WorldWideScience

Sample records for multiple cooling processes

  1. Enhancement of Cognitive Processing by Multiple Sclerosis Patients Using Liquid Cooling Technology: A Case Study

    Science.gov (United States)

    Montgomery, Leslie D.; Montgomery, Richard W.; Ku, Yu-Tsuan; Luna, Bernadette (Technical Monitor)

    1997-01-01

    Cognitive dysfunction is a common symptom in patients with multiple sclerosis (MS). This can have a significant impact on the quality of life of both the patient and of their primary care giver. This case study explores the possibility that liquid cooling therapy may be used to enhance the cognitive processing of MS patients in the same way that it provides temporary relief of some physical impairment. Two MS patients were presented a series of pattern discrimination tasks before and after being cooled with a liquid cooling garment for a one hour period. The subject whose ear temperature was reduced during cooling showed greater electroencephalographic (EEG) activity and scored much better on the task after cooling. The patient whose ear temperature was unaffected by cooling showed less EEG activity and degraded performance after the one hour cooling period.

  2. Enhancement of Cognitive Processing by Multiple Sclerosis Patients Using Liquid Cooling Technology: A Case Study

    Science.gov (United States)

    Montgomery, Leslie D.; Ku, Yu-Tsuan E.; Montgomery, Richard W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Recent neuropsychological studies demonstrate that cognitive dysfunction is a common symptom in patients with multiple sclerosis. In many cases the presence of cognitive impairment affects the patient's daily activities to a greater extent than would be found due to their physical disability alone. Cognitive dysfunction can have a significant impact on the quality of life of both the patient and that of their primary caregiver. Two cognitively impaired male MS patients were given a visual discrimination task before and after a one hour cooling period. The subjects were presented a series of either red or blue circles or triangles. One of these combinations, or one fourth of the stimuli, was designated as the "target" presentation. EEG was recorded from 20 scalp electrodes using a Tracor Northern 7500 EEG/ERP system. Oral and ear temperatures were obtained and recorded manually every five minutes during the one hour cooling period. The EEG ERP signatures from each series of stimuli were analyzed in the energy density domain to determine the locus of neural activity at each EEG sampling time. The first subject's ear temperature did not decrease during the cooling period. It was actually elevated approximately 0.05 C by the end of the cooling period compared to his mean of control period value. In turn, Subject One's discrimination performance and cortical energy remained essentially the same after body cooling. In contrast, Subject Two's ear temperature decreased approx. 0.8 C during his cooling period. Subject Two's ERROR score decreased from 12 during the precooling control period to 2 after cooling. His ENERGY value increased approximately 300%, from a precooling value of approximately 200 to a postcooling value of nearly 600. These findings might be interpreted by the following three-part hypothesis: (1) the general cognitive impairment of MS patients may be a result of low or unfocused metabolic energy conversion in the cortex; (2) such differences show up most

  3. On synthesis and optimization of cooling water systems with multiple cooling towers

    CSIR Research Space (South Africa)

    Gololo, KV

    2011-01-01

    Full Text Available -1 On Synthesis and Optimization of Cooling Water Systems with Multiple Cooling Towers Khunedi Vincent Gololo?? and Thokozani Majozi*? ? Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa ? Modelling...

  4. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  5. Axions from cooling compact stars: Pair-breaking processes

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-02

    Once formed in a supernova explosion, a neutron star cools rapidly via neutrino emission during the first 10{sup 4}-10{sup 5} yr of its life-time. Here we compute the axion emission rate from baryonic components of a star at temperatures below their respective critical temperatures T{sub c} for normal-superfluid phase transition. The axion production is driven by a charge neutral weak process, associated with Cooper pair breaking and recombination. The requirement that the axion cooling does not overshadow the neutrino cooling puts a lower bound on the axion decay constant f{sub a}>6 Multiplication-Sign 10{sup 9}T{sub c9}{sup -1} GeV, with T{sub c9}=T{sub c}/10{sup 9} K. This translates into an upper bound on the axion mass m{sub a}<10{sup -3}T{sub c9} eV.

  6. Optimization of cryogenic cooled EDM process parameters using grey relational analysis

    International Nuclear Information System (INIS)

    Kumar, S Vinoth; Kumar, M Pradeep

    2014-01-01

    This paper presents an experimental investigation on cryogenic cooling of liquid nitrogen (LN 2 ) copper electrode in the electrical discharge machining (EDM) process. The optimization of the EDM process parameters, such as the electrode environment (conventional electrode and cryogenically cooled electrode in EDM), discharge current, pulse on time, gap voltage on material removal rate, electrode wear, and surface roughness on machining of AlSiCp metal matrix composite using multiple performance characteristics on grey relational analysis was investigated. The L 18 orthogonal array was utilized to examine the process parameters, and the optimal levels of the process parameters were identified through grey relational analysis. Experimental data were analyzed through analysis of variance. Scanning electron microscopy analysis was conducted to study the characteristics of the machined surface.

  7. Heating and cooling processes in disks*

    Directory of Open Access Journals (Sweden)

    Woitke Peter

    2015-01-01

    Full Text Available This chapter summarises current theoretical concepts and methods to determine the gas temperature structure in protoplanetary disks by balancing all relevant heating and cooling rates. The processes considered are non-LTE line heating/cooling based on the escape probability method, photo-ionisation heating and recombination cooling, free-free heating/cooling, dust thermal accommodation and high-energy heating processes such as X-ray and cosmic ray heating, dust photoelectric and PAH heating, a number of particular follow-up heating processes starting with the UV excitation of H2, and the release of binding energy in exothermal reactions. The resulting thermal structure of protoplanetary disks is described and discussed.

  8. Design of the cooling systems for the multiplicity and vertex detector

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Cunningham, R.

    1997-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is being constructed to investigate a phase of matter termed the quark-gluon plasma. The plasma will be produced through the collision of two heavy ions. The multiplicity and vertex detector (MVD) located in the center of PHENIX will characterize the events, determine the collision point, and act as a central trigger. This report presents the final mechanical designs of the cooling systems for the Multiplicity and Vertex Detector (MVD). In particular, the design procedure and layouts are discussed for two different air cooling systems for the multichip modules and MVD enclosure, and a liquid cooling system for the low dropout voltage regulators. First of all, experimental prototype cooling system test results used to drive the final mechanical designs are summarized and discussed. Next, the cooling system requirements and design calculation for the various subsystem components are presented along with detailed lists of supply vendors, components, and costs. Finally, safety measures incorporated in the final mechanical design and operation procedures for each of the subsystems are detailed

  9. The Worlds First Ever Cooling Tower Acceptance Test Using Process Data Reconciliation

    International Nuclear Information System (INIS)

    Magnus Langenstein; Jan Hansen-Schmidt

    2006-01-01

    The cooling capacity of cooling towers is influenced by multiple constructive and atmospheric parameters in a very complex way. This leads to strong variations of the measured cold-water temperature and causes unacceptable unreliability of conventional acceptance tests, which are based on single point measurements. In order to overcome this lack of accuracy a new approach to acceptance test based on process data reconciliation has been developed by BTB Jansky and applied at a nuclear power plant. This approach uses process data reconciliation according to VDI 2048 to evaluate datasets over a long period covering different operating conditions of the cooling tower. Data reconciliation is a statistical method to determine the true process parameters with a statistical probability of 95% by considering closed material-, mass-and energy balances. Datasets which are not suitable for the evaluation due to strong transient gradients are excluded beforehand, according to well-defined criteria. The reconciled cold-water temperature is then compared, within a wet bulb temperature range of 5 deg. C to 20 deg. C to the manufacturer's guaranteed temperature. Finally, if the average deviation between reconciled and guaranteed value over the evaluated period is below zero, the cooling tower guarantee is fulfilled. (authors)

  10. 40 CFR 63.1329 - Process contact cooling towers provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Process contact cooling towers... Process contact cooling towers provisions. (a) The owner or operator of each new affected source that... end finisher process that utilizes a process contact cooling tower shall comply with paragraph (c) of...

  11. Fabrication process of expanded cooling jackets

    International Nuclear Information System (INIS)

    Weber, C.M.

    1980-01-01

    The present invention concerns the fabrication process of heat exchangers and in particular, the fabrication and assembly process of cooling jackets of the system driving the control rods used in nuclear reactors. The cooling jackets are assembled for cooling the stator of a tubular motor displacing the control rods. The fabrication and assembling of the cooling jacket is made up by the following operations: - a sleeve has an inner fluid inlet and outlet ways, - an external socket is fitted to the sleeve, - on the external socket a continuous welding is realized, which join the socket to the sleeve, and define a serie of parallel welded turns, - a pressure is established between the sleeve and the socket by a fluid through the outlet or inlet ways of the sleeve. When the other way is sealed up, the socket expands between the welded turns, and the fluid can pass through the jacket [fr

  12. Computer simulation of multiple stability regions in an internally cooled superconducting conductor and of helium replenishment in a bath-cooled conductor

    International Nuclear Information System (INIS)

    Turner, L.R.; Shindler, J.

    1984-09-01

    For upcoming fusion experiments and future fusion reactors, superconducting magnetic have been chosen or considered which employ cooling by pool-boiling HeI, by HeII, and by internally flowing HeI. The choice of conductor and cooling method should be determined in part by the response of the magnet to sudden localized heat pulses of various magnitudes. The paper describes the successful computer simulation of multiple stability in internally cooled conductors, as observed experimentally, using the computer code SSICC. It also describes the modeling of helium replenishment in the cooling channels of a bath-cooled conductor, using the computer code TASS

  13. Processes influencing cooling of reactor effluents

    International Nuclear Information System (INIS)

    Magoulas, V.E.; Murphy, C.E. Jr.

    1982-01-01

    Discharge of heated reactor cooling water from SRP reactors to the Savannah River is through sections of stream channels into the Savannah River Swamp and from the swamp into the river. Significant cooling of the reactor effluents takes place in both the streams and swamp. The majority of the cooling is through processes taking place at the surface of the water. The major means of heat dissipation are convective transfer of heat to the air, latent heat transfer through evaporation and radiative transfer of infrared radiation. A model was developed which incorporates the effects of these processes on stream and swamp cooling of reactor effluents. The model was used to simulate the effect of modifications in the stream environment on the temperature of water flowing into the river. Environmental effects simulated were the effect of changing radiant heat load, the effect of changes in tree canopy density in the swamp, the effect of total removal of trees from the swamp, and the effect of diverting the heated water from L reactor from Steel Creek to Pen Branch. 6 references, 7 figures

  14. Structure evolution during the cooling and coalesced cooling processes of Cu-Co bimetallic clusters

    International Nuclear Information System (INIS)

    Li Guojian; Wang Qiang; Li Donggang; Lue Xiao; He Jicheng

    2008-01-01

    Constant-temperature molecular dynamics with general EAM was employed to study the structure evolutions during the cooling and coalesced cooling processes of Cu-Co bimetallic clusters. It shows that the desired particle morphologies and structures can be obtained by controlling the composition and distribution of hetero atoms during synthesis process

  15. Processing-structure-mechanical property relationship in Ti-Nb microalloyed steel: Continuous cooling versus interrupted cooling

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, V.V. [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Liu, S. [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Challa, V.S.A. [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Misra, R.D.K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Sidorenko, D.M.; Mulholland, M.D.; Manohar, M.; Hartmann, J.E. [ArcelorMittal Global R& D Center, 3001 East Columbus Drive, East Chicago, IN 46312 (United States)

    2016-08-01

    The process parameters associated with thermo-mechanical controlled processing (TMCP) of steels play an important role in influencing the ultimate mechanical properties. The study of TMCP parameters have not received the required attention. In this regard, we elucidate here the impact of finish cooling temperature on interrupted cooling and compare with continuous cooling on microstructural evolution and precipitation behavior and associated mechanical properties in Ti-Nb microalloyed steels. The microstructural evolution was studied via transmission electron microscopy and electron back scattered diffraction (EBSD). The microstructure of continuously cooled and interrupted cooled steels with different finish exit temperatures consisted of polygonal ferrite, bainite and martensite/austenite constituent. However, the fraction of different microstructural constituents was different in each of the experimental steels. Similarly, there were differences in the distribution and average size of (Nb, Ti)C precipitates. The aforementioned differences in the microstructure and precipitation introduced differences in tensile properties. Furthermore, electron back scattered diffraction studies indicated distinct variation in average grain area and high angle boundaries between continuously cooled and interrupted cooled steels.

  16. Cooling process in separation devices of krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Sugimoto, K

    1975-06-11

    To prevent entry of impurities into purified gases and to detect leaks of heat exchanger in a separation and recovering device of krypton gas by means of liquefaction and distillation, an intermediate refrigerant having the same or slightly higher boiling point than that of gas to be cooled is used between the gas to be cooled (process gas) and refrigerant (nitrogen), and the pressure of the gas to be cooled is controlled to have a pressure higher than the intermediate refrigerant to cool the gas to be cooled.

  17. 2D study of wind forces around multiple cooling towers using ...

    African Journals Online (AJOL)

    A comprehensive numerical study for the determination of wind pressure coefficients on multiple cooling towers by simulating turbulence using Reynolds Averaged Navier-Stokes Equations (RANS) models of Computational Fluid Dynamics techniques (CFD) such as, Standard k −ε , RNG k −ε , Realizable k −ε and Reynolds ...

  18. Secondary process for securing emergency cooling in nuclear facilities

    International Nuclear Information System (INIS)

    Bachl, H.

    1975-01-01

    An auxiliary process for securing the emergency cooling of nuclear power plants is described which is characterized in that a two-material heat power auxiliary process is connected at the cold end of the cooling circuit to a main heat power process to obtain mechanical energy from thermal, which in normal operation works as a cold-absorption process, but with failure of the main process changes to a heat power process with full evaporation and subsequent superheating of the two-materials mixture. (RW/LH) [de

  19. Strategies for Processing Semen from Subfertile Stallions for Cooled Transport.

    Science.gov (United States)

    Varner, Dickson D

    2016-12-01

    Subfertility can be a confusing term because some semen of good quality can have reduced fertility following cooled transport if the semen is processed in an improper manner. General procedures aimed at processing stallion semen for cooled transport are well described. An array of factors could exist in reduced fertility of cool-transported semen. This article focuses on centrifugation techniques that can be used to maximize sperm quality of stallions whose semen is intended for cooled transport. Clinical cases are also provided for practical application of techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  1. Effect of the cooling suit method applied to individuals with multiple sclerosis on fatigue and activities of daily living.

    Science.gov (United States)

    Özkan Tuncay, Fatma; Mollaoğlu, Mukadder

    2017-12-01

    To determine the effects of cooling suit on fatigue and activities of daily living of individuals with multiple sclerosis. Fatigue is one of the most common symptoms in people with multiple sclerosis and adversely affects their activities of daily living. Studies evaluating fatigue associated with multiple sclerosis have reported that most of the fatigue cases are related to the increase in body temperature and that cooling therapy is effective in coping with fatigue. This study used a two sample, control group design. The study sample comprised 75 individuals who met the inclusion criteria. Data were collected with study forms. After the study data were collected, cooling suit treatment was administered to the experimental group. During home visits paid at the fourth and eighth weeks after the intervention, the aforementioned scales were re-administered to the participants in the experimental and control groups. The analyses performed demonstrated that the severity levels of fatigue experienced by the participants in the experimental group wearing cooling suit decreased. The experimental group also exhibited a significant improvement in the participants' levels of independence in activities of daily living. The cooling suit worn by individuals with multiple sclerosis was determined to significantly improve the participants' levels of fatigue and independence in activities of daily living. The cooling suit therapy was found to be an effective intervention for the debilitating fatigue suffered by many multiple sclerosis patients, thus significantly improving their level of independence in activities of daily living. © 2017 John Wiley & Sons Ltd.

  2. Closed-cycle process of coke-cooling water in delayed coking unit

    International Nuclear Information System (INIS)

    Zhou, P.; Bai, Z.S.; Yang, Q.; Ma, J.; Wang, H.L.

    2008-01-01

    Synthesized processes are commonly used to treat coke-cooling wastewater. These include cold coke-cut water, diluting coke-cooling water, adding chemical deodorization into oily water, high-speed centrifugal separation, de-oiling and deodorization by coke adsorption, and open nature cooling. However, because of water and volatile evaporation loss, it is not suitable to process high-sulphur heavy oil using open treatments. This paper proposed a closed-cycling process in order to solve the wastewater treatment problem. The process is based on the characteristics of coke-cooling water, such as rapid parametric variation, oil-water-coke emulsification and steam-water mixing. The paper discussed the material characteristics and general idea of the study. The process of closed-cycle separation and utilization process of coke-cooling water was presented along with a process flow diagram. Several applications were presented, including a picture of hydrocyclones for pollution separation and a picture of equipments of pollution separation and components regeneration. The results showed good effect had been achieved since the coke-cooling water system was put into production in 2004. The recycling ratios for the components of the coke-cooling water were 100 per cent, and air quality in the operating area reached the requirements of the national operating site circumstance and the health standards. Calibration results of the demonstration unit were presented. It was concluded that since the devices went into operation, the function of production has been normal and stable. The operation was simple, flexible, adjustable and reliable, with significant economic efficiency and environmental benefits. 10 refs., 2 tabs., 3 figs

  3. Processing of coke oven gas. Primary gas cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, H [Otto (C.) und Co. G.m.b.H., Bochum (Germany, F.R.)

    1976-11-01

    The primary cooler is an indispensable part of all byproduct processing plants. Its purpose is to cool the raw gas from the coke oven battery and to remove the accompanying water vapor. The greater part of the cooling capacity is utilized for the condensation of water vapor and only a small capacity is needed for the gas cooling. Impurities in the gas, like naphthalene, tar and solid particles, necessitate a special design in view of the inclination to dirt accumulation. Standard types of direct and indirect primary gas coolers are described, with a discussion of their advantages and disadvantages.

  4. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    Science.gov (United States)

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  5. Thermal performance of a multiple PCM thermal storage unit for free cooling

    International Nuclear Information System (INIS)

    Mosaffa, A.H.; Infante Ferreira, C.A.; Talati, F.; Rosen, M.A.

    2013-01-01

    Highlights: ► Numerical analysis on the performance of a thermal storages as free cooling system. ► Employing multiple PCMs to enhance heat transfer rate in thermal storages. ► Using an effective heat capacity method, the phase change parameters are determined. ► The effect of the slabs size and air channel thickness on COP is investigated. - Abstract: As demand for refrigeration and air conditioning increased during the last decade, the opportunities have expanded for using thermal energy storage (TES) systems in an economically advantageous manner in place of conventional cooling plants. Many cool storage systems use phase change materials (PCMs) and achieve peak load shifting in buildings. This work presents numerical investigations of the performance enhancement of a free cooling system using a TES unit employing multiple PCMs. The TES unit is composed of a number of rectangular channels for the flowing heat transfer fluid, separated by PCM slabs. Using the effective heat capacity method, the melting and solidification of the PCM is solved. The forced convective heat transfer inside the channels is analyzed by solving the energy equation, which is coupled with the heat conduction equation in the container wall. The effect of design parameters such as PCM slab length, thickness and fluid passage gap on the storage performance is also investigated using an energy based optimization. The results show that a system which can guarantee comfort conditions for the climate of Tabriz, Iran has an optimum COP of 7.0. This could be achieved by a combination of CaCl 2 ·6H 2 O with RT25 with the optimum air channel thickness of 3.2 mm, length of 1.3 m and PCM slab thickness of 10 mm

  6. Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process

    Science.gov (United States)

    Freitas, Nahuel; Paz, Juan Pablo

    2018-03-01

    We analyze the lowest achievable temperature for a mechanical oscillator coupled with a quantum refrigerator composed of a parametrically driven system that is in contact with a bosonic reservoir where the energy is dumped. We show that the cooling of the oscillator (achieved by the resonant transport of its phonon excitations into the environment) is always stopped by a fundamental heating process that is dominant at sufficiently low temperatures. This process can be described as the nonresonant production of excitation pairs. This result is in close analogy with the recent study that showed that pair production is responsible for enforcing the validity of the dynamical version of the third law of thermodynamics [Phys. Rev. E 95, 012146 (2017), 10.1103/PhysRevE.95.012146]. Interestingly, we relate our model to the ones used to describe laser cooling of a single trapped ion reobtaining the correct limiting temperatures for the regimes of resolved and nonresolved sidebands. We show that the limiting temperature for laser cooling is achieved when the cooling transitions induced by the resonant transport of excitations from the motion into the electromagnetic environment is compensated by the heating transitions induced by the creation of phonon-photon pairs.

  7. Cooling tower make-up water processing for nuclear power plants: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Andres, O; Flunkert, F; Hampel, G; Schiffers, A [Rheinisch-Westfaelisches Elektrizitaetswerk A.G., Essen (Germany, F.R.)

    1977-01-01

    In water-cooled nuclear power plants, 1 to 2% of the total investment costs go to cooling tower make-up water processing. The crude water taken from rivers or stationary waters for cooling must be sufficiently purified regarding its content of solids, carbonate hardness and corrosive components so as to guarantee an operation free of disturbances. At the same time, the processing methods must be selected for operational-economic reasons in such a manner that waste water and waste problems are kept small regarding environmental protection. The various parameters described have a decisive influence on the processing methods of the crude water, individual processes (filtration, sedimentation, decarbonization) are described, circuit possibilities for cooling water systems are compared and the various processes are analyzed and compared with regard to profitableness and environmental compatability.

  8. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, Dario, E-mail: Dario.cavallo@unige.it [University of Genoa, Dept. of Chemistry and Industrial Chemistry, Via Dodecaneso 31, 16146 Genoa (Italy); Portale, Giuseppe [ESRF, Dubble CRG, Netherlands Organization of Scientific Research (NWO), 38043 Grenoble (France); Androsch, René [Martin-Luther-University Halle-Wittenberg, Center of Engineering Sciences, D-06099 Halle/S. (Germany)

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process is followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.

  9. Cooling Li-ion batteries of racing solar car by using multiple phase change materials

    International Nuclear Information System (INIS)

    Moraga, Nelson O.; Xamán, Jesús P.; Araya, Ricardo H.

    2016-01-01

    Highlights: • Thermal efficiency of Li-ion batteries improved by use of phase change materials. • Multiple layers of PCM provides good cooling capabilities for solar car batteries. • Evolution of temperature of solar car batteries described by Finite Volume Method. • Thermal control in discharge mode of lithium battery for solar car achieved by PCM. - Abstract: A numerical study of the unsteady phase change convection-conduction heat transfer of an ion-lithium battery with volumetric heat generation used in solar vehicles is presented. The cooling process is investigated for a total of seven arrays of phase change material (PCM): capric acid (PCM 1), eicosane (PCM 2), decahydrated sodium carbonate (PCM 3) and octadecane (PCM 4) located in one or three layers around the battery. The results show that heat conduction predominates in the battery with a PCM and the liquid phase fraction of the PCM indicates that the melting initiates after 7 min, reaching totally liquid state after 14.25 min. From the different configurations of PCM around the battery, the configuration “B” (multiple PCM: PCM 1 (5 mm) + PCM 3 (2.9 mm) + PCM 2 (4.3 mm)) and the configuration with a single layer of PCM 3 (14.3 mm) respectively reduce the maximum temperature of the battery about 20.9 and 23.2 K compared with the temperature reached by the battery without PCM. This result occurs because of the Decahydrated Sodium Carbonate PCM, since it has the highest latent heat and has a low melting point.

  10. Process and device for cooling liquid or vaporised fluids

    International Nuclear Information System (INIS)

    1975-01-01

    The invention relates to a process for the ambient air cooling of liquid fluids or those vaporised under low pressure. An exchanger composing a first circuit for the fluid to be cooled is set up and is separated by a partition from a second circuit swept by the atmospheric air. Each one of these two circuits is made up of pipes of not more than 4 mm hydraulic diameter and on the side of the second circuit swept by the air a quantity of water is brought to the extent of 0 to 50 g/kg of dry air crossing it. The water is sprayed into the second circuit. The tubes of the second circuit are set up so that the water sprayed on, runs down the partition separating the two circuits. The water is sprayed counter-current with respect to the direction of the cooling air. A quantity of water is projected into the second circuit depending on the thermal flow to be exchanged and the desired cooling temperature, the amount of water being limited so that the outgoing air, returned to the atmosphere, contains an amount of water per kilogram of dry air corresponding to the absolute moisture of the saturated air for the dry ambient temperature at the time. The process affords all the advantages of a wet cooling tower, great efficiency and low temperature [fr

  11. Equilibrium positions due to different cooling processes in superconducting levitation systems

    International Nuclear Information System (INIS)

    Navau, C; Sanchez, A; Pardo, E; Chen, D-X

    2004-01-01

    The equilibrium position of a superconducting levitation device is determined not only by the geometry and electromagnetic properties of its components, but also by the cooling process of the superconductor. In this work we study the dependence of the equilibrium positions upon the cooling process by introducing diagrams of a new kind which display the different possibilities for a given levitation system. Using the critical state model and the principle of magnetic energy, we calculate different diagrams of this type for the case of a cylindrically symmetric permanent magnet-superconductor system. The results allow us to find out, for a given levitation system, which cooling process improves the capabilities of the system

  12. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Science.gov (United States)

    2010-07-01

    ... coolers, and final-cooler cooling towers. 61.134 Section 61.134 Protection of Environment ENVIRONMENTAL... Standard: Naphthalene processing, final coolers, and final-cooler cooling towers. (a) No (“zero”) emissions are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...

  13. Process for cooling waste water

    Energy Technology Data Exchange (ETDEWEB)

    Rohner, P

    1976-12-16

    The process for avoiding thermal pollution of waters described rests on the principle of the heat conduction tube, by which heat is conducted from the liquid space into the atmosphere at a lower temperature above it. Such a tube, here called a cooling tube, consists in its simplest form of a heat conducting corrugated tube, made, for example, of copper or a copper alloy or of precious metals, which is sealed to be airtight at both ends, and after evacuation, is partially filled with a medium of low boiling point. The longer leg of the tube, which is bent at right angles, lies close below the surface of the water to be cooled and parallel to it; the shorter leg projects vertically into the atmosphere. The liquid inside the cooling tube fills the horizontal part of the tube to about halfway. A certain part of the liquid is always evaporated in this part. The vapor rising in the vertical part of the tube condenses on the internal wall cooled by the air outside, and gives off its heat to the atmosphere. The condensed medium flows back down the vertical internal wall into the initial position in a continuous cycle. A further development contains a smooth plastic inner tube in an outer corrugated tube, which is shorter than the outer tube; it ends at a distance from the caps sealing the outer tube at both ends. In this design the angle between the vertical and horizontal leg is less than 90/sup 0/. The shorter leg projects vertically from the water surface, below which the longer leg rises slightly from the knee of tube. The quantity of the liquid is gauged as a type of siphon, so that the space between the outer and inner tube at the knee of the tube remains closed by the liquid medium. The medium evaporated from the surface in the long leg of the tube therefore flows over the inner tube, which starts above the level of the medium. Thus evaporation and condensation paths are separated.

  14. Heat pipe cooling of power processing magnetics

    Science.gov (United States)

    Hansen, I. G.; Chester, M.

    1979-01-01

    The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  15. Axions from cooling compact stars: pair-breaking processes

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2013-07-01

    Once formed in a supernova explosion, a neutron star cools rapidly via neutrino emission during the first 10{sup 4}-10{sup 5} years of its life-time. Here we compute the axion emission rate from baryonic components of a star at temperatures below their respective critical temperatures T{sub c} for normal-superfluid phase transition. The axion production is driven by a charge neutral weak process, associated with Cooper pair breaking and recombination. The requirement that the axion cooling does not overshadow the neutrino cooling yields a lower bound on the axion decay constant f{sub a} > 6 x 10{sup 9} T{sup -1}{sub c9} GeV, with T{sub c9} = T{sub c}/10{sup 9} K. This translates into an upper bound on the axion mass m{sub a} < 10{sup -3} T{sub c9} eV.

  16. High-temperature gas-cooled reactors and process heat

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1980-01-01

    High-Temperature Gas-Cooled Reactors (HTGRs) are fueled with ceramic-coated microspheres of uranium and thorium oxides/carbides embedded in graphite blocks which are cooled with helium. Promising areas of HTGR application are in cogeneration, energy transport using Heat Transfer Salt, recovery of oils from oil shale, steam reforming of methane for chemical production, coal gasification, and in energy transfer using chemical heat jpipes in the long term. Further, HTGRs could be used as the energy source for hydrogen production through thermochemical water splitting in the long term. The potential market for Process Heat HTGRs is 100-200 large units by about the year 2020

  17. Collision assisted Zeeman cooling with multiple types of atoms

    Science.gov (United States)

    Hamilton, Mathew S.; Wilson, Rebekah F.; Roberts, Jacob L.

    2014-01-01

    Through a combination of spin-exchange collisions in a magnetic field and optical pumping, it is possible to cool a gas of atoms without requiring the loss of atoms from the gas. This technique, collision assisted Zeeman cooling (CAZ), was developed theoretically assuming a single atomic species [G. Ferrari, Eur. Phys. J. D 13, 67 (2001)]. We have extended this cooling technique to a system of two atomic species rather than just one and have developed a simple analytic model describing the cooling rate. We find that the two-isotope CAZ cooling scheme has a clear theoretical advantage in systems that are reabsorption limited.

  18. Final Rule for Industrial Process Cooling Towers: Fact Sheet

    Science.gov (United States)

    Fact sheet concerning a final rule to reduce air toxics emissions from industrial process cooling towers. Air toxics are those pollutants known or suspected of causing cancer or other serious health effects.

  19. A systemic approach for optimal cooling tower operation

    International Nuclear Information System (INIS)

    Cortinovis, Giorgia F.; Paiva, Jose L.; Song, Tah W.; Pinto, Jose M.

    2009-01-01

    The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate.

  20. Effect of Airflow Velocity on Pre-cooling Process of Pomegranate by Forced Cooling Air under Unsteady State Heat Transfer Condition

    Directory of Open Access Journals (Sweden)

    M. A Behaeen

    2018-03-01

    Full Text Available Introduction Pomegranate (Punica grantum L. is classified into the family of Punicaceae. One of the most influential factors in postharvest life and quality of horticultural products is temperature. In precooling, heat is reduced in fruit and vegetable after harvesting to prepare it quickly for transport and storage. Fikiin (1983, Dennis (1984 and Hass (1976 reported that cold air velocity is one of the effective factors in cooling vegetables and fruits. Determining the time-temperature profiles is an important step in cooling process of agricultural products. The objective of this study was the analysis of cooling rate in the center (arils and outer layer (peel of pomegranate and comparison of the two sections at different cold air velocities. These results are useful for designing and optimizing the precooling systems. Materials and Methods The pomegranate variety was Rabab (thick peel and the experiments were performed on arils (center and peel (outer layer of a pomegranate. The velocities of 0.5, 1 and 1.3 m s-1 were selected for testing. To perform the research, the cooling instrument was designed and built at Department of Biosystems Engineering of Tabriz University, Tabriz, Iran. In each experiment six pt100 temperature sensors was used in a single pomegranate. The cooling of pomegranate was continued until the central temperature reached to 10°C and then the instrument turned off. The average of air and product temperatures was 7.2 and 22.2°C, respectively. The following parameters were measured to analyze the process of precooling: a Dimensionless temperature (θ, b Cooling coefficient (C, c Lag factor (J, d Half-cooling time (H, e Seven-eighths cooling time (S, f Cooling heterogeneity, g Fruit mass loss, h Instantaneous cooling rate, and i convective heat transfer coefficient. Results and Discussion At any air velocity, with increasing the radius from center to outer layer, the lag factor decreased and cooling coefficient increased

  1. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  2. Multi-response optimization of process parameters using Taguchi method and grey relational analysis during turning AA 7075/SiC composite in dry and spray cooling environments

    Directory of Open Access Journals (Sweden)

    P. C. Mishra

    2015-09-01

    Full Text Available Turning experiments were carried out on AA 7075/SiC composite workpiece in dry and spray cooling environments based on L16 Taguchi design of experiments. Multiple performance optimization of process parameters was performed using grey relational analysis. The performance characteristics considered were average surface roughness, cutting tool temperature and material removal rate. Uncoated carbide inserts were used for machining the workpiece in a high speed precision lathe. A grey relational grade obtained from grey relational analysis was used to optimize the process parameters. Optimal combination of process parameters was then determined by the Taguchi method using the grey relational grade as the performance index. Experimental results indicated that the turning in spray cooling environment was beneficial compared to that in dry environment for the quality response characteristics under consideration. Analysis of variance showed that feed was the most significant parameter for the multiple performance characteristics during turning in both the environments.

  3. Afterheat usage from cooling facilities in ORC processes

    International Nuclear Information System (INIS)

    Theede, Florian; Luke, Andrea

    2016-01-01

    In the course of the reduction of climate warming an energy-efficient lay-out of processes is necessary. A possibility for the efficiency increasement is the usage of afterheat currents for instance in ORC processes. Connected with the limitation of refrigerants with high greenhouse potential it comes to the increased application of transcritical cooling facilities with carbon dioxide (CO_2) as refrigerant. By the high pressures after the compression arise here new afterheat sources on a temperature level of about 100 C. An alternative for the simple back-cooling or the heating support and drinking-water heating represents the current production in an ORC process. Great challenges for the lay-out of such an ORC process are the selection of the working fluid as well as the lay-out of the heat exchangers. Established refrigerants in the low-temperature like R245fa for ORC facilities will be in forseeable future no more available. For the study of the possible replacement by alternative refrigerants a simulation model has been developed. By means of this model different refrigerants are analyzed regarding their performance and simultaneously the effects on process and other components studied. The results show that in the temperature range two hydrofluoroolefines R1233zd[E] and R1234ze[Z] as well as the hadron carbon butane can thermodynamically form an alternative.

  4. System design package for the solar heating and cooling central data processing system

    Science.gov (United States)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  5. Beam Cooling with ionisation losses

    CERN Document Server

    Rubbia, Carlo; Kadi, Y; Vlachoudis, V

    2006-01-01

    A novel type of particle "cooling", called Ionization Cooling, is applicable to slow (v of the order of 0.1c) ions stored in a small ring. The many traversals through a thin foil enhance the nuclear reaction probability, in a steady configuration in which ionisation losses are recovered at each turn by a RF-cavity. For a uniform target "foil" the longitudinal momentum spread diverges exponentially since faster (slower) particles ionise less (more) than the average. In order to "cool" also longitudinally, a chromaticity has to be introduced with a wedge shaped "foil". Multiple scattering and straggling are then "cooled" in all three dimensions, with a method similar to the one of synchrotron cooling, but valid for low energy ions. Particles then stably circulate in the beam indefinitely, until they undergo for instance nuclear processes in the thin target foil. This new method is under consideration for the nuclear production of a few MeV/A ion beams. Simple reactions, for instance Li 7 + D Li 8 + p, are more ...

  6. Nucleation control and separation of paracetamol polymorphs through swift cooling crystallization process

    Science.gov (United States)

    Sudha, C.; Srinivasan, K.

    2014-09-01

    Polymorphic nucleation behavior of pharmaceutical solid paracetamol has been investigated by performing swift cooling crystallization process. Saturated aqueous solution prepared at 318 K was swiftly cooled to 274 K in steps of every 1 K in the temperature range from 274 K to 313 K with uniform stirring of 100 rpm. The resultant supersaturation generated in the mother solution favours the nucleation of three different polymorphs of paracetamol. Lower supersaturation region σ=0.10-0.83 favours stable mono form I; the intermediate supersaturation region σ=0.92-1.28 favours metastable ortho form II and the higher supersaturation region σ=1.33-1.58 favours unstable form III polymorphic nucleation. Depending upon the level of supersaturation generated during swift cooling process and the corresponding solubility limit and metastable zone width (MSZW) of each polymorph, the nucleation of a particular polymorph occurs in the system. The type of polymorphs was identified by in-situ optical microscopy and the internal structure was confirmed by Powder X-ray diffraction (PXRD) study. By this novel approach, the preferred nucleation regions of all the three polymorphs of paracetamol are optimized in terms of different cooling ranges employed during the swift cooling process. Also solution mediated polymorphic transformations from unstable to mono and ortho to mono polymorphs have been studied by in-situ.

  7. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  8. A multiple stage approach to mitigate the risks of telecommunication equipment under free air cooling conditions

    International Nuclear Information System (INIS)

    Dai Jun; Das, Diganta; Pecht, Michael

    2012-01-01

    Highlights: ► Analyze the challenges posed by free air cooling (FAC). ► Present a multi-stage process to mitigate the risks of FAC. ► Propose a prognostics-based method to mitigate risks in data centers in operation. ► Present a case study to show the prognostics-based method implementation. - Abstract: The telecommunication industry is concerned about the energy costs of its operating infrastructure and the associated greenhouse gas emissions. At present, more than half of the total energy consumption of data centers is devoted to the power and cooling infrastructure that supports electronic equipment. One method of reducing energy consumption is an approach called “free air cooling,” where ambient air is used to cool the equipment directly, thereby reducing the energy consumed in cooling and conditioning the air. For example, Intel demonstrated free air cooling in a 10-megawatt (MW) data center, showing a reduction in energy use and savings of US$2.87 million annually. However, the impacts of this approach on the performance and reliability of telecommunication equipment need to be identified. The implementation of free air cooling changes the operating environment, including temperature and humidity, which may have a significant impact on the performance and reliability of telecom equipment. This paper discusses the challenges posed by free air cooling and presents a multi-stage process for evaluating and mitigating the potential risks arising from this new operating environment.

  9. Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient

    International Nuclear Information System (INIS)

    Smakulski, P; Pietrowicz, S

    2015-01-01

    Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen. (paper)

  10. Control of cooling processes with forced-air aimed at efficiency energetic and the cooling time of horticultural products

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Joao Carlos Teles Ribeiro da; Mederos, Barbara Janet Teruel [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2008-07-01

    The application of cooling technologies for the conservation of horticultural products is one of the stages the Cold Chain. In Brazil particularly, as a country with tropical climate with average high temperature almost all year, the application of these technologies is very important because the shelf-life of fresh horticultural products, with quality that the market demands, is directly related to temperature. In particular, the systems of forced air cooling operate according to the flow of air predetermined in the project according to the quantity of product to cool. When actual conditions differ from considerations of the project, as to the quantity of product, a situation very common in agricultural properties and packing houses, the fan will continue providing the nominal flow rate, causing alteration of the cost-benefit relation of process. This project aims at the development of a micro-processing equipment (output current of 4 to 20 mA) to control the rotational speed of the motor of the fan systems, air forced through an inverter of frequency. The objective is development of a Man-Machine Interface, based on an algorithm, which, through the introduction of mass product data and the automatic acquisition of data from temperature of the product and the camera, is calculated the cooling time. The rotation of the engine fan will be amended automatically, to maintain air flow with a proper cost-benefit, in connection with the reduction of cooling time, energy consumption, for the increasing the shelf life of products. (author)

  11. Integrated packaging of multiple double sided cooling planar bond power modules

    Science.gov (United States)

    Liang, Zhenxian

    2018-04-10

    An integrated double sided cooled power module has one or multiple phase legs configuration including one or more planar power packages, each planar power package having an upper power switch unit and a lower power switch unit directly bonded and interconnected between two insulated power substrates, and further sandwiched between two heat exchangers via direct bonds. A segmented coolant manifold is interposed with the one or more planar power packages and creates a sealed enclosure that defines a coolant inlet, a coolant outlet and a coolant flow path between the inlet and the outlet. A coolant circulates along the flow path to remove heat and increase the power density of the power module.

  12. An experimental investigation of a liquid cooling scheme for the low dropout voltage regulators of the multiplicity and vertex detector

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Bosze, E.

    1997-10-01

    This report presents a summary of an experimental investigation of a liquid cooling system for the low dropout voltage regulators in the multiplicity and vertex detector (MVD), a device used to determine and characterize the collision location of two accelerated heavy ions. The coolant temperatures and flow rates as well as the voltage regulator operating temperatures were used to assess and optimize the performance of the proposed cooling system, identify potential assembly problems and system limitations, and provide the necessary information for designing and sizing the final MVD cooling system components. The MVD is part of the PHENIX experiment at Brookhaven RHIC

  13. Desalting a process cooling water using nanofiltration

    NARCIS (Netherlands)

    Radier, R.G.J.; van Oers, C.W.; Steenbergen, A.; Wessling, Matthias

    2001-01-01

    The cooling water system of a chemical plant of Akzo Nobel is a partly open system. The site is located at the North Sea. The air in contact with the cooling water contains seawater droplets dissolving and increasing the chloride concentration. The cooling water contains chromate to protect the

  14. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  15. Selected Parameters of Micro-Jet Cooling Gases in Hybrid Spraying Process

    Directory of Open Access Journals (Sweden)

    Szczucka-Lasota B.

    2016-06-01

    Full Text Available The innovative technology, like thermal spraying with a micro-jet cooling is one of the important modification of classical ultrasonic spraying methods. Using of micro-stream with gases like argon or nitrogen allows to cool the coating immediately after spraying, and thereby reduce the time of transition during the injection of each layer. As a result of the process, the fine dispersive structure of coatings is obtained during the shorter time in comparable to the classical high velocity oxygen fuel process (HVOF. The parameter of process and the type of stream equipment determine the quality of the obtained structure and thermal stress in the coating. The article presents the relationship between selected parameters of hybrid process and properties of the coatings. The presented technology should be adapted to the actual production of protective coating for machines and construction working in wear conditions.

  16. Industrial Process Cooling Towers: National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    Standards limiting discharge of chromium compound air emissions from industrial process cooling towers (IPCT's). Includes rule history, Federal Registry citations, implementation information and additional resources.

  17. Dew Point Evaporative Comfort Cooling

    Science.gov (United States)

    2012-11-01

    Multiple DASs were installed at Fort Carson, and the data from all the sensors were stored and partially processed on Campbell Scientific Data Loggers. The...evaporative cooling technologies would be expected to easily overcome utility- scale water withdrawal rates. As an example, an evaluation of an...Ambient pressure Outdoor Setra 276 1% of full scale Pyranometer Horizontal Campbell Scientific CS300 5% of daily total The OAT measurement has an

  18. Modeling minor actinide multiple recycling in a lead-cooled fast reactor to demonstrate a fuel cycle without long-lived nuclear waste

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2015-09-01

    Full Text Available The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System and LEADER (Lead-cooled European Advanced Demonstration Reactor projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs, and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.

  19. The analysis of the process in the cooling tower with the low efficiency

    Science.gov (United States)

    Badriev, A. I.; Sharifullin, V. N.

    2017-11-01

    We put quite a difficult task maintaining a temperature drop to 11-12 degrees at thermal power plants to ensure the required depth of cooling of vacuum in the condenser, cooling towers. This requirement is achieved with the reducing of the hydraulic load with the low efficiency of the apparatus. The task analysis process in this unit and identify the causes of his poor performance was put in the work. One of the possible reasons may be the heterogeneity of the process in the volume of the apparatus. Therefore, it was decided to investigate experimentally the distribution of the irrigation water and the air flow in the cross section of industrial cooling towers. As a result, we found a significant uneven distribution of flows of water and air in the volume of the apparatus. We have shown theoretically that the uneven distribution of irrigation leads to a significant decrease in the efficiency of evaporation in the cooling tower. The velocity distribution of the air as the tower sections, and inside sections are interesting. The obtained experimental data allowed to establish the internal communication: the effects of the distributions of the density of irrigation in sections of the apparatus for the distribution of changes of the temperature and the air velocity. The obtained results allowed to formulate a methodology for determining process problems and to develop actions on increase of the efficiency of the cooling tower.

  20. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    International Nuclear Information System (INIS)

    Hai-Yan, Wang; Jian-Hua, Liu; Gui-Rong, Peng; Yan, Chen; Yu-Wen, Liu; Fei, Li; Wen-Kui, Wang

    2009-01-01

    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze

  1. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  2. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-04-03

    Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  3. Manufacturability of Wood Plastic Composite Sheets on the Basis of the Post-Processing Cooling Curve

    Directory of Open Access Journals (Sweden)

    Sami Matthews

    2015-10-01

    Full Text Available Extruded wood-plastic composites (WPCs are increasingly regarded as promising materials for future manufacturing industries. It is necessary to select and tune the post-processing methods to be able to utilize these materials fully. In this development, temperature-related material properties and the cooling rate are important indicators. This paper presents the results of natural cooling in a factory environment fit into a cooling curve function with temperature zones for forming, cutting, and packaging overlaid using a WPC material. This information is then used in the evaluation of manufacturability and productivity in terms of cost effectiveness and technical quality by comparing the curve to actual production time data derived from a prototype post-process forming line. Based on this information, speed limits for extrusion are presented. This paper also briefly analyzes techniques for controlling material cooling to counter the heat loss before post-processing.

  4. Mechanisms of multiple production processes

    International Nuclear Information System (INIS)

    Dremin, I.M.

    1977-01-01

    Theoretical approaches to multiple production processes are discussed. A large number of models proceeds from the notion about common excited system produced by colliding hadrons. This class of models includes the hydrodynamical, statistical, thermodynamical and statistical bootstrap models. Sometimes the production process is due to excitation and decay of two colliding particles. The fragmentation bremsstrahlung and inelastic diffraction models belong to this group. The largest group of models describes the multiple production process as a result of formation of many excited centers. The typical example is the multiperipheral model. An interesting direction is given by the attempts to interrelate the mechanism of multiple production with internal structure of particles that is with their constituents (C-group)'-quarks, gluons, etc. Besides the models there are phenomenological (p group) attempts to connect different features of multiple production. Experimental data indicate the existence of leading and pionization particles thus giving an evidence for applications of different models. The data about increase of total and inclusive cross sections, the behaviour of the mean multiplicity and correlations at high energies provide a clue for further development of multiple production theory

  5. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  6. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  7. Calorimetric analysis of heating and cooling process of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Bińczyk F.

    2007-01-01

    Full Text Available The study presents the results of investigations of the thermal effects which take place during heating and cooling of samples of the nodular graphite cast iron taken from the stepped test casting of the wall thicknesses amounting to 5, 10, 15 and 20 mm. For investigations, a differential scanning calorimeter, type Multi HTC S60, was used. During heating, three endothermic effects related with pearlite decomposition, phase transformation α → γ, and carbon dissolution in austenite were observed on a DSC diagram. During cooling, two exothermic effects related with phase transformation γ→ α and pearlite formation were observed to consecutively take place on a DSC diagram. The values of the enthalpy of these processes differ and depend on the initial microstructure of the examined samples. The metallic matrix in 5 mm sample after the process of heating and cooling changes totally in favour of ferrite. The same effect, though less advanced in intensity, takes place in 10 mm sample, while in 15 and 20 mm samples the matrix constitution remains unchanged. The higher is the content of ferrite in samples, the stronger is the endothermic effect of the α → γ transformation and the weaker is the endothermic effect related with carbon dissolution in austenite. The total of the endothermic effects (heating is reduced, while that of the exothermic effects (cooling increases along with the increasing thickness of walls in a stepped test casting, from which samples for the investigations were taken.

  8. Economic analysis of multiple-module high temperature gas-cooled reactor (MHTR) nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yu; Dong Yujie

    2011-01-01

    In recent years, as the increasing demand of energy all over the world, and the pressure on greenhouse emissions, there's a new opportunity for the development of nuclear energy. Modular High Temperature Gas-cooled Reactor (MHTR) received recognition for its inherent safety feature and high outlet temperature. Whether the Modular High Temperature Gas-cooled Reactor would be accepted extensively, its economy is a key point. In this paper, the methods of qualitative analysis and the method of quantitative analysis, the economic models designed by Economic Modeling Working Group (EMWG) of the Generation IV International Forum (GIF), as well as the HTR-PM's main technical features, are used to analyze the economy of the MHTR. A prediction is made on the basis of summarizing High Temperature Gas-cooled Reactor module characteristics, construction cost, total capital cost, fuel cost and operation and maintenance (O and M) cost and so on. In the following part, comparative analysis is taken measures to the economy and cost ratio of different designs, to explore the impacts of modularization and standardization on the construction of multiple-module reactor nuclear power plant. Meanwhile, the analysis is also adopted in the research of key factors such as the learning effect and yield to find out their impacts on the large scale development of MHTR. Furthermore, some reference would be provided to its wide application based on these analysis. (author)

  9. Cold-induced vasoconstriction may persist long after cooling ends: an evaluation of multiple cryotherapy units.

    Science.gov (United States)

    Khoshnevis, Sepideh; Craik, Natalie K; Diller, Kenneth R

    2015-09-01

    Localized cooling is widely used in treating soft tissue injuries by modulating swelling, pain, and inflammation. One of the primary outcomes of localized cooling is vasoconstriction within the underlying skin. It is thought that in some instances, cryotherapy may be causative of tissue necrosis and neuropathy via cold-induced ischaemia leading to nonfreezing cold injury (NFCI). The purpose of this study is to quantify the magnitude and persistence of vasoconstriction associated with cryotherapy. Data are presented from testing with four different FDA approved cryotherapy devices. Blood perfusion and skin temperature were measured at multiple anatomical sites during baseline, active cooling, and passive rewarming periods. Local cutaneous blood perfusion was depressed in response to cooling the skin surface with all devices, including the DonJoy (DJO, p = 2.6 × 10(-8)), Polar Care 300 (PC300, p = 1.1 × 10(-3)), Polar Care 500 Lite (PC500L, p = 0.010), and DeRoyal T505 (DR505, p = 0.016). During the rewarming period, parasitic heat gain from the underlying tissues and the environment resulted in increased temperatures of the skin and pad for all devices, but blood perfusion did not change significantly, DJO (n.s.), PC300 (n.s.), PC500L (n.s.), and DR505 (n.s.). The results demonstrate that cryotherapy can create a deep state of vasoconstriction in the local area of treatment. In the absence of independent stimulation, the condition of reduced blood flow persists long after cooling is stopped and local temperatures have rewarmed towards the normal range, indicating that the maintenance of vasoconstriction is not directly dependent on the continuing existence of a cold state. The depressed blood flow may dispose tissue to NFCI.

  10. Processes setting the characteristics of sea surface cooling induced by tropical cyclones

    OpenAIRE

    Vincent, E.M.; Lengaigne, Matthieu; Madec, G.; Vialard, Jérôme; Samson, G.; Jourdain, N.C.; Menkès, Christophe; Jullien, S.

    2012-01-01

    A 1/2 degrees resolution global ocean general circulation model is used to investigate the processes controlling sea surface cooling in the wake of tropical cyclones (TCs). Wind forcing related to more than 3000 TCs occurring during the 1978-2007 period is blended with the CORE II interannual forcing, using an idealized TC wind pattern with observed magnitude and track. The amplitude and spatial characteristics of the TC-induced cooling are consistent with satellite observations, with an aver...

  11. Multi-stage circulating fluidized bed syngas cooling

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  12. The design of integrated cooling processes in district heating systems; Kylprocessers design i fjaerrvaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Viktoria [Royal Inst. of Technology, Stockholm (SE). Dept. of Chemical Engineering and Technology; Setterwall, Fredrik [Fredrik Setterwall Konsult AB, Sollentuna (Sweden); Andersson, Mikael [AB Berglunds Rostfria, Boden (Sweden)

    2005-07-01

    This report presents the results from an investigation regarding the design of integrated cooling processes in district heating systems. Increasing investment levels in district heating networks combined with expanding comfort cooling demand makes heat-driven cooling processes extremely interesting. This solution has a great potential tbe cost effective. At the same time, the problem with the environmentally harmful refrigerants used in conventional vapor compression chillers is avoided. In many cases it is beneficial for the district heating provider to lower the supply and/or return temperatures in the network, at least for part of the year. In combined heat and power generation (CHP) a lower supply temperature means that the electricity yield increases. In this context, it is important to consider that conventional absorption chillers are designed to run on 120 deg C heat. However,they can work on heat with temperature as low as 80 deg C if a chiller with a large enough generator area is used, although this has a negative impact on the dimensions of other components and leads ta lower coefficient of performance. For these reasons low temperature driven absorption chillers have been developed in recent years. Two concepts (from different manufacturers) are now available on the market. Factors that affect the choice of district heat-integrated cooling processes have been investigated in this study. Key system aspects that embody a holistic view on the production of heating, cooling and power are especially highlighted. Important tasks have been: To quantify the following effects on the design of an integrated cooling process: the temperatures in the district heating net, available cooling water temperature (to cool the absorber and condenser), electricity price, and the composition of the energy system (e.g. fuel and CHP or power-only mode of operation). To analyze the potential of the low temperature driven chiller concept with regards to energy and cost

  13. Medios de enfriamiento para el temple // Means for Cooling During the Hardening Process

    Directory of Open Access Journals (Sweden)

    N. Caballero Stevens

    1999-07-01

    Full Text Available Los factores que rigen el proceso de temple son la temperatura, el tiempo de calentamiento y la velocidad de enfriamiento.Tradicionalmente, la variación de la velocidad de enfriamiento se ha logrado mediante la utilización de diferentes medios como elagua, aceites minerales, aceites orgánicos, metales fundidos y otros.En este trabajo, se presentan las características fundamentales de los medios convencionales y actuales empleados para elenfriamiento durante el temple.Palabras claves: Endurecimiento superficial, temple superficial, medios de enfriamiento._____________________________________________________________________AbstractFactors governing of the hardening process are temperature, heating time and cooling speed. Traditionally, the variation of thecooling time has been achieved by using different means such as water, mineral oils, molten metals, etc.In this work, the fundamental characteristics of the conventional and modern means developed for cooling during the hardeningprocess are presented.Key words: Hardening process, cooling means.

  14. Tube failures due to cooling process problem and foreign materials in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J. [Kapar Energy Ventures Sdn Bhd, Jalan Tok Muda, Kapar 42200 (Malaysia); Purbolaksono, J., E-mail: judha@uniten.edu.m [Department of Mechanical Engineering, Universiti Tenaga Nasional, Km 7 Jalan Kajang-Puchong, Kajang 43009, Selangor (Malaysia); Beng, L.C. [Kapar Energy Ventures Sdn Bhd, Jalan Tok Muda, Kapar 42200 (Malaysia)

    2010-07-15

    Cooling process which uses water for heat transfer is an essential factor in coal-fired and nuclear plants. Loss of cooling upset can force the plants to shut down. In particular, this paper reports visual inspections and metallurgical examinations on the failed SA210-A1 right-hand side (RHS) water wall tube of a coal-fired plant. The water wall tube showed the abnormal outer surface colour and has failed with wide-open ductile rupture and thin edges indicating typical signs of short-term overheating. Metallurgical examinations confirmed the failed tube experiencing higher temperature operation. Water flow starvation due to restriction inside the upstream tube is identified as the main root cause of failure. The findings are important to take failure mitigation actions in the future operation. Discussion on the typical problems related to the cooling process in nuclear power plants is also presented.

  15. Tube failures due to cooling process problem and foreign materials in power plants

    International Nuclear Information System (INIS)

    Ahmad, J.; Purbolaksono, J.; Beng, L.C.

    2010-01-01

    Cooling process which uses water for heat transfer is an essential factor in coal-fired and nuclear plants. Loss of cooling upset can force the plants to shut down. In particular, this paper reports visual inspections and metallurgical examinations on the failed SA210-A1 right-hand side (RHS) water wall tube of a coal-fired plant. The water wall tube showed the abnormal outer surface colour and has failed with wide-open ductile rupture and thin edges indicating typical signs of short-term overheating. Metallurgical examinations confirmed the failed tube experiencing higher temperature operation. Water flow starvation due to restriction inside the upstream tube is identified as the main root cause of failure. The findings are important to take failure mitigation actions in the future operation. Discussion on the typical problems related to the cooling process in nuclear power plants is also presented.

  16. Study of the cooling process of an extruded aluminium profile

    International Nuclear Information System (INIS)

    Bouffioux, C.; Habraken, A.M.; Carton, M.; Lecomte-Beckers, J.

    2004-01-01

    The prediction of the final axial stresses and the residual strains of complex extruded aluminium profiles requires a good knowledge of the material behavior and of the industrial process. This paper is focused on the methods required to provide the whole set of data: material ones and process ones. Scanning differential calorimetry, dilatometry and diffusivity tests identify thermophysic material properties and hot tensile tests identify parameters of the elasto-visco-plastic Norton-Hoff law. The description of the industrial process and its simulations are described. Then a sensitivity analyzis provides the cooling key parameters causing the undesired final curvature during the industrial process

  17. Mean associative multiplicities in deep inelastic processes

    International Nuclear Information System (INIS)

    Dzhaparidze, G.Sh.; Kiselev, A.V.; Petrov, V.A.

    1981-01-01

    The associative hadron multiplicities in deep inelastic and Drell--Yan processes are studied. In particular the mean multiplicities in different hard processes in QCD are found to be determined by the mean multiplicity in parton jet [ru

  18. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.

  19. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  20. High-multiplicity processes

    International Nuclear Information System (INIS)

    Shelkov, G.; Sisakyan, A.; Mandzhavidze, I.

    1999-01-01

    We wish to demonstrate that investigation of asymptotically high multiplicity (AHM) hadron reactions may solve, or at least clear up, a number of problems unsolvable by other ways. We would lean upon the idea: (i) the reactions final state entropy is proportional to multiplicity and, by this reason, just in the AHM domain one may expect the equilibrium final state and (ii) the AHM final state is cold because of the energy-momentum conservation laws. This means that the collective phenomena may become important in the AHM domain. The possibility of hard processes dominance is considered also

  1. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  2. Investigation of lactose crystallization process during condensed milk cooling using native vacuum-crystallizer

    Directory of Open Access Journals (Sweden)

    E. I. Dobriyan

    2016-01-01

    Full Text Available One of the most general defects of condensed milk with sugar is its consistency heterogeneity – “candying”. The mentioned defect is conditioned by the presence of lactose big crystals in the product. Lactose crystals size up to 10 µm is not organoleptically felt. The bigger crystals impart heterogeneity to the consistency which can be evaluated as “floury”, “sandy”, “crunch on tooth”. Big crystals form crystalline deposit on the can or industrial package bottom in the form of thick layer. Industrial processing of the product with the defective process of crystallization results in the expensive equipment damage of the equipment at the confectionary plant accompanied with heavy losses. One of the factors influencing significantly lactose crystallization is the product cooling rate. Vacuum cooling is the necessary condition for provision of the product consistency homogeneity. For this purpose the vacuum crystallizers of “Vigand” company, Germany, are used. But their production in the last years has been stopped. All-Russian dairy research institute has developed “The references for development of the native vacuum crystallizer” according to which the industrial model has been manufactured. The produced vacuum – crystallizer test on the line for condensed milk with sugar production showed that the product cooling on the native vacuum-crystallizer guarantees production of the finished product with microstructure meeting the requirements of State standard 53436–2009 “Canned Milk. Milk and condensed cream with sugar”. The carried out investigations evidences that the average lactose crystals size in the condensed milk with sugar cooled at the native crystallizer makes up 6,78 µm. The granulometric composition of the product crystalline phase cooled at the newly developed vacuum-crystallizer is completely identical to granulometric composition of the product cooled at “Vigand” vacuum-crystallizer.

  3. Recombining processes in a cooling plasma by mixing of initially heated gas

    International Nuclear Information System (INIS)

    Furukane, Utaro; Sato, Kuninori; Takiyama, Ken; Oda, Toshiatsu.

    1992-03-01

    A numerical investigation of recombining process in a high temperature plasma in a quasi-steady state is made in a gas contact cooling, in which the initial temperature effect of contact gas heated up by the hot plasma is considered as well as the gas cooling due to the surrounding neutral particles freely coming into the plasma. The calculation has shown that the electron temperature relaxes in accord with experimental results and that the occurrence of recombining region and the inverted populations almost agree with the experimental ones. (author)

  4. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  5. The Merkel coefficient and its dependence on the temperature position of the cooling tower process

    International Nuclear Information System (INIS)

    Klenke, W.

    1977-01-01

    The Merkel coefficient, or evaporation coefficient, is still being used as a characteristic factor for the cooling tower process. Its dependence on the cooling range or on the warm water temperature of the process is often considered a disadvantage of the theory of evaporation cooling. This is also the reason for the suggestion to change the theory in such a way that the Merkel coefficient becomes independent of the temperature. The present investigation, however, leads to the result that the dependence of the Merkel coefficient on the temperature must be considered as a remarkable confirmation for the evidence of the theory of heat and mass transfer, as the experimental statements agree fully with the results of the theoretical considerations. (orig.) [de

  6. Thermally driven interaction of the littoral and limnetic zones by autumnal cooling processes

    Directory of Open Access Journals (Sweden)

    Kolumban HUTTER

    2005-02-01

    Full Text Available In autumn, during the transition period, shores influence the interior dynamics of large temperate lakes by the formation of horizontal water-temperature gradients between the shallow and deep areas, whilst vertical temperature gradients are smoothed by convection due to surface cooling. A simple heat budget model, based on the heat balance of the water column without horizontal advection and turbulent mixing, allows deduction of the time-dependent difference between the mean temperature within the littoral area and the temperature in the upper mixed layer. The model corroborates that littoral areas cool faster than regions distant from shores, and provides a basis for an estimation of structure of flows from the beginning of cooling process till the formation of the thermal bar. It predicts the moment in the cooling process, when the corresponding density difference between the littoral and limnetic parts reaches a maximum. For a linear initial vertical temperature profile, the time-dependent "target depth" is explicitly calculated; this is the depth in the pelagic area with a temperature, characteristic of the littoral zone. This depth is estimated as 4/3 of the (concurrent thickness of the upper mixed layer. It is shown that, for a linear initial vertical temperature profile, the horizontal temperature profile between the shore and the lake has a self-similar behavior, and the temperature difference between the littoral waters and the upper mixed off-shore layer, divided by the depth of the upper mixed layer, is an invariant of the studied process. The results are in conformity with field data.

  7. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  8. Control room conceptual design of nuclear power plant with multiple modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Jia Qianqian; Qu Ronghong; Zhang Liangju

    2014-01-01

    A conceptual design of the control room layout for the nuclear power plant with multiple modular high temperature gas-cooled reactors has been developed. The modular high temperature gas-cooled reactors may need to be grouped to produce as much energy as a utility demands to realize the economic efficiency. There are many differences between the multi-modular plant and the current NPPs in the control room. These differences may include the staffing level, the human-machine interface design, the operation mode, etc. The potential challenges of the human factor engineering (HFE) in the control room of the multi-modular plant are analyzed, including the operation workload of the multi-modular tasks, how to help the crew to keep situation awareness of all modules, and how to support team work, the control of shared system between modules, etc. A concept design of control room for the multi-modular plant is presented based on the design aspect of HTR-PM (High temperature gas-cooled reactor pebble bed module). HFE issues are considered in the conceptual design of control room for the multi-modular plant and some design strategies are presented. As a novel conceptual design, verifications and validations are needed, and focus of further work is sketch out. (author)

  9. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique

    International Nuclear Information System (INIS)

    Taheri-Garavand, Amin; Ahmadi, Hojjat; Omid, Mahmoud; Mohtasebi, Seyed Saeid; Mollazade, Kaveh; Russell Smith, Alan John; Carlomagno, Giovanni Maria

    2015-01-01

    This research presents a new intelligent fault diagnosis and condition monitoring system for classification of different conditions of cooling radiator using infrared thermal images. The system was adopted to classify six types of cooling radiator faults; radiator tubes blockage, radiator fins blockage, loose connection between fins and tubes, radiator door failure, coolant leakage, and normal conditions. The proposed system consists of several distinct procedures including thermal image acquisition, image pre-processing, image processing, two-dimensional discrete wavelet transform (2D-DWT), feature extraction, feature selection using a genetic algorithm (GA), and finally classification by artificial neural networks (ANNs). The 2D-DWT is implemented to decompose the thermal images. Subsequently, statistical texture features are extracted from the original images and are decomposed into thermal images. The significant selected features are used to enhance the performance of the designed ANN classifier for the 6 types of cooling radiator conditions (output layer) in the next stage. For the tested system, the input layer consisted of 16 neurons based on the feature selection operation. The best performance of ANN was obtained with a 16-6-6 topology. The classification results demonstrated that this system can be employed satisfactorily as an intelligent condition monitoring and fault diagnosis for a class of cooling radiator. - Highlights: • Intelligent fault diagnosis of cooling radiator using thermal image processing. • Thermal image processing in a multiscale representation structure by 2D-DWT. • Selection features based on a hybrid system that uses both GA and ANN. • Application of ANN as classifier. • Classification accuracy of fault detection up to 93.83%

  10. A buffer bridge process for growing multiple YBa2Cu3O7-y grains from one top seed

    International Nuclear Information System (INIS)

    Lee, J-H; Park, S-D; Jun, B-H; Lee, J S; Kim, C-J; Han, S C; Han, Y H

    2011-01-01

    This study presents a buffer bridge process that allows growing multiple YBa 2 Cu 3 O 7-y (Y123) grains from one top seed. This process uses a buffer bridge pellet (Y 2 BaCuO 5 or Y123) to deliver the Y123 growth from one seed to several Y123 compacts. The top seeded melt growth (TSMG) process combined with the buffer bridge process facilitated the fabrication of several single-grained Y123 superconductors using one seed. In addition to achieving the growth of multiple Y123 grains, this process ensured a uniform distribution of superconducting properties of the top surface because the seed/compact interface area (the number of seeds), which is the route for the impurities from the seeds, was minimized. Additionally, the impurity contamination from a seed was considerably suppressed using a buffer pellet. One (110) diagonal facet line, as a result of the corner-to-corner growth, developed on the top surfaces of the prepared Y123 compacts, which is comparable to the x-like facet line of the conventional TSMG processed samples. The trapped magnetic field (H) profiles at 77 K of the prepared Y123 compacts, which were estimated using an Nd-B-Fe permanent magnet, showed the H contour map of a single-grain mode. The force-distance curves for the field cooled and zero-field cooled Y123 compacts at 77 K showed high and reliable levitation forces with a small deviation among compacts. The buffer bridge process can be applied to a batch process for the mass production of single-grain REBa 2 Cu 3 O 7-y (RE: rare-earth elements) superconductors with uniform top surface properties.

  11. An experimental methodology to quantify the spray cooling event at intermittent spray impact

    International Nuclear Information System (INIS)

    Moreira, Antonio L.N.; Carvalho, Joao; Panao, Miguel R.O.

    2007-01-01

    The present paper describes an experimental methodology devised to study spray cooling with multiple-intermittent sprays as those found in fuel injection systems of spark-ignition and diesel engines, or in dermatologic surgery applications. The spray characteristics and the surface thermal behaviour are measured by combining a two-component phase-Doppler anemometer with fast response surface thermocouples. The hardware allows simultaneous acquisition of Doppler and thermocouple signals which are processed in Matlab to estimate the time-varying heat flux and fluid-dynamic characteristics of the spray during impact. The time resolution of the acquisition system is limited by the data rate of validation of the phase-Doppler anemometer, but it has been shown to be accurate for the characterization of spray-cooling processes with short spurt durations for which the transient period of spray injection plays an important role. The measurements are processed in terms of the instantaneous heat fluxes, from which phase-average values of the boiling curves are obtained. Two of the characteristic parameters used in the thermal analysis of stationary spray cooling events, the critical heat flux (CHF) and Leidenfrost phenomenon, are then inferred in terms of operating conditions of the multiple-intermittent injections, such as the frequency, duration and pressure of injection. An integral method is suggested to describe the overall process of heat transfer, which accounts for the fluid-dynamic heterogeneities induced by multiple and successive droplet interactions within the area of spray impact. The method considers overall boiling curves dependant on the injection conditions and provides an empirical tool to characterize the heat transfer processes on the impact of multiple-intermittent sprays. The methodology is tested in a preliminary study of the effect of injection conditions on the heat removed by a fuel spray striking the back surface of the intake valve as in spark

  12. Liquid desiccant dehumidification and regeneration process to meet cooling and freshwater needs of desert greenhouses

    KAUST Repository

    Lefers, Ryan

    2016-04-19

    Agriculture accounts for ~70% of freshwater usage worldwide. Seawater desalination alone cannot meet the growing needs for irrigation and food production, particularly in hot, desert environments. Greenhouse cultivation of high-value crops uses just a fraction of freshwater per unit of food produced when compared with open field cultivation. However, desert greenhouse producers face three main challenges: freshwater supply, plant nutrient supply, and cooling of the greenhouse. The common practice of evaporative cooling for greenhouses consumes large amounts of fresh water. In Saudi Arabia, the most common greenhouse cooling schemes are fresh water-based evaporative cooling, often using fossil groundwater or energy-intensive desalinated water, and traditional refrigeration-based direct expansion cooling, largely powered by the burning of fossil fuels. The coastal deserts have ambient conditions that are seasonally too humid to support adequate evaporative cooling, necessitating additional energy consumption in the dehumidification process of refrigeration-based cooling. This project evaluates the use of a combined-system liquid desiccant dehumidifier and membrane distillation unit that can meet the dual needs of cooling and freshwater supply for a greenhouse in a hot and humid environment. © 2016 Balaban Desalination Publications. All rights reserved.

  13. Proton-antiproton colliding beam electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskij, A.N.

    1981-01-01

    A possibility of effective cooling of high-energy pp tilde beams (E=10 2 -10 3 GeV) in the colliding mode by accompanying radiationally cooled electron beam circulating in an adjacent storage ring is studied. The cooling rate restrictions by the pp tilde beam interaction effects while colliding and the beam self-heating effect due to multiple internal scattering are considered. Some techniques permitting to avoid self-heating of a cooling electron beam or suppress its harmful effect on a heavy particle beam cooling are proposed. According to the estimations the cooling time of 10 2 -10 3 s order can be attained [ru

  14. An experimental investigation of an air cooling scheme for removing environmentally imposed heat loads from the multiplicity and vertex detector's main enclosure

    International Nuclear Information System (INIS)

    Cunningham, R.; Bernardin, J.D.; Simon-Gillo, J.

    1997-11-01

    This report presents a summary of an experimental investigation of a closed loop air cooling system designed to control the temperature and humidity in the main enclosure of the multiplicity and vertex detector (MVD). Measurements of the cooling air flow rate, the humidity levels inside and outside of the MVD, and the cooling air temperatures were used to assess the performance of the system and to characterize the system limitations and potential assembly problems. The results of the study indicate that several design changes are needed in the final design to meet the temperature and humidity operating requirements. A thorough set of design change recommendations that satisfy these operating criteria completes this report

  15. Site-specific investigations of aquifer thermal energy storage for space and process cooling

    International Nuclear Information System (INIS)

    Brown, D.R.

    1991-01-01

    This paper reports on the Pacific Northwest Laboratory (PNL) that has completed three preliminary site-specific feasibility studies that investigated aquifer thermal energy storage (ATES) for reducing space and process cooling costs. Chilled water stored in an ATES system could be used to meet all or part of the process and/or space cooling loads at the three facilities investigated. Seasonal or diurnal chill ATES systems could be significantly less expensive than a conventional electrically-driven, load-following chiller system at one of the three sites, depending on the cooling water loop return temperature and presumed future electricity escalation rate. For the other two sites investigated, a chill ATES system would be economically competitive with conventional chillers if onsite aquifer characteristics were improved. Well flow rates at one of the sites were adequate, but the expected thermal recovery efficiency was too low. The reverse of this situation was found at the other site, where the thermal recovery efficiency was expected to be adequate, but well flow rates were too low

  16. Development of an innovative polygeneration process in hybrid solar-biomass system for combined power, cooling and desalination

    International Nuclear Information System (INIS)

    Sahoo, U.; Kumar, R.; Pant, P.C.; Chaudhary, R.

    2017-01-01

    Highlights: • Heat utilization from solar and biomass resources are considered for hybridization. • Modeling of polygeneration process in hybrid solar-biomass power plant is considered. • Thermodynamic evaluation are performed to identify the effect of various parameters. • Primary Energy Saving of polygeneration process is determined. - Abstract: In the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiency take place. It is one of the solutions to fulfill energy requirements from renewable sources and also helps in the reduction of carbon dioxide emissions. The VAR cooling system operates using the extracted heat taken from turbine and condenser heat of the VAR cooling system is used in desalination system for production of drinking water as per demand requirement. Though the production of electricity decreases due to extraction of heat from turbine for VAR cooling and desalination, the complete system meets the energy requirements & increases the primary energy savings (PES). The thermodynamic evaluation and optimization of HSB system in polygeneration process for combined power, cooling and desalination is investigated to identify the effects of various operating parameters. Primary energy savings (PES) of polygeneration process in HSB system is achieved to 50.5%. The energy output is increased to 78.12% from this system as compared to simple power plant.

  17. Relap5 Analysis of Processes in Reactor Cooling Circuit and Reactor Cavity in Case of Station Blackout in RBMK-1500

    International Nuclear Information System (INIS)

    Kaliatka, A.

    2007-01-01

    Ignalina NPP is equipped with channel-type boiling-water graphite-moderated reactor RBMK-1500. Results of the level-1 probabilistic safety assessment of the Ignalina NPP have shown that in topography of the risk, the transients with failure of long-term core cooling other than LOCA are the main contributors to the core damage frequency. The total loss of off-site power with a failure to start any diesel generator, that is station blackout, is the event which could lead to the loss of long-term core cooling. Such accident could lead to multiple ruptures of fuel channels with severe consequences and should be analyzed in order to estimate the timing of the key events and the possibilities for accident management. This paper presents the results of the analysis of station blackout at Ignalina NPP. Analysis was performed using thermal-hydraulic state-of-the-art RELAP5/MOD3.2 code. The response of reactor cooling system and the processes in the reactor cavity and its venting system in case of a few fuel-channel ruptures due to overheating were demonstrated. The possible measures for prevention of the development of this beyond design basis accident (BDBA) to a severe accident are discussed

  18. Mean associated multiplicities in deep inelastic processes

    International Nuclear Information System (INIS)

    Dzhaparidze, G.Sh.; Kiselev, A.V.; Petrov, V.A.

    1982-01-01

    A formula is derived for the mean hadron multiplicity in the target fragmentation range of deep inelastic scattering processes. It is shown that in the high-x region the ratio of the mean multiplicities in the current fragmentation region and in the target fragmentation region tends to unity at high energies. The mean multiplicity for the Drell-Yan process is considered

  19. Mean associated multiplicities in deep inelastic processes

    International Nuclear Information System (INIS)

    Dzhaparidze, G.S.; Kiselev, A.V.; Petrov, V.A.

    1982-01-01

    A formula is derived for the mean multiplicity of hadrons in the target-fragmentation region in the process of deep inelastic scattering. It is shown that in the region of large x the ratio of the mean multiplicities in the current- and target-fragmentation regions tends to unity at high energies. The mean multiplicity in the Drell-Yan process is also discussed

  20. Modeling of Rocket Fuel Heating and Cooling Processes in the Interior Receptacle Space of Ground-Based Systems

    Directory of Open Access Journals (Sweden)

    K. I. Denisova

    2016-01-01

    Full Text Available The propellant to fill the fuel tanks of the spacecraft, upper stages, and space rockets on technical and ground-based launch sites before fueling should be prepared to ensure many of its parameters, including temperature, in appropriate condition. Preparation of fuel temperature is arranged through heating and cooling the rocket propellants (RP in the tanks of fueling equipment. Processes of RP temperature preparation are the most energy-intensive and timeconsuming ones, which require that a choice of sustainable technologies and modes of cooling (heating RP provided by the ground-based equipment has been made through modeling of the RP [1] temperature preparation processes at the stage of design and operation of the groundbased fueling equipment.The RP temperature preparation in the tanks of the ground-based systems can be provided through the heat-exchangers built-in the internal space and being external with respect to the tank in which antifreeze, air or liquid nitrogen may be used as the heat transfer media. The papers [1-12], which note a promising use of the liquid nitrogen to cool PR, present schematic diagrams and modeling systems for the RP temperature preparation in the fueling equipment of the ground-based systems.We consider the RP temperature preparation using heat exchangers to be placed directly in RP tanks. Feeding the liquid nitrogen into heat exchanger with the antifreeze provides the cooling mode of PR while a heated air fed there does that of heating. The paper gives the systems of equations and results of modeling the processes of RP temperature preparation, and its estimated efficiency.The systems of equations of cooling and heating RP are derived on the assumption that the heat exchange between the fuel and the antifreeze, as well as between the storage tank and the environment is quasi-stationary.The paper presents calculation results of the fuel temperature in the tank, and coolant temperature in the heat exchanger, as

  1. Cycle time improvement for plastic injection moulding process by sub groove modification in conformal cooling channel

    Science.gov (United States)

    Kamarudin, K.; Wahab, M. S.; Batcha, M. F. M.; Shayfull, Z.; Raus, A. A.; Ahmed, Aqeel

    2017-09-01

    Mould designers have been struggling for the improvement of the cooling system performance, despite the fact that the cooling system complexity is physically limited by the fabrication capability of the conventional tooling methods. However, the growth of Solid Free Form Technology (SFF) allow the mould designer to develop more than just a regular conformal cooling channel. Numerous researchers demonstrate that conformal cooling channel was tremendously given significant result in the improvement of productivity and quality in the plastic injection moulding process. This paper presents the research work that applies the passive enhancement method in square shape cooling channel to enhance the efficiency of cooling performance by adding the sub groove to the cooling channel itself. Previous design that uses square shape cooling channel was improved by adding various numbers of sub groove to meet the best sub groove design that able reduced the cooling time. The effect of sub groove design on cooling time was investigated by Autodesk Modlflow Insight software. The simulation results showed that the various sub groove designs give different values to ejection time. The Design 7 showed the lowest value of ejection time with 24.3% increment. The addition of sub groove significantly increased a coolant velocity and a rate of heat transfer from molten plastic to coolant.

  2. Cooling via one hand improves physical performance in heat-sensitive individuals with Multiple Sclerosis: A preliminary study

    Directory of Open Access Journals (Sweden)

    Murray Julie

    2008-05-01

    Full Text Available Abstract Background Many individuals afflicted with multiple sclerosis (MS experience a transient worsening of symptoms when body temperature increases due to ambient conditions or physical activity. Resulting symptom exacerbations can limit performance. We hypothesized that extraction of heat from the body through the subcutaneous retia venosa that underlie the palmar surfaces of the hands would reduce exercise-related heat stress and thereby increase the physical performance capacity of heat-sensitive individuals with MS. Methods Ten ambulatory MS patients completed one or more randomized paired trials of walking on a treadmill in a temperate environment with and without cooling. Stop criteria were symptom exacerbation and subjective fatigue. The cooling treatment entailed inserting one hand into a rigid chamber through an elastic sleeve that formed an airtight seal around the wrist. A small vacuum pump created a -40 mm Hg subatmospheric pressure enviinside the chamber where the palmar surface of the hand rested on a metal surface maintained at 18–22°C. During the treatment trials, the device was suspended from above the treadmill on a bungee cord so the subjects could comfortably keep a hand in the device without having to bear its weight while walking on the treadmill. Results When the trials were grouped by treatment only, cooling treatment increased exercise durations by 33% (43.6 ± 17.1 min with treatment vs. 32.8 ± 10.9 min. without treatment, mean ± SD, p -6, paired t-test, n = 26. When the average values were calculated for the subjects who performed multiple trials before the treatment group results were compared, cooling treatment increased exercise duration by 35% (42.8 ± 16.4 min with treatment vs. 31.7 ± 9.8 min. without treatment, mean ± SD, p Conclusion These preliminary results suggest that utilization of the heat transfer capacity of the non-hairy skin surfaces can enable temperature-sensitive individuals with MS to

  3. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  4. The effect of primary copper slag cooling rate on the copper valorization in the flotation process

    Directory of Open Access Journals (Sweden)

    Aleksandar Mihajlović

    2015-06-01

    Full Text Available Technological procedure of slow cooling slag from primary copper production is applied in the purpose of copper recovery in the level of 98.5% to blister. This technological procedure is divided into two phases, first slow cooling of slag on the air for 24 hours, and then accelerated cooling with water for 48 hours. Within the research following methods were used: calculation of nonstationary slag cooling, verification of the calculation using computer simulation of slag cooling in the software package COMSOL Multiphysics and experimental verification of simulation results. After testing of the experimentally gained samples of slowly cooled slag it was found that this technological procedure gives the best results in promoting growth or coagulation of dispersed particles of copper sulfide and copper in the slag, thereby increasing the utilization of the flotation process with a decrease of copper losses through very fine particles.

  5. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru [National Research University “Moscow State University of Civil Engineering,” (Russian Federation)

    2017-03-15

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  6. Modelling and analysis of a desiccant cooling system using the regenerative indirect evaporative cooling process

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    2013-01-01

    This paper focuses on the numerical modeling and analysis of a Desiccant Cooling (DEC) system with regenerative indirect evaporative cooling, termed Desiccant Dewpoint Cooling (DDC) system. The DDC system includes a Desiccant Wheel (DW), Dew Point Coolers (DPCs), a heat recovery unit and a heat...... in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of energy costs...... and CO2 emissions. The electricity consumption for auxiliaries in the DDC system is higher than in the chiller-based systems. The number of commercial-size DPC units required to cover the cooling load during the whole period is high: 8 in Copenhagen and 12 in Venice....

  7. Ethnography of Cool Roof Retrofits: The Role of Rebates in the Materials Selection Process

    Energy Technology Data Exchange (ETDEWEB)

    Mazur-Stommen, Susan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-02-01

    In the summer of 2010, ethnographic research was conducted with nine households in the Bay Area and Sacramento region. The purpose of this task was to collect methodologically grounded insights into how and why consumers chose the cool roofing material they selected. These nine households comprised fifteen respondents, and their dependents. They were selected from among a pool of respondents to a mail solicitation of all Sacramento Municipal Utility District and Pacific Gas and Electric customers who had received a rebate for their cool roof retrofit. Consumers are uniformly happy with their cool roof retrofits. Consumers typically stayed very close to the aesthetic of the original roof style. Price was not a primary concern, while longevity was paramount. Consumers did not use roofing price, nor energy savings (with one exception), in tracking return on investment through energy savings. The utility rebate had little role to play in terms of incentivizing customers to choose cool materials. Contractors were critical partners in the decision-­making process.

  8. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  9. Statistical multi-model approach for performance assessment of cooling tower

    International Nuclear Information System (INIS)

    Pan, Tian-Hong; Shieh, Shyan-Shu; Jang, Shi-Shang; Tseng, Wen-Hung; Wu, Chan-Wei; Ou, Jenq-Jang

    2011-01-01

    This paper presents a data-driven model-based assessment strategy to investigate the performance of a cooling tower. In order to achieve this objective, the operations of a cooling tower are first characterized using a data-driven method, multiple models, which presents a set of local models in the format of linear equations. Satisfactory fuzzy c-mean clustering algorithm is used to classify operating data into several groups to build local models. The developed models are then applied to predict the performance of the system based on design input parameters provided by the manufacturer. The tower characteristics are also investigated using the proposed models via the effects of the water/air flow ratio. The predicted results tend to agree well with the calculated tower characteristics using actual measured operating data from an industrial plant. By comparison with the design characteristic curve provided by the manufacturer, the effectiveness of cooling tower can be obtained in the end. A case study conducted in a commercial plant demonstrates the validity of proposed approach. It should be noted that this is the first attempt to assess the cooling efficiency which is deviated from the original design value using operating data for an industrial scale process. Moreover, the evaluated process need not interrupt the normal operation of the cooling tower. This should be of particular interest in industrial applications.

  10. Applying the sequential neural-network approximation and orthogonal array algorithm to optimize the axial-flow cooling system for rapid thermal processes

    International Nuclear Information System (INIS)

    Hung, Shih-Yu; Shen, Ming-Ho; Chang, Ying-Pin

    2009-01-01

    The sequential neural-network approximation and orthogonal array (SNAOA) were used to shorten the cooling time for the rapid cooling process such that the normalized maximum resolved stress in silicon wafer was always below one in this study. An orthogonal array was first conducted to obtain the initial solution set. The initial solution set was treated as the initial training sample. Next, a back-propagation sequential neural network was trained to simulate the feasible domain to obtain the optimal parameter setting. The size of the training sample was greatly reduced due to the use of the orthogonal array. In addition, a restart strategy was also incorporated into the SNAOA so that the searching process may have a better opportunity to reach a near global optimum. In this work, we considered three different cooling control schemes during the rapid thermal process: (1) downward axial gas flow cooling scheme; (2) upward axial gas flow cooling scheme; (3) dual axial gas flow cooling scheme. Based on the maximum shear stress failure criterion, the other control factors such as flow rate, inlet diameter, outlet width, chamber height and chamber diameter were also examined with respect to cooling time. The results showed that the cooling time could be significantly reduced using the SNAOA approach

  11. Cooling system with automated seasonal freeze protection

    Science.gov (United States)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  12. Assessment of the dry process fuel sodium-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2004-04-01

    The feasibility of using dry-processed oxide fuel in a Sodium-cooled Fast Reactor (SFR) was analyzed for the equilibrium fuel cycle of two reference cores: Hybrid BN-600 benchmark core with a enlarged lattice pitch and modified BN-600 core. The dry process technology assumed in this study based on the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was {approx}50% and most of the fission products were removed.

  13. Assessment of the dry process fuel sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2004-04-01

    The feasibility of using dry-processed oxide fuel in a Sodium-cooled Fast Reactor (SFR) was analyzed for the equilibrium fuel cycle of two reference cores: Hybrid BN-600 benchmark core with a enlarged lattice pitch and modified BN-600 core. The dry process technology assumed in this study based on the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was ∼50% and most of the fission products were removed

  14. MEASURING THE EVOLUTIONARY RATE OF COOLING OF ZZ Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S.; Fraser, Oliver; Riecken, T. S.; Kronberg, M. E. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Bischoff-Kim, Agnes [Georgia College and State University, Milledgeville, GA 31061 (United States); Corsico, A. H. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata (Argentina); Montgomery, M. H.; Winget, D. E.; Hermes, J. J.; Winget, K. I.; Falcon, Ross E.; Reaves, D. [Department of Astronomy, University of Texas at Austin, Austin, TX 78759 (United States); Kepler, S. O.; Romero, A. D. [Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS (Brazil); Chandler, D. W. [Meyer Observatory, Central Texas Astronomical Society, 3409 Whispering Oaks, Temple, TX 76504 (United States); Kuehne, J. W. [McDonald Observatory, Fort Davis, TX 79734 (United States); Sullivan, D. J. [Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand); Von Hippel, T. [Embry-Riddle Aeronautical University, 600 South Clyde Morris Boulevard, Daytona Beach, FL 32114 (United States); Mullally, F. [SETI Institute, NASA Ames Research Center, MS 244-30, Moffet Field, CA 94035 (United States); Shipman, H. [Delaware Asteroseismic Research Center, Mt. Cuba Observatory, Greenville, DE 19807 (United States); and others

    2013-07-01

    We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 {+-} 1.4) Multiplication-Sign 10{sup -15} s s{sup -1} employing the O - C method and (5.45 {+-} 0.79) Multiplication-Sign 10{sup -15} s s{sup -1} using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 {+-} 1.0) Multiplication-Sign 10{sup -15} s s{sup -1}. After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 {+-} 1.1) Multiplication-Sign 10{sup -15} s s{sup -1}. This value is consistent within uncertainties with the measurement of (4.19 {+-} 0.73) Multiplication-Sign 10{sup -15} s s{sup -1} for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.

  15. Mass production and photoelectric performances of P and Al Co-doped ZnO nanocrystals under different cooling post-processes

    International Nuclear Information System (INIS)

    Deng, Ya-Juan; Lu, Yi; Liu, Jin-Ku; Yang, Xiao-Hong

    2015-01-01

    The phosphorus and aluminum co-doped in zinc oxide (ZnO) called PAZO nano-crystals (NCs) have been mass synthesized by a combustion method, which shows a preferable photocatalytic capability and conductive ability. This article focuses on the properties of PAZO NCs experienced by three cooling-down aftertreatments, which were the normalizing, quenching and annealing process, respectively. The influences of different cooling processes on the photocatalytic and conductive performances are discussed in details. From the research, we found the quenched-PAZO NCs showed the most unappealing photocatalysis and conductivity, because excessive defects as the recombination center of electron–hole pairs were generated in the quenching process. - Graphical abstract: This research focuses on the PAZO NCs experienced by different cooling-down aftertreatments, which were the normalizing, quenching and annealing process, respectively. The quenched-PAZO NCs had the most unappealing photocatalysis and conductivity, because of generating excessive defects as the recombination center of electron–hole pairs in the quenching process. - Highlights: • We presented a method to mass synthesize co-doped P and Al in ZnO nanocrystals. • The PAZO NCs have novel photoelectric performances. • The cooling post-process influence on the photoelectric properties was studied. • The excessive defects decline the photocatalytic and conductive activities

  16. Experimental evaluation of desuperheating and oil cooling process through liquid injection in two-staged ammonia refrigeration systems with screw compressors

    International Nuclear Information System (INIS)

    Zlatanović, Ivan; Rudonja, Nedžad

    2012-01-01

    This paper examines the problem of achieving desuperheating through liquid injection in two-staged refrigeration systems based on screw compressors. The oil cooling process by refrigerant injection is also included. The basic thermodynamic principles of desuperheating and compressor cooling as well as short comparison with traditional method with a thermosyphon system have also been presented. Finally, the collected data referring to a big refrigeration plant are analyzed in the paper. Specific ammonia system concept applied in this refrigeration plant has demonstrated its advantages and disadvantages. - Highlights: ► An experiment was setup during a frozen food factory refrigeration system reconstruction and adaptation. ► Desuperheating and low-stage compressors oil cooling process were investigated. ► Efficiency of compression process and high-stage compressors functioning were examined. ► Evaporation temperature reduction has great influence on the need for injected liquid refrigerant. ► Several cases in which desuperheating and oil cooling process application are justified were determined.

  17. Thermal-hydraulic performance of a multiple jet cooling module with a concave dimple array in a helium-cooled divertor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyo-Yeon; Kim, Kwang-Yong, E-mail: kykim@inha.ac.kr

    2017-01-15

    A numerical study was performed to evaluate the thermal-hydraulic performance of a finger type cooling module, where multiple jets impinge on the surface with concave dimples, in the divertor of a nuclear fusion reactor. Conjugate heat transfer was analyzed in both the solid and fluid domains using three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model. The computational domain consisted of a single fluid domain and three solid domains: tile, thimble, and cartridge. The numerical results for the temperature variation on the tile were validated in comparison with the experimental data. A parametric study was performed with two design variables, the ratios of dimple diameter and dimple height to the nozzle diameter, and two dimple arrays (inline and staggered arrays). The parametric study showed that the heat transfer rate was increased by up to 2.62% by introducing concave dimples, and that the heat transfer and pressure drop performances increased with increasing diameter and height of the dimples for a specified dimple array.

  18. Optimization of anisotropic photonic density of states for Raman cooling of solids

    Science.gov (United States)

    Chen, Yin-Chung; Ghosh, Indronil; Schleife, André; Carney, P. Scott; Bahl, Gaurav

    2018-04-01

    Optical refrigeration of solids holds tremendous promise for applications in thermal management. It can be achieved through multiple mechanisms including inelastic anti-Stokes Brillouin and Raman scattering. However, engineering of these mechanisms remains relatively unexplored. The major challenge lies in the natural unfavorable imbalance in transition rates for Stokes and anti-Stokes scattering. We consider the influence of anisotropic photonic density of states on Raman scattering and derive expressions for cooling in such photonically anisotropic systems. We demonstrate optimization of the Raman cooling figure of merit considering all possible orientations for the material crystal and two example photonic crystals. We find that the anisotropic description of the photonic density of states and the optimization process is necessary to obtain the best Raman cooling efficiency for systems having lower symmetry. This general result applies to a wide array of other laser cooling methods in the presence of anisotropy.

  19. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  20. Cooling process of liquid propellant rocket by means of kerosene-alumina nanofluid

    Directory of Open Access Journals (Sweden)

    Mostafa Mahmoodi

    2016-12-01

    Full Text Available Heat transfer augmentation of kerosene-alumina nanofluid is studied for the possible use in the regenerative cooling channel of semi cryogenic engine. The basic partial differential equations are reduced to ordinary differential equations which are solved using differential transformation method. Velocity and temperature profiles as well as the skin friction coefficient and Nusselt number are determined. The influence of pertinent parameters such as nanofluid volume fraction, viscosity parameter and Eckert number on the flow and heat transfer characteristics is discussed. The results indicate that adding alumina into the fuel of liquid rocket engine (kerosene can be considered as the way of enhancing cooling process of chamber and nozzle walls. Nusselt number is an increasing function of viscosity parameter and nanoparticle volume fraction while it is a decreasing function of Eckert number.

  1. Cooling treatment of olive paste during the oil processing: Impact on the yield and extra virgin olive oil quality.

    Science.gov (United States)

    Veneziani, G; Esposto, S; Taticchi, A; Urbani, S; Selvaggini, R; Di Maio, I; Sordini, B; Servili, M

    2017-04-15

    In recent years, the temperature of processed olives in many olive-growing areas was often close to 30°C, due to the global warming and an early harvesting period. Consequently, the new trends in the extraction process have to include the opportunity to cool the olives or olive paste before processing to obtain high quality EVOO. A tubular thermal exchanger was used for a rapid cooling treatment (CT) of olive paste after crushing. The results did not show a significant difference in the oil yield or any modifications in the legal parameters. The cooling process determined a significant improvement of phenolic compounds in all the three Italian cultivar EVOOs analyzed, whereas the volatile compounds showed a variability largely affected by the genetic origin of the olives with C 6 aldehydes that seem to be more stable than C 6 alcohols and esters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of face/head and whole body cooling during passive heat stress on human somatosensory processing.

    Science.gov (United States)

    Nakata, Hiroki; Namba, Mari; Kakigi, Ryusuke; Shibasaki, Manabu

    2017-06-01

    We herein investigated the effects of face/head and whole body cooling during passive heat stress on human somatosensory processing recorded by somatosensory-evoked potentials (SEPs) at C4' and Fz electrodes. Fourteen healthy subjects received a median nerve stimulation at the left wrist. SEPs were recorded at normothermic baseline (Rest), when esophageal temperature had increased by ~1.2°C (heat stress: HS) during passive heating, face/head cooling during passive heating (face/head cooling: FHC), and after HS (whole body cooling: WBC). The latencies and amplitudes of P14, N20, P25, N35, P45, and N60 at C4' and P14, N18, P22, and N30 at Fz were evaluated. Latency indicated speed of the subcortical and cortical somatosensory processing, while amplitude reflected the strength of neural activity. Blood flow in the internal and common carotid arteries (ICA and CCA, respectively) and psychological comfort were recorded in each session. Increases in esophageal temperature due to HS significantly decreased the amplitude of N60, psychological comfort, and ICA blood flow in the HS session, and also shortened the latencies of SEPs (all, P body temperature. Copyright © 2017 the American Physiological Society.

  3. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  4. Effect of irreversible processes on the thermodynamic performance of open-cycle desiccant cooling cycles

    International Nuclear Information System (INIS)

    La, Dong; Li, Yong; Dai, Yanjun; Ge, Tianshu; Wang, Ruzhu

    2013-01-01

    Highlights: ► Effects of irreversible processes on the performance of desiccant cooling cycle are identified. ► The exergy destructions involved are classified by the properties of the individual processes. ► Appropriate indexes for thermodynamic evaluation are proposed based on thermodynamic analyses. - Abstract: Thermodynamic analyses of desiccant cooling cycle usually focus on the overall cycle performance in previous study. In this paper, the effects of the individual irreversible processes in each component on thermodynamic performance are analyzed in detail. The objective of this paper is to reveal the elemental features of the individual components, and to show their effects on the thermodynamic performance of the whole cycle in a fundamental way. Appropriate indexes for thermodynamic evaluation are derived based on the first and second law analyses. A generalized model independent of the connection of components is developed. The results indicate that as the effectiveness of the desiccant wheel increases, the cycle performance is increased principally due to the significant reduction in exergy carried out by exhaust air. The corresponding exergy destruction coefficient of the cycle with moderate performance desiccant wheel is decreased greatly to 3.9%, which is more than 50% lower than that of the cycle with low performance desiccant wheel. The effect of the heat source is similar. As the temperature of the heat source increases from 60 °C to 90 °C, the percentage of exergy destruction raised by exhaust air increases sharply from 5.3% to 21.8%. High heat exchanger effectiveness improves the cycle performance mainly by lowering the irreversibility of the heat exchanger, using less regeneration heat and pre-cooling the process air effectively

  5. Efficient Processing of Multiple DTW Queries in Time Series Databases

    DEFF Research Database (Denmark)

    Kremer, Hardy; Günnemann, Stephan; Ivanescu, Anca-Maria

    2011-01-01

    . In many of today’s applications, however, large numbers of queries arise at any given time. Existing DTW techniques do not process multiple DTW queries simultaneously, a serious limitation which slows down overall processing. In this paper, we propose an efficient processing approach for multiple DTW...... for multiple DTW queries....

  6. Analysis of counter current flow limitation during the cooling process at the rectangular narrow boundary

    International Nuclear Information System (INIS)

    Nur Rahmad Yusuf

    2013-01-01

    Experimental studies to study the mechanism of boiling heat transfer in narrow rectangular channel under severe accident scenarios of TMI-2 nuclear power plant necessary for the understanding of management-related accidents. The research aims to obtain heat flux values and the critical heat flux (CHF) during the process of boiling heat transfer in narrow rectangular channel. Research methods experimentally using the HEATING-02 test section with cooling fluid is water temperature 98 °C. Experiments performed by varying the hot plate initial temperature of 100 °C, 200 °C and 300 °C with channel size 1 mm. Boiling during the cooling process was recorded by a transient temperature on the hot plate. Temperature data used to calculate the heat flux and wall temperature, the results are represented through the boiling curve. The results show that the higher plate temperature, the narrower width of the curve will be narrower and its mean that the plate surface cooling time will be slower. Results visualization is seen that the CCF occurred at the hot plate initial temperature of 100 °C, 200 °C and 300 °C with channel size 1 mm. (author)

  7. Emergency cooling process and device for nuclear reactor containment

    International Nuclear Information System (INIS)

    Costes, D.

    1985-01-01

    The emergency cooling system of a PWR containment, according to the principal patent, comprises a turbine fed by the humid air of the containment, a condenser in which the air flowing out of the turbine is dryed and cooled by an external coolant and a compressor actuated by the turbine and returning the dryed air in the containment [fr

  8. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  9. Effect of closed loop cooling water transit time on containment cooling

    International Nuclear Information System (INIS)

    Smith, R.P.; Vossahlik, J.E.; Goodwin, E.F.

    1996-01-01

    Long term containment cooling analyses in nuclear plant systems are usually conducted assuming a quasi steady-state process, that is, a steady state evaluation of the cooling system is completed for each calculational step. In reality, fluid transport in the system, and heat addition to system components may affect the heat removal rate of the system. Transient effects occurring during system startup may affect the maximum temperatures experienced in the system. It is important to ensure that such transient effects do not affect operation of the system (e.g., cause a high temperature trip). To evaluate the effect of fluid transit delays, a closed loop cooling water system model has been developed that incorporates the fluid transport times when determining the closed loop cooling system performance. This paper describes the closed loop cooling system model as implemented in the CONTEMPT-LT/028 code. The evaluation of the transient temperature response of the closed loop cooling system using the model is described. The paper also describes the effect of fluid transit time on the overall containment cooling performance

  10. Thermohydraulic modeling of the dry air passive containment cooling system process in the Westinghouse AP-600 ALWR

    Energy Technology Data Exchange (ETDEWEB)

    Harari, R; Weis, Y; Barnea, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Following postulated events of a LOCA, the passive Containment Cooling System (PCCS) uses dry air to transfer the residual heat by natural circulation. The air flow path, designed between the steel reactor containment hot shell and the concrete shield building, creates an open thermosyphon. The purpose of this inherently safe process is to assure the long term steady-state cooling of the nuclear core after an emergency shutdown (authors).

  11. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    investigates the performance of a solid desiccant cooling system implementing in-direct evaporative cooling processes. The aim is to quantify the system thermal and electrical performance for varying component dimensions and operating conditions, and to identify its range of applicability. This information...... evaporative cooler. Detailed steady state numerical models are developed and implemented in MATLAB. The models need to be accurate and require low computational effort, for analysing the internal heat and mass transfer processes, as well as carrying out repetitive design and optimization simulations......-to-air heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  12. Performance Analysis of a Multiple Micro-Jet Impingements Cooling Model

    Directory of Open Access Journals (Sweden)

    A. Husain

    2016-06-01

    Full Text Available The present study investigates the thermal performance of a multiple micro-jet impingements model for electronics cooling. The fluid flow and heat transport characteristics were investigated for steady incompressible laminar flow by solving three-dimensional (3D Navier-Stokes equations. Several parallel and staggered micro-jet configurations (ie. inline 2 Å~ 2, 3 Å~ 3 and 4 Å~ 4 jets, and staggered five-jet and 13-jet arrays with the jet diameter to the channel height ratios from 0.25–0.5 were analyzed at various flow rates for the maximum temperature rise, pressure drop, heat-transfer coefficient, thermal resistance, and pumping power characteristics. The parametric investigation was carried out based on the number of jets and the jet diameters at various mass flow rates and jet Reynolds numbers. Temperature uniformity and coefficient of performance were evaluated to find out the trade-off among the various designs investigated in the present study. The maximum temperature rise and the pressure drop decreased with an increase in the number of jets except in the case of staggered five-jet array. A higher temperature uniformity was observed at higher flow rates with a decrease in the coefficient of performance. The performance parameters, such as thermal resistance and pumping power, showed a conflicting nature with respect to design variables (viz. jet diameter to stand-off ratio and interjet spacing or number of jets at various Reynolds numbers within the laminar regime.

  13. Evaluation of sub-zero and residence times after continuous versus multiple intermittent cryogen spray cooling exposure on human skin phantom

    OpenAIRE

    Ramirez-San-Juan, JC; Tuqan, AT; Kelly, KM; Nelson, JS; Aguilar, G

    2004-01-01

    Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during various laser dermatologic surgeries. However, as the application of single or multiple cryogen spurts becomes available on some commercial lasers devices, it is necessary to determine the optimal CSC parameters for different laser surgeries. The objective of this study was to measure the time the sprayed surface of a human skin phantom (HSP) remains below water freezing temperature 0°C, referred to as subzero...

  14. Parameterization of typhoon-induced ocean cooling using temperature equation and machine learning algorithms: an example of typhoon Soulik (2013)

    Science.gov (United States)

    Wei, Jun; Jiang, Guo-Qing; Liu, Xin

    2017-09-01

    This study proposed three algorithms that can potentially be used to provide sea surface temperature (SST) conditions for typhoon prediction models. Different from traditional data assimilation approaches, which provide prescribed initial/boundary conditions, our proposed algorithms aim to resolve a flow-dependent SST feedback between growing typhoons and oceans in the future time. Two of these algorithms are based on linear temperature equations (TE-based), and the other is based on an innovative technique involving machine learning (ML-based). The algorithms are then implemented into a Weather Research and Forecasting model for the simulation of typhoon to assess their effectiveness, and the results show significant improvement in simulated storm intensities by including ocean cooling feedback. The TE-based algorithm I considers wind-induced ocean vertical mixing and upwelling processes only, and thus obtained a synoptic and relatively smooth sea surface temperature cooling. The TE-based algorithm II incorporates not only typhoon winds but also ocean information, and thus resolves more cooling features. The ML-based algorithm is based on a neural network, consisting of multiple layers of input variables and neurons, and produces the best estimate of the cooling structure, in terms of its amplitude and position. Sensitivity analysis indicated that the typhoon-induced ocean cooling is a nonlinear process involving interactions of multiple atmospheric and oceanic variables. Therefore, with an appropriate selection of input variables and neuron sizes, the ML-based algorithm appears to be more efficient in prognosing the typhoon-induced ocean cooling and in predicting typhoon intensity than those algorithms based on linear regression methods.

  15. Cooling method with automated seasonal freeze protection

    Science.gov (United States)

    Cambell, Levi; Chu, Richard; David, Milnes; Ellsworth, Jr, Michael; Iyengar, Madhusudan; Simons, Robert; Singh, Prabjit; Zhang, Jing

    2016-05-31

    An automated multi-fluid cooling method is provided for cooling an electronic component(s). The method includes obtaining a coolant loop, and providing a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  16. Afterheat usage from cooling facilities in ORC processes; Abwaermenutzung aus Kaelteanlagen in ORC-Prozessen

    Energy Technology Data Exchange (ETDEWEB)

    Theede, Florian; Luke, Andrea [Kassel Univ. (Germany). Technische Themodynamik

    2016-07-01

    In the course of the reduction of climate warming an energy-efficient lay-out of processes is necessary. A possibility for the efficiency increasement is the usage of afterheat currents for instance in ORC processes. Connected with the limitation of refrigerants with high greenhouse potential it comes to the increased application of transcritical cooling facilities with carbon dioxide (CO{sub 2}) as refrigerant. By the high pressures after the compression arise here new afterheat sources on a temperature level of about 100 C. An alternative for the simple back-cooling or the heating support and drinking-water heating represents the current production in an ORC process. Great challenges for the lay-out of such an ORC process are the selection of the working fluid as well as the lay-out of the heat exchangers. Established refrigerants in the low-temperature like R245fa for ORC facilities will be in forseeable future no more available. For the study of the possible replacement by alternative refrigerants a simulation model has been developed. By means of this model different refrigerants are analyzed regarding their performance and simultaneously the effects on process and other components studied. The results show that in the temperature range two hydrofluoroolefines R1233zd[E] and R1234ze[Z] as well as the hadron carbon butane can thermodynamically form an alternative.

  17. Electrochemical filtration for turbidity removal in industrial cooling/process water systems

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Venkateswaran, G.

    2008-01-01

    Water samples of large cooling water reservoirs may look visibly clear and transparent, but still may contain sub-micron size particles at sub-parts-per-million levels. Deposition of these particles on heat exchanger surfaces, reduces the heat transfer efficiency in power industry. In nuclear power plants, additionally it creates radiation exposure problems due to activation of fine metallic turbidity in the reactor core and its subsequent transfer to out-of-core surfaces. Sub-micron filtration creates back high-pressure problem. Zeta filters available commercially are prescribed for separating either positively or negatively charged particles. They are of once-use and throw-type. Precipitation surface modified ion exchangers impart chemical impurities to the system. Thus, sub-micron size and dilute turbidity removal from large volumes of waters such as heat exchanger cooling water in nuclear and power industry poses a problem. Electro deposition of the turbidity causing particles, on porous carbon/graphite felt electrodes, is one of the best suited methods for turbidity removal from large volumes of water due to the filter's high permeability, inertness to the system and regenerability resulting in low waste generation. Initially, active indium turbidity removal from RAPS-1 heavy water moderator system, and microbes removal from heat exchanger cooling lake water of RAPS 1 and 2 were demonstrated with in-house designed and fabricated prototype electrochemical filter (ECF). Subsequently, a larger size, high flow filter was fabricated and deployed for iron turbidity removal from active process waters system of Kaiga Generation Station unit 1 and silica and iron turbidity removal from cooling water pond used for heat exchanger of a high temperature high pressure (HTHP) loop at WSCD, Kalpakkam. The ECF proved its exclusive utility for sub-micron size turbidity removal and microbes removal. ECF maneuverability with potential and current for both positively and

  18. A Robust Two-Phase Pumped Loop With Multiple Evaporators and Multiple Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future spacecraft require advanced thermal management technologies to provide effective cooling for multiple instruments and reject heat through multiple...

  19. EIS study on corrosion and scale processes and their inhibition in cooling system media

    International Nuclear Information System (INIS)

    Marin-Cruz, J.; Cabrera-Sierra, R.; Pech-Canul, M.A.; Gonzalez, I.

    2006-01-01

    A study of the carbon steel/cooling water interface was carried out using electrochemical impedance spectroscopy (EIS). EIS spectra reveal that a layer of corrosion and scale products forms naturally and evolves with the immersion time modifying the carbon steel/cooling water interface and giving rise to corrosion and scale processes. In addition, the nature of the layer formed on the metal was found to depend on the inhibitor used. It was established that the corrosion inhibitor (hydroxyphosphonoacetic acid (HPA)) chelates with Ca(II) ion generating a layer with resistive properties that provides good protection against corrosion. In contrast, the scale inhibitor (1-hydroxy-ethane-1,1-diphosphonic acid (HEDP)) is incorporated into the calcium carbonate crystals at the surface, modifying the structure and diminishing scale formation in the surface; this additive additionally inhibited corrosion. These observations were supported by scanning electronic microscopy (SEM) and corroborate previous studies performed by other techniques on HPA and HEDP. Finally, a synergistic effect was observed between these inhibitors that provides good protection to steel against corrosion and scaling in cooling media

  20. EIS study on corrosion and scale processes and their inhibition in cooling system media

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Cruz, J. [Universidad Autonoma Metropolitana, Departamento de Quimica, Apdo. Postal 55-534, 09340 Mexico, DF (Mexico) and Instituto Mexicano del Petroleo, Coordinacion de Ingenieria Molecular, Competencia de Quimica Aplicada, Eje Central Lazaro Cardenas No. 152, CP 07730, DF (Mexico)]. E-mail: jmarin@imp.mx; Cabrera-Sierra, R. [Universidad Autonoma Metropolitana, Departamento de Quimica, Apdo. Postal 55-534, 09340 Mexico, DF (Mexico); Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE-IPN), Departamento de Metalurgia, UPALM Zacatenco AP 75-874, CP 07338, DF (Mexico); Pech-Canul, M.A. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios, Avanzados del IPN, AP 73 Cordemex, CP 97310, Merida, Yucatan (Mexico); Gonzalez, I. [Universidad Autonoma Metropolitana, Departamento de Quimica, Apdo. Postal 55-534, 09340 Mexico, DF (Mexico)]. E-mail: igm@xanum.uam.mx

    2006-01-20

    A study of the carbon steel/cooling water interface was carried out using electrochemical impedance spectroscopy (EIS). EIS spectra reveal that a layer of corrosion and scale products forms naturally and evolves with the immersion time modifying the carbon steel/cooling water interface and giving rise to corrosion and scale processes. In addition, the nature of the layer formed on the metal was found to depend on the inhibitor used. It was established that the corrosion inhibitor (hydroxyphosphonoacetic acid (HPA)) chelates with Ca(II) ion generating a layer with resistive properties that provides good protection against corrosion. In contrast, the scale inhibitor (1-hydroxy-ethane-1,1-diphosphonic acid (HEDP)) is incorporated into the calcium carbonate crystals at the surface, modifying the structure and diminishing scale formation in the surface; this additive additionally inhibited corrosion. These observations were supported by scanning electronic microscopy (SEM) and corroborate previous studies performed by other techniques on HPA and HEDP. Finally, a synergistic effect was observed between these inhibitors that provides good protection to steel against corrosion and scaling in cooling media.

  1. Multiple production of hadrons in deep inelastic processes

    International Nuclear Information System (INIS)

    Kiselev, A.V.; Petrov, V.A.

    1985-01-01

    Formulas are proposed for the description of the mean multiplicity of hadrons in deep inelastic processes. On the basis of the existing data, predictions are made for the behavior of the mean multiplicity at higher energies

  2. Experimental study of air evaporative cooling process using microporous membranes

    Directory of Open Access Journals (Sweden)

    Englart Sebastian

    2017-01-01

    Full Text Available This article describes the potential use of microporous membranes in evaporative cooling applications for air conditioning. The structure of membrane contractor and the measuring device are described. On the basis of the results of the measurements air cooling effectiveness coefficient has been determined.

  3. Efficient multitasking: parallel versus serial processing of multiple tasks.

    Science.gov (United States)

    Fischer, Rico; Plessow, Franziska

    2015-01-01

    In the context of performance optimizations in multitasking, a central debate has unfolded in multitasking research around whether cognitive processes related to different tasks proceed only sequentially (one at a time), or can operate in parallel (simultaneously). This review features a discussion of theoretical considerations and empirical evidence regarding parallel versus serial task processing in multitasking. In addition, we highlight how methodological differences and theoretical conceptions determine the extent to which parallel processing in multitasking can be detected, to guide their employment in future research. Parallel and serial processing of multiple tasks are not mutually exclusive. Therefore, questions focusing exclusively on either task-processing mode are too simplified. We review empirical evidence and demonstrate that shifting between more parallel and more serial task processing critically depends on the conditions under which multiple tasks are performed. We conclude that efficient multitasking is reflected by the ability of individuals to adjust multitasking performance to environmental demands by flexibly shifting between different processing strategies of multiple task-component scheduling.

  4. Specific cooling capacity of liquid nitrogen

    Science.gov (United States)

    Kilgore, R. A.; Adcock, J. B.

    1977-01-01

    The assumed cooling process and the method used to calculate the specific cooling capacity of liquid nitrogen are described, and the simple equation fitted to the calculated specific cooling capacity data, together with the graphical form calculated values of the specific cooling capacity of nitrogen for stagnation temperatures from saturation to 350 K and stagnation pressures from 1 to 10 atmospheres, are given.

  5. Detailed numerical simulations of laser cooling processes

    Science.gov (United States)

    Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.

    2001-01-01

    We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.

  6. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes.

    Science.gov (United States)

    García-Berro, Enrique; Torres, Santiago; Althaus, Leandro G; Renedo, Isabel; Lorén-Aguilar, Pablo; Córsico, Alejandro H; Rohrmann, René D; Salaris, Maurizio; Isern, Jordi

    2010-05-13

    NGC 6791 is a well studied open cluster that it is so close to us that can be imaged down to very faint luminosities. The main-sequence turn-off age ( approximately 8 Gyr) and the age derived from the termination of the white dwarf cooling sequence ( approximately 6 Gyr) are very different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, (22)Ne, sinks in the deep interior of these stars. At lower temperatures, white dwarfs are expected to crystallize and phase separation of the main constituents of the core of a typical white dwarf ((12)C and (16)O) is expected to occur. This sequence of events is expected to introduce long delays in the cooling times, but has not hitherto been proven. Here we report that, as theoretically anticipated, physical separation processes occur in the cores of white dwarfs, resolving the age discrepancy for NGC 6791.

  7. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    Science.gov (United States)

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  8. Process and representation in multiple-cue judgment

    OpenAIRE

    Olsson, Anna-Carin

    2002-01-01

    This thesis investigates the cognitive processes and representations underlying human judgment in a multiple-cue judgment task. Several recent models assume that people have several qualitatively distinct and competing levels of knowledge representations (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Erickson & Kruschke, 1998; Nosofsky, Palmeri, & McKinley, 1994; Sloman, 1996). The most successful cognitive models in categorization and multiple-cue judgment are, respectively, exe...

  9. About the influence of lubricating-cooling agents on the cutting process

    Directory of Open Access Journals (Sweden)

    O.I. Sochko

    2017-12-01

    Full Text Available Set forth problem of necessity of increase of workability of metal. On the basis of generalization of researches at the area of physics – chemical mechanics of materials the offered hypothesis on the permanent activating of lubricating cooling technological facilities in the zone of cutting to hydrogen plasma, mechanism of her influence on the processes of deformation and destruction, and also reasonable new ways of formation of form of wares. It is in-process shown that lubricating – cooling technological facilities in it in the zone of destruction to the new phase state – hydrogen plasma. It is therefore consisted majority mainly of two elements – hydrogen and carbon, the basic changes of mechanical properties of solid are activated in the conditions of co-operating of body with an environment, it follows to link, with influence of nascent radically-active environment, but not from initial superficially – active. An ambiguousness in the estimation of reasons, at that arises up facilitation of processes of deformation and destructions of solids, that become deformed in different environments caused raising of system researches that is sanctified to this problem. As a result of chemical transformations of initial environment to the level of origin electric of active parts of hydrogen, possibility of their co-operating appears with ions and lone electrons of metal, that increases the electric field, to existing in the system «machine-tool – instrument – purveyance». Exactly co-operation electric of active structure of metal that arises up as a result of mechanical action, with the electric charged mixture of parts of hydrogen, id est an electron-electron, electron-ion and ion-ion, is able co-operation radically to change physical and mechanical properties of metal.

  10. Status of and prospects for gas-cooled reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The IAEA International Working Group on Gas-Cooled Reactors (IWGGCR) (see Annex I), which was established in 1978, recommended to the Agency that a report be prepared in order to provide an up-to-date summary of gas-cooled reactor technology. The present Technical Report is based mainly on submissions of Member Countries of the IWGGCR and consists of four main sections. Beside some general information about the gas-cooled reactor line, section 1 contains a description of the incentives for the development and deployment of gas-cooled reactors in various Agency Member States. These include both electricity generation and process steam and process heat production for various branches of industry. The historical development of gas-cooled reactors is reviewed in section 2. In this section information is provided on how, when and why gas-cooled reactors have been developed in various Agency Member States and, in addition, a detailed description of the different gas-cooled reactor lines is presented. Section 3 contains information about the technical status of gas-cooled reactors and their applications. Gas-cooled reactors that are under design or construction or in operation are listed and shortly described, together with an outlook for future reactor designs. In this section the various applications for gas-cooled reactors are described in detail. These include both electricity generation and process steam and process heat production. The last section (section 4) is entitled ''Special features of gas-cooled reactors'' and contains information about the technical performance, fuel utilization, safety characteristics and environmental impact, such as radiation exposure and heat rejection

  11. Geothermal energy used in a cooling generation process

    International Nuclear Information System (INIS)

    Benzaoui, A.; El Gharbi, N.; Merabti, L.

    2006-01-01

    This paper deals with the geothermal energy recovery and use. It is available in an important water reservoir at 1800 m deep. Some drilled wells deliver each one about 200 1/s at 75-95 degree centigrade for agricultural use. It is necessarily cooled to be in irrigation conditions at 20-25 degree centigrade. Our purpose is to install the adequate sized heat exchangers to recover this important energy and to use it in different needs. Furthermore, a systematic survey is made, on the basis od Lindal Diagram, about different possibilities to use this geothermal reservoir available in arid area. Several applications are experimented and presented to farmers: air conditioning, domestic space heating, bathing, fruits and products drying, aqua fishing, etc.. In this report we present the study including scientific and technical questions (heat and mass transfer, absorption cooling generating, energy and mass balances, etc..). The available heat must be upgraded.The solar energy is used for this need. The total experimental cooled space is: 4 rooms X 210 m 3 . The coefficient of performance of the set up is 44% and could be enhanced. Inhabitants could use this fresh atmosphere to stock their products and to pay some home comfort. All calculations and theoretical simulations will be presented and commented.(Author)

  12. The Relationship between Emotional Intelligence and Cool and Hot Cognitive Processes: A Systematic Review

    Science.gov (United States)

    Gutiérrez-Cobo, María José; Cabello, Rosario; Fernández-Berrocal, Pablo

    2016-01-01

    Although emotion and cognition were considered to be separate aspects of the psyche in the past, researchers today have demonstrated the existence of an interplay between the two processes. Emotional intelligence (EI), or the ability to perceive, use, understand, and regulate emotions, is a relatively young concept that attempts to connect both emotion and cognition. While EI has been demonstrated to be positively related to well-being, mental and physical health, and non-aggressive behaviors, little is known about its underlying cognitive processes. The aim of the present study was to systematically review available evidence about the relationship between EI and cognitive processes as measured through “cool” (i.e., not emotionally laden) and “hot” (i.e., emotionally laden) laboratory tasks. We searched Scopus and Medline to find relevant articles in Spanish and English, and divided the studies following two variables: cognitive processes (hot vs. cool) and EI instruments used (performance-based ability test, self-report ability test, and self-report mixed test). We identified 26 eligible studies. The results provide a fair amount of evidence that performance-based ability EI (but not self-report EI tests) is positively related with efficiency in hot cognitive tasks. EI, however, does not appear to be related with cool cognitive tasks: neither through self-reporting nor through performance-based ability instruments. These findings suggest that performance-based ability EI could improve individuals’ emotional information processing abilities. PMID:27303277

  13. Multiple scattering processes: inverse and direct

    International Nuclear Information System (INIS)

    Kagiwada, H.H.; Kalaba, R.; Ueno, S.

    1975-01-01

    The purpose of the work is to formulate inverse problems in radiative transfer, to introduce the functions b and h as parameters of internal intensity in homogeneous slabs, and to derive initial value problems to replace the more traditional boundary value problems and integral equations of multiple scattering with high computational efficiency. The discussion covers multiple scattering processes in a one-dimensional medium; isotropic scattering in homogeneous slabs illuminated by parallel rays of radiation; the theory of functions b and h in homogeneous slabs illuminated by isotropic sources of radiation either at the top or at the bottom; inverse and direct problems of multiple scattering in slabs including internal sources; multiple scattering in inhomogeneous media, with particular reference to inverse problems for estimation of layers and total thickness of inhomogeneous slabs and to multiple scattering problems with Lambert's law and specular reflectors underlying slabs; and anisotropic scattering with reduction of the number of relevant arguments through axially symmetric fields and expansion in Legendre functions. Gaussian quadrature data for a seven point formula, a FORTRAN program for computing the functions b and h, and tables of these functions supplement the text

  14. Process integration: Cooling water systems design

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-10-01

    Full Text Available stream_source_info Gololo2_2010.pdf.txt stream_content_type text/plain stream_size 17891 Content-Encoding UTF-8 stream_name Gololo2_2010.pdf.txt Content-Type text/plain; charset=UTF-8 The 13th Asia Pacific Confederation... results in a nonlinear program (NLP) formulation and the second case yields mixed integer nonlinear program (MINLP). In both cases the cooling towers operating capacity were debottlenecked without compromising the heat duties. The 13th Asia...

  15. Effects of different cooling rates during two casting processes on the microstructures and mechanical properties of extruded Mg–Al–Ca–Mn alloy

    International Nuclear Information System (INIS)

    Xu, S.W.; Oh-ishi, K.; Kamado, S.; Takahashi, H.; Homma, T.

    2012-01-01

    Highlights: ► Ordered monolayer GP zone was formed by increasing cooling rate. ► Finer extruded microstructure was obtained by increasing cooling rate. ► Higher number density precipitates was obtained by increasing cooling rate. ► Tensile 0.2% proof stress was increased by 105 MPa by increasing cooling rate. ► Extruded DC-cast alloy shows higher tensile 0.2% proof stress of 409 MPa. - Abstract: In this study, Mg–3.6Al–3.4Ca–0.3Mn (wt.%) (which is denoted AXM4303) alloy ingots were prepared by two casting processes with different cooling rates: permanent mold (PM) casting, which has a lower cooling rate of 10–20 °C/s and direct chill (DC) casting, which has a higher cooling rate of 100–110 °C/s. Then, these two types of AXM4303 alloy ingots were hot extruded at 400 °C under the same conditions. The microstructures of the as-cast and extruded alloy samples were systematically investigated by field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) systems. The effects of the different cooling rates during the casting process on the microstructures and mechanical properties of the extruded AXM4303 alloy samples were evaluated. The results show that the strength of the extruded Mg–Al–Ca–Mn alloy can be substantially increased by microstructural control during the casting process. Because the cooling rate of the DC casting process is much faster than the cooling rate of PM casting, the DC-cast AXM4303 has the following properties: (i) the lamellar eutectic structure and dendrite cell size are significantly refined, (ii) the ordered monolayer GP zones enriched with Al and Ca nucleate with no growth, and (iii) most of the Mn remains in solution in the matrix. Thus, after hot extrusion, the DC-cast AXM4303 has finer dynamically recrystallized (DRXed) grain size, finer and more uniformly distributed fragmented eutectic particles, finer planar Al 2 Ca precipitates

  16. Three-dimensional rail cooling analysis for a repetitively fired railgun

    International Nuclear Information System (INIS)

    Liu, H.P.

    1991-01-01

    This paper reports on a three-dimensional (3-D) rail cooling analysis for fabrication and demonstration of a stand-alone repetitive fire compulsator driven 9 MJ gun system which has been performed to assure the entire rail can be maintained below its thermal limit for multiple shots. The 3-D rail thermal model can predict the temperature, pressure, and convective heat transfer coefficient variations of the coolant along the 10 m long copper rail. The 9-MJ projectiles will be fired every 20 s for 3 min. Water cooling was used in the model for its high cooling capacity. Single liquid phase heat transfer was assumed in the cooling analysis. For multiple shots, the temperature difference between the rail and the water was enhanced due to accumulated heat in the rail. As a result, the heat removal by water increased from shot-to-shot. The rail temperature initially increased and finally stabilized after a number of shots

  17. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    Science.gov (United States)

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h -1 ) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch -1 ) seeds (P  0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  18. Binaural Processing of Multiple Sound Sources

    Science.gov (United States)

    2016-08-18

    AFRL-AFOSR-VA-TR-2016-0298 Binaural Processing of Multiple Sound Sources William Yost ARIZONA STATE UNIVERSITY 660 S MILL AVE STE 312 TEMPE, AZ 85281...18-08-2016 2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 15 Jul 2012 to 14 Jul 2016 4. TITLE AND SUBTITLE Binaural Processing of...three topics cited above are entirely within the scope of the AFOSR grant. 15. SUBJECT TERMS Binaural hearing, Sound Localization, Interaural signal

  19. Impact toughness and microstructure relationship in niobium- and vanadium-microalloyed steels processed with varied cooling rates to similar yield strength

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, S. [Center for Structural and Functional Materials and Department of Chemical Engineering, University of Louisiana at Lafayette, LA 70504-4130 (United States); Misra, R.D.K. [Center for Structural and Functional Materials and Department of Chemical Engineering, University of Louisiana at Lafayette, LA 70504-4130 (United States)]. E-mail: dmisra@louisiana.edu; Mannering, T. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Panda, D. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Jansto, S.G. [Reference Metals, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2006-11-15

    We describe here the relationship between microstructure and impact toughness behavior as a function of cooling rate for industrially processed Nb- and V-microalloyed steels of almost similar yield strength ({approx}60 ksi). Both Nb- and V-microalloyed steels exhibited increase in toughness with increase in cooling rates during processing. However, Nb-microalloyed steels were characterized by relatively higher toughness than the V-microalloyed steels under identical processing conditions. The microstructure of Nb- and V-microalloyed steels processed at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while Nb-microalloyed steels besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite. The microstructure of Nb- and V-microalloyed steels processed at relatively higher cooling rate contained degenerated pearlite and lath-type (acicular) ferrite in addition to the primary ferrite-pearlite constituents. The fraction of degenerated pearlite was higher in Nb-microalloyed steels than in the V-microalloyed steels. In both Nb- and V-microalloyed steels the precipitation characteristics were similar with precipitation occurring at grain boundaries, dislocations, and in the ferrite matrix. Fine-scale ({approx}5-10 nm) precipitation was observed in the ferrite matrix of both the steels. The selected area diffraction (SAD) pattern analysis revealed that these fine precipitates were MC type of niobium and vanadium carbides in the respective steels and followed Baker-Nutting orientation relationship with the ferrite matrix. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels is attributed to higher fraction of degenerated pearlite in the steel.

  20. Impact toughness and microstructure relationship in niobium- and vanadium-microalloyed steels processed with varied cooling rates to similar yield strength

    International Nuclear Information System (INIS)

    Shanmugam, S.; Misra, R.D.K.; Mannering, T.; Panda, D.; Jansto, S.G.

    2006-01-01

    We describe here the relationship between microstructure and impact toughness behavior as a function of cooling rate for industrially processed Nb- and V-microalloyed steels of almost similar yield strength (∼60 ksi). Both Nb- and V-microalloyed steels exhibited increase in toughness with increase in cooling rates during processing. However, Nb-microalloyed steels were characterized by relatively higher toughness than the V-microalloyed steels under identical processing conditions. The microstructure of Nb- and V-microalloyed steels processed at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while Nb-microalloyed steels besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite. The microstructure of Nb- and V-microalloyed steels processed at relatively higher cooling rate contained degenerated pearlite and lath-type (acicular) ferrite in addition to the primary ferrite-pearlite constituents. The fraction of degenerated pearlite was higher in Nb-microalloyed steels than in the V-microalloyed steels. In both Nb- and V-microalloyed steels the precipitation characteristics were similar with precipitation occurring at grain boundaries, dislocations, and in the ferrite matrix. Fine-scale (∼5-10 nm) precipitation was observed in the ferrite matrix of both the steels. The selected area diffraction (SAD) pattern analysis revealed that these fine precipitates were MC type of niobium and vanadium carbides in the respective steels and followed Baker-Nutting orientation relationship with the ferrite matrix. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels is attributed to higher fraction of degenerated pearlite in the steel

  1. Multiple photon infrared processes in polyatomic molecules

    International Nuclear Information System (INIS)

    Harrison, R.G.; Butcher, S.R.

    1980-01-01

    This paper reviews current understanding of the process of multiple photon excitation and dissociation of polyatomic molecules, whereby in the presence of an intense infrared laser field a molecule may absorb upwards of 30 photons. The application of this process to new photochemistry and in particular laser isotope separation is also discussed. (author)

  2. Biomedical Use of Aerospace Personal Cooling Garments

    Science.gov (United States)

    Webbon, Bruce W.; Montgomery, Leslie D.; Callaway, Robert K.

    1994-01-01

    Personal thermoregulatory systems are required during extravehicular activity (EVA) to remove the metabolic heat generated by the suited astronaut. The Extravehicular and Protective Systems (STE) Branch of NASA Ames Research Center has developed advanced concepts or liquid cooling garments for both industrial and biomedical applications for the past 25 years. Examples of this work include: (1) liquid cooled helmets for helicopter pilots and race car drivers; (2) vests for fire and mine rescue personnel; (3) bras to increase the definition of tumors during thermography; (4) lower body garments for young women with erythomelaigia; and (5) whole body garments used by patients with multiple sclerosis (MS). The benefits of the biomedical application of artificial thermoregulation received national attention through two recent events: (1) the liquid-cooled garment technology was inducted into the United States Space Foundation's Space Technology Hall of Fame (1993); and (2) NASA has signed a joint Memorandum of Understanding with the Multiple Sclerosis Association (1994) to share this technology for use with MS patient treatment. The STE Branch is currently pursuing a program to refine thermoregulatory design in light of recent technology developments that might be applicable for use by several medical patient populations. Projects have been initiated to apply thermoregulatory technology for the treatment and/or rehabilitation of patients with spinal cord injuries, multiple sclerosis, migraine headaches, and to help prevent the loss of hair during chemotherapy.

  3. Statistics Analysis Measures Painting of Cooling Tower

    Directory of Open Access Journals (Sweden)

    A. Zacharopoulou

    2013-01-01

    Full Text Available This study refers to the cooling tower of Megalopolis (construction 1975 and protection from corrosive environment. The maintenance of the cooling tower took place in 2008. The cooling tower was badly damaged from corrosion of reinforcement. The parabolic cooling towers (factory of electrical power are a typical example of construction, which has a special aggressive environment. The protection of cooling towers is usually achieved through organic coatings. Because of the different environmental impacts on the internal and external side of the cooling tower, a different system of paint application is required. The present study refers to the damages caused by corrosion process. The corrosive environments, the application of this painting, the quality control process, the measures and statistics analysis, and the results were discussed in this study. In the process of quality control the following measurements were taken into consideration: (1 examination of the adhesion with the cross-cut test, (2 examination of the film thickness, and (3 controlling of the pull-off resistance for concrete substrates and paintings. Finally, this study refers to the correlations of measurements, analysis of failures in relation to the quality of repair, and rehabilitation of the cooling tower. Also this study made a first attempt to apply the specific corrosion inhibitors in such a large structure.

  4. Average multiplications in deep inelastic processes and their interpretation

    International Nuclear Information System (INIS)

    Kiselev, A.V.; Petrov, V.A.

    1983-01-01

    Inclusive production of hadrons in deep inelastic proceseseus is considered. It is shown that at high energies the jet evolution in deep inelastic processes is mainly of nonperturbative character. With the increase of a final hadron state energy the leading contribution to an average multiplicity comes from a parton subprocess due to production of massive quark and gluon jets and their further fragmentation as diquark contribution becomes less and less essential. The ratio of the total average multiplicity in deep inelastic processes to the average multiplicity in e + e - -annihilation at high energies tends to unity

  5. Modern cooling systems in thermal power plants relieve environmental pollution. Pt. 2

    International Nuclear Information System (INIS)

    Brosche, D.

    1983-01-01

    Direct and indirect dry recirculation cooling, wet cooling tower, natural-draught wet cooling tower, combined cooling processes, hybrid cooling systems, cell cooling systems, auxiliary water preparation, cooling process design, afterheat removal in nuclear power plants, environmental effects, visible plumes as a function of weather conditions, environmental protection and energy supply assurance. (orig.) [de

  6. Measuring Strategic Processing when Students Read Multiple Texts

    Science.gov (United States)

    Braten, Ivar; Stromso, Helge I.

    2011-01-01

    This study explored the dimensionality of multiple-text comprehension strategies in a sample of 216 Norwegian education undergraduates who read seven separate texts on a science topic and immediately afterwards responded to a self-report inventory focusing on strategic multiple-text processing in that specific task context. Two dimensions were…

  7. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  8. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  9. Comparison between two rheocasting processes of damper cooling tube method and low superheat casting

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoli

    2014-09-01

    Full Text Available To produce a high quality semisolid slurry that consists of fine primary particles uniformly suspended in the liquid matrix for rheoforming, chemical refining and electromagnetic or mechanical stirring are the two methods commonly used. But these two methods either contaminate the melt or incur high cost. In this study, the damper cooling tube (DCT method was designed to prepare semisolid slurry of A356 aluminum alloy, and was compared with the low superheat casting (LSC method - a conventional process used to produce casting slab with equiaxed dendrite microstructure for thixoforming route. A series of comparative experiments were performed at the pouring temperatures of 650 °C, 638 °C and 622 °C. Metallographic observations of the casting samples were carried out using an optical electron microscope with image analysis software. Results show that the microstructure of semisolid slurry produced by the DCT process consists of spherical primary α-Al grains, while equiaxed grains microstructure is found in the LSC process. The lower the pouring temperature, the smaller the grain size and the rounder the grain morphology in both methods. The copious nucleation, which could be generated in the DCT, owing to the cooling and stirring effect, is the key to producing high quality semisolid slurry. DCT method could produce rounder and smaller α-Al grains, which are suitable for semisolid processing; and the equivalent grain size is no more than 60 μm when the pouring temperature is 622 °C.

  10. Determination of energy to be supplied by photovoltaic systems for fan-pad systems in cooling process of greenhouses

    International Nuclear Information System (INIS)

    Romantchik, Eugenio; Ríos, Eduardo; Sánchez, Elisa; López, Irineo; Sánchez, José Reyes

    2017-01-01

    Intending to increase the reliability of photovoltaic systems in agriculture sector, this work was developed to calculate the energy required by fan-pad systems for the cooling process in greenhouses. This calculation aims to ensure that the cooling process is completely sustainable. Today, there are no scientific tools to determine the electrical energy consumed by air exhaust fans. In order to address this problem, a mathematical model that predicts the greenhouse temperatures and ventilation rates, was calibrated with experimental data. The results correspond to a typical summer day with high solar radiation and showed that mathematical model can enhance the management of the energy for the cooling process. These results are: power of exhaust fans and their operating hours. It was used a methodology for selection of photovoltaic systems in order to design grid-connected configurations systems capable of producing, at least, the whole of the required energy by three greenhouses with different areas. It is concluded that the accuracy of the model is acceptable and with the methodology of selection of photovoltaic systems represent a reliable tool for calculus of electric power [W] and electric energy [kWh] consumed by the fans, which represent the main and initial design parameter of any type of photovoltaic system.

  11. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    Science.gov (United States)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  12. Deuterium- and 18O-content in the cooling water of power station cooling towers

    International Nuclear Information System (INIS)

    Heimbach, H.; Dongmann, G.

    1976-09-01

    The 0-18/0-16 and D/H isotope ratios of water from two different cooling towers were determined by mass spectrometry. The observed isotope fractionation corresponds to that known from natural evaporation or transpiration processes: cooling tower I: delta(D) = 46.8 per thousand, delta( 18 O) = 7.6 per thousand cooling tower II: delta(D) = 33.9 per thousand delta( 18 O) = 5.7 per thousand Evaluation of simple compartment models of a cooling tower and a distillation device suggests that there exists some isotope discrimination within the open trickling unit of a cooling tower analogous to that in a rectification column. In a real cooling tower, however, this effect is compensated largely by the recycling of the cooling water, resulting only in a small enrichment of the heavy isotopes. This can be understood as the result of three partial effects: 1) a fractionation in the vapor pressure equilibrium, 2) a kinetic effect due to diffusion of the water vapor into a turbulent atmosphere, and 3) an exchange effect which is proportional to relative humidity. This low enrichment of the heavy isotope excludes the technical use of cooling towers as isotope separation devices. (orig.) [de

  13. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  14. Potential applications of helium-cooled high-temperature reactors to process heat use

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1981-01-01

    High-Temperature Gas-Cooled Reactors (HTRs) permit nuclear energy to be applied to a number of processes presently utilizing fossil fuels. Promising applications of HTRs involve cogeneration, thermal energy transport using molten salt systems, steam reforming of methane for production of chemicals, coal and oil shale liquefaction or gasification, and - in the longer term - energy transport using a chemical heat pipe. Further, HTRs might be used in the more distant future as the energy source for thermochemical hydrogen production from water. Preliminary results of ongoing studies indicate that the potential market for Process Heat HTRs by the year 2020 is about 150 to 250 GW(t) for process heat/cogeneration application, plus approximately 150 to 300 GW(t) for application to fossil conversion processes. HTR cogeneration plants appear attractive in the near term for new industrial plants using large amounts of process heat, possibly for present industrial plants in conjunction with molten-salt energy distribution systems, and also for some fossil conversion processes. HTR reformer systems will take longer to develop, but are applicable to chemicals production, a larger number of fossil conversion processes, and to chemical heat pipes

  15. Performance characteristics of a shower cooling tower

    International Nuclear Information System (INIS)

    Qi Xiaoni; Liu Zhenyan; Li Dandan

    2007-01-01

    This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. In contrast to conventional cooling towers, the cooling tower analyzed in this study is void of fill. By means of efficient atomization nozzles, a shower cooling tower (SCT) is possible to be applied in industry, which, in terms of water cooling, energy saving and equipment investing, is better than conventional packed cooling towers. However, no systematic thermodynamic numerical method could be found in the literature up to now. Based on the kinetic model and mass and heat transfer model, this paper has developed a one dimensional model for studying the motional process and evaporative cooling process occurring at the water droplet level in the SCT. The finite difference approach is used for three motional processes to obtain relative parameters in each different stage, and the possibility of the droplets being entrained outside the tower is fully analyzed. The accuracy of this model is checked by practical operational results from a full scale prototype in real conditions, and some exclusive factors that affect the cooling characteristics for the SCT are analyzed in detail. This study provides the theoretical foundation for practical application of the SCT in industry

  16. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  17. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  18. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  19. Review of cavity optomechanical cooling

    International Nuclear Information System (INIS)

    Liu Yong-Chun; Hu Yu-Wen; Xiao Yun-Feng; Wong Chee Wei

    2013-01-01

    Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and applications ranging from high-precision metrology to quantum information processing. For these purposes, a crucial step is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the motional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then, the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit. (topical review - quantum information)

  20. 2D study of wind forces around multiple cooling towers using ...

    African Journals Online (AJOL)

    user

    above, a pure numerical study were done on three and five cooling towers (in ... Invent of high speed digital computer technology had enabled the solution of flow ... The purpose of this work was to present a new design method, which ...

  1. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  2. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  3. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    OpenAIRE

    Yu. A. Rounov; O. G. Shirokov; D. I. Zalizny; D. M. Los

    2004-01-01

    The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  4. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  5. Direct Urca Processes Involving Proton 1 S 0 Superfluidity in Neutron Star Cooling

    Science.gov (United States)

    Xu, Yan; Yu, Zi; Zhang, Xiao-Jun; Fan, Cun-Bo; Liu, Guang-Zhou; Zhao, En-Guang; Huang, Xiu-Lin; Liu, Cheng-Zhi

    2018-04-01

    A detailed description of the baryon direct Urca processes A: n\\to p+e+{\\bar{ν }}e, B: Λ \\to p+e+{\\bar{ν }}e and C: {\\Xi }-\\to Λ +e+{\\bar{ν }}e related to the neutron star cooling is given in the relativistic mean field approximation. The contributions of the reactions B and C on the neutrino luminosity are calculated by means of the relativistic expressions of the neutrino energy losses. Our results show that the total neutrino luminosities of the reactions A, B and C within the mass range (1.603–2.067) M⊙ ((1.515–1.840) M⊙ for TM1 model) for GM1 model are larger than the corresponding values for neutron star without hyperons. Furthermore, although the neutrino emissivity of the reaction A is suppressed with the appearance of the proton 1 S 0 superfluid, the contribution of the reactions B and C can still quicken a massive neutron star cooling. In particular, the reaction C in PSR J1614-2230 and J0348+0432 is not suppressed by the proton 1 S 0 superfluid due to the higher threshold density of the reaction C, which will further speed up the two pulsars cooling. Supported by the National Natural Science Foundation of China under Grant Nos. 11447165, 11373047, 11404336 and U1731240, Youth Innovation Promotion Association, CAS under Grant No. 2016056, and the Development Project of Science and Technology of Jilin Province under Grant No. 20180520077JH

  6. Multiple-predators-based capture process on complex networks

    International Nuclear Information System (INIS)

    Sharafat, Rajput Ramiz; Pu Cunlai; Li Jie; Chen Rongbin; Xu Zhongqi

    2017-01-01

    The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter α . We derive the distribution of the lamb’s lifetime and the expected lifetime 〈 T 〉. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. Moreover, we study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than on large-degree nodes to prolong the lifetime of the lamb. The dense or homogeneous network structures are against the survival of the lamb. We also discuss how to improve the capture efficiency in our model. (paper)

  7. Efficient Adoption and Assessment of Multiple Process Improvement Reference Models

    Directory of Open Access Journals (Sweden)

    Simona Jeners

    2013-06-01

    Full Text Available A variety of reference models such as CMMI, COBIT or ITIL support IT organizations to improve their processes. These process improvement reference models (IRMs cover different domains such as IT development, IT Services or IT Governance but also share some similarities. As there are organizations that address multiple domains and need to coordinate their processes in their improvement we present MoSaIC, an approach to support organizations to efficiently adopt and conform to multiple IRMs. Our solution realizes a semantic integration of IRMs based on common meta-models. The resulting IRM integration model enables organizations to efficiently implement and asses multiple IRMs and to benefit from synergy effects.

  8. Stochastic cooling in muon colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW

  9. Investigation of thermal and hydrodynamic processes in the oil transformer radiator cooling system

    OpenAIRE

    Ільїн, Сергій Віталійович

    2013-01-01

    Despite the large number of publications in the field of transformer, heat transfer and hydrodynamic processes that take place in the radiator cooling systems, lack of attention. However, for a comprehensive analysis of the entire oil circuit in the transformer, it is necessary to take into account the work of the radiator, as it was on the efficiency of removal of heat in it will depend on the oil temperature at the inlet of the transformer. To achieve these objectives, this paper describes ...

  10. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  11. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    Directory of Open Access Journals (Sweden)

    Yu. A. Rounov

    2004-01-01

    Full Text Available The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  12. Multiple electron processes of He and Ne by proton impact

    Science.gov (United States)

    Terekhin, Pavel Nikolaevich; Montenegro, Pablo; Quinto, Michele; Monti, Juan; Fojon, Omar; Rivarola, Roberto

    2016-05-01

    A detailed investigation of multiple electron processes (single and multiple ionization, single capture, transfer-ionization) of He and Ne is presented for proton impact at intermediate and high collision energies. Exclusive absolute cross sections for these processes have been obtained by calculation of transition probabilities in the independent electron and independent event models as a function of impact parameter in the framework of the continuum distorted wave-eikonal initial state theory. A binomial analysis is employed to calculate exclusive probabilities. The comparison with available theoretical and experimental results shows that exclusive probabilities are needed for a reliable description of the experimental data. The developed approach can be used for obtaining the input database for modeling multiple electron processes of charged particles passing through the matter.

  13. Late Quaternary cooling rate constrained by multiple IRSL thermochronometers of potassium feldspars for granites from Kongur Shan, Chinese Pamir

    Science.gov (United States)

    Qin, Jintang; Chen, Jie; Valla, Pierre; Herman, Frédéric

    2015-04-01

    The Kongur Shan (East Pamir), located at the northwestern Tibetan Plateau, is one of the most active orogens on Earth, where both tectonic processes along major active faults and climatic forcing (extensive glaciers coverage) are contributing to the regional landscape evolution. The exhumation rates since late Miocene was constrained to be ~6.5 - 4.2 mm/yr. However, it is still debated whether the exhumation rate accelerated since the Quaternary, of which the climate was featured by the cyclic glaciations with periods of 100 ka and 40 ka. In this study, we tried to employ luminescence thermochronology, which is a still in developing method, to resolve the impact of glacial cycles on exhumation rate. Our study site is located ~10 km to the east of the active Kongur normal fault, along the major valley of Gez river. We sampled three granite rocks from a sub-horizontal tunnel across the granite massif; one was from the entrance of the tunnel, and other two samples were from inside of the tunnel, where the measured ambient temperature is as high as 60-70 ° C. The distances of these samples are within 2 km. Four types of IRSL signals extracted from potassium feldspars (K-feldspars) were measured for each individual sample, and the results of isothermal decay experiments indicated these signals were of different thermal stabilities. Therefore, they may serve as four thermochronometers with different closure temperature. We employ these multiple thermochronometers together for each single sample to constrain their cooling rates. Our preliminary results, which are based on the simplified luminescence model of K-feldspars, suggest that the averaged cooling rate of the last 200 ka is as high as 1.4 oC/ka, which corresponds to an exhumation rate of ~ 2.3 to 0.9 cm/yr with the geothermal gradient assumed to be 60 to 150 oC/km. It seems to imply that the glacial cycles during the Quaternary substantially accelerated the exhumation rate of granite massif of Kongur Shan.

  14. Process cooling for Africa's food industry

    Energy Technology Data Exchange (ETDEWEB)

    Klempert, Oliver

    2011-07-01

    Temperatures exceeding 40 C are the order of the day, the sun burns brightly in the sky. In Tunisia and Morocco, an international team of scientists now uses solar energy to keep perishable foodstuffs such as milk, wine, fruit and vegetables fresh by means of solar cooling. (orig.)

  15. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    Science.gov (United States)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  16. A First Study of a Scintillating Fibre Detector for a Muon Ionisation Cooling Experiment

    CERN Document Server

    McKigney, E A

    2001-01-01

    For the cooling experiment currently under investigation, it is necessary to track muons in a magnetic field with a precision of at least 0.2mm. A minimum of multiple scattering should be introduced by the measurement process. We investigate a detector made of three layers of 0.5mm square cross section scintillating fibres, which contributes only 0.4% of a radiation length to multiple scattering. To match the required instantaneous particle rate, a fast read-out system based on LHC class components is presented. With this system, it would be possible to record 960 events per burst with bursts every few ms.

  17. Use of process steam in vapor absorption refrigeration system for cooling and heating applications: An exergy analysis

    Directory of Open Access Journals (Sweden)

    S. Anand

    2016-12-01

    Full Text Available The exponential increase in cost of conventional fuels shifts the interest toward the use of alternative as well waste energy sources for the operation of refrigeration and air-conditioning units. The present study therefore analyzes the performance of a process steam-operated vapor absorption system for cooling and heating applications using ammonia and water as working fluids based on first and second laws of thermodynamics. A mathematical model has been developed based on exergy analysis to investigate the performance of the system. The different performance parameters such as coefficient of performance (COP and exergetic efficiency of absorption system for cooling and heating applications are also calculated under different operating conditions. The results obtained show that cooling and heating COP along with second law efficiency (exergy efficiency increases with the heat source temperature at constant evaporator, condenser, and absorber temperature. Also, COP as well as exergy efficiency increases with an increase in the evaporator temperature at constant generator, condenser, and absorber temperature. The effect of ambient temperature on the exergetic efficiency for cooling and heating applications is also studied. The results obtained from the simulation studies can be used to optimize different components of the system so that the performance can be improved significantly.

  18. Radiative Cooling: Principles, Progress, and Potentials

    Science.gov (United States)

    Hossain, Md. Muntasir

    2016-01-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state‐of‐the‐art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated. PMID:27812478

  19. Reliability analysis of nuclear component cooling water system using semi-Markov process model

    International Nuclear Information System (INIS)

    Veeramany, Arun; Pandey, Mahesh D.

    2011-01-01

    Research highlights: → Semi-Markov process (SMP) model is used to evaluate system failure probability of the nuclear component cooling water (NCCW) system. → SMP is used because it can solve reliability block diagram with a mixture of redundant repairable and non-repairable components. → The primary objective is to demonstrate that SMP can consider Weibull failure time distribution for components while a Markov model cannot → Result: the variability in component failure time is directly proportional to the NCCW system failure probability. → The result can be utilized as an initiating event probability in probabilistic safety assessment projects. - Abstract: A reliability analysis of nuclear component cooling water (NCCW) system is carried out. Semi-Markov process model is used in the analysis because it has potential to solve a reliability block diagram with a mixture of repairable and non-repairable components. With Markov models it is only possible to assume an exponential profile for component failure times. An advantage of the proposed model is the ability to assume Weibull distribution for the failure time of components. In an attempt to reduce the number of states in the model, it is shown that usage of poly-Weibull distribution arises. The objective of the paper is to determine system failure probability under these assumptions. Monte Carlo simulation is used to validate the model result. This result can be utilized as an initiating event probability in probabilistic safety assessment projects.

  20. Feedback circuit application for multiple fluid temperature rise or drop; Visestruko dizanje i spustanje temperature fluida povratnom spregom

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M [Tehnoloski fakultet Novi Sad (Yugoslavia); Stefanovic, M [Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia); Blagojevic, B [MaSinski fakultet, Nis (Yugoslavia); Stoiljkovic, S [Tehnoloski fakultet, Leskovac (Yugoslavia)

    1995-07-01

    Multiplication of temperature rise or drop is proposed and explained by Feedback method. Application of this method is proposed for different elementary processes of temperature variation (non isothermal processes). The paper points to possibilities of increasing performance of existing apparatuses and new ways for performing heating or cooling. (author)

  1. A three-dimensional mathematical model to predict air-cooling flow and temperature distribution of wire loops in the Stelmor air-cooling system

    International Nuclear Information System (INIS)

    Hong, Lingxiang; Wang, Bo; Feng, Shuai; Yang, Zhiliang; Yu, Yaowei; Peng, Wangjun; Zhang, Jieyu

    2017-01-01

    Highlights: • A 3-dimentioanl mathematical models for complex wire loops was set up in Stelmor. • The air flow field in the cooling process was simulated. • The convective heat transfer coefficient was simulated coupled with air flow field. • The temperature distribution with distances was predicted. - Abstract: Controlling the forced air cooling conditions in the Stelmor conveyor line is important for improving the microstructure and mechanical properties of steel wire rods. A three-dimensional mathematical model incorporating the turbulent flow of the cooling air and heat transfer of the wire rods was developed to predict the cooling process in the Stelmor air-cooling line of wire rolling mills. The distribution of cooling air from the plenum chamber and the forced convective heat transfer coefficient for the wire loops were simulated at the different locations over the conveyor. The temperature profiles and cooling curves of the wire loops in Stelmor conveyor lines were also calculated by considering the convective heat transfer, radiative heat transfer as well as the latent heat during transformation. The calculated temperature results using this model agreed well with the available measured results in the industrial tests. Thus, it was demonstrated that this model can be useful for studying the air-cooling process and predicting the temperature profile and microstructure evolution of the wire rods.

  2. ANL stochastic-cooling experiments using the FNAL 200-MeV cooling ring

    International Nuclear Information System (INIS)

    Hogrefe, R.L.; Kellogg, K.D.; Konecny, R.S.; Kramer, S.L.; Simpson, J.D.; Suddeth, D.E.; Hardek, T.W.

    1981-01-01

    Studies of stochastic momentum cooling are being conducted on the FNAL 200-MeV Storage Ring. The specific goal of the activity is to establish confidence in the theory and simulation methods used to describe the cooling process, and to develop techniques and devices suitable for use in the antiproton-accumulation scheme now planned for construction at FNAL. A summary of the activity, including hardware design, results of experiments, comparison with theory, and implications for the antiproton accumulator are presented

  3. Solid radioactive waste processing system for light water cooled reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Design, construction and performance requirements are given for the operation of the solid radioactive waste processing system for light water-cooled reactor plants. All radioactive or contaminated materials, including spent air and liquid filter elements, spent bead resins, filter sludge, spent powdered resins, evaporator and reverse osmosis concentrates, and dry radioactive wastes are to be processed in appropriate portions of the system. Sections of the standard cover: overall system requirements; equipment requirement; controls and instrumentation; physical arrangement; system capacity and redundancy; operation and maintenance; and system construction and testing. Provisions contained in this standard are to take precedence over ANS-51.1-1973(N18.2-1973) and its revision, ANS-51.8-1975(N18.2a-1975), Sections 2.2 and 2.3. The product resulting from the solid radioactive waste processing system must meet criteria imposed by standards and regulations for transportation and burial (Title 10, Code of Federal Regulations, Part 71, Title 49, Code of Federal Regulations, Parts 100 to 199). As a special feature, all statements in this standard which are related to nuclear safety are set off in boxes

  4. Performance Analyses of Counter-Flow Closed Wet Cooling Towers Based on a Simplified Calculation Method

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wei

    2017-02-01

    Full Text Available As one of the most widely used units in water cooling systems, the closed wet cooling towers (CWCTs have two typical counter-flow constructions, in which the spray water flows from the top to the bottom, and the moist air and cooling water flow in the opposite direction vertically (parallel or horizontally (cross, respectively. This study aims to present a simplified calculation method for conveniently and accurately analyzing the thermal performance of the two types of counter-flow CWCTs, viz. the parallel counter-flow CWCT (PCFCWCT and the cross counter-flow CWCT (CCFCWCT. A simplified cooling capacity model that just includes two characteristic parameters is developed. The Levenberg–Marquardt method is employed to determine the model parameters by curve fitting of experimental data. Based on the proposed model, the predicted outlet temperatures of the process water are compared with the measurements of a PCFCWCT and a CCFCWCT, respectively, reported in the literature. The results indicate that the predicted values agree well with the experimental data in previous studies. The maximum absolute errors in predicting the process water outlet temperatures are 0.20 and 0.24 °C for the PCFCWCT and CCFCWCT, respectively. These results indicate that the simplified method is reliable for performance prediction of counter-flow CWCTs. Although the flow patterns of the two towers are different, the variation trends of thermal performance are similar to each other under various operating conditions. The inlet air wet-bulb temperature, inlet cooling water temperature, air flow rate, and cooling water flow rate are crucial for determining the cooling capacity of a counter-flow CWCT, while the cooling tower effectiveness is mainly determined by the flow rates of air and cooling water. Compared with the CCFCWCT, the PCFCWCT is much more applicable in a large-scale cooling water system, and the superiority would be amplified when the scale of water

  5. Solutions for Liquid Nitrogen Pre-Cooling in Helium Refrigeration Cycles

    CERN Document Server

    Wagner, U

    2000-01-01

    Pre-cooling of helium by means of liquid nitrogen is the oldest and one of the most common process features used in helium liquefiers and refrigerators. Its two principle tasks are to allow or increase the rate of pure liquefaction, and to permit the initial cool-down of large masses to about 80 K. Several arrangements for the pre-cooling process are possible depending on the desired application. Each arrangement has its proper advantages and drawbacks. The aim of this paper is to review the possible process solutions for liquid nitrogen pre-cooling and their particularities.

  6. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation concept...... of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state-of-the-art building...

  7. Phase transitions in multiplicative competitive processes

    International Nuclear Information System (INIS)

    Shimazaki, Hideaki; Niebur, Ernst

    2005-01-01

    We introduce a discrete multiplicative process as a generic model of competition. Players with different abilities successively join the game and compete for finite resources. Emergence of dominant players and evolutionary development occur as a phase transition. The competitive dynamics underlying this transition is understood from a formal analogy to statistical mechanics. The theory is applicable to bacterial competition, predicting novel population dynamics near criticality

  8. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. Perceived Cooling Using Asymmetrically-Applied Hot and Cold Stimuli.

    Science.gov (United States)

    Manasrah, Ahmad; Crane, Nathan; Guldiken, Rasim; Reed, Kyle B

    2017-01-01

    Temperature perception is a highly nonlinear phenomenon with faster rates of change being perceived at much lower thresholds than slower rates. This paper presents a method that takes advantage of this nonlinear characteristic to generate a perception of continuous cooling even though the average temperature is not changing. The method uses multiple thermal actuators so that a few are cooling quickly while the rest of the actuators are heating slowly. The slowly-heating actuators are below the perceptual threshold temperature change and hence are not perceived, while the quickly-cooling actuators are above the perceptual temperature change, hence are perceived. As a result, a feeling of decreasing temperature was elicited, when in fact, there was no net change in the temperature of the skin. Three sets of judiciously designed experiments were conducted in this study, investigating the effects of actuator sizes, forearm measurement locations, patterns of actuator layout, and various heating/cooling time cycles. Our results showed that 19 out 21 participants perceived the continuous cooling effect as hypothesized. Our research indicates that the measurement location, heating/cooling cycle times, and arrangement of the actuators affect the perception of continuous cooling.

  10. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  11. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    Science.gov (United States)

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  12. Implementation of thermoelectric module for cooling process of microscale experimental room

    Science.gov (United States)

    Gołebiowska, Justyna; Żelazna, Agnieszka; Zioło, Paweł

    2017-08-01

    Thermoelectric modules, also known as Peltier modules, are used for cooling small devices and also, according to literature, in refrigeration. They can be an alternative to conventional refrigeration systems based on the use of compressors chillers powered by AC power. Peltier modules are powered by direct current (DC), which allows to power them directly supply by photovoltaic modules. In this paper operation of thermoelectric module used for cooling experimental room of cubature 0.125 m3 is presented. The study involves investigation of temperatures achieved on the cold and hot sides of module and inside the experimental room depending on the values of module supplying current. These studies provide an introduction to the assessment of the influence of different methods of heat removal on the hot side of thermoelectric module on cooling efficiency of whole system.

  13. New Technology in Hydrogen Absorbers for Muon Cooling Channels

    CERN Document Server

    Cummings, M A C

    2005-01-01

    Ionization cooling is the only technique fast enough to cool and focus muons for neutrino factories and muon colliders, and hydrogen is the optimal material for maximum cooling and minimal multiple scattering. Liquid hydrogen absorber R&D for the Muon Collaboration has proceeded on parallel and complementary fronts. The continuing LH2 absorber engineering and technical developments by the MuCool group conducted by ICAR* institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University, in cooperation with Fermilab, will be summarized, including results from the first hydrogen absorber tests at the newly constructed FNAL Mucool Test Area (MTA). The program includes designs for the high-powered test of an absorber prototype (external heat exchange) at the MTA which are nearing completion to be installed by summer 2005, an alternative absorber design (internal heat exchange) being finalized for the approved cooling experiment (MICE) at Rutherford-Appleton Laboratory, and a novel idea for ...

  14. Sequential cooling insert for turbine stator vane

    Science.gov (United States)

    Jones, Russel B

    2017-04-04

    A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.

  15. Cooling Performance of TBM-shield Designed for Manufacturability

    International Nuclear Information System (INIS)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun; Yoon, Jae Sung; Ahn, Mu Young

    2016-01-01

    Helium cooled ceramic reflector (HCCR) test blanket module (TBM) is composed of four sub-modules and a common back manifold (BM). The associated shield is a water-cooled 316L(N)-IG block with internal cooling channels. The purpose of the TBM-shield is to make the condition with the allowable neutron flux and dose rate level. The radially continuous layers of water and structure were configured. The main purpose of the shield is to reduce the neutron flux by absorbing the neutron in the structure. The water could act as the moderator and cool down the structure which is heated due to the reaction with the neutrons. The moderated neutrons are easily absorbed by the structure. It could meet the criteria for the minimum neutron flux by increasing the thickness of structure. The formation of inside cooling channel in the TBM-shield should be considered while maintaining the allowable temperature range. In this work, a manufacturing process including the formation of inside cooling channel was presented. Current design and thermal analysis results for the TBM-shield were presented. The geometry of the shield blocks was considerably changed. The coolant channel was exposed to the outer surface of the TBM-shield. The overall manufacturing process is simplified compared with the previous process of CD model

  16. Cooling Performance of TBM-shield Designed for Manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun; Yoon, Jae Sung [KAERI, Daejeon (Korea, Republic of); Ahn, Mu Young [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    Helium cooled ceramic reflector (HCCR) test blanket module (TBM) is composed of four sub-modules and a common back manifold (BM). The associated shield is a water-cooled 316L(N)-IG block with internal cooling channels. The purpose of the TBM-shield is to make the condition with the allowable neutron flux and dose rate level. The radially continuous layers of water and structure were configured. The main purpose of the shield is to reduce the neutron flux by absorbing the neutron in the structure. The water could act as the moderator and cool down the structure which is heated due to the reaction with the neutrons. The moderated neutrons are easily absorbed by the structure. It could meet the criteria for the minimum neutron flux by increasing the thickness of structure. The formation of inside cooling channel in the TBM-shield should be considered while maintaining the allowable temperature range. In this work, a manufacturing process including the formation of inside cooling channel was presented. Current design and thermal analysis results for the TBM-shield were presented. The geometry of the shield blocks was considerably changed. The coolant channel was exposed to the outer surface of the TBM-shield. The overall manufacturing process is simplified compared with the previous process of CD model.

  17. Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes

    International Nuclear Information System (INIS)

    Arenas, Zochil González; Barci, Daniel G

    2012-01-01

    Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward–Takahashi identities. (paper)

  18. Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes

    Science.gov (United States)

    González Arenas, Zochil; Barci, Daniel G.

    2012-12-01

    Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward-Takahashi identities.

  19. Multifractal detrended fluctuation analysis of analog random multiplicative processes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.B.M.; Vermelho, M.V.D. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil); Lyra, M.L. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)], E-mail: marcelo@if.ufal.br; Viswanathan, G.M. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)

    2009-09-15

    We investigate non-Gaussian statistical properties of stationary stochastic signals generated by an analog circuit that simulates a random multiplicative process with weak additive noise. The random noises are originated by thermal shot noise and avalanche processes, while the multiplicative process is generated by a fully analog circuit. The resulting signal describes stochastic time series of current interest in several areas such as turbulence, finance, biology and environment, which exhibit power-law distributions. Specifically, we study the correlation properties of the signal by employing a detrended fluctuation analysis and explore its multifractal nature. The singularity spectrum is obtained and analyzed as a function of the control circuit parameter that tunes the asymptotic power-law form of the probability distribution function.

  20. The Schmehausen cable net cooling tower

    International Nuclear Information System (INIS)

    Schlaich, J.; Mayr, G.; Weber, P.; Jasch, E.

    1976-01-01

    The prototype of a large cable net shell as a natural-draught cooling tower for the THTR-300 is presented. Results of wind tunnel tests and calculations are given, and the capacity is discussed. Design features of the main components are presented in illustrations and are described with regard to the construction process of the cooling tower. Finally, it is shown that the cable net cooling tower is a suitable construction for large dimensions and caving-in or seismic areas. (orig./HP) [de

  1. Aligning business processes and IT of multiple collaborating organisations

    NARCIS (Netherlands)

    Kassahun, Ayalew

    2017-01-01

    When multiple organisations want to collaborate with one another they have to integrate their business processes. This requires aligning the collaborative business processes and the underlying IT (Information Technology). Realizing the required alignment is, however, not trivial and is the

  2. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    OpenAIRE

    T. A. Ismailov; D. V. Evdulov; A. G. Mustafaev; D. K. Ramazanova

    2014-01-01

    In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling

  3. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.

    Science.gov (United States)

    Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah

    2018-01-01

    Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.

  4. Laser cooling of atoms and ions

    International Nuclear Information System (INIS)

    Morigi, G.

    1999-02-01

    This thesis covers my work in the field of theoretical quantum optics, focusing on laser cooling of trapped atoms and ions. Laser cooling has been extensively investigated in the last twenty years, opening the possibility in experiments to move well into the quantum regime, where quantum statistical or quantum motional effects become pronounced. The successful preparation of cold atoms by means of laser cooling has recently raised the interest in the preparation of several or even many particles in a pure quantum state of the whole system. This goal imposes certain experimental circumstances, in particular the interaction between the atoms may play a significant role and affect the conditions for laser cooling considerably. Hence, there is great interest in developing cooling schemes which are compatible with such experimental conditions and in studying theoretically laser cooling of interacting particles. The work contained in this thesis contributes to this rapidly developing field, and it can be divided in two parts. In the first part, it presents an investigation of new schemes of laser cooling of single atoms or ions in traps where the amplitude of the particle's motion is comparable with the laser wavelength. This regime is typical of experiments with ultracold, weakly interacting atomic gases, and equally relevant to quantum information processing with trapped ions. In the second part, laser cooling of strongly interacting ions in a trap is investigated, with particular attention to the effect of the Coulomb interaction on the cooling process. This system is a paradigm for the experimental implementation of a quantum computer and is currently intensively studied. The thesis is divided into five chapters, of which the first one constitutes an introduction to laser cooling and to a series of concepts which are recurrent throughout this work. The other four chapters present my personal contributions to the field. Each of them contains first a general

  5. Multiple lead seal assembly for a liquid-metal-cooled fast-breeder nuclear reactor

    International Nuclear Information System (INIS)

    Hutter, E.; Pardini, J.A.

    1977-01-01

    A reusable multiple lead seal assembly provides leak-free passage of stainless-steel-clad instrument leads through the cover on the primary tank of a liquid-metal-cooled fast-breeder nuclear reactor. The seal isolates radioactive argon cover gas and sodium vapor within the primary tank from the exterior atmosphere and permits reuse of the assembly and the stainless-steel-clad instrument leads. Leads are placed in flutes in a seal body, and a seal shell is then placed around the seal body. Circumferential channels in the body and inner surface of the shell are contiguous and together form a conduit which intersects each of the flutes, placing them in communication with a port through the wall of the seal shell. Liquid silicone rubber sealant is injected into the flutes through the port and conduit; the sealant fills the space in the flutes not occupied by the leads themselves and dries to a rubbery hardness. A nut, threaded onto a portion of the seal body not covered by the seal shell, jacks the body out of the shell and shears the sealant without damage to the body, shell, or leads. The leads may then be removed from the body. The sheared sealant is cleaned from the body, leads, and shell and the assembly may then be reused with the same or different leads. 3 claims, 6 figures

  6. Broadband Cooling Spectra of Hot Electrons and Holes in PbSe Quantum Dots

    NARCIS (Netherlands)

    Spoor, F.C.M.; Tomić, Stanko; Houtepen, A.J.; Siebbeles, L.D.A.

    2017-01-01

    Understanding cooling of hot charge carriers in semiconductor quantum dots (QDs) is of fundamental interest and useful to enhance the performance of QDs in photovoltaics. We study electron and hole cooling dynamics in PbSe QDs up to high energies where carrier multiplication occurs. We

  7. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  8. Engineering structure design and fabrication process of small sized China helium-cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Wang Zeming; Chen Lu; Hu Gang

    2014-01-01

    Preliminary design and analysis for china helium-cooled solid breeder (CHHC-SB) test blanket module (TBM) have been carried out recently. As partial verification that the original size module was reasonable and the development process was feasible, fabrication work of a small sized module was to be carried out targetedly. In this paper, detailed design and structure analysis of small sized TBM was carried out based on preliminary design work, fabrication process and integrated assembly process was proposed, so a fabrication for the trial engineering of TBM was layed successfully. (authors)

  9. A data-driven multiplicative fault diagnosis approach for automation processes.

    Science.gov (United States)

    Hao, Haiyang; Zhang, Kai; Ding, Steven X; Chen, Zhiwen; Lei, Yaguo

    2014-09-01

    This paper presents a new data-driven method for diagnosing multiplicative key performance degradation in automation processes. Different from the well-established additive fault diagnosis approaches, the proposed method aims at identifying those low-level components which increase the variability of process variables and cause performance degradation. Based on process data, features of multiplicative fault are extracted. To identify the root cause, the impact of fault on each process variable is evaluated in the sense of contribution to performance degradation. Then, a numerical example is used to illustrate the functionalities of the method and Monte-Carlo simulation is performed to demonstrate the effectiveness from the statistical viewpoint. Finally, to show the practical applicability, a case study on the Tennessee Eastman process is presented. Copyright © 2013. Published by Elsevier Ltd.

  10. Data Processing and Measuring System for Studying the Cooling Capacity of Quenchants

    Science.gov (United States)

    Tsaplin, S. V.; Bolychev, S. A.; Shemanaev, D. V.; Mishagin, B. S.

    2014-09-01

    A domestically produced device for determining the cooling capacity of quenchants is developed on the basis of the ISO 9001, ISO 9950, ASTM D6200-01, and ASTM D6482-01 standards. Acomparison of the results of a determination of the parameters of cooling environments obtained by means of the present device and a foreign counterpart is carried out.

  11. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  12. Plants for passive cooling. A preliminary investigation of the use of plants for passive cooling in temperate humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Spirn, A W; Santos, A N; Johnson, D A; Harder, L B; Rios, M W

    1981-04-01

    The potential of vegetation for cooling small, detached residential and commercial structures in temperate, humid climates is discussed. The results of the research are documented, a critical review of the literature is given, and a brief review of energy transfer processes is presented. A checklist of design objectives for passive cooling, a demonstration of design applications, and a palette of selected plant species suitable for passive cooling are included.

  13. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2014-01-01

    Full Text Available In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling

  14. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  15. LS1 Report: Summer cool down

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    As the final LS1 activities are carried out in the machine, teams have been cooling down the accelerator sector by sector in preparation for beams.   The third sector of the LHC to be cooled down - sector 1-2 - has seen the process begin this week. During the cool-down phase, survey teams are measuring and smoothing (or realigning) the magnets at cold. By the end of August, five sectors of the machine will be in the process of cooling down, with one (sector 6-7) at cold. The LHC Access Safety System (LASS) is now being commissioned, and will be validated during the DSO tests at the beginning of October. As teams consolidate the modifications made to LASS during the shutdown, many points were closed for testing purposes. The CSCM (copper stabiliser continuity measurement) tests have been completed in the first sector (6-7) and no defect has been found. These results will be presented to the LHC Machine Committee next week. CSCM tests will start in the second sector in mid-August. Following many...

  16. Cool-down performance of CICC superconducting coils for the CHMFL

    Science.gov (United States)

    Xie, Y.; Li, J.; Ouyang, Z. R.

    2017-10-01

    A hybrid magnet composed of a water-cooled magnet and a superconducting magnet was developed at the High Magnetic Field Laboratory of the Chinese Academy of Sciences. The superconducting coils made of Nb3Sn CICC were cooled by the forced flow of supercritical helium at 4.5 K. The paper presents the cryogenic system framework, and reports the characteristics of the supercritical helium in a cable-in-conduit conductor (CICC), including the friction factor change during the cooling process, the heat transfer coefficient from 4.6 K to 6.8 K, and the helium mass flow rate distribution. After the 23-day cooling process, the temperature reached 4.5 K. The operation process was introduced in the paper.

  17. Multiple production of hadrons in deep-inelastic processes

    International Nuclear Information System (INIS)

    Kiselev, A.V.; Petrov, V.A.

    1984-01-01

    A formula to describe an average hadron multiplicity on deep-inelastic processes has been proposed. On the basis of available experimental data predictions are made about the behaviour of average multiplicity at higher energies. The W-dependence of obserVed in experiments at present remains invariable up to energies W approximately 20-25 GeV. At W> or approXimately 25 GeV there will begin a rapid ibcrease of , which is analogous to the increase, observed for sub(esup(+)esup(-)) and is of the same nature

  18. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    This report is reviewing different heat driven technologies for the production of cooling. It is shown that the supply of cooling gives the highest fuel utilization if heat from CHP production is used for the production of cooling instead of maximizing the electricity output in a condensing plant. High fuel utilization is reached since the direct production of cooling from heat is a thermodynamic shortcut as compared to the production of electricity as an intermediate product before cooling is produced. At direct production of cooling from heat it is possible to obtain 70 percent of the obtainable cooling of an ideal process. If electricity is produced from heat, 70 percent electricity could be obtained as compared to an ideal process. If this electricity would be used for the production of cooling 70 percent of the obtainable cooling in an ideal process would the result. The total production of cooling from heat with electricity as an intermediate product would therefore give 50 percent cooling as compared to an ideal process. Hence, heat driven cooling will give more cooling for a given fuel input. In the review of the different heat driven cooling options it was found that there are many alternatives suitable for different applications. Absorption cooling is suitable for water distributed cooling if the latent cooling load is low. Desiccant cooling is believed to have a large market in climates (applications) with high latent cooling loads. In the energy efficiency evaluation it is found that the highest fuel utilization is given for a central production of electricity using either district heating or district cooling as the energy carrier to supply cooling. In fact the potential of district heating as the energy carrier is thought to be the largest in large cities with humid climates. Further it is found that the chiller heat sink can contribute significantly to the cost in many applications, especially if water and/or electricity consumption are issues with

  19. Liquid desiccant dehumidification and regeneration process to meet cooling and freshwater needs of desert greenhouses

    KAUST Repository

    Lefers, Ryan; Bettahalli Narasimha, Murthy Srivatsa; Nunes, Suzana Pereira; Fedoroff, Nina; Davies, Philip A.; Leiknes, TorOve

    2016-01-01

    practice of evaporative cooling for greenhouses consumes large amounts of fresh water. In Saudi Arabia, the most common greenhouse cooling schemes are fresh water-based evaporative cooling, often using fossil groundwater or energy-intensive desalinated

  20. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  1. Spent fuel pool spray cooling system for the AP1000 {sup registered}

    Energy Technology Data Exchange (ETDEWEB)

    Vujic, Zoran; Sassen, Felix; Tietsch, Wolfgang [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2013-07-01

    The AP1000 {sup registered} plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for Design Basis Events and Beyond Design Basis Accidents (BDBA). The AP1000 {sup registered} plant lines of defense with respect to Spent Fuel Pool (SFP) cooling are as follows: 1. During normal and abnormal conditions, defense-in-depth and duty systems provide highly reliable SFP cooling, supplied by offsite AC power or the onsite Standby Diesel Generators. 2. For unlikely events with extended loss of AC power (i.e. station black-out) and/or loss of heat sink, spent fuel cooling can be still provided indefinitely by: 2a. Passive systems, requiring minimal or no operator actions, sufficient for at least 72 hours under all possible loading conditions. 2b. After 3 days, several different means are provided to continue SFP cooling using installed plant equipment as well as off-site equipment with built-in connections. 3. Even for BDBA with postulated SFP damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 {sup registered} SFP Spray System provides an additional line of defense to prevent spent fuel damage. (orig.)

  2. Feedback circuit application for multiple fluid temperature rise or drop; Visestruko dizanje i spustanje temperature fluida povratnom spregom

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M [Tehnoloski fakultet Novi Sad (Yugoslavia); Stefanovic, M [Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia); Blagojevic, B [MaSinski fakultet, Nis (Yugoslavia); Stoiljkovic, S [Tehnoloski fakultet, Leskovac (Yugoslavia)

    1996-12-31

    Multiplication of temperature rise or drop is proposed and explained by Feedback method. Application of this method is proposed for different elementary processes of temperature variation (non isothermal processes). The paper points to possibilities of increasing performance of existing apparatuses and new ways for performing heating or cooling. (author.) 2 refs. 3 figs. 1 tabs.

  3. Investigations on passive containment cooling

    International Nuclear Information System (INIS)

    Knebel, J.U.; Cheng, X.; Neitzel, H.J.; Erbacher, F.J.; Hofmann, F.

    1997-01-01

    The composite containment design for advanced LWRs that has been examined under the PASCO project is a promising design concept for purely passive decay heat removal after a severe accident. The passive cooling processes applied are natural convection and radiative heat transfer. Heat transfer through the latter process removes at an emission coefficient of 0.9 about 50% of the total heat removed via the steel containment, and thus is an essential factor. The heat transferring surfaces must have a high emission coefficient. The sump cooling concept examined under the SUCO project achieves a steady, natural convection-driven flow from the heat source to the heat sink. (orig./CB) [de

  4. Gas Mixtures for Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-04-01

    Full Text Available Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of various gas mixtures selection for micro-jet cooling.

  5. Multiple-electron processes in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs

  6. Manufacturing experiment on a cooling plate for a blanket breeder unit

    International Nuclear Information System (INIS)

    Weth, A. von der; Aktaa, J.

    2008-01-01

    Plates with curved cooling channels will be used as structural elements in a breeding blanket of a future fusion power plant. Such power plants are a promising attempt for future electrical energy production. The central manufacturing process of such cooling plates is a diffusion welding process. Such a process has been 'available' on a laboratory scale for years. But this diffusion welding process has not yet been applied on an industrial scale. This contribution documents our first attempt to transfer this to industry, a so-called uniaxial diffusion welding setup. The industrial transfer was attempted in two steps: (1) On a small cooling plate mock-up and (2) On a true-scale cooling plate. The problems with the technical transfer of the diffusion welding process from the laboratory scale to the true scale were outlined

  7. Performance of cooling installation for cyclotron Decy-13

    International Nuclear Information System (INIS)

    Edi Trijono Budisantoso; Suprapto; Sutadi

    2015-01-01

    Has been calculated the cooling installation performance of Decy-13 cyclotron. The cooling installation is analysed based on the technical specifications of each cooling component to proof the results of the design and implementation of installations meet the cooling requirement. Analysis of loss of pressure and flow rate in the piping installation is done empirically using Hazen-Williams equation while the analysis of heat transfer processes in the cooling tower is done using the help of psychometric charts that available. Cooling component consists of a condenser and associated piping systems with cooling towers and equipped with a pump to push the circulation of cooling. The calculations show that the installation of the condenser cooler uses the cooling tower LiangChi LBC-30 with a booster pump Grundfos 4 kW NF30-36T powered 47kW able to transfer heat with the coolant flow rate 136 lpm, input to output coolant pressure difference 2.1atm and the cooling temperature difference 5 °C. Conclusion of the calculation is the technical specifications of cooling components and installation already meets the needs of the cooling expected. (author)

  8. Cooling γ precipitation behavior and strengthening in powder metallurgy superalloy FGH4096

    Institute of Scientific and Technical Information of China (English)

    TIAN Gaofeng; JIA Chengchang; WEN Yin; LIU Guoquan; HU Benfu

    2008-01-01

    Two cooling schemes (continuous cooling and interrupted cooling tests) were applied to investigate the cooling γ precipitation behavior in powder metallurgy superalloy FGH4096.The effect of cooling rate on cooling γ precipitation and the development of γ precipitates during cooling process were involved in this study.The ultimate tensile strength (UTS) of the specimens in various cooling circumstances was tested.The experiential equations were obtained between the average sizes of secondary and tertiary γ precipitates,the strength,and cooling rate.The results show that they are inversely correlated with the cooling rate as well as the grain boundary changes from serrated to straight,the shape of secondary γ precipitates changes from irregular cuboidal to spherical,while the formed tertiary γ precipitates are always spherical.The interrupted cooling tests show that the average size of secondary γ precipitates increases as a linear function of interrupt temperature for a fixed cooling rate of 24℃/min.The strength first decreases and then increases against interrupt temperature,which is fundamentally caused by the multistage nucleation of γ precipitates during cooling process.

  9. Assessment of cooling tower impact

    International Nuclear Information System (INIS)

    1986-01-01

    This guideline describes the state of the art of the meteorological impact of wet cooling towers that are about 80 m to 170 m high, and have a waste heat power in the range of 1000 MW and 2500 MW. The physical processes occurring in the lowest layer of the atmosphere and their impact in the dispersion of cooling tower emissions are represented. On the basis of these facts, the impact on weather or climate in the vicinity of a high wet cooling tower is estimated. Thereby the results of the latest investigations (observations, measurements, and modeling) on the different locations of plants as well as their different power and construction types are taken into consideration. (orig.) [de

  10. Cooled Beam Diagnostics on LEIR

    CERN Document Server

    Tranquille, G; Carli, C; Chanel, M; Prieto, V; Sautier, R; Tan, J

    2008-01-01

    Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the LINAC3 are transformed into short highbrightness bunches using multi-turn injection, cooling and accumulation in the Low Energy Ion Ring, LEIR [1]. The cooling process must therefore be continuously monitored in order to guarantee that the lead ions have the required characteristics in terms of beam size and momentum spread. In LEIR a number of systems have been developed to perform these measurements. These include Schottky diagnostics, ionisation profile monitors and scrapers. Along with their associated acquisition and analysis software packages these instruments have proved to be invaluable for the optimisation of the electron cooler.

  11. Potential weather modification caused by waste heat release from large dry cooling towers

    International Nuclear Information System (INIS)

    Lee, J.

    1979-01-01

    A numerical model of a cooling tower plume is employed to study the possible atmospheric effects of thermal plumes from natural draft dry cooling towers. Calculations are performed for both single and multiple towers, each of which can dissipate the waste heat from a nominal 1000 MWe power generating unit, and the results are compared with those for wet cooling towers associated with plants of the same generating capacity. Dry cooling tower plumes are found to have a higher potential for inducing convective clouds than wet cooling tower plumes, under most summertime meteorological conditions. This is due to the fact that both the sensible heat and momentum fluxes from a dry tower in summer are approximately one order of magnitude larger than those from a wet cooling tower

  12. A novel methodology to model the cooling processes of packed horticultural produce using 3D shape models

    Science.gov (United States)

    Gruyters, Willem; Verboven, Pieter; Rogge, Seppe; Vanmaercke, Simon; Ramon, Herman; Nicolai, Bart

    2017-10-01

    Freshly harvested horticultural produce require a proper temperature management to maintain their high economic value. Towards this end, low temperature storage is of crucial importance to maintain a high product quality. Optimizing both the package design of packed produce and the different steps in the postharvest cold chain can be achieved by numerical modelling of the relevant transport phenomena. This work presents a novel methodology to accurately model both the random filling of produce in a package and the subsequent cooling process. First, a cultivar-specific database of more than 100 realistic CAD models of apple and pear fruit is built with a validated geometrical 3D shape model generator. To have an accurate representation of a realistic picking season, the model generator also takes into account the biological variability of the produce shape. Next, a discrete element model (DEM) randomly chooses surface meshed bodies from the database to simulate the gravitational filling process of produce in a box or bin, using actual mechanical properties of the fruit. A computational fluid dynamics (CFD) model is then developed with the final stacking arrangement of the produce to study the cooling efficiency of packages under several conditions and configurations. Here, a typical precooling operation is simulated to demonstrate the large differences between using actual 3D shapes of the fruit and an equivalent spheres approach that simplifies the problem drastically. From this study, it is concluded that using a simplified representation of the actual fruit shape may lead to a severe overestimation of the cooling behaviour.

  13. Smith predictor-based multiple periodic disturbance compensation for long dead-time processes

    Science.gov (United States)

    Tan, Fang; Li, Han-Xiong; Shen, Ping

    2018-05-01

    Many disturbance rejection methods have been proposed for processes with dead-time, while these existing methods may not work well under multiple periodic disturbances. In this paper, a multiple periodic disturbance rejection is proposed under the Smith predictor configuration for processes with long dead-time. One feedback loop is added to compensate periodic disturbance while retaining the advantage of the Smith predictor. With information of the disturbance spectrum, the added feedback loop can remove multiple periodic disturbances effectively. The robust stability can be easily maintained through the rigorous analysis. Finally, simulation examples demonstrate the effectiveness and robustness of the proposed method for processes with long dead-time.

  14. Experimental study and process parameters analysis on the vacuum cooling of iceberg lettuce

    International Nuclear Information System (INIS)

    He Suyan; Li Yunfei

    2008-01-01

    The vacuum cooling of iceberg lettuce was described in this paper. Based on the energy and mass balance, a mathematical model was developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of iceberg lettuce. The temporal trends of total system pressure, produce temperature such as surface temperature, center temperature, mass-average temperature, the weight loss of iceberg lettuce during vacuum cooling were predicted. Validation experimentation is achieved in the designed vacuum cooler. The experimental data were compared with the simulation results. It was found that the differences of the temperature between the simulation and the experiments were within 1 deg. C. The amount of water evaporated from the iceberg lettuce by simulation was 3.32% during the whole vacuum cooling, while the tested water loss rate was 2.97%, the maximal deviation of weight loss was within 0.59%. The simulation results agreed well with the experimental data

  15. Experimental study and process parameters analysis on the vacuum cooling of iceberg lettuce

    Energy Technology Data Exchange (ETDEWEB)

    He, Su-Yan [School of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071 (China); Li, Yun-Fei [Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University (China)

    2008-10-15

    The vacuum cooling of iceberg lettuce was described in this paper. Based on the energy and mass balance, a mathematical model was developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of iceberg lettuce. The temporal trends of total system pressure, produce temperature such as surface temperature, center temperature, mass-average temperature, the weight loss of iceberg lettuce during vacuum cooling were predicted. Validation experimentation is achieved in the designed vacuum cooler. The experimental data were compared with the simulation results. It was found that the differences of the temperature between the simulation and the experiments were within 1{sup o}C. The amount of water evaporated from the iceberg lettuce by simulation was 3.32% during the whole vacuum cooling, while the tested water loss rate was 2.97%, the maximal deviation of weight loss was within 0.59%. The simulation results agreed well with the experimental data. (author)

  16. Experimental study and process parameters analysis on the vacuum cooling of iceberg lettuce

    Energy Technology Data Exchange (ETDEWEB)

    He Suyan [School of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071 (China)], E-mail: hesuyan67829@sina.com; Li Yunfei [Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University (China)

    2008-10-15

    The vacuum cooling of iceberg lettuce was described in this paper. Based on the energy and mass balance, a mathematical model was developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of iceberg lettuce. The temporal trends of total system pressure, produce temperature such as surface temperature, center temperature, mass-average temperature, the weight loss of iceberg lettuce during vacuum cooling were predicted. Validation experimentation is achieved in the designed vacuum cooler. The experimental data were compared with the simulation results. It was found that the differences of the temperature between the simulation and the experiments were within 1 deg. C. The amount of water evaporated from the iceberg lettuce by simulation was 3.32% during the whole vacuum cooling, while the tested water loss rate was 2.97%, the maximal deviation of weight loss was within 0.59%. The simulation results agreed well with the experimental data.

  17. Exchange bias in (La,Ca)MnO3 bilayers: influence of cooling process

    International Nuclear Information System (INIS)

    Restrepo-Parra, E; Agudelo, J D; Restrepo, J

    2012-01-01

    The exchange bias (EB) phenomenon in La 2/3 Ca 1/3 MnO 3 /La 1/3 Ca 2/3 MnO 3 bilayers was studied using Monte Carlo simulations combined with the Heisenberg model and the Metropolis algorithm. These simulations were carried out using the model proposed by Kiwi for an uncompensated interface. The Hamiltonian considered several terms corresponding to the nearest neighbor interaction, magnetocrystalline anisotropy and Zeeman effect. Several interactions in the ferromagnetic (FM), antiferromagnetic (AFM) and FM/AFM interface were considered, depending on the type of interacting ion (Mn 3+eg , Mn 3+eg′ or Mn 4+d3 ). The influence of field cooling and cooling temperature on the EB was analyzed and discussed. Regarding the field cooling, it caused an increase in the EB until a certain critical value was reached. After that, its effect was almost negligible. On the other hand, at low values of cooling temperature, not only the EB but also the coercive field were enhanced. (paper)

  18. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  19. Conjugate calculation of a film-cooled blade for improvement of the leading edge cooling configuration

    Directory of Open Access Journals (Sweden)

    Norbert Moritz

    2013-03-01

    Full Text Available Great efforts are still put into the design process of advanced film-cooling configurations. In particular, the vanes and blades of turbine front stages have to be cooled extensively for a safe operation. The conjugate calculation technique is used for the three-dimensional thermal load prediction of a film-cooled test blade of a modern gas turbine. Thus, it becomes possible to take into account the interaction of internal flows, external flow, and heat transfer without the prescription of heat transfer coefficients. The focus of the investigation is laid on the leading edge part of the blade. The numerical model consists of all internal flow passages and cooling hole rows at the leading edge. Furthermore, the radial gap flow is also part of the model. The comparison with thermal pyrometer measurements shows that with respect to regions with high thermal load a qualitatively and quantitatively good agreement of the conjugate results and the measurements can be found. In particular, the region in the vicinity of the mid-span section is exposed to a higher thermal load, which requires further improvement of the cooling arrangement. Altogether the achieved results demonstrate that the conjugate calculation technique is applicable for reasonable prediction of three-dimensional thermal load of complex cooling configurations for blades.

  20. The influence of slow cooling on Y211 size and content in single-grain YBCO bulk superconductor through the infiltration-growth process

    Energy Technology Data Exchange (ETDEWEB)

    Ouerghi, A [Systems and Applied Mechanics Laboratory LASMAP, Polytechnic School of Tunisia, Rue El Kawarezmi La Marsa 743, Université de Carthage Tunis (Tunisia); Moutalbi, N., E-mail: nahed.moutalbi@yahoo.fr [Systems and Applied Mechanics Laboratory LASMAP, Polytechnic School of Tunisia, Rue El Kawarezmi La Marsa 743, Université de Carthage Tunis (Tunisia); Noudem, J.G. [CRISMAT-ENSICAEN (UMR-CNRS 6508), Université de Caen-Basse-Normandie, F-14050 Caen (France); LUSAC, Université de Caen-Basse-Normandie F-50130 Cherbourg-Octeville (France); M' chirgui, A. [Systems and Applied Mechanics Laboratory LASMAP, Polytechnic School of Tunisia, Rue El Kawarezmi La Marsa 743, Université de Carthage Tunis (Tunisia)

    2017-03-15

    Highlights: • YBCO bulk superconductors are produced by optimized Seeded Infiltration and Growth process. • The slow cooling time, in a fixed slow cooling temperature window, affects considerably the surface morphology and the bulk’s microstructure. • The Y211 particle’s size and content depend on the slow cooling time and its distribution behavior changes from one position to another. • There is an optimum slow cooling time, estimated to 88h, over which the shrinkage for both the liquid phase and the Y211 pellet is maximal, without any improvement of the crystal grain growth. • The magnetic trapped flux distribution for a given sample brings out the single grain characteristic. - Abstract: Highly textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} (Y123) superconductors were produced using modified Textured Top Seeded Infiltration Growth (TSIG) process. The liquid source is made of only Y123 powder whereas the solid source is composed of Y{sub 2}BaCuO{sub 5} (Y211) powder. We aim to control the amount of liquid that infiltrates the solid pellet, which in turn controls the final amount of Y{sub 2}BaCuO{sub 5} particles in Y123 matrix. The effect of the slow cooling kinetics on sample morphology, on grain growth and on final microstructure was too investigated. It is shown that appropriate slow cooling time may also contribute to the control of the amount of Y211 inclusions in the final structure of Y123 bulk. We report herein the Y211 particle size and density distribution in the whole Y123 matrix. The present work proves that finest Y211 particles locate under the seed and that their size and density increase with distance from the seed.

  1. Experimental study on solar desiccant cooling system. 2nd Report; Taiyonetsu kudo desiccant cooling system no jikkenteki kento. 2

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Funato, H [Fukuoka Institute of Technology, Fukuoka (Japan); Kuma, T [Seibu Giken Co. Ltd., Fukuoka (Japan)

    1996-10-27

    Study has been made about a desiccant cleaning system using solar heated water for regenerating the dehumidifier. A dehumidifier and evaporation coolers are combined to attain a synergistic effect in dehumidifying and cooling the air in the house. The simultaneous control of humidity and temperature, however, is quite difficult. Under the circumstances, an evaporation cooler was removed from the outdoor air intake side, to leave a humidifier alone for the control of humidity only. In addition, the length of the dehumidifier was reduced into half for saving fan driving power and for downscaling the model. With only one evaporation cooler in operation that is installed at the exhaust side, the cooling effect is diminished by half. For dealing with the situation, ultrasonic atomization is performed at the exhaust side evaporation cooler for the improvement of the air cooling effect for the next sensible heat exchanger (intake side). The return air is heated by the solar heater water (approximately 60{degree}C hot), regenerates the dehumidifier, and then exhausted. The atomization process elevates the cooling effect, and the resultant cooling effect was as high as that expected from a 2-cooler setup. The dehumidification effect, however, lowers a little. Exclusion of the atomization process will enhance the dehumidification effect, but will reduce the cooling effect as well. 3 refs., 8 figs., 3 tabs.

  2. Film cooling for a closed loop cooled airfoil

    Science.gov (United States)

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  3. Design considerations for economically competitive sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Zhang, Hongbin; Zhao, Haihua; Mousseau, Vincent; Szilard, Ronaldo

    2009-01-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phenix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design. (author)

  4. AGN Heating in Simulated Cool-core Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Ruszkowski, Mateusz [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bryan, Greg L., E-mail: yuanlium@umich.edu [Department of Astronomy, Columbia University, Pupin Physics Laboratories, New York, NY 10027 (United States)

    2017-10-01

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss. However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.

  5. An evaluation of reactor cooling and coupled hydrogen production processes using the modular helium reactor

    International Nuclear Information System (INIS)

    Harvego, E.A.; Reza, S.M.M.; Richards, M.; Shenoy, A.

    2006-01-01

    The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using either thermochemical or high-temperature electrolysis (HTE) processes. Using heat from the MHR to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been the subject of a U.S. Department of Energy sponsored Nuclear Engineering Research Initiative (NERI) project led by General Atomics, with participation from the Idaho National Laboratory (INL) and Texas A and M University. While the focus of much of the initial work was on the SI thermochemical production of hydrogen, recent activities included development of a preconceptual design for an integral HTE hydrogen production plant driven by the process heat and electricity produced by a 600 MW MHR. This paper describes ATHENA analyses performed to evaluate alternative primary system cooling configurations for the MHR to minimize peak reactor vessel and core temperatures while achieving core helium outlet temperatures in the range of 900-1000 deg. C that are needed for the efficient production of hydrogen using either the SI or HTE process. The cooling schemes investigated are intended to ensure peak fuel temperatures do not exceed specified limits under normal or transient upset conditions, and that reactor vessel temperatures do not exceed American Society of Mechanical Engineers (ASME) code limits for steady-state or transient conditions using standard light water reactor vessel materials. Preconceptual designs for SI and HTE hydrogen production plants driven by one or more 600 MW MHRs at helium outlet temperatures in the range of 900-1000 deg. C are described and compared. An initial SAPHIRE model to evaluate the reliability, maintainability, and availability of the SI hydrogen production plant is also described. Finally, a preliminary flowsheet for a conceptual design of an HTE hydrogen production plant coupled to a 600 MW modular helium reactor is presented and

  6. SIMULATION TOOL OF VELOCITY AND TEMPERATURE PROFILES IN THE ACCELERATED COOLING PROCESS OF HEAVY PLATES

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2014-10-01

    Full Text Available The aim of this paper was to develop and apply mathematical models for determining the velocity and temperature profiles of heavy plates processed by accelerated cooling at Usiminas’ Plate Mill in Ipatinga. The development was based on the mathematical/numerical representation of physical phenomena occurring in the processing line. Production data from 3334 plates processed in the Plate Mill were used for validating the models. A user-friendly simulation tool was developed within the Visual Basic framework, taking into account all steel grades produced, the configuration parameters of the production line and these models. With the aid of this tool the thermal profile through the plate thickness for any steel grade and dimensions can be generated, which allows the tuning of online process control models. The simulation tool has been very useful for the development of new steel grades, since the process variables can be related to the thermal profile, which affects the mechanical properties of the steels.

  7. Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Chang Oh

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cycles for the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Brayton cycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a number of baseline cases for the helium indirect Brayton cycle. These cases look at both single-shaft and multiple-shaft turbomachinery. The baseline cases are based on a 250 MW thermal pebble bed HTGR. The results from this study are applicable to other reactor concepts such as a very high temperature gas-cooled reactor (VHTR), fast gas-cooled reactor (FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code for optimization of the helium Brayton cycle. Besides the HYSYS process optimization, we performed parametric study to see the effect of important parameters on the cycle efficiency. For these parametric calculations, we use a cycle efficiency model that was developed based on the Visual Basic computer language. As a part of this study we are currently investigated single-shaft vs. multiple shaft arrangement for cycle efficiency and comparison, which will be published in the next paper. The ultimate goal of this study is to use supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency to values great than that of the helium Brayton cycle. This paper includes preliminary calculations of the steady state overall Brayton cycle efficiency based on the pebble bed reactor reference design (helium used as the working fluid) and compares those results with an initial calculation of a CO2 Brayton cycle

  8. Cooling systems for waste heat. Cooling systems, review and selection criteria. Kuehlsysteme fuer Abwaerme. Kuehlsysteme, Ueberblick und Auswahlkriterien

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W. (Jaeggi, Wallisellen (Switzerland))

    1990-05-01

    In many areas of ventilation, air-conditioning and refrigeration engineering, chemical and process engineering and energy production waste heat occurs. If a reduction in energy losses or heat recovery is not possible waste heat has to be drawn off through cooling systems. For this the following systems can be used: dry cooling systems, dry cooler with spray system, open-cycle wet cooler, hybrid dry cooler, and closed-cycle wet cooler. Particularly hybrid cooling systems can give acceptable solutions when the results with other systems are only unsatisfactory. (BWI).

  9. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  10. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  11. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics

    International Nuclear Information System (INIS)

    Lei, Jiawei; Kumarasamy, Karthikeyan; Zingre, Kishor T.; Yang, Jinglei; Wan, Man Pun; Yang, En-Hua

    2017-01-01

    Highlights: • Cool colored coating and PCM are two complementary passive cooling strategies. • A PCM cool colored coating system is developed. • The coating reduces cooling energy by 8.5% and is effective yearly in tropical Singapore. - Abstract: Cool colored coating and phase change materials (PCM) are two passive cooling strategies often used separately in many studies and applications. This paper investigated the integration of cool colored coating and PCM for building cooling through experimental and numerical studies. Results showed that cool colored coating and PCM are two complementary passive cooling strategies that could be used concurrently in tropical climate where cool colored coating in the form of paint serves as the “first protection” to reflect solar radiation and a thin layer of PCM forms the “second protection” to absorb the conductive heat that cannot be handled by cool paint. Unlike other climate zones where PCM is only seasonally effective and cool paint is only beneficial during summer, the application of the proposed PCM cool colored coating in building envelope could be effective throughout the entire year with a monthly cooling energy saving ranging from 5 to 12% due to the uniform climatic condition all year round in tropical Singapore.

  12. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    Science.gov (United States)

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Thermoelectric self-cooling for power electronics: Increasing the cooling power

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Astrain, David; Aranguren, Patricia

    2016-01-01

    Thermoelectric self-cooling was firstly conceived to increase, without electricity consumption, the cooling power of passive cooling systems. This paper studies the combination of heat pipe exchangers and thermoelectric self-cooling, and demonstrates its applicability to the cooling of power electronics. Experimental tests indicate that source-to-ambient thermal resistance reduces by around 30% when thermoelectric self-cooling system is installed, compared to that of the heat pipe exchanger under natural convection. Neither additional electric power nor cooling fluids are required. This thermal resistance reaches 0.346 K/W for a heat flux of 24.1 kW/m"2, being one order of magnitude lower than that obtained in previous designs. In addition, the system adapts to the cooling demand, reducing this thermal resistance for increasing heat. Simulation tests have indicated that simple system modifications allow relevant improvements in the cooling power. Replacement of a thermoelectric module with a thermal bridge leads to 33.54 kW/m"2 of top cooling power. Likewise, thermoelectric modules with shorter legs and higher number of pairs lead to a top cooling power of 44.17 kW/m"2. These results demonstrate the applicability of thermoelectric self-cooling to power electronics. - Highlights: • Cooling power of passive systems increased. • No electric power consumption. • Applicable for the cooling of power electronics. • Up to 44.17 kW/m"2 of cooling power, one order of magnitude higher. • Source-to-ambient thermal resistance reduces by 30%.

  14. Evaporative Cooling of Antiprotons to Cryogenic Temperatures

    CERN Document Server

    Andresen, G B; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2010-01-01

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  15. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  16. Operation and maintenance in the cooling and ventilation group

    OpenAIRE

    Bangert, N

    2003-01-01

    A core team of CERN staff is running the daily operations of the cooling and ventilation equipment at CERN, thus assuring multiple interfaces such as constant contact with the users of existing installations, the project leaders for new installations and intern-divisional communication. As support of this team, re-tendered contracts with external companies for the maintenance and operational tasks have been put into place multiple years ago. Higherlevel maintenance continues to be entrusted t...

  17. Neuroimaging of language processes: fMRI of silent and overt lexical processing and the promise of multiple process imaging in single brain studies

    International Nuclear Information System (INIS)

    Borowsky, R.; Owen, W.J.; Wile, T.L.; Friesen, C.K.; Martin, J.L.; Sarty, G.E.

    2005-01-01

    To implement and evaluate a multiple-process functional magnetic resonance imaging (fMRI) paradigm designed to effectively and efficiently activate several language-related regions for use with neurosurgical patients. Both overt and covert response conditions were examined. The fMRI experiments compared the traditional silent word-generation condition versus an overt one as they engage frontal language regions (Experiment 1) and silent versus overt semantic association conditions as they engage multiple language processing regions (Experiment 2). In Experiment 1 the overt condition yielded greater magnitude of activation, but not volume of activation, in the left inferior frontal and insular cortices than did the silent condition for most, but not all, participants. Experiment 2 demonstrated that the activation of multiple established language processing regions (ie, orthographic, phonological and semantic) can be achieved in a significant number of participants, particularly under overt semantic association conditions and that such activation varies in predictable ways. The traditional silent response condition cannot be considered as equivalent to the overt response condition during word generation or semantic association. The multiple-process imaging method introduced here was sensitive to processing robust orthographic, phonological, and semantic regions, particularly under the overt response condition. (author)

  18. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  19. Quantitative data analysis to determine best food cooling practices in U.S. restaurants.

    Science.gov (United States)

    Schaffner, Donald W; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2015-04-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41 °F [5 °C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  20. Quantitative Data Analysis To Determine Best Food Cooling Practices in U.S. Restaurants†

    Science.gov (United States)

    Schaffner, Donald W.; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2017-01-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41°F [5°C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  1. Latent cooling and microphysics effects in deep convection

    Science.gov (United States)

    Fernández-González, S.; Wang, P. K.; Gascón, E.; Valero, F.; Sánchez, J. L.

    2016-11-01

    Water phase changes within a storm are responsible for the enhancement of convection and therefore the elongation of its lifespan. Specifically, latent cooling absorbed during evaporation, melting and sublimation is considered the main cause of the intensification of downdrafts. In order to know more accurately the consequences of latent cooling caused by each of these processes (together with microphysical effects that they induce), four simulations were developed with the Wisconsin Dynamical and Microphysical Model (WISCDYMM): one with all the microphysical processes; other without sublimation; melting was suppressed in the third simulation; and evaporation was disabled in the fourth. The results show that sublimation cooling is not essential to maintain the vertical currents of the storm. This is demonstrated by the fact that in the simulation without sublimation, maximum updrafts are in the same range as in the control simulation, and the storm lifespan is similar or even longer. However, melting was of vital importance. The storm in the simulation without melting dissipated prematurely, demonstrating that melting is indispensable to the enhancement of downdrafts below the freezing level and for avoiding the collapse of low level updrafts. Perhaps the most important finding is the crucial influence of evaporative cooling above the freezing level that maintains and enhances mid-level downdrafts in the storm. It is believed that this latent cooling comes from the evaporation of supercooled liquid water connected with the Bergeron-Findeisen process. Therefore, besides its influence at low levels (which was already well known), this evaporative cooling is essential to strengthen mid-level downdrafts and ultimately achieve a quasi-steady state.

  2. A stochastic model of multiple scattering of charged particles: process, transport equation and solutions

    International Nuclear Information System (INIS)

    Papiez, L.; Moskvin, V.; Tulovsky, V.

    2001-01-01

    The process of angular-spatial evolution of multiple scattering of charged particles can be described by a special case of Boltzmann integro-differential equation called Lewis equation. The underlying stochastic process for this evolution is the compound Poisson process on the surface of the unit sphere. The significant portion of events that constitute compound Poisson process that describes multiple scattering have diffusional character. This property allows to analyze the process of angular-spatial evolution of multiple scattering of charged particles as combination of soft and hard collision processes and compute appropriately its transition densities. These computations provide a method of the approximate solution to the Lewis equation. (orig.)

  3. Modeling the high-temperature gas-cooled reactor process heat plant: a nuclear to chemical conversion process

    International Nuclear Information System (INIS)

    Pfremmer, R.D.; Openshaw, F.L.

    1982-05-01

    The high-temperature heat available from the High-Temperature Gas-Cooled Reactor (HTGR) makes it suitable for many process applications. One of these applications is a large-scale energy production plant where nuclear energy is converted into chemical energy and stored for industrial or utility applications. This concept combines presently available nuclear HTGR technology and energy conversion chemical technology. The design of this complex plant involves questions of interacting plant dynamics and overall plant control. This paper discusses how these questions were answered with the aid of a hybrid computer model that was developed within the time-frame of the conceptual design studies. A brief discussion is given of the generally good operability shown for the plant and of the specific potential problems and their anticipated solution. The paper stresses the advantages of providing this information in the earliest conceptual phases of the design

  4. Multiple k Nearest Neighbor Query Processing in Spatial Network Databases

    DEFF Research Database (Denmark)

    Xuegang, Huang; Jensen, Christian Søndergaard; Saltenis, Simonas

    2006-01-01

    This paper concerns the efficient processing of multiple k nearest neighbor queries in a road-network setting. The assumed setting covers a range of scenarios such as the one where a large population of mobile service users that are constrained to a road network issue nearest-neighbor queries...... for points of interest that are accessible via the road network. Given multiple k nearest neighbor queries, the paper proposes progressive techniques that selectively cache query results in main memory and subsequently reuse these for query processing. The paper initially proposes techniques for the case...... where an upper bound on k is known a priori and then extends the techniques to the case where this is not so. Based on empirical studies with real-world data, the paper offers insight into the circumstances under which the different proposed techniques can be used with advantage for multiple k nearest...

  5. Preparation and cooling of magnesium ion crystals for sympathetic cooling of highly charged ions in a Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Murboeck, Tobias

    2017-07-01

    In this work, laser-cooled ion crystals containing 10{sup 3} to 10{sup 5} singly charged magnesium ions (Mg{sup +}) were prepared in a Penning trap. The properties of the ion crystals and their structure displaying long-range ordering were analyzed by various nondestructive techniques. After creation of the Mg{sup +} ions in the form of ion bunches in an external source, the ions were injected into the Penning trap where their temperature was reduced by eight orders of magnitude within seconds using a combination of buffer gas cooling and Doppler laser cooling. The achieved temperatures in the millikelvin-regime were close to the theoretical Doppler-cooling limit and sufficiently low to induce the transition to a crystal phase exhibiting long-range ordering. The structure of these mesoscopic ion crystals is in agreement with a model describing the crystal as a set of planar shells. This allows for a derivation of properties such as the charge density or the temperature of the observed crystals. For the process of combined buffer-gas and Doppler laser cooling an analytical model has been developed, which explains the time development of the temperature and the fluorescence signal in agreement with the experimental results. The external ion source for the production of singly charged magnesium ions was developed and characterized. A SIMION simulation of the ion creation and extraction process allows to describe the ion bunch structure and to increase the Mg{sup +} number by three orders of magnitude to 10{sup 6} Mg{sup +} ions per bunch. Other ion species with charge states between one (H{sup +}{sub 2}, C{sup +}, N{sup +}{sub 2}, CO{sup +}{sub 2}) and three (Ar{sup 3+}) were injected into the Mg{sup +} crystals. Ion crystals containing more than one ion species were observed with structures in agreement with the theory of centrifugal separation, which indicates sympathetic cooling of the non-fluorescing ion species. This preparation of mixed ion crystals is an

  6. Structure and properties of a splat cooled 2024 aluminum alloy

    Science.gov (United States)

    Lebo, M.; Grant, N. J.

    1974-01-01

    In the investigation the alloy was melted, heated to 750 C, and atomized into fine droplets. The droplets were rapidly quenched against a heavy copper disk rotating at 1725 rpm. The resultant splat cooled flakes were screened. Three flake sizes were finally separated. Flakes of each size were separately processed. The characteristics of the splat cooling process and the properties of the obtained products are discussed. Splat cooling against a metallic substrate permits cooling rates up to about 1,000,000 deg C/sec. Increases in yield strength and tensile strength of 14 to 19% are observed for the splat products. Other improvements are connected with increases in fatigue life and stress rupture performance.

  7. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process

    Directory of Open Access Journals (Sweden)

    Xuewei Yan

    2018-02-01

    Full Text Available Liquid metal cooling (LMC process as a powerful directional solidification (DS technique is prospectively used to manufacture single crystal (SC turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10 mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. Keywords: Hollow blade, Single crystal, Multi-scale simulation, Liquid metal cooling

  8. THE RELATION BETWEEN COOL CLUSTER CORES AND HERSCHEL-DETECTED STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rawle, T. D.; Egami, E.; Rex, M.; Fiedler, A.; Haines, C. P.; Pereira, M. J.; Portouw, J.; Walth, G. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Edge, A. C. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Smith, G. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Altieri, B.; Valtchanov, I. [Herschel Science Centre, ESAC, ESA, P.O. Box 78, Villanueva de la Canada, 28691 Madrid (Spain); Perez-Gonzalez, P. G. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Van der Werf, P. P. [Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Zemcov, M., E-mail: trawle@as.arizona.edu [Department of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-03-01

    We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 {mu}m), we calculate the obscured star formation rate (SFR). 22{sup +6.2}{sub -5.3}% of the BCGs are detected in the far-infrared, with SFR = 1-150 M{sub Sun} yr{sup -1}. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing H{alpha} emission is also correlated with obscured star formation. For all but the most luminous BCGs (L{sub TIR} > 2 Multiplication-Sign 10{sup 11} L{sub Sun }), only a small ({approx}<0.4 mag) reddening correction is required for SFR(H{alpha}) to agree with SFR{sub FIR}. The relatively low H{alpha} extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss.

  9. Development of a novel rotary desiccant cooling cycle with isothermal dehumidification and regenerative evaporative cooling using thermodynamic analysis method

    International Nuclear Information System (INIS)

    La, D.; Li, Y.; Dai, Y.J.; Ge, T.S.; Wang, R.Z.

    2012-01-01

    A novel rotary desiccant cooling cycle is proposed and studied using thermodynamic analysis method. The proposed cycle integrates the technologies of isothermal dehumidification and regenerative evaporative cooling, which are beneficial for irreversibility reduction. Thermodynamic investigation on the basic rotary desiccant cooling cycle shows that the exergy efficiency of the basic cycle is only 8.6%. The processes of desiccant dehumidification and evaporative cooling, which are essentially the basis for rotary desiccant cooling, affect the exergy performance of the cycle greatly and account for about one third of the total exergy destruction. The proposed cycle has potential to improve rotary desiccant cooling technology. It is advantageous in terms of both heat source utilization rate and space cooling capacity. The exergy efficiency of the new cycle is enhanced significantly to 29.1%, which is about three times that of the ventilation cycle, and 60% higher than that of the two-stage rotary desiccant cooling cycle. Furthermore, the regeneration temperature is reduced from 80 °C to about 60 °C. The corresponding specific exergy of the supply air is increased by nearly 30% when compared with the conventional cycles. -- Highlights: ► A novel rotary desiccant cooling cycle is developed using thermodynamic analysis method. ► Isothermal dehumidification and regenerative evaporative cooling have been integrated. ► The cycle is advantageous in terms of both heat source utilization rate and space cooling capacity. ► Cascaded energy utilization is beneficial for cycle performance improvement. ► Upper limits, which will be helpful to practical design and optimization, are obtained.

  10. Comparison of different cooling regimes within a shortened liquid cooling/warming garment on physiological and psychological comfort during exercise

    Science.gov (United States)

    Leon, Gloria R.; Koscheyev, Victor S.; Coca, Aitor; List, Nathan

    2004-01-01

    The aim of this study was to compare the effectiveness of different cooling regime intensities to maintain physiological and subjective comfort during physical exertion levels comparable to that engaged in during extravehicular activities (EVA) in space. We studied eight subjects (six males, two females) donned in our newly developed physiologically based shortened liquid cooling/warming garment (SLCWG). Rigorous (condition 1) and mild (condition 2) water temperature cooling regimes were compared at physical exertion levels comparable to that performed during EVA to ascertain the effectiveness of a lesser intensity of cooling in maintaining thermal comfort, thus reducing energy consumption in the portable life support system. Exercise intensity was varied across stages of the session. Finger temperature, rectal temperature, and subjective perception of overall body and hand comfort were assessed. Finger temperature was significantly higher in the rigorous cooling condition and showed a consistent increase across exercise stages, likely due to the restriction of heat extraction because of the intensive cold. In the mild cooling condition, finger temperature exhibited an overall decline with cooling, indicating greater heat extraction from the body. Rectal temperature was not significantly different between conditions, and showed a steady increase over exercise stages in both rigorous and mild cooling conditions. Ratings of overall comfort were 30% higher (more positive) and more stable in mild cooling (p<0.001). The mild cooling regime was more effective than rigorous cooling in allowing the process of heat exchange to occur, thus maintaining thermal homeostasis and subjective comfort during physical exertion.

  11. The Application of PVDF in Converter Cooling Pipeline

    Science.gov (United States)

    Geng, Man; Lu, Zhimin

    2017-11-01

    The structure, mechanical property, thermodynamics property, electrical aspects, radiation property and chemical property were introduced, and PVDF could satisfy the requirement of converter cooling pipe. PVDF department and pipe of distribution pipeline of converter cooling system in Debao HVDC project are used to introduce the molding process of PVDF.

  12. Integration of cooking and vacuum cooling of carrots in a same vessel

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Gonçalves Rodrigues

    2012-03-01

    Full Text Available Cooked vegetables are commonly used in the preparation of ready-to-eat foods. The integration of cooking and cooling of carrots and vacuum cooling in a single vessel is described in this paper. The combination of different methods of cooking and vacuum cooling was investigated. Integrated processes of cooking and vacuum cooling in a same vessel enabled obtaining cooked and cooled carrots at the final temperature of 10 ºC, which is adequate for preparing ready-to-eat foods safely. When cooking and cooling steps were performed with the samples immersed in boiling water, the effective weight loss was approximately 3.6%. When the cooking step was performed with the samples in boiling water or steamed, and the vacuum cooling was applied after draining the boiling water, water loss ranged between 15 and 20%, which caused changes in the product texture. This problem can be solved with rehydration using a small amount of sterile cold water. The instrumental textural properties of carrots samples rehydrated at both vacuum and atmospheric conditions were very similar. Therefore, the integrated process of cooking and vacuum cooling of carrots in a single vessel is a feasible alternative for processing such kind of foods.

  13. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion

    Science.gov (United States)

    Khoshnevis, Sepideh; Craik, Natalie K.; Matthew Brothers, R.; Diller, Kenneth R.

    2016-01-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P cryotherapy. PMID:26632263

  14. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    International Nuclear Information System (INIS)

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-01-01

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA

  15. Jumping-droplet electronics hot-spot cooling

    Science.gov (United States)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle; Neely, Jason; Pilawa-Podgurski, Robert C. N.; Miljkovic, Nenad

    2017-03-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm × 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25 °C air temperature, 20%-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm) and applied heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  16. Jumping-droplet electronics hot-spot cooling

    International Nuclear Information System (INIS)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle

    2017-01-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm"2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm"2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  17. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    Directory of Open Access Journals (Sweden)

    Mohd Ali Samsudin

    2015-02-01

    Full Text Available This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5 primary schools in Penang, Malaysia. The findings showed a relationship between kinesthetic, logical-mathematical, visual-spatial and naturalistic intelligences with the preferred science teaching. In addition there was a correlation between kinesthetic and visual-spatial intelligences with science process skills, implying that multiple intelligences are related to science learning.

  18. Integrated cooling system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Johnson, B.; Chang, Y.

    1979-01-01

    The MFTF components that require water cooling include the neutral beam dumps, ion dumps, plasma dumps, baffle plates, magnet liners, gas boxes, streaming guns, and the neutral beam injectors. A total heat load of nearly 500 MW for 0.5 s dissipates over 4-min intervals. A steady-flow, closed-loop system is utilized. The design of the cooling system assumes that all components require cooling simultaneously. The cooling system contains process instrumentation for loop control. Alarms and safety interlocks are incorporated for the safe operation of the system

  19. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  20. Longitudinal electron cooling experiments at HIRFL-CSRe

    International Nuclear Information System (INIS)

    Mao, L.J.; Zhao, H.; Yang, X.D.; Li, J.; Yang, J.C.; Yuan, Y.J.; Parkhomchuk, V.V.; Reva, V.B.; Ma, X.M.; Yan, T.L.; Tang, M.T.; Xia, J.W.

    2016-01-01

    At the heavy ion storage ring HIRFL-CSRe an electron cooler is operated to improve the beam conditions for experiments. The properties of cooled beams have been studied. The longitudinal beam dynamics during the cooling process was measured by a resonant Schottky detector. The dependencies of the parameters electron beam density and profile on cooling times were investigated. The friction force was measured directly with the aid of the high voltage system of the cooler and with the application of the beam bunching system as well. An experiment with bunched cold beam showed a dependence of the bunch length on the beam density.

  1. Longitudinal electron cooling experiments at HIRFL-CSRe

    Energy Technology Data Exchange (ETDEWEB)

    Mao, L.J., E-mail: maolijun@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, H. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, X.D.; Li, J.; Yang, J.C.; Yuan, Y.J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Parkhomchuk, V.V.; Reva, V.B. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Ma, X.M.; Yan, T.L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Tang, M.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-02-01

    At the heavy ion storage ring HIRFL-CSRe an electron cooler is operated to improve the beam conditions for experiments. The properties of cooled beams have been studied. The longitudinal beam dynamics during the cooling process was measured by a resonant Schottky detector. The dependencies of the parameters electron beam density and profile on cooling times were investigated. The friction force was measured directly with the aid of the high voltage system of the cooler and with the application of the beam bunching system as well. An experiment with bunched cold beam showed a dependence of the bunch length on the beam density.

  2. Pedagogical Affordances of Multiple External Representations in Scientific Processes

    Science.gov (United States)

    Wu, Hsin-Kai; Puntambekar, Sadhana

    2012-12-01

    Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students' engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.

  3. Gas Mixtures for Welding with Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.

    2015-01-01

    Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechani...

  4. Cooling System Design Options for a Fusion Reactor

    Science.gov (United States)

    Natalizio, Antonio; Collén, Jan; Vieider, Gottfried

    1997-06-01

    The objective of a fusion power reactor is to produce electricity safely and reliably. Accordingly, the design, objective of the heat transport system is to optimize power production, safety, and reliability. Such an optimization process, however, is constrained by many factors, including, among others: public safety, worker safety, steam cycle efficiency, reliability, and cost. As these factors impose conflicting requirements, there is a need to find an optimum design solution, i.e., one that satisfies all requirements, but not necessarily each requirement optimally. The SEAFP reactor study developed helium-cooled and water-cooled models for assessment purposes. Among other things, the current study demonstrates that neither model offers an optimum solution. Helium cooling offers a high steam cycle efficiency but poor reliability for the cooling of high heat flux components (divertor and first wall). Alternatively, water cooling offers a low steam cycle efficiency, but reasonable reliability for the cooling of such components. It is concluded that an optimum solution includes helium cooling of low heat flux components and water cooling of high heat flux components. Relative to the SEAFP helium model, this hybrid system enhances safety and reliability, while retaining the high steam cycle efficiency of that model.

  5. Modeling of the Cutting Forces in Turning Process Using Various Methods of Cooling and Lubricating: An Artificial Intelligence Approach

    Directory of Open Access Journals (Sweden)

    Djordje Cica

    2013-01-01

    Full Text Available Cutting forces are one of the inherent phenomena and a very significant indicator of the metal cutting process. The work presented in this paper is an investigation of the prediction of these parameters in turning using soft computing techniques. During the experimental research focus is placed on the application of various methods of cooling and lubricating of the cutting zone. On this occasion were used the conventional method of cooling and lubricating, high pressure jet assisted machining, and minimal quantity lubrication technique. The data obtained by experiment are used to create two different models, namely, artificial neural network and adaptive networks based fuzzy inference systems for prediction of cutting forces. Furthermore, both models are compared with the experimental data and results are indicated.

  6. Influence of cooling modes on purity of solid-state synthesized tetracalcium phosphate

    International Nuclear Information System (INIS)

    Guo Dagang; Xu Kewei; Han Yong

    2005-01-01

    Pure tetracalcium phosphate powder (TTCP) was prepared by a solid-state phase reaction at 1500 deg. C. Effects of cooling modes on the synthesizing process of TTCP powder and its thermal behavior at different heating temperatures were investigated by XRD and FTIR. The results show that cooling in dry air tends to promote formation of single phase TTCP, while in situ cooling in furnace results in a mixture of hydroxyapatite (HAP) and CaO. The examination of the thermal behavior of TTCP indicates that there exists a decomposing zone in the range of 500 deg. C-1200 deg. C, in which the high-temperature synthesized TTCP phase is transformed during the subsequent cooling process. This was confirmed by three additional cooling treatment routes that provide significant experimental evidence to the cooling modes effect on the purity of TTCP. The phase transformation course of starting materials heated to elevated temperatures was further studied by TGA-DSC analysis with the aid of XRD and FTIR, in order to fully understand the complicated synthesizing process of TTCP

  7. Cooled heavy ion beams at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Klepper, O.; Nolden, F.; Reich, H.; Schlitt, B.; Spaedtke, P.; Winkler, T.

    1996-01-01

    The storage ring ESR has been used in various operational modes for experiments with electron cooled heavy ion beams. Besides the standard storage mode including injection and beam accumulation the deceleration of highly charged ions has been demonstrated. Beams of highly charged ions have been injected and accumulated and finally decelerated to a minimum energy of 50 MeV/u. An ultraslow extraction method using charge changing processes is now also available for cooled beams of highly charged ions. For in ring experiments the internal gas jet and the cold electron beam of the cooling system are applied as targets. High precision mass spectrometry by Schottky noise detection has been demonstrated. Operation at transition energy has been achieved with cooled beams opening the field for experiments which require an isochronous revolution of the ions. (orig.)

  8. Comparison of Software Models for Energy Savings from Cool Roofs

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  9. Processing of FRG high-temperature gas-cooled reactor fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements

    International Nuclear Information System (INIS)

    Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Drake, R.N.

    1981-11-01

    The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects of gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment development section of the agreement, both FRG mixed uranium/ thorium and low-enriched uranium fuel spheres have been processed in the Department of Energy-sponsored cold pilot plant for high-temperature gas-cooled reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles suitable for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated certain modifications to the US HTGR fuel burining process necessary for FRG fuel treatment. Results of the tests will be used in the design of a US/FRG joint prototype headend facility for HTGR fuel

  10. Forward osmosis applied to evaporative cooling make-up water

    Energy Technology Data Exchange (ETDEWEB)

    Nicoll, Peter; Thompson, Neil; Gray, Victoria [Modern Water plc, Guildford (United Kingdom)

    2012-11-15

    Modern Water is in the process of developing a number of forward osmosis based technologies, ranging from desalination to power generation. This paper outlines the progress made to date on the development and commercial deployment of a forward osmosis based process for the production of evaporative cooling tower make-up water from impaired water sources, including seawater. Evaporative cooling requires significant amounts of good quality water to replace the water lost by evaporation, drift and blowdown. This water can be provided by conventional desalination processes or by the use of tertiary treated sewage effluent. The conventional processes are well documented and understood in terms of operation and power consumption. A new process has been successfully developed and demonstrated that provides make-up water directly, using a core platform 'forward osmosis' technology. This new technology shows significant promise in allowing various raw water sources, such as seawater, to be used directly in the forward osmosis step, thus releasing the use of scarce and valuable high grade water for other more important uses. The paper presents theoretical and operational results for the process, where it is shown that the process can produce make-up water at a fraction of the operational expenditure when compared to conventional processes, in particular regarding power consumption, which in some cases may be as low as 15 % compared to competing processes. Chemical additives to the cooling water (osmotic agent) are retained within the process, thus reducing their overall consumption. Furthermore the chemistry of the cooling water does not support the growth of Legionella pneumophila. Corrosion results are also reported. (orig.)

  11. Platelet-cooled plasma arc torch. Final report

    International Nuclear Information System (INIS)

    1995-10-01

    In this 12-month program sponsored by the DOE Morgantown Energy Technology Center, Aerojet designed, fabricated, and tested six platelet cooled electrodes for a Retech 75T (90 MW) plasma arc torch capable of processing mixed radioactive waste. Two of the electrodes with gas injection through the electrode wall demonstrated between eight and forty times the life of conventional water cooled electrodes. If a similar life increase can be produced in a 1 Mw size electrode, then electrodes possessing thousands, rather than hundreds, of hours of life will be available to DOE for potential application to mixed radioactive waste processing

  12. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for multiple dwelling); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This R and D was intended to develop the following technologies for the purpose of putting into practice an innovative system that performs cooling/heating and hot-water supply for a multiple dwelling economically by solar energy: development of equipment constituting solar cooling/heating and hot-water supply system, and development of a system which uses such equipment and which is inexpensive and safe as well as easy for inspection and maintenance. In fiscal 1979, a study was implemented in which emphasis was placed on the experiment of a test housing with a solar cooling/heating and hot-water supply system incorporated for the purpose of proving the results of the research since fiscal 1974. In the overall flow of this project, the following research contents were partially performed or being performed successively during the period of seven years. (1) Examination of various methods, (2) Development of thermally driven freezer, (3) High performance heat collecter, (4) Heat storage device, (5) Types of multiple dwelling suitable for solar energy utilization, (6) Construction of experimental multiple dwelling, (7) Experiment in houses actually in use by people, (8) Confirmation of system improvements and results on the basis of experimental measurements, and (9) Evaluation as a solar system for multiple dwelling. (NEDO)

  13. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  14. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  15. Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles

    Science.gov (United States)

    Gradl, Paul; Brandsmeier, Will

    2016-01-01

    Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.

  16. Simulation of the SSC refrigeration system using the ASPEN/SP process simulator

    International Nuclear Information System (INIS)

    Rasson, J.; Dweck, J.

    1990-01-01

    The SSC Magnet must be maintained at a superconducting temperature of 4 K. The proposed refrigeration cooling processes consist of fairly simple closed cycles which take advantage of the Joule-Thompson effect via a series of expansions and compressions of helium gas which has been precooled by liquid nitrogen. The processes currently under consideration consist of three cycles, the 20 K shield cooling, the 4.0 K helium refrigerator and the helium liquefier. The process units which are to be employed are compressors, turbines, expanders, mixers, flashes, two stream heat exchangers and multiple stream heat exchangers. The cycles are to be operated at or near steady state. Due to the large number of competing cooling sector designs to be considered and the high capital and operating costs of the proposed processes, the SSC Laboratory requires a software tool for the validation and optimization of the individual designs and for the performance of cost-benefit analyses among competing designs. Since these processes are steady state flow processes involving primarily standard unit operations, a decision was made to investigate the application of a commercial process simulator to the task. Several months of internal evaluations by the SSC Laboratory revealed that while the overall structure and calculation approach of a number of the commercial simulators were appropriate for this task, all were lacking essential capabilities in the areas of thermodynamic property calculations for cryogenic systems and modeling of complex, multiple stream heat exchangers. An acceptable thermodynamic model was provided and a series of simple, but three software vendors. Based on the results of the benchmark tests, the ASPEN/SP process simulator was selected for future modeling work. 2 refs., 4 figs

  17. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  18. Cumulative effect in multiple production processes on nuclei

    International Nuclear Information System (INIS)

    Golubyatnikova, E.S.; Shmonin, V.L.; Kalinkin, B.N.

    1989-01-01

    It is shown that the cumulative effect is a natural result of the process of hadron multiple production in nuclear reactions. Interpretation is made of the universality of slopes of inclusive spectra and other characteristics of cumulative hadrons. The character of information from such reactions is discussed, which could be helpful in studying the mechanism of multiparticle production. 27 refs.; 4 figs

  19. Neutrino Processes in Neutron Stars

    Directory of Open Access Journals (Sweden)

    Kolomeitsev E.E.

    2010-10-01

    Full Text Available The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities. The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong

  20. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  1. Changes in copper sulfate crystal habit during cooling crystallization

    Science.gov (United States)

    Giulietti, M.; Seckler, M. M.; Derenzo, S.; Valarelli, J. V.

    1996-09-01

    The morphology of technical grade copper(II) sulfate pentahydrate crystals produced from batch cooling experiments in the temperature range of 70 to 30°C is described and correlated with the process conditions. A slow linear cooling rate (batch time of 90 min) predominantly caused the appearance of well-formed crystals. Exponential cooling (120 min) resulted in the additional formation of agglomerates and twins. The presence of seeds for both cooling modes led to round crystals, agglomerates and twins. Fast linear cooling (15 min) gave rise to a mixture of the former types. Broken crystals and adhering fragments were often found. Growth zoning was pronounced in seeded and linear cooling experiments. Fluid inclusions were always found and were more pronounced for larger particles. The occurrence of twinning, zoning and fluid inclusions was qualitatively explained in terms of fundamental principles.

  2. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  3. Experimental evaluation of cooling efficiency of the high performance cooling device

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  4. Experimental evaluation of cooling efficiency of the high performance cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2016-06-30

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  5. Two-dimensional modeling of water spray cooling in superheated steam

    Directory of Open Access Journals (Sweden)

    Ebrahimian Vahid

    2008-01-01

    Full Text Available Spray cooling of the superheated steam occurs with the interaction of many complex physical processes, such as initial droplet formation, collision, coalescence, secondary break up, evaporation, turbulence generation, and modulation, as well as turbulent mixing, heat, mass and momentum transfer in a highly non-uniform two-phase environment. While it is extremely difficult to systematically study particular effects in this complex interaction in a well defined physical experiment, the interaction is well suited for numerical studies based on advanced detailed models of all the processes involved. This paper presents results of such a numerical experiment. Cooling of the superheated steam can be applied in order to decrease the temperature of superheated steam in power plants. By spraying the cooling water into the superheated steam, the temperature of the superheated steam can be controlled. In this work, water spray cooling was modeled to investigate the influences of the droplet size, injected velocity, the pressure and velocity of the superheated steam on the evaporation of the cooling water. The results show that by increasing the diameter of the droplets, the pressure and velocity of the superheated steam, the amount of evaporation of cooling water increases. .

  6. Stochastic cooling of bunched beams from fluctuation and kinetic theory

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1982-09-01

    A theoretical formalism for stochastic phase-space cooling of bunched beams in storage rings is developed on the dual basis of classical fluctuation theory and kinetic theory of many-body systems in phase-space. The physics is that of a collection of three-dimensional oscillators coupled via retarded nonconservative interactions determined by an electronic feedback loop. At the heart of the formulation is the existence of several disparate time-scales characterizing the cooling process. Both theoretical approaches describe the cooling process in the form of a Fokker-Planck transport equation in phase-space valid up to second order in the strength and first order in the auto-correlation of the cooling signal. With neglect of the collective correlations induced by the feedback loop, identical expressions are obtained in both cases for the coherent damping and Schottky noise diffusion coefficients. These are expressed in terms of Fourier coefficients in a harmonic decomposition in angle of the generalized nonconservative cooling force written in canonical action-angle variables of the particles in six-dimensional phase-space. Comparison of analytic results to a numerical simulation study with 90 pseudo-particles in a model cooling system is presented

  7. Manufacturing of a HCLL cooling plate mock up

    International Nuclear Information System (INIS)

    Rigal, E.; Dinechin, G. de; Rampal, G.; Laffont, G.; Cachon, L.

    2007-01-01

    The European DEMO blankets and associated Test Blanket Modules (TBM) are made of a set of components cooled by flowing helium at 80bar pressure. Hot Isostatic Pressing (HIP) is one of the very few processes that allow manufacturing such components exhibiting complex cooling channels. In HIP technology, the parts used to manufacture components with embedded channels are usually machined plates, blocks and tubes. Achievable geometries are limited in shape because it is not always possible to figure the channels by bent tubes. This occurs for example when channels present sharp turns, when the cross section of the channels is rectangular or when the rib between channels is so small that very thin tubes would be required. In these cases, bending is unpractical. The breeder unit cooling plates of the Helium Cooled Lithium Lead (HCLL) blanket have eight 4 x 4.5 mm parallel channels that run following a double U scheme. Turns are sharp and the wall thickness is small (1mm), so the manufacturing process described above cannot be used. An alternative process has been developed which has many advantages. It consists in machining grooves in a base plate, then closing the top of the grooves using thin welded strips, and finally adding a plate by HIP. There is then no need for the use of tubes with associated bending and deformation issues. The final component contains welds, but it must be stressed out that these potentially brittle zones do not connect the channels to the external surface because they are covered by the HIPed plate. Furthermore, the welds are homogenised during the HIP operation and further heat treatments. This paper describes the design of a simplified cooling plate mock up and its fabrication using this so-called weld+HIP process. The thermal fatigue testing of this mock up is presented somewhere else in this conference. (orig.)

  8. Response of upper ocean cooling off northeastern Taiwan to typhoon passages

    Science.gov (United States)

    Zheng, Zhe-Wen; Zheng, Quanan; Gopalakrishnan, Ganesh; Kuo, Yi-Chun; Yeh, Ting-Kuang

    2017-07-01

    A comprehensive investigation of the typhoon induced upper ocean processes and responses off northeastern Taiwan was conducted. Using the Regional Ocean Modeling System, the upper ocean responses of all typhoons striking Taiwan between 2005 and 2013 were simulated. In addition to Kuroshio intrusion, the present study demonstrates another important mechanism of typhoon induced near-inertial currents over the continental shelf of East China Sea, which can also trigger a distinct cooling (through entrainment mixing) within this region. Results indicate that the processes of typhoon inducing distinct cooling off northeastern Taiwan are conditional phenomena (only ∼12% of typhoons passing Taiwan triggered extreme cooling there). Subsequently, by executing a series of sensitivity experiments and systematic analyses on the behaviors and background conditions of all those typhoon cases, key criteria determining the occurrences of cooling through both mechanisms were elucidated. Occurrences of cooling through the Kuroshio intrusion mechanism are determined mainly by the strength of the local wind over northeastern Taiwan. A distinct cooling triggered by enhanced near-inertial currents is shown to be associated with the process of wind-current resonance. Both processes of Kuroshio intrusion and enhanced near-inertial currents are dominated by wind forcing rather than upper oceanic conditions. Based on the recent findings on the possible dynamic linkage between sea surface temperature near northeast Taiwan and local weather systems, the results elucidated in this study lay the foundation for further improvement in the regional weather prediction surrounding northeast Taiwan.

  9. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  10. The characteristic of evaporative cooling magnet for ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, B., E-mail: xiongbin@mail.iee.ac.cn [Institute of Electrical Engineering, CAS, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ruan, L.; Gu, G. B. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Lu, W.; Zhang, X. Z.; Zhan, W. L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China)

    2016-02-15

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm{sup 2}. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.

  11. The characteristic of evaporative cooling magnet for ECRIS

    Science.gov (United States)

    Xiong, B.; Ruan, L.; Gu, G. B.; Lu, W.; Zhang, X. Z.; Zhan, W. L.

    2016-02-01

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm2. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.

  12. Microstructure and Mechanical Properties of J55ERW Steel Pipe Processed by On-Line Spray Water Cooling

    Directory of Open Access Journals (Sweden)

    Zejun Chen

    2017-04-01

    Full Text Available An on-line spray water cooling (OSWC process for manufacturing electric resistance welded (ERW steel pipes is presented to enhance their mechanical properties and performances. This technique reduces the processing needed for the ERW pipe and overcomes the weakness of the conventional manufacturing technique. Industrial tests for J55 ERW steel pipe were carried out to validate the effectiveness of the OSWC process. The microstructure and mechanical properties of the J55 ERW steel pipe processed by the OSWC technology were investigated. The optimized OSWC technical parameters are presented based on the mechanical properties and impact the performance of steel pipes. The industrial tests show that the OSWC process can be used to efficiently control the microstructure, enhance mechanical properties, and improve production flexibility of steel pipes. The comprehensive mechanical properties of steel pipes processed by the OSWC are superior to those of other published J55 grade steels.

  13. Influence of detergents on water drift in cooling towers

    Science.gov (United States)

    Vitkovicova, Rut

    An influence of detergents on the water drift from the cooling tower was experimentally investigated. For this experimental measurements was used a model cooling tower, especially an experimental aerodynamic line, which is specially designed for the measurement and monitoring of processes taking place around the eliminators of the liquid phase. The effect of different concentrations of detergent in the cooling water on the drift of water droplets from a commonly used type eliminator was observed with visualization methods.

  14. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  15. Status of helium-cooled nuclear power systems. [Development potential

    Energy Technology Data Exchange (ETDEWEB)

    Melese-d' Hospital, G.; Simnad, M

    1977-09-01

    Helium-cooled nuclear power systems offer a great potential for electricity generation when their long-term economic, environmental, conservation and energy self-sufficiency features are examined. The high-temperature gas-cooled reactor (HTGR) has the unique capability of providing high-temperature steam for electric power and process heat uses and/or high-temperature heat for endothermic chemical reactions. A variation of the standard steam cycle HTGR is one in which the helium coolant flows directly from the core to one or more closed cycle gas turbines. The effective use of nuclear fuel resources for electric power and nuclear process heat will be greatly enhanced by the gas-cooled fast breeder reactor (GCFR) currently being developed. A GCFR using thorium in the radial blanket could generate sufficient U-233 to supply the fuel for three HTGRs, or enough plutonium from a depleted uranium blanket to fuel a breeder economy expanding at about 10% per year. The feasibility of utilizing helium to cool a fusion reactor is also discussed. The status of helium-cooled nuclear energy systems is summarized as a basis for assessing their prospects. 50 references.

  16. Numerical simulation of heat transfer process in solar enhanced natural draft dry cooling tower with radiation model

    International Nuclear Information System (INIS)

    Wang, Qiuhuan; Zhu, Jialing; Lu, Xinli

    2017-01-01

    Graphical abstract: A 3-D numerical model integrated with a discrete ordinate (DO) solar radiation model (considering solar radiation effect in the room of solar collector) was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of the SENDDCT. Our study shows that introducing such a radiation model can more accurately simulate the heat transfer process in the SENDDCT. Calculation results indicate that previous simulations overestimated solar energy obtained by the solar collector and underestimated the heat loss. The cooling performance is improved when the solar radiation intensity or ambient pressure is high. Air temperature and velocity increase with the increase of solar radiation intensity. But ambient pressure has inverse effects on the changes of air temperature and velocity. Under a condition that the solar load increases but the ambient pressure decreases, the increased rate of heat transferred in the heat exchanger is not obvious. Thus the performance of the SENDDCT not only depends on the solar radiation intensity but also depends on the ambient pressure. - Highlights: • A radiation model has been introduced to accurately simulate heat transfer process. • Heat transfer rate would be overestimated if the radiation model was not introduced. • The heat transfer rate is approximately proportional to solar radiation intensity. • The higher the solar radiation or ambient pressure, the better SENDDCT performance. - Abstract: Solar enhanced natural draft dry cooling tower (SENDDCT) is more efficient than natural draft dry cooling tower by utilizing solar radiation in arid region. A three-dimensional numerical model considering solar radiation effect was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of SENDDCT. The numerical simulation outcomes reveal that a model with consideration of

  17. Multiple pass and multiple layer friction stir welding and material enhancement processes

    Science.gov (United States)

    Feng, Zhili [Knoxville, TN; David, Stan A [Knoxville, TN; Frederick, David Alan [Harriman, TN

    2010-07-27

    Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

  18. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  19. Phase Transformations During Cooling of Automotive Steels

    Science.gov (United States)

    Padgett, Matthew C.

    This thesis explores the effect of cooling rate on the microstructure and phases in advanced high strength steels (AHSS). In the manufacturing of automobiles, the primary joining mechanism for steel is resistance spot welding (RSW), a process that produces a high heat input and rapid cooling in the welded metal. The effect of RSW on the microstructure of these material systems is critical to understanding their mechanical properties. A dual phase steel, DP-600, and a transformation induced plasticity bainitic-ferritic steel, TBF-1180, were studied to assess the changes to their microstructure that take place in controlled cooling environments and in uncontrolled cooling environments, i.e. resistance spot welding. Continuous cooling transformation (CCT) diagrams were developed using strip specimens of DP-600 and TBF-1180 to determine the phase transformations that occur as a function of cooling rate. The resulting phases were determined using a thermal-mechanical simulator and dilatometry, combined with light optical microscopy and hardness measurements. The resulting phases were compared with RSW specimens where cooling rate was controlled by varying the welding time for two-plate welds. Comparisons were drawn between experimental welds of DP-600 and simulations performed using a commercial welding software. The type and quantity of phases present after RSW were examined using a variety of techniques, including light optical microscopy using several etchants, hardness measurements, and x-ray diffraction (XRD).

  20. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  1. Analytical Assessment of Environmental Impact for APR1400DC UHS Cooling Tower

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaiho [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Hot process water is pumped from the plant process to the cooling towers. Heat is rejected through evaporation of the process water, interacting with ambient air blown upward by fans.. Plumes generated from exit ports of the cooling tower may have adverse effects on the environment, such as deposition of cooling tower drift release, fogging, icing, shadowing, and ground-level temperature and humidity increase. These kinds of environmental impact of the cooling tower are linked closely with the dispersion of the cooling tower plumes. In this respect, predicting the behavior of the plumes has become one of the most important issues in the environmental assessments of the cooling towers. The SACTI (seasonal/annual cooling tower impact) model is an analytical tool to predict the environmental effect of cooling tower, which was developed by Argonne National Laboratory and University of Illinois with support from EPRI (electric power research institute). The initial version of SACTI has been widely used to assess the environmental effect of cooling towers in many industrial fields such as steam power plants and NPPs. Guo et. al. investigated impact of heat rejection and cooling tower height on plume dispersion using the SACTI model, for the purpose of the future construction of inland NPPs. They found that increasing cooling tower height decreases the plume length and height frequencies. Their simulation results showed that the increase in heat rejection increases the plum radius frequency. The APR1400DC is an advanced light water reactor developed for the purpose of NRC-DC (design certification). The cooling towers for APR1400DC UHS consist of two linear mechanical draft cooling towers (LMDCTs). The LMDCT for APR1400DC UHS is conceptually designed because the plant site has not been decided yet. In the present study, the dependency of plume dispersion on the number of cooling towers is investigated using SACTI-2-beta, for predicting annual environmental effect of APR

  2. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    OpenAIRE

    Mohd Ali Samsudin; Noor Hasyimah Haniza; Corrienna Abdul-Talib; Hayani Marlia Mhd Ibrahim

    2015-01-01

    This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5) primary schools in Penang, Malaysia. The findings showed a relationship betwee...

  3. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  4. MATHEMATICAL MODELING OF HEATING AND COOLING OF SAUSAGES

    Directory of Open Access Journals (Sweden)

    A. V. Zhuchkov

    2013-01-01

    Full Text Available In the article the mathematical modeling of the processes of heating and cooling of sausage products in order to define reference characteristics of the processes was carried out. Basic regularities of the processes are graphically shown.

  5. Operations improvement of the recycling water-cooling systems of sugar mills

    Directory of Open Access Journals (Sweden)

    Shcherbakov Vladimir Ivanovich

    Full Text Available Water management in sugar factories doesn’t have analogues in its complexity among food industry enterprises. Water intensity of sugar production is very high. Circulation water, condensed water, pulp press water and others are used in technological processes. Water plays the main role in physical, chemical, thermotechnical processes of beet processing and sugar production. As a consequence of accession of Russia to the WTO the technical requirements for production processes are changing. The enforcements of ecological services to balance scheme of water consumption and water disposal increased. The reduction of fresh water expenditure is one of the main tasks in economy of sugar industry. The substantial role in fresh water expenditure is played by efficiency of cooling and aeration processes of conditionally clean waters of the 1st category. The article contains an observation of the technologies of the available solutions and recommendations for improving and upgrading the existing recycling water-cooling systems of sugar mills. The authors present the block diagram of the water sector of a sugar mill and a method of calculating the optimal constructive and technological parameters of cooling devices. Water cooling towers enhanced design and upgrades are offered.

  6. Development and application of online Stelmor Controlled Cooling System

    International Nuclear Information System (INIS)

    Yu Wanhua; Chen Shaohui; Kuang Yonghai; Cao Kaichao

    2009-01-01

    An online Stelmor Controlled Cooling System (SCCS) has been developed successfully for the Stelmor production line, which can communicate with the material flow management system and Program Logic Control System (PLCs) automatically through local network. This online model adopts Implicit Finite Difference Time Domain (FDTD) method to calculate temperature evolution and phase transformation during the production process and predicts final properties. As Continuous Cooling Temperature (CCT) curves of various steels can be coupled in the model, it can predict the latent heat rise and range of phase transformation for various steels, which can provide direct guidance for new steel development and optimization of present Stelmor cooling process. This unique online system has been installed in three Stelmor production lines at present with good results.

  7. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  8. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    Science.gov (United States)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  9. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics.

  10. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  11. OPTICAL LINE EMISSION IN BRIGHTEST CLUSTER GALAXIES AT 0 < z < 0.6: EVIDENCE FOR A LACK OF STRONG COOL CORES 3.5 Gyr AGO?

    International Nuclear Information System (INIS)

    McDonald, Michael

    2011-01-01

    In recent years the number of known galaxy clusters beyond z ∼> 0.2 has increased drastically with the release of multiple catalogs containing >30,000 optically detected galaxy clusters over the range 0 0.3, hinting at an earlier epoch of strong cooling. We compare the evolution of emission-line nebulae to the X-ray-derived cool core (CC) fraction from the literature over the same redshift range and find overall agreement, with the exception that an upturn in the strong CC fraction is not observed at z > 0.3. The overall agreement between the evolution of CCs and optical line emission at low redshift suggests that emission-line surveys of galaxy clusters may provide an efficient method of indirectly probing the evolution of CCs and thus provide insights into the balance of heating and cooling processes at early cosmic times.

  12. Influence of detergents on water drift in cooling towers

    Directory of Open Access Journals (Sweden)

    Vitkovicova Rut

    2017-01-01

    Full Text Available An influence of detergents on the water drift from the cooling tower was experimentally investigated. For this experimental measurements was used a model cooling tower, especially an experimental aerodynamic line, which is specially designed for the measurement and monitoring of processes taking place around the eliminators of the liquid phase. The effect of different concentrations of detergent in the cooling water on the drift of water droplets from a commonly used type eliminator was observed with visualization methods.

  13. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  14. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    Science.gov (United States)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  15. Modelling aerosol behavior in reactor cooling systems

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1990-01-01

    This paper presents an overview of some of the areas of concern in using computer codes to model fission-product aerosol behavior in the reactor cooling system (RCS) of a water-cooled nuclear reactor during a loss-of-coolant accident. The basic physical processes that require modelling include: fission product release and aerosol formation in the reactor core, aerosol transport and deposition in the reactor core and throughout the rest of the RCS, and the interaction between aerosol transport processes and the thermalhydraulics. In addition to these basic physical processes, chemical reactions can have a large influence on the nature of the aerosol and its behavior in the RCS. The focus is on the physics and the implications of numerical methods used in the computer codes to model aerosol behavior in the RCS

  16. System and process for pulsed multiple reaction monitoring

    Science.gov (United States)

    Belov, Mikhail E

    2013-05-17

    A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.

  17. Trade-off analysis of high-aspect-ratio-cooling-channels for rocket engines

    International Nuclear Information System (INIS)

    Pizzarelli, Marco; Nasuti, Francesco; Onofri, Marcello

    2013-01-01

    Highlights: • Aspect ratio has a significant effect on cooling efficiency and hydraulic losses. • Minimizing power loss is of paramount importance in liquid rocket engine cooling. • A suitable quasi-2D model is used to get fast cooling system analysis. • Trade-off with assigned weight, temperature, and channel height or wall thickness. • Aspect ratio is found that minimizes power loss in the cooling circuit. -- Abstract: High performance liquid rocket engines are often characterized by rectangular cooling channels with high aspect ratio (channel height-to-width ratio) because of their proven superior cooling efficiency with respect to a conventional design. However, the identification of the optimum aspect ratio is not a trivial task. In the present study a trade-off analysis is performed on a cooling channel system that can be of interest for rocket engines. This analysis requires multiple cooling channel flow calculations and thus cannot be efficiently performed by CFD solvers. Therefore, a proper numerical approach, referred to as quasi-2D model, is used to have fast and accurate predictions of cooling system properties. This approach relies on its capability of describing the thermal stratification that occurs in the coolant and in the wall structure, as well as the coolant warming and pressure drop along the channel length. Validation of the model is carried out by comparison with solutions obtained with a validated CFD solver. Results of the analysis show the existence of an optimum channel aspect ratio that minimizes the requested pump power needed to overcome losses in the cooling circuit

  18. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  19. Cooling Performance of ALIP according to the Air or Sodium Cooling Type

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Huee-Youl; Yoon, Jung; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    ALIP pumps the liquid sodium by Lorentz force produced by the interaction of induced current in the liquid metal and their associated magnetic field. Even though the efficiency of the ALIP is very low compared to conventional mechanical pumps, it is very useful due to the absence of moving parts, low noise and vibration level, simplicity of flow rate regulation and maintenance, and high temperature operation capability. Problems in utilization of ALIP concern a countermeasure for elevation of internal temperature of the coil due to joule heating and how to increase magnetic flux density of Na channel gap. The conventional ALIP usually used cooling methods by circulating the air or water. On the other hand, GE-Toshiba developed a double stator pump adopting the sodium-immersed self-cooled type, and it recovered the heat loss in sodium. Therefore, the station load factor of the plant could be reduced. In this study, the cooling performance with cooling types of ALIP is analyzed. We developed thermal analysis models to evaluate the cooling performance of air or sodium cooling type of ALIP. The cooling performance is analyzed for operating parameters and evaluated with cooling type. 1-D and 3-D thermal analysis model for IHTS ALIP was developed, and the cooling performance was analyzed for air or sodium cooling type. The cooling performance for air cooling type was better than sodium cooling type at higher air velocity than 0.2 m/s. Also, the air temperature of below 270 .deg. demonstrated the better cooling performance as compared to sodium.

  20. Multiple multichannel spectra acquisition and processing system with intelligent interface

    International Nuclear Information System (INIS)

    Chen Ying; Wei Yixiang; Qu Jianshi; Zheng Futang; Xu Shengkui; Xie Yuanming; Qu Xing; Ji Weitong; Qiu Xuehua

    1986-01-01

    A Multiple multichannel spectra acquisition and processing system with intelligent interface is described. Sixteen spectra measured with various lengths, channel widths, back biases and acquisition times can be identified and collected by the intelligent interface simultaneously while the connected computer is doing data processing. The execution time for the Ge(Li) gamma-ray spectrum analysis software on IBM PC-XT is about 55 seconds

  1. Gas-Cooled Reactors: the importance of their development

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1978-01-01

    Gas-Cooled Reactors are considered to have a significant future impact on the application of fission energy. The specific types are the steam-cycle High-Temperature Gas-Cooled Reactor, the Gas-Cooled Fast Breeder Reactor, the gas-turbine HTGR, and the Very High-Temperature Process Heat Reactor. The importance of developing the above systems is discussed relative to alternative fission power systems involving Light Water Reactors, Heavy Water Reactors, Spectral Shift Controlled Reactors, and Liquid-Metal-Cooled Fast Breeder Reactors. A primary advantage of developing GCRs as a class lies in the technology and cost interrelations, permitting cost-effective development of systems having diverse applications. Further, HTGR-type systems have highly proliferation-resistant characteristics and very attractive safety features. Finally, such systems and GCFRs are mutally complementary. Overall, GCRs provide interrelated systems that serve different purposes and needs; their development can proceed in stages that provide early benefits while contributing to future needs. It is concluded that the long-term importance of the various GCRs is as follows: HTGR, providing a technology for economic GCFRs and HTGR-GTs, while providing a proliferation-resistant reactor system having early economic and fuel utilization benefits; GCFR, providing relatively low cost fissile fuel and reducing overall separative work needs at capital costs lower than those for LMFBRs; HTGR-GT (in combination with a bottoming cycle), providing a very high thermal efficiency system having low capital costs and improved fuel utilization and technology pertinent to VHTRs; HTGR-GT, providing a power system well suited for dry cooling conditions for low-temperature process heat needs; and VHTR, providing a high-temperature heat source for hydrogen production processes

  2. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  3. Use of dehumidifiers in desiccant cooling and dehumidification systems

    International Nuclear Information System (INIS)

    Van den Bulck, E.; Mitchell, J.W.; Klein, S.A.

    1986-01-01

    The use of rotary dehumidifiers in gas-fired open-cycle desiccant cooling systems is investigated by analyzing the performance of the rotary heat exchanger-rotary dehumidifier subsystem. For a given cooling load, the required regeneration heat supply can be minimized by choosing appropriate values for the regeneration air mass flow rate and the wheel rotation speed. A map is presented showing optimal values for rotational speed and regeneration flow rate as functions of the regeneration air inlet temperature and the process air inlet humidity ratio. This regeneration temperature is further optimized as a function of the process humidity ratio. In the analysis, the control strategy adjusts the process air mass flow rate to provide the required cooling load. Additional control options are considered and the sensitivity of the regeneration heat required to the wheel speed, regeneration air mass flow rate, and inlet temperature is discussed. Experimental data reported in the literature are compared with the analytical results and indicate good agreement

  4. Recent advances in cooled-semen technology.

    Science.gov (United States)

    Aurich, Christine

    2008-09-01

    The majority of horse registries approve the use of artificial insemination, and horse breeding has widely taken benefit from the use of cooled-stored semen. New insights into cooled-semen technology open possibilities to reduce problems such as impaired semen quality after cooled-storage in individual stallions. The stallion itself has major impacts on quality and fertility of cooled-stored semen. Dietary supplementation of antioxidants and polyunsaturated fatty acids improves semen quality in a variety of species, but only few studies on this topic exist in the horse. Proper semen collection and handling is the main key to the maintenance of semen quality during cooled-storage. Semen collection should be achieved by minimal sexual stimulation with a single mount; this results in high sperm concentration, low content of seminal plasma and minimal contamination with bacteria. Milk-based semen extenders are most popular for semen processing and storage. The development of more defined extenders containing only the beneficial milk ingredients has made extender quality more constant and reliable. Semen is often centrifuged to decrease the seminal plasma content. Centrifugation results in a recovery rate of only 75% of spermatozoa in the semen pellet. Recovery rates after centrifugation may be improved with use of a "cushion technique" allowing higher centrifugation force and duration. However, this is not routinely used in cooled-semen technology. After slow-cooling, semen-storage and shipping is best performed at 5 degrees C, maintaining semen motility, membrane integrity and DNA integrity for up to 40 h after collection. Shipping containers created from Styrofoam boxes provide maintenance of semen quality at low cost.

  5. Efficient two-dimensional subrecoil Raman cooling of atoms in a tripod configuration

    International Nuclear Information System (INIS)

    Ivanov, Vladimir S.; Rozhdestvensky, Yuri V.; Suominen, Kalle-Antti

    2011-01-01

    We present an efficient method for subrecoil cooling of neutral atoms by applying Raman cooling in two dimensions to a four-level tripod system. The atoms can be cooled simultaneously in two directions using only three laser beams. We describe the cooling process with a simple model showing that the momentum distribution can be rapidly narrowed to velocity spread down to 0.1v rec , corresponding to effective temperature equal to 0.01T rec . This method opens new possibilities for cooling of neutral atoms.

  6. Analysis of mercerization process based on the intensity change of deconvoluted resonances of 13C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions

    International Nuclear Information System (INIS)

    Miura, Kento; Nakano, Takato

    2015-01-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by 13 C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: “-up” and “-down” are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. - Highlight: • Samples were mercerized at various NaOH concentrations under non-cooling and cooling. • The intensity change of C1 starts immediately after that of C6 is complete. • The creation of cell-II starts when decrystallization proceeds to a certain state. • This change relates closely to the change in conformation of cellulose chains. • The above change is more clearly found for samples treated under cooling

  7. Car body welding with micro-jet cooling

    OpenAIRE

    T. Węgrzyn; J. Piwnik; D. Hadryś; R. Wieszała

    2011-01-01

    Purpose: of that paper was analysing welding process with device to micro-jet cooling of weld joint during welding. The main reason of it was investigate possibilities of getting higher amount of desired phase acicular ferrite. High amount of acicular ferrite influences positively on high value of impact toughness. Increasing the value of impact toughness is particular importance when making repairs car body parts. It is necessary to determine the parameters of the micro-jet cooling so that y...

  8. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  9. Thermal and flow design of helium-cooled reactors

    International Nuclear Information System (INIS)

    Melese, G.; Katz, R.

    1984-01-01

    This book continues the American Nuclear Society's series of monographs on nuclear science and technology. Chapters of the book include information on the first-generation gas-cooled reactors; HTGR reactor developments; reactor core heat transfer; mechanical problems related to the primary coolant circuit; HTGR design bases; core thermal design; gas turbines; process heat HTGR reactors; GCFR reactor thermal hydraulics; and gas cooling of fusion reactors

  10. Optimization of cooling tower performance analysis using Taguchi method

    Directory of Open Access Journals (Sweden)

    Ramkumar Ramakrishnan

    2013-01-01

    Full Text Available This study discuss the application of Taguchi method in assessing maximum cooling tower effectiveness for the counter flow cooling tower using expanded wire mesh packing. The experiments were planned based on Taguchi’s L27 orthogonal array .The trail was performed under different inlet conditions of flow rate of water, air and water temperature. Signal-to-noise ratio (S/N analysis, analysis of variance (ANOVA and regression were carried out in order to determine the effects of process parameters on cooling tower effectiveness and to identity optimal factor settings. Finally confirmation tests verified this reliability of Taguchi method for optimization of counter flow cooling tower performance with sufficient accuracy.

  11. Temporal brain dynamics of multiple object processing: the flexibility of individuation.

    Directory of Open Access Journals (Sweden)

    Veronica Mazza

    Full Text Available The ability to process concurrently multiple visual objects is fundamental for a coherent perception of the world. A core component of this ability is the simultaneous individuation of multiple objects. Many studies have addressed the mechanism of object individuation but it remains unknown whether the visual system mandatorily individuates all relevant elements in the visual field, or whether object indexing depends on task demands. We used a neural measure of visual selection, the N2pc component, to evaluate the flexibility of multiple object individuation. In three ERP experiments, participants saw a variable number of target elements among homogenous distracters and performed either an enumeration task (Experiment 1 or a detection task, reporting whether at least one (Experiment 2 or a specified number of target elements (Experiment 3 was present. While in the enumeration task the N2pc response increased as a function of the number of targets, no such modulation was found in Experiment 2, indicating that individuation of multiple targets is not mandatory. However, a modulation of the N2pc similar to the enumeration task was visible in Experiment 3, further highlighting that object individuation is a flexible mechanism that binds indexes to object properties and locations as needed for further object processing.

  12. Man-portable personal cooling garment based on vacuum desiccant cooling

    International Nuclear Information System (INIS)

    Yang Yifan; Stapleton, Jill; Diagne, Barbara Thiané; Kenny, Glen P.; Lan, Christopher Q.

    2012-01-01

    A man-portable personal cooling garment based on the concept of vacuum desiccant cooling (VDC) was developed. It was demonstrated with cooling pads that a cooling capacity of 373.1 W/m 2 could be achieved in an ambient environment of 37 °C. Tests with human subjects wearing prototype cooling garments consisting of 12 VDC pads with an overall weight of 3.4 kg covering 0.4 m 2 body surface indicate that the garment could maintain a core temperature substantially lower than the control when the workload was walking on a treadmill of 2% inclination at 3 mph. The exercise was carried out in an environment of 40 °C and 50% relative humidity (RH) for 60 min. Tests also showed that the VDC garment could effectively reduce the metabolic heat accumulation in body with subject wearing heavily insulated nuclear, biological and chemical (NBC) suit working in the heat and allow the participant to work safely for 60 min, almost doubling the safe working time of the same participant when he wore NBC suit only. - Highlights: ► Heat stress mitigation is important for workers health, safety, and performance. ► Vacuum desiccant cooling (VDC) a novel concept for personal cooling. ► VDC garment man-portable and more efficient than commercial ice/pad vest. ► VDC garment suitable for personal cooling with NBC suit.

  13. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    Science.gov (United States)

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  14. Numerical modeling and validation of helium jet impingement cooling of high heat flux divertor components

    International Nuclear Information System (INIS)

    Koncar, Bostjan; Simonovski, Igor; Norajitra, Prachai

    2009-01-01

    Numerical analyses of jet impingement cooling presented in this paper were performed as a part of helium-cooled divertor studies for post-ITER generation of fusion reactors. The cooling ability of divertor cooled by multiple helium jets was analysed. Thermal-hydraulic characteristics and temperature distributions in the solid structures were predicted for the reference geometry of one cooling finger. To assess numerical errors, different meshes (hexagonal, tetra, tetra-prism) and discretisation schemes were used. The temperatures in the solid structures decrease with finer mesh and higher order discretisation and converge towards finite values. Numerical simulations were validated against high heat flux experiments, performed at Efremov Institute, St. Petersburg. The predicted design parameters show reasonable agreement with measured data. The calculated maximum thimble temperature was below the tile-thimble brazing temperature, indicating good heat removal capability of reference divertor design. (author)

  15. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  16. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  17. New experimental results on electron cooling at COSY-Juelich

    International Nuclear Information System (INIS)

    Dietrich, J.; Maier, R.; Prasuhn, D.; Stein, H.J.; Kobets, A.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2007-01-01

    Recent results of electron cooling of proton beams at COSY-Juelich are reported. Cooling at an electron energy of 70 keV has been studied for the first time. At the injection energy level of COSY, corresponding to 24.5 keV electron energy, the features of the cooled proton beam at extremely low intensities have been investigated in order to find out whether an ordering of the proton beam can be achieved. Such investigations are motivated by the results of a numerical simulation of the ordering process by the BETACOOL code. (author)

  18. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals.

    Science.gov (United States)

    Rubin, Allison E; Cooper, Kari M; Till, Christy B; Kent, Adam J R; Costa, Fidel; Bose, Maitrayee; Gravley, Darren; Deering, Chad; Cole, Jim

    2017-06-16

    Silicic volcanic eruptions pose considerable hazards, yet the processes leading to these eruptions remain poorly known. A missing link is knowledge of the thermal history of magma feeding such eruptions, which largely controls crystallinity and therefore eruptability. We have determined the thermal history of individual zircon crystals from an eruption of the Taupo Volcanic Zone, New Zealand. Results show that although zircons resided in the magmatic system for 10 3 to 10 5 years, they experienced temperatures >650° to 750°C for only years to centuries. This implies near-solidus long-term crystal storage, punctuated by rapid heating and cooling. Reconciling these data with existing models of magma storage requires considering multiple small intrusions and multiple spatial scales, and our approach can help to quantify heat input to and output from magma reservoirs. Copyright © 2017, American Association for the Advancement of Science.

  19. Neutronic of heterogenous gas cooled reactors

    International Nuclear Information System (INIS)

    Maturana, Roberto Hernan

    2008-01-01

    At present, one of the main technical features of the advanced gas cooled reactor under development is its fuel element concept, which implies a neutronic homogeneous design, thus requiring higher enrichment compared with present commercial nuclear power plants.In this work a neutronic heterogeneous gas cooled reactor design is analyzed by studying the neutronic design of the Advanced Gas cooled Reactor (AGR), a low enrichment, gas cooled and graphite moderated nuclear power plant.A search of merit figures (some neutronic parameter, characteristic dimension, or a mixture of both) which are important and have been optimized during the reactor design stage is been done, to aim to comprise how a gas heterogeneous reactor is been design, given that semi-infinity arrangement criteria of rods in LWRs and clusters in HWRs can t be applied for a solid moderator and a gas refrigerator.The WIMS code for neutronic cell calculations is been utilized to model the AGR fuel cell and to calculate neutronic parameters such as the multiplication factor and the pick factor, as function of the fuel burnup.Also calculation is been done for various nucleus characteristic dimensions values (fuel pin radius, fuel channel pitch) and neutronic parameters (such as fuel enrichment), around the design established parameters values.A fuel cycle cost analysis is carried out according to the reactor in study, and the enrichment effect over it is been studied.Finally, a thermal stability analysis is been done, in subcritical condition and at power level, to study this reactor characteristic reactivity coefficients.Present results shows (considering the approximation used) a first set of neutronic design figures of merit consistent with the AGR design. [es

  20. Modelling the Dynamics of Intracellular Processes as an Organisation of Multiple Agents

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.; Armano, G.; Merelli, E.; Denzinger, J.; Martin, A.; Miles, S.; Tianfield, H.; Unland, R.

    2005-01-01

    This paper explores how the dynamics of complex biological processes can be modeled as an organisation of multiple agents. This modelling perspective identifies organisational structure occurring in complex decentralised processes and handles complexity of the analysis of the dynamics by structuring

  1. Dynamic Thermal Loads and Cooling Requirements Calculations for V ACs System in Nuclear Fuel Processing Facilities Using Computer Aided Energy Conservation Models

    International Nuclear Information System (INIS)

    EL Fawal, M.M.; Gadalla, A.A.; Taher, B.M.

    2010-01-01

    In terms of nuclear safety, the most important function of ventilation air conditioning (VAC) systems is to maintain safe ambient conditions for components and structures important to safety inside the nuclear facility and to maintain appropriate working conditions for the plant's operating and maintenance staff. As a part of a study aimed to evaluate the performance of VAC system of the nuclear fuel cycle facility (NFCF) a computer model was developed and verified to evaluate the thermal loads and cooling requirements for different zones of fuel processing facility. The program is based on transfer function method (TFM) and it is used to calculate the dynamic heat gain by various multilayer walls constructions and windows hour by hour at any orientation of the building. The developed model was verified by comparing the obtained calculated results of the solar heat gain by a given building with the corresponding calculated values using finite difference method (FDM) and total equivalent temperature different method (TETD). As an example the developed program is used to calculate the cooling loads of the different zones of a typical nuclear fuel facility the results showed that the cooling capacities of the different cooling units of each zone of the facility meet the design requirements according to safety regulations in nuclear facilities.

  2. Cooling of hypernuclear compact stars

    Science.gov (United States)

    Raduta, Adriana R.; Sedrakian, Armen; Weber, Fridolin

    2018-04-01

    We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parametrizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of Λ, Ξ0, and Ξ- hyperons. For the models with masses M/M⊙ ≥ 1.5 the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the (Λp) plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels (Σ-Λ) and (Ξ-Λ) are dominant. Hyperonic pairing strongly suppresses the processes on Ξ-s and to a lesser degree on Λs. We find that intermediate-mass 1.5 ≤ M/M⊙ ≤ 1.8 models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with M/M⊙ ≃ 2 may cool very fast via the direct Urca process through the (Λp) channel because they develop inner cores where the S-wave pairing of Λs and proton is absent.

  3. Operational cooling tower model (CTTOOL V1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); LocalDomainServers, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garrett, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Mechanical draft cooling towers (MDCT’s) are widely used to remove waste heat from industrial processes, including suspected proliferators of weapons of mass destruction (WMD). The temperature of the air being exhausted from the MDCT is proportional to the amount of thermal energy being removed from the process cooling water, although ambient weather conditions and cooling water flow rate must be known or estimated to calculate the rate of thermal energy dissipation (Q). It is theoretically possible to derive MDCT air exhaust temperatures from thermal images taken from a remote sensor. A numerical model of a MDCT is required to translate the air exhaust temperature to a Q. This report describes the MDCT model developed by the Problem Centered Integrated Analysis (PCIA) program that was designed to perform those computational tasks. The PCIA program is a collaborative effort between the Savannah River National Laboratory (SRNL), the Northrop-Grumman Corporation (NG) and the Aerospace Corporation (AERO).

  4. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  5. Water mist effect on cooling range and efficiency of casting die

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2008-12-01

    Full Text Available This project is showing investigation results of cooling process of casting die in the temperature range 570÷100 °C with 0.40 MPa compressed air and water mist streamed under pressure 0.25÷0.45 MPa in air jet 0.25÷0.50 MPa using open cooling system.The character and the speed of changes of temperature, forming of the temperture’s gradient along parallel layer to cooled surface of die is shawing with thermal and derivative curves. The effect of kind of cooling factor on the temperature and time and distance from cooling nozzle is presented in the paper. A designed device for generating the water mist cooling the die and the view of sprying water stream is shown here. It’s proved that using of the water mist together with the change of heat transfer interface increases intensity of cooling in the zone and makes less the range cooling zone and reduces the porosity of cast microstructure.

  6. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  7. Thermal-hydraulic process for cooling, heating and power production with low-grade heat sources in residential sector

    International Nuclear Information System (INIS)

    Borgogno, R.; Mauran, S.; Stitou, D.; Marck, G.

    2017-01-01

    Highlights: • Assessment of solar thermal-hydraulic process for tri-generation application. • Choice of the most suitable working fluid pair (R1234yf/R1233zd). • Evaluation of the global annual performance in Mediterranean climate. • Global annual COP and heat amplification achieving 0.24 and 1.2 respectively. • Global annual performance achieving an electric efficiency of 3.7%. - Abstract: A new process based on thermal-hydraulic conversion actuated by low-grade thermal energy is investigated. Input thermal energy can be provided by the means of solar collectors, as well as other low temperature energy sources. In the following article, “thermo-hydraulic” term refers to a process involving an incompressible fluid used as an intermediate medium to transfer work hydraulically between different thermal operated components or sub-systems. The system aims at providing trigeneration energy features for the residential sector, that is providing heating, cooling and electrical power for meeting the energy needs of domestic houses. This innovative system is made of two dithermal processes (working at two different levels of temperatures) and featuring two different working fluids. The first process is able to directly supply either electrical energy generated by an hydraulic turbine or drives the second process thanks to the incompressible fluid, which is similar to a heat pump effect for heating or cooling purposes. The innovative aspect of this process relies on the use of an hydraulic transfer fluid to transfer the work between each sub-system and therefore simplifying the conversion chain. A model, assuming steady-state operation, is developed to assess the energy performances of different variants of this thermo-hydraulic process with various heat source temperatures (80–110 °C) or heat sinks (0–30 °C), as well as various pairs of working fluids. For instance, in the frame of a single-family home, located in the Mediterranean region, the working

  8. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M

    2003-06-02

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  9. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists

  10. Muscle-Cooling Intervention to Reduce Fatigue and Fatigue-Induced Tremor in Novice and Experienced Surgeons: A Preliminary Investigation

    OpenAIRE

    Jensen, Lauren; Dancisak, Michael; Korndorffer, James

    2016-01-01

    A localized, intermittent muscle-cooling protocol was implemented to determine cooling garment efficacy in reducing upper extremity muscular fatigue and tremor in novice ( n  = 10) and experienced surgeons ( n  = 9). Subjects wore a muscle-cooling garment while performing multiple trials of a forearm exercise and paired suturing task to induce muscular fatigue and exercise-induced tremor. A reduction in tremor amplitude and an extension in time to fatigue were expected with muscle...

  11. Cycle Design of Reverse Brayton Cryocooler for HTS Cable Cooling Using Exergy Analysis

    Science.gov (United States)

    Gupta, Sudeep Kumar; Ghosh, Parthasarathi

    2017-02-01

    The reliability and price of cryogenic refrigeration play an important role in the successful commercialization of High Temperature Superconducting (HTS) cables. For cooling HTS cable, sub-cooled liquid nitrogen (LN2) circulation system is used. One of the options to maintain LN2 in its sub-cooled state is by providing refrigeration with the help of Reverse Brayton Cryo-cooler (RBC). The refrigeration requirement is 10 kW for continuously sub-cooling LN2 from 72 K to 65 K for cooling 1 km length of HTS cable [1]. In this paper, a parametric evaluation of RBC for sub-cooling LN2 has been performed using helium as a process fluid. Exergy approach has been adopted for this analysis. A commercial process simulator, Aspen HYSYS® V8.6 has been used for this purpose. The critical components have been identified and their exergy destruction and exergy efficiency have been obtained for a given heat load condition.

  12. Effect of cooling rate on the microstructure and properties of FeCrVC

    International Nuclear Information System (INIS)

    Bleckmann, M.; Gleinig, J.; Hufenbach, J.; Wendrock, H.; Giebeler, L.; Zeisig, J.; Diekmann, U.; Eckert, J.; Kühn, U.

    2015-01-01

    Highlights: • Effect of cooling rate on microstructure and microhardness of newly developed steel. • Intensive study of DSC measurements was done including different cooling rates. • Examinations by XRD, EDS and EBSD as well as microhardness on the DSC samples. • Matrix phase changes with cooling rates from ferrit to martensite. • Thermodynamic calculations of solidification process shows good agreement. - Abstract: In this work a systematic investigation of the influence of the cooling rate on the microstructure and properties of a newly developed Fe92.7Cr4.2V2.1C1 (FeCrVC) tool steel is presented. By applying a tailored casting process and sufficiently high cooling rates excellent mechanical properties are obtained for the presented alloy already in the as-cast state. Since no subsequent heat treatment is required, the cooling parameters applied during the casting process play a key role with respect to the evolving microstructure and resulting properties. In the present publication the effect of the cooling rate on the microstructure and properties of as-solidified FeCrVC was investigated. By using differential scanning calorimetry (DSC), several samples were heated up and cooled with continuous rates of 3–50 K/min. The received DSC data was used to investigate the alloy’s solidification and phase transformation behavior. Subsequently, these samples were studied regarding their properties and microstructure by different analysis methods (EDX/WDX, EBSD, XRD). With increasing cooling rates the liquidus and solidus temperature are lowered, whereas the solidification interval is enlarged. A higher cooling rate is accompanied by a lower solidification time which results in a refinement of the dendritic microstructure. Furthermore, with rising cooling rates the microhardness increased. This provides the opportunity to make predictions from the applied cooling parameters upon the hardness and vice versa and enables one to draw first conclusions on the

  13. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels

    International Nuclear Information System (INIS)

    Shanmugam, S.; Ramisetti, N.K.; Misra, R.D.K.; Mannering, T.; Panda, D.; Jansto, S.

    2007-01-01

    We describe here the effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels that were processed as structural beams at three different cooling rates. Nb-microalloyed steels exhibited increase in yield strength with increase in cooling rate during processing. However, the increase in the yield strength was not accompanied by loss in toughness. The microstructure at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while at intermediate cooling rate besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite and lath-type ferrite. At higher cooling rate, predominantly, lath-type (acicular) or bainitic ferrite was obtained. The precipitation characteristics were similar at the three cooling rates investigated with precipitation occurring at grain boundaries, on dislocations, and in the ferrite matrix. The fine scale (∼8-12 nm) precipitates in the ferrite matrix were MC type of niobium carbides. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels with increase in cooling rate is related to the change in the microstructure from predominantly ferrite-pearlite to predominantly bainitic ferrite

  14. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, S. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Ramisetti, N.K. [Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Misra, R.D.K. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States)], E-mail: dmisra@louisiana.edu; Mannering, T. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Panda, D. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Jansto, S. [Reference Metals, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2007-07-15

    We describe here the effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels that were processed as structural beams at three different cooling rates. Nb-microalloyed steels exhibited increase in yield strength with increase in cooling rate during processing. However, the increase in the yield strength was not accompanied by loss in toughness. The microstructure at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while at intermediate cooling rate besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite and lath-type ferrite. At higher cooling rate, predominantly, lath-type (acicular) or bainitic ferrite was obtained. The precipitation characteristics were similar at the three cooling rates investigated with precipitation occurring at grain boundaries, on dislocations, and in the ferrite matrix. The fine scale ({approx}8-12 nm) precipitates in the ferrite matrix were MC type of niobium carbides. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels with increase in cooling rate is related to the change in the microstructure from predominantly ferrite-pearlite to predominantly bainitic ferrite.

  15. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2016-02-15

    Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.

  16. Transverse Feedback for Electron-Cooled DC-Beam at COSY

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Dietrich, J.

    2004-01-01

    At the cooler synchrotron COSY, high beam quality is achieved by means of beam cooling. In the case of intense electron-cooled beams, fast particle losses due to transverse coherent beam oscillations are regularly observed. To damp the instabilities a transverse feedback system was installed and successfully commissioned. Commissioning of the feedback system resulted in a significant increase of the e-cooled beam intensity by single injection and when cooling and stacking of repeated injections is applied. External experiments profit from the small diameter beams and the reduced halo. A transverse damping system utilizing a pick-up, signal processing electronics, power amplifiers, and a stripline deflector is introduced. Beam current and Schottky spectra measurements with the vertical feedback system turned on and off are presented

  17. Survey on Cooled-Vessel Designs in High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Kim, Min-Hwan; Lee, Won-Jae

    2006-01-01

    The core outlet temperature of the coolant in the high temperature gas-cooled reactors (HTGR) has been increased to improve the overall efficiency of their electricity generation by using the Brayton cycle or their nuclear hydrogen production by using thermo-chemical processes. The increase of the outlet temperature accompanies an increase of the coolant inlet temperature. A high coolant inlet temperature results in an increase of the reactor pressure vessel (RPV) operation temperature. The conventional steels, proven vessel material in light water reactors, cannot be used as materials for the RPV in the elevated temperatures which necessitate its design to account for the creep effects. Some ferritic or martensitic steels like 2 1/4Cr-1Mo and 9Cr-1Mo-V are very well established creep resistant materials for a temperature range of 400 to 550 C. Although these materials have been used in a chemical plant, there is limited experience with using these materials in nuclear reactors. Even though the 2 1/4Cr-1Mo steel was used to manufacture the RPV for HTR-10 of Japan Atomic Energy Agency(JAEA), a large RPV has not been manufactured by using this material or 9Cr-1Mo-V steel. Due to not only its difficulties in manufacturing but also its high cost, the JAEA determined that they would exclude these materials from the GTHTR design. For the above reasons, KAERI has been considering a cooled-vessel design as an option for the RPV design of a NHDD plant (Nuclear Hydrogen Development and Demonstration). In this study, we surveyed several HTGRs, which adopt the cooled-vessel concept for their RPV design, and discussed their design characteristics. The survey results in design considerations for the NHDD cooled-vessel design

  18. Electronics cooling of Phenix multiplicity and vertex detector

    International Nuclear Information System (INIS)

    Chen, Z.; Gregory, W.S.

    1996-08-01

    The Multiplicity and Vertex Detector (MVD) uses silicon strip sensors arranged in two concentric barrels around the beam pipe of the PHENIX detector that will be installed at Brookhaven National Laboratory. Each silicon sensor is connected by a flexible kapton cable to its own front-end electronics printed circuit board that is a multi-chip module or MCM. The MCMs are the main heat source in the system. To maintain the MVD at optimized operational status, the maximum temperature of the multi-chip modules must be below 40 C. Using COSMOS/M HSTAR for the Heat Transfer analysis, a finite element model of a typical MCM plate was created to simulate a 9m/s airflow and 9m/s mixed flow composed of 50% helium and 50% air respectively, with convective heat transfer on both sides of the plate. The results using a mixed flow of helium and air show that the average maximum temperature reached by the MCMs is 37.5 C. The maximum temperature which is represented by the hot spots on the MCM is 39.43 C for the helium and air mixture which meets the design temperature requirement 40 C. To maintain the Multiplicity and Vertex Detector at optimized operational status, the configuration of the plenum chamber, the power dissipated by the silicon chips, the fluid flow velocity and comparison on the MCM design parameters will be discussed

  19. A novel energy-saving method for air-cooled chiller plant by parallel connection

    International Nuclear Information System (INIS)

    Zhang Xiaosong; Xu Guoying; Chan, K.T.; Yi Xia

    2006-01-01

    A novel method was put forward for improving the energy efficiency of air-cooled water chiller plant operating on part load conditions. The conventional multiple-chiller plant was proposed to be integrated into one refrigeration cycle, by connecting those separate compressors, condensers and evaporators in parallel, respectively. The integrated multiple-chiller plant uses the electronic expansion valve to control refrigerant flow, achieving variable condensing temperature control. A prototype composed of four reciprocating compressors (including one variable-speed compressor), with total nominal cooling capacity of 120 kW was simulated and experimented. Both the simulative and experimental results indicated that applying this novel energy-saving method, the air-cooled chiller plant could get a significant performance improvement on various part load ratio (PLR) conditions, due to the apparent decrease of condensing temperature and some increase of evaporating temperature. Under the same outdoor temperature of 35 o C, when the PLR decreased from 100% to 50%, the COP increased by about 16.2% in simulation and 9.5% in experiment. Also, the practical refrigeration output ratio of the system was 55% on the condition of 50% PLR

  20. Exergy optimization of cooling tower for HGSHP and HVAC applications

    International Nuclear Information System (INIS)

    Singh, Kuljeet; Das, Ranjan

    2017-01-01

    Highlights: • Development of new correlations for outlet parameters with all inlet parameters. • Simultaneous achievement of required heat load and minimum exergy destruction. • Multiple combinations of parameters found for same heat load at minimized exergy. • Study useful for optimum control of cooling tower under varying ambient conditions. • Generalized optimization study can be implemented for any mechanical cooling tower. - Abstract: In the present work, a constrained inverse optimization method for building cooling applications is proposed to control the mechanical draft wet cooling tower by minimizing the exergy destruction and satisfying an imposed heat load under varying environmental conditions. The optimization problem is formulated considering the cooling dominated heating, ventilation and air conditioning (HVAC) and hybrid ground source heat pump (HGSHP). As per the requirement, new second degree correlations for the tower outlet parameters (water temperature, air dry and wet-bulb temperatures) with five inlet parameters (dry-bulb temperature, relative humidity, water inlet temperature, water and air mass flow rates) are developed. The Box–Behnken design response surface method is implemented for developing the correlations. Subsequently, the constrained optimization problem is solved using augmented Lagrangian genetic algorithm. This work further developed optimum inlet parameters operating curves for the HGSHP and the HVAC systems under varying environmental conditions aimed at minimizing the exergy destruction along with the fulfillment of the required heat load.

  1. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  2. Description of multiple processes on the basis of triangulation in the velocity space

    International Nuclear Information System (INIS)

    Baldin, A.M.; Baldin, A.A.

    1986-01-01

    A method of the construction of polyhedrons in the relative four-velocity space is suggested which gives a complete description of multiple processes. A method of the consideration of a general case, when the total number of the relative velocity variables exceeds the number of the degrees of freedom, is also given. The account of the particular features of the polyhedrons due to the clusterization in the velocity space, as well as the account of the existence of intermediate asymptotics and the correlation depletion principle makes it possible to propose an algorithm for processing much larger bulk of experimental information on multiple processes as compared to the inclusive approach

  3. Charged particle multiplicity distributions in e+e--annihilation processes in the LEP experiments

    International Nuclear Information System (INIS)

    Shlyapnikov, P.V.

    1992-01-01

    Results of studies of the charged particle multiplicity distributions in the process of e + e - -annihilation into hadrons obtained in experiments at LEP accelerator in CERN are reviewed. Universality in energy dependence of the average charged particle multiplicity in e + e - and p ± p collisions, evidence for KNO-scaling in e + e - data, structure in multiplicity distribution and its relation to the jet structure of events, average particle multiplicities or quark and gluon jets, 'clan' picture and other topics are discussed. 73 refs.; 20 figs.; 3 tabs

  4. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  5. Analysis of mercerization process based on the intensity change of deconvoluted resonances of {sup 13}C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Kento [Mitsubishi Rayon Co., Ltd. Otake Research Laboratories (Japan); Nakano, Takato, E-mail: tnakano@kais.kyoto-u.ac.jp [Laboratory of Biomaterials Design, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University (Japan)

    2015-08-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by {sup 13}C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: “-up” and “-down” are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. - Highlight: • Samples were mercerized at various NaOH concentrations under non-cooling and cooling. • The intensity change of C1 starts immediately after that of C6 is complete. • The creation of cell-II starts when decrystallization proceeds to a certain state. • This change relates closely to the change in conformation of cellulose chains. • The above change is more clearly found for samples treated under cooling.

  6. Process and device for cooling of nuclear reactor fuel elements enclosed in a transport container

    International Nuclear Information System (INIS)

    Stiefel, M.

    1986-01-01

    In order to remove the post-decay heat of the fuel elements contained in them, transport containers for burnt-up fuel elements can be connected to a water cooling circuit. In order to avoid thermal shocks, a tenside forming foam and air are introduced into the cooling circuit before its entry into the transport container in the direction of flow. The tenside and air continue to be supplied until the temperature inside the transport container has fallen below the temperature at which the foam is destroyed. By adding tenside and air, a two phase mixture is produced, which foams greatly when it enters the transport container and which cools the fuel elements so as to protect them.(orig./HP) [de

  7. Mixture preparation by cool flames for diesel-reforming technologies

    Science.gov (United States)

    Hartmann, L.; Lucka, K.; Köhne, H.

    The separation of the evaporation from the high-temperature reaction zone is crucial for the reforming process. Unfavorable mixtures of liquid fuels, water and air lead to degradation by local hot spots in the sensitive catalysts and formation of unwanted by-products in the reformer. Furthermore, the evaporator has to work with dynamic changes in the heat transfer, residence times and educt compositions. By using exothermal pre-reactions in the form of cool flames it is possible to realize a complete and residue-free evaporation of liquid hydrocarbon mixtures. The conditions whether cool flames can be stabilised or not is related to the heat release of the pre-reactions in comparison to the heat losses of the system. Examinations were conducted in a flow reactor at atmospheric pressure and changing residence times to investigate the conditions under which stable cool flame operation is possible and auto-ignition or quenching occurs. An energy balance of the evaporator should deliver the values of heat release by cool flames in comparison to the heat losses of the system. The cool flame evaporation is applied in the design of several diesel-reforming processes (thermal and catalytic partial oxidation, autothermal reforming) with different demands in the heat management and operation range (air ratio λ, steam-to-carbon ratio, SCR). The results are discussed at the end of this paper.

  8. Optimization of Multiple Responses of Ultrasonic Machining (USM Process: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Rina Chakravorty

    2013-04-01

    Full Text Available Ultrasonic machining (USM process has multiple performance measures, e.g. material removal rate (MRR, tool wear rate (TWR, surface roughness (SR etc., which are affected by several process parameters. The researchers commonly attempted to optimize USM process with respect to individual responses, separately. In the recent past, several systematic procedures for dealing with the multi-response optimization problems have been proposed in the literature. Although most of these methods use complex mathematics or statistics, there are some simple methods, which can be comprehended and implemented by the engineers to optimize the multiple responses of USM processes. However, the relative optimization performance of these approaches is unknown because the effectiveness of different methods has been demonstrated using different sets of process data. In this paper, the computational requirements for four simple methods are presented, and two sets of past experimental data on USM processes are analysed using these methods. The relative performances of these methods are then compared. The results show that weighted signal-to-noise (WSN ratio method and utility theory (UT method usually give better overall optimisation performance for the USM process than the other approaches.

  9. Theoretical analysis of the performance of different cooling strategies with the concept of cool exergy

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air for the v......The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air...... for the ventilation system being outdoor air vs. air from the crawl-space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on system exergy performance were investigated. It is crucial to minimize the cooling demand because it is possible to use a wide range of heat sinks (ground, lake, sea......-water, etc.) and indoor terminal units, only with a minimized demand. The water-based floor cooling system performed better than the air-based cooling system; when an air-to-water heat pump was used as the cooling source, the required exergy input was 28% smaller for the floor cooling system. The auxiliary...

  10. Solar cooling - comparative study between thermal and electrical use in industrial buildings

    Science.gov (United States)

    Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.

    2016-08-01

    The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.

  11. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PORJECT -9225

    International Nuclear Information System (INIS)

    Jolly, R.

    2009-01-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed ∼ 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of ∼ 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical

  12. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the &apos

  13. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  14. Gas-cooled reactor commercialization study: introduction scenario and commercialization analyses for process heat applications. Final report, July 8, 1977--November 30, 1977

    International Nuclear Information System (INIS)

    1977-12-01

    This report identifies and presents an introduction scenario which can lead to the operation of High Temperature Gas Cooled Reactor demonstration plants for combined process heat and electric power generation applications, and presents a commercialization analysis relevant to the organizational and management plans which could implement a development program

  15. Gas-cooled reactor commercialization study: introduction scenario and commercialization analyses for process heat applications. Final report, July 8, 1977--November 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This report identifies and presents an introduction scenario which can lead to the operation of High Temperature Gas Cooled Reactor demonstration plants for combined process heat and electric power generation applications, and presents a commercialization analysis relevant to the organizational and management plans which could implement a development program.

  16. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2015-01-01

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO 2 emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO 2 emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus TM Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition

  17. From drop impact physics to spray cooling models: a critical review

    Science.gov (United States)

    Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron

    2018-03-01

    Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.

  18. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high......-vacuumed cryostat. A two-stage GM cryocooler with a cooling power of 1.5 W at 4.2 K in the second stage is used to cool the system from room temperature to 4.2 K. In this paper, the detailed design, fabrication, thermal analysis and tests of the system are presented....

  19. Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process

    Science.gov (United States)

    Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.

    2018-03-01

    In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.

  20. Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays

    Science.gov (United States)

    Ampleford, David

    2009-11-01

    We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman

  1. Cool and Safe: Multiplicity in Safe Innovation at Unilever

    Science.gov (United States)

    Penders, Bart

    2011-01-01

    This article presents the making of a safe innovation: the application of ice structuring protein (ISP) in edible ices. It argues that safety is not the absence of risk but is an active accomplishment; innovations are not "made safe afterward" but "safe innovations are made". Furthermore, there are multiple safeties to be accomplished in the…

  2. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  3. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  4. Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method

    International Nuclear Information System (INIS)

    Queiroz, João A.; Rodrigues, Vitor M.S.; Matos, Henrique A.; Martins, F.G.

    2012-01-01

    Highlights: ► Simulation of cooling tower performance under different operating conditions. ► Cooling tower performance is simulated using ASPEN PLUS. ► Levenberg–Marquardt method used to adjust model parameters. ► Air and water outlet temperatures are in good accordance with experimental data. - Abstract: Simulation of cooling tower performance considering operating conditions away from design is typically based on the geometrical parameters provided by the cooling tower vendor, which are often unavailable or outdated. In this paper a different approach for cooling tower modeling based on equilibrium stages and Murphree efficiencies to describe heat and mass transfer is presented. This approach is validated with published data and with data collected from an industrial application. Cooling tower performance is simulated using ASPEN PLUS. Murphree stage efficiency values for the process simulator model were optimized by minimizing the squared difference between the experimental and calculated data using the Levenberg–Marquardt method. The minimization algorithm was implemented in Microsoft Excel with Visual Basic for Applications, integrated with the process simulator (ASPEN PLUS) using Aspen Simulation Workbook. The simulated cooling tower air and water outlet temperatures are in good accordance with experimental data when applying only the outlet water temperature to calibrate the model. The methodology is accurate for simulating cooling towers at different operational conditions.

  5. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  6. On the sequentiality of the multiple Coulomb-excitation process

    International Nuclear Information System (INIS)

    Dannhaeuser, G.; Boer, J. de

    1978-01-01

    This paper describes the results of 'computer experiments' illustrating the meaning of a new concept called 'sequentiality'. This concept applies to processes in which the excitation of a given state is mainly accomplished by a large multiple of steps, and it deals with the question as to what extent a transition close to the ground state occurs before one between the highest excited states. (orig.) [de

  7. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    International Nuclear Information System (INIS)

    Mueller, M; Hoehlich, D; Scharf, I; Lampke, T; Hollaender, U; Maier, H J

    2016-01-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W 2 N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing. (paper)

  8. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory

  9. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  10. Thermal properties and heat transfer coefficients in cryogenic cooling

    Science.gov (United States)

    Biddulph, M. W.; Burford, R. P.

    This paper considers two aspects of the design of the cooling stage of the process known as cryogenic recycling. This process uses liquid nitrogen to embrittle certain materials before grinding and subsequent separation. It is being increasingly used in materials recycling. A simple method of establishing thermal diffusivity values of materials of interest by using cooling curves is described. These values are important for effective cooler design. In addition values of convective heat transfer coefficient have been determined in an operating inclined, rotating cylindrical cooler operating on scrap car tyres. These will also be useful for cooler design methods.

  11. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  12. Desiccant-assisted cooling fundamentals and applications

    CERN Document Server

    Brum, Nisio

    2014-01-01

    The increasing concern with indoor air quality has led to air-quality standards with increased ventilation rates. Although increasing the volume flow rate of outside air is advisable from the perspective of air-quality, it is detrimental to energy consumption, since the outside air has to be brought to the comfort condition before it is insufflated to the  conditioned ambient. Moreover, the humidity load carried within outside air has challenging HVAC engineers to design cooling units which are able to satisfactorily handle both sensible and latent contributions to the thermal load. This constitutes a favorable scenario for the use of solid desiccants to assist the cooling units. In fact, desiccant wheels have been increasingly applied by HVAC designers, allowing distinct processes for the air cooling and dehumidification. In fact, the ability of solid desiccants in moisture removal is effective enough to allow the use of evaporative coolers, in opposition to the traditional vapor-compression cycle, resultin...

  13. Cooling solutions in an operational data centre: A case study

    International Nuclear Information System (INIS)

    Fakhim, B.; Behnia, M.; Armfield, S.W.; Srinarayana, N.

    2011-01-01

    The rapid growth in data centres - large computing infrastructures containing vast quantities of data processing and storage equipment - has resulted in their consumption of up to 100 times more energy per square metre than office accommodation. The decrease in processing server sizes and the more efficient use of space and server processing are challenging data centre facilities to provide more power and cooling, significantly increasing energy demands. Energy consumption of data centres can be severely and unnecessarily high due to inadequate localised cooling and densely packed server rack layouts. However, as heat dissipation in data centres rises by orders of magnitude, inefficiencies such as air recirculation causing hot spots and flow short-circuiting will have a significant impact on the thermal manageability and energy efficiency of the cooling infrastructure. Therefore, an efficient thermal management of high-powered electronic equipment is a significant challenge for cooling of data centres. To highlight the importance of some of these issues, in this project, an operational data centre has been studied. Field measurements of temperature have been performed. Numerical analysis of flow and temperature fields is conducted in order to evaluate the thermal behaviour of the data centre. A number of undesirable hot spots have been identified. To rectify the problem, a few practical design and remedial solutions to improve the cooling effectiveness have been proposed and examined to allow a reduced air-conditioning power requirement. The findings lead to a better understanding of the cooling issues and the respective proposed solutions allow an improved design for future data centres. - Highlights: → Study of flow and temperature distribution in an operational data centre. → Both field measurements and numerical simulations are conducted. → Numerical simulations are validated by field measurements. → Various modifications to improve the thermal

  14. Free cooling in an urban environment - A lake and ground water distribution network to cover the heating and cooling needs of buildings - Feasibility study for the City of Neuchatel, Switzerland; Freecooling en milieu urbain. Reseau de distribution d'eau de lac et d'eau souterraine pour couvrir les besoins en rafraichissement et en chaleur des batiments. Etude de faisabilite pour la Ville de Neuchatel, Suisse - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Matthey, B.; Affolter, M.

    2009-12-15

    The potential cooling demand in the City of Neuchatel (35,000 inhabitants) is estimated to at least 15 MW. Considering the natural cooling resources available (the Lake of Neuchatel, the Serriere spring, groundwater), these needs can be satisfied without electrical refrigeration equipment. However, the multiplicity of resources and needs implicates the use of multiple and complementary water supply systems: individual wells, multiple building network, lake water distribution network for an entire district. Three exploitation systems to supply cooling water to the center of Neuchatel have been evaluated: lake water, ground water, existing drinking water network. The analysis indicates that the realization of a lake water network for free cooling and heat pumps is economically attractive. In a first step and to meet the short-term demand, the providing of cool water through the existing drinking water network can be considered. In Serriere, the use of the heating and cooling resource of the Serriere river has been evaluated. The results demonstrate the technical and economical feasibility of a heating and cooling water supply network. (authors)

  15. Gases vacuum dedusting and cooling

    Directory of Open Access Journals (Sweden)

    Alexey А. Burov

    2015-03-01

    Full Text Available Represented are the results of operating the ladle degassing vacuum plant (productivity: 120 tons of liquid steel with various dust collectors. The process gases’ cooling and dedusting, obtained in the closed loop buran study, provides opportunity to install a bag filter after that closed loop and its efficient use. Proven is the effectiveness of the cylindrical cyclone replacement with a multichannel (buran dust collector, based on a system of closed-loop (return coupling serially connected curved ducts, where the dusty gas flow rotation axis is vertically positioned. The system of closed-loop serially connected curvilinear channels creates preconditions for the emergence of a negative feedback at the curvilinear gas flow containing transit and circulating flows. These conditions are embodied with circulating flows connecting the in- and outputs of the whole system each channel. The transit flow multiple continuous filtration through the circulating dust layers leads to the formation and accumulation of particles aggregates in the collection chamber. The validity of such a dusty flow control mechanism is confirmed by experimental data obtained in a vacuum chamber. Therefore, replacing one of the two buran’s forevacuum pumps assemblies with the necessary number of curved channels (closed loop is estimated in a promising method.

  16. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  17. Conceptual design and the simulation of final cooling section for a muon collider

    International Nuclear Information System (INIS)

    Skrinsky, A.N.; Zolkin, T.V.

    2009-01-01

    The scheme of final cooling for muon beams, based on using current-carrying liquid-lithium rods, is discussed. The dynamics of particles in the course of cooling taking into account the non-paraxial motion has been studied with the help of computer simulation. It is suggested to minimize the effective increase of the longitudinal emittance caused by fluctuations of ionization losses and large angular spread, by the rotation of the longitudinal phase-space portrait for arranging self-action. We have considered the non-dissipative multiple successive full emittance redistribution from the longitudinal dimension to transverse one, necessary for cooling of all degrees of freedom. This redistribution is based on special rotations of the particle six-dimensional phase space by the beam division in several streams and their consequent merging with the minimum increment of full emittance and minimal beam losses taking into account their local phase-space density. Some of the basic technical parameters of the cooling system elements have been estimated.

  18. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  19. [Information processing speed and influential factors in multiple sclerosis].

    Science.gov (United States)

    Zhang, M L; Xu, E H; Dong, H Q; Zhang, J W

    2016-04-19

    To study the information processing speed and the influential factors in multiple sclerosis (MS) patients. A total of 36 patients with relapsing-remitting MS (RRMS), 21 patients with secondary progressive MS (SPMS), and 50 healthy control subjects from Xuanwu Hospital of Capital Medical University between April 2010 and April 2012 were included into this cross-sectional study.Neuropsychological tests was conducted after the disease had been stable for 8 weeks, including information processing speed, memory, executive functions, language and visual perception.Correlation between information processing speed and depression, fatigue, Expanded Disability Status Scale (EDSS) were studied. (1)MS patient groups demonstrated cognitive deficits compared to healthy controls.The Symbol Digit Modalities Test (SDMT) (control group 57±12; RRMS group 46±17; SPMS group 35±10, Pinformation processing (Pinformation processing speed, verbal memory and executive functioning are seen in MS patients, especially in SPMS subtype, while visual-spatial function is relatively reserved.Age, white matter change scales, EDSS scores, depression are negatively associated with information processing speed.

  20. Tarp-Assisted Cooling as a Method of Whole-Body Cooling in Hyperthermic Individuals.

    Science.gov (United States)

    Hosokawa, Yuri; Adams, William M; Belval, Luke N; Vandermark, Lesley W; Casa, Douglas J

    2017-03-01

    We investigated the efficacy of tarp-assisted cooling as a body cooling modality. Participants exercised on a motorized treadmill in hot conditions (ambient temperature 39.5°C [103.1°F], SD 3.1°C [5.58°F]; relative humidity 38.1% [SD 6.7%]) until they reached exercise-induced hyperthermia. After exercise, participants were cooled with either partial immersion using a tarp-assisted cooling method (water temperature 9.20°C [48.56°F], SD 2.81°C [5.06°F]) or passive cooling in a climatic chamber. There were no differences in exercise duration (mean difference=0.10 minutes; 95% CI -5.98 to 6.17 minutes or end exercise rectal temperature (mean difference=0.10°C [0.18°F]; 95% CI -0.05°C to 0.25°C [-0.09°F to 0.45°F] between tarp-assisted cooling (48.47 minutes [SD 8.27 minutes]; rectal temperature 39.73°C [103.51°F], SD 0.27°C [0.49°F]) and passive cooling (48.37 minutes [SD 7.10 minutes]; 39.63°C [103.33°F], SD 0.40°C [0.72°F]). Cooling time to rectal temperature 38.25°C (100.85°F) was significantly faster in tarp-assisted cooling (10.30 minutes [SD 1.33 minutes]) than passive cooling (42.78 [SD 5.87 minutes]). Cooling rates for tarp-assisted cooling and passive cooling were 0.17°C/min (0.31°F/min), SD 0.07°C/min (0.13°F/min) and 0.04°C/min (0.07°F/min), SD 0.01°C/min (0.02°F/min), respectively (mean difference=0.13°C [0.23°F]; 95% CI 0.09°C to 0.17°C [0.16°F to 0.31°F]. No sex differences were observed in tarp-assisted cooling rates (men 0.17°C/min [0.31°F/min], SD 0.07°C/min [0.13°F/min]; women 0.16°C/min [0.29°F/min], SD 0.07°C/min [0.13°F/min]; mean difference=0.02°C/min [0.04°F/min]; 95% CI -0.06°C/min to 0.10°C/min [-0.11°F/min to 0.18°F/min]). Women (0.04°C/min [0.07°F/min], SD 0.01°C/min [0.02°F/min]) had greater cooling rates than men (0.03°C/min [0.05°F/min], SD 0.01°C/min [0.02°F/min]) in passive cooling, with negligible clinical effect (mean difference=0.01°C/min [0.02°F/min]; 95% CI 0.001

  1. Cooling in the Post-Sunrise Equatorial Topside Ionosphere During the 22-23 June 2015 Superstorm

    Science.gov (United States)

    Stoneback, R.; Hairston, M. R.; Coley, W. R.; Heelis, R. A.

    2015-12-01

    During the recovery phase of the 22-23 June 2015 superstorm multiple DMSP spacecraft observed two separate and short-lived (~ 30 minutes) events of localized cooling in the topside equatorial ionosphere (~840 km) in the post-sunrise region (between 6:15 and 7:30 local time). The ion temperatures dropped from the nominal 2000-3000° observed in these regions to 1000 to 1500°. This cooling effect was not observed on the corresponding duskside equatorial crossings of the DMSP spacecraft during this storm. Further, these cooling events do not normally occur during major storms; no such phenomenon was observed by DMSP during the March 2015 superstorm. Flow data from DMSP and the CINDI instruments on the C/NOFS spacecraft indicate these cooling events are associated with short-lived vertical flows bringing up cooler plasma from lower altitudes. The two cooling events correspond to large northward turnings of the IMF during the storm and these are being explored as a possible trigger mechanism.

  2. Radionuclides behaviour in the silts-water system of a cooling pond

    International Nuclear Information System (INIS)

    Ol'khovik, Yu.A.; Kostyuchenko, N.G.; Koromyslichenko, T.I.

    1989-01-01

    As a result of the Chernobyl' accident a considerable amount of radioisotopes (1-5x10 5 Ci) concentrated in a cooling pond. A year later the accident a level of water contamination decreased by 2 orders, whereas the radionuclide distribution changed perceptibly. Processes of water self-decontamination in the cooling pond were considered. A forecast of water radiactivity level in the cooling pond in the summer of 1988 was made. 3 refs.; 1 refs.; 2 tabs

  3. Development of a single-phase thermosiphon for cold collection and storage of radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu; Ma, Yaoguang; Zhai, Yao; Tan, Gang; Yin, Xiaobo; Yang, Ronggui

    2017-11-01

    A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facility was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.

  4. Hot and Cool Executive Functions in Adolescence: Development and Contributions to Important Developmental Outcomes

    Science.gov (United States)

    Poon, Kean

    2018-01-01

    Despite significant theoretical advancement in the area of child neuropsychology, limited attention has been paid to the developmental features of adolescence. The present study intends to address this issue in relation to executive function (EF). EF refers to the psychological processes that underlie goal-directed behavior; recent studies separate cool EF (psychological process involves pure logic and critical analysis) and hot EF (psychological process driven by emotion). Although neurological findings suggest that adolescence is a sensitive period for EF development, data on comparing the developmental progression in hot or cool EFs is highly missing. Moreover, while evidence has confirmed the relationships between EF and day-to-day functioning, whether and how hot and cool EFs contribute to core developmental outcomes in adolescence is still remained unknown. The current study aims to enhance our understanding of the development and impacts of hot and cool EFs in adolescence. A total of 136 typically developing adolescents from age 12 to 17 completed four cool EF tasks including Backward digit span, Contingency naming test, Stockings of Cambridge, and Stroop Color and Word test, and one hot task on Cambridge gambling task. Data on academic performance and psychological adjustment was also collected. Results showed that cool and hot EF exhibited different patterns of age-related growth in adolescence. Specifically, cool EF ascended with age while hot EF showed a bell-shaped development. Moreover, there were correlations among cool EF measures but no association between cool and hot EFs. Further, cool EF was a better predictor of academic performance, while hot EF uniquely related to emotional problems. The results provide evidence for the association among cool EF tests and the differentiation of hot and cool EFs. The bell-shaped development of hot EF might suggest a period of heightened risk-taking propensity in middle adolescence. Given the plastic nature of

  5. Hot and Cool Executive Functions in Adolescence: Development and Contributions to Important Developmental Outcomes

    Directory of Open Access Journals (Sweden)

    Kean Poon

    2018-01-01

    Full Text Available Despite significant theoretical advancement in the area of child neuropsychology, limited attention has been paid to the developmental features of adolescence. The present study intends to address this issue in relation to executive function (EF. EF refers to the psychological processes that underlie goal-directed behavior; recent studies separate cool EF (psychological process involves pure logic and critical analysis and hot EF (psychological process driven by emotion. Although neurological findings suggest that adolescence is a sensitive period for EF development, data on comparing the developmental progression in hot or cool EFs is highly missing. Moreover, while evidence has confirmed the relationships between EF and day-to-day functioning, whether and how hot and cool EFs contribute to core developmental outcomes in adolescence is still remained unknown. The current study aims to enhance our understanding of the development and impacts of hot and cool EFs in adolescence. A total of 136 typically developing adolescents from age 12 to 17 completed four cool EF tasks including Backward digit span, Contingency naming test, Stockings of Cambridge, and Stroop Color and Word test, and one hot task on Cambridge gambling task. Data on academic performance and psychological adjustment was also collected. Results showed that cool and hot EF exhibited different patterns of age-related growth in adolescence. Specifically, cool EF ascended with age while hot EF showed a bell-shaped development. Moreover, there were correlations among cool EF measures but no association between cool and hot EFs. Further, cool EF was a better predictor of academic performance, while hot EF uniquely related to emotional problems. The results provide evidence for the association among cool EF tests and the differentiation of hot and cool EFs. The bell-shaped development of hot EF might suggest a period of heightened risk-taking propensity in middle adolescence. Given the

  6. A Film-Cooling CFD Bibliography: 1971–1996

    Directory of Open Access Journals (Sweden)

    D. M. Kercher

    1998-01-01

    Full Text Available After more than 25 years of three-dimensional film cooling experimental investigations, analytical correlations and modeling, film cooling utilizing computational fluid dynamics has emerged from a similar development-applications growth process into a near-attainable heat transfer engineering tool. Analytical applications include high temperature subsonic to hypersonic flow with complex wall-geometry coolant injection film performance analysis techniques spanning usage from gas turbines to rocket engines to scramjets. In recent years there has been significant development in increased computer power and modeling capacity, increasingly more complex and successful Navier-Stokes turbulence modeling techniques, innovative labor-saving meshing techniques, and more successful validation of experimental results. These combined innovations have continued to transition computational film cooling technology from the academic, government and commercial research and development environment to the industrial design-analysis environment. This bibliography is an openliterature reference resource whose papers collectively describe the continual emerging of numerical film cooling as a viable design tool for high temperature components.

  7. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  8. Abundance analyses of thirty cool carbon stars

    International Nuclear Information System (INIS)

    Utsumi, Kazuhiko

    1985-01-01

    The results were previously obtained by use of the absolute gf-values and the cosmic abundance as a standard. These gf-values were found to contain large systematic errors, and as a result, the solar photospheric abundances were revised. Our previous results, therefore, must be revised by using new gf-values, and abundance analyses are extended for as many carbon stars as possible. In conclusion, in normal cool carbon stars heavy metals are overabundant by factors of 10 - 100 and rare-earth elements are overabundant by a factor of about 10, and in J-type cool carbon stars, C 12 /C 13 ratio is smaller, C 2 and CN bands and Li 6708 are stronger than in normal cool carbon stars, and the abundances of s-process elements with respect to Fe are nearly normal. (Mori, K.)

  9. Multiple Module Simulation of Water Cooled Breeding Blankets in K-DEMO Using Thermal-Hydraulic Analysis Code MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A preliminary concept for the Korean fusion demonstration reactor (K-DEMO) has been studied by the National Fusion Research Institute (NFRI) based on the National Fusion Roadmap of Korea. The feasibility studies have been performed in order to establish the conceptual design guidelines of the breeding blanket. As a part of the NFRI research, Seoul National University (SNU) is conducting thermal design, evaluation and validation of the water-cooled breeding blanket for the K-DEMO reactor. The purpose of this study is to extend the capability of MARS-KS to the overall blanket system analysis which includes 736 blanket modules in total. The strategy for the multi-module blanket system analysis using MARS-KS is introduced and the analysis result of the 46 blanket modules of single sector was summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for thermal analysis of the conceptual design of the K-DEMO breeding blanket. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering the pressure drop that occurs in each module. For a feasibility test of the proposed methodology, 46 blankets in a sector, which are connected with each other through the common headers for the sector inlet and outlet, were simulated. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation. Because of parallelization using the MPI system, the computational time could be reduced significantly. In future, this methodology will be extended to an efficient simulation of multiple sectors, and further validation for transient simulation will be carried out for more practical applications.

  10. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  11. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    Science.gov (United States)

    Tarau, Calin; Schwendeman, Carl; Anderson, William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  12. Associated multiplicity of γ-particles in processes of lepton pair production on nuclei

    International Nuclear Information System (INIS)

    Gevorkyan, S.R.; Gulkanyan, H.R.; Vartanyan, V.A.

    1986-01-01

    An expression has been obtained for mean multiplicity of g-particles accompanying the process of deep-inelastic lepton pair production on nuclei. The expression allows one to get information on structure peculiarities of leading hadron in this process

  13. Radiative human body cooling by nanoporous polyethylene textile.

    Science.gov (United States)

    Hsu, Po-Chun; Song, Alex Y; Catrysse, Peter B; Liu, Chong; Peng, Yucan; Xie, Jin; Fan, Shanhui; Cui, Yi

    2016-09-02

    Thermal management through personal heating and cooling is a strategy by which to expand indoor temperature setpoint range for large energy saving. We show that nanoporous polyethylene (nanoPE) is transparent to mid-infrared human body radiation but opaque to visible light because of the pore size distribution (50 to 1000 nanometers). We processed the material to develop a textile that promotes effective radiative cooling while still having sufficient air permeability, water-wicking rate, and mechanical strength for wearability. We developed a device to simulate skin temperature that shows temperatures 2.7° and 2.0°C lower when covered with nanoPE cloth and with processed nanoPE cloth, respectively, than when covered with cotton. Our processed nanoPE is an effective and scalable textile for personal thermal management. Copyright © 2016, American Association for the Advancement of Science.

  14. Heat and Mass Transfer of Vacuum Cooling for Porous Foods-Parameter Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2014-01-01

    Full Text Available Based on the theory of heat and mass transfer, a coupled model for the porous food vacuum cooling process is constructed. Sensitivity analyses of the process to food density, thermal conductivity, specific heat, latent heat of evaporation, diameter of pores, mass transfer coefficient, viscosity of gas, and porosity were examined. The simulation results show that the food density would affect the vacuum cooling process but not the vacuum cooling end temperature. The surface temperature of food was slightly affected and the core temperature is not affected by the changed thermal conductivity. The core temperature and surface temperature are affected by the changed specific heat. The core temperature and surface temperature are affected by the changed latent heat of evaporation. The core temperature is affected by the diameter of pores. But the surface temperature is not affected obviously. The core temperature and surface temperature are not affected by the changed gas viscosity. The parameter sensitivity of mass transfer coefficient is obvious. The core temperature and surface temperature are affected by the changed mass transfer coefficient. In all the simulations, the end temperature of core and surface is not affected. The vacuum cooling process of porous medium is a process controlled by outside process.

  15. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    Science.gov (United States)

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.

  16. CFC environmental problems and cooling technology

    International Nuclear Information System (INIS)

    Hornung, M.O.

    1991-08-01

    The aim of the report is to provide a broad survey of the technological problems imposed on the production of cooling systems by the demands for reduction in the use of chlorofluorocarbons as refrigerants. With regard to industrial research in this area the present situation is clarified and possible future developments are discussed. The influence of CFC gasses on the global environment and international and national legislation within this field are explained. Alternative refrigerants and cooling processes, and ways of reducing refrigerant leakage, are described. It is concluded that currently the use of alternative refrigerants is the policy which is generally accepted, and intensive research is being carried out in this field. R134a should substitute R12 in the cases of household refrigerators and air conditioning, and will soon be commercially available. The use of R22 and ammonia will be extended. This is a practical policy to follow up commercially, whereas the policy of alternative processes presents more problems because they are not so developed and there is less available know-how in this area. The possibilities for hermetic sealing of cooling systems are unrealistic and should anyway be regarded only as a supplement to alternative refrigerants. Within the European Community it is intended to provide standards and regulations in relation to air pollution from refrigerants. (AB) (58 refs.)

  17. Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling – Paving the path toward sustainable cooling of buildings

    International Nuclear Information System (INIS)

    Zhan, Changhong; Duan, Zhiyin; Zhao, Xudong; Smith, Stefan; Jin, Hong; Riffat, Saffa

    2011-01-01

    This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research

  18. Simulation of the SSC [Superconducting Super Collider] refrigeration system using the ASPEN/SP process simulator

    International Nuclear Information System (INIS)

    Rasson, J.; Dweck, J.

    1990-08-01

    The SSC Magnet must maintain at a super conducting temperature of 4 K. The proposed refrigeration cooling processes consist of fairly simple closed cycles which take advantage of the Joule-Thompson effect via a series of expansions and compressions of helium gas which has been precooled by liquid nitrogen. The processes currently under consideration consist of three cycles, the 20 K shield cooling, the 45 K helium refrigerator and the helium liquefier. The process units which are to be employed are compressors, turbines, expanders, mixers, flashes, two stream heat exchangers and multiple stream heat exchangers. The cycles are to be operated at or near steady state. Due to the large number of competing cooling sector designs to be considered and the high capital and operating costs of the proposed processes, the SSC Laboratory requires a software tool for the validation and optimization of the individual designs and for the performance of cost-benefit analyses among competing designs. Since these processes are steady state flow processes involving primarily standard unit operations, a decision was made to investigate the application of a commercial process simulator to the task. Several months of internal evaluations by the SSC Laboratory revealed that while the overall structure and calculation approach of number of the commercial simulators were appropriate for this task, all were lacking essential capabilities in the areas of thermodynamic property calculations for cryogenic systems and modeling of complex, multiple stream heat exchangers. An acceptable thermodynamics model was provided and a series of simple, but representative benchmark problems developed. The model and problems were provided to three software vendors. Based on the results of the benchmark test, the ASPEN/SP process simulator was selected for future modeling work

  19. The effect of internal mould water spray cooling on rotationally moulded polyethylene parts

    Science.gov (United States)

    McCourt, Mark P.; Kearns, Mark P.; Martin, Peter J.

    2018-05-01

    The conventional method of cooling during the rotational moulding process is through the use of forced air. During the cooling phase of a typical rotomoulding cycle, large volumes of high velocity room temperature air are forced across the outside of the rotating rotomoulding tool to encourage cooling of the metal mould and molten polymer. Since no cooling is applied to the inside of the mould, the inner surface of the polymer (polyethylene) cools more slowly and will have a tendency to be more crystalline and the polyethylene will have a higher density in this region. The side that cools more quickly (in contact with the inside mould wall) will be less crystalline, and will therefore have a lower density. The major consequence of this difference in crystallinity will be a buildup of internal stresses producing warpage and excessive shrinkage of the part with subsequent increased levels of scrap. Therefore excessive cooling on the outside of the mould should be avoided. One consequence of this effect is that the cooling time for a standard rotationally moulded part can be quite long and this has an effect on the overall economics of the process in terms of part manufacture. A number of devices are currently on the market to enhance the cooling of rotational moulding by introducing a water spray to the inside of the rotomoulding during cooling. This paper reports on one such device 'Rotocooler' which during a series of initial industrial trials has been shown to reduce the cycletime by approximately 12 to 16%, with minimal effect on the mechanical properties, leading to a part which has less warpage and shrinkage than a conventionally cooled part.

  20. The Contribution of "Cool" and "Hot" Components of Decision-Making in Adolescence: Implications for Developmental Psychopathology

    Science.gov (United States)

    Seguin, Jean R.; Arseneault, Louise; Tremblay, Richard E.

    2007-01-01

    Impairments in either "cool" or "hot" processes may represent two pathways to deficient decision-making. Whereas cool processes are associated with cognitive and rational decisions, hot processes are associated with emotional, affective, and visceral processes. In this study, 168 boys were administered a card-playing task at ages 13 and 14 years…

  1. Storage of HLW in engineered structures: air-cooled and water-cooled concepts

    International Nuclear Information System (INIS)

    Ahner, S.; Dekais, J.J.; Puttke, B.; Staner, P.

    1981-01-01

    A comparative study on an air-cooled and a water-cooled intermediate storage of vitrified, highly radioactive waste (HLW) in overground installations has been performed by Nukem and Belgonucleaire respectively. In the air-cooled storage concept the decay heat from the storage area will be removed using natural convection. In the water-cooled storage concept the decay heat is carried off by a primary and secondary forced-cooling system with redundant and diverse devices. The safety study carried out by Nukem used a fault tree method. It shows that the reliability of the designed water-cooled system is very high and comparable to the inherent, safe, air-cooled system. The impact for both concepts on the environment is determined by the release route, but even during accident conditions the release is far below permissible limits. The economic analysis carried out by Belgonucleaire shows that the construction costs for both systems do not differ very much, but the operation and maintenance costs for the water-cooled facility are higher than for the air cooled facility. The result of the safety and economic analysis and the discussions with the members of the working group have shown some possible significant modifications for both systems, which are included in this report. The whole study has been carried out using certain national criteria which, in certain Member States at least, would lead to a higher standard of safety than can be justified on any social, political or economic grounds

  2. Numerical modelling of series-parallel cooling systems in power plant

    Directory of Open Access Journals (Sweden)

    Regucki Paweł

    2017-01-01

    Full Text Available The paper presents a mathematical model allowing one to study series-parallel hydraulic systems like, e.g., the cooling system of a power boiler's auxiliary devices or a closed cooling system including condensers and cooling towers. The analytical approach is based on a set of non-linear algebraic equations solved using numerical techniques. As a result of the iterative process, a set of volumetric flow rates of water through all the branches of the investigated hydraulic system is obtained. The calculations indicate the influence of changes in the pipeline's geometrical parameters on the total cooling water flow rate in the analysed installation. Such an approach makes it possible to analyse different variants of the modernization of the studied systems, as well as allowing for the indication of its critical elements. Basing on these results, an investor can choose the optimal variant of the reconstruction of the installation from the economic point of view. As examples of such a calculation, two hydraulic installations are described. One is a boiler auxiliary cooling installation including two screw ash coolers. The other is a closed cooling system consisting of cooling towers and condensers.

  3. Blanket Cooling Plates Mock-ups Manufactured in different Diffusion Weld Setup

    International Nuclear Information System (INIS)

    Von Der Weth, A.; Aktaa, J.

    2007-01-01

    Full text of publication follows: The breeding blanket box is considered as one of the most important components of a future fusion power plant. It will be assembled by so called cooling plates (CP) with a system of internal cooling channels. Such a CP is produced by two symmetric half pieces with half milled-in channels. Both pieces will be joined by a diffusion weld (DW) process. Within recent years a two step DW process for different EUROFER batches has been developed. It has been first applied to small laboratory scaled samples with dimensions of 25 mm x 30 mm x 40 mm. Then the DW process had then been successfully transferred to so called compact mock ups which are small CPs with dimensions of 67 mm x 70 mm x 50 mm. As third step this process has been used to manufacture a CP (465 mm x 205 mm x 50 mm) of a breeder unit in an industrial uniaxial diffusion weld setup. This paper treats the manufacturing sequence of a cooling plate and a first wall mock up in an industrial hot isostatic pressing (HIP) setup. The firstly laboratory specimens scaled diffusion weld process has been adjusted to different cooling channel dimensions and a different DW setup. The weld quality is investigated by tensile and Charpy impact testing. This allows comparison of the weld quality of mock ups welded in different DW setups. (authors)

  4. Multifractal properties of diffusion-limited aggregates and random multiplicative processes

    International Nuclear Information System (INIS)

    Canessa, E.

    1991-04-01

    We consider the multifractal properties of irreversible diffusion-limited aggregation (DLA) from the point of view of the self-similarity of fluctuations in random multiplicative processes. In particular we analyse the breakdown of multifractal behaviour and phase transition associated with the negative moments of the growth probabilities in DLA. (author). 20 refs, 5 figs

  5. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    Science.gov (United States)

    Wojdyga, Krzysztof; Malicki, Marcin

    2017-11-01

    Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  6. Enhancement of LNG plant propane cycle through waste heat powered absorption cooling

    International Nuclear Information System (INIS)

    Rodgers, P.; Mortazavi, A.; Eveloy, V.; Al-Hashimi, S.; Hwang, Y.; Radermacher, R.

    2012-01-01

    In liquefied natural gas (LNG) plants utilizing sea water for process cooling, both the efficiency and production capacity of the propane cycle decrease with increasing sea water temperature. To address this issue, several propane cycle enhancement approaches are investigated in this study, which require minimal modification of the existing plant configuration. These approaches rely on the use of gas turbine waste heat powered water/lithium bromide absorption cooling to either (i) subcool propane after the propane cycle condenser, or (ii) reduce propane cycle condensing pressure through pre-cooling of condenser cooling water. In the second approach, two alternative methods of pre-cooling condenser cooling water are considered, which consist of an open sea water loop, and a closed fresh water loop. In addition for all cases, three candidate absorption chiller configurations are evaluated, namely single-effect, double-effect, and cascaded double- and single-effect chillers. The thermodynamic performance of each propane cycle enhancement scheme, integrated in an actual LNG plant in the Persian Gulf, is evaluated using actual plant operating data. Subcooling propane after the propane cycle condenser is found to improve propane cycle total coefficient of performance (COP T ) and cooling capacity by 13% and 23%, respectively. The necessary cooling load could be provided by either a single-effect, double-effect or cascaded and single- and double-effect absorption refrigeration cycle recovering waste heat from a single gas turbine operated at full load. Reducing propane condensing pressure using a closed fresh water condenser cooling loop is found result in propane cycle COP T and cooling capacity enhancements of 63% and 22%, respectively, but would require substantially higher capital investment than for propane subcooling, due to higher cooling load and thus higher waste heat requirements. Considering the present trend of short process enhancement payback periods in the

  7. Testing and further development of a solar absorption cooling plant

    Science.gov (United States)

    Amannsberger, K.; Heckel, H.; Kreutmair, J.; Weber, K. H.

    1984-12-01

    Ammonia water absorption cooling units using the process heat of line-focusing solar collectors were developed and tested. Reduction of the evaporation temperature to minus 10 C; development of an air-cooled rectifying device for the refrigerant vapor; dry cooling of absorber and condenser by natural draft; refrigerating capacities of 14 to 10 kW which correspond to air temperatures of 25 to 40 C and 24 kW power consumption to heat the machine; auxiliary power requirement 450 W; full compatibility with changing heat input and air temperature, adaptation by automatic stabilization effects; and power optimization under changing boundary conditions by a simple regulating procedure independent of auxiliary power are achieved. The dynamic behavior of the directly linked collector-refrigeration machine system was determined. Operating conditions, market, and economic viability of solar cooling in third-world countries are described. Ice production procedures using absorption cooling units are demonstrated.

  8. Effect of dc-power-system reliability on reactor-shutdown cooling

    International Nuclear Information System (INIS)

    Kolaczkowski, A.M.; Baranowsky, P.W.; Hickman, J.W.

    1981-01-01

    The DC power systems in a nuclear power plant provide control and motive power to valves, instrumentation, emergency diesel generators, and many other components and systems during all phases of plant operation including abnormal shutdowns and accident situations. A specific area of concern is the adequacy of the minimum design requirements for DC power systems, particularly with regard to multiple and common cause failures. This concern relates to the application of the single failure criterion for assuring a reliable DC power supply which may be required for the functionability of shutdown cooling systems. The results are presented of a reliability based study performed to assess the adequacy of DC power supply design requirements for currently operating light water reactors with particular attention to shutdown cooling requirements

  9. Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez-Rivera, Efrain [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Madison, Jonathan D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holm, Elizabeth Ann [Carnegie Mellon Univ., Pittsburgh, PA (United States); Patterson, Burton R. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Homer, Eric R. [Brigham Young Univ., Provo, UT (United States). Dept. of Mechanical Engineering

    2013-09-01

    Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

  10. Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor

    Science.gov (United States)

    Schwendeman, Carl L.; Tarau, Calin; Schifer, Nicholas A.; Anderson, William G.; Garner, Scott

    2016-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal variable conductance heat pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor by bypassing the heat during stops. In a previous NASA Small Business Innovation Research (SBIR) Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for the Stirling RPS. In 2012, one of these VCHPs was successfully tested at NASA Glenn Research Center with a Stirling convertor as an Advanced Stirling Radioisotope Generator (ASRG) backup cooling system. The prototype; however, was not optimized and did not reflect the final heat rejection path. ACT through further funding has developed a semioptimized prototype with the finalized heat path for testing at Glenn with a Stirling convertor. The semioptimized system features a two-phase radiator and is significantly smaller and lighter than the prior prototype to reflect a higher level of flight readiness. The VCHP is designed to activate and remove heat from the GPHS during stoppage with a small temperature increase from the nominal vapor temperature. This small temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the multilayer insulation (MLI). The VCHP passively allows the Stirling convertor to be turned off multiple times during a mission with potentially unlimited off durations. Having the ability to turn the Stirling off allows for the Stirling to be reset and reduces vibrations on the platform during sensitive measurements or

  11. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  12. The effects on the microbiological condition of product of carcass dressing, cooling, and portioning processes at a poultry packing plant.

    Science.gov (United States)

    Gill, C O; Moza, L F; Badoni, M; Barbut, S

    2006-07-15

    The log mean numbers of aerobes, coliforms, Escherichia coli and presumptive staphylococci plus listerias on chicken carcasses and carcass portions at various stages of processing at a poultry packing plant were estimated from the numbers of those bacteria recovered from groups of 25 randomly selected product units. The fractions of listerias in the presumptive staphylococci plus listerias groups of organisms were also estimated. Samples were obtained from carcasses by excising a strip of skin measuring approximately 5 x 2 cm(2) from a randomly selected site on each selected carcass, or by rinsing each selected carcass portion. The log mean numbers of aerobes, coliforms, E. coli and presumptive staphylococci plus listerias on carcasses after scalding at 58 degrees C and plucking were about 4.4, 2.5, 2.2 and 1.4 log cfu/cm(2), respectively. The numbers of bacteria on eviscerated carcasses were similar. After the series of operations for removing the crop, lungs, kidneys and neck, the numbers of aerobes were about 1 log unit less than on eviscerated carcasses, but the numbers of the other bacteria were not substantially reduced. After cooling in water, the numbers of coliforms and E. coli were about 1 log unit less and the numbers of presumptive staphylococci plus listerias were about 0.5 log unit less than the numbers on dressed carcasses, but the numbers of aerobes were not reduced. The numbers of aerobes were 1 log unit more on boneless breasts, and 0.5 log units more on skin-on thighs and breasts that had been tumbled with brine than on cooled carcasses; and presumptive staphylococci plus listerias were 0.5 log unit more on thighs than on cooled carcasses. Otherwise the numbers of bacteria on the product were not substantially affected by processing. Listerias were 40% of the organisms were listerias.

  13. Comparison of Whole-Body Cooling Techniques for Athletes and Military Personnel.

    Science.gov (United States)

    Nye, Emma A; Eberman, Lindsey E; Games, Kenneth E; Carriker, Colin

    2017-01-01

    The purpose of this study was to evaluate cooling rates of The Polar Life Pod ® , a military protocol and cold water immersion. A randomized, repeated measures design was used to compare three treatment options. Participants exercised in an environmental chamber, where they followed a military march protocol on a treadmill, followed by the application of one of three treatments: Cold water immersion tub (5 - 10 °C), Polar Life Pod® (5 - 10 °C), Ice sheets at onset (5 - 10 °C). Mean cooling rate for CWI was 0.072 ºC/min, 0.046ºC/min for ice sheets, and 0.040ºC/min for The Polar Life Pod ® . There was a significant difference between conditions (F2,26=13.564, p=0.001, ES=0.511, 1-β=0.969). There was a significant difference in cooling rate among The Polar Life Pod ® and CWI (p = 0.006), and no significant difference among The Polar Life Pod ® and Ice Sheets (p = 0.103). There was a significant difference of time to cool among the three conditions F 2,26 = 13.564, p = 0.001, ES = 0.401, 1-β = 0.950. Our results support multiple organizations that deem CWI as the only acceptable treatment, when compared to the cooling rates of The Polar Life Pod ® and ice sheets.

  14. New Mexico cloud super cooled liquid water survey final report 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  15. Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower

    International Nuclear Information System (INIS)

    Rezaei, Ebrahim; Shafiei, Sirous; Abdollahnezhad, Aydin

    2010-01-01

    Water consumption is an important problem in dry zones and poor water supply areas. For these areas use of a combination of wet and dry cooling towers (hybrid cooling) has been suggested in order to reduce water consumption. In this work, wet and dry sections of a hybrid cooling tower for the estimation of water loss was modeled. A computer code was also written to simulate such hybrid cooling tower. To test the result of this simulation, a pilot hybrid tower containing a wet tower and 12 compact air cooled heat exchangers was designed and constructed. Pilot data were compared with simulation data and a correction factor was added to the simulation. Ensuring that the simulation represents the actual data, it was applied to a real industrial case and the effect of using a dry tower on water loss reduction of this plant cooling unit was investigated. Finally feasibility study was carried out to choose the best operating conditions for the hybrid cooling tower configuration proposed for this cooling unit.

  16. Status of and future research on thermosensory processing

    Directory of Open Access Journals (Sweden)

    Makoto eMizunami

    2016-04-01

    Full Text Available Thermosensation is critically important for survival of all animals. In the cockroach Periplaneta americana, thermoreceptor neurons on antennae and thermosensory interneurons in the antennal lobe have been characterized electrophysiologically, and recent studies using advanced transgenic technologies in the fruit fly Drosophila melanogaster have added much to the knowledge of these neurons, enabling us to discuss common principles of thermosensory processing systems in insects. Cockroaches and many other insects possess only one type of thermoreceptor neurons on antennae that are excited by cooling and inhibited by warming. In contrast, the antennae of fruit flies and other dipterans possess oppositely responding warm and cold receptor neurons. Despite differences in their thermoreceptive equipment, central processing of temperature information is much the same in flies and cockroaches. Axons of thermoreceptor neurons project to the margin of the antennal lobe and form glomeruli, from which cold, warm and cold-warm projection neurons originate, the last neurons being excited by both cooling and warming. Axons of antennal lobe thermosensory projection neurons of the antennal lobe terminate in three distinct areas of the protocerebrum, the mushroom body, lateral horn and posterior lateral protocerebrum, the last area also receiving termination of hygrosensory projection neurons. Such multiple thermosensory pathways may serve to control multiple forms of thermosensory behavior. Electrophysiological studies on cockroaches and transgenic approaches in flies are encouraged to complement each other for further elucidating general principles of thermosensory processing in the insect brain.

  17. The Advancement of Cool Roof Standards in China from 2010 to 2015

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levinson, Ronnen M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-11-01

    Since the initiation of the U.S.-China Clean Energy Research Center-Building Energy Efficiency (CERC-BEE) cool roof research collaboration between the Lawrence Berkeley National Laboratory Heat Island Group and Chinese institutions in 2010, new cool surface credits (insulation trade- offs) have been adopted in Chinese building energy efficiency standards, industry standards, and green building standards. JGJ 75-2012: Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Warm Winter Zone became the first national level standard to provide cool surface credits. GB/T 50378-2014: Assessment Standard for Green Building is the first national level green building standard that offers points for heat island mitigation. JGJ/T 359-2015: Technical Specification for Application of Architectural Reflective Thermal Insulation Coating is the first industry standard that offers cool coating credits for both public and residential buildings in all hot-summer climates (Hot Summer/Cold Winter, Hot Summer/Warm Winter). As of December 2015, eight provinces or municipalities in hot-summer regions have credited cool surfaces credits in their residential and/or public building design standards; five other provinces or municipalities in hot-summer regions recommend, but do not credit, the use of cool surfaces in their building design standards. Cool surfaces could be further advanced in China by including cool roof credits for residential and public building energy efficiency standards in all hot-summer regions; developing a standardized process for natural exposure and aged-property rating of cool roofing products; and adapting the U.S.-developed laboratory aging process for roofing materials to replicate solar reflectance changes induced by natural exposure in China.

  18. Cooling in the food industry. Special issue; Koelen in de voedingsindustrie. Themanummer

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-03-01

    In five brief articles attention is paid to the cooling and freezing processes and equipment in the food industry. The following subjects are discussed: the Hazard Analysis and Critical Control Points system (HACCP) to reduce the hygienic risks in the food processing industry to a minimum, indoor climate control for the chicory-roots storage facilities, temperature control of the freezing process for baguettes, a total supermarket management system that meets the HACCP standard, and the use of a cooling simulation program to save energy in a slaughterhouse

  19. Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet

    International Nuclear Information System (INIS)

    Ahn, Dae Hwan; Kim, Dong Sik

    2009-01-01

    Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number

  20. Optimization analysis of the motor cooling method in semi-closed single screw refrigeration compressor

    Science.gov (United States)

    Wang, Z. L.; Shen, Y. F.; Wang, Z. B.; Wang, J.

    2017-08-01

    Semi-closed single screw refrigeration compressors (SSRC) are widely used in refrigeration and air conditioning systems owing to the advantages of simple structure, balanced forces on the rotor, high volumetric efficiency and so on. In semi-closed SSRCs, motor is often cooled by suction gas or injected refrigerant liquid. Motor cooling method will changes the suction gas temperature, this to a certain extent, is an important factor influencing the thermal dynamic performance of a compressor. Thus the effects of motor cooling method on the performance of the compressor must be studied. In this paper mathematical models of motor cooling process by using these two methods were established. Influences of motor cooling parameters such as suction gas temperature, suction gas quantity, temperature of the injected refrigerant liquid and quantity of the injected refrigerant liquid on the thermal dynamic performance of the compressor were analyzed. The performances of the compressor using these two kinds of motor cooling methods were compared. The motor cooling capacity of the injected refrigerant liquid is proved to be better than the suction gas. All analysis results obtained can be useful for optimum design of the motor cooling process to improve the efficiency and the energy efficiency of the compressor.

  1. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  2. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  3. Experimental study of the use of refrigeration systems as cooling and heating systems in the production process of the VCO

    Science.gov (United States)

    Mulawarman, AANB; Arsana, M. E.; Temaja, I. W.; Sukadana, IBP

    2018-01-01

    Coconut oil extracted from the coconut milk obtained from fresh coconuts s often called virgin coconut oil (VCO). VCO is beneficial to health as an anti-oxidant and can lower HDL cholesterol in the blood while increasing blood LDL levels. In Indonesia most of VCO being produced on a small scale of home industries. Its production capacity still needs to be increased by improving production processes and implementing an appropriate technology accordingly. This research aims to conduct a study on making small-scale production machinery needed to produce VCO with reduced production time and improved quality of VCO in accordance with ISO 7381 quality criteria. The experimental results of the VCO machine has been develop and tested show good Coefficient of Performance of the system in amount of 3.93 and 2.8 for heating and cooling system respectively. Temperature of the VCO cooling chamber can be maintained in the range of 8°C to 10°C, as well as for heating, the reactor temperature can be maintained from 39°C to 42°C. The expected goal of this research developing a prototype of VCO production machine was done with ability to provide more efficient production process able to increase volume of VCO result by 23%.

  4. Alternative geometry for cylindrical natural draft cooling tower with higher cooling efficiency under crosswind condition

    International Nuclear Information System (INIS)

    Goodarzi, M.; Ramezanpour, R.

    2014-01-01

    Highlights: • Alternative cross sections for natural draft cooling tower were proposed. • Numerical solution was applied to study thermal and hydraulic performances. • Thermal and hydraulic performances were assessed by comparative parameters. • Cooling tower with elliptical cross section had better thermal performance under crosswind. • It could successfully used at the regions with invariant wind direction. - Abstract: Cooling efficiency of a natural draft dry cooling tower may significantly decrease under crosswind condition. Therefore, many researchers attempted to improve the cooling efficiency under this condition by using structural or mechanical facilities. In this article, alternative shell geometry with elliptical cross section is proposed for this type of cooling tower instead of usual shell geometry with circular cross section. Thermal performance and cooling efficiency of the two types of cooling towers are numerically investigated. Numerical simulations show that cooling tower with elliptical cross section improves the cooling efficiency compared to the usual type with circular cross section under high-speed wind moving normal to the longitudinal diameter of the elliptical cooling tower

  5. Hot and Cool Executive Function and Its Relation to Theory of Mind in Children with and without Autism Spectrum Disorder

    Science.gov (United States)

    Kouklari, Evangelia-Chrysanthi; Thompson, Trevor; Monks, Claire P.; Tsermentseli, Stella

    2017-01-01

    Previous research has clearly demonstrated that autism spectrum disorder (ASD) involves deficits in multiple neuropsychological functions, such as executive function (EF) and theory of mind (ToM). A conceptual distinction is commonly made between cool and hot EF. In ASD, continued attention has been paid to the cool areas of executive dysfunction.…

  6. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  7. Water cooled static pressure probe

    Science.gov (United States)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  8. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO{sub 2} emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO{sub 2} emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus{sup TM} Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition.

  9. Cooling the vertical surface by conditionally single pulses

    Science.gov (United States)

    Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor

    2017-10-01

    You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.

  10. Experimental and computational studies of film cooling with compound angle injection

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.J.; Eckert, E.R.G.; Patankar, S.V. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1995-10-01

    The thermal efficiency of gas turbine systems depends largely on the turbine inlet temperature. Recent decades have seen a steady rise in the inlet temperature and a resulting reduction in fuel consumption. At the same time, it has been necessary to employ intensive cooling of the hot components. Among various cooling methods, film cooling has become a standard method for cooling of the turbine airfoils and combustion chamber walls. The University of Minnesota program is a combined experimental and computational study of various film-cooling configurations. Whereas a large number of parameters influence film cooling processes, this research focuses on compound angle injection through a single row and through two rows of holes. Later work will investigate the values of contoured hole designs. An appreciation of the advantages of compound angle injection has risen recently with the demand for more effective cooling and with improved understanding of the flow; this project should continue to further this understanding. Approaches being applied include: (1) a new measurement system that extends the mass/heat transfer analogy to obtain both local film cooling and local mass (heat) transfer results in a single system, (2) direct measurement of three-dimensional turbulent transport in a highly-disturbed flow, (3) the use of compound angle and shaped holes to optimize film cooling performance, and (4) an exploration of anisotropy corrections to turbulence modeling of film cooling jets.

  11. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    Colborn, Robert [General Electric Company, NIskayuna, NY (United States)

    2012-04-30

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, a low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.

  12. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  13. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  14. SELF-CONVERGENCE OF RADIATIVELY COOLING CLUMPS IN THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Yirak, Kristopher; Frank, Adam; Cunningham, Andrew J.

    2010-01-01

    Isolated regions of higher density populate the interstellar medium (ISM) on all scales-from molecular clouds, to the star-forming regions known as cores, to heterogeneous ejecta found near planetary nebulae and supernova remnants. These clumps interact with winds and shocks from nearby energetic sources. Understanding the interactions of shocked clumps is vital to our understanding of the composition, morphology, and evolution of the ISM. The evolution of shocked clumps is well understood in the limiting 'adiabatic' case where physical processes such as self-gravity, heat conduction, radiative cooling, and magnetic fields are ignored. In this paper, we address the issue of evolution and convergence when one of these processes-radiative cooling-is included. Numeric convergence studies demonstrate that the evolution of an adiabatic clump is well captured by roughly 100 cells per clump radius. The presence of radiative cooling, however, imposes limits on the problem due to the removal of thermal energy. Numerical studies which include radiative cooling typically adopt the 100-200 cells per clump radius resolution. In this paper, we present the results of a convergence study for radiatively cooling clumps undertaken over a broad range of resolutions, from 12 to 1536 cells per clump radius, employing adaptive mesh refinement (AMR) in a two-dimensional axisymmetric geometry (2.5 dimensions). We also provide a fully three-dimensional simulation, at 192 cells per clump radius, which supports our 2.5 dimensional results. We find no appreciable self-convergence at ∼100 cells per clump radius as small-scale differences owing to increasingly resolving the cooling length have global effects. We therefore conclude that self-convergence is an insufficient criterion to apply on its own when addressing the question of sufficient resolution for radiatively cooled shocked clump simulations. We suggest the adoption of alternate criteria to support a statement of sufficient

  15. Unsteady, Cooled Turbine Simulation Using a PC-Linux Analysis System

    Science.gov (United States)

    List, Michael G.; Turner, Mark G.; Chen, Jen-Pimg; Remotigue, Michael G.; Veres, Joseph P.

    2004-01-01

    The fist stage of the high-pressure turbine (HPT) of the GE90 engine was simulated with a three-dimensional unsteady Navier-Sokes solver, MSU Turbo, which uses source terms to simulate the cooling flows. In addition to the solver, its pre-processor, GUMBO, and a post-processing and visualization tool, Turbomachinery Visual3 (TV3) were run in a Linux environment to carry out the simulation and analysis. The solver was run both with and without cooling. The introduction of cooling flow on the blade surfaces, case, and hub and its effects on both rotor-vane interaction as well the effects on the blades themselves were the principle motivations for this study. The studies of the cooling flow show the large amount of unsteadiness in the turbine and the corresponding hot streak migration phenomenon. This research on the GE90 turbomachinery has also led to a procedure for running unsteady, cooled turbine analysis on commodity PC's running the Linux operating system.

  16. A computational procedure for finding multiple solutions of convective heat transfer equations

    International Nuclear Information System (INIS)

    Mishra, S; DebRoy, T

    2005-01-01

    In recent years numerical solutions of the convective heat transfer equations have provided significant insight into the complex materials processing operations. However, these computational methods suffer from two major shortcomings. First, these procedures are designed to calculate temperature fields and cooling rates as output and the unidirectional structure of these solutions preclude specification of these variables as input even when their desired values are known. Second, and more important, these procedures cannot determine multiple pathways or multiple sets of input variables to achieve a particular output from the convective heat transfer equations. Here we propose a new method that overcomes the aforementioned shortcomings of the commonly used solutions of the convective heat transfer equations. The procedure combines the conventional numerical solution methods with a real number based genetic algorithm (GA) to achieve bi-directionality, i.e. the ability to calculate the required input variables to achieve a specific output such as temperature field or cooling rate. More important, the ability of the GA to find a population of solutions enables this procedure to search for and find multiple sets of input variables, all of which can lead to the desired specific output. The proposed computational procedure has been applied to convective heat transfer in a liquid layer locally heated on its free surface by an electric arc, where various sets of input variables are computed to achieve a specific fusion zone geometry defined by an equilibrium temperature. Good agreement is achieved between the model predictions and the independent experimental results, indicating significant promise for the application of this procedure in finding multiple solutions of convective heat transfer equations

  17. The potential for the recovery and reuse of cooling water in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    You, Shu-Hai; Tseng, Dyi-Hwa; Guo, Gia-Luen; Yang, Jyh-Jian [Graduate Institute of Environmental Engineering, National Central University, Chungli (Taiwan, Province of China)

    1999-04-01

    The cooling water is the major part of industrial water use in Taiwan, either from the view of demand priority or supply volume. In order to save water, the loading of supply system can be reduced if the cooling water can be recovered and reused. For this reason, exploration of the recent operation status of the cooling water system has become essential in Taiwan. This study was initially focused on the current applications and reuse trends of cooling water in oil refineries, chemical industry, steel mills, food industry, electronics works, textile plants and power stations. According to the statistical analysis, the portable water and groundwater are the primary sources of makeup water for cooling systems. The multiple-chemicals method and makeup treatment are increasingly accepted for the reclamation of cooling water. On the other hand, sidestream treatment and blowdown reuse are not popular in Taiwan. The recovery rate of blowdown is only 26.8%. The fact of higher cost is the major reason to depress the willingness of recovery. Some representative plants had been selected for case study. However, most cooling water systems are only operated by operator`s experience according to field investigation. In each case, the water quality indexes were used to evaluate the operational condition of cooling water systems. There was no case plant found to be operated at appropriate cycles of concentration. This paper also presented the bottlenecks of conservation technologies of cooling water in Taiwan. These bottlenecks include increasing the cycles of concentration, the reuse of wastewater, and the blowdown treatment for reuse. This paper also demonstrates that the recovery and reuse of cooling water has great potential and is feasible for the available technologies in present Taiwan, but the industries are still unwilling to upgrade because of initial cost. Finally, some approaches associated with technology, economics, environment and policy are proposed to be a

  18. Residual stress improvement in multi-layer welded plates using water-shower cooling during welding process

    International Nuclear Information System (INIS)

    Yanagida, Nobuyoshi; Koide, Hiroo

    2006-01-01

    To reduce tensile residual stress in a welded region, we developed a new welding method that applies a water-shower behind the welding torch. When this method is applied to welding of austenitic stainless steel plates, cooling conditions mainly determine how much the residual stress can be reduced. To determine the conditions, we first used FEM to evaluate the effects of interpass temperature on the residual stress. And we found effective conditions for reducing tensile residual stress. To verify the validity of the conditions, specimens welded with or without water shower cooling were manufactured. Residual stresses of the specimens were experimentally measured. It was found that tensile residual stresses were generated on the surface of the welds and those were reduced in the case that the water-shower was applied. These measurement results agree well with the FEM analyses. It can therefore be concluded that the water-shower cooling during welding is appropriate for reducing tensile residual stress in austenitic stainless steel welding. (author)

  19. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    Science.gov (United States)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  20. Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant

    Directory of Open Access Journals (Sweden)

    S. K. Pavlov

    2014-01-01

    Full Text Available Before fuelling the tanks of missiles, boosters, and spacecraft with liquid-propellant components (LPC their temperature preparation is needed. The missile-system ground equipment performs this operation during prelaunch processing of space-purpose missiles (SPM. Usually, the fuel cooling is necessary to increase its density and provide heat compensation during prelaunch operation of SPM. The fuel temperature control systems (FTCS using different principles of operation and types of coolants are applied for fuel cooling.To determine parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is cooled by liquid nitrogen upon contact heat exchange in the coolant reservoir, a mathematical model of this process and a design technique are necessary. Both allow us to determine design parameters of the cooling system and the required liquid nitrogen reserve to cool LPC to the appropriate temperature.The article presents an overview of foreign and domestic publications on cooling processes research and implementation using cryogenic products such as liquid nitrogen. The article draws a conclusion that it is necessary to determine the parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is liquid nitrogen-cooled upon contact heat exchange in the coolant reservoir allowing to define rational propellant cooling conditions to the specified temperature.The mathematical model describes the set task on the assumption that a heat exchange between the LPC and the coolant in the heat exchanger and with the environment through the walls of tanks and pipelines of circulation loops is quasi-stationary.The obtained curves allow us to calculate temperature changes of LPC and coolant, cooling time and liquid nitrogen consumption, depending on the process parameters such as a flow rate of liquid nitrogen, initial coolant temperature, pump characteristics, thermal