo, Mako

    1984-01-01

    1 - Description of program or function: Multiple scattering of neutrons in the resonance energy region impinging on a disk with an arbitrary angle. 2 - Method of solution: The Monte Carlo method is employed to simulate the path of an incident neutron in a medium for which macroscopic cross sections are determined by resonance parameters. By tracing a large number of neutrons, probabilities for capture, transmission, front-face scattering, rear-face scattering and side-face scattering are determined and printed out as function of incident neutron energy. Optionally, the distribution of capture locations in the disk can be printed. The incident neutron energy is swept to fit a situation as encountered in time-of-flight experiments. 3 - Restrictions on the complexity of the problem: The cross section file is constructed from input resonance parameters with a single- level Breit-Wigner formula. The following restrictions and simplifications apply: - The maximum number of resonances is five. - Reactions other than capture and scattering are neglected. - The angular scattering distribution in the center-of-mass system is assumed to be uniform. - Chemical binding effects are neglected

  16. Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    Science.gov (United States)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  17. Is There a Pronounced Giant Dipole Resonance in 4He?

    International Nuclear Information System (INIS)

    Efros, V.D.; Efros, V.D.; Leidemann, W.; Orlandini, G.; Orlandini, G.

    1997-01-01

    A four-nucleon calculation of the total 4 He photodisintegration cross section is performed. The full final-state interaction is taken into account for the first time. This is achieved via the method of the Lorentz integral transform. Semirealistic NN interactions are employed. Different from the known partial two-body 4 He( γ,n) 3 He and 4 He( γ,p) 3 H cross sections our total cross section exhibits a pronounced giant resonance. Thus, in contrast to older (γ,np) data, we predict quite a strong contribution of the (γ,np) channel at the giant resonance peak energy. copyright 1997 The American Physical Society

  18. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, César D. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, R8402AGP, Bariloche (Argentina); Lombardo, Fernando C., E-mail: lombardo@df.uba.ar [Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)

    2015-12-17

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation.

  19. Magnetisation of magnetite nanoparticles medium with dipol-dipol interaction

    International Nuclear Information System (INIS)

    Ali-zade, R. A.

    2005-01-01

    Full text: Magnetisation expression for magnetite nanoparticles medium with dipo-dipol interaction has been obtained. We suggested, that energy magnetic dipol-dipol interaction of magnetite nanopaticles is determined by: E d-d = - m 2 /4πμ 0 r 3 (cth x -1/x) 2 where x=mH/kT. This expression has been substituted in statistical sum of magnetite nanoparticles medium. Obtained statistical sum consists the production of two statistical sums. The first statistical sum described non-interacting magnetite nanoparticle medium and from this is obtained Langevan equation. Second statistical sum is: Z 2 -∫exp(Σm 2 /4π 0 r 3 (cth x -1/x) 2 ) dΩ 2 . The second statistical sum has been expanded in Taylor's set and taken into consideration first two terms. Integration has been carried out over all volume. In this case take into account that, number twice interactions of magnetite nanoparticles in unit volume is equal to N(N-1)/2 at N>>1 to N 2 /2. We obtain expressions for magnetisation and initial magnetic susceptibility of interacting magnetite nanoparticles medium take into account that Φ=-kT ln Z, M=-dΦ/dH, χ=dM/dH: M=M Sφm (cth x -1/x)+ 1/3 M S 2 φ m 2 (1μ 0 H) ln(VM S /kT).(cth x -1/x)(-xcsch 2 x+1/x) χ 0 =1/3 (m/kT)+ 1/27 M S 2 φ m 2 (1μ 0 )ln(VM S /kT).(m/kT) 2 . Second term in the magnetisation is sufficient at weak and middle magnetic fields. At large magnetic fields, it leads to zero. The second term of magnetisation has maximum at x=1.566. The values of experimental and calculated magnetic field corresponding to magnetisation maximum for magnetite nanoparticles medium (mean diameter of nanoparticle is 9.4 nm) are 1.19 10 4 A/m and 1.25 10 4 A/m respectively. Magnetic dipol-dipol interaction influence to magnetisation of magnetite nanoparticles. Magnetite nanoparticles lined along external magnetic fields line and formatted chains. Magnetisation of medium occurs by the 'parallel' mechanism method magnetisation of chains

  20. Electric dipole polarizability from first principles calculations

    International Nuclear Information System (INIS)

    Miorelli, M.; University of British Columbia, Vancouver, BC; Bacca, S.; University of Manitoba; Barnea, N.

    2016-01-01

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4 He, 40 Ca, and 16 O nuclei, and predict the dipole polarizability for the rare nucleus 22 O.

  1. Double giant resonances in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Ring, P.; Podobnik, B.

    1996-01-01

    Collective vibrations in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory (RMFT). Isoscalar quadrupole and isovector dipole oscillations that correspond to giant resonances are studied, and possible excitations of higher modes are investigated. We find evidence for modes which can be interpreted as double resonances. In a quantized RMFT they correspond to two-phonon states. (orig.)

  2. A sum rule calculation of the neutron electric dipole moment from a quark chromoelectric dipole coupling

    International Nuclear Information System (INIS)

    Kogan, I.I.; Wyler, D.

    1992-01-01

    The neutron electric dipole moment (NEDM) from a quark chromoelectric dipole moment is calculated using a QCD sumrule approach. We demonstrate that leading contributions to the NEDM come from induced condensates (quark and quark-gluon condensate magnetic susceptibilities) which are also determined. Other possible contributions to the NEDM such as a quark electric dipole moment or a triple gluon operator are briefly discussed. (orig.)

  3. Nonperturbative study of the damping of giant resonances in hot nuclei

    International Nuclear Information System (INIS)

    De Blasio, F.V.; Cassing, W.; Tohyama, M.; Bortignon, P.F.; Broglia, R.A.

    1992-01-01

    The damping of dipole and quadrupole motion in 16 O and 40 Ca at zero and finite temperature is studied including particle-particle and particle-hole interactions to all orders of perturbation. We find that the dipole dynamics in these light nuclei is well described in terms of mean-field theory (time-dependent Hartree-Fock), while the quadrupole motion is strongly damped through the coupling to more complicated configurations. Both the centroid and the damping width of the quadrupole and dipole giant resonances show a clear stability with temperature as a consequence of the weakening of the interaction, which contrasts with the increase of the phase space

  4. Magnetic resonance in the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Rovira, A.

    2001-01-01

    Although the diagnosis of multiple sclearosi (MS) continues to be based on clinical findings, magnetic resonance (MR) is currently considered an indispensable technique for showing the spatial and temporal profiles of the demyelinating lesions that characterize the disease. The diagnostic yield of MR is based on its high sensitivity in the detection of demyelinating lesions in both brain and medulla and on its capacity to detect temporal changes in them. This high sensitivity must be accompanied by a high specificity, which is achieved with the proper knowledge of the signal, morphologic, topographic and temporal features of demyelinating lesions, as described in the diagnostic criteria recently proposed by McDonald et al. (Author) 77 refs

  5. Automating dipole subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, K.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, P. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Theoretische Teilchenphysik

    2008-07-15

    We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg{yields}t anti tggg. (orig.)

  6. Automating dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.; Moch, S.; Uwer, P.

    2008-07-01

    We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg→t anti tggg. (orig.)

  7. Automatic dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.

    2008-01-01

    The Catani-Seymour dipole subtraction is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. We automatized the procedure in a computer code. The code is useful especially for the processes with many parton legs. In this talk, we first explain the algorithm of the dipole subtraction and the whole structure of our code. After that we show the results for some processes where the infrared divergences of real emission processes are subtracted. (author)

  8. Astrophysical relevance of the low-energy dipole strength of 206Pb

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2018-01-01

    Full Text Available The dipole strength of 206Pb was studied below the neutron separation energy using photon scattering experiments at the HIGS facility. Utilizing the technique of nuclear resonance fluorescence with 100% linearly-polarized photon beams, the spins, parities, branching ratios and decay widths of excited states in 206Pb from 4.9 - 8.1 MeV have been measured. The new experimental information is used to reliably predict the neutron capture cross section of 205Pb, an important branch point nucleus along the s-process path of nucleosynthesis.

  9. Effects of spin-orbit activated interchannel coupling on dipole photoelectron angular distribution asymmetry parameters

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Baltenkov, A S [Arifov Institute of Electronics, Tashkent 70125 (Uzbekistan); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States); Manson, S T [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Msezane, A Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2004-02-28

    The effects of spin-orbit induced interchannel coupling on the dipole photoelectron angular asymmetry parameter {beta}{sub 3d} for Xe, Cs and Ba are explored using a modified version of the spin-polarized random phase approximation with exchange (SPRPAE) methodology. For Xe, {beta}{sub 3d{sub 5/2}} is modified somewhat by the interchannel coupling in the vicinity of the 3d{sub 3/2} {yields} {epsilon}f shape resonance, and this effect is significantly more pronounced in Cs where the resonance is larger. In Ba, however, where f-wave orbital collapse has occurred, the shape resonance has moved below threshold and the effect of interchannel coupling on {beta}{sub 3d{sub 5/2}} above the 3d{sub 3/2} threshold is negligible. But below the 3d{sub 3/2} threshold, {beta}{sub 3d{sub 5/2}} is dominated by the huge broad 3d{sub 3/2} {yields} 4f resonance.

  10. Tracking performances of the dimuon spectrometer with a dipole magnet

    International Nuclear Information System (INIS)

    Cussonneau, J.P.; Gutbrod, H.; Lautridou, P.; Luquin, L.; Metivier, V.; Ramillien, V.

    1996-01-01

    The tracking performances of the ALICE forward muon spectrometer, with a dipole magnet, are investigated. The study concerns the track finding and the mass resolution as well as the acceptance of the spectrometer for the Φ's, J/Ψ's and Υ's. With the proposed setup, a mass resolution below 100 MeV is obtained and a track finding efficiency better than 90% is achieved for the heavy resonance. An absolute acceptance of 4.83% is found which is acceptable in order to reach the required statistic for Υ' and Υ'' in Pb-Pb collisions. (author)

  11. Isotopic dependence of giant multipole resonances

    International Nuclear Information System (INIS)

    Bar Touv, J.; Moalem, A.; Shlomo, S.

    1980-01-01

    A procedure is presented which allows the application of linear response theory and the random phase approximation to an open shell. The procedure is applied to Ca isotopes. The general features of giant multipole resonances are found to vary smoothly with the mass. The resonances exhibit more structure in the open lfsub(7/2) shell nuclei. While the energy-weighted dipole sum is practically constant in all isotopes, the isoscalar quadrupole and octupole energy weighted sums increase continuously by approx. 30% from 40 Ca to 48 Ca. (orig.)

  12. Localizing Brain Activity from Multiple Distinct Sources via EEG

    Directory of Open Access Journals (Sweden)

    George Dassios

    2014-01-01

    Full Text Available An important question arousing in the framework of electroencephalography (EEG is the possibility to recognize, by means of a recorded surface potential, the number of activated areas in the brain. In the present paper, employing a homogeneous spherical conductor serving as an approximation of the brain, we provide a criterion which determines whether the measured surface potential is evoked by a single or multiple localized neuronal excitations. We show that the uniqueness of the inverse problem for a single dipole is closely connected with attaining certain relations connecting the measured data. Further, we present the necessary and sufficient conditions which decide whether the collected data originates from a single dipole or from numerous dipoles. In the case where the EEG data arouses from multiple parallel dipoles, an isolation of the source is, in general, not possible.

  13. Position and Momentum Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    Science.gov (United States)

    Opatrný, T.; Kolář, M.; Kurizki, G.

    We consider a possible realization of the position- and momentum-correlated atomic pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The Einstein-Podolsky-Rosen (EPR) "paradox" [Einstein 1935] with translational variables is then modified by lattice-diffraction effects. We study a possible mechanism of creating such diatom entangled states by varying the effective mass of the atoms.

  14. Electric dipole moments reconsidered

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1989-01-01

    The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)

  15. Dipole moments of the ground and first excited vibrational states of 35ClO

    International Nuclear Information System (INIS)

    Yaron, D.J.; Peterson, K.I.; Klemperer, W.

    1985-01-01

    The v=0 and v=1 dipole moments of ClO were obtained using the molecular beam electric resonance technique. ClO is formed in a supersonically expanded discharge of 10-20% O 2 and 3-4% Cl 2 in an Ar buffer gas. Transitions within the 2 π/sub 3/2/, J=3/2 state of 35 ClO were monitored as a function of electric field up to 1600 v/cm. At zero field, this state is split into eight levels by the magnetic hyperfine structure and lambda doubling. The dipole moments obtained were 1.2980 (12) D for the v=0 state and 1.2779 (19) for the v=1 state (tentative). The difference between these two measured values is 0.0201 D which is significantly lower than the theoretically predicted result of 0.028 D. 2 references

  16. High-field dipoles for future accelerators

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators

  17. Localized surface plasmon resonance enhanced photoluminescence of CdSe QDs in PMMA matrix on silver colloids with different shapes

    International Nuclear Information System (INIS)

    Lu Liu; Xu Xiaoliang; Shi Chaoshu; Ming Hai

    2010-01-01

    Localized surface plasmon resonance (LSPR) enhanced photoluminescences (PL) from CdSe quantum dots (QDs) on worm-like or quasi-spherical silver colloids have been investigated. The shape of silver colloid film is controlled by annealing temperature (200 o C∼350 o C). Strong PL enhancements of CdSe QDs on both as-grown and annealed silver colloid films are observed. The results show that the PL enhancement factor of CdSe QDs on worm-like silver colloid film reaches as high as 15-fold. Moreover, the enhancement factor is 5 times larger than that obtained from the quasi-spherical silver colloids. The superiority of worm-like silver nanostructure on LSPR enhanced photoluminescence is attributed to its larger size, hot spots and multiple dipole resonance modes coupling, which are induced by aggregation effect.

  18. Electric dipole excitation of {sup 208}Pb by polarized electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Jakubassa-Amundsen, D.H. [University of Munich, Mathematics Institute, Munich (Germany); Ponomarev, V.Yu. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2016-03-15

    The cross sections and spin asymmetries for the excitation of 1{sup -} states in {sup 208}Pb by transversely polarized electrons with collision energy of 30-180MeV have been examined within the DWBA scattering formalism. As examples, we have considered a low-lying 1{sup -} state and also states belonging to the pygmy dipole and giant dipole resonances. The structure of these states and their corresponding transition charge and current densities have been taken from an RPA calculation within the quasiparticle phonon model. The complex-plane rotation method has been applied to achieve the convergence of the radial DWBA integrals for backward scattering. We have studied the behaviour of the cross sections and spin asymmetries as a function of electron energy and scattering angle. The role of the longitudinal and transversal contributions to the excitation has been thoroughly studied. We conclude that the spin asymmetry S, related to unpolarized outgoing electrons, is mostly well below 1% even at the backward scattering angles and its measurement provides a challenge for future experiments with polarized electrons. (orig.)

  19. Halo-induced large enhancement of soft dipole excitation of 11Li observed via proton inelastic scattering

    Directory of Open Access Journals (Sweden)

    J. Tanaka

    2017-11-01

    Full Text Available Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex=0.80±0.02 MeV with a width of Γ=1.15±0.06 MeV. A DWBA (distorted-wave Born approximation analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1 transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30∼296 Weisskopf units, exhausting 2.2%∼21% of the isoscalar E1 energy-weighted sum rule (EWSR value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.

  20. Asymmetry of neoclassical transport by dipole electric field

    International Nuclear Information System (INIS)

    Wang Zhongtian; Wang Long

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity. (authors)

  1. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  2. Production and study of high-beta plasma confined by a superconducting dipole magnet

    International Nuclear Information System (INIS)

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-01-01

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large

  3. Properties of Hot and Fast Rotating Atomic Nuclei Studied by Means of Giant Dipole Resonance in Exclusive Experiments

    International Nuclear Information System (INIS)

    Maj, A.

    2000-01-01

    This work entitled ''Properties of hot and fast rotating atomic nuclei studied by means of Giant Dipole Resonance in exclusive experiments'', is the habilitation thesis of dr. Adam Maj. It consists of the review (in Polish) of performed research and of attached reprints from 16 original publications (in English) which A. Maj is the main or one of the main authors. All the studies were performed in collaboration with the groups from Milano and Copenhagen, using the HECTOR array equipment (described in chapter V). The Giant Dipole Resonance couples to the quadrupole degrees of freedom of the nucleus, and therefore constitutes a unique probe to test the shapes of atomic nuclei. In addition, the γ decay of the GDR from highly excited nuclei is a very fast process, it can compete with other modes of nuclear decay, and therefore can provide the information on the initial stages of excited nuclei. The presented investigations were concentrated on the following aspects: the shapes and thermal shape fluctuations, the origin of the behaviour of the GDR width, the properties of some exotic nuclei (Jacobi shapes, superdeformation, superheavy nuclei) and on ''entrance channel'' effects. The GDR γ decay was measured for nuclei with very different masses: from light nuclei with A≅45, through A≅110, 145,170,190, up to superheavy nuclei with A≅270. The shapes of hot nuclei are not fixed but fluctuate. The extent of these fluctuations and their influence on the measured quantities (GDR strength function, angular distribution and effective shape) is discussed in chapter VI.1. The observed width of the GDR is found to arise from the interplay of two effects: the thermal shape fluctuations, which are controlled by the nuclear temperature, and the deformation effects, controlled by the angular momentum. The ''collisional damping'' effect, which should influence the intrinsic GDR width, was found to be negligible (chapter VI.2). The GDR γ decay from hot superheavy nucleus 272 Hs

  4. Imaging atoms from resonance fluorescence spectrum beyond the diffraction limit

    Science.gov (United States)

    Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail

    2014-03-01

    We calculate the resonance fluorescence spectrum of a linear chain of two-level atoms driven by a gradient coherent laser field. The result shows that we can determine the positions of atoms from the spectrum even when the atoms locate within subwavelength range and the dipole-dipole interaction is significant. This far-field resonance fluorescence localization microscopy method does not require point-by-point scanning and it may be more time-efficient. We also give a possible scheme to extract the position information in an extended region without requiring more peak power of laser. We also briefly discuss how to do a 2D imaging based on our scheme. This work is supported by grants from the King Abdulaziz City for Science and Technology (KACST) and the Qatar National Research Fund (QNRF) under the NPRP project.

  5. Excitation dependence of resonance line self-broadening at different atomic densities

    OpenAIRE

    Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2009-01-01

    We study the dipole-dipole spectral broadening of a resonance line at high atomic densities when the self-broadening dominates. The selective reflection spectrum of a weak probe beam from the interface of the cell window and rubidium vapor are recorded in the presence of a far-detuned pump beam. The excitation due to the pump reduces the self-broadening. We found that the self-broadening reduction dependence on the pump power is atomic density independent. These results provide experimental e...

  6. Formation of dislocation dipoles in irradiated graphite

    International Nuclear Information System (INIS)

    Niwase, Keisuke

    2005-01-01

    Recently, we have proposed a dislocation dipole accumulation model to explain the irradiation-induced amorphization of graphite. However, the structure of dislocation dipole in the hexagonal networks is still an open question at the atomic-level. In this paper, we propose a possible formation process of the dislocation dipole

  7. Mean multiplicity in the Regge models with rising cross sections

    International Nuclear Information System (INIS)

    Chikovani, Z.E.; Kobylisky, N.A.; Martynov, E.S.

    1979-01-01

    Behaviour of the mean multiplicity and the total cross section σsub(t) of hadron-hadron interactions is considered in the framework of the Regge models at high energies. Generating function was plotted for models of dipole and froissaron, and the mean multiplicity and multiplicity moments were calculated. It is shown that approximately ln 2 S (energy square) in the dipole model, which is in good agreement with the experiment. It is also found that in various Regge models approximately σsub(t)lnS

  8. The influence of the disordered dipole subsystem on the thermal conductivity of the CO solid at low temperatures

    International Nuclear Information System (INIS)

    Sumarokov, V.; Jezowski, A.; Stachowiak, P.

    2009-01-01

    The thermal conductivity of solid CO is investigated in the temperature range 1-20 K. The experimental temperature dependence of thermal conductivity of solid CO is described using the time-relaxation method within the Debye model. The comparison of the experimental temperature dependences of the thermal conductivity of N 2 and CO shows that in the case of CO there is an additional large phonon scattering at temperatures near the maximum. Analysis of the experimental data indicates that this scattering is caused by the frozen disordered dipole subsystem, similar to a dipole glass. The scattering is described by resonant phonon scattering on tunneling states and on low-energy quasi-harmonic oscillations within the soft potential model

  9. Effects of 2p-2h configurations on low-energy dipole states in neutron-rich N=80, 82 and 84 isotones

    Directory of Open Access Journals (Sweden)

    Arsenyev N. N.

    2016-01-01

    Full Text Available Starting from the Skyrme interaction SLy4 we study the effects of phonon-phonon coupling on the low-energy electric dipole response in 130−134Sn, 132−136Te and 134−138Xe. Our calculations are performed within the finite-rank separable approximation, which enables one to perform quasiparticle random phase approximation calculations in very large two-quasiparticle configuration spaces. A dependence of the pygmy dipole resonance strengths on the neutron skin thickness is found. The inclusion of the two-phonon configurations gives a considerable contribution to the low-lying strength.

  10. Active coated nano-particle excited by an arbitrarily located electric Hertzian dipoleresonance and transparency effects

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2010-01-01

    The present work investigates the optical properties of active coated spherical nano-particles excited by an arbitrarily located electric Hertzian dipole. The nano-particles are made of specific dielectric and plasmonic materials. The spatial near-field distribution as well as the normalized...

  11. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  12. Role of the low-lying isoscalar dipole modes in the polarization potential

    International Nuclear Information System (INIS)

    Bal'butsev, E.B.; Unzhakova, A.V.; Lanza, E.G.; Catania Univ.

    1994-01-01

    An analysis of the real and imaginary parts of the polarization potential in terms of the relative contributions of the single collective states for the 208 Pb + 208 Pb system has been done. The polarization potential has been calculated within the Feshbach formalism taking into account the collective states calculated with the Wigner function moments method. The contribution of the isoscalar giant dipole resonance states has been estimated being of the order of 10-20% of the total at relatively low incident energy. 14 refs., 4 figs., 1 tab

  13. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, Cesar D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Instituto Balseiro, Bariloche (Argentina); Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA y IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-12-15

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  14. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    International Nuclear Information System (INIS)

    Fosco, Cesar D.; Lombardo, Fernando C.

    2015-01-01

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  15. Theoretical investigations of quantum correlations in NMR multiple-pulse spin-locking experiments

    Science.gov (United States)

    Gerasev, S. A.; Fedorova, A. V.; Fel'dman, E. B.; Kuznetsova, E. I.

    2018-04-01

    Quantum correlations are investigated theoretically in a two-spin system with the dipole-dipole interactions in the NMR multiple-pulse spin-locking experiments. We consider two schemes of the multiple-pulse spin-locking. The first scheme consists of π /2-pulses only and the delays between the pulses can differ. The second scheme contains φ-pulses (0Quantum discord is obtained for the first scheme of the multiple-pulse spin-locking experiment at different temperatures.

  16. Proposal for Translational Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    Science.gov (United States)

    Opatrný, Tomáš; Deb, Bimalendu; Kurizki, Gershon

    2003-06-01

    We propose and investigate a realization of the position- and momentum-correlated Einstein-Podolsky-Rosen (EPR) states [Phys. Rev. 47, 777 (1935)] that have hitherto eluded detection. The realization involves atom pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The EPR “paradox” with translational variables is then modified by lattice-diffraction effects and can be verified to a high degree of accuracy in this scheme.

  17. Constraining the electric dipole photon strength function in {sup 130}Te

    Energy Technology Data Exchange (ETDEWEB)

    Isaak, J.; Loeher, B.; Savran, D.; Silva, J. [ExtreMe Matter Institute EMMI and Research Division, Darmstadt (Germany); FIAS, Frankfurt (Germany); Ahmed, M.W.; Kelley, J.H.; Tornow, W.; Weller, H.R. [Department of Physics, Duke University, TUNL (United States); Beller, J.; Pietralla, N.; Romig, C.; Zweidinger, M. [Institut fuer Kernphysik, TU Darmstadt (Germany); Glorius, J.; Sonnabend, K. [Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt (Germany); Krticka, M. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Rusev, G. [Chemistry Division, LANL (United States); Scheck, M. [School of Engineering, University of the West of Scotland (United Kingdom); Tonchev, A.P. [Physics Division, LLNL (United States)

    2014-07-01

    The decay properties of photo-excited states in {sup 130}Te have been investigated by means of Nuclear Resonance Fluorescence experiments at the Darmstadt High Intensity Photon Setup (DHIPS) and the High Intensity γ-ray Source (HIγS). The combination of continuous-energy bremsstrahlung on the one hand and the quasi-monoenergetic and linearly polarized photon beam on the other enables a detailed insight into the photoabsorption cross section and the decay behavior of spin-1 states. Comparing these results to simulations within the statistical model allow for constraining the electric dipole photon strength function (E1-PSF). Results are presented and discussed.

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Potential energy surface; activated complex theory; effective resultant dipole moment; one-electron theory for optical activity; rate processes in biology. Author Affiliations. Pallavi Bhattacharyya1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India. Resonance – Journal of ...

  19. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  20. Dipole plasma in molecular crystals

    International Nuclear Information System (INIS)

    Kotel'nikov, Yu.E.; Kochelaev, B.I.

    1976-01-01

    Collective oscillations in a system of electric dipoles of molecular crystals are investigated. It has been proved in the exciton approximation that in an elementary cell of a molecular crystal with one molecule there may exist energy fluctuations of the ''dipole'' plasma, analogous to plasma oscillations in the charged Fermi liquid

  1. Droplet-model electric dipole moments

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1991-01-01

    Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)

  2. LHC dipoles: the countdown has begun

    CERN Document Server

    Patrice Loiez

    2002-01-01

    At the entrance to the fourth floor corridor of the LHC-MMS (Main Magnets and Superconductors) Group in building 30, the Director-General has unveiled an electronic information panel indicating the number of LHC dipoles still to be delivered and the days remaining to the deadline (30 June 2006). The panel was the idea of Lucio Rossi, leader of the MMS Group, which is responsible for the construction of the dipole magnets. The unveiling ceremony took place on the morning of Friday 11 October 2002, at the end of a drink held to celebrate with MMS group and the LHC top management the exceptional performance of the latest dipoles, built by the French consortium Alstom-Jeumont. They are the first dipoles to achieve a magnetic field of 9 tesla in one go without quenching, thus exceeding the nominal operating field of 8.3 tesla. The challenge is now to increase the production rate from 2 to 35 dipoles per month by 2004 in order to meet the deadline, while maintaining this quality. Photo 01: The Director-General Luci...

  3. Comparison of electric dipole and magnetic dipole models for electromagnetic pulse generated by nuclear detonation in space

    International Nuclear Information System (INIS)

    Zhu Meng; Zhou Hui; Cheng Yinhui; Li Baozhong; Wu Wei; Li Jinxi; Ma Liang; Zhao Mo

    2013-01-01

    Electromagnetic pulse can be generated by the nuclear detonation in space via two radiation mechanisms. The electric dipole and magnetic dipole models were analyzed. The electric radiation in the far field generated by two models was calculated as well. Investigations show that in the case of one hundred TNT yield detonations, when electrons are emitted according to the Gaussian shape, two radiation models can give rise to the electric field in great distances with amplitudes of kV/m and tens of V/m, independently. Because the geomagnetic field in space is not strong and the electrons' angular motion is much weaker than the motion in the original direction, radiations from the magnetic dipole model are much weaker than those from the electric dipole model. (authors)

  4. Initial Clinical Experience in Multiple Myeloma Staging by Means of Whole-Body Resonance Techniques

    International Nuclear Information System (INIS)

    Gallego, J. I.; Concepcion, L.; Alonso, S.; Sanchez, B.; Manzi, F.

    2003-01-01

    To develop a magnetic resonance (MR) exploratory technique equivalent to serial bone X-ray, and to compare their precision in the staging of multiple myeloma (MM) patients. Multiple acquisition T1-weights TSE and STIR sequences in the coronal plane were performed. Ten healthy volunteers and 11 multiple myeloma diagnosed patients were included. The visualization of bony structures was particularly noted,with special attention given to those which would normally be included in a serial bone X-ray. In the case of the patients, a comparison was made between diagnostic capacities of the MR sequences. MR highlighters significantly more (p<0.05) bony elements than did the serial bone X-ray. This was greatly due to a sequential displacement of the scanner bed, allowing for field-of-views which were minimally from head to third proximal of the leg. Magnetic resonance detected a significantly higher number (p<0.05) of lesions. It was, in turn, capable of revealing greater lesion extensions, even to the point of implying staging classification changes in 18% of the patients. The utilization of whole-body MR techniques in multiple myeloma patients is feasible and clinically beneficial. MR is both more sensitive and more specific than serial bone X-ray for evaluation of bony lesions in MM. It is currently serving as a valid alternative in a growing numbers of patients. (Author) 10 refs

  5. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  6. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  7. Surface and temperature effects in isovector giant resonances

    International Nuclear Information System (INIS)

    Lipparini, E.; Stringari, S.

    1988-01-01

    Using the liquid droplet model (LDM) we investigate three different sum rules for the isovector dipole and monopole excitations. Analytical formulae are derived for the excitation energies of these resonances and the predictions are compared with experiments. The role of the surface and the effects of temperature are explicitly discussed. (orig.)

  8. Applicability of McDonald 2010 and Magnetic Resonance Imaging in Multiple Sclerosis (MAGNIMS) 2016 Magnetic Resonance Imaging Criteria for the Diagnosis of Multiple Sclerosis in Sri Lanka.

    Science.gov (United States)

    Gamage, Sujani Madhurika Kodagoda; Wijeweera, Indunil; Wijesinghe, Priyangi; Adikari, Sanjaya Bandara; Fink, Katharina; Sominanda, Herath Mudiyanselage Ajith

    2018-05-31

    The magnetic resonance imaging in multiple sclerosis (MAGNIMS) group recently proposed guidelines to replace the existing dissemination-in-space criteria in McDonald 2010 magnetic resonance imaging (MRI) criteria for diagnosing multiple sclerosis. There has been insufficient research regarding their applicability in Asians. Objective of this study was to determine the sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of McDonald 2010 and MAGNIMS 2016 MRI criteria with the aim of verifying their applicability in Sri Lankan patients. Patients with clinically isolated syndrome diagnosed by consultant neurologists were recruited from five major neurology centers. Baseline and follow-up MRI scans were performed within 3 months from the initial presentation and at one year after baseline MRI, respectively. McDonald 2010 and MAGNIMS 2016 MRI criteria were applied to all MRI scans. Patients were followed-up for 2 years to assess the conversion to clinically definite multiple sclerosis (CDMS). The sensitivity, specificity, accuracy, PPV, and NPV for predicting the conversion to CDMS were calculated. Forty-two of 66 patients converted to CDMS. Thirty-seven fulfilled the McDonald 2010 MRI criteria, and 33 converted to CDMS. MAGNIMS 2016 MRI criteria were fulfilled by 29, with 28 converting to CDMS. The sensitivity, specificity, accuracy, PPV, and NPV were 78%, 83%, 64%, 89%, and 69%, respectively, for the McDonald 2010 criteria, and 67%, 96%, 77%, 96%, and 62% for the MAGNIMS 2016 MRI criteria. MAGNIMS 2016 MRI criteria were superior to McDonald 2010 MRI criteria in specificity, accuracy, and PPV, but inferior in sensitivity and NPV. Copyright © 2018 Korean Neurological Association.

  9. Dual Aharonov-Casher effect and persistent dipole current

    International Nuclear Information System (INIS)

    Yi, J.; Jeon, G.S.; Choi, M.Y.

    1995-01-01

    An electric dipole moving in a magnetic field acquires a nontrivial quantum phase in the appropriate configuration. It is shown that this phase is manifested by the persistent dipole current induced on a ring pierced by a line of magnetic monopoles. Such a current depends on the statistics of the dipoles, which may have interesting implications for experiments. It is also pointed out that the dipole current cannot be self-sustained

  10. Particle electric dipole moments

    CERN Document Server

    Pendlebury, J M

    2000-01-01

    Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.

  11. Magnetic resonance spectroscopy of normal appearing white matter in early relapsing-remitting multiple sclerosis: correlations between disability and spectroscopy

    Directory of Open Access Journals (Sweden)

    Foronda Jesus

    2004-06-01

    Full Text Available Abstract Background What currently appears to be irreversible axonal loss in normal appearing white matter, measured by proton magnetic resonance spectroscopy is of great interest in the study of Multiple Sclerosis. Our aim is to determine the axonal damage in normal appearing white matter measured by magnetic resonance spectroscopy and to correlate this with the functional disability measured by Multiple Sclerosis Functional Composite scale, Neurological Rating Scale, Ambulation Index scale, and Expanded Disability Scale Score. Methods Thirty one patients (9 male and 22 female with relapsing remitting Multiple Sclerosis and a Kurtzke Expanded Disability Scale Score of 0–5.5 were recruited from four hospitals in Andalusia, Spain and included in the study. Magnetic resonance spectroscopy scans and neurological disability assessments were performed the same day. Results A statistically significant correlation was found (r = -0.38 p Conclusions There is correlation between disability (measured by Expanded Disability Scale Score and the NAA/Cr ratio in normal appearing white matter. The lack of correlation between the NAA/Cr ratio and the Multiple Sclerosis Functional Composite score indicates that the Multiple Sclerosis Functional Composite is not able to measure irreversible disability and would be more useful as a marker in stages where axonal damage is not a predominant factor.

  12. Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay.

    Science.gov (United States)

    Lee, Joon Seok; Joung, Hyou-Arm; Kim, Min-Gon; Park, Chan Beum

    2012-04-24

    We report on chemiluminescence resonance energy transfer (CRET) between graphene nanosheets and chemiluminescent donors. In contrast to fluorescence resonance energy transfer, CRET occurs via nonradiative dipole-dipole transfer of energy from a chemiluminescent donor to a suitable acceptor molecule without an external excitation source. We designed a graphene-based CRET platform for homogeneous immunoassay of C-reactive protein (CRP), a key marker for human inflammation and cardiovascular diseases, using a luminol/hydrogen peroxide chemiluminescence (CL) reaction catalyzed by horseradish peroxidase. According to our results, anti-CRP antibody conjugated to graphene nanosheets enabled the capture of CRP at the concentration above 1.6 ng mL(-1). In the CRET platform, graphene played a key role as an energy acceptor, which was more efficient than graphene oxide, while luminol served as a donor to graphene, triggering the CRET phenomenon between luminol and graphene. The graphene-based CRET platform was successfully applied to the detection of CRP in human serum samples in the range observed during acute inflammatory stress.

  13. Is the 2MASS dipole convergent?

    OpenAIRE

    Chodorowski, Michał; Bilicki, Maciej; Mamon, Gary A.; Jarrett, Thomas

    2010-01-01

    We study the growth of the clustering dipole of galaxies from the Two Micron All Sky Survey (2MASS). We find that the dipole does not converge before the completeness limit of the 2MASS Extended Source Catalog, i.e. up to about 300 Mpc/h. We compare the observed growth of the dipole with the theoretically expected, conditional growth for the LambdaCDM power spectrum and cosmological parameters constrained by WMAP. The observed growth turns out to be within 1-sigma confidence level of the theo...

  14. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    1999-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  15. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    2001-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  16. HLA typing in acute optic neuritis. Relation to multiple sclerosis and magnetic resonance imaging findings

    DEFF Research Database (Denmark)

    Frederiksen, J.L.; Madsen, H.O.; Ryder, L.P.

    1997-01-01

    OBJECTIVE: To study the association of brain magnetic resonance imaging (MRI) findings and HLA findings to clarify the relationship between monosymptomatic optic neuritis (ON) and ON as part of clinically definite multiple sclerosis (CDMS). DESIGN: Population-based cohort of patients with ON refe......OBJECTIVE: To study the association of brain magnetic resonance imaging (MRI) findings and HLA findings to clarify the relationship between monosymptomatic optic neuritis (ON) and ON as part of clinically definite multiple sclerosis (CDMS). DESIGN: Population-based cohort of patients......: The frequency of HLA-DR15 was significantly increased in patients with ON + CDMS (52%) and ON (47%) compared with control subjects (31%). The frequency of HLA-DR17 was almost equal in the ON + CDMS (18%), ON (23%), and control (23%) groups. The frequencies of HLA-DQA-1B (55% in ON + CDMS, 58% in ON) and HLA...

  17. Effects of dipole—dipole interaction on entanglement transfer

    International Nuclear Information System (INIS)

    Guo Hong; Xiong Hengna

    2008-01-01

    A system consisting of two different atoms interacting with a two-mode vacuum, where each atom is resonant only with one cavity mode, is considered. The effects of dipole—dipole (dd) interaction between two atoms on the atom-atom entanglement and mode-mode entanglement are investigated. For a weak dd interaction, when the atoms are initially separable, the entanglement between them can be induced by the dd interaction, and the entanglement transfer between the atoms and the modes occurs efficiently; when the atoms are initially entangled, the entanglement transfer is almost not influenced by the dd interaction. However, for a strong dd interaction, it is difficult to transfer the entanglement from the atoms to the modes, but the atom-atom entanglement can be maintained when the atoms are initially entangled

  18. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where ...

  19. Chiral NNLOsat descriptions of nuclear multipole resonances within the random-phase approximation

    Science.gov (United States)

    Wu, Q.; Hu, B. S.; Xu, F. R.; Ma, Y. Z.; Dai, S. J.; Sun, Z. H.; Jansen, G. R.

    2018-05-01

    We study nuclear multipole resonances in the framework of the random-phase approximation by using the chiral potential NNLOsat. This potential includes two- and three-body terms that have been simultaneously optimized to low-energy nucleon-nucleon scattering data and selected nuclear structure data. Our main focuses have been the isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of the closed-shell nuclei, 4He, O 16 ,22 ,24 , and Ca,4840. These resonance modes have been widely observed in experiment. In addition, we use a renormalized chiral potential Vlow-k, based on the N3LO two-body potential by Entem and Machleidt [Phys. Rev. C 68, 041001 (2011), 10.1103/PhysRevC.68.041001]. This introduces a dependency on the cutoff parameter used in the normalization procedure as reported in previous works by other groups. While NNLOsat can reasonably reproduce observed multipole resonances, it is not possible to find a single cutoff parameter for the Vlow-k potential that simultaneously describes the different types of resonance modes. The sensitivity to the cutoff parameter can be explained by missing induced three-body forces in the calculations. Our results for neutron-rich O,2422 show a mixing nature of isoscalar and isovector resonances in the dipole channel at low energies. We predict that 22O and 24O have low-energy isoscalar quadrupole resonances at energies lower than 5 MeV.

  20. How to introduce the magnetic dipole moment

    International Nuclear Information System (INIS)

    Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)

  1. Structure Determination of Anionic Metal Clusters via Infrared Resonance Enhanced Multiple Photon Electron Detachment Spectroscopy

    NARCIS (Netherlands)

    Haertelt, M.; Lapoutre, V. J. F.; Bakker, J. M.; Redlich, B.; Harding, D. J.; Fielicke, A.; Meijer, G.

    2011-01-01

    We report vibrational spectra of anionic metal clusters, measured via electron detachment following resonant absorption of multiple infrared photons. To facilitate the sequential absorption of the required large number of photons, the cluster beam interacts with the infrared radiation inside the

  2. Matching pursuit and source deflation for sparse EEG/MEG dipole moment estimation.

    Science.gov (United States)

    Wu, Shun Chi; Swindlehurst, A Lee

    2013-08-01

    In this paper, we propose novel matching pursuit (MP)-based algorithms for EEG/MEG dipole source localization and parameter estimation for multiple measurement vectors with constant sparsity. The algorithms combine the ideas of MP for sparse signal recovery and source deflation, as employed in estimation via alternating projections. The source-deflated matching pursuit (SDMP) approach mitigates the problem of residual interference inherent in sequential MP-based methods or recursively applied (RAP)-MUSIC. Furthermore, unlike prior methods based on alternating projection, SDMP allows one to efficiently estimate the dipole orientation in addition to its location. Simulations show that the proposed algorithms outperform existing techniques under various conditions, including those with highly correlated sources. Results using real EEG data from auditory experiments are also presented to illustrate the performance of these algorithms.

  3. Analytical studies on pump-induced optical resonances in an M-type six-level system

    International Nuclear Information System (INIS)

    Ghosh, Saswata; Mandal, Swapan

    2010-01-01

    In the domain of semiclassical formulation and for the Doppler-free atom-field interaction, we construct the optical Bloch equations involving an M-type six-level system coupled to two pump fields and a probe field. The response of the system is probed for different pump-induced transitions in double and triple-resonance situations. In order to obtain the coherent lineshapes (absorptive and dispersive), we use the usual perturbation method for obtaining the approximate analytical solutions to these coupled optical Bloch equations for the density matrix elements. The interferences between the probability amplitudes for different energy levels (dipole allowed and dipole forbidden) are taken care of. For off-resonance pump positions, the linewidths of the three probe transitions are insensitive to the pump Rabi frequencies. On the other hand, the shifts of the three resonance peaks are extremely sensitive to the pump Rabi frequencies. However, for on-resonance pump conditions, the sensitivities of pump Rabi frequencies on the linewidths of the resonance peaks and on the shifts of the resonance peak positions are opposite to those of their off-resonance counterparts. In particular, we have shown the asymmetric and symmetric Rabi splittings under different physical conditions, for non-zero and near-zero probe detuning, respectively. The Rabi splitting under triple-resonance conditions, significantly, modifies the dispersive lineshape at the centre of the absorption line. The two- and three-photon absorptions are also reported for different off-resonant pump positions.

  4. Cryogenics in CEBAF HMS dipole

    International Nuclear Information System (INIS)

    Bogensberger, P.; Ramsauer, F.; Brindza, P.; Wines, R.; Koefler, H.

    1994-01-01

    The paper will report upon the final design, manufacturing and tests of CEBAF's HMS Dipole cryogenic equipment. The liquid nitrogen circuits, the helium circuits and thermal insulation of the magnet will be addressed. The cryogenic reservoir and control module as an integral part of the HMS Dipole magnet will be presented. The construction, manufacturing, tests and final performance of the HMS Dipole cryogenic system will be reported. The LN 2 circuit and the He circuit are tied together by the control system for cool down, normal operation and standby. This system monitors proper temperature differences between both circuits and controls the cryogenic supply to meet the constraints. Implementation of the control features for the cryogenic system into the control system will be reported

  5. Isotopic dependence of the giant quadrupole resonance in the stable even-mass molybdenum nuclei

    International Nuclear Information System (INIS)

    Moalem, A.; Gaillard, Y.; Bemolle, A.M.; Buenerd, M.; Chauvin, J.; Duhamel, G.; Lebrun, D.; Martin, P.; Perrin, G.; de Saintignon, P.

    1979-01-01

    Inelastic scattering of 110 MeV 3 He particles is used to probe the quadrupole strength in the even Mo isotopes. The peak position of the giant quadrupole resonance is found to decrease more rapidly than predicted by the A/sup -1/3/ law, a behavior very similar to that exhibited by the photonuclear giant dipole resonance. The width and strength of the giant quadrupole resonance are practically constant in 92 Mo through 100 Mo

  6. Studies on the resonant properties in the asymmetric dipole-array terahertz metamaterials

    Science.gov (United States)

    Chen, Wei; Zhou, Qingli; Li, Chenyu; Shi, Lan; Liu, Changxiang; Zhang, Cunlin

    2018-01-01

    Artificial metamaterials with appropriate design can exhibit unique electromagnetic phenomena which do not exist in natural materials. Some studies have shown that the method of breaking the geometric symmetry is capable to modify the electromagnetic response, such as the metamaterial induced transparency in the Fano resonators. In this work, by using the finite-difference time-domain method, we firstly simulate the process that terahertz wave interacts with double-bar structures, in which one bar length is fixed at 36 μm and the other bar length is set to be 12, 24, 36, 48, and 56 μm, respectively. The incident terahertz polarization is along the bar direction. Simulated results show when the variable bar length is less than 36 μm, there is only one obvious resonant dip in transmission spectrum. Meanwhile, with the decreased bar length, this dip frequency presents a slight blueshift. Additionally, by tuning the spacing vertical to bar direction between these two bars, it still exhibits one dip. This result indicates the short bar less than 36 μm does not play important role and the coupling between vertical bars is weak. However, when the variable bar length is larger than 36 μm there are two obvious Fano-shaped resonant dips. With the increased bar length, the low-frequency dip shows a remarkable redshift, while the high-frequency one is almost unchanged. By further tuning the bar spacing vertical to the bar direction, two dips always exist. This phenomenon implies that the coupling between horizontal bars is dominated in this process. Moreover, the metamaterial induced transparency window is found between two resonant dips. The appearance of the resonances is attributed to the excitation of trapped mode. Our obtained results indicate that such metamaterials with very simple configuration could also provide the potential application in the field of terahertz slow-light devices, amplitude and phase modulators.

  7. Field of a dipole in charged black-hole electrostatics

    International Nuclear Information System (INIS)

    Souza, J.A.

    1979-01-01

    By using the solution of Adler and Das for Maxwell's equations in a Reissner-Nordstroem optimally charged background metric, the field of a static electric dipole is found and then, by a duality rotation, the field of a static magnetic dipole is obtained. A generalization of the concept of electric-dipole moment is proposed for static dipoles in curved manifolds, and the behaviour of the fields both for the dipole very near and very far from the singular surface of the Reissner-Nordstroem geometry is studied. (author)

  8. Nuclear structure studies on medium-heavy mass nuclei using the method of nuclear resonance fluorescence; Kernstrukturuntersuchungen in mittelschweren Atomkernen mit der Methode der Kernresonanzfluoreszenz

    Energy Technology Data Exchange (ETDEWEB)

    Zweidinger, Markus

    2016-06-22

    In the present work the dipole strength distribution in the stable even-even isotopes {sup 92}Zr and {sup 94}Zr is investigated. To excite the nuclei from the ground state to an excited state, real photons are used. This method is called Nuclear Resonance Fluorescence. The measurements were performed at two different setups. The first one is the Darmstadt High Intensity Photon Setup (DHIPS). At DHIPS the measurements yield information about the spin quantum number and the integrated cross section. The second part of the experiments took place at the High Intensity γ-ray Source (HIγS). Here, information about the parity quantum number and the averaged branching ratio of the excited state is accessible. In total, 105 dipole excited states in the nucleus {sup 92}Zr and 124 in the isotope {sup 94}Zr are observed, most of them for the first time. The extracted dipole strength distribution is investigated for the existence of the pygmy dipole resonance that was observed in neighboring nuclei. Furthermore, in previously performed experiments on the isotope {sup 90}Zr, the spin-flip M1 resonance was observed as well. Therefore, also the magnetic dipole strength is investigated. Further, by comparison with global systematics, the two-phonon state is identified. Additionally, the averaged branching ratio is compared to the results of theoretical calculations in the framework of the statistical model.

  9. Resonant long-range interactions between polar macromolecules

    International Nuclear Information System (INIS)

    Preto, Jordane; Pettini, Marco

    2013-01-01

    Motivated by its prospective biological relevance, the issue of resonant long-range interactions between two molecules displaying oscillating dipole moments is reinvestigated within the framework of classical electrodynamics. In particular, our findings shed new light on Fröhlich's theory of selective long-range interactions between biomolecules. First, terms of a very long-range kind – which have never been reported so far – are found in the interaction potential, due to field retardation. Second, at variance with a long-standing belief, it is shown that sizable resonant long-range interactions may exist only if the interacting system is out of thermal equilibrium.

  10. Resonant Alfven waves on auroral field lines

    International Nuclear Information System (INIS)

    Chiu, Y.T.

    1987-01-01

    It is shown that resonant Alfven waves on dipole magnetic field geometry and plasma distributions suitable for auroral field lines can be conveniently treated in the theory of Mathieu functions. Resurgent interest in invoking large-scale Alfven waves to structure some elements of auroral electrodynamics calls for interpretation of measured perpendicular electric and magnetic disturbance fields in terms of Alfven waves. The ability to express the resonant eigenmodes in closed form in terms of Mathieu functions allows for convenient tests of the Alfven wave structuring hypothesis. Implications for current vector electric and magnetic disturbance measurements are discussed

  11. The approximation of asymptotic potential and the soft dipole mode of the 6He

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lashko, Yu.A.; Shvrdov, L.P.; Kato, K.

    1999-01-01

    The soft dipole mode of a three-cluster 6 He nucleus is investigated on the basis of the generalized version of the zero-radius nuclear forces approximation, taking into account a slowly decreasing asymptotic potential and influence of the Paulo exclusion principle on the asymptotic of the wave function, and also the fact of degeneration of 1 - continuous spectrum states. The issue of the behaviour of matrix elements of the two-channel S-matrix and problem of existence of the super-threshold 1 - resonance are discussed [ru

  12. Study of giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    The electrodisintegration cross section for 181 Ta, 208 Pb and 209 Bi was measured by counting the emitted neutrons, with incident electrons in the energy range 8-22 MeV. The data was analysed using the virtual photon method, in order to obtain a multipole decomposition and the intensities of Magnetic Dipole and Electric Quadrupole, isoscalar and isovector, in the Giant Resonance. The results obtained for the isovector Giant Quadrupole Resonance are compared with the measured photodisintegration cross section, using data from Saclay and Livermore. This comparision indicates that the photodisintegration data can be well explained assuming an isovector E2 Resonance located between 120 and 130 A -1/3 MeV, with an intensity of one isovector E2 sum. (author) [pt

  13. Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.

    Science.gov (United States)

    Bai, Jing; Citrin, D S

    2008-08-18

    In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

  14. Optimized, unequal pulse spacing in multiple echo sequences improves refocusing in magnetic resonance.

    Science.gov (United States)

    Jenista, Elizabeth R; Stokes, Ashley M; Branca, Rosa Tamara; Warren, Warren S

    2009-11-28

    A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.

  15. Permanent Magnet Dipole for DIRAC Design Report

    CERN Document Server

    Vorozhtsov, Alexey

    2012-01-01

    Two dipole magnets including one spare unit are needed for the for the DIRAC experiment. The proposed design is a permanent magnet dipole. The design based on Sm2Co17 blocks assembled together with soft ferromagnetic pole tips. The magnet provides integrated field strength of 24.6 10-3 T×m inside the aperture of 60 mm. This Design Report summarizes the main magnetic and mechanic design parameters of the permanent dipole magnets.

  16. Formation and temporal evolution of the Lamb-dipole

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Juul Rasmussen, J.

    1997-01-01

    of the evolving dipoles depend on the initial condition. However, the gross properties of their evolution are only weakly dependent on the detailed structure and can be well-described by the so-called Lamb-dipole solution. The viscous decay of the Lamb-dipole, leading to an expansion and a decreasing velocity...

  17. Tunable multipole resonances in plasmonic crystals made by four-beam holographic lithography

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Li, X.; Zhang, X.; Prybolsky, S.; Shepard, G. D.; Strauf, S., E-mail: Strauf@stevens.edu [Department of Physics and Engineering Physics, Stevens Institute of Technology, Castle Point on the Hudson, Hoboken, New Jersey 07030 (United States)

    2016-02-01

    Plasmonic nanostructures confine light to sub-wavelength scales, resulting in drastically enhanced light-matter interactions. Recent interest has focused on controlled symmetry breaking to create higher-order multipole plasmonic modes that store electromagnetic energy more efficiently than dipole modes. Here we demonstrate that four-beam holographic lithography enables fabrication of large-area plasmonic crystals with near-field coupled plasmons as well as deliberately broken symmetry to sustain multipole modes and Fano-resonances. Compared with the spectrally broad dipole modes we demonstrate an order of magnitude improved Q-factors (Q = 21) when the quadrupole mode is activated. We further demonstrate continuous tuning of the Fano-resonances using the polarization state of the incident light beam. The demonstrated technique opens possibilities to extend the rich physics of multipole plasmonic modes to wafer-scale applications that demand low-cost and high-throughput.

  18. Radiofrequency/infrared double resonance spectroscopy of the HD+ ion

    International Nuclear Information System (INIS)

    Carrington, Alan; McNab, I.R.; Montgomerie, C.A.

    1989-01-01

    We describe a double resonance technique for obtaining radiofrequency spectra of the HD + ion in vibration-rotation levels close to the dissociation limit. Infrared transitions are driven by Doppler tuning an HD + ion beam into resonance with a carbon dioxide infrared laser, and are detected by measuring H + fragment ions produced by electric field dissociation of the upper vibration-rotation level. Radiofrequency transitions between nuclear hyperfine components of the lower vibration-rotation level are then detected through resonant increases in the H + fragment ion current. The high spectroscopic resolution obtained, and the ability to measure magnetic dipole hyperfine transitions, will enable the hyperfine constants to be determined accurately. (author)

  19. Learning by observing: the effect of multiple sessions of action-observation training on the spontaneous movement tempo and motor resonance.

    Science.gov (United States)

    Lagravinese, Giovanna; Bisio, Ambra; Ruggeri, Piero; Bove, Marco; Avanzino, Laura

    2017-02-01

    The present study was designed to explore the changes in motor performance and motor resonance after multiple sessions of action observation (AO) training. Subjects were exposed to the observation of a video showing finger tapping movements executed at 3Hz, a frequency higher than the spontaneous one (2Hz) for four consecutive days. Motor performance and motor resonance were tested before the AO training on the first day, and on the last day. Results showed that multiple sessions of AO training induced a shift of the speed of execution of finger tapping movements toward the observed one and a change in motor resonance. Before the 3Hz-AO training cortical excitability was highest during the observation of the 2Hz video. This motor resonance effect was lost after one single session of 3Hz-AO training whereas after multiple sessions of 3Hz-AO training cortical excitability was highest during the observation of the 3Hz video. Our study shows for the first time that multiple sessions of AO training are able not only to induce performance gains but also to change the way by which the observer's motor system recognizes a certain movement as belonging to the individual motor repertoire. These results may encourage the development of novel rehabilitative protocols based on multiple sessions of action observation aimed to regain a correct movement when its spontaneous speed is modified by pathologies or to modify the innate temporal properties of certain movements. Copyright © 2017. Published by Elsevier Ltd.

  20. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  1. Enhanced terahertz magnetic dipole response by subwavelength fiber

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Shadrivov, Ilya V.; Miroshnichenko, Andrey E.

    2018-01-01

    Dielectric sub-wavelength particles have opened up a new platform for realization of magnetic light. Recently, we have demonstrated that a dipole emitter by a sub-wavelength fiber leads to an enhanced magnetic response. Here, we experimentally demonstrate an enhanced magnetic dipole source......-fiber system excited by a magnetic source. This coupled magnetic dipole and optical fiber system can be considered a unit cell of metasurfaces for manipulation of terahertz radiation and is a proof-of-concept of a possibility to achieve enhanced radiation of a dipole source in proximity of a sub...

  2. Dipole moments of molecules solvated in helium nanodroplets

    International Nuclear Information System (INIS)

    Stiles, Paul L.; Nauta, Klaas; Miller, Roger E.

    2003-01-01

    Stark spectra are reported for hydrogen cyanide and cyanoacetylene solvated in helium nanodroplets. The goal of this study is to understand the influence of the helium solvent on measurements of the permanent electric dipole moment of a molecule. We find that the dipole moments of the helium solvated molecules, calculated assuming the electric field is the same as in vacuum, are slightly smaller than the well-known gas-phase dipole moments of HCN and HCCCN. A simple elliptical cavity model quantitatively accounts for this difference, which arises from the dipole-induced polarization of the helium

  3. Supersymmetric relations among electromagnetic dipole operators

    International Nuclear Information System (INIS)

    Graesser, Michael; Thomas, Scott

    2002-01-01

    Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagrammatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and standard model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2x10 -3 . Likewise the current bound on μ→eγ decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, δm μ-tildee-tilde) 2 /m l-tilde) 2 , is less than 10 -4 . These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan β

  4. Magnetic resonance tomography in confirmed multiple sclerosis

    International Nuclear Information System (INIS)

    Uhlenbrock, D.; Dickmann, E.; Beyer, H.K.; Gehlen, W.; Josef-Hospital, Bochum; Knappschafts-Krankenhaus Bochum

    1985-01-01

    The authors report on 21 cases of confirmed multiple sclerosis examined by both CT and magnetic resonance tomography. To safeguard the results, strict criteria were applied in accordance with the suggestions made by neurological work teams. Pathological lesons were seen in 20 patients; the MR image did not reveal anything abnormal in one case. On the average, 10.3 lesions were seen in the MR tomogram, whereas CT images showed on the average only 2.1 foci. The size and number of lesions in the MR tomogram were independent of the duration of the disease, the presented clinical symptoms, or the type of treatment at the time of examination. Evidently the sensitivity of MR tomography is very high in MS patients, but it has not yet been clarified to what extent this applies also to the specificity. Further research is mandatory. First experiences made by us show that lesions of a similar kind can also occur in diseases such as malignant lymphoma involving the brain, in vitamin B 12 deficiency syndrome, or encephalitis, and can become manifest in the MR tomogram. (orig.) [de

  5. Fourier-positivity constraints on QCD dipole models

    Directory of Open Access Journals (Sweden)

    Bertrand G. Giraud

    2016-09-01

    Full Text Available Fourier-positivity (F-positivity, i.e. the mathematical property that a function has a positive Fourier transform, can be used as a constraint on the parametrization of QCD dipole-target cross-sections or Wilson line correlators in transverse position space r. They are Bessel transforms of positive transverse momentum dependent gluon distributions. Using mathematical F-positivity constraints on the limit r→0 behavior of the dipole amplitudes, we identify the common origin of the violation of F-positivity for various, however phenomenologically convenient, dipole models. It is due to the behavior r2+ϵ, ϵ>0 softer, even slightly, than color transparency. F-positivity seems thus to conflict with the present dipole formalism when it includes a QCD running coupling constant α(r.

  6. Electric dipoles on the Bloch sphere

    OpenAIRE

    Vutha, Amar C.

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  7. Dipole Bands in 196Hg

    International Nuclear Information System (INIS)

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.

    2011-01-01

    High spin states in 196 Hg have been populated in the 198 Pt(α,6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  8. Magneto-Electric Dipole Antenna Arrays

    OpenAIRE

    Gupta, Shulabh; Jiang, Li Jun; Caloz, Christophe

    2014-01-01

    A planar magneto-electric (ME) dipole antenna array is proposed and demonstrated by both full-wave analysis and experiments. The proposed structure leverages the infinite wavelength propagation characteristic of composite right/left-handed (CRLH) transmission lines to form high-gain magnetic radiators combined with radial conventional electric radiators, where the overall structure is excited by a single differential feed. The traveling-wave type nature of the proposed ME-dipole antenna enabl...

  9. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    Science.gov (United States)

    Benouaret, N.; Beller, J.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu; Romig, C.; Schnorrenberger, L.; Zweidinger, M.; Scheck, M.; Isaak, J.; Savran, D.; Sonnabend, K.; Raut, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Kelley, J. H.

    2016-11-01

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. The measured strength distribution of 205Tl is discussed and compared to those of even-even and even-odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.

  10. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    International Nuclear Information System (INIS)

    Benouaret, N; Beller, J; Pai, H; Pietralla, N; Ponomarev, V Yu; Romig, C; Schnorrenberger, L; Zweidinger, M; Scheck, M; Isaak, J; Savran, D; Sonnabend, K; Raut, R; Rusev, G; Tonchev, A P; Tornow, W; Weller, H R; Kelley, J H

    2016-01-01

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205 Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205 Tl have been identified. The measured strength distribution of 205 Tl is discussed and compared to those of even–even and even–odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model. (paper)

  11. An Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator for Dielectric Sensing Applications

    Directory of Open Access Journals (Sweden)

    Izyani Mat Rusni

    2014-07-01

    Full Text Available This paper presents the design and development of a planar Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator (SRR for microwave sensors that operates at a resonance frequency around 5 GHz. The sensor consists of a microstrip transmission line loaded with two elements of rectangular SRR on both sides. The proposed metamaterial sensors were designed and fabricated on Rogers RT5880 substrate having dielectric constant of 2.2 and thickness of 0.787 mm. The final dimension of the proposed sensor was measured at 35 × 14 mm2. Measured results show good agreement with simulated ones as well as exhibiting high Q-factor for use in sensing application. A remarkably shift of resonance frequency is observed upon introduction of several sample with different dielectric value.

  12. Dipole-induced exchange bias.

    Science.gov (United States)

    Torres, Felipe; Morales, Rafael; Schuller, Ivan K; Kiwi, Miguel

    2017-11-09

    The discovery of dipole-induced exchange bias (EB), switching from negative to positive sign, is reported in systems where the antiferromagnet and the ferromagnet are separated by a paramagnetic spacer (AFM-PM-FM). The magnitude and sign of the EB is determined by the cooling field strength and the PM thickness. The same cooling field yields negative EB for thin spacers, and positive EB for thicker ones. The EB decay profile as a function of the spacer thickness, and the change of sign, are attributed to long-ranged dipole coupling. Our model, which accounts quantitatively for the experimental results, ignores the short range interfacial exchange interactions of the usual EB theories. Instead, it retains solely the long range dipole field that allows for the coupling of the FM and AFM across the PM spacer. The experiments allow for novel switching capabilities of long range EB systems, while the theory allows description of the structures where the FM and AFM are not in atomic contact. The results provide a new approach to design novel interacting heterostructures.

  13. The dipoles reach the half-way mark

    CERN Multimedia

    2006-01-01

    With the positioning of the 616th magnet, installation of the LHC dipoles has reached the half-way mark. Only half the dipoles remain to be installed! The 616th dipole out of a total of 1232 was installed at 3 a.m on Wednesday 12 July. Night and day, the tunnel is the setting for a never-ending series of carefully choreographed installation operations. At a rate of around twenty per week, there has been a steady underground flow of dipole magnets, each measuring 15 metres in length and weighing 34 tonnes. 'In order to recover the accumulated delays, installation is proceeding three times faster than planned', confides Claude Hauviller, who is supervising LHC installation. Four dipoles can be transported underground at the same time. It is a real challenge, which the 65-man team responsible for this difficult task faces on a daily basis. This is because there is very little space in the tunnel and there are no passing places for the magnet transport vehicles. The room for manoeuvre can sometimes be measured ...

  14. Relaxation dynamics of a quantum emitter resonantly coupled to a metal nanoparticle

    DEFF Research Database (Denmark)

    Nerkararyan, K. V.; Bozhevolnyi, S. I.

    2014-01-01

    consequence of this relaxation process is that the emission, being largely determined by the MNP, comes out with a substantial delay. A large number of system parameters in our analytical description opens new possibilities for controlling quantum emitter dynamics. (C) 2014 Optical Society of America......The presence of a metal nanoparticle (MNP) near a quantum dipole emitter, when a localized surface plasmon mode is excited via the resonant coupling with an excited quantum dipole, dramatically changes the relaxation dynamics: an exponential decay changes to step-like behavior. The main physical...

  15. Search for low lying dipole strength in the neutron rich nucleus Ne{sup 26}

    Energy Technology Data Exchange (ETDEWEB)

    Gibelin, J

    2005-11-15

    We carried out the Coulomb excitation, on a lead target, of an exotic beam of neutron-rich nucleus Ne{sup 26} at 58 MeV/n, in order to study the possible existence of a pygmy dipole resonance above the neutron emission threshold. The experiment was performed at the Riken Research Facility, in Tokyo (Japan) and included a gamma-ray detector, a charged fragment hodoscope and a neutron detector. Using the invariant mass method in the Ne{sup 25} + n decay channel, and by comparing the reaction cross section on the lead target and a light target of aluminum, we observe a sizable amount of E1 strength between the one neutron and the two neutron emission thresholds. The corresponding Ne{sup 26} angular distribution confirms its nature and we deduce its reduced dipole transition probability value of B(E1) = 0.54 {+-} 0.18 e{sup 2}fm{sup 2}. Our method also enables us to extract for the first time the decay pattern of a pygmy resonance. By detecting the decay photons from the excited states below the neutron emission threshold and by analyzing the angular distribution of the inelastically scattered Ne{sup 26} we deduce the reduced transition probability of the first 2{sup +} state, from the ground state. The value obtained of B(E2) = 87 {+-} 13 e{sup 2}fm{sup 4} being in disagreement with a previous result. (author)

  16. Dipole moments of the rho meson

    International Nuclear Information System (INIS)

    Hecht, M.B.; McKellar, B.H.P.

    1997-04-01

    The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison

  17. Electric dipoles on the Bloch sphere

    International Nuclear Information System (INIS)

    Vutha, Amar C

    2015-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics. (paper)

  18. Interaction of counter-streaming plasma flows in dipole magnetic field

    OpenAIRE

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Prokopov, P A; Boyarintsev, E L; Zakharov, Yu P; Ponomarenko, A G

    2017-01-01

    Transient interaction of counter-streaming super-sonic plasma flows in dipole magnetic dipole is studied in laboratory experiment. First quasi-stationary flow is produced by teta-pinch and forms a magnetosphere around the magnetic dipole while laser beams focused at the surface of the dipole cover launch second explosive plasma expanding from inner dipole region outward. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. ...

  19. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, M.; Leung, K.K.

    1991-01-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described

  20. Energy flow of electric dipole radiation in between parallel mirrors

    Science.gov (United States)

    Xu, Zhangjin; Arnoldus, Henk F.

    2017-11-01

    We have studied the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of energy) can have very intricate structures, including many singularities and vortices. The flow line patterns depend on the distance between the mirrors, the distance of the dipole to one of the mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating under a finite angle with the surface normal, the radiating tends to swirl around the dipole before travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the flow line structure becomes even more complicated, with numerous vortices in the pattern, and tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, and these can be found without any specific knowledge about the flow lines. This provides an independent means of studying the propagation of dipole radiation between mirrors.

  1. On the state space of the dipole ghost

    International Nuclear Information System (INIS)

    Binegar, B.

    1984-01-01

    A particular representation of SO(4, 2) is identified with the state space of the free dipole ghost. This representation is then given an explicit realization as the solution space of a 4th-order wave equation on a spacetime locally isomorphic to Minkowski space. A discrete basis for this solution space is given, as well as an explicit expression for its SO(4, 2) invariant inner product. The connection between the modes of dipole field and those of the massless scalar field is clarified, and a recent conjecture concerning the restriction of the dipole representation to the Poincare subgroup is confirmed. A particular coordinate transformation then reveals the theory of the dipole ghost in Minkowski space. Finally, it is shown that the solution space of the dipole equation is not unitarizable in a Poincare invariant manner. (orig.)

  2. Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

    Science.gov (United States)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2016-06-01

    Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)

  3. Optimized coplanar waveguide resonators for a superconductor–atom interface

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M. A., E-mail: mabeck2@wisc.edu; Isaacs, J. A.; Booth, D.; Pritchard, J. D.; Saffman, M.; McDermott, R. [Department of Physics, University Of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-08-29

    We describe the design and characterization of superconducting coplanar waveguide cavities tailored to facilitate strong coupling between superconducting quantum circuits and single trapped Rydberg atoms. For initial superconductor–atom experiments at 4.2 K, we show that resonator quality factors above 10{sup 4} can be readily achieved. Furthermore, we demonstrate that the incorporation of thick-film copper electrodes at a voltage antinode of the resonator provides a route to enhance the zero-point electric fields of the resonator in a trapping region that is 40 μm above the chip surface, thereby minimizing chip heating from scattered trap light. The combination of high resonator quality factor and strong electric dipole coupling between the resonator and the atom should make it possible to achieve the strong coupling limit of cavity quantum electrodynamics with this system.

  4. Statistical contribution in the giant multipolar resonance decay in hevay nuclei

    International Nuclear Information System (INIS)

    Teruya, N.

    1986-01-01

    Statistical calculations are made for the decay in the electric monopole giant resonance in 208 Pb and electric dipole giant resonance in 209 Bi, using the Hauser-Feshbach formalism. Calculations are done using the experimental energy levels of the corresponding residual nuclei. The particle-vibrator model is used for those experimental levels without spin and parity determination. The influence of different parametrizations of the optical potential in the statistical calculation result is also studied. (L.C.) [pt

  5. Stochastic resonance in a time-delayed mono-stable system with correlated multiplicative and additive white noise

    International Nuclear Information System (INIS)

    Zhou Yu-Rong

    2011-01-01

    This paper considers the stochastic resonance for a time-delayed mono-stable system, driven by correlated multiplicative and additive white noise. It finds that the output signal-to-noise ratio (SNR) varies non-monotonically with the delayed times. The SNR varies non-monotonically with the increase of the intensities of the multiplicative and additive noise, with the increase of the correlation strength between the two noises, as well as with the system parameter. (general)

  6. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M.; Leung, K.K.

    1991-05-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs

  7. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  8. Prediction of multiple resonance characteristics by an extended resistor-inductor-capacitor circuit model for plasmonic metamaterials absorbers in infrared.

    Science.gov (United States)

    Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili

    2015-10-01

    The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters.

  9. Resonances in odd-odd 182Ta

    Directory of Open Access Journals (Sweden)

    Brits C.P.

    2017-01-01

    Full Text Available Enhanced γ-decay on the tail of the giant electric dipole resonance, such as the scissors or pygmy resonances, can have significant impact on (n,γ reaction rates. These rates are important input for modeling processes that take place in astrophysical environments and nuclear reactors. Recent results from the University of Oslo indicate the existence of a significant enhancement in the photon strength function for nuclei in the actinide region due to the scissors resonance. Further, the M1 strength distribution of the scissors resonances in rare earth nuclei has been studied extensively over the years. To investigate the evolution and persistence of the scissor resonance in other mass regions, an experiment was performed utilizing the NaI(Tl γ-ray detector array (CACTUS and silicon particle telescopes (SiRi at the University of Oslo Cyclotron laboratory. Particle-γ coincidences from the 181Ta(d,p182Ta and 181Ta(d,d'181Ta reactions were used to measure the nuclear level density and photon strength function of the well-deformed 181Ta and 182Ta systems, to investigate the existence of resonances below the neutron separation energy.

  10. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    International Nuclear Information System (INIS)

    Qiao, Shen; Zhang, Yaxin; Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-01-01

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices

  11. Vortical structures for nanomagnetic memory induced by dipole-dipole interaction in monolayer disks

    Science.gov (United States)

    Liu, Zhaosen; Ciftja, Orion; Zhang, Xichao; Zhou, Yan; Ian, Hou

    2018-05-01

    It is well known that magnetic domains in nanodisks can be used as storage units for computer memory. Using two quantum simulation approaches, we show here that spin vortices on magnetic monolayer nanodisks, which are chirality-free, can be induced by dipole-dipole interaction (DDI) on the disk-plane. When DDI is sufficiently strong, vortical and anti-vortical multi-domain textures can be generated simultaneously. Especially, a spin vortex can be easily created and deleted through either external magnetic or electrical signals, making them ideal to be used in nanomagnetic memory and logical devices. We demonstrate these properties in our simulations.

  12. Coherent light scattering from a buried dipole in a high-aperture optical system

    International Nuclear Information System (INIS)

    Vamivakas, A N; Mueller, T; Atatuere, M; Yurt, A; Koeklue, F H; Uenlue, M S

    2011-01-01

    We develop a theoretical formulation to calculate the absolute and differential transmission of a focused laser beam through a high-aperture optical system. The focused field interacts with a point dipole that is buried in a high-index material, and is situated at the Gaussian focus of the focusing and collection two-lens system. The derived expressions account for the vectorial nature of the focused electromagnetic field and the inhomogeneous focal region environment. The results obtained are in agreement with recent resonant light-scattering experiments where the buried emitter is an indium arsenide semiconductor quantum dot in gallium arsenide.

  13. The dipole moments of the linear polycarbon monosulfides

    International Nuclear Information System (INIS)

    Murakami, Akinori

    1989-01-01

    The dipole moments of the linear polycarbon monosulfides, CS, C 2 S and C 3 S molecule (radical)s were calculated by ab initio SCF-CI method. The equilibrium geometries of the C n S molecules were obtained by MP3 method using the 6-31G** basis set. From the split balencetype (MIDI-4) to the Huzinaga's well tempered extended type(WT) were used to evaluate dipole moments. Final results were obtained using the WT+2d basis set and CI calculation. The calculated dipole moment of the CS molecule, 1.96 debye, is in good agreement with experimental one. The dipole moment of the C 2 S radical is calculated to be 2.81 debye and 3.66 debye for C 3 S molecule. The calculated dipole moments of the C n S will be accurate with in 0.1 debye(5%)

  14. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.

    1994-01-01

    The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...... of this magnetic scattering and analyzed it using a simple model based on electric dipole and quadrupole transitions among atomic orbitals. The line shapes can be fitted to a magnetic structure combining both c-axis-modulated and basal-plane components. Below 18 K, we have observed unusual behavior of the magnetic...

  15. Ellipsoidal all-dielectric Fano resonant core-shell metamaterials

    Science.gov (United States)

    Reena, Reena; Kalra, Yogita; Kumar, Ajeet

    2018-06-01

    In this paper, ellipsoidal core (Si) and shell (SiO2) metamaterial has been proposed for highly directional properties. At the wavelength of magnetic resonance, Fano dip occurs in the backward scattering cross section and forward scattering enhancement takes place at the same wavelength so that there is an increment in the directivity. Effect on the directivity by changing the length of ellipsoidal nanoparticle along semi-axes has been analyzed. Two Fano resonances have been observed by decreasing the length of the nanoparticle along the semi-axis having electric polarization, where first and second Fano resonances are attributed to the dipole and quadrupole moments, respectively. These Fano resonant wavelengths in ellipsoidal nanoparticle exhibit higher directivity than the Kerker's type scattering or forward scattering shown by symmetrical structures like sphere. So, this core-shell metamaterial can act as an efficient directional nanoantenna.

  16. Derivation of the dipole map

    International Nuclear Information System (INIS)

    Ali, Halima; Punjabi, Alkesh; Boozer, Allen

    2004-01-01

    In our method of maps [Punjabi et al., Phy. Rev. Lett. 69, 3322 (1992), and Punjabi et al., J. Plasma Phys. 52, 91 (1994)], symplectic maps are used to calculate the trajectories of magnetic field lines in divertor tokamaks. Effects of the magnetic perturbations are calculated using the low MN map [Ali et al., Phys. Plasmas 11, 1908 (2004)] and the dipole map [Punjabi et al., Phys. Plasmas 10, 3992 (2003)]. The dipole map is used to calculate the effects of externally located current carrying coils on the trajectories of the field lines, the stochastic layer, the magnetic footprint, and the heat load distribution on the collector plates in divertor tokamaks [Punjabi et al., Phys. Plasmas 10, 3992 (2003)]. Symplectic maps are general, efficient, and preserve and respect the Hamiltonian nature of the dynamics. In this brief communication, a rigorous mathematical derivation of the dipole map is given

  17. Effects of dipole magnet inhomogeneities on the beam ellipsoid

    International Nuclear Information System (INIS)

    Tsoupas, N.; Colman, J.; Levine, M.; McKenzie-Wilson, R.; Ward, T.; Grand, P.

    1986-01-01

    The RAYTRACE computer code has been modified to accept magnetic fields measured in the median plane of a dipole magnet. This modification allows one to study the effects of a non-ideal dipole magnet on the beam ellipsoid (as defined by the TRANSPORT code manual). The effects on the beam ellipsoid are due to: field inhomogeneities in the interior region of the dipole, and discrepancies from design conditions of the magnetic field values in the fringe field region. The results of the RAYTRACE code calculations based on experimentally measured fields will be compared with the results derived using both an ideal (no inhomogeneities) dipole with SCOFF boundaries and an ideal dipole with perfect (according to design) fringe fields

  18. Diagnostics of the Fermilab Tevatron using an AC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Ryoichi [Univ. of Texas, Austin, TX (United States)

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  19. Volume measurement of multiple sclerosis lesions with magnetic resonance images

    International Nuclear Information System (INIS)

    Wicks, D.A.G.; Tofts, P.S.; Miller, D.H.; Du Boulay, G.H.; Feinstein, A.; Harvey, I.; Brenner, R.; McDonald, W.I.; Sacares, R.P.

    1992-01-01

    The ability to visualise multiple sclerosis lesions in vivo with magnetic resonance imaging suggests an important role in monitoring the course of the disease. In order to help the long-term assessment of prospective treatments, a semi-automated technique for measuring lesion volume has been developed to provide a quantitative index of disease progression. Results are presented from a preliminary study with a single patient and compared to measurements taken from lesion outlines traced by a neuroradiologist, two neurologists and a technician. The semi-automated technique achieved a precision of 6% compared to a range of 12-33% for the manual tracing method. It also reduced the human interaction time from at least 60 min to 15 min. (orig.)

  20. Regularized quasinormal modes for plasmonic resonators and open cavities

    Science.gov (United States)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  1. Enhanced THz extinction in arrays of resonant semiconductor particles.

    Science.gov (United States)

    Schaafsma, Martijn C; Georgiou, Giorgos; Rivas, Jaime Gómez

    2015-09-21

    We demonstrate experimentally the enhanced THz extinction by periodic arrays of resonant semiconductor particles. This phenomenon is explained in terms of the radiative coupling of localized resonances with diffractive orders in the plane of the array (Rayleigh anomalies). The experimental results are described by numerical calculations using a coupled dipole model and by Finite-Difference in Time-Domain simulations. An optimum particle size for enhancing the extinction efficiency of the array is found. This optimum is determined by the frequency detuning between the localized resonances in the individual particles and the Rayleigh anomaly. The extinction calculations and measurements are also compared to near-field simulations illustrating the optimum particle size for the enhancement of the near-field.

  2. Prompt dipole gamma-ray emission in fusionlike heavy-ion reactions

    CERN Document Server

    Pierroutsakou, D; Di Pietro, M; Mordente, R; Ordine, A; Romoli, M; De Rosa, A; Inglima, G; La Commara, M; Martin, B; Roca, V; Sandoli, M; Trotta, M; Vardaci, E; Ming, R; Rizzo, F; Soramel, F; Stroe, L

    2003-01-01

    The sup 3 sup 2 S+ sup 1 sup 0 sup 0 Mo and sup 3 sup 6 S+ sup 9 sup 6 Mo fusionlike reactions were studied at incident energy of E sub l sub a sub b =298 MeV and 320 MeV, respectively, with the aim of probing the influence of the entrance channel charge asymmetry on the dipole gamma-ray emission. The excitation energy and spin distribution of the compound nucleus created in these reactions were identical, the only difference being associated with the unequal charge asymmetry of the two entrance channels. High-energy gamma-rays were detected in an array of 9 seven-pack BaF sub 2 clusters. Coincidence with fusionlike residues detected in four PPAC ensured the selection of central reaction events. By studying the differential gamma-ray multiplicity associated with the two reactions it was shown that the dipole strength excited in the compound nucleus increases with the entrance channel charge asymmetry. From the linearized spectra, the increase of the GDR gamma-ray intensity was found to be propor to 25% for th...

  3. Giant Primeval Magnetic Dipoles

    Science.gov (United States)

    Thompson, Christopher

    2017-07-01

    Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.

  4. The Collider dipole magnet program

    International Nuclear Information System (INIS)

    Baldi, R.W.; Bailey, R.; Bever, D.; Bogart, L.; Gigg, G.; Packer, M.; Page, L.; Stranberg, N.

    1991-01-01

    The Superconducting Super Collider will consist of more large superconducting magnets than have been built to date. Over 12,000 superconducting magnets are required and more than 8,000 will be Collider dipoles. The dipole magnet program is on the critical path of the project and requires the optimized utilization of the Nation's resources - National Laboratories, Universities and Industry. General Dynamics and Westinghouse Electric Corporation have been chosen as the Leader and Follower companies for the design of producible magnets and the manufacturing of the SSC dipoles. Industry has the necessary experience, skills and facilities required to produce reliable and cost effective dipole magnets. At peak production, 10 CDMs per day, very large quantities (nearly 130 metric tonnes/day) of materials will have to be procured from companies nationwide and fabricated into defect-free magnets. A key element of the SSCL's strategy to produce the most efficient CDM program is to employ the Leader-Follower approach, with the Leader transferring technology from the laboratories to the Leader's facility, fully integrating the Follower in the producibility and tooling/factory design efforts, and assisting the Follower in magnet qualification tests. General Dynamics is ready to help build America's most powerful research tool. Management is in place, the facilities are ready for activation and resources are available for immediate assignment

  5. Nanoscale shift of the intensity distribution of dipole radiation.

    Science.gov (United States)

    Shu, Jie; Li, Xin; Arnoldus, Henk F

    2009-02-01

    The energy flow lines (field lines of the Poynting vector) for radiation emitted by a dipole are in general curves, rather than straight lines. For a linear dipole the field lines are straight, but when the dipole moment of a source rotates, the field lines wind numerous times around an axis, which is perpendicular to the plane of rotation, before asymptotically approaching a straight line. We consider an elliptical dipole moment, representing the most general state of oscillation, and this includes the linear dipole as a special case. Due to the spiraling near the source, for the case of a rotating dipole moment, the field lines in the far field are displaced with respect to the outward radial direction, and this leads to a shift of the intensity distribution of the radiation in the far field. This shift is shown to be independent of the distance to the source and, although of nanoscale dimension, should be experimentally observable.

  6. Study of isovector resonances with pion charge exchange

    International Nuclear Information System (INIS)

    Baer, H.W.; Bolton, R.; Bowman, J.D.

    1982-01-01

    Studies with the pion charge exchange reactions (π/sup +-/,π 0 ) at 164 MeV using the LAMPF π 0 spectrometer are yielding new results on the existence and systematic features of isovector resonances in nuclei. These experiments possess an unusually high signal/background ratio for isovector resonances of low-multipolarity. Results obtained to date are: (1) observation and angular disribution measurement of the giant dipole resonance in nuclei 12 C, 40 Ca, 90 Zr, and 120 Sn; and (2) observation and angular distribution measurements in the (π - ,π 0 ) reaction on 90 Zr and 120 Sn of large signals possessing the expected angular distribution shapes and magnitudes for the isovector monopole resonance. Excitation energies are near the hydrodynamical model values 170 A - /sup 1/3/ MeV. Differential cross sections are approximately 0.7 J 1 2 (qR) mb/sr. An overview of this experimental program, with emphasis on new results and how they correlate with existing knowledge on the isovector resonances, is presented

  7. Educational simulator app and web page for exploring Nuclear and Compass Magnetic Resonance

    DEFF Research Database (Denmark)

    Hanson, Lars G.

    experimentation that improves understanding of basic MR phenomena. The simulator is used to introduce and explore electromagnetism, magnetic dipoles, static and radiofrequency fields, Compass MR, the free induction decay (FID), relaxation, the Fourier transform (FFT), the resonance condition, spin, precession......, the Larmor equation, Nuclear MR, resonant excitation (linear and quadrature), and off-resonance effects. Methods and implementation: The simulator is a complete HTML5/JavaScript[1,2] rewrite of the JavaCompass[3] so it now executes in modern browsers with no additional software needed. Spin dynamics...

  8. The BFKL pomeron calculus in the dipole approach

    International Nuclear Information System (INIS)

    Kozlov, M.; Levin, E.; Prygarin, A.

    2007-01-01

    In this paper we continue to pursue a goal of finding an effective theory for high energy interaction in QCD based on the colour dipole approach, for which the BFKL pomeron calculus gives a low energy limit. The key problem, that we try to solve in this paper is the probabilistic interpretation of the BFKL pomeron calculus in terms of the colourless dipoles and their interactions. We demonstrate that the BFKL pomeron calculus has two equivalent descriptions: (i) one is the generating functional which gives a clear probabilistic interpretation of the processes of high energy scattering and also provides a Hamiltonian-like description of the system of interacting dipoles; (ii) the second is the Langevin equation with a specific noise term which is rather complicated. We found that at high energies this Langevin equation can be reduced to the Langevin equation for directed percolation in the momentum space if the impact parameter is large, namely, b1/k, where k is the transverse momentum of a dipole. Unfortunately, this simplified form of Langevin equation is not applicable for summation of pomeron loops, where one integrates over all possible values of impact parameter. We show that the BFKL pomeron calculus with two vertices (splitting P->P+P and merging P+P->P of pomerons) can be interpreted as a system of colourless dipoles with two processes: the decay of one dipole into two and the merging of two dipoles into one dipole. However, a number of assumptions we have to make on the way to simplify the noise term in the Langevin equation and/or to apply the probabilistic interpretation, therefore, we can consider both of these approaches in the present form only as the QCD motivated models

  9. Contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Seidl, Z.; Obenberger, J.; Vitak, T.

    1996-01-01

    The potential of magnetic resonance imaging in the diagnosis of multiple sclerosis (MS) was confirmed on 52 patients. In 25 patients, MS was diagnosed as highly probable, in additional 8 patients this diagnosis was suspected. MR imaging supported the diagnosis in 21 (95%) patients where this disease had been diagnosed as highly probable, and in 3 (38%) suspect patients. Lesions were found most frequently paraventricularly in the white matter of the brain, but also in the deep structures of the white matter of the temporal lobe and below the tentorium (in the cerebellum, pons and mesencephalon). No lesions were found in the optic nerve despite the frequent diagnosis of retrobulbar neuritis. Computerized tomography (CT) was performed in 14 patients; this technique only supported the diagnosis of MS in 3 patients, in all of whom this diagnosis had also been suggested by MR imaging. It is concluded that MR imaging can fully supersede CT as a tool for diagnosing multiple sclerosis. 3 figs., 10 refs

  10. Dislocation dipole annihilation in diamond and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rabier, J; Pizzagalli, L, E-mail: jacques.rabier@univ-poitiers.fr [Institut PPRIMME, Departement de Physique et Mecanique des Materiaux - UPR 3346 CNRS, Universite de Poitiers, ENSMA - SP2MI, BP 30179, F-86962 Chasseneuil Futuroscope Cedex (France)

    2011-02-01

    The mechanism of dislocation dipole annihilation has been investigated in C and Si using atomistic calculations with the aim of studying their annihilation by-products. It is shown, in C as well as in Si, that dipole annihilation yields debris that can be depicted as a cluster of vacancies, or alternately by two internal free surfaces. These defects have no strain field and can hardly be seen using usual TEM techniques. This suggests that the brown colouration of diamond could be due to microstructures resulting from deformation mechanisms associated with dipole formation and their annihilation rather than to a climb mechanism and vacancy aggregation. In silicon where a number of dipoles have been evidenced by TEM when dislocation trails are found, such debris could be the missing link responsible for the observation of strong chemical reactivity and electrical activity in the wake of moving dislocations.

  11. The neutron electric dipole moment and the Weinberg's operator

    International Nuclear Information System (INIS)

    Li Chongsheng; Hu Bingquan

    1992-01-01

    After a summary of the predictions for the neutron electric dipole moment in a number of models of CP violation, the authors review mainly the recent developments associated with Weimberg's purely gluonic CP violation operator. Its implications on the neutron electric dipole moment in various models of CP violation are discussed. Inspired by Weimberg's work, several new mechanisms of generating large electric dipole moments of charged leptons and large electric and chromo-electric dipole moments of light quarks are recently proposed. Brief discussions on these new developments are also given

  12. Electric Dipole Antenna: A Source of Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2013-07-01

    Full Text Available In this article, the gravitational scalar potential due to an oscillating electric dipole antenna placed in empty space is derived. The gravitational potential obtained propagates as a wave. The gravitational waves have phase velocity equal to the speed of light in vacuum (c at the equatorial plane of the electric dipole antenna, unlike electromagnetic waves from the dipole antenna that cancel out at the equatorial plane due to charge symmetry.

  13. Electric dipole moment of 3He

    International Nuclear Information System (INIS)

    Avishai, Y.; Fabre de la Ripelle, M.

    1987-01-01

    The contribution of CP violating nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated following a recent proposal for its experimental detection. Two models of CP violating interactions are used, namely, the Kobayashi-Maskawa mechanism and the occurrence of the Θ term in the QCD lagrangian. These CP violating interactions are combined with realistic strong nucleon-nucleon interactions to induce a CP forbidden component of the 3 He wave function. The matrix element of the electric dipole operator is then evaluated between CP allowed and CP forbidden components yielding the observable electric dipole moment. Using the parameters emerging from the penguin terms in the Kobaysashi-Maskawa model we obtain a result much larger than the electric dipole moment of the neutron in the same model. On the other hand, no enhancement is found for the Θ-term mechanism. A possible explanation for this difference is discussed. Numerical estimates can be given only in the Kobayashi-Maskawa model, giving d( 3 He) ≅ 10 30 e . cm. In the second mechanism, the estimate give d ( 3 He) ≅ 10 16 anti Θ. (orig.)

  14. Excitation of giant resonances through inelastic scattering

    International Nuclear Information System (INIS)

    Kailas, S.

    1981-01-01

    In the last few years, exciting developments have taken place in the study of giant resonances (GR). In addition to the already well known gjant dipole resonance (GDR), the presence of at least two more new GRs viz. giant quadrupole resonance (GQR) and giant monopole resonance (GMR) has been experimentally established. The systematics covering these GRs is found to be consistent with the theoretical expectation. Though the existence of higher multipoles has been predjcted by theory, so far only some of these have been found to be excited experimentally. Various probe particles - electrons, protons (polarized and unpolarized), light and heavy ions and pions - at different bombarding energies have been used to excite the GR region, primarily through the inelastic scattering process. Detailed experiments, looking at the decay modes of GR region, have also been performed. These studies have contributed significantly to a better understanding of the phenomenon of nuclear collective excitation. In this report, the current status of 'GR' research is reviewed. (author)

  15. Quantum transfer energy in the framework of time-dependent dipole-dipole interaction

    Science.gov (United States)

    El-Shishtawy, Reda M.; Haddon, Robert C.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.; Berrada, K.; Abdel-Khalek, S.; Al-Hadeethi, Yas F.

    2018-03-01

    In this work, we examine the process of the quantum transfer of energy considering time-dependent dipole-dipole interaction in a dimer system characterized by two-level atom systems. By taking into account the effect of the acceleration and speed of the atoms in the dimer coupling, we demonstrate that the improvement of the probability for a single-excitation transfer energy extremely benefits from the incorporation of atomic motion effectiveness and the energy detuning. We explore the relevance between the population and entanglement during the time-evolution and show that this kind of nonlocal correlation may be generated during the process of the transfer of energy. Our work may provide optimal conditions to implement realistic experimental scenario in the transfer of the quantum energy.

  16. Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF): A Platform for Simultaneous Quantification of Multiple MRI Contrast Agents.

    Science.gov (United States)

    Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A

    2017-08-16

    Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.

  17. Microscopic evaluation of the nuclear dipole polarizability

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Orlandini, G; Stringari, S; Traini, M [Trento Univ. (Italy). Dept. di Matematica e Fisica

    1977-12-01

    The dipole polarizability sum rule has been evaluated by means of a restricted Hartree-Fock approach. The method leads to a simple and analytical expression for the dipole polarizability. Explicit calculations have been performed in /sup 16/O and /sup 40/Ca with different types of interaction.

  18. Continuous millennial decrease of the Earth's magnetic axial dipole

    Science.gov (United States)

    Poletti, Wilbor; Biggin, Andrew J.; Trindade, Ricardo I. F.; Hartmann, Gelvam A.; Terra-Nova, Filipe

    2018-01-01

    Since the establishment of direct estimations of the Earth's magnetic field intensity in the first half of the nineteenth century, a continuous decay of the axial dipole component has been observed and variously speculated to be linked to an imminent reversal of the geomagnetic field. Furthermore, indirect estimations from anthropologically made materials and volcanic derivatives suggest that this decrease began significantly earlier than direct measurements have been available. Here, we carefully reassess the available archaeointensity dataset for the last two millennia, and show a good correspondence between direct (observatory/satellite) and indirect (archaeomagnetic) estimates of the axial dipole moment creating, in effect, a proxy to expand our analysis back in time. Our results suggest a continuous linear decay as the most parsimonious long-term description of the axial dipole variation for the last millennium. We thus suggest that a break in the symmetry of axial dipole moment advective sources occurred approximately 1100 years earlier than previously described. In addition, based on the observed dipole secular variation timescale, we speculate that the weakening of the axial dipole may end soon.

  19. Short chain molecular junctions: Charge transport versus dipole moment

    International Nuclear Information System (INIS)

    Ikram, I. Mohamed; Rabinal, M.K.

    2015-01-01

    Graphical abstract: - Highlights: • The role of dipole moment of organic molecules on molecular junctions has been studied. • Molecular junctions constituted using propargyl molecules of different dipole moments. • The electronic properties of the molecules were calculated using Gaussian software. • Junctions show varying rectification due to their varying dipole moment and orientation. - Abstract: The investigation of the influence of dipole moment of short chain organic molecules having three carbon atoms varying in end group on silicon surface was carried on. Here, we use three different molecules of propargyl series varying in dipole moment and its orientation to constitute molecular junctions. The charge transport mechanism in metal–molecules–semiconductor (MMS) junction obtained from current–voltage (I–V) characteristics shows the rectification behavior for two junctions whereas the other junction shows a weak rectification. The electronic properties of the molecules were calculated using Gaussian software package. The observed rectification behavior of these junctions is examined and found to be accounted to the orientation of dipole moment and electron cloud density distribution inside the molecules

  20. 5cm aperture dipole studies

    International Nuclear Information System (INIS)

    McInturff, A.D.; Bossert, R.; Carson, J.; Fisk, H.E.; Hanft, R.; Kuchnir, M.; Lundy, R.; Mantech, P.; Strait, J.

    1986-01-01

    The results obtained during the evolution of the design, construction, and testing program of the design ''B'' dipole are presented here. Design ''B'' is one of the original three competing designs for the Superconducting Super Collider ''SSC'' arc dipoles. The final design parameters were as follows: air cored (less than a few percent of the magnetic field derived from any iron present), aluminum collared, two layered winding, 5.5T maximum operating field, and a 5 cm cold aperture. There have been fourteen 64 cm long 5 cm aperture model dipoles cold tested (at 4.3K and less) in this program so far. There was a half length full size (6m) mechanical analog (M-10) built and tested to check the cryostat's mechanical design under ramping and quench conditions. Several deviations from the ''Tevatron'' dipole fabrication technique were incorporated, for example the use of aluminum collars instead of stainless steel. The winding technique variations explored were ''dry welding,'' a technique with the cable covered with Kapton insulation only and ''wet winding'' where the Kapton was covered with a light coat of ''B'' stage epoxy. Test data include quench currents, field quality (Fourier multipole co-efficients), coil magnetization, conductor current performance, and coil loading. Quench current, loss per cycle, and harmonics were measured as a function of the magnitude and rate of change of the magnetic field, and helium bath temperature