WorldWideScience

Sample records for multiple concentric shells

  1. Zero-point energy of N perfectly conducting concentric cylindrical shells

    International Nuclear Information System (INIS)

    Tatur, K.; Woods, L.M.

    2008-01-01

    The zero-point (Casimir) energy of N perfectly conducting, infinitely long, concentric cylindrical shells is calculated utilizing the mode summation technique. The obtained convergent expression is studied as a function of size, curvature and number of shells. Limiting cases, such as infinitely close shells or infinite radius shells are also investigated

  2. Electronic structure of single- and multiple-shell carbon fullerenes

    International Nuclear Information System (INIS)

    Lin, Y.; Nori, F.

    1994-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multiple-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the π-state energy spectra of large fullerene cages: C 240 , C 540 , C 960 , C 1500 , C 2160 , and C 2940 . Our iteration technique reduces the size of the problem by more than one order of magnitude (factors of ∼12 and 20), while the symmetry-based approach reduces it by a factor of 10. We also find formulas for the highest occupied and lowest unoccupied molecular orbital energies of C 60n 2 fullerenes as a function of n, demonstrating a tendency towards a metallic regime for increasing n. For multiple-shell fullerenes, we analytically obtain the eigenvalues of the intershell interaction

  3. Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Zayats, Anatoly

    2013-01-01

    where the multiple dark modes appear due to the geometrical symmetry breaking induced by axial offset of the core. Both dielectric-core-metal-shell (DCMS) and metal-core-dielectric-shell (MCDS) configurations have been studied. Compared to the MCDS structure, the DCMS configuration provides higher...

  4. Measurements of fusion neutron multiplication in spherical beryllium shells

    International Nuclear Information System (INIS)

    Giese, H.; Kappler, F.; Tayama, R.; Moellendorff, U. von; Alevra, A.; Klein, H.

    1996-01-01

    New results of spherical-shell transmission measurements with 14-MeV neutrons on pure beryllium shells up to 17 cm thick are reported. The spectral flux above 3 MeV was measured using a liquid scintillation detector. At 17 cm thickness, also the total neutron multiplication was measured using a Bonner sphere system. The results agree well with calculations using beryllium nuclear data from the EFF-1 or the ENDF/B-Vi library. (author). 23 refs, 4 figs, 1 tab

  5. Strength Calculation of Locally Loaded Orthotropic Shells

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.

  6. Low power multiple shell fusion targets for use with electron and ion beams

    International Nuclear Information System (INIS)

    Lindl, J.D.; Bangerter, R.O.

    1975-01-01

    Use of double shell targets with a separate low Z, low density ablator at large radius for the outer shell, reduces the focusing and power requirements while maintaining reasonable aspect ratios. A high Z, high density pusher shell is placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. Ion beams appear to be a promising power source and breakeven at 10-20 Terrawatts with 10 MeV alpha particles appears feasible. Predicted performance of targets with various energy sources is shown and comparison is made with single shell targets

  7. Measurements of 14 MeV neutron multiplication in spherical beryllium shells

    International Nuclear Information System (INIS)

    Moellendorff, U. von; Alevra, A.V.; Giese, H.; Kappler, F.; Klein, H.; Klein, H.; Tayama, R.

    1995-01-01

    New results of spherical-shell transmission measurements with 14MeV neutrons on pure beryllium shells up to 17cm thick are reported. The total leakage neutron multiplications were measured using a Bonner sphere system. Independently, the leakage neutron spectra were measured over the entire energy range, 15MeV to thermal energies, by proton-recoil and time-of-flight methods. The total leakage multiplications are in excellent agreement with three-dimensional Monte Carlo calculations using beryllium nuclear data based on the Young and Stewart evaluation. The leakage in the evaporation energy window confirms the Be(n,2n) cross-section of the Young and Stewart evaluation rather than that used in the ENDF/B-VI library. At energies below 1keV, a surplus of leakage neutrons over the calculation is found for smaller beryllium thicknesses. (orig.)

  8. Determination of shell correction energies at saddle point using pre-scission neutron multiplicities

    International Nuclear Information System (INIS)

    Golda, K.S.; Saxena, A.; Mittal, V.K.; Mahata, K.; Sugathan, P.; Jhingan, A.; Singh, V.; Sandal, R.; Goyal, S.; Gehlot, J.; Dhal, A.; Behera, B.R.; Bhowmik, R.K.; Kailas, S.

    2013-01-01

    Pre-scission neutron multiplicities have been measured for 12 C + 194, 198 Pt systems at matching excitation energies at near Coulomb barrier region. Statistical model analysis with a modified fission barrier and level density prescription have been carried out to fit the measured pre-scission neutron multiplicities and the available evaporation residue and fission cross sections simultaneously to constrain statistical model parameters. Simultaneous fitting of the pre-scission neutron multiplicities and cross section data requires shell correction at the saddle point

  9. Shell and Double Concentric Tube Heat Exchanger Calculations and Analysis

    Directory of Open Access Journals (Sweden)

    Basma Abbas Abdulmajeed

    2015-01-01

    Full Text Available This study concerns a new type of heat exchangers, which is that of shell-and-double concentric tube heat exchangers. The case studies include both design calculations and performance calculations. The new heat exchanger design was conducted according to Kern method. The volumetric flow rates were 3.6 m3/h and 7.63 m3/h for the hot oil and water respectively. The experimental parameters studied were: temperature, flow rate of hot oil, flow rate of cold water and pressure drop. A comparison was made for the theoretical and experimental results and it was found that the percentage error for the hot oil outlet temperature was (- 1.6%. The percentage errors for the pressure drop in the shell and in the concentric tubes were (17.2% and (- 39% respectively. For cold water outlet temperature, the percentage error was (- 3.3%, while it was (18% considering the pressure drop in the annulus formed. The percentage error for the total power consumed was (-10.8% A theoretical comparison was made between the new design and the conventional heat exchanger from the point of view of, length, mass, pressure drop and total power consumed.

  10. Geometrically Nonlinear Shell Analysis of Wrinkled Thin-Film Membranes with Stress Concentrations

    Science.gov (United States)

    Tessler, Alexander; Sleight, David W.

    2006-01-01

    Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail membrane problems in order to model the out-of-plane deformations due to structural wrinkling. Whereas certain problems lend themselves to achieving converged nonlinear solutions that compare favorably with experimental observations, solutions to tensioned membranes exhibiting high stress concentrations have been difficult to obtain even with the best nonlinear finite element codes and advanced shell element technology. In this paper, two numerical studies are presented that pave the way to improving the modeling of this class of nonlinear problems. The studies address the issues of mesh refinement and stress-concentration alleviation, and the effects of these modeling strategies on the ability to attain converged nonlinear deformations due to wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing the nonlinear solution to lock in the membrane response mode, while totally discarding the very low-energy bending response that is necessary to cause wrinkling deformation patterns.

  11. Luminescence study of Eu3+ doped GdVO4 nanoparticles: Concentration, particle size, and core/shell effects

    Science.gov (United States)

    Singh, N. Shanta; Ningthoujam, R. S.; Devi, L. Romila; Yaiphaba, N.; Sudarsan, V.; Singh, S. Dorendrajit; Vatsa, R. K.; Tewari, R.

    2008-11-01

    Nanoparticles of GdVO4 doped with Eu3+ and core/shell of GdVO4:Eu3+/GdVO4 are prepared by urea hydrolysis method using ethylene glycol as capping agent as well as reaction medium at 130 °C. Unit cell volume increases when GdVO4 is doped with Eu3+ indicating the substitution of Gd3+ lattice sites by Eu3+. From luminescence study, it is confirmed that there is no particle size effect on emission positions of Eu3+. Optimum luminescence intensity is found to be in 5-10 at. % Eu3+. Above these concentrations, luminescence intensity decreases due to concentration quenching effect. There is an enhancement in luminescence intensity of core/shell nanoparticles. This has been attributed to the reduction in surface inhomogenities of Eu3+ surroundings by bonding to GdVO4 shell. The lifetime for D50 level increases with annealing and core/shell formation.

  12. Multiple photoionization following 3d5/2-shell threshold ionization of

    International Nuclear Information System (INIS)

    Matsui, T; Yoshii, H; Tsukamoto, K; Kawakita, S; Murakami, E; Adachi, J; Yagishita, A; Morioka, Y; Hayaishi, T

    2004-01-01

    Multiple photoionization of Xe near the 3d 5/2 -shell threshold photoionization region is studied by threshold electron-ion coincidence spectroscopy. The coincidence spectra of Xe 3+ to Xe 7+ ions exhibit characteristic profiles associated with multi-step post-collision interactions in Auger cascades following 3d 5/2 -shell threshold photoionization. The Auger cascade decay channels leading to the formation of multiply charged ions are deduced from the energies of the profile peaks, which increase gradually with increasing charge state. The formation of Xe 3+ to Xe 5+ ions is found to arise from cascades of normal Auger decays, whereas the formation of Xe 6+ and Xe 7+ ions involves double Auger decays. The branching ratio of double to normal Auger decays is estimated to be 0.25 (±0.1) for the decays following the creation of 3d 5/2 -hole states in Xe

  13. Bessel Fourier orientation reconstruction: an analytical EAP reconstruction using multiple shell acquisitions in diffusion MRI.

    Science.gov (United States)

    Hosseinbor, Ameer Pasha; Chung, Moo K; Wu, Yu-Chien; Alexander, Andrew L

    2011-01-01

    The estimation of the ensemble average propagator (EAP) directly from q-space DWI signals is an open problem in diffusion MRI. Diffusion spectrum imaging (DSI) is one common technique to compute the EAP directly from the diffusion signal, but it is burdened by the large sampling required. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed. One, in particular, is Diffusion Propagator Imaging (DPI) which is based on the Laplace's equation estimation of diffusion signal for each shell acquisition. Viewed intuitively in terms of the heat equation, the DPI solution is obtained when the heat distribution between temperatuere measurements at each shell is at steady state. We propose a generalized extension of DPI, Bessel Fourier Orientation Reconstruction (BFOR), whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition. That is, the heat distribution between shell measurements is no longer at steady state. In addition to being analytical, the BFOR solution also includes an intrinsic exponential smootheing term. We illustrate the effectiveness of the proposed method by showing results on both synthetic and real MR datasets.

  14. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals

    Science.gov (United States)

    Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-12-01

    The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.

  15. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  16. The role of multiple ionization and subshell coupling effects in L-shell ionization of Au by oxygen ions

    International Nuclear Information System (INIS)

    Banas, D.; Braziewicz, J.; Pajek, M.; Semaniak, J.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2002-01-01

    The ionization of L-subshell electrons in gold by the impact of 0.4-2.2 MeV amu -1 O ions was studied by observing excited Lγ(L-N, O) x-rays. We demonstrate that both the multiple ionization in outer M- and N-shells as well as the coupling effects in the L-shell play an important role in understanding the measured L-subshell ionization cross sections. The multiple ionization was found to be important in two aspects: first, the analysis of x-ray energy shifts and line broadening was crucial for proper interpretation of measured x-ray spectra; second, the additional vacancies in the M- and N-shells substantially influenced the L 1 -subshell fluorescence and Coster-Kronig (CK) yields, mainly by closing strong L 1 -L 3 M 4,5 CK transitions. The data are compared with the simplified coupled-channels calculations using the 'coupled-subshell model' (CSM) based on the semiclassical approximation (SCA), which describes both direct Coulomb ionization as well as the L-subshell couplings within the same theoretical approach. A good agreement of the present data with the theoretical predictions based on the discussed SCA-CSM approach is observed. Present findings partly explain the long-standing problem of inadequate theoretical description of L-shell ionization by heavy ion impact. (author)

  17. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    Science.gov (United States)

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  18. Time dependent response of low velocity impact induced composite conical shells under multiple delamination

    Science.gov (United States)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.

  19. Electrosprayed core–shell solid dispersions of acyclovir fabricated using an epoxy-coated concentric spray head

    Science.gov (United States)

    Liu, Zhe-Peng; Cui, Lei; Yu, Deng-Guang; Zhao, Zhuan-Xia; Chen, Lan

    2014-01-01

    A novel structural solid dispersion (SD) taking the form of core–shell microparticles for poorly water-soluble drugs is reported for the first time. Using polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix, the SDs were fabricated using coaxial electrospraying (characterized by an epoxy-coated concentric spray head), although the core fluids were unprocessable using one-fluid electrospraying. Through manipulating the flow rates of the core drug-loaded solutions, two types of core–shell microparticles with tunable drug contents were prepared. They had average diameters of 1.36±0.67 and 1.74±0.58 μm, and were essentially a combination of nanocomposites with the active ingredient acyclovir (ACY) distributed in the inner core, and the sweeter sucralose and transmembrane enhancer sodium dodecyl sulfate localized in the outer shell. Differential scanning calorimetry and X-ray diffraction results demonstrated that ACY, sodium dodecyl sulfate, and sucralose were well distributed in the PVP matrix in an amorphous state because of favorable second-order interactions. In vitro dissolution and permeation studies showed that the core–shell microparticle SDs rapidly freed ACY within 1 minute and promoted nearly eightfold increases in permeation rate across the sublingual mucosa compared with raw ACY powders. PMID:24790437

  20. The detection of Salmonella typhimurium on shell eggs using a phage-based biosensor

    Science.gov (United States)

    Chai, Yating; Li, Suiqiong; Horikawa, Shin; Shen, Wen; Park, Mi-Kyung; Vodyanoy, Vitaly J.; Chin, Bryan A.

    2011-06-01

    This paper presents the direct detection of Salmonella typhimurium on shell eggs using a phage-based magnetoelastic (ME) biosensor. The ME biosensor consists of a ME resonator as the sensor platform and E2 phage as the biorecognition element that is genetically engineered to specifically bind with Salmonella typhimurium. The ME biosensor, which is a wireless sensor, vibrates with a characteristic resonant frequency under an externally applied magnetic field. Multiple sensors can easily be remotely monitored. Multiple measurement and control sensors were placed on the shell eggs contaminated by Salmonella typhimurium solutions with different known concentrations. The resonant frequency of sensors before and after the exposure to the spiked shell eggs was measured. The frequency shift of the measurement sensors was significantly different than the control sensors indicating Salmonella contamination. Scanning electron microscopy was used to confirm binding of Salmonella to the sensor surface and the resulting frequency shift results.

  1. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    International Nuclear Information System (INIS)

    Guo, S.C.; Chu, M.S.

    2002-01-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω -2 <<1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX

  2. Multiple-Panel Cylindrical Solar Concentrator

    Science.gov (United States)

    Brown, E. M.

    1983-01-01

    Trough composed of many panels concentrates Sun's energy on solar cells, even when trough is not pointed directly at Sun. Tolerates deviation as great as 5 degrees from direction of sun. For terrestrial applications, multiple-flat-plate design offers potential cost reduction and ease of fabrication.

  3. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects

    International Nuclear Information System (INIS)

    Singh, L Robindro; Ningthoujam, R S; Sudarsan, V; Srivastava, Iti; Singh, S Dorendrajit; Dey, G K; Kulshreshtha, S K

    2008-01-01

    Nanoparticles of Eu 3+ doped Y 2 O 3 (core) and Eu 3+ doped Y 2 O 3 covered with Y 2 O 3 shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 deg. C, followed by heating at 500 and 900 deg. C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 deg. C heated samples respectively. Based on the luminescence studies of 500 and 900 deg. C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu 3+ emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu 3+ concentration of 4-5 at.%. A luminescence study establishes that the Eu 3+ environment in amorphous Y (OH) 3 is different from that in crystalline Y 2 O 3 . For a fixed concentration of Eu 3+ doping, there is a reduction in Eu 3+ emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu 3+ increases with increase of crystallinity

  4. Inner shell ionization accompanying nuclear collisions

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1987-01-01

    Selected phenomena leading to inner shell ionization and being of relevance for nuclear physics are discussed. The selection emphasizes the K-shell ionization induced in head-on collisions by fast light and medium-heavy ions. Cross-sections are reviewed. Effects of multiple inner shell ionization on the K X-ray spectra are illustrated with recent results. Implications for nuclear experiments are noted. Use of atomic observables as clocks for proton induced nuclear reactions is reviewed. Prospects for H.I. reactions are discussed. Preliminary experimental results on the direct K-shell ionization accompanying H.I. fusion reactions are presented. The post-collisional K-shell ionization due to internal conversion of γ-rays is discussed as the dominating contribution to the ionization for residues of dissipative nuclear reactions with Z > 40. Systematics of the corresponding K X-ray multiplicities are presented for rotational nuclei. These multiplicity values can be used for determining cross-sections for e.g. incomplete fusion reactions. Examples of such applications are given. Also discussed is the use of target K X-rays for normalization purposes and of the post-collisional, residue K X-rays in the studies of high spin phenomena. 96 references, 35 figures, 3 tables

  5. K-shell-hole production, multiple-hole production, charge transfer, and antisymmetry

    International Nuclear Information System (INIS)

    Reading, J.F.; Ford, A.L.

    1980-01-01

    In calculating K-shell-hole production when an ion collides with an atom, account must be taken of the fact that processes involving electrons other than the K-shell electron can occur. For example, after making a K-shell hole an L-shell electron may be knocked into it, or an L-shell vacancy may be produced and the K-shell electron promoted to that vacancy in the ''Fermi sea'' of the target-atom orbitals. In 1973 a theorem was proved by one of the present authors demonstrating that all these multielectron processes cancel in an independent-particle model for the target atom. In this paper it is shown that the same thing occurs for hole production by charge transfer to the ion. The authors demonstrate that multihole production does not obey this simple rule and that the probability for multihole production is not the product of independent single-electron probabilities. The correct expressions that should be used for these processes are given, together with new results for charge-transfer processes accompanied by hole production

  6. Strontium and fluorine in tuatua shells

    International Nuclear Information System (INIS)

    Trompetter, W.J.; Coote, G.E.

    1993-01-01

    This report describes the research to date on the elemental distributions of strontium, calcium, and fluorine in a collection of 24 tuatua shells (courtesy of National Museum). Variations in elemental concentrations were measured in the shell cross-sections using a scanning proton microprobe (PIXE and PIGME). In this paper we report the findings to date, and present 2-D measurement scans as illustrative grey-scale pictures. Our results support the hypothesis that increased strontium concentrations are deposited in the shells during spawning, and that fluorine concentration is proportional to growth rate. (author). 15 refs.; 13 figs.; 1 appendix

  7. Dynamic strength of cylindrical fiber-glass shells and basalt plastic shells under multiple explosive loading

    Science.gov (United States)

    Syrunin, M. A.; Fedorenko, A. G.

    2006-08-01

    We have shown experimentally that, for cylindrical shells made of oriented fiberglass platic and basalt plastic there exists a critical level of deformations, at which a structure sustains a given number of explosions from the inside. The magnitude of critical deformation for cylindrical fiberglass shells depends linearly on the logarithm of the number of loads that cause failure. For a given type of fiberglass, there is a limiting level of explosive action, at which the number of loads that do not lead to failure can be sufficiently large (more than ˜ 102). This level is attained under loads, which are an order of magnitude lower than the limiting loads under a single explosive action. Basalt plastic shells can be repeatedly used even at the loads, which cause deformation by ˜ 30-50% lower than the safe value ˜ 3.3.5% at single loading.

  8. Seismic analysis of axisymmetric shells

    International Nuclear Information System (INIS)

    Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.

    1984-01-01

    Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt

  9. Electronic Structure of Single- and Multiple-shell Carbon Fullerenes

    OpenAIRE

    Lin, Yeong-Lieh; Nori, Franco

    1993-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multi-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the $\\pi$-state energy spectra of large fullerene cages: $C_{240}$, $C_{540}$, $C_{960}$, $C_{1500}$, $C_{2160}$ and $C_{2940}$. Our iteration technique reduces the dimensionality of the problem by more than one order of magnitude (factors of $\\...

  10. Preparation and characterization of sub-20 nm Cu{sub X}@Ag{sub 1} core-shell nanoparticles by changing concentration of silver precursor

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Sang-Soo; Lee, Jong-Hyun, E-mail: pljh@snut.ac.kr

    2017-01-01

    Ultrafine Ag-coated Cu (Cu@Ag) nanoparticles (NPs) less than 20 nm in diameter were prepared. After synthesizing ultrafine Cu NPs using a solvothermal method to serve as the core particles, Cu@Ag NPs were fabricated with different initial Ag precursor concentrations, resulting in different thicknesses, densities, and uniformities of Ag shells. The average thickness and density of the Ag shell increased with increasing initial Ag precursor concentration in a Cu:Ag atomic ratio from 6:1 to 1:1. However, excessive Ag precursor concentrations induced homogeneous nucleation and growth of surplus fine pure NPs. Ag dewetting behavior and Cu oxidation in the Cu{sub 4}@Ag{sub 1} NPs were observed, they occurred during heating at 200 and 250 °C, respectively. The electrical resistivities of sintered Cu{sub 4}@Ag{sub 1} films decreased with increasing temperature from 200 to 240 °C. The resistivity after washing the OA and sintering for 60 min at 240 °C in air was measured to be 4.96 × 10{sup −3} Ω cm. The film was sintered in nitrogen using the ink containing non-washed Cu{sub 4}@Ag{sub 1} NPs indicated the lower resistivity of 2.70 × 10{sup −3} Ω cm owing to the non-oxidation atmosphere, although the chemically capped oleylamine in the core-shell NPs hindered the sintering behavior. - Highlights: • Ultrafine Ag-coated Cu nanoparticles less than 20 nm in diameter were fabricated. • Different Ag precursor concentrations influenced thickness and density of Ag shell. • Excessive Ag precursor concentrations induced formation of surplus fine pure NPs. • Ag dewetting behavior and Cu oxidation in Cu{sub 4}@Ag{sub 1} nanoparticles were observed. • Electrical resistivities of sintered Cu{sub 4}@Ag{sub 1} films were 2.70–4.96 × 10{sup −3} Ω cm.

  11. Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D

    Science.gov (United States)

    Lin, Qianglu

    Near infrared emitting semiconductors have been used widely in industry especially in solar-cell fabrications. The efficiency of single junction solar-cell can reach the Shockley-Queisser limit by using optimum band gap material such as silicon and cadmium telluride. The theoretical efficiency can be further enhanced through carrier multiplication, in which a high energy photon is absorbed and more than one electron-hole pair can be generated, reaching more than 100% quantum efficiency in the high energy region of sunlight. The realization of more than unity external quantum efficiency in lead selenide quantum dots solar cell has motivated vast investigation on lowering the carrier multiplication threshold and further improving the efficiency. This dissertation focuses on synthesis of lead chalcogenide nanostructures for their optical spectroscopy studies. PbSe/CdSe core/shell quantum dots were synthesized by cation exchange to obtain thick shells (up to 14 monolayers) for studies of visible and near infrared dual band emissions and carrier multiplication efficiency. By examining the reaction mechanism, a thermodynamic and a kinetic model are introduced to explain the vacancy driven cation exchange. As indicated by the effective mass model, PbSe/CdSe core/shell quantum dots has quasi-type-II band alignment, possessing electron delocalized through the entire quantum dot and hole localized in the core, which breaks down the symmetry of energy levels in the conduction and valence band, leading to hot-hole-assisted efficient multi-exciton generation and a lower carrier multiplication threshold to the theoretical value. For further investigation of carrier multiplication study, PbTe, possessing the highest efficiency among lead chalcogenides due to slow intraband cooling, is synthesized in one-dimensional and two-dimensional nanostructures. By using dodecanethiol as the surfactant, PbTe NRs can be prepared with high uniformity in width and resulted in fine quantum

  12. Study of characterization of trace elements in marine shells of Sambaqui: correlation between recent and old shells

    International Nuclear Information System (INIS)

    Gomez, Mauro Roger Batista Pousada; Rocha, Flavio Roberto; Silva, Paulo Sergio Cardoso da

    2013-01-01

    Calcium carbonate of recent and ancient C. rhizophorae oyster shells was analyzed for the determination of trace elements by instrumental neutron activation analysis. The ancient shells belong to a Sambaqui located in Cananeia region, South of Sao Paulo state and the recent ones are from an oyster production farm in the same region Studies related to the element concentrations in molluscs shell has been done as a tentative of establishing the element concentrations with palio-environmental factor. In this study it was aimed to verify differences in the elemental constitution of recent and ancient oyster shells that present potential for being used as indicator of marine changes. Results indicated that the elements Br, Ce, La, Na, Sm and An are higher in recent shells and the elements Cr, Fe Sc and Th are higher in ancient shells. Statistical analyses performed indicated that the enrichment of the light rare earth elements related to Ca are possibly good candidates for these palio-environmental studies. (author)

  13. Synthesis of low density foam shells for inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Lattaud, Cecile

    2011-01-01

    This work deals with the fabrication process of low density foam shells and the sharp control of their shape (diameter, thickness, density, sphericity, non-concentricity). During this PhD we focused on the non-concentricity criterion which has to be lower than 1%. The shells are synthesized using a microencapsulation process leading to a double emulsion and followed by a thermal polymerization at 60 C. According to the literature, three major parameters, the density of the three phases, the deformations of the shells along the process and the kinetics of the polymerization have a direct influence on the shells non-concentricity. The results obtained showed that when the density gap between the internal water phase and the organic phase increases, the TMPTMA shells non-concentricity improves. A density gap of 0.078 g.cm -3 at 60 C, leads to an average non-concentricity of 2.4% with a yield of shells of 58%. It was also shown that the synthesis process can be considered as reproducible. While using the same internal water phase, equivalent non-concentricity results are obtained using either a straight tube, a tube with areas of constriction or a short wound tube. The time required to fix the shell's shape is at least 20 minutes with thermal polymerization. So, it seems that the time spent by the shells inside the rotating flask allows the centering of the internal water phase inside the organic phase, whatever the circulation process used. In order to get higher polymerization rates and to avoid destabilization phenomena, we then focused our study on photo polymerization. When the synthesis is performed using a UV lamp with an efficient light intensity, the shells have a slightly higher thickness than the shells synthesized by thermal polymerization. Moreover, a really higher yield, around 80%, is achieved with UV polymerization. However, the average non-concentricity of the shells synthesized lays around 20%, which is really high compared to the 2.4% average

  14. Shells of Nerita gastropod bio-monitors of heavy metals pollution around the Indian Ocean

    International Nuclear Information System (INIS)

    Badran, M.I.

    1999-01-01

    Minor and heavy metals Mg, Sr, Mn, Fe and Zn were measured in individual shells of four different Nerita species collected from Phuket Island, Thailand. Shell weight and crystallography were also recorded. Heavy metal concentrations were poorly correlated with both shell weight and crystallography. Out of the four species, N. albicilla acquired the highest heavy metal concentrations. Subsequently shells of N. albicilla collected from different sites around the Indian Ocean were compared for their metal concentrations. Shells of industrial sites in Kenya and India had significantly higher heavy metal concentrations than shells from pristine sites in Mauritius and Aldabra. Discussing the factors that may affect the shell metal concentration, the variations encountered herein are best attributed to the ambient bio-available metal concentration. (author)

  15. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  16. Shell Bed Identification of Kaliwangu Formation and its Sedimentary Cycle Significance, Sumedang, West Java

    Directory of Open Access Journals (Sweden)

    Aswan Aswan

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i1.151Kaliwangu Formation cropping out around Sumedang area contains mollusk fossils dominated by gastropods and bivalves. In terms of sequence stratigraphy, each sedimentary cycle generally consists of four shell bed types: Early Transgressive Systems Tract (Early TST deposited above an erosional surface or sequence boundary, that is characterized by shell disarticulation, trace fossils, gravelly content, no fossil orientation direction, and concretion at the bottom; Late Transgressive Systems Tract (Late TST identified by articulated (conjoined specimen in its life position, that shows a low level abration and fragmentation, adult specimen with complete shells, and variation of taxa; Early Highstand Systems Tract (Early HST characterized by adult taxa that was found locally in their life position with individual articulation, juvenile specimens frequently occured; Late Highstand Systems Tract (Late HST determined as multiple-event concentrations, disarticulated shell domination, and some carbon or amber intercalation indicating terrestrial influence. Shell bed identification done on this rock unit identified nineteen sedimentary cycles.

  17. A study on the multiple solutions of the Martree-Fock-Roothaan equation for closed shell systems

    International Nuclear Information System (INIS)

    Malbouisson, L.A.C.

    1985-01-01

    An analysis of the multiple solutions of the Hartree-Fock-Roothaan equation for closed shell systems is done. The meaning of these solutions is discussed as self-consistent solutions of the pseudo-eingen-value equation and a general method for obtaining them is proposed. It is developed a criterion of stability for classifying the solutions depending on the type of the extremum point of the electronic energy function that the solution represent. It is also shown the existence of a correspondence between the multiple solutions and the several ordering rules that can be introduced for the usual iterative procedure of resolution of the equation. All the analysis and procedures developed are applied to the systems LiH, BH, Be and He. (author) [pt

  18. Sensitive electrochemical sensor of tryptophan based on Ag-C core-shell nanocomposite modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shuxian [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Li Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Long Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Tu Yifeng; Deng, Anping [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2012-08-13

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: Black-Right-Pointing-Pointer The electrochemical behavior of Ag-C core-shell nanocomposite was firstly proposed. Black-Right-Pointing-Pointer Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. Black-Right-Pointing-Pointer The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. Black-Right-Pointing-Pointer The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core-shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 Multiplication-Sign 10{sup -7} to 1.0 Multiplication-Sign 10{sup -4} M with a detection limit of 4.0 Multiplication-Sign 10{sup -8} M (S/N = 3). In addition

  19. Analysis of trace elements in the shell of asari clams

    International Nuclear Information System (INIS)

    Arakawa, J.; Sakamoto, W.; Arai, N.; Yoshida, K.

    1999-01-01

    Strontium concentration in the shells of asari clams collected at different locations was analyzed by PIXE. The Sr concentration of external surface of shell umbo was ranged from 1000 to 3500 ppm for individuals. The Sr concentration of clams collected at Shirahama showed positive correlation with shell length, whereas clams collected at Maizuru did not show significant correlation. This result may be caused from the difference of the spawning seasons between two areas. (author)

  20. Dynamic centering of liquid shells

    International Nuclear Information System (INIS)

    Tsamopoulos, J.A.; Brown, R.A.

    1987-01-01

    The moderate-amplitude axisymmetric oscillations of an inviscid liquid shell surrounding an incompressible gas bubble are calculated by a multiple-time-scale expansion for initial deformations composed of two-lobed perturbations of the shell and a displacement of the bubble from the center of mass of the liquid. Two types of small-amplitude motion are identified and lead to very different nonlinear dynamic interactions, as described by the results valid up to second order in the amplitude of the initial deformation. In the ''bubble mode,'' the oscillations of the captive bubble and the liquid shell are exactly in phase and the bubble vibrates about its initial eccentric location. The bubble moves toward the center of the drop when the shell is perturbed into a ''sloshing mode'' of oscillation where both interfaces move out of phase. These results explain the centering of liquid shells observed in several experiments

  1. Acoustic resonance scattering by a system of concentrically multilayered shells: the inherent background and resonance coefficients

    CERN Document Server

    Choi, M S; Lee, S H

    1999-01-01

    The inherent background coefficients that exactly describe the background amplitudes in the scattered field have been presented for the scattering of plane acoustic waves by a system of concentrically multilayered solid and/or fluid shells submerged in a fluid. The coefficients have been obtained by replacing the mechanical surface admittance function with the zero-frequency limit of the admittance function for the analogous fluid system, where the shear wave speeds in the solid layers are set to zero. By taking advantage of the concept of incoming and outgoing waves, we find the surface admittance function for the fluid system in such a form that the analytical generalization for any number of layers and the physical interpretation are very easy. The background coefficients obtained are independent of the bulk wave speeds in the system: they depend on the mass densities and the thickness of the shells. With increasing frequency, the inherent background undergoes a transition from the soft to the rigid backgr...

  2. Entropy Generation of Shell and Double Concentric Tubes Heat Exchanger

    Directory of Open Access Journals (Sweden)

    basma abbas abdulmajeed

    2016-06-01

    Full Text Available Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger. Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Finally, in order to keep up with modern technology, infrared thermography camera was used in order to measure the temperatures. The entropy generation was determined with lower values when infrared thermography camera was used to measure the temperatures, compared with the values obtained by using thermocouples.

  3. Inner-shell vacancy production and multiple ionization effects in 0.1-1.75 MeV/u Mn, Fe, Co, Ni, Cu + Au, Bi collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ciortea, C. E-mail: ciortea@tandem.nipne.ro; Piticu, I.; Dumitriu, D.E.; Fluerasu, D.; Enulescu, A.; Szilagyi, S.Z.; Enescu, S.E.; Gugiu, M.M.; Dumitrescu, T.A

    2003-05-01

    Vacancy production in 0.1-1.75 MeV/u Mn, Fe, Co, Ni, Cu + Au, Bi collisions has been studied by measuring integral inner-shell ionization cross-sections and mean outer-shell ionization probabilities at the Tandem accelerator of NIPNE, Bucharest. X-ray spectra induced by ion beams of Mn, Fe, Co, Ni and Cu impinging on thin solid-foil targets of Au and Bi have been measured. Total ionization cross-sections for the K-shell of the projectile and L{sub 3}-subshell of the target, as well as vacancy sharing probabilities, corrected for the effect of multiple ionization, are reported. The experimental results are discussed in terms of two model calculations.

  4. CO{sub 2} capture behavior of shell during calcination/carbonation cycles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Duan, L.B.; Chen, X.P. [School of Energy and Environment, Southeast University, Nanjing (China)

    2009-08-15

    The cyclic carbonation performances of shells as CO{sub 2} sorbents were investigated during multiple calcination/carbonation cycles. The carbonation kinetics of the shell and limestone are similar since they both exhibit a fast kinetically controlled reaction regime and a diffusion controlled reaction regime, but their carbonation rates differ between these two regions. Shell achieves the maximum carbonation conversion for carbonation at 680-700 C. The mactra veneriformis shell and mussel shell exhibit higher carbonation conversions than limestone after several cycles at the same reaction conditions. The carbonation conversion of scallop shell is slightly higher than that of limestone after a series of cycles. The calcined shell appears more porous than calcined limestone, and possesses more pores >230 nm, which allow large CO{sub 2} diffusion-carbonation reaction rates and higher conversion due to the increased surface area of the shell. The pores of the shell that are greater than 230 nm do not sinter significantly. The shell has more sodium ions than limestone, which probably leads to an improvement in the cyclic carbonation performance during the multiple calcination/carbonation cycles. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Dehydration of core/shell fruits

    OpenAIRE

    Liu, Y.; Yang, Xiaosong; Cao, Y.; Wang, Z.; Chen, B.; Zhang, Jian J.; Zhang, H.

    2015-01-01

    Dehydrated core/shell fruits, such as jujubes, raisins and plums, show very complex buckles and wrinkles on their exocarp. It is a challenging task to model such complicated patterns and their evolution in a virtual environment even for professional animators. This paper presents a unified physically-based approach to simulate the morphological transformation for the core/shell fruits in the dehydration process. A finite element method (FEM), which is based on the multiplicative decomposition...

  6. Method of fabricating nested shells and resulting product

    Science.gov (United States)

    Henderson, Timothy M.; Kool, Lawrence B.

    1982-01-01

    A multiple shell structure and a method of manufacturing such structure wherein a hollow glass microsphere is surface treated in an organosilane solution so as to render the shell outer surface hydrophobic. The surface treated glass shell is then suspended in the oil phase of an oil-aqueous phase dispersion. The oil phase includes an organic film-forming monomer, a polymerization initiator and a blowing agent. A polymeric film forms at each phase boundary of the dispersion and is then expanded in a blowing operation so as to form an outer homogeneously integral monocellular substantially spherical thermoplastic shell encapsulating an inner glass shell of lesser diameter.

  7. Expert system development (ESD) shell

    International Nuclear Information System (INIS)

    Padmini, S.; Diwakar, M.P.; Rathode, N.C.; Bairi, B.R.

    1991-01-01

    An Expert System Development (ESD) Shell design implementation is desribed in detail. The shell provides high-level generic facilities for Knowledge Representation (KR) and inferencing and tools for developing user interfaces. Powerful set of tools in the shell relieves much of the programming burden in the ES development. The shell is written in PROLOG under IBM PC/AT. KR facilities are based on two very powerful formalisms namely, frames and rules. Inference Engine (IE) draws most of its power from unification and backward reasoning strategy in PROLOG. This basic mechanism is enhanced further by incorporating both forward and backward chaining of rules and frame-based inferencing. Overall programming style integrates multiple paradigms including logic, object oriented, access-oriented and imperative programming. This permits ES designer a lot of flexibility in organizing inference control. Creation and maintainance of knowledge base is a major activity. The shell, therefore, provides number of facilities to simplify these tasks. Shell design also takes note of the fact that final success of any system depends on end-user satisfaction and hence provides features to build use-friendly interfaces. The shell also provides a set of interfacing predicates so that it can be embedded within any PROLOG program to incorporate functionalilty of the shell in the user program. (author). 10 refs., 8 figs

  8. Core-shell polymer nanorods by a two-step template wetting process

    International Nuclear Information System (INIS)

    Dougherty, S; Liang, J

    2009-01-01

    One-dimensional core-shell polymer nanowires offer many advantages and great potential for many different applications. In this paper we introduce a highly versatile two-step template wetting process to fabricate two-component core-shell polymer nanowires with controllable shell thickness. PLLA and PMMA were chosen as model polymers to demonstrate the feasibility of this process. Solution wetting with different concentrations of polymer solutions was used to fabricate the shell layer and melt wetting was used to fill the shell with the core polymer. The shell thickness was analyzed as a function of the polymer solution concentration and viscosity, and the core-shell morphology was observed with TEM. This paper demonstrates the feasibility of fabricating polymer core-shell nanostructures using our two-step template wetting process and opens the arena for optimization and future experiments with polymers that are desirable for specific applications.

  9. Synthesis of Cationic Core-Shell Latex Particles

    NARCIS (Netherlands)

    Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.

    2006-01-01

    Surfactant-free seeded (core-shell) polymerization of cationic polymer colloids is presented. Polystyrene core particles with sizes between 200 nm and 500 nm were synthesized. The number average diameter of the colloidal core particles increased with increasing monomer concentration. Cationic shells

  10. Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Weiwei; Mei, Chao; Zeng, Xianghua, E-mail: xhzeng@yzu.edu.cn; Wu, Guoqing; Shen, Xiaoshuang [College of Physics Science and Technology and Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002 (China); Chang, Shuai [Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-03-14

    Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell (DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO{sub 2} photoanode of the DSSC in the presence of N719 dye and iodine–based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.

  11. Synthesis of porous MnCo2O4microspheres with yolk–shell structure induced by concentration gradient and the effect on their performance in electrochemical energy storage

    DEFF Research Database (Denmark)

    Huang, Guoyong; Yang, Yue; Sun, Hongyu

    2016-01-01

    In this study, novel spherical yolk–shell MnCo2O4 powders with concentration gradient have been synthesized. The porous microspheres with yolk–shell structure (2.00–3.00 μm in average diameter, ∼200 nm in thickness of shell) are built up by irregular nanoparticles attached to each other. It is sh...

  12. Fabrication of Foam Shells for ICF Experiments

    Science.gov (United States)

    Czechowicz, D. G.; Acenas, O.; Flowers, J. S.; Nikroo, A.; Paguio, R. R.; Schroen, D. G.; Streit, J.; Takagi, M.

    2004-11-01

    The General Atomics/Schafer team has developed processes to fabricate foam shells targets suitable for ICF experiments. The two most common chemical systems used to produce foam shells have been resorcinol-formaldehyde (R/F) aerogel and divinylbenzene (DVB). Spherical targets have been made in the form of shells and beads having diameters ranging from approximately 0.5 mm to 4.0 mm, and having densities from approximately 100 mg/cc to 250 mg/cc. The work on R/F foam shells has been concentrated on 1) shell fabrication process improvement to obtain high yields ( ˜25%) and 2) depositing a reliable permeation barrier to provide shells for ongoing direct drive experiments at LLE. Development of divinylbenzene foam shells has been mainly directed towards Inertial Fusion Energy applications (at densities as low as 30 mg/cc) and recently for shells for experiments at LLE. Details of the relevant metrology and properties of these foams as well as the range of targets currently available will be discussed.

  13. Off-shell distortions of multichannel atomic processes

    Science.gov (United States)

    Barrachina, R. O.; Clauser, C. F.

    2017-10-01

    Any multichannel problem can be reduced to a succession of two-body events. However, these basic building blocks of many-body theories do not correspond to elastic processes but are off-the-energy-shell. In view of this difficulty, the great majority of the Distorted-Wave models includes a subsidiary approximation where these off-shell terms are arbitrarily forced to lie on the energy shell. At a first glance, since the energy deficiency is negligible for high enough velocities, the on-shell assumption seems to be completely justified. However, for the case of Coulomb interactions, the two-body off-shell distortions have branch-point singularities on the on-shell limit. In this article we demonstrate that these singularities might produce sizeable distortions of multiple scattering amplitudes, mainly when dealing with ion-ion collisions. Finally, we propose a method of including these distortions that might lead to better results that removing them completely.

  14. Pressure Shell Approach to Integrated Environmental Protection

    Science.gov (United States)

    Kennedy, Kriss J.

    2011-01-01

    The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.

  15. Modeling of microencapsulated polymer shell solidification

    International Nuclear Information System (INIS)

    Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.

    1995-01-01

    A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur

  16. Comparison of Active Carbon, Sawdust, Almond Shell and Hazelnut Shell Absorbent in Removal of Nickel from Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Moslem Mohammadi Galehzan

    2013-09-01

    Full Text Available The most important environmental pollutants are heavy metals in industrial wastewater effluents. Nickel is one of the toxic heavy metals which its high concentration causes skin allergy, heart disease and various cancers. So removal of this element from industrial effluent is of prime concern and necessary. The main purpose of this study is to compare kinetics and isotherms of nickel uptake by activated carbon (AC, sawdust (SD, hazelnut shell (SH and almond shells (AH. Adsorbents are initially prepared to remove nickel from solutions with concentrations 2.5 to 125 mg/l. pH test results showed that maximum absorption using AC, SH, SD and AH obtained at pH 6, 6, 6 and 7 respectively. Kinetics experiments showed that maximum absorption equilibrium time at concentration of 5 mg/l of AC, SH, SD and AH occur at 60, 75, 120 and 150 minutes respectively. Kinetic models fitting results showed that for sawdust and hazelnut shells, Lagergern model and for activated carbon and peanut shell Ho et al. model are suitable and have the lowest error and highest correlation coefficient at 95 percent confidence level. The results also revealed that rate of Nickel adsorption follows this order: AH

  17. L-shell x-ray fluorescence computed tomography (XFCT) imaging of Cisplatin

    International Nuclear Information System (INIS)

    Bazalova, Magdalena; Ahmad, Moiz; Pratx, Guillem; Xing, Lei

    2014-01-01

    X-ray fluorescence computed tomography (XFCT) imaging has been focused on the detection of K-shell x-rays. The potential utility of L-shell x-ray XFCT is, however, not well studied. Here we report the first Monte Carlo (MC) simulation of preclinical L-shell XFCT imaging of Cisplatin. We built MC models for both L- and K-shell XFCT with different excitation energies (15 and 30 keV for L-shell and 80 keV for K-shell XFCT). Two small-animal sized imaging phantoms of 2 and 4 cm diameter containing a series of objects of 0.6 to 2.7 mm in diameter at 0.7 to 16 mm depths with 10 to 250 µg mL −1  concentrations of Pt are used in the study. Transmitted and scattered x-rays were collected with photon-integrating transmission detector and photon-counting detector arc, respectively. Collected data were rearranged into XFCT and transmission CT sinograms for image reconstruction. XFCT images were reconstructed with filtered back-projection and with iterative maximum-likelihood expectation maximization without and with attenuation correction. While K-shell XFCT was capable of providing an accurate measurement of Cisplatin concentration, its sensitivity was 4.4 and 3.0 times lower than that of L-shell XFCT with 15 keV excitation beam for the 2 cm and 4 cm diameter phantom, respectively. With the inclusion of excitation and fluorescence beam attenuation correction, we found that L-shell XFCT was capable of providing fairly accurate information of Cisplatin concentration distribution. With a dose of 29 and 58 mGy, clinically relevant Cisplatin Pt concentrations of 10 µg mg −1  could be imaged with L-shell XFCT inside a 2 cm and 4 cm diameter object, respectively. (paper)

  18. Multiple scattering in closely packed systems of arbitrary non-overlapping shapes

    International Nuclear Information System (INIS)

    Keister, B.D.

    1982-11-01

    It has long been known that the multiple scattering of waves from a system of obstacles of finite extent can be described completely with a knowledge of the on-shell amplitudes of the individual scatterers, provided that the minimally enclosing spheres concentric with the scattering centers do not overlap. In this paper, it is shown that on-shell amplitudes alone suffice for a wider class of scattering configurations, in which the individual scatterers do not overlap, but their geometries do not satisfy the above condition. These extended geometries require a careful treatment of certain partial wave sums. An example is also discussed in which a pair of non-overlapping scatterers requires more than the on-shell amplitudes for a solution

  19. Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control?

    Science.gov (United States)

    Freitas, Pedro S.; Clarke, Leon J.; Kennedy, Hilary; Richardson, Christopher A.

    2016-12-01

    Manganese in the shell calcite of marine bivalves has been suggested to reflect ambient seawater Mn concentrations, thus providing a high-resolution archive of past seawater Mn concentrations. However, a quantitative relationship between seawater Mn and shell Mn/Ca ratios, as well as clear understanding of which process(es) control(s) shell Mn/Ca, are still lacking. Blue mussels, Mytilus edulis, were grown in a one-year duration field experiment in the Menai Strait, U.K., to study the relationship between seawater particulate and dissolved Mn2+ concentrations and shell calcite Mn/Ca ratios. Shell Mn/Ca showed a well-defined intra-annual double-peak, with maximum values during early spring and early summer and low values during autumn and winter. Seawater particulate Mn peaked during winter and autumn, with a series of smaller peaks during spring and summer, whereas dissolved Mn2+ exhibited a marked single maximum during late-spring to early-summer, being low during the remainder of the year. Consequently, neither seawater particulate Mn nor dissolved Mn2+ concentrations explain the intra-annual variation of shell Mn/Ca ratios. A physiological control on shell Mn/Ca ratios is evident from the strong similarity and timing of the double-peaked intra-annual variations of Mn/Ca and shell growth rate (SGR), the latter corresponding to periods of increased metabolic activity (as indicated by respiration rate). It is thus likely that in M. edulis SGR influences shell Mn/Ca by altering the concentration or activity of Mn2+ within the extra-pallial fluid (EPF), by changing the flux of Mn into or the proportion of protein bound Mn within the EPF. By linking shell Mn/Ca ratios to the endogenous and environmental factors that determine growth and metabolic activity, this study helps to explain the lack of a consistent relationship between shell Mn/Ca in marine bivalve shell calcite and seawater particulate and dissolved Mn2+ concentrations. The use of Mn content from M. edulis

  20. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  1. Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

    Directory of Open Access Journals (Sweden)

    Bartosz Bartosewicz

    2017-10-01

    Full Text Available Core–shell nanostructures have found applications in many fields, including surface enhanced spectroscopy, catalysis and solar cells. Titania-coated noble metal nanoparticles, which combine the surface plasmon resonance properties of the core and the photoactivity of the shell, have great potential for these applications. However, the controllable synthesis of such nanostructures remains a challenge due to the high reactivity of titania precursors. Hence, a simple titania coating method that would allow better control over the shell formation is desired. A sol–gel based titania coating method, which allows control over the shell thickness, was developed and applied to the synthesis of Ag@TiO2 and Au@TiO2 with various shell thicknesses. The morphology of the synthesized structures was investigated using scanning electron microscopy (SEM. Their sizes and shell thicknesses were determined using tunable resistive pulse sensing (TRPS technique. The optical properties of the synthesized structures were characterized using UV–vis spectroscopy. Ag@TiO2 and Au@TiO2 structures with shell thickness in the range of ≈40–70 nm and 90 nm, for the Ag and Au nanostructures respectively, were prepared using a method we developed and adapted, consisting of a change in the titania precursor concentration. The synthesized nanostructures exhibited significant absorption in the UV–vis range. The TRPS technique was shown to be a very useful tool for the characterization of metal–metal oxide core–shell nanostructures.

  2. UV-assisted room temperature gas sensing of GaN-core/ZnO-shell nanowires

    International Nuclear Information System (INIS)

    Park, Sunghoon; Ko, Hyunsung; Kim, Soohyun; Lee, Chongmu

    2014-01-01

    GaN is highly sensitive to low concentrations of H 2 in ambient air and is almost insensitive to most other common gases. However, enhancing the sensing performance and the detection limit of GaN is a challenge. This study examined the H 2 -gas-sensing properties of GaN nanowires encapsulated with ZnO. GaN-core/ZnO-shell nanowires were fabricated by using a two-step process comprising the thermal evaporation of GaN powders and the atomic layer deposition of ZnO. The core-shell nanowires ranged from 80 to 120 nm in diameter and from a few tens to a few hundreds of micrometers in length, with a mean shell layer thickness of ∼8 nm. Multiple-networked pristine GaN nanowire and ZnO-encapsulated GaN (or GaN-core/ZnO-shell) nanowire sensors showed responses of 120 - 147% and 179 - 389%, respectively, to 500 - 2,500 ppm of H 2 at room temperature under UV (254 nm) illumination. The underlying mechanism of the enhanced response of the GaN nanowire to H 2 gas when using ZnO encapsulation and UV irradiation is discussed.

  3. Lead reduces shell mass in juvenile garden snails (Helix aspersa)

    International Nuclear Information System (INIS)

    Beeby, Alan; Richmond, Larry; Herpe, Florian

    2002-01-01

    A high Pb diet causes differential depression of juvenile shell mass in populations of Helix. - In an earlier paper examining inherited tolerance to Pb, the shell growth of laboratory-bred offspring of Helix aspersa from contaminated sites was compared with that of juveniles from naieve populations on dosed and undosed diets. Eight-week-old snails were fed either 500 μg g -1 Pb or a control food in competitive trials between two populations. In the first series of trials, a parental history of exposure to Pb did not confer any advantage to either of two populations (BI and MI) competing with a naieve population (LE), whether Pb was present in the diet or not. However, in the analysis of their metal concentrations reported here, LE are found to retain higher levels of Pb in the soft tissues than either BI or MI. Compared to their siblings on the unleaded diet, dosed LE and BI juveniles had lower soft tissue concentrations of Ca and Mg. Although the growth in shell height is unaffected by diet, LE and BI juveniles build lighter shells on the Pb-dosed diet, achieving around 75% of the shell mass of their controls. In contrast, the shell weights of dosed MI juveniles are depressed by only 15% and show no change in the essential metal concentrations of their soft tissues. A second experiment using five populations fed only the dosed food show that the shell weight/soft tissue weight ratios are comparable to the dosed snails of the previous experiment. Building a lighter shell thus appears to be the common response of all Helix populations to a high Pb diet, at least amongst juveniles. The reduction in its mass means that less Ca and Mg is added to the shell and, along with the lowered soft tissue concentrations observed in some populations, may be a consequence of an increased effort to excrete Pb. The possibility that the MI population shows a genotypic adaptation, perhaps as some form of modification of its Ca metabolism, is briefly discussed

  4. Ethanol production of banana shell and cassava starch

    International Nuclear Information System (INIS)

    Monsalve G, John F; Medina de Perez, Victoria Isabel; Ruiz colorado, Angela Adriana

    2006-01-01

    In this work the acid hydrolysis of the starch was evaluated in cassava and the cellulose shell banana and its later fermentation to ethanol, the means of fermentation were adjusted for the microorganisms saccharomyces cerevisiae nrrl y-2034 and zymomonas mobilis cp4. The banana shell has been characterized, which possesses a content of starch, cellulose and hemicelluloses that represent more than 80% of the shell deserve the study of this as source of carbon. The acid hydrolysis of the banana shell yield 20g/l reducing sugar was obtained as maximum concentration. For the cassava with 170 g/l of starch to ph 0.8 in 5 hours complete conversion is achieved to you reducing sugars and any inhibitory effect is not noticed on the part of the cultivations carried out with banana shell and cassava by the cyanide presence in the cassava and for the formation of toxic compounds in the acid hydrolysis the cellulose in banana shell. For the fermentation carried out with saccharomyces cerevisiae a concentration of ethanol of 7.92± 0.31% it is achieved and a considerable production of ethanol is not appreciated (smaller than 0.1 g/l) for none of the means fermented with zymomonas mobilis

  5. Magnetically controlled multifrequency invisibility cloak with a single shell of ferrite material

    Science.gov (United States)

    Wang, Xiaohua; Liu, Youwen

    2015-02-01

    A magnetically controlled multifrequency invisibility cloak with a single shell of the isotropic and homogeneous ferrite material has been investigated based on the scattering cancellation method from the Mie scattering theory. The analytical and simulated results have demonstrated that such this shell can drastically reduce the total scattering cross-section of this cloaking system at multiple frequencies. These multiple cloaking frequencies of this shell can be externally controlled since the magnetic permeability of ferrites is well tuned by the applied magnetic field. This may provide a potential way to design a tunable multifrequency invisibility cloak with considerable flexibility.

  6. Deposition of strontium and calcium in snail shell

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Jr, G M; Nelson, D J; Gardiner, D A

    1965-07-03

    The relative effects of strontium and calcium concentrations in the environment on their uptake and incorporation into snail shell were investigated. /sup 45/Ca and /sup 85/Sr were used as tracers and specific activities were used to determine deposition. Data are presented in tables and graphs. Deposition of both calcium and strontium in the snail shell depended primarily on the respective concentrations of these elements in the immediate environment. A slight effect of strontium on calcium deposition was observed. There was found to be a minimum strontium deposition for various combinations of strontium and calcium in the environment. It was concluded that strontium uptake is more closely associated with environmental strontium concentrations than with calcium concentrations.

  7. Porous spherical shells and microspheres by electrodispersion precipitation

    International Nuclear Information System (INIS)

    Harris, M.T.; Sisson, W.G.; Basaran, O.A.; Hayes, S.M.; Bobrowski, S.J.

    1994-01-01

    The ability to reproduce the synthesis of dense- and porous-microspheres and micron-sized spherical shells is very important in (a) the development of ceramics for structural, electronic, catalyst and thermal applications; and (b) the encapsulation of products for controlled-release of drugs, flavors and perfumes, and inks and dyes, and the protection of light-sensitive components and mechanical support of fragile materials. Larger metallic- and ceramic-spherical shells have been used in inertial confinement fusion (ICF) experiments and as catalyst supports. The current paper will focus on a recent technique that has been developed for synthesizing ceramic microspheres and micro-shells. Pulsed electric fields have been used to enhance the dispersion of aqueous metal (Zr and Al) salt solutions from a nozzle and into a nonconducting liquid continuous phase that is immiscible with the aqueous phase. The diameter of the resulting microdroplets ranged in size from approximately 0.1 to 10 μm. Precipitation of hydrous metal oxides occurred as ammonia, which was dissolved in varying amounts in the continuous phase, diffused into the aqueous microdroplets. Spherical shells were formed at higher ammonia concentrations and microspheres were produced at lower ammonia concentrations. Upon drying, dimples appeared in the particles that were synthesized at higher ammonia concentrations. The latter result accords with the well known fact that under certain conditions spherical shells collapse when a fluid is extracted from the core of the particle. No dimples were observed in the microspheres that were produced at lower ammonia concentrations. Analog X-ray dot maps for aluminum and zirconium were done to determine the spatial distribution of each metal in the particles

  8. Material Distribution Optimization for the Shell Aircraft Composite Structure

    Science.gov (United States)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2016-09-01

    One of the main goal in aircraft structures designing isweight decreasing and stiffness increasing. Composite structures recently became popular in aircraft because of their mechanical properties and wide range of optimization possibilities.Weight distribution and lay-up are keys to creating lightweight stiff strictures. In this paperwe discuss optimization of specific structure that undergoes the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflowinduced vibrations at the constrained weight of the part. Initial model was created with CAD tool Siemens NX, finite element analysis and post processing were performed with COMSOL Multiphysicsr and MATLABr. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. Wall thickness has been changed using parametric approach by an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. To avoid a local stress concentration, wall thickness increment was defined as smooth function on the shell surface dependent of auxiliary sphere position and size. Our study consists of multiple steps: CAD/CAE transformation of the model, determining wind pressure for different flow angles, optimizing wall thickness distribution for specific flow angles, designing a lay-up for optimal material distribution. The studied structure was improved in terms of maximum and average strain energy at the constrained expense ofweight growth. Developed methods and tools can be applied to wide range of shell-like structures made of multilayered quasi-isotropic laminates.

  9. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells

    OpenAIRE

    Dolan, Laurie; Matulka, Ray; Worn, Jeffrey; Nizio, John

    2015-01-01

    Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control), 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermitt...

  10. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  11. Trace metals in mussel shells and corresponding soft tissue samples: a validation experiment for the use of Perna perna shells in pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bellotto, V.R. [Vale do Itajai University (UNIVALI), CTTMAR (Center for Technology Earth and Ocean Science), Itajai (Brazil); Miekeley, N. [Pontifical Catholic University (PUC-Rio), Department of Chemistry, Rio de Janeiro (Brazil)

    2007-10-15

    The uptake of Cr, Mn, Ni, Cu, Zn, Cd and Pb in soft tissue of Perna perna mussels and their shells has been studied in aquarium experiments in which mussels were exposed for 30 or 60 days to seawater spiked with different concentrations of these contaminants (125 and 500 {mu}g L{sup -1}). Tissue samples were analyzed after acid digestion by conventional solution nebulization ICP-MS. Laser ablation ICP-MS was used for the quantitative determination of trace elements in different areas of the corresponding shells. With the exception of Mn and Zn, all other elements studied showed a significant concentration enhancements in soft tissue, with the magnitude of this enhancement following the order: Cr > Ni > Cd > Cu > Pb. A corresponding increase in most contaminants, although less pronounced, was also observed in the newly formed growth rings of mussel shells, contributing to the validation of Perna perna mussel shell as a bioindicator of toxic elements. (orig.)

  12. MULTIPLE SHELLS AROUND G79.29+0.46 REVEALED FROM NEAR-IR TO MILLIMETER DATA

    International Nuclear Information System (INIS)

    Jimenez-Esteban, F. M.; Rizzo, J. R.; Palau, Aina

    2010-01-01

    Aiming to perform a study of the warm dust and gas in the luminous blue variable star G79.29+0.46 and its associated nebula, we present infrared Spitzer imaging and spectroscopy, and new CO J = 2 → 1 and 4 → 3 maps obtained with the IRAM 30 m radio telescope and the Submillimeter Telescope, respectively. We have analyzed the nebula detecting multiple shells of dust and gas connected to the star. Using Infrared Spectrograph-Spitzer spectra, we have compared the properties of the central object, the nebula, and their surroundings. These spectra show a rich variety of solid-state features (amorphous silicates, polycyclic aromatic hydrocarbons, and CO 2 ices) and narrow emission lines, superimposed on a thermal continuum. We have also analyzed the physical conditions of the nebula, which point to the existence of a photo-dissociation region.

  13. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  14. Comparison of two-concentration with multi-concentration linear regressions: Retrospective data analysis of multiple regulated LC-MS bioanalytical projects.

    Science.gov (United States)

    Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi

    2013-09-01

    Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore

  15. Core–shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinqin; Cui, Yingqi; Zeng, Qun; Yang, Mingli, E-mail: myang@scu.edu.cn [Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China); Yu, Shengping [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China)

    2016-04-07

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe){sub x}@(CdSe){sub y} and their Zn-substituted complexes of x = 2–4 and y = 16–28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn–Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition–structure–property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  16. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    Science.gov (United States)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  17. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.

    Science.gov (United States)

    Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde

    2016-03-01

    Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells

    Directory of Open Access Journals (Sweden)

    Laurie Dolan

    Full Text Available Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control, 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermittent decreases in food efficiency (150 000 ppm males only that were not biologically relevant. All animals survived and no adverse clinical signs or functional changes were attributable to the test material. There were no toxicologically relevant changes in hematology, clinical chemistry or urinalysis parameters or organ weights in rats ingesting pecan shell fiber. Any macroscopic or microscopic findings were incidental, of normal variation and/or of minimal magnitude for test substance association. Pecan shell fiber was non-mutagenic in a bacterial reverse mutation test and non-clastogenic in a mouse peripheral blood micronucleus test. Based on these results, pecan shell fiber has an oral subchronic (13-week no observable adverse effect level (NOAEL of 150 000 ppm in rats and is not genotoxic at the doses analyzed. Keywords: Pecan shell, Fiber, Rat, Diet, Toxicity, Mutagenicity

  19. The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu [Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha University, Thandalam, Chennai – 602105 (India); Kalpana, P.; Jayakumar, K. [Department of Physics, Gandhigram Rural University, Gandhigram, Tamilnadu-624302 (India); Reuben, A. Merwyn Jasper D., E-mail: merwyn@gmail.com [Department of Physics, Saveetha School of Engineering, Saveetha University, Thandalam, Chennai – 602105 (India)

    2015-06-24

    The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.

  20. The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot

    Science.gov (United States)

    Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu; Kalpana, P.; Jayakumar, K.; Reuben, A. Merwyn Jasper D.

    2015-06-01

    The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.

  1. Comparisons of multiple isotope systems in the aragonitic shells of cultured Arctica islandica clams

    Science.gov (United States)

    Liu, Y. W.; Aciego, S.; Wanamaker, A. D.

    2014-12-01

    Previous work using oxygen and stable carbon isotopes from Arctica islandica shells has shown that this archive can provide information on past seawater temperatures, carbon cycling and ocean circulation. However, relatively less attention has been devoted to other "non-traditional" isotope systems within this proxy archive. In this study, we report the boron (δ11B) and strontium isotopic values (87Sr/86Sr and δ88/86Sr) from A. islandicashells collected and cultured from the Gulf of Maine. The long-lived ocean quahog, A. islandica was collected and cultured in the Gulf of Maine for 8 months. Our high-resolution δ11B records from the experiment show 5-7‰ of increase through the culture, with low values from January to May and higher values after May. The 87Sr/86Sr ratios from both tank water and shell samples suggest that the shell material reflects ambient ocean chemistry without interferences from terrestrial sources. Although It has been suggested that stable Sr isotopic ratios (δ88/86Sr) in biogenic carbonates are influenced by the temperature of the precipitating fluid, our nearly identical δ88/86Sr data do not support this hypothesis despite a 15 °C temperature change during the experiment. Based on the in-situ measurements of culture seawater temperature, salinity and pH, and two commonly used fractionation factors (α3-4) for corals and forams, we predicted the range in shell δ11B values for the experiment. Our boron results are at the extreme ends of the two prediction lines suggesting the potential usage of the bivalve shells as seawater pH indicator. However, the wider range in δ11B in this experiment than the predictions based on other carbonate organisms (only 2 to 3‰) suggests that a species-specific fractionation factor may be required. Recent work from an additional constant temperature experiment (10 and 15 °C) in the Gulf of Maine will allow us to further evaluate temperature influences and potential vital effects on the shell boron

  2. Metal shell technology based upon hollow jet instability

    International Nuclear Information System (INIS)

    Kendall, J.M.; Lee, M.C.; Wang, T.G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. We describe a technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal. We have produced shells in the 0.7--2.0 mm size range using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold--lead--antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise

  3. A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell.

    Science.gov (United States)

    Joyce, Walter G; Lucas, Spencer G; Scheyer, Torsten M; Heckert, Andrew B; Hunt, Adrian P

    2009-02-07

    A new, thin-shelled fossil from the Upper Triassic (Revueltian: Norian) Chinle Group of New Mexico, Chinlechelys tenertesta, is one of the most primitive known unambiguous members of the turtle stem lineage. The thin-shelled nature of the new turtle combined with its likely terrestrial habitat preference hint at taphonomic filters that basal turtles had to overcome before entering the fossil record. Chinlechelys tenertesta possesses neck spines formed by multiple osteoderms, indicating that the earliest known turtles were covered with rows of dermal armour. More importantly, the primitive, vertically oriented dorsal ribs of the new turtle are only poorly associated with the overlying costal bones, indicating that these two structures are independent ossifications in basal turtles. These novel observations lend support to the hypothesis that the turtle shell was originally a complex composite in which dermal armour fused with the endoskeletal ribs and vertebrae of an ancestral lineage instead of forming de novo. The critical shell elements (i.e. costals and neurals) are thus not simple outgrowths of the bone of the endoskeletal elements as has been hypothesized from some embryological observations.

  4. Adsorption of copper to different biogenic oyster shell structures

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Chen, Jie [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China); Clark, Malcolm [Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480 (Australia); Yu, Yan, E-mail: yuyan_1972@126.com [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Adsorption of copper to waste oyster shell occurs rapidly at pH 5.5. • Copper adsorbs to the different structures of oyster shell at different rates. • The prismatic layer dominates copper sorption rather than the nacreous layer. • SEM analysis shows a porous open network structure to the prismatic layer. • Surface ζ-potentials establish electrostatic attraction to drive copper sorption. - Abstract: The removal of copper from solution by oyster shell powder was investigated for potential wastewater treatment uses. In particular, adsorption behavior differences between the prismatic (PP) and nacreous (NP) shell layers, and how this affects copper removal, were investigated. Experimental results indicated that copper adsorption was highly pH-dependent with optimal copper removal at pH 5.5, where the powdered whole raw shell (RP) removed up to 99.9% of the copper within 24 h at a 10 mg/L initial copper concentration. Langmuir and Freundlich models were used to analyze the isotherm PP, NP and RP data. These results showed a strong homogeneous Langmuir model for low initial copper concentrations (5–30 mg/L) to both RP and PP layer, while strong agreement with a heterogeneous Freundlich model for high initial copper concentrations (30–200 mg/L); nevertheless, a homogeneous Langmuir model provided the best fit for the more dense NP layer across the initial concentration range (5–200 mg/L). The distribution coefficient (K{sub d}) value of PP layer for each initial concentration investigated was substantially higher than the NP layer and it was also found that the PP layer dominated the adsorption process with an adsorption capacity of 8.9 mg/g, while the adsorption capacity of the NP layer was 2.6 mg/g. These differences are believed to be because of the more porous structure of the PP layer, which was confirmed by scanning electron microscopy, infrared spectroscopy, energy-dispersive X-ray spectroscopy, and

  5. Adsorption of copper to different biogenic oyster shell structures

    International Nuclear Information System (INIS)

    Wu, Qiong; Chen, Jie; Clark, Malcolm; Yu, Yan

    2014-01-01

    Graphical abstract: - Highlights: • Adsorption of copper to waste oyster shell occurs rapidly at pH 5.5. • Copper adsorbs to the different structures of oyster shell at different rates. • The prismatic layer dominates copper sorption rather than the nacreous layer. • SEM analysis shows a porous open network structure to the prismatic layer. • Surface ζ-potentials establish electrostatic attraction to drive copper sorption. - Abstract: The removal of copper from solution by oyster shell powder was investigated for potential wastewater treatment uses. In particular, adsorption behavior differences between the prismatic (PP) and nacreous (NP) shell layers, and how this affects copper removal, were investigated. Experimental results indicated that copper adsorption was highly pH-dependent with optimal copper removal at pH 5.5, where the powdered whole raw shell (RP) removed up to 99.9% of the copper within 24 h at a 10 mg/L initial copper concentration. Langmuir and Freundlich models were used to analyze the isotherm PP, NP and RP data. These results showed a strong homogeneous Langmuir model for low initial copper concentrations (5–30 mg/L) to both RP and PP layer, while strong agreement with a heterogeneous Freundlich model for high initial copper concentrations (30–200 mg/L); nevertheless, a homogeneous Langmuir model provided the best fit for the more dense NP layer across the initial concentration range (5–200 mg/L). The distribution coefficient (K d ) value of PP layer for each initial concentration investigated was substantially higher than the NP layer and it was also found that the PP layer dominated the adsorption process with an adsorption capacity of 8.9 mg/g, while the adsorption capacity of the NP layer was 2.6 mg/g. These differences are believed to be because of the more porous structure of the PP layer, which was confirmed by scanning electron microscopy, infrared spectroscopy, energy-dispersive X-ray spectroscopy, and

  6. Invertebrate shells (mollusca, foraminifera) as pollution indicators, Red Sea Coast, Egypt

    Science.gov (United States)

    Youssef, Mohamed; Madkour, Hashem; Mansour, Abbas; Alharbi, Wedad; El-Taher, Atef

    2017-09-01

    To assess the degree of pollution and its impact on the environment along the Red Sea Coast, the most abundant nine species of recent benthic foraminifera and three species of molluscan shells have been selected for the analysis of Fe, Mn, Zn, Cu, Pb, Ni, Co, and Cd concentrations. The selected foraminiferal species are: Textularia agglutinans, Amphispsorus hemprichii, Sorites marginalis, Peneroplis planatus, Borelis schlumbergeri, Amphistegina lessonii, Ammonia beccarii, Operculina gaimairdi, and Operculinella cumingii. The selected molluscan shells are: Lambis truncata and Strombus tricornis (gastropods) and Tridacana gigas (bivalves). The inorganic material analysis of foraminifera and molluscs from the Quseir and Safaga harbors indicates that foraminifera tests include higher concentrations of heavy metals such as Fe and Mn than molluscan shells. These results are supported by the black tests of porcelaneous foraminifera and reflect iron selectivity. The Cd and Pb concentrations in molluscan shells are high in the El Esh Area because of oil pollution at this site. The Cu, Zn, and Ni concentrations in the studied invertebrates are high at Quseir Harbor and in the El Esh Area because of the strong influence of terrigenous materials that are rich in these metals. The heavy metal contamination is mostly attributed to anthropogenic sources.

  7. Multiplicities of states od equivalent fermion shells

    International Nuclear Information System (INIS)

    Savukinas, A.Yu.; Glembotskij, I.I.

    1980-01-01

    Classification of states of three or four equivalent fermions has been studied, i.e. possible terms and their multiplicities have been determined. For this purpose either the group theory or evident expressions for the fractional-parentage coefficients have been used. In the first approach the formulas obtained by other authors for the multiplicities of terms through the characters of the transformation matrices of bond moments have been used. This approach happens to be more general as compared with the second one, as expressions for the fractional-parentage coefficients in many cases are not known. The multiplicities of separate terms have been determined. It has been shown that the number of terms of any multiplicity becomes constant when l or j is increased [ru

  8. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells.

    Science.gov (United States)

    Dolan, Laurie; Matulka, Ray; Worn, Jeffrey; Nizio, John

    2016-01-01

    Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control), 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermittent decreases in food efficiency (150 000 ppm males only) that were not biologically relevant. All animals survived and no adverse clinical signs or functional changes were attributable to the test material. There were no toxicologically relevant changes in hematology, clinical chemistry or urinalysis parameters or organ weights in rats ingesting pecan shell fiber. Any macroscopic or microscopic findings were incidental, of normal variation and/or of minimal magnitude for test substance association. Pecan shell fiber was non-mutagenic in a bacterial reverse mutation test and non-clastogenic in a mouse peripheral blood micronucleus test. Based on these results, pecan shell fiber has an oral subchronic (13-week) no observable adverse effect level (NOAEL) of 150 000 ppm in rats and is not genotoxic at the doses analyzed.

  9. Electrostatics-driven shape transitions in soft shells.

    Science.gov (United States)

    Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica

    2014-09-02

    Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.

  10. Shell Venster

    International Nuclear Information System (INIS)

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  11. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    Science.gov (United States)

    Yang, Chungja

    Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and

  12. Analysis of (n, 2n) multiplication in lead

    International Nuclear Information System (INIS)

    Segev, M.

    1984-01-01

    Lead is being considered as a possible amplifier of neutrons for fusion blankets. A simple one-group model of neutron multiplications in Pb is presented. Given the 14 MeV neutron cross section on Pb, the model predicts the multiplication. Given measured multiplications, the model enables the determination of the (n, 2n) and transport cross sections. Required for the model are: P-the collision probability for source neutrons in the Pb body-and W- an average collision probability for non-virgin, non-degraded neutrons. In simple geometries, such as a source in the center of a spherical shell, P and an approximate W can be expressed analytically in terms of shell dimensions and the Pb transport cross section. The model was applied to Takahashi's measured multiplications in Pb shells in order to understand the apparent very high multiplicative power of Pb. The results of the analysis are not consistent with basic energy-balance and cross section magnitude constraints in neutron interaction theory. (author)

  13. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.

    Science.gov (United States)

    Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek

    2017-08-17

    Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

  14. Multimode interaction in axially excited cylindrical shells

    Directory of Open Access Journals (Sweden)

    Silva F. M. A.

    2014-01-01

    Full Text Available Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural frequencies. The shell is modelled using the Donnell nonlinear shallow shell theory and the discretized equations of motion are obtained by applying the Galerkin method. For this, a modal solution that takes into account the modal interaction among the relevant modes and the influence of their companion modes (modes with rotational symmetry, which satisfies the boundary and continuity conditions of the shell, is derived. Special attention is given to the 1:1:1:1 internal resonance (four interacting modes. Solving numerically the governing equations of motion and using several tools of nonlinear dynamics, a detailed parametric analysis is conducted to clarify the influence of the internal resonances on the bifurcations, stability boundaries, nonlinear vibration modes and basins of attraction of the structure.

  15. Importance-truncated shell model for multi-shell valence spaces

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.

  16. Role of shell structure in the 2νββ nuclear matrix elements

    International Nuclear Information System (INIS)

    Nakada, H.

    1998-01-01

    Significance of the nuclear shell structure in the ββ nuclear matrix elements is pointed out. The 2νββ processes are mainly mediated by the low-lying 1 + states. The shell structure also gives rise to concentration or fragmentation of the 2νββ components over intermediate states, depending on nuclide. These roles of the shell structure are numerically confirmed by realistic shell model calculations. Some shell structure effects are suggested for 0νββ matrix elements; dominance of low-lying intermediate states and nucleus-dependence of their spin-parities. (orig.)

  17. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness.

    Science.gov (United States)

    Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao

    2017-12-19

    Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.

  18. Preparation and characterization of antibacterial Au/C core-shell composite

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yanhong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Zhang Nianchun [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Zhong Yuwen [Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Cai Huaihong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Liu Yingliang, E-mail: tliuyl@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China)

    2010-09-01

    An environment-friendly oxidation-reduction method was used to prepare Au/C core-shell composite using carbon as core and gold as shell. The chemical structures and morphologies of Au/C core-shell composite and carbon sphere were characterized by X-ray diffraction, transmission electron microscope, energy dispersion X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The antibacterial properties of the Au/C core-shell composite against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were examined by the disk diffusion assay and minimal inhibition concentration (MIC) methods. In addition, antibacterial ability of Au/C core-shell composite was observed by atomic force microscope. Results demonstrated that gold homogeneously supported on the surface of carbon spheres without aggregation and showed efficient antibacterial abilities.

  19. Photodegradation in multiple-dye luminescent solar concentrators

    International Nuclear Information System (INIS)

    Mooney, Alex M.; Warner, Kathryn E.; Fontecchio, Paul J.; Zhang, Yu-Zhong; Wittmershaus, Bruce P.

    2013-01-01

    Combining multiple organic dyes to form a fluorescence resonance energy transfer (FRET) network is a useful strategy for extending the spectral range of sunlight absorbed by a luminescent solar concentrator (LSC). Excitation transfer out of the higher energy level dyes in the transfer series competes effectively with their photodegradation rates. Improvements in photostability up to a factor of 18 are observed for the first dye in the FRET series. FRET networks are shown to be a viable means of decreasing the rate of photodegradation of organic dyes used in LSCs. This comes at the expense of the final dye in the network; the depository of most of the excitations created by absorbing sunlight. The photostability and performance of an efficient FRET LSC rest heavily on the photostability and fluorescence quantum yield of the final dye. -- Highlights: • Photodegradation kinetics of multiple-dye FRET LSCs are reported. • The FRET network decreased the first dye's photodegradation rate by a factor of 18. • The final dye in the FRET LSC protects other dyes at its own expense. • The final dye must have excellent photostability and fluorescence quantum yield

  20. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  1. Multiple piece turbine rotor blade

    Science.gov (United States)

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  2. Study of characterization of trace elements in marine shells of Sambaqui: correlation between recent and old shells; Estudo de caracterizacao de elementos tracos em conchas marinhas de Sambaqui: correlacao entre conchas recentes e antigas

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Mauro Roger Batista Pousada; Rocha, Flavio Roberto; Silva, Paulo Sergio Cardoso da, E-mail: mauro_bpgomez@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Calcium carbonate of recent and ancient C. rhizophorae oyster shells was analyzed for the determination of trace elements by instrumental neutron activation analysis. The ancient shells belong to a Sambaqui located in Cananeia region, South of Sao Paulo state and the recent ones are from an oyster production farm in the same region Studies related to the element concentrations in molluscs shell has been done as a tentative of establishing the element concentrations with palio-environmental factor. In this study it was aimed to verify differences in the elemental constitution of recent and ancient oyster shells that present potential for being used as indicator of marine changes. Results indicated that the elements Br, Ce, La, Na, Sm and An are higher in recent shells and the elements Cr, Fe Sc and Th are higher in ancient shells. Statistical analyses performed indicated that the enrichment of the light rare earth elements related to Ca are possibly good candidates for these palio-environmental studies. (author)

  3. FABRICATION AND PROPERTIES OVERCOATED RESORCINOL-FORMALDEHYDE SHELLS FOR OMEGA EXPERIMENTS

    International Nuclear Information System (INIS)

    NIKROO, A; CZECHOWICZ, D; PAGUIO, R; GREENWOOD, A.L; TAKAGI, M.

    2003-09-01

    OAK-B135 New high gain designs for direct drive ignition on NIF require foam shells. Scaled down versions of these designs are needed for near term experiments on the OMEGA laser facility at the Laboratory Laser Energetics (LLE). These shells need to be about 1 mm in diameter and 50-100 (micro)m wall thickness and densities of 100-250 mg/cc. In addition, a full density permeation seal needs to be deposited for retention of the fill gas at room temperature or the ice at cryogenic temperatures. They have fabricated such shells using Resorcinol-formaldehyde (R/F) as the selected foam material due to its transparency in the optical region. Extensive characterization of the wall uniformity of these shells has been performed. The foam shells have ∼ 5%-6% non-concentricities on the average. A full density permeation seal has been deposited on the R/F shells using two different techniques. In the first technique R/F shells are coated directly with plasma polymer to thicknesses of 3-4 (micro)m. In the second technique, R/F shells are coated with polyvinylphenol, using a chemical interfacial polymerization technique. Data on surface finish and gas retention for R/F shells coated by both methods are provided

  4. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    Science.gov (United States)

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  5. Design and intestinal mucus penetration mechanism of core-shell nanocomplex.

    Science.gov (United States)

    Zhang, Xin; Cheng, Hongbo; Dong, Wei; Zhang, Meixia; Liu, Qiaoyu; Wang, Xiuhua; Guan, Jian; Wu, Haiyang; Mao, Shirui

    2018-02-28

    The objective of this study was to design intestinal mucus-penetrating core-shell nanocomplex by functionally mimicking the surface of virus, which can be used as the carrier for peroral delivery of macromolecules, and further understand the influence of nanocomplex surface properties on the mucosal permeation capacity. Taking insulin as a model drug, the core was formed by the self-assembly among positively charged chitosan, insulin and negatively charged sodium tripolyphosphate, different types of alginates were used as the shell forming material. The nanocomplex was characterized by dynamic light scattering (DLS), atomic force microscopy (AFM) and FTIR. Nanocomplex movement in mucus was recorded using multiple particle tracking (MPT) method. Permeation and uptake of different nanocomplex were studied in rat intestine. It was demonstrated that alginate coating layer was successfully formed on the core and the core-shell nanocomplex showed a good physical stability and improved enzymatic degradation protection. The mucus penetration and MPT study showed that the mucus penetration capacity of the nanocomplex was surface charge and coating polymer structure dependent, nanocomplex with negative alginate coating had 1.6-2.5 times higher mucus penetration ability than that of positively charged chitosan-insulin nanocomplex. Moreover, the mucus penetration ability of the core-shell nanocomplex was alginate structure dependent, whereas alginate with lower G content and lower molecular weight showed the best permeation enhancing ability. The improvement of intestine permeation and intestinal villi uptake of the core-shell nanocomplex were further confirmed in rat intestine and multiple uptake mechanisms were involved in the transport process. In conclusion, core-shell nanocomplex composed of oppositely charged materials could provide a strategy to overcome the mucus barrier and enhance the mucosal permeability. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Ex-vivo evaluation of crab shell chitosan as absorption enhancer in ...

    African Journals Online (AJOL)

    This study was aimed at evaluating crab shell chitosan as absorption enhancer in ciprofloxacin tablet formulation using the ex-vivo model. Six batches of ciprofloxacin tablets containing varying concentrations of crab shell-derived chitosan ranging from 0 to 5% w/w at 1% w/w intervals were produced. Batch CTS-0 ...

  7. Dynamic Hydrogen Production from Methanol/Water Photo-Splitting Using Core@Shell-Structured CuS@TiO2 Catalyst Wrapped by High Concentrated TiO2 Particles

    Directory of Open Access Journals (Sweden)

    Younghwan Im

    2013-01-01

    Full Text Available This study focused on the dynamic hydrogen production ability of a core@shell-structured CuS@TiO2 photocatalyst coated with a high concentration of TiO2 particles. The rectangular-shaped CuS particles, 100 nm in length and 60 nm in width, were surrounded by a high concentration of anatase TiO2 particles (>4~5 mol. The synthesized core@shell-structured CuS@TiO2 particles absorbed a long wavelength (a short band gap above 700 nm compared to that pure TiO2, which at approximately 300 nm, leading to easier electronic transitions, even at low energy. Hydrogen evolution from methanol/water photo-splitting over the core@shell-structured CuS@TiO2 photocatalyst increased approximately 10-fold compared to that over pure CuS. In particular, 1.9 mmol of hydrogen gas was produced after 10 hours when 0.5 g of 1CuS@4TiO2 was used at pH = 7. This level of production was increased to more than 4-fold at higher pH. Cyclic voltammetry and UV-visible absorption spectroscopy confirmed that the CuS in CuS@TiO2 strongly withdraws the excited electrons from the valence band in TiO2 because of the higher reduction potential than TiO2, resulting in a slower recombination rate between the electrons and holes and higher photoactivity.

  8. Multiple ionization produced in Yb due to N-,Si- and Ti-ion impact

    International Nuclear Information System (INIS)

    Verma, P.

    2000-01-01

    Heavy ion induced inner shell ionization produces multiple vacancies in the outer shells (M, N etc.) simultaneous to vacancies in the inner-shells (viz. L-shell), which in turn create a very complicated electronic configuration. Three projectiles N 2+,3+ , Si 7+,8+ and Ti 10+,11+ ion beams having a range of 0.3 to 3.5 MeV/u were bombarded on a thin rare earth target of Yb. The recorded L X-ray spectra of Yb have been analyzed in the light of multiple ionization produced due to the heavy ion impact. The outer-shell vacancies acting as spectator vacancies cause a shift in the energy of the various L X-ray diagram lines. A comparison of the shifts in the energies of the various L X-ray transitions of Yb due to the impact of these projectiles, from standard values and that due to proton impact along with the deviation of the intensity ratios from single hole branching ratios, reveal a dependence of multiple ionization on the projectile atomic number (Z) and energy. A further comparison of the degree of multiple ionization produced in Yb, evident by the number of spectator vacancies produced due to the impact of projectiles with 7≤Z≤22 and overlapping MeV/u range lead to explicit conclusions regarding the probability of multiple vacancy production in outer shells simultaneous to a single L-shell vacancy for such projectile target combinations. (orig.)

  9. AT Cnc: A SECOND DWARF NOVA WITH A CLASSICAL NOVA SHELL

    Energy Technology Data Exchange (ETDEWEB)

    Shara, Michael M.; Mizusawa, Trisha; Zurek, David [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (United States); Wehinger, Peter [Steward Observatory, the University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Martin, Christopher D.; Neill, James D.; Forster, Karl [Department of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Mail Code 405-47, Pasadena, CA 91125 (United States); Seibert, Mark [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2012-10-20

    We are systematically surveying all known and suspected Z Cam-type dwarf novae for classical nova shells. This survey is motivated by the discovery of the largest known classical nova shell, which surrounds the archetypal dwarf nova Z Camelopardalis. The Z Cam shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts, in accord with the hibernation scenario of cataclysmic binaries. Here we report the detection of a fragmented 'shell', 3 arcmin in diameter, surrounding the dwarf nova AT Cancri. This second discovery demonstrates that nova shells surrounding Z Cam-type dwarf novae cannot be very rare. The shell geometry is suggestive of bipolar, conical ejection seen nearly pole-on. A spectrum of the brightest AT Cnc shell knot is similar to that of the ejecta of the classical nova GK Per, and of Z Cam, dominated by [N II] emission. Galaxy Evolution Explorer FUV imagery reveals a similar-sized, FUV-emitting shell. We determine a distance of 460 pc to AT Cnc, and an upper limit to its ejecta mass of {approx}5 Multiplication-Sign 10{sup -5} M {sub Sun }, typical of classical novae.

  10. Towards a shell-model description of intruder states and the onset of deformation

    International Nuclear Information System (INIS)

    Heyde, K.; Van Isacker, P.; Casten, R.F.; Wood, J.L.

    1985-01-01

    Basing on the nuclear shell-model and concentrating on the monopole, pairing and quadrupole corrections originating from the nucleon-nucleon force, both the appearance of low-lying 0 + intruder states near major closed shells (Z = 50, 82) and sub-shell regions (Z = 40, 64) can be described. Moreover, a number of new facets related to the study of intruder states are presented. 19 refs., 3 figs

  11. Reaction rate of a composite core-shell nanoreactor with multiple nanocatalysts.

    Science.gov (United States)

    Galanti, Marta; Fanelli, Duccio; Angioletti-Uberti, Stefano; Ballauff, Matthias; Dzubiella, Joachim; Piazza, Francesco

    2016-07-27

    We present a detailed theory for the total reaction rate constant of a composite core-shell nanoreactor, consisting of a central solid core surrounded by a hydrogel layer of variable thickness, where a given number of small catalytic nanoparticles are embedded at prescribed positions and are endowed with a prescribed surface reaction rate constant. Besides the precise geometry of the assembly, our theory accounts explicitly for the diffusion coefficients of the reactants in the hydrogel and in the bulk as well as for their transfer free energy jump upon entering the hydrogel shell. Moreover, we work out an approximate analytical formula for the overall rate constant, which is valid in the physically relevant range of geometrical and chemical parameters. We discuss in depth how the diffusion-controlled part of the rate depends on the essential variables, including the size of the central core. In particular, we derive some simple rules for estimating the number of nanocatalysts per nanoreactor for an efficient catalytic performance in the case of small to intermediate core sizes. Our theoretical treatment promises to provide a very useful and flexible tool for the design of superior performing nanoreactor geometries with optimized nanoparticle load.

  12. The microwave properties of composites including lightweight core–shell ellipsoids

    International Nuclear Information System (INIS)

    Yuan, Liming; Xu, Yonggang; Dai, Fei; Liao, Yi; Zhang, Deyuan

    2016-01-01

    In order to study the microwave properties of suspensions including lightweight core–shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core–shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium. - Highlights: • The microwave properties of suspensions with core-shell inclusions were studied. • Less diluted suspensions were considered. • Flaky Fe-coated diatomite/paraffin suspensions were studied. • The microwave properties could be simulated successfully.

  13. The microwave properties of composites including lightweight core–shell ellipsoids

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liming, E-mail: lming_y@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China); Xu, Yonggang; Dai, Fei; Liao, Yi [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China); Zhang, Deyuan [School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2016-12-01

    In order to study the microwave properties of suspensions including lightweight core–shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core–shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium. - Highlights: • The microwave properties of suspensions with core-shell inclusions were studied. • Less diluted suspensions were considered. • Flaky Fe-coated diatomite/paraffin suspensions were studied. • The microwave properties could be simulated successfully.

  14. Multiple shell pressure vessel

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.

    1988-01-01

    A method is described of fabricating a pressure vessel comprising the steps of: attaching a first inner pressure vessel having means defining inlet and outlet openings to a top flange, placing a second inner pressure vessel, having means defining inlet and outlet opening, concentric with and spaced about the first inner pressure vessel and attaching the second inner pressure vessel to the top flange, placing an outer pressure vessel, having inlet and outlet openings, concentric with and spaced apart about the second inner pressure vessel and attaching the outer pressure vessel to the top flange, attaching a generally cylindrical inner inlet conduit and a generally cylindrical inner outlet conduit respectively to the inlet and outlet openings in the first inner pressure vessel, attaching a generally cylindrical outer inlet conduit and a generally cylindrical outer outlet conduit respectively to the inlet and outlet opening in the second inner pressure vessel, heating the assembled pressure vessel to a temperature above the melting point of a material selected from the group, lead, tin, antimony, bismuth, potassium, sodium, boron and mixtures thereof, filling the space between the first inner pressure vessel and the second inner pressure vessel with material selected from the group, filling the space between the second inner pressure vessel and the outer pressure vessel with material selected from the group, and pressurizing the material filling the spaces between the pressure vessels to a predetermined pressure, the step comprising: pressurizing the spaces to a pressure whereby the wall of the first inner pressure vessel is maintained in compression during steady state operation of the pressure vessel

  15. Restricted open-shell Kohn-Sham theory: N unpaired electrons

    International Nuclear Information System (INIS)

    Schulte, Marius; Frank, Irmgard

    2010-01-01

    Graphical abstract: High-spin or low-spin? The lowest-lying states for different multiplicities of iron complexes are described with a combination of restricted open-shell Kohn-Sham theory and Car-Parrinello molecular dynamics. - Abstract: We present an energy expression for restricted open-shell Kohn-Sham theory for N unpaired electrons. It is shown that it is possible to derive an explicit energy expression for all low-spin multiplets of systems that exhibit neither radial nor cylindrical symmetry. The approach was implemented in the CPMD code and tested for iron complexes.

  16. Linguine sign at MR imaging: does it represent the collapsed silicone implant shell?

    Science.gov (United States)

    Gorczyca, D P; DeBruhl, N D; Mund, D F; Bassett, L W

    1994-05-01

    One intact and one ruptured single-lumen implant were surgically placed in a rabbit. Magnetic resonance (MR) imaging was performed before and after surgical removal, and the ruptured implant was imaged after removal of the implant shell. Multiple curvilinear hypointense lines (linguine sign) were present in the MR images of the ruptured implant and of the implant shell alone immersed in saline solution but not in the image of the free silicone. The collapsed implant shell in a ruptured silicone implant does cause the linguine sign.

  17. Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole

    Science.gov (United States)

    Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.

    2017-11-01

    Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.

  18. Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells

    Science.gov (United States)

    Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.

    2017-03-01

    Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness

  19. Core excitations across the neutron shell gap in 207Tl

    Directory of Open Access Journals (Sweden)

    E. Wilson

    2015-07-01

    Full Text Available The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.

  20. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    Science.gov (United States)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  1. Forced vibrations of rotating circular cylindrical shells

    International Nuclear Information System (INIS)

    Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru

    1995-01-01

    Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)

  2. Modeling the Electrostatics of Hollow Shell Suspensions: Ion Distribution, Pair Interactions, and Many-Body Effects.

    Science.gov (United States)

    Hallez, Yannick; Meireles, Martine

    2016-10-11

    Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.

  3. Geochemistry of amino acids in shells of the clam Saxidomus

    Science.gov (United States)

    Kvenvolden, K.A.; Blunt, D.J.; McMenamin, M.A.; Straham, S.E.

    1980-01-01

    Concentrations of amino acids and their corresponding d l enantiomeric ratios have been measured in shells of the bivalve mollusk Saxidomus from eleven localities, ranging in age from modern to probably more than 500,000 yr, along the Pacific coast of North America. Natural logarithms of amino acid concentrations correlate well with d l ratios, and the relationship provides a possible guide to the selection of fossils for use in amino acid dating. The relative order of the extents of racemization of amino acids at any given time appears to change with increasing sample age. Application of the amino acid dating method to shells from Whidbey Island, Washington, yields an age of about 80,000 yr, in contrast to the previously determined radiocarbon age of 36,000 yr which was measured on some shell carbonate and considered a minimum age. The amino acid age is compatible with the geologic record in the area. ?? 1980.

  4. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hi shells, supershells, shell-like objects, and ''worms''

    International Nuclear Information System (INIS)

    Heiles, C.

    1984-01-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo

  6. Effects of alga polysaccharide capsule shells on in-vivo bioavailability and disintegration

    Science.gov (United States)

    Li, Ting; Guo, Shuju; Ma, Lin; Yuan, Yi; Han, Lijun

    2012-01-01

    Gelatin has been used in hard capsule shells for more than a century, and some shortcomings have appeared, such as high moisture content and risk of transmitting diseases of animal origin to people. Based on available studies regarding gelatin and vegetable shells, we developed a new type of algal polysaccharide capsule (APPC) shells. To test whether our products can replace commercial gelatin shells, we measured in-vivo plasma concentration of 12 selected volunteers with a model drug, ibuprofen, using high performance liquid chromatography (HPLC), by calculating the relative bioavailability of APPC and Qualicaps® referenced to gelatin capsules and assessing bioequivalence of the three types of shells, and calculated pharmacokinetic parameters with the software DAS 2.0 (China). The results show that APPC shells possess bioequivalence with Qualicaps® and gelatin shells. Moreover, the disintegration behavior of four types of shells (APPC, Vegcaps®, Qualicaps® and gelatin shells) with the content of lactose and radioactive element (99mTc) was observed via gamma-scintigraphic images. The bioavailability and gamma-scintigraphic studies showed that APPC was not statistically different from other vegetable and gelatin capsule shells with respect to in-vivo behavior. Hence, it can be concluded that APPCs are exchangeable with other vegetable and gelatin shells.

  7. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis).

    Science.gov (United States)

    de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon

    2011-01-12

    The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.

  8. Numerical simulation of stress-strain state of electrophoretic shell molds

    Science.gov (United States)

    Sviridov, A. V.; Odinokov, V. I.; Dmitriev, E. A.; Evstigneev, A. I.; Bashkov, O. V.

    2017-10-01

    In the foundry engineering, castings obtained in one-piece non-gas-generating high-refractory electrophoretic shell molds (ShM) by investment patterns (IP) have an increased rejects percentage associated with low deformation resistance and crack resistance of the SM at different stages of their formation and manufacturing. Crack resistance of the ShM based on IP depends mainly on their stress-strain state (SSS) at various stages of mold forming. SSS decrease significantly improves their crack resistance and decreases their rejects percentage of castings occurring due to clogging and surface defects. In addition, the known methods of decreasing the SSS are still poorly understood. Thus, current research trends are to determine SSS at each stage of ShM forming and develop the ways to decrease it. Theoretical predicting of crack formation in multiple-layer axisymmetric shell molds is given in the work [1], and SSS of multiple-layer axisymmetric shell molds is given in the work [2]. Monolayer electrophoretic ShM had a lack of concern in this field, thus it became an argument for the present workMathematical Model of ShM SSS

  9. Electrosprayed core–shell polymer–lipid nanoparticles for active component delivery

    International Nuclear Information System (INIS)

    Eltayeb, Megdi; Edirisinghe, Mohan; Stride, Eleanor

    2013-01-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core–shell polymer–lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core–shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core–shell form. (paper)

  10. Ge/Si core/multi shell heterostructure FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Samuel T [Los Alamos National Laboratory; Dayeh, Shadi A [Los Alamos National Laboratory

    2010-01-01

    Concentric heterostructured materials provide numerous design opportunities for engineering strain and interfaces, as well as tailoring energy band-edge combinations for optimal device performance. Key to the realization of such novel device concepts is the complete understanding and full control over their growth, crystal structure, and hetero-epitaxy. We report here on a new route for synthesizing Ge/Si core/multi-shell heterostructure nanowires that eliminate Au seed diffusion on the nanowire sidewalls by engineering the interface energy density difference. We show that such control over core/shell synthesis enable experimental realization of heterostructure FET devices beyond those available in the literature with enhanced transport characteristics. We provide a side-by-side comparison on the transport properties of Ge/Si core/multi-shell nanowires grown with and without Au diffusion and demonstrate heterostructure FETs with drive currents that are {approx} 2X higher than record results for p-type FETs.

  11. Shell launches its Claus off-gas desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Groenendaal, W; van Meurs, H C.A.

    1972-01-01

    The Shell Flue Gas Desulfurization (SFGD) Process was developed for removal of sulfur oxides from flue gases originating from oil-fired boilers or furnaces. It can also be used to remove sulfur dioxide from Claus sulfur recovery tail gases if they are combined with boiler/furnace flue gases. For Claus tail gas only, the Shell Claus off-gas desulfurization process was developed. Claus unit operation and desulfurization by low temperature Claus processes and conversion/concentration processes are discussed. The new Shell process consists of a conversion/concentration process involving a reduction section and an amine absorption section. In the reduction section, all sulfur compounds and free sulfur are completely reduced to hydrogen sulfide with hydrogen, or hydrogen plus carbon monoxide, over a cobalt/molybdenum-on-alumina catalyst at a temperature of about 300/sup 0/C. Extensive bench scale studies on the reduction system have been carried out. A life test of more than 4000 hr showed a stable activity of the reduction catalyst, which means that in commercial units, very long catalyst lives can be expected. The commercial feasibility of the reduction section was further demonstrated in the Godorf refinery of Deutsche Shell AG. More than 80 absorption units using alkanolamine (AIDP) solutions have been installed. Bench scale studies of the ADIP absorption units were compared to commercial experience.The total capital investment of the new Shell process is 0.7, 2.0, and 3.2 $ times 10 to the 6th power for 100, 500, and 1000 tons of sulfur/sd capacity Claus units, respectively. The total operating costs for these units are, respectively, 610, 1930 and 3310 $/stream day. The capital investment corresponds to about 75% of the capital investment of the preceding Claus unit.

  12. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  13. Superparamagnetic core/shell GoldMag nanoparticles: size-, concentration- and time-dependent cellular nanotoxicity on human umbilical vein endothelial cells and the suitable conditions for magnetic resonance imaging.

    Science.gov (United States)

    Gong, Mingfu; Yang, Hua; Zhang, Song; Yang, Yan; Zhang, Dong; Qi, Yueyong; Zou, Liguang

    2015-03-25

    GoldMag nanoparticles (GMNPs) possess the properties of colloid gold and superparamagnetic iron oxide nanoparticles, which make them useful for delivery, separation and molecular imaging. However, because of the nanometer effect, GMNPs are highly toxic. Thus, the biosafety of GMNPs should be fully studied prior to their use in biomedicine. The main purpose of this study was to evaluate the nanotoxicity of GMNPs on human umbilical vein endothelial cells (HUVECs) and determine a suitable size, concentration and time for magnetic resonance imaging (MRI). Transmission electron microscopy showed that GMNPs had a typical shell/core structure, and the shell was confirmed to be gold using energy dispersive spectrometer analysis. The average sizes of the 30 and 50 nm GMNPs were 30.65 ± 3.15 and 49.23 ± 5.01 nm, respectively, and the shell thickness were 6.8 ± 0.65 and 8.5 ± 1.36 nm, respectively. Dynamic light scattering showed that the hydrodynamic diameter of the 30 and 50 nm GMNPs were 33.2 ± 2.68 and 53.12 ± 4.56 nm, respectively. The r 2 relaxivity of the 50 nm GMNPs was 98.65 mM(-1) s(-1), whereas it was 80.18 mM(-1) s(-1) for the 30 nm GMNPs. The proliferation, cytoskeleton, migration, tube formation, apoptosis and ROS generation of labeled HUVECs depended on the size and concentration of GMNPs and the time of exposure. Because of the higher labeling rate, the 50 nm GMNPs exhibited a significant increase in nanotoxicity compared with the 30 nm GMNPs at the same concentration and time. At no more than 25 μg/mL and 12 hours, the 50 nm GMNPs exhibited no significant nanotoxicity in HUVECs, whereas no toxicity was observed at 50 μg/mL and 24 hours for the 30 nm GMNPs. These results demonstrated that the nanotoxicity of GMNPs in HUVECs depended on size, concentration and time. Exposure to larger GMNPs with a higher concentration for a longer period of time resulted in a higher labeling rate and ROS level for HUVECs. Coupled with r 2 relaxivity, it was suggested

  14. Subionization and decelerated-flow in the vicinity of a B-shell star

    International Nuclear Information System (INIS)

    Zorec, J.

    1981-01-01

    The author presents a simple calculation in which the wind is decelerated, and cooled, by interaction with the ISM and with the preceeding wind. He balances the momentum originally lying in the wind, having maximum velocity V 0 at a place where its particle concentration is N 0 , against that of wind+ISM at some shell-front, moving at Vsub(r) and with particle-concentration Nsub(r). He assumes the undisturbed ISM had concentration Nsub(m), and that the space between star and wind has been swept clean of ISM material, so that deceleration occurs only at the shell; but he ignores the details of shocks, compression, heating and eventual cooling, etc. (Auth.)

  15. Free vibration analysis of delaminated composite shells using different shell theories

    International Nuclear Information System (INIS)

    Nanda, Namita; Sahu, S.K.

    2012-01-01

    Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C 0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.

  16. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough

    Science.gov (United States)

    Zeng, Zhigang; Ma, Yao; Wang, Xiaoyuan; Chen, Chen-Tung Arthur; Yin, Xuebo; Zhang, Suping; Zhang, Junlong; Jiang, Wei

    2018-04-01

    To reveal differences in the behavior of benthic vent animals, and the sources and sinks of biogeochemical and fluid circulations, it is necessary to constrain the chemical characteristics of benthic animals from seafloor hydrothermal fields. We measured the abundances of 27 elements in shells of the crab Xenograpsus testudinatus and the snail Anachis sp., collected from the Kueishantao hydrothermal field (KHF) in the southwestern Okinawa Trough, with the aim of improving our understanding of the compositional variations between individual vent organisms, and the sources of the rare earth elements (REEs) in their shells. The Mn, Hg, and K concentrations in the male X. testudinatus shells are found to be higher than those in female crab shells, whereas the reverse is true for the accumulation of B, implying that the accumulation of K, Mn, Hg, and B in the crab shells is influenced by sex. This is inferred to be a result of the asynchronous molting of the male and female crab shells. Snail shells are found to have higher Ca, Al, Fe, Ni, and Co concentrations than crab shells. This may be attributed to different metal accumulation times. The majority of the light rare earth element (LREE) distribution patterns in the crab and snail shells are similar to those of Kueishantao vent fluids, with the crab and snail shells also exhibiting LREE enrichment, implying that the LREEs contained in crab and snail shells in the KHF are derived from vent fluids.

  17. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Science.gov (United States)

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  18. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  19. Investigation of stresses in facetted glass shell structures

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Wester, Ture

    2007-01-01

    by in-plane forces in the facets and the transfer of distributed in-plane forces across the joints. It is described how these facets work structurally, specifically how bending moments develop and cause possible stress concentrations in the corners, which are subjected to uplift. Apart from local...... bending moments from distributed load, other types of bending moments are likely to occur, especially if the shell has areas of low stiffness, for example along a free edge. A facetted shell structure has been modelled in a finite element program, and the resulting stresses are presented and discussed....

  20. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.

    Science.gov (United States)

    Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia

    2017-11-01

    Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.

    Science.gov (United States)

    Arslan, Yeşim; Eken-Saraçoğlu, Nurdan

    2010-11-01

    In this study, we investigated the use of hazelnut shell as a renewable and low cost lignocellulosic material for bioethanol production for the first time. High lignin content of hazelnut shell is an important obstacle for such a biotransformation. Biomass hydrolysis with acids yields reducing sugar with several inhibitors which limit the fermentability of sugars. The various conditioning methods for biomass and hydrolysate were performed to overcome the toxicity and their effects on the subsequent fermentation of hazelnut shell hydrolysate by Pichia stipitis were evaluated with shaking flasks experiments. Hazelnut shells hydrolysis with 0.7M H(2)SO(4) yielded 49 gl(-1) total reducing sugars and fermentation inhibitors in untreated hydrolysate. First, it was shown that several hydrolysate detoxification methods were solely inefficient in achieving cell growth and ethanol production in the fermentation of hazelnut shell hydrolysates derived from non-delignified biomass. Next, different pretreatments of hazelnut shells were considered for delignification and employed before hydrolysis in conjunction with hydrolysate detoxification to improve alcohol fermentation. Among six delignification methods, the most effective pretreatment regarding to ethanol concentration includes the treatment of shells with 3% (w/v) NaOH at room temperature, which was integrated with sequential hydrolysate detoxification by overliming and then treatment with charcoal twice at 60 degrees C. This treatment brought about a total reduction of 97% in furans and 88.4% in phenolics. Almost all trialed treatments caused significant sugar loss. Under the best assayed conditions, ethanol concentration of 16.79gl(-1) was reached from a hazelnut shell hyrolysate containing initial 50g total reducing sugar l(-1) after partial synthetic xylose supplementation. This value is equal to 91.25% of ethanol concentration that was obtained from synthetic d-xylose under same conditions. The present study

  2. Off-shell CHY amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  3. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  4. Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes.

    Science.gov (United States)

    Aslam, Umar; Linic, Suljo

    2017-12-13

    Bimetallic nanoparticles in which a metal is coated with an ultrathin (∼1 nm) layer of a second metal are often desired for their unique chemical and physical properties. Current synthesis methods for producing such core-shell nanostructures often require incremental addition of a shell metal precursor which is rapidly reduced onto metal cores. A major shortcoming of this approach is that it necessitates precise concentrations of chemical reagents, making it difficult to perform at large scales. To address this issue, we considered an approach whereby the reduction of the shell metal precursor was controlled through in situ chemical modification of the precursor. We used this approach to develop a highly scalable synthesis for coating atomic layers of Pt onto Ag nanocubes. We show that Ag-Pt core-shell nanostructures are synthesized in high yields and that these structures effectively combine the optical properties of the plasmonic Ag nanocube core with the surface properties of the thin Pt shell. Additionally, we demonstrate the scalability of the synthesis by performing a 10 times scale-up.

  5. Architected Lattices with High Stiffness and Toughness via Multicore-Shell 3D Printing.

    Science.gov (United States)

    Mueller, Jochen; Raney, Jordan R; Shea, Kristina; Lewis, Jennifer A

    2018-03-01

    The ability to create architected materials that possess both high stiffness and toughness remains an elusive goal, since these properties are often mutually exclusive. Natural materials, such as bone, overcome such limitations by combining different toughening mechanisms across multiple length scales. Here, a new method for creating architected lattices composed of core-shell struts that are both stiff and tough is reported. Specifically, these lattices contain orthotropic struts with flexible epoxy core-brittle epoxy shell motifs in the absence and presence of an elastomeric silicone interfacial layer, which are fabricated by a multicore-shell, 3D printing technique. It is found that architected lattices produced with a flexible core-elastomeric interface-brittle shell motif exhibit both high stiffness and toughness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Influence of agar concentration on in vitro multiplication of Cymbopogon citratus (D. C. Stapf

    Directory of Open Access Journals (Sweden)

    Ricardo J. Licea Moreno

    2001-04-01

    Full Text Available Here are presented the results on in vitro multiplication of lemon grass (Cymbopogon citratus (D. C. Stapf.; it is a very important medicinal plant because its analgesic, antinflamatory and hipotensor properties, among others, useful to elaborate several medicaments with a high popular acceptation. The main aim of this research was to set up the influence of agar concentration in culture medium during in vitro establishment on multiplication of lemon grass. Were used three treatments: (1 liquid medium with filter paper bridges, (2 3 g.l-1 of agar (BIOCEN and (3 6 g.l-1 of agar (BIOCEN. The explants were inoculated on a culture media containing Murashige and Skoog salts (1962, Heinz and Mee vitamins (1969, myoinositol 100 mg.l-1, 6-BAP 0.2 mg.l-1 and sucrose 20 g.l-1. Meristematic tips were inoculated on the treatments described above under sun light conditions, once desinfected. The explants Influence of agar concentration on in vitro multiplication of Cymbopogon citratus (D. C. Stapf. were maintained 21 days in this culture media and later it is were subcultured 5 times each 21 days, on the same multiplication culture media containing Murashige and Skoog salts (1962, tiamine 1 mg.l-1, myoinositol 100 mg.l-1, 6-BAP 0.3 mg.l-1 and sucrose 30 g.l-1. The pH was 5.7 for all culture media. The results showed the relevance of agar concentration during in vitro establishment on multiplication of lemon grass. Differences among treatments until the 2nd subculture was observed. 3.43 new axillary shoots from each explant cultured on a culture media supplemented with 3 g.l-1 of agar was reached. Key words: lemon grass, medicinal plants, micropropagation, tissue culture

  7. Rheological and droplet size analysis of W/O/W multiple emulsions containing low concentrations of polymeric emulsifiers

    Directory of Open Access Journals (Sweden)

    DRAGANA D. VASILJEVIĆ

    2009-07-01

    Full Text Available Multiple emulsions are complex dispersion systems which have many potential applications in pharmaceutics, cosmetics and the food industry. In practice, however, significant problems may arise because of their thermodynamic instability. In this study, W/O/W multiple emulsion systems containing low concentration levels of lipophilic polymeric primary emulsifiers cetyl dimethicone copolyol and PEG–30 dipolyhydroxystearate were evaluated. The concentrations of the primary emulsifiers were set at 1.6 and 2.4 % w/w in the final emulsions. Rheological and droplet size analysis of the investigated samples showed that the type and concentration of the primary lipophilic polymeric emulsifier markedly affected the characteristics of the multiple emulsions. The multiple emulsion prepared with 2.4 % w/w PEG–30 dipolyhydroxystearate as the primary emulsifier exhibited the highest apparent viscosity, yield stress and elastic modulus values, as well as the smallest droplet size. Furthermore, these parameters remained relatively constant over the study period, confirming the high stability of the investigated sample. The results obtained indicate that the changes observed in the investigated samples over time could be attributed to the swelling/breakdown mechanism of the multiple droplets. Such changes could be adequately monitored by rheological and droplet size analysis.

  8. Prevalence and Antimicrobial Resistance of Enterobacteriaceae in Shell Eggs from Small-Scale Poultry Farms and Farmers' Markets.

    Science.gov (United States)

    Kilonzo-Nthenge, A; Nahashon, S N; Godwin, S; Liu, S; Long, D

    2016-12-01

    Public health concerns over the emergence of antimicrobial resistant bacteria have increased recently. The purpose of this study was to investigate the prevalence of antimicrobial resistant Enterobacteriaceae in shell eggs purchased from small poultry farms and farmers' markets. A total of 504 eggs were pooled to make 252 composite samples, consisting of 2 eggs per composite. The microbial quality of shell eggs was determined by standard quantitative, biochemical, and PCR techniques. Susceptibility to 13 antimicrobial agents was determined by the Kirby-Bauer disk diffusion technique, and results were interpreted based on Clinical and Laboratory Standards Institute values. Shell eggs and egg contents were positive for Escherichia coli (11.9 and 5.2%, respectively), Enterobacter (9.1 and 7.9%), and Serratia (11.5 and 4.8%). Salmonella was isolated from 3.6% of egg shells but not from egg contents. Mean (±SD) Enterobacteriaceae levels (4.4 ± 2.0 log CFU per eggshell) on shell eggs from poultry farms was significantly higher (P ≤ 0.05) than that on shell eggs from farmers' markets (2.1 ± 1.3 log CFU per eggshell). Of the 134 isolates recovered, resistance among isolates from farm and market shell eggs to erythromycin was most common (48.5 and 32.8%, respectively) followed by ampicillin (44.8 and 17.2%), and tetracycline (29.9 and 17.2%). The multiple antibiotic resistance index value for E. coli and Pantoea was 0.62, and that for Salmonella and Klebsiella terrigena was 0.08, indicating that Enterobacteriaceae in shell eggs can be resistant to multiple antimicrobial agents. These data reveal that shell eggs from small poultry farms and farmers' markets can harbor antimicrobial resistant pathogenic and commensal bacteria. Thus, failure to properly handle shell eggs poses a potential health hazard to consumers.

  9. r-Adaptive mesh generation for shell finite element analysis

    International Nuclear Information System (INIS)

    Cho, Maenghyo; Jun, Seongki

    2004-01-01

    An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and to prevent surface geometric errors, we use the Naghdi's shell theory and express the shell surface by a B-spline patch. In addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a reliable mesh adaptation method after a parameter value in the weight function is properly chosen

  10. Core-shell designed scaffolds for drug delivery and tissue engineering.

    Science.gov (United States)

    Perez, Roman A; Kim, Hae-Won

    2015-07-01

    Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. SOME STATISTICAL ISSUES RELATED TO MULTIPLE LINEAR REGRESSION MODELING OF BEACH BACTERIA CONCENTRATIONS

    Science.gov (United States)

    As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...

  12. Intruder states at the N=20 shell closure

    International Nuclear Information System (INIS)

    Heyde, K.

    1991-01-01

    It is indicated that mp-mh (multiple) excitations across closed shells can occur at low energy throughout the nuclear mass region. Besides the 4p-4h, 8p-8h configurations, that are deformed, coexisting low-lying excitations are mainly observed for light N=Z nuclei. A new class of 2p-2h intruder O + state is shown to exist in nuclei where a neutron excess is present. In the latter cases, the proton-neutron interaction energy between the excited 2p-2h configuration and the open shell accounts for a very specific mass dependence in the intruder excitation energy. The experimental evidence that corroborates the idea of intruder states will be given. (G.P.) 28 refs.; 13 figs

  13. Multiple sclerosis influences on the augmentation of serum Klotho concentration

    DEFF Research Database (Denmark)

    Ahmadi, Mona; Aleagha, Mohammad Sajad Emami; Harirchian, Mohammad Hossein

    2016-01-01

    We have already shown that the concentration of secreted form of Klotho decreases in the cerebrospinal fluid of patients with relapsing–remitting multiple sclerosis (RRMS). The current study aimed at assessing possible changes in the serum Klotho concentration of MS patients. Participants involved...... 15 new cases of RRMS patients in the relapse phase, 15 RRMS patients who had been suffering from the disease for more than three years and were under regular treatments (interferon beta-1a) and, finally, 15 non-MS patients who constituted the control group. Beside thorough neurological examinations...... to be higher in MS patients when compared to control group. This finding might be attributed to treatment of MS patients with immunomodulatory drugs or a compensatory response to enhance CNS regeneration and/or vitamin D biosynthesis. Further studies are required to elucidate the role of Klotho in MS...

  14. Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon

    Energy Technology Data Exchange (ETDEWEB)

    Matla, P.

    2012-05-15

    Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.

  15. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Science.gov (United States)

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Desorption of Reactive Red 198 from activated carbon prepared from walnut shells: effects of temperature, sodium carbonate concentration and organic solvent dose

    Directory of Open Access Journals (Sweden)

    Zohreh Alimohamadi

    2017-04-01

    Full Text Available This study investigated the effect of temperature, different concentrations of sodium carbonate,and the dose of organic solvent on the desorption of Reactive Red 198 dye from dye-saturated activated carbon using batch and continuous systems. The results of the batch desorption test showed 60% acetone in water as the optimum amount. However, when the concentration of sodium carbonate was raised, the dye desorption percentage increased from 26% to 42% due to economic considerations; 15 mg/L of sodium carbonate was selected to continue the processof desorption. Increasing the desorption temperature can improve the dye desorption efficiency.According to the column test results, dye desorption concentration decreased gradually with the passing of time. The column test results showed that desorption efficiency and the percentage of dye adsorbed decreased; however, it seemed to stabilize after three repeated adsorption/desorption cycles. The repeated adsorption–desorption column tests (3 cycles showed that the activated carbon which was prepared from walnut shell was a suitable and economical adsorbent for dye removal.

  17. Blood Concentrations of Cadmium and Lead in Multiple Sclerosis Patients from Iran.

    Science.gov (United States)

    Aliomrani, Mehdi; Sahraian, Mohammad Ali; Shirkhanloo, Hamid; Sharifzadeh, Mohammad; Khoshayand, Mohammad Reza; Ghahremani, Mohammad Hossein

    2016-01-01

    Since industrial revolution heavy metals such as lead (Pb) and cadmium (Cd) have been extensively dispersed in environment which, unknown biological effects and prolong biological half-life make them as a major hazard to human health. In addition, the sharp increase in Multiple sclerosis incidence rateshas been recorded in Iran. The propose of this study was to measuring blood lead and cadmium concentration and their correlation with smoking habit in a group of 69 RRMS patients and 74 age/gender-matched healthy individuals resident in Tehran as most polluted city in Iran. All subjects were interviewed regarding age, medical history, possible chemical exposure, acute or chronic diseases, smoking and dietary habits. Blood Pb and Cd levels were measured by double beam GBC plus 932 atomic absorption spectrometer. Our result indicated a significant difference in Cd level (p = 0.006) in which, MS patients had higher blood concentration (1.82 ± 0.13 μg/L) in comparison with healthy individuals (1.47 ± 0.11 μg/L). A comparable blood Cd level to similar recent study (1.78 µg/L vs.1.82 µg/L) was observed. With respect to Pb there was no significant difference between cases and controls, however the geometric means of blood Pb concentration were considerably higher in males than in females in MS patients (57.1 ± 33.7 μg/L vs . 36.7 ± 21.9 μg/L. P = 0.02). Taking into consideration tobacco smoking, an elevated contents of each metal were observed in smoker subjects (p<0.0001). A significant correlation between cigarette smoking and risk of multiple sclerosis was shown before. Thus, high level of Cd in smokers might affect the susceptibility to multiple sclerosis and could increase the risk of disease development.

  18. Searching for nova shells around cataclysmic variables

    Science.gov (United States)

    Sahman, D. I.; Dhillon, V. S.; Knigge, C.; Marsh, T. R.

    2015-08-01

    We present the results of a search for nova shells around 101 cataclysmic variables (CVs), using H α images taken with the 4.2-m William Herschel Telescope (WHT) and the 2.5-m Isaac Newton Telescope Photometric H α Survey of the Northern Galactic Plane (IPHAS). Both telescopes are located on La Palma. We concentrated our WHT search on nova-like variables, whilst our IPHAS search covered all CVs in the IPHAS footprint. We found one shell out of the 24 nova-like variables we examined. The newly discovered shell is around V1315 Aql and has a radius of ˜2.5 arcmin, indicative of a nova eruption approximately 120 yr ago. This result is consistent with the idea that the high mass-transfer rate exhibited by nova-like variables is due to enhanced irradiation of the secondary by the hot white dwarf following a recent nova eruption. The implications of our observations for the lifetime of the nova-like variable phase are discussed. We also examined four asynchronous polars, but found no new shells around any of them, so we are unable to confirm that a recent nova eruption is the cause of the asynchronicity in the white dwarf spin. We find tentative evidence of a faint shell around the dwarf nova V1363 Cyg. In addition, we find evidence for a light echo around the nova V2275 Cyg, which erupted in 2001, indicative of an earlier nova eruption ˜300 yr ago, making V2275 Cyg a possible recurrent nova.

  19. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  20. Botanical pesticides effect from shells of bean’s cashew nut on biological agents of trichoderma sp. and gliocladium sp.

    Science.gov (United States)

    Bande, L. O. S.; Mariadi; Gusnawaty, HS; Nuriadi; Trisulpa, L.; Rahmania

    2018-02-01

    A shell of cashew nut (Anacardium occidentanle) has contained Cashew Nut Shell Liquid (CNSL) that is used as botanical pesticides. CNSL oil consists of active substance such as anacardat acid, cardol and cardanol. Utilization of the pesticides from shells of cashew nut to control pests and diseases of plants would be affected on biological agents. The objective of this research was to investigate pesticides inhibition on the increase of mycelium Trichoderma sp. and Gliocladium sp. by in vitro method. The tested concentration sample consisted of 0.0% (control), 2.5%, 7.5% and 10.0% in PDA media. The results of this research showed that 2.5% botanical pesticides concentration could minimize mycelium of Trichoderma sp. and Gliocladium sp. 22.73% and 21.04% respectively and also the increase shells of cashew extract could be affected the increase of mycelium inhibition. The extract with 2.5% concentration was the recommended concentration to control of fruit rot diseases and if concentration was 10.0% then its inhibition become 54.98% and 49.35%, respectively. The results proved that uncontrolled utilization of the pesticides could be affected on decrease of Trichoderma sp. and Gliocladium sp. growth.

  1. Investigation of dynamic characteristics of shells with holes and added mass

    Directory of Open Access Journals (Sweden)

    Seregin Sergey Valer’evich

    2014-04-01

    Full Text Available Thin cylindrical shells are widely used in construction, engineering and other industries. In case of designing a reservoir for the isothermal storage of liquefied gases such cases are inevitable, when housing requires various technical holes. A point wise added mass can appear into practice in the form of suspended spotlights, radar, architectural inclusions in buildings and structures of various purposes. It is known, that the dynamic asymmetry as an initial irregular geometric shape, including holes, and the added mass leads to specific effects in shells. In the paper the impact of a cut on the frequency and form of its own vibrations of thin circular cylindrical shells is theoretically examined with the help of the equations of linear shallow shell theory. For modal equations with Nav’e boundary conditions, we used the Bubnov - Galerkin method. The authors have expressed a formula for finding the lowest of the split-frequency vibrations of a shell with a cutout. It is stated, that in case of an appropriate choice of added mass value the lower frequencies are comparable with the case of vibrations of a shell with a hole. By numerical and experimental modeling and finite element method in the environment of MSC "Nastran" oscillation frequencies a shell supporting a concentrated mass and a shell with a cutout were compared. It is shown, that the results of the dynamic analysis of shells with holes with a suitable choice of the attached mass values are comparable with the results of the analysis of shells carrying a point mass. It was concluded that the edges in the holes, significantly affect the reduction in the lowest frequency, and need to be strengthened.

  2. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  3. From Lobster Shells to Plastic Objects: A Bioplastics Activity

    Science.gov (United States)

    Hudson, Reuben; Glaisher, Samuel; Bishop, Alexandra; Katz, Jeffrey L.

    2015-01-01

    A multiple day activity for students to create large-scale plastic objects from the biopolymer chitin (major component of lobster, crab, and shrimp shells) is described. The plastic objects created are durable and made from benign materials, making them suitable for students to take home to play with. Since the student-created plastic objects are…

  4. Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy

    Science.gov (United States)

    Chen, Rui; Zhang, Jinfeng; Wang, Yu; Chen, Xianfeng; Zapien, J. Antonio; Lee, Chun-Sing

    2015-10-01

    Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX and the PDT effect of g-C3N4 nanosheets can lead to considerably enhanced efficacy. Furthermore, the red fluorescence of DOX and the blue fluorescence of g-C3N4 nanosheets provide the additional function of dual-color imaging for monitoring the drug release process.Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX

  5. Links between phytoplankton dynamics and shell growth of Arctica islandica on the Faroe Shelf

    Science.gov (United States)

    Bonitz, Fabian Georg Wulf; Andersson, Carin; Trofimova, Tamara; Hátún, Hjálmar

    2018-03-01

    The phytoplankton dynamics on the Faroe Shelf are strongly connected to higher trophic levels, and their inter-annual variability has great importance for many organisms, including the principal fish stocks. Hence, information on the marked phytoplankton variability is scientifically and economically valuable. We show here that the shell growth variability in Arctica islandica shells has the potential to identify periods of increased and decreased phytoplankton concentrations on the Faroe Shelf and in the wider Faroese region in previous centuries. The growth of A. islandica has often been linked to changes in phytoplankton concentrations, i.e., food availability. By cross-matching life-collected and sub-fossil A. islandica shells from two separate locations on the Faroe Shelf, we have built a master chronology, which reaches back to the 17th century. This master chronology correlates well with a Primary Production index for the Faroe Shelf (r = 0.65; p phytoplankton concentrations over the wider Faroese Channel Region, as represented in the Continuous Plankton Recorder surveys, especially for the months June-September (r = 0.39; p < 0.01). In addition, an inverse relationship is observed between the master chronology and on-shelf water temperatures from June-September (r = - 0.29; p < 0.01), which is likely associated with a previously reported inverse relationship between temperatures and the on-shelf primary production. An analysis of the δ18O in the shells shows that the main growing season of the shells presumably occurs during the spring and summer months, which concurs with the main spring bloom.

  6. Identification and concentration of selected pesticide residues in Ghanaian cocoa beans

    International Nuclear Information System (INIS)

    Sefakor, Adzo Fialor

    2017-07-01

    Pest and disease have been the major causes of low cocoa production worldwide and the use of chemicals in the form of pesticides is one of the main ways of mitigating their undesirable outcome. However, inappropriate application of pesticides does not only affect the quality of cocoa bean products and the well being of consumers of such products but can also damage the natural flora and fauna in the environment. Hence the reason why evaluating the concentrations of pesticide residues is necessary in establishing the quality of a cocoa. The goal of this study was therefore to determine the concentrations and distribution of specific pesticide residues in cocoa beans from the six cocoa growing regions of Ghana. Three classes of pesticides were tested for in cocoa beans obtained from seventeen (17) districts in the Brong Ahafo, Eastern, Central, Western North, Ashanti and Western South cocoa growing regions of Ghana. These were the neonicotinoids (Thiamethoxam, Clothianidin, Imidacloprid and Acetamiprid); the synthetic pyrethroids (Cypermethrin, Deltamethrin, Fenvalerate, Lambda Cyhalothrin and Permethrin) and the organophosphorous compound Chlorpyrifos. Pesticide residue analyses were done separately on the whole unshelled beans, the nibs and the shells using a GC/ECD for the synthetic pyrethroids and organophosphorous compound and a QqQ-LC/MS for the neonicotinoids. The results obtained showed that the mean concentrations of the neonicotinoids in all the three matrices ranged from <0.001 to 0.018 mg/kg in the shells, <0.001 to 0.0025 mg/kg in the nibs and <0.001 to 0.005 mg/kg in the whole beans with Imidacloprid being the predominant one. Ashanti Region had the highest concentration of Imidacloprid in all the three matrices whilst Eastern Region recorded the least concentration of Imidacloprid in the shells (0.009 mg/kg) and whole unshelled beans (0.002 mg/kg). In relations to the synthetic pyrethroids tested for, the results obtained indicated that out of the

  7. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy

    Science.gov (United States)

    Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.

    2016-09-01

    Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.

  8. Gold-Pluronic core-shell nanoparticles: synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Timea; Boca, Sanda [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania); Biro, Dominic [Sapientia University, Department of Mechanical Engineering, Faculty of Technical and Human Sciences (Romania); Baldeck, Patrice [Universite Joseph Fourier and CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, CNRS (France); Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania)

    2013-04-15

    This study presents the synthesis of gold-Pluronic core-shell nanoparticles by a two-step method and investigates their biological impact on cancer cells, specifically nanoparticle internalization and cytotoxicity. Uniform, 9-10-nm-sized, hydrophobic gold nanoparticles were synthesized in organic phase by reducing gold salt with oleylamine, after which oleylamine-protected gold nanoparticles were phase-transferred into aqueous medium using Pluronic F127 block copolymer, resulting in gold-Pluronic core-shell nanoparticles with a mean hydrodynamic diameter of {approx}35 nm. The formation and phase-transfer of gold nanoparticles were analyzed by UV-Vis absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. The obtained gold-Pluronic core-shell nanoparticles proved to be highly stable in salted solution. Cytotoxicity tests showed no modification of cellular viability in the presence of properly purified particles. Furthermore, dark-field cellular imaging demonstrated that gold-Pluronic nanoparticles were able to be efficiently uptaken by cells, being internalized through nonspecific endocytosis. The high stability, proven biocompatibility, and imaging properties of gold-Pluronic core-shell nanoparticles hold promise for relevant intracellular applications, with such a design providing the feasibility to combine all multiple functionalities in one nanoparticle for simultaneous detection and imaging.

  9. Gold–Pluronic core–shell nanoparticles: synthesis, characterization and biological evaluation

    International Nuclear Information System (INIS)

    Simon, Timea; Boca, Sanda; Biro, Dominic; Baldeck, Patrice; Astilean, Simion

    2013-01-01

    This study presents the synthesis of gold–Pluronic core–shell nanoparticles by a two-step method and investigates their biological impact on cancer cells, specifically nanoparticle internalization and cytotoxicity. Uniform, 9–10-nm-sized, hydrophobic gold nanoparticles were synthesized in organic phase by reducing gold salt with oleylamine, after which oleylamine-protected gold nanoparticles were phase-transferred into aqueous medium using Pluronic F127 block copolymer, resulting in gold–Pluronic core–shell nanoparticles with a mean hydrodynamic diameter of ∼35 nm. The formation and phase-transfer of gold nanoparticles were analyzed by UV–Vis absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. The obtained gold–Pluronic core–shell nanoparticles proved to be highly stable in salted solution. Cytotoxicity tests showed no modification of cellular viability in the presence of properly purified particles. Furthermore, dark-field cellular imaging demonstrated that gold–Pluronic nanoparticles were able to be efficiently uptaken by cells, being internalized through nonspecific endocytosis. The high stability, proven biocompatibility, and imaging properties of gold–Pluronic core–shell nanoparticles hold promise for relevant intracellular applications, with such a design providing the feasibility to combine all multiple functionalities in one nanoparticle for simultaneous detection and imaging.

  10. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    Science.gov (United States)

    Daianu, Madelaine; Jacobs, Russell E; Weitz, Tara M; Town, Terrence C; Thompson, Paul M

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  11. Analysis of trace elements in the shells of short-necked clam Ruditapes philippinarum (Mollusca: Bivalvia) with respect to reconstruction of individual life history

    International Nuclear Information System (INIS)

    Arakawa, Jumpei; Sakamoto, Wataru

    1998-01-01

    Strontium (Sr) concentration in the shells of short-necked clams collected at different locations (Shirahama, warm area and Maizuru, cold area, Japan) was analyzed by two methods, PIXE and EPMA. The Sr concentration of external surface of shell umbo, which was made during short term at early benthic phase, was analyzed by PIXE, and was ranged from 1000 to 3500 ppm for individuals. The Sr concentration of clams collected at Shirahama showed positive correlation with shell length (SL) in individuals with SL < 31 mm, whereas clams collected at Maizuru did not show significant correlation. This result may be caused from the difference of the spawning seasons between two areas. The Sr concentration of cross section of shell umbo, which develops thicker continuously during their life to form faint stratum structure, was analyzed by EPMA along the line across the stratum structure. Some surges and long term waving patterns of the Sr concentration were observed. These results suggest that the life histories of individual clams could be recorded in the shell umbo cross sections as variations of trace elements and analyses of trace elements could clarify the histories of individual clams. (author)

  12. Microfluidic production of multiple emulsions and functional microcapsules

    NARCIS (Netherlands)

    Lee, Tae Yong; Choi, Tae Min; Shim, Tae Soup; Frijns, Raoul A.M.; Kim, Shin Hyun

    2016-01-01

    Recent advances in microfluidics have enabled the controlled production of multiple-emulsion drops with onion-like topology. The multiple-emulsion drops possess an intrinsic core-shell geometry, which makes them useful as templates to create microcapsules with a solid membrane. High flexibility

  13. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  14. Production of bioethanol from heart and pineapple shell using the yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Corella Quiros, Byron Antonio

    2013-01-01

    The performance of bioethanol production was evaluated from heart and pineapple shell, using the yeast Saccharomyces Cerevisiae, in which has been obtained a maximum output of 1,6% v/v. The research was divided into a phase of characterization and five experimental phases. The heart and pineapple shell were used as substrate for the study. The contents of glucose, reducing sugars and total, moisture, ash, crude fiber and soluble solids content were determined of the heart and golden pineapple shell (MD2). The shell has had a higher content of soluble solids, fiber content, ash and lower moisture content and reducing sugars. In the first experimental phase was made a fermentation of commercial sucrose, with the objective to corroborate the method of measurement of CO 2 and the pH was measured of the water that is collected the gas. Great variation between samples has not been observed, comparing the method to estimate the losses of gas, so it is reproducible and the losses of CO 2 has been at least of 22%. In the second experimental stage to compare measurement methods of ethanol, for collection of CO 2 and gas chromatography, it has been found that for concentrations from 0 to 0,79% v/v, the results have shown a quadratic behavior (second-degree polynomial with 0,83173x 2 +0,0024 x, R 2 =0,9984), while that for higher concentrations to 0,79% the relation has been linear (0,6372 x -0,099, R 2 =0,9424), in which x is the %v/v of ethanol, of the chromatographic method. In the third experimental stage were compared the effects of the filtration. The significant differences of this effect were not found for either of the two substrates used: hearts and shells. The adjustment parameters of the modified Gompertz equation for mixtures of 53% heart and 47% shell, and concentration of 280 g/L have been: Pm 0,72 %v/v; λ 0,3 h, Rm 0,047 (%v/v)/h; for a concentration of 400 g/L, have been Pm 1,3 %v/v λ 1,8 h and Rm 0,068 (%v/v)/h and for 523 g/L, using extract of yeast have

  15. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  16. Emission Characteristics of InGaN/GaN Core-Shell Nanorods Embedded in a 3D Light-Emitting Diode.

    Science.gov (United States)

    Jung, Byung Oh; Bae, Si-Young; Lee, Seunga; Kim, Sang Yun; Lee, Jeong Yong; Honda, Yoshio; Amano, Hiroshi

    2016-12-01

    We report the selective-area growth of a gallium nitride (GaN)-nanorod-based InGaN/GaN multiple-quantum-well (MQW) core-shell structure embedded in a three-dimensional (3D) light-emitting diode (LED) grown by metalorganic chemical vapor deposition (MOCVD) and its optical analysis. High-resolution transmission electron microscopy (HR-TEM) observation revealed the high quality of the GaN nanorods and the position dependence of the structural properties of the InGaN/GaN MQWs on multiple facets. The excitation and temperature dependences of photoluminescence (PL) revealed the m-plane emission behaviors of the InGaN/GaN core-shell nanorods. The electroluminescence (EL) of the InGaN/GaN core-shell-nanorod-embedded 3D LED changed color from green to blue with increasing injection current. This phenomenon was mainly due to the energy gradient and deep localization of the indium in the selectively grown InGaN/GaN core-shell MQWs on the 3D architecture.

  17. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Yijie Zeng

    2014-10-01

    Full Text Available The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs with a diameter of 1.1–2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap significantly. The partial charge distribution diagram shows that the conduction band maximum (CBM is confined in Si, while the valence band maximum (VBM is mainly distributed around the interface. Our findings also show that the band gap and conductivity type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the core-shell material, respectively.

  18. Mg/Ca of Continental Ostracode Shells

    Science.gov (United States)

    Ito, E.; Forester, R. M.; Marco-Barba, J.; Mezquita, F.

    2007-12-01

    Marine ionic chemistry is thought to remain constant. This, together with the belief that marine calcifiers partition Mg/Ca in a systematic manner as functions of temperature (and Mg/Ca) of water forms the basis of the Mg/Ca thermometer. In continental settings both of these assumptions are usually not true. Continental waters contain a wide variety of solutes in absolute and relative ion concentrations. Hence, waters with identical Mg/Ca may have very different concentrations of Mg and Ca and very different anions. Here we use two examples to focus on the effects of ion chemistry on Mg/Ca partitioning in continental ostracode shells and we ignore the complexities of solute evolution, which can change Mg/Ca over timescales of minutes to millennia. Palacios-Fest and Dettman (2001) conducted a monthly study of ,Cypridopsis vidua at El Yeso Lake in Sonora, Mexico. They established a relation between temperature and average shell Mg/Ca using regression analyses on averaged data. When their Mg/Ca-temperature relation is applied to monthly ,C. vidua data from Page Pond near Cleveland, Ohio, water temperatures of -8 to -1°C are obtained. The observed Mg/Ca ranges for El Yeso Lake (0.31 to 0.46) and Page Pond (0.33 to 0.46) are similar, as are their specific conductivities (700 to 850μS for El Yeso Lake; 400 to 600μS for Page Pond). However, [Ca] is 140-260 mg/L for El Yeso, but only 70-90 mg/L for Page Pond. Page Pond data, in fact, shows a good temperature shell Mg/Ca relation for .C. vidua, but the relation is different from that at El Yeso. Hence, shell Mg/Ca is a multi-valued, family of curves function of temperature and Mg/Ca of water that depends on the [Mg] and [Ca] values in water and perhaps other factors. Our second example comes from sites near Valencia, Spain and involves shell data for ,Cyprideis torosa, an estuarine ostracode that is tolerant of a wide range of salinity and can live in continental waters as long as the carbonate alkalinity to Ca ratio is

  19. Faceted shell structure in grain boundary diffusion-processed sintered Nd–Fe–B magnets

    International Nuclear Information System (INIS)

    Seelam, U.M.R.; Ohkubo, T.; Abe, T.; Hirosawa, S.; Hono, K.

    2014-01-01

    Graphical abstract: The grain boundary diffusion process (GBDP) using a heavy rare earth elements (HRE) such as Dy and Tb is known as an effective method to enhance the coercivity of Nd–Fe–B sintered magnets without reducing remanence. This process has been industrially implemented to manufacture Nd–Fe–B based sintered magnets with high coercivity and high remanence. In this process, Dy is considered to diffuse through grain boundaries (GBs) to form (Nd 1−x Dy x ) 2 Fe 14 B shells surrounding the Nd 2 Fe 14 B grains and the higher anisotropy field of the Dy-rich shell is considered to suppress the nucleation of reverse domains at low magnetic field. Although there are several investigations on the microstructure of HRE GBDP Nd–Fe–B magnets, no paper addressed the origin of the asymmetric formation of HRE rich shells. Based on detailed analysis of facet planes of core/shell interfaces, we propose a mechanism of the faceted core/shell microstructure formation in the GBDP sintered magnets. We believe that this gives new insights on understanding the coercivity enhancement by the GBDP. - Highlights: • Faceting was observed at the interfaces of cores and shells. • The core/shell interfaces are sharp with an abrupt change in Dy concentration. • Meting occurs at the interfaces of metalic Nd-rich/Nd 2 Fe 14 B phases above 685 °C due to eutectic reaction. • Solidification of Dy-enriched liquid phase from 900 °C can result in the shell formation. - Abstract: Dysprosium enriched shell structure formed by the grain boundary diffusion process (GBDP) of a sintered Nd–Fe–B magnet was characterized by using scanning electron microscopy, electron back-scattered diffraction and transmission electron microscopy. Faceted core–shell interfaces with an abrupt change in Dy concentration suggest the Dy-rich shells are formed by the solidification of the liquid phase during cooling from the GBDP temperature. The Nd-rich phases are almost free from Dy, and

  20. Minimal lethal concentration of hyrgromycin B in calli induction and shoot multiplication process of Digitalis purpurea L.

    Directory of Open Access Journals (Sweden)

    Elizabeth Kairúz Hernández-Díaz

    2013-01-01

    Full Text Available The plants of the genus Digitalis are characterized by the production of cardenolides, drugs widely used worldwide in the treatment of heart failure. In previous research a transformation protocol was developed from leaf disc of Digitalis purpurea L., using geneticin as selection marker. However some escapes in the selection process were obtained. So it is necessary to develop a more efficient selection scheme using another selective agent. Therefore, the aim of the present research was to select the minimum lethal concentration of hygromycin B during callus induction and shoots multiplication of D. purpurea. For callus induction we studied five concentrations of hygromycine B (3, 6, 9, 12, 15 mg l-1 during 28 days. Besides, the effect in shoot multiplication of four concentrations of hygromycine B (25, 50, 75, 100 mg l-1 was studied during 30 days. The minimal lethal concentration for callus formation was 12 mg l-1. In the case of shoot multiplication, 100% mortality was showed at 75 mg l-1 strictly after 30 days. The proposed selection scheme is recommended for future work at genetic transformation in this species. Keywords: cardenolides, genetic transformation, hpt, selection

  1. Ivestigation of uranium adsorption by using coconut shell

    International Nuclear Information System (INIS)

    Aslani, M.A.A.; Akyil, S.; Aytas, S.; Eral, M.

    2001-01-01

    At the present study, we investigated the basic features of uranium uptake from dilute aqueous solution by using coconut shell and the effect of uranium on this adsorption phenomena. It has also been shown that the adsorption of uranium was affected with some factors such as pH, uranium concentration, and contact time

  2. Protective agent-free synthesis of Ni-Ag core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.-H. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)]. E-mail: chendh@mail.ncku.edu.tw; Wang, S.-R. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2006-12-10

    Ni-Ag core-shell nanoparticles have been prepared by successive hydrazine reduction in ethylene glycol in the absence of protective agents. TEM analysis indicated the product was very fine and the thickness of Ag nanoshells could be controlled by the added silver nitrate concentration. The analyses of electron diffraction pattern and XRD revealed that both Ni cores and Ag shells had a fcc structure. The surface composition analysis by XPS indicated that Ni cores were fully covered by Ag nanoshells. Because of the absence of protective agent, the appropriate nickel concentration for the coating of Ag nanoshells should be less than 1.0 mM to avoid particle agglomeration. The product possessed the surface character of Ag and the magnetic property of Ni, and may have many potential applications in optical, magnetic, catalytic, biochemical, and biomedical fields.

  3. Metal and transuranic records in mussel shells, byssal threads and tissues

    Science.gov (United States)

    Koide, Minoru; Lee, Dong Soo; Goldberg, Edward D.

    1982-12-01

    Bivalve shells offer several advantages over tissues for the monitoring of heavy metal pollutants in the marine environment. They are easier to handle and to store. The problem of whether to depurate the animals before analyses is avoided. The shells appear to be more sensitive to environmental heavy metals levels over the long term than do the soft parts. Of the substances examined (Cd, Cu, Zn, Pb, Ag, Ni, 238Pu and 239 + 240Pu) only Pb and Pu displayed a strong covariance between soft tissue and shell concentrations. There were strong correlations between metals in the shell but not in the soft tissues in general. The byssal threads, because of their enrichment of transuranic elements and of their ease in handling, may be useful in monitoring these metals. A very weak discharge of 238Pu to marine waters adjacent to a nuclear reactor was detected in the byssal threads of mussels.

  4. Molluscan shell colour.

    Science.gov (United States)

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  5. Lactic acid demineralization of shrimp shell and chitosan synthesis

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2015-05-01

    Full Text Available The use of lactic acid was compared to hydrochloric acid for shrimp shell demineralization in chitosan synthesis. Five different acid concentrations were considered for the study: 1.5M, 3.0M, 4.5M, 6.0M and 7.5M. After demineralization, the shrimp shell were deproteinized and subsequently deacetylated to produce chitosan using sodium hydroxide solution. The synthesized chitosan samples were characterized using solubility, FTIR, SEM, XRD and viscosity. The SEM, FTIR and XRD analysis indicated that chitosan was synthesized with a high degree of deacetylation (83.18±2.11 when lactic acid was used and 84.2±5.00 when HCl was used. The degree of deacetylation and the molecular weight of the chitosan samples were also estimated. ANOVA analysis (at 95% confidence interval indicated that acid type and concentration did not significantly affect the solubility, degree of deacetylation, viscosity and molecular weight of the chitosan within the range considered.

  6. Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass

    International Nuclear Information System (INIS)

    Dahiya, Sudhir; Tripathi, R.M.; Hegde, A.G.

    2008-01-01

    In this study biosorption potential of pre-treated arca shell biomass for lead, copper, nickel, cobalt and cesium was explored from the artificially prepared solution containing known amount of metals. The effects of pH, initial concentration, biosorbent dosage and contact time were studied in batch experiments. Effects of common ions like sodium, potassium, calcium and magnesium on the sorption capacity of pre-treated arca biomasses were also studied. To analyse the homogeneity of the biomaterial, experiments were performed for eight lots arca shell biomass for all the studies elements and it was observed that relative standard deviation in uptake capacity was within 10% for all elements. At equilibrium, the maximum total uptake by shell biomaterial was 18.33 ± 0.44, 17.64 ± 0.31, 9.86 ± 0.17, 3.93 ± 0.11 and 7.82 ± 0.36 mg/g for lead, copper, nickel, cesium and cobalt, respectively, under the optimised condition of pH, initial concentration, biosorbent dose and contact time. Effect of all the common ions jointly up to concentration of 50 ppm was negligible for all the elements but at higher levels the cations affects the uptake capacity. Sorption isotherms were studied to explain the removal mechanism of both elements by fitting isotherms data into Lagergren, Freundlich and Langmuir equations. Halls separation factor estimated under optimised condition also favours the sorption potential of these elements using arca shell biomass. Arca shell biomass can be effectively and efficiently employed for removal of studied elements after optimisation of parameters

  7. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    International Nuclear Information System (INIS)

    Zhai, Jing; Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei; Chen, Jian-Feng

    2011-01-01

    Highlights: → We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. → The as-formed particles with controllable size and morphology are antioxidant. → The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 o C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  8. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jing [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China); Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng, E-mail: chenjf@mail.buct.edu.cn [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China)

    2011-06-15

    Highlights: {yields} We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. {yields} The as-formed particles with controllable size and morphology are antioxidant. {yields} The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 {sup o}C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  9. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  10. Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites

    Science.gov (United States)

    S, Abdul Khalil H. P.; Masri, M.; Saurabh, Chaturbhuj K.; Fazita, M. R. N.; Azniwati, A. A.; Sri Aprilia, N. A.; Rosamah, E.; Dungani, Rudi

    2017-03-01

    In the present study, a successful attempt has been made on enhancing the properties of hybrid kenaf/coconut fibers reinforced vinyl ester composites by incorporating nanofillers obtained from coconut shell. Coconut shells were grinded followed by 30 h of high energy ball milling for the production of nanoparticles. Particle size analyzer demonstrated that the size of 90% of obtained nanoparticles ranged between 15-140 nm. Furthermore, it was observed that the incorporation of coconut shell nanofillers into hybrid composite increased water absorption capacity. Moreover, tensile, flexural, and impact strength increased with the filler loading up to 3 wt.% and thereafter decrease was observed at higher filler concentration. However, elongation at break decreased and thermal stability increased in nanoparticles concentration dependent manner. Morphological analysis of composite with 3% of filler loading showed minimum voids and fiber pull outs and this indicated that the stress was successfully absorbed by the fiber.

  11. Studies on influence of environmental factors on concentration on concentration of radionuclides

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Environmental factors which seemed to influence the concentration of radionuclides to marine organisms including illumination, water temperature, coexisting stable elements, salt concentration, suspended matters in sea water and residue were studied. The influence of illumination was examined by algae using 137 Cs, 60 Co, 85 Sr, and 106 Ru as tracers, within 24 hours of illumination. The concentration of 137 Cs and 60 Co revealed remarkable increase of uptake in accordance with increasing illumination intensity, and 24 hours illumination showed 2 times concentration of that by 4 hours'. 85 Sr and 106 Ru showed no effect of illumination, and suggested their concentration was depending on adsorption to the surface. As for water temperature, the concentration factor of 65 Zn, 137 Cs obtained from fishes and shells by 22 0 C breeding was 2 times of that by 12 0 C breeding. Concerning the influence of coexisting stable elements, fishes and shells were examined by 54 Mn, 60 Co, and 65 Zn as tracers. When the stable elements concentration in sea water became 10 times the normal, concentration factor depending on adsorption and metabolism became respective one tenth and one second of the normal value. The influence of salt concentration was examined using 85 Sr, 65 Zn, and 137 Cs, and revealed that 28 to 40 per cent changes of salt level gave slight influence on concentration factor. In order to study the influence of suspended matters and quality of residue, 3 kinds of 106 Ru complex species were added. Concentration factor of Hijiki (Hijikia fusiforme) showed no remarkable difference between breeding in filtrated and non-filtrated sea water. However, clams living in the sand should be taken care of the concentration by the residue in the sea bottom. (Kanao, N.)

  12. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  13. Pattern Transitions in a Soft Cylindrical Shell

    Science.gov (United States)

    Yang, Yifan; Dai, Hui-Hui; Xu, Fan; Potier-Ferry, Michel

    2018-05-01

    Instability patterns of rolling up a sleeve appear more intricate than the ones of walking over a rug on floor, both characterized as systems of uniaxially compressed soft film on stiff substrate. This can be explained by curvature effects. To investigate pattern transitions on a curved surface, we study a soft shell sliding on a rigid cylinder by experiments, computations and theoretical analyses. We reveal a novel postbuckling phenomenon involving multiple successive bifurcations: smooth-wrinkle-ridge-sagging transitions. The shell initially buckles into periodic axisymmetric wrinkles at the threshold and then a wrinkle-to-ridge transition occurs upon further axial compression. When the load increases to the third bifurcation, the amplitude of the ridge reaches its limit and the symmetry is broken with the ridge sagging into a recumbent fold. It is identified that hysteresis loops and the Maxwell equal-energy conditions are associated with the coexistence of wrinkle-ridge or ridge-sagging patterns. Such a bifurcation scenario is inherently general and independent of material constitutive models.

  14. Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues

    International Nuclear Information System (INIS)

    Estevinho, B.N.; Ratola, N.; Alves, A.; Santos, L.

    2006-01-01

    Sorption with activated carbon has been the technique preferred for pentachlorophenol (PCP) removal from contaminated waters, but regeneration needs and high operation costs are supporting a renewed interest in the search for alternative sorbents. Among them, almond shell, an agricultural by-product, provides interesting economical advantages, once shells account for 50% (in mass) of the whole almond. In this work, the capacity of almond shells to remove PCP from waters without previous activation was studied in batch conditions. While PCP analysis was performed solid-phase microextraction (SPME) followed by gas chromatography with electron capture detection (GC-ECD), mercury porosimetry and Fourier transform infrared spectroscopy (FTIR) provided a preliminary physical and chemical characterization of the sorbent. Almond shells were essentially a macroporous material, with an average surface area of 12.9 ± 2.8 m 2 /g. The efficiency of PCP removal was 93 ± 14%, in 24 h, with an initial concentration of 100 μg/l PCP and 5 μg PCP/g shell. Isotherm data adjusted better to Freundlich equation, where K F and 1/n were 0.075 ± 0.081 mg 1-1/n l 1/n and 1.882 ± 0.289, respectively. Average desorption efficiency was 7%, indicating strong adsorption capacity. Results proved that almond shells may be an excellent low-cost alternative for PCP removal from contaminated waters

  15. TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.

  16. Stable tetrabenzo-Chichibabin's hydrocarbons: Tunable ground state and unusual transition between their closed-shell and open-shell resonance forms

    KAUST Repository

    Zeng, Zebing

    2012-09-05

    Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabin\\'s hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin\\'s hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl 3 and/or concentrated H 2SO 4. The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm). © 2012 American Chemical Society.

  17. Three dimensional stress analysis of nozzle-to-shell intersections by the finite element method and a auto-mesh generation program

    International Nuclear Information System (INIS)

    Fujihara, Hirohiko; Ueda, Masahiro

    1975-01-01

    In the design of chemical reactors or nuclear pressure vessels it is often important to evaluate the stress distribution in nozzle-to-shell intersections. The finite element method is a powerful tool for stress analysis, but it has a defects to require troublesome work in preparing input data. Specially, the mesh data of oblique nozzles and tangential nozzles, in which stress concentration is very high, are very difficult to be prepared. The authors made a mesh generation program which can be used to any nozzle-to-shell intersections, and combining this program with a three dimensional stress analysis program by the finite element method they made the stress analysis of nozzle-to-shell intersections under internal pressure. Consequently, stresses, strains and deformations of nozzles nonsymmetrical to spherical shells and nozzles tangential to cylindrical shells were made clear and it was shown that the curvature of the inner surface of the nozzle corner was a controlling factor in reducing stress concentration. (auth.)

  18. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    International Nuclear Information System (INIS)

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-01-01

    We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.

  19. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  20. Faceted shell structure in grain boundary diffusion-processed sintered Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, U.M.R.; Ohkubo, T.; Abe, T.; Hirosawa, S.; Hono, K., E-mail: kazuhiro.hono@nims.go.jp

    2014-12-25

    Graphical abstract: The grain boundary diffusion process (GBDP) using a heavy rare earth elements (HRE) such as Dy and Tb is known as an effective method to enhance the coercivity of Nd–Fe–B sintered magnets without reducing remanence. This process has been industrially implemented to manufacture Nd–Fe–B based sintered magnets with high coercivity and high remanence. In this process, Dy is considered to diffuse through grain boundaries (GBs) to form (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B shells surrounding the Nd{sub 2}Fe{sub 14}B grains and the higher anisotropy field of the Dy-rich shell is considered to suppress the nucleation of reverse domains at low magnetic field. Although there are several investigations on the microstructure of HRE GBDP Nd–Fe–B magnets, no paper addressed the origin of the asymmetric formation of HRE rich shells. Based on detailed analysis of facet planes of core/shell interfaces, we propose a mechanism of the faceted core/shell microstructure formation in the GBDP sintered magnets. We believe that this gives new insights on understanding the coercivity enhancement by the GBDP. - Highlights: • Faceting was observed at the interfaces of cores and shells. • The core/shell interfaces are sharp with an abrupt change in Dy concentration. • Meting occurs at the interfaces of metalic Nd-rich/Nd{sub 2}Fe{sub 14}B phases above 685 °C due to eutectic reaction. • Solidification of Dy-enriched liquid phase from 900 °C can result in the shell formation. - Abstract: Dysprosium enriched shell structure formed by the grain boundary diffusion process (GBDP) of a sintered Nd–Fe–B magnet was characterized by using scanning electron microscopy, electron back-scattered diffraction and transmission electron microscopy. Faceted core–shell interfaces with an abrupt change in Dy concentration suggest the Dy-rich shells are formed by the solidification of the liquid phase during cooling from the GBDP temperature. The Nd-rich phases

  1. Culture growth of testate amoebae under different silicon concentrations.

    Science.gov (United States)

    Wanner, Manfred; Seidl-Lampa, Barbara; Höhn, Axel; Puppe, Daniel; Meisterfeld, Ralf; Sommer, Michael

    2016-10-01

    Testate amoebae with self-secreted siliceous shell platelets ("idiosomes") play an important role in terrestrial silicon (Si) cycles. In this context, Si-dependent culture growth dynamics of idiosomic testate amoebae are of interest. Clonal cultures of idiosomic testate amoebae were analyzed under three different Si concentrations: low (50μmolL -1 ), moderate/site-specific (150μmolL -1 ) and high Si supply (500μmolL -1 ). Food (Saccharomyces cerevisiae) was provided in surplus. (i) Shell size of four different clones of idiosomic testate amoebae either decreased (Trinema galeata, Euglypha filifera cf.), increased (E. rotunda cf.), or did not change (E. rotunda) under the lowest Si concentration (50μmolSiL -1 ). (ii) Culture growth of idiosomic Euglypha rotunda was dependent on Si concentration. The more Si available in the culture medium, the earlier the entry into exponential growth phase. (iii) Culture growth of idiosomic Euglypha rotunda was dependent on origin of inoculum. Amoebae previously cultured under a moderate Si concentration revealed highest sustainability in consecutive cultures. Amoebae derived from cultures with high Si concentrations showed rapid culture growth which finished early in consecutive cultures. (iv) Si (diluted in the culture medium) was absorbed by amoebae and fixed in the amoeba shells resulting in decreased Si concentrations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.

    Science.gov (United States)

    Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi

    2010-11-01

    Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.

  3. Facile synthesis of flower like FePt@ZnO core–shell structure and its bifunctional properties

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Jerina [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, O.D., E-mail: ddjaya@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Mandal, B.P. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Salunke, H.G. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Naik, R. [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-06-01

    Graphical abstract: Flower shaped FePt and ZnO coated FePt with core–shell nanostructures are synthesized by a facile solvothermal procedure. Shell thickness of ZnO over FePt core was tuned by varying FePt concentration with respect to ZnO. Hybrid structure with lower FePt concentration exhibited bifunctionality such as near room temperature ferromagnetism and photoluminescence. Pristine FePt crystallize in the fct (L1{sub 0}) phase whereas it converts into fcc phase in presence of ZnO. - Highlights: • FePt@ZnO hybrid core–shell particles, with unique flower shape morphology have been prepared by solvothermal method. • Phase transition of fct-FePt to fcc-FePt has been found in presence of ZnO nanoparticles. • Plausible mechanism for growth of flowershaped nanoparticle is in accordance with energy minimization principle. • The core shell structure (FePt@ZnO) exhibits bi-functional properties. - Abstract: Flower shaped FePt and ZnO coated FePt (FePt@ZnO) core–shell nanostructures are synthesized by a facile solvothermal procedure. Two different compositions (molar ratio) of FePt and ZnO (FePt:ZnO = 1:3 and FePt:ZnO = 1:6) core–shells with different thicknesses of ZnO shells were synthesized. Hybrid FePt@ZnO core–shell flower structure with lower FePt concentration (FePt:ZnO = 1:6) exhibited bifunctionality including near room temperature ferromagnetism and photoluminescence at ambient conditions. X-ray diffraction patterns of pristine FePt showed partially ordered face centred tetragonal (fct) L1{sub 0} phase whereas ZnO coated FePt (FePt@ZnO) nanostructures showed hexagonal ZnO and disordered phase of FePt with fcc structure. The phase transition of fct FePt to fcc phase occurring in presence of ZnO is further confirmed by transmission electron microscopy and magnetic measurement studies. The formation of the nanoflowers was possibly due to growth along the [0 1 1] or [0 0 1] direction, keeping the core nearly spherical in accordance with the

  4. Multi-Shell Hybrid Diffusion Imaging (HYDI at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    Directory of Open Access Journals (Sweden)

    Madelaine Daianu

    Full Text Available Diffusion weighted imaging (DWI is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI and high-angular resolution imaging (HARDI are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI, composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA, generalized fractional anisotropy (GFA and normalized quantitative anisotropy (NQA. We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI. We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  5. Absence of molecular deuterium dissociation during room-temperature permeation into polystyrene ICF target shells

    International Nuclear Information System (INIS)

    Honig, A.; Alexander, N.; Fan, Q.; Gram, R.; Kim, H.

    1991-01-01

    Polystyrene microshells filled with deuterium and tritium gas are important target shells for inertially confined fusion (ICF) and are particularly promising for target containing spin-polarized hydrogens fuels. A currently active approach to the latter uses polarized D in HD, in a method which requires preservation of the high purity of the initially prepared HD (very low specified H 2 and D 2 concentrations). This would not be possible if dissociation should occur during permeation into the target shells. We have thus tested polystyrene shells using a novel method which employs very pure polystyrene shells using a novel method which employs very pure ortho-D 2 as the test gas. An upper limit of 6 x 10 -4 was deduced for the dissociation of D 2 upon room temperature permeation through an approximately 8 um wall of polystyrene, clearing the way for use of polystyrene target shells for ICF fusion experiments with spin-polarized hydrogens fuels. 19 refs., 1 fig

  6. Shell report 2001; Les personnes, la planete, les profits. Shell rapport 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In 2001, Shell saw mixed results across the social, environmental and economic spectrum. In order to contribute to the sustainable development, the Group is on track towards meeting its target to reduce greenhouse gas emissions to 10 % below 1990 levels by the end of 2002, although there was a significant increase in spill volumes and greenhouse gas emissions rose. Shell has articulated the business case and defined seven principles of sustainable development for use across the Group in business plans and daily operations: generating robust profitability; delivering value to customers; protecting the environment; managing resources; respecting and safeguarding people; benefiting communities; and working with stakeholders. Key points from the Shell Report include: in the framework of Managing, an independent review of the Shell Nigeria Community Development programme and testing of a human rights assessment tool in Shell South Africa and the implementing of a new Diversity and Inclusiveness Standard; in the framework of the economy the cost improvements of 5,1 billion dollars, ahead of target, the second highest earnings ever in difficult market conditions and the election of Shell top brand for fifth year running by motorists; in the framework of the Social, the safety performance, the avoidance of 100 contracts for incompatibility with Shell Business Principles; in the framework of the Environment, the publication of the Fresh water usage report for the first time, the Greenhouse gas emissions, the increase of spills as a result of a small number of incidents including a pipeline rupture in Nigeria and a well blow out in Oman. The economic, environmental and social data of the Shell Report are externally verified. (A.L.B.)

  7. Double-shell target designs for the Los Alamos Scientific Laboratory eight-beam laser system

    International Nuclear Information System (INIS)

    Kindel, J.M.; Stroscio, M.A.

    1978-03-01

    We investigate two double-pusher laser fusion targets, one that incorporates an outer exploding pusher shell and another that uses velocity multiplication. Specific designs are presented for the Los Alamos Scientific Laboratory Eight-Beam Laser System

  8. High-resolution inner-shell spectroscopies of free atoms and molecules using soft-x-ray beamlines at the third-generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article reviews the current status of inner-shell spectroscopies of free atoms and molecules using high-resolution soft-x-ray monochromators installed in the soft-x-ray beamlines at the third-generation synchrotron radiation facilities. Beamlines and endstations devoted to atomic and molecular inner-shell spectroscopies and various types of experimental techniques, such as ion yield spectroscopy, resonant photoemission spectroscopy and multiple-coincidence momentum imaging, are described. Experimental results for K-shell excitation of Ne, O K-shell excitation of H 2 O and CO 2 , C K-shell excitation and ionization of CO 2 and B K-shell excitation of BF 3 , obtained at beamline 27SU of SPring-8 in Japan, are discussed as examples of atomic and molecular inner-shell spectroscopies using the third-generation synchrotron radiation sources. (topical review)

  9. Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight

    Science.gov (United States)

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…

  10. Many-electron model for multiple ionization in atomic collisions

    International Nuclear Information System (INIS)

    Archubi, C D; Montanari, C C; Miraglia, J E

    2007-01-01

    We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data

  11. Many-electron model for multiple ionization in atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C D [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Montanari, C C [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Miraglia, J E [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina)

    2007-03-14

    We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data.

  12. Dietary calcium deficiency in laying ducks impairs eggshell quality by suppressing shell biomineralization.

    Science.gov (United States)

    Chen, Wei; Zhao, Fei; Tian, Zhi Mei; Zhang, Han Xing; Ruan, Dong; Li, Yan; Wang, Shuang; Zheng, Chun Tian; Lin, Ying Cai

    2015-10-01

    The objective of this study was to determine the effects of dietary calcium deficiency on the process of shell formation. Four hundred and fifty female ducks (Anas platyrhynchos) at 22 weeks were randomly assigned to three groups. Ducks were fed one of two calcium-deficient diets (containing 1.8% or 0.38% calcium, respectively) or a calcium-adequate control diet (containing 3.6% calcium) for 67 days (depletion period) and then all ducks were fed a calcium-adequate diet for an additional 67 days (repletion period). Compared with the calcium-adequate control, the average shell thickness, egg shell weight, breaking strength, mammillae density and mammillary knob thickness of shell from ducks that consumed the diet with 0.38% calcium were significantly decreased (Pducks fed 0.38% calcium but not 1.8% calcium. Plasma estradiol concentration was decreased by both of the calcium-deficient diets (Pstudy suggest that dietary calcium deficiency negatively affects eggshell quality and microarchitecture, probably by suppressing shell biomineralization. © 2015. Published by The Company of Biologists Ltd.

  13. Structural responses to plasma disruptions in toroidal shells

    International Nuclear Information System (INIS)

    Tillack, M.S.; Kazimi, M.S.; Lidsky, L.M.

    1985-01-01

    The induced pressures, stresses and strains in unrestrained axisymmetric toroidal shells are studied to scope the behavior of tokamak first walls during plasma disruptions. The modeling includes a circuit analog representation of the shell to solve for induced currents and pressures, and a separate quasi-static 1-D finite element solution for the mechanical response. This work demonstrates that the stresses in tokamkak first walls due to plasma disruption may be large, but to first order will not cause failure in the bulk structure. However, stress concentrations at structural supports and discontinuities together with resonant effects can result in large enhancements of the stresses, which could contribute to plastic deformation or failure when added to the already large steady state thermal and pressure loading of the first wall

  14. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  15. Analysis of Experimental Research on Cyclones with Cylindrical and Spiral Shells

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2012-12-01

    Full Text Available The conducted investigation is aimed at providing information on air flow parameters in the cylindrical and spiral shell (devices are designed for separating solid particles from air flow having tangent flow inlet. Experimental research has employed multi-cyclones created by the Department of Environmental Protection at Vilnius Gediminas Technical University. The study is focused on investigating and comparing the distribution of the dynamic pressure of the airflow in six-channel cyclones inside the structures of devices. The paper establishes and estimates the efficiency of air cleaning changing air phase parameters using different particulate matters. The efficiency of the cyclone has been defined applying the weighted method based on LAND 28-98/M-08 methodology. The article presents the results of experimental research on the air cleaning efficiency of cylindrical and spiral shells using 20 µm glass and clay particulate matter under the initial concentration that may vary from 500 mg/m3 to 15 g/m3 using semi-rings with windows at different positions. The obtained results has shown that the maximum efficiency of the cylindrical shell increases up to 87,3 % while the initial concentration of glass makes 15 g/m3.Article in Lithuanian

  16. Mussel shell evaluation as bioindicator for heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Andrello, Avacir Casanova; Lopes, Fabio; Galvao, Tiago D. [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab. de Fisica Nuclear Aplicada

    2009-07-01

    , being close to 0.015, however, the ratio Cu/Ca varied among the shells, showing that this mollusk is sensitive to concentration of this element in the aquatic environment. The following steep of this work is to correlate the origin of these elements with anthropogenic activities. (author)

  17. Relativistic Bose-Einstein condensates thin-shell wormholes

    Science.gov (United States)

    Richarte, M. G.; Salako, I. G.; Graça, J. P. Morais; Moradpour, H.; Övgün, Ali

    2017-10-01

    We construct traversable thin-shell wormholes which are asymptotically Ads/dS applying the cut and paste procedure for the case of an acoustic metric created by a relativistic Bose-Einstein condensate. We examine several definitions of the flare-out condition along with the violation or not of the energy conditions for such relativistic geometries. Under reasonable assumptions about the equation of state of the matter located at the shell, we concentrate on the mechanical stability of wormholes under radial perturbation preserving the original spherical symmetry. To do so, we consider linearized perturbations around static solutions. We obtain that dS acoustic wormholes remain stable under radial perturbations as long as they have small radius; such wormholes with finite radius do not violate the strong/null energy condition. Besides, we show that stable Ads wormhole satisfy some of the energy conditions whereas unstable Ads wormhole with large radii violate them.

  18. Multistage process for the production of bioethanol from almond shell.

    Science.gov (United States)

    Kacem, Imen; Koubaa, Mohamed; Maktouf, Sameh; Chaari, Fatma; Najar, Taha; Chaabouni, Moncef; Ettis, Nadia; Ellouz Chaabouni, Semia

    2016-07-01

    This work describes the feasibility of using almond shell as feedstock for bioethanol production. A pre-treatment step was carried out using 4% NaOH for 60min at 121°C followed by 1% sulfuric acid for 60min at 121°C. Enzymatic saccharification of the pre-treated almond shell was performed using Penicillium occitanis enzymes. The process was optimized using a hybrid design with four parameters including the incubation time, temperature, enzyme loads, and polyethylene glycol (PEG) concentration. The optimum hydrolysis conditions led to a sugar yield of 13.5%. A detoxification step of the enzymatic hydrolysate was carried out at pH 5 using 1U/ml of laccase enzyme produced by Polyporus ciliatus. Fermenting efficiency of the hydrolysates was greatly improved by laccase treatment, increasing the ethanol yield from 30% to 84%. These results demonstrated the efficiency of using almond shell as a promising source for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    Science.gov (United States)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  20. Cloaks with multiple invisible regions

    International Nuclear Information System (INIS)

    Luo, Yang; Zhu, Shouzheng; He, Lianxing; Wang, Yu

    2011-01-01

    This paper proposes a general method of extending the effective invisible regions for both the shell-like interior cloak and the complementary media exterior cloak, without affecting their original cloaking regions. The proposed method is based on layered spatial mapping instead of the intact mapping. Certain interior or exterior invisible regions can be obtained by properly using a compressed or folded transformation in each space layer. Therefore, the proposal enables the as-designed cloaks to provide multiple invisible regions of different types simultaneously. Thus objects can be hidden in the interior cavity and/or in the exterior space, or even be embedded between the cloaking shells

  1. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.

    Science.gov (United States)

    Neville, Frances; Moreno-Atanasio, Roberto

    2018-01-01

    We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m 2 , could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process.

  2. Study of the effect of shell stabilization of the collective isovector valence-shell excitations along the N=80 isotonic chain

    CERN Multimedia

    It is proposed to investigate the microscopic mechanism which leads to a concentration or a fragmentation of the quadrupole-collective isovector valence-shell excitations, the so-called mixed-symmetry states (MSSs), an effect called shell stabilization of MSSs. This aim will be achieved by identification of MSSs of the unstable nuclei $^{140}$Nd and $^{142}$Sm. The first steps of this program have been undertaken in two subsequent REX-ISOLDE experiments (IS496) in which we have measured the B(E2; 2$^{+}_{1}$$\\rightarrow$ 0$^{+}_{1}$) transition strengths in the radioactive nuclei $^{140}$Nd and $^{142}$Sm. By using these data and the higher beam energy of HIE-ISOLDE we propose now to identify the MSSs of these nuclei by measuring their relative populations with respect to the population of the first 2$^{+}$ states in Coulomb excitation (CE) reactions.

  3. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells.

    Science.gov (United States)

    Tendler, Avichai; Mayo, Avraham; Alon, Uri

    2015-03-07

    Organisms that need to perform multiple tasks face a fundamental tradeoff: no design can be optimal at all tasks at once. Recent theory based on Pareto optimality showed that such tradeoffs lead to a highly defined range of phenotypes, which lie in low-dimensional polyhedra in the space of traits. The vertices of these polyhedra are called archetypes- the phenotypes that are optimal at a single task. To rigorously test this theory requires measurements of thousands of species over hundreds of millions of years of evolution. Ammonoid fossil shells provide an excellent model system for this purpose. Ammonoids have a well-defined geometry that can be parameterized using three dimensionless features of their logarithmic-spiral-shaped shells. Their evolutionary history includes repeated mass extinctions. We find that ammonoids fill out a pyramid in morphospace, suggesting five specific tasks - one for each vertex of the pyramid. After mass extinctions, surviving species evolve to refill essentially the same pyramid, suggesting that the tasks are unchanging. We infer putative tasks for each archetype, related to economy of shell material, rapid shell growth, hydrodynamics and compactness. These results support Pareto optimality theory as an approach to study evolutionary tradeoffs, and demonstrate how this approach can be used to infer the putative tasks that may shape the natural selection of phenotypes.

  4. Inverse identification of intensity distributions from multiple flux maps in concentrating solar applications

    International Nuclear Information System (INIS)

    Erickson, Ben; Petrasch, Jörg

    2012-01-01

    Radiative flux measurements at the focal plane of solar concentrators are typically performed using digital cameras in conjunction with Lambertian targets. To accurately predict flux distributions on arbitrary receiver geometries directional information about the radiation is required. Currently, the directional characteristics of solar concentrating systems are predicted via ray tracing simulations. No direct experimental technique to determine intensities of concentrating solar systems is available. In the current paper, multiple parallel flux measurements at varying distances from the focal plane together with a linear inverse method and Tikhonov regularization are used to identify the directional and spatial intensity distribution at the solution plane. The directional binning feature of an in-house Monte Carlo ray tracing program is used to provide a reference solution. The method has been successfully applied to two-dimensional concentrators, namely parabolic troughs and elliptical troughs using forward Monte Carlo ray tracing simulations that provide the flux maps as well as consistent, associated intensity distribution for validation. In the two-dimensional case, intensity distributions obtained from the inverse method approach the Monte Carlo forward solution. In contrast, the method has not been successful for three dimensional and circular symmetric concentrator geometries.

  5. Validation of an optical system to measure acetabular shell deformation in cadavers.

    Science.gov (United States)

    Dold, Philipp; Bone, Martin C; Flohr, Markus; Preuss, Roman; Joyce, Tom J; Deehan, David; Holland, James

    2014-08-01

    Deformation of the acetabular shell at the time of surgery can result in poor performance and early failure of the hip replacement. The study aim was to validate an ATOS III Triple Scan optical measurement system against a co-ordinate measuring machine using in vitro testing and to check repeatability under cadaver laboratory conditions. Two sizes of custom-made acetabular shells were deformed using a uniaxial/two-point loading frame and measured at different loads. Roundness measurements were performed using both the ATOS III Triple Scan optical system and a co-ordinate measuring machine and then compared. The repeatability was also tested by measuring shells pre- and post-insertion in a cadaver laboratory multiple times. The in vitro comparison with the co-ordinate measuring machine demonstrated a maximum difference of 5 µm at the rim and 9 µm at the measurement closest to the pole of the shell. Maximum repeatability was below 1 µm for the co-ordinate measuring machine and 3 µm for the ATOS III Triple Scan optical system. Repeatability was comparable between the pre-insertion (below 2 µm) and post-insertion (below 3 µm) measurements in the cadaver laboratory. This study supports the view that the ATOS III Triple Scan optical system fulfils the necessary requirements to accurately measure shell deformation in cadavers. © IMechE 2014.

  6. Interelectron correlations in photoionization of outer shells near inner shell thresholds

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V; Drukarev, E G

    2015-01-01

    We have studied the role of virtual excitations of inner shells upon outer shell photoionization. The calculations were performed in the frames of the Random Phase Approximation with Exchange (RPAE) and its generalized version GRPAE that take into account variation of the atomic field due to electron elimination and the inner vacancies decay. We apply both analytic approximation and numeric computations. The results are presented for 3p electrons in Ar and for 4d-electrons in Pd near inner shells thresholds. The effect considered proved to be quite noticeable. (paper)

  7. Reduced Magnetism in Core–Shell Magnetite@MOF Composites

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K.; Sinnwell, Michael A.; Banerjee, Debasis; Devaraj, Arun; Kukkadapu, Ravi K.; Droubay, Timothy C.; Nie, Zimin; Kovarik, Libor; Murugesan, Vijayakumar; Manandhar, Sandeep; Nandasiri, Manjula I.; McGrail, Bernard P.; Thallapally, Praveen K.

    2017-10-17

    Rare-earth elements (REEs) have significant commercial and military uses.1-3 However, REE extraction through conventional mining processes is expensive and feasible at only a few locations worldwide. Alternative methods are needed to produce REEs from more geographically disperse resources and in a cost effective, environmental friendly manner.4,5 Among various sources, geothermal brine, used for generating geothermal energy can possess attractive concentrations (ppb to ppm level) of REEs along with other dissolved metal ions.6 A system that can selectively trap the REEs using an existing geothermal power plant infrastructure would be an attractive additional revenue stream for the plant operator that could accelerate the development and deployment of geothermal plants in the United States and rest of the world.7,8 Here, we demonstrate a magnetic core-shell approach that can effectively extract REEs in their ionic form from aqueous solution with up to 99.99% removal efficiency. The shell, composed of thermally and chemically stable functionalized metal-organic framework (MOF), is grown over a synthesized Fe3O4 magnetic core. Magnetic susceptibility of the particles was found to decline significantly after in situ growth of a MOF shell, which resulted from oxidation of Fe2+ species of the magnetite (Fe3O4) to Fe3+ species (maghemite). The core-shell particles can be completely removed from the mixture under an applied magnetic field, offering a practical, economic, and efficient REE-removal process.

  8. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study.

    Science.gov (United States)

    Kuprianov, Vladimir I; Arromdee, Porametr

    2013-07-01

    Combustion of peanut and tamarind shells was studied in the conical fluidized-bed combustor using alumina sand as the bed material to prevent bed agglomeration. Morphological, thermogravimetric and kinetic characteristics were investigated to compare thermal and combustion reactivity between the biomass fuels. The thermogravimetric kinetics of the biomasses was fitted using the Coats-Redfern method. Experimental tests on the combustor were performed at 60 and 45 kg/h fuel feed rates, with excess air within 20-80%. Temperature and gas concentrations were measured along radial and axial directions in the reactor and at stack. The axial temperature and gas concentration profiles inside the combustor exhibited sensible effects of fuel properties and operating conditions on combustion and emission performance. High (≈ 99%) combustion efficiency and acceptable levels of CO, CxHy, and NO emissions are achievable when firing peanut shells at excess air of about 40%, whereas 60% is more preferable for burning tamarind shells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-01-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells

  10. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  11. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  12. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  13. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale.

    Science.gov (United States)

    Linville, Jessica L; Shen, Yanwen; Ignacio-de Leon, Patricia A; Schoene, Robin P; Urgun-Demirtas, Meltem

    2017-06-01

    A modified version of an in-situ CO 2 removal process was applied during anaerobic digestion of food waste with two types of walnut shell biochar at bench scale under batch operating mode. Compared with the coarse walnut shell biochar, the fine walnut shell biochar has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96-3.83 g biochar (g VS added ) -1 fine walnut shell biochar amended digesters produced biogas with 77.5%-98.1% CH 4 content by removing 40%-96% of the CO 2 compared with the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added ) -1 , the fine walnut shell biochar amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse walnut shell biochar amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO 3 from 2800 mg L -1 in the control digesters to 4800-6800 mg L -1 , providing process stability for food waste anaerobic digestion.

  14. The Karlsruhe Neutron Transmission Experiment (KANT): Spherical shell transmission measurements with 14 MeV neutrons on beryllium

    International Nuclear Information System (INIS)

    Moellendorff, U. von; Fischer, U.; Giese, H.; Kappler, F.; Tayama, R.; Wiegner, E.; Klein, H.; Alevra, A.

    1996-01-01

    This is a set of viewgraphs (no additional text) of a presentation on spherical shell transmission measurements with 14 MeV neutrons on beryllium; the cross for 9 Be(n,2n)2α for the energy range between threshold (1.85 MeV) and 20 MeV neutron energy is measured and the measurement is compared with the literature. Also, neutron leakage multiplication in spherical Be shells with various thicknesses are presented. Figs, tabs

  15. Nuclear shell theory

    CERN Document Server

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  16. Autoradiographic study on the distribution of 241Am in the shell of the freshwater zebra mussel Dreissena polymorpha

    International Nuclear Information System (INIS)

    Zuykov, M.; Pelletier, E.; Rouleau, C.; Popov, L.; Fowler, S.W.; Orlova, M.

    2009-01-01

    Autoradiography was used to identify α-track distributions in a series of shell sections from live mussels Dreissena polymorpha Pallas and dissected shells of dead mussels obtained from laboratory experiments using relatively high concentrations of 241 Am in the exposure media, a required condition for successful use of this autoradiographic technique. A comparable distribution of α-tracks was recorded on autoradiographs from both live and dead shells suggesting that metabolism does not lead to any sizable changes in the process of 241 Am adsorption (present in the extrapallial fluid) onto the inner surface of shell. Autoradiographs showed a preferential accumulation of 241 Am in the organic periostracum, whereas the outer and inner shell layers were characterized by a relatively low α-tracks density. No α-tracks were observed in the central part of the shell in any of the samples. These observations will be useful for the development of a general model to explain bioaccumulation and biosorption processes of radionuclides into mollusk shells. (author)

  17. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  18. Performance model of metallic concentric tube recuperator with counter flow arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Harshdeep [HIET, Department of Mechanical Engineering, Ghaziabad, Uttar Pradesh (India); Kumar, Anoop; Goel, Varun [NIT, Department of Mechanical Engineering, Hamirpur, Himachal Pradesh (India)

    2010-03-15

    A performance model for counter flow arrangement in concentric tube recuperator that can be used to utilize the waste heat in the temperature range of 900-1,400 C is presented. The arrangement consists of metallic tubular inner and outer concentric shell with a small annular gap between two concentric shells. Flue gases pass through the inner shell while air passes through the annular gap in the reverse direction (counter flow arrangement). The height of the recuperator is divided into elements and an energy balance is performed on each elemental height. Results give necessary information about surface, gas and air temperature distribution, and the influence of operating conditions on recuperator performance. The recuperative effectiveness is found to be increased with increasing inlet gas temperature and decreased with increasing fuel flow rate. The present model accounts for all heat transfer processes pertinent to a counterflow radiation recuperator and provide a valuable tool for performance considerations. (orig.)

  19. An evaluation of Mesodon and other larger terrestrial gastropod shells for dating late Holocene and historic alluvium in the Midwestern USA

    Science.gov (United States)

    Rakovan, Monica T.; Rech, Jason A.; Pigati, Jeffery S.; Nekola, Jeffery C.; Wiles, Gregory C.

    2013-01-01

    Understanding the history of stream erosion and changes in channel morphology is important for managing and restoring unstable streams. One of the significant challenges in this type of research is establishing accurate dating of late Holocene and historic alluvium. Here we evaluate the potential of using 14C dating and amino acid racemization (AAR) to date large terrestrial gastropod shells that are often preserved within alluvial sediments. Many terrestrial gastropods incorporate old carbon from limestone or other carbonate rocks into their shells and therefore are unsuitable for radiocarbon dating. Recent studies, however, have shown that some taxa avoid this ‘limestone problem’ and can yield reliable 14C ages. In this study, we measured the 14C activity of specimens for the genera Mesodon, Ventridens, and Allogona collected live and from alluvial sequences dated independently by dendrochronology, 14C dating of wood, and/or 137Cs analyses. Mesodon zaletus contained old carbon in similar concentrations (up to ~ 30%) found in previous studies of other large taxa and should be avoided for 14C dating when possible. In contrast, shells of Ventridens ligera and Allogona profunda showed minimal limestone effects and therefore may be suitable for dating late Holocene alluvium. These results highlight the importance of taxonomic identification of gastropod taxa prior to their use for 14C dating and demonstrate that shell fragments that are not identifiable should be avoided. We also measured d/l ratios (n = 17) of aspartic and glutamic acid from eight different taxa of terrestrial gastropods recovered from four late Holocene and historic stratigraphic sequences. Average d/l ratios of aspartic and glutamic acid from historic sediments < 300 years old are lower in shells from younger stratigraphic units, indicating that AAR can be used to differentiate between multiple historic stratigraphic units.

  20. Hydrothermal synthesis of core–shell TiO_2 to enhance the photocatalytic hydrogen evolution

    International Nuclear Information System (INIS)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2016-01-01

    Graphical abstract: Core–shell TiO_2 with interior cavity was synthesized by a hydrothermal approach to enhance the photocatalytic performance. - Highlights: • Core–shell TiO_2 with interior cavity can be synthesized by hydrothermal approach. • Multiple reflection of incident light in cavity can increase the absorption. • Rutile can optimize the bandgap and delay the charge recombination. - Abstract: A hydrothermal approach was designed to synthesize core–shell TiO_2 with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core–shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV–vis absorption proves core–shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core–shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  1. Stability of charged thin shells

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-01-01

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  2. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  3. Removal of Nickel from Aqueous Solution by Hard-Shell Pistachios

    Directory of Open Access Journals (Sweden)

    Shayan Shamohammadi

    2013-08-01

    Full Text Available Nickel is one of the heavy metals which commonly can be found in industrial wastewater. Many studies have been done on agricultural waste for the removal of nickel from aqueous solutions. The purpose of this study is to identify hard-shell pistachios as a local attraction for removal of nickel from aqueous solution. Nickel adsorption isotherm models are studied using shell pistachios. Pistachio shell was chosen which its particle size is between 800-600 microns. The stock solution of nickel ions was prepared mixing nickel nitrate with distilled water. The results showed that the maximum absorption efficiency occurs (73.3% at pH=8. Also, it was shown that with increasing adsorbent dose, equilibrium time decreased within constant concentration. Examination of uptake isotherm models showed that models of Freundlich, BET, Radke-Praunitz, Redlich-Peterson and Sips describe data in 97% level of confidence well,  however Freundlich and Sips isotherm models has the lowest error factor 0.10597 and 0/10598 respectively and the highest correlation coefficient (0.9785. Comparison of adsorbent capacity within removal of nickel from aqueous solution shows that Pistachio shell with special absorbent surface of 1.7 m2/g and uptake capacity of 0.3984 mg/g is proper than adsorbents of Kaolinite, Bagasse, sludge-ash.

  4. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  5. Biodiesel Production from Castor Oil by Using Calcium Oxide Derived from Mud Clam Shell

    Directory of Open Access Journals (Sweden)

    S. Ismail

    2016-01-01

    Full Text Available The catalytic potential of calcium oxide synthesized from mud clam shell as a heterogeneous catalyst for biodiesel production was studied. The mud clam shell calcium oxide was characterized using particle size analyzer, Fourier transform infrared spectroscopy, scanning electron microscopy, and BET gas sorption analyzer. The catalyst performance of mud clam shell calcium oxide was studied in the transesterification of castor oil as biodiesel. Catalyst characterization and transesterification study results of synthesized catalyst proved the efficiency of the natural derived catalyst for biodiesel production. A highest biodiesel yield of 96.7% was obtained at optimal parameters such as 1 : 14 oil-to-methanol molar ratio, 3% w/w catalyst concentration, 60°C reaction temperature, and 2-hour reaction time. Catalyst reusability test shows that the synthesized calcium oxide from mud clam shell is reusable up to 5 times.

  6. Statistical Mechanics of Thin Spherical Shells

    Directory of Open Access Journals (Sweden)

    Andrej Košmrlj

    2017-01-01

    Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  7. In-vitro investigations of skin closure using diode laser and protein solder containing gold nano shells

    International Nuclear Information System (INIS)

    Nourbakhsh, M. S.; Etrati Khosroshahi, M.

    2011-01-01

    Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nano shells, a new class of nanoparticles consisting of a dielectric core surrounded by a thin metal shell, are used. The aims of this study were to use two different concentrations of gold nano shells as the exogenous material for skin tissue soldering and also to examine the effects of laser soldering parameters on the properties of the repaired skin. Material and Methods: Two mixtures of albumin solder and different concentrations of gold nano shells were prepared. A full thickness incision of 2*20 mm 2 was made on the surface and after placing 50 μ1 of the solder mixture on the incision, an 810 nm diode laser was used to irradiate it at different power densities. The changes of tensile strength, σt, due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. Results: The results showed that the tensile strength of the repaired skin increased with increasing irradiance for both gold nano shell concentrations. In addition, at constant laser irradiance (I), the tensile strength of the repaired incision increased with increasing Ns and decreasing Vs. In our case, this corresponded to σt = 1610 g/cm 2 at I ∼ 60 W cm-2, T ∼ 65 d egree C , Ns = 10 and Vs = 0.2 mms-1. Discussion and Conclusion: Gold nano shells can be used as an indocyanine green dye alterative for laser tissue soldering. Although by increasing the laser power density, the tensile strength of the repaired skin increases, an optimum power density must be considered due to the resulting increase in tissue temperature.

  8. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  9. Investigation of spherical and concentric mechanism of compound droplets

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2016-07-01

    Full Text Available Polymer shells with high sphericity and uniform wall thickness are always needed in the inertial confined fusion (ICF experiments. Driven by the need to control the shape of water-in-oil (W1/O compound droplets, the effects of the density matching level, the interfacial tension and the rotation speed of the continuing fluid field on the sphericity and wall thickness uniformity of the resulting polymer shells were investigated and the spherical and concentric mechanisms were also discussed. The centering of W1/O compound droplets, the location and movement of W1/O compound droplets in the external phase (W2 were significantly affected by the density matching level of the key stage and the rotation speed of the continuing fluid field. Therefore, by optimizing the density matching level and rotation speed, the batch yield of polystyrene (PS shells with high sphericity and uniform wall thickness increased. Moreover, the sphericity also increased by raising the oil/water (O/W2 interfacial tension, which drove a droplet to be spherical. The experimental results show that the spherical driving force is from the interfacial tension affected by the two relative phases, while the concentric driving force, as a resultant force, is not only affected by the three phases, but also by the continuing fluid field. The understanding of spherical and concentric mechanism can provide some guidance for preparing polymer shells with high sphericity and uniform wall thickness.

  10. Fast ignition upon the implosion of a thin shell onto a precompressed deuterium-tritium ball

    Science.gov (United States)

    Gus'kov, S. Yu.; Zmitrenko, N. V.

    2012-11-01

    Fast ignition of a precompressed inertial confinement fusion (ICF) target by a hydrodynamic material flux is investigated. A model system of hydrodynamic objects consisting of a central deuterium-tritium (DT) ball and a concentric two-layer shell separated by a vacuum gap is analyzed. The outer layer of the shell is an ablator, while the inner layer consists of DT ice. The igniting hydrodynamic flux forms as a result of laser-driven acceleration and compression of the shell toward the system center. A series of one-dimensional numerical simulations of the shell implosion, the collision of the shell with the DT ball, and the generation and propagation of thermonuclear burn waves in both parts of the system are performed. Analytic models are developed that describe the implosion of a thin shell onto a central homogeneous ball of arbitrary radius and density and the initiation and propagation of a thermonuclear burn wave induced by such an implosion. Application of the solution of a model problem to analyzing the implosion of a segment of a spherical shell in a conical channel indicates the possibility of fast ignition of a spherical ICF target from a conical target driven by a laser pulse with an energy of 500-700 kJ.

  11. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  12. Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Lewicka Katarzyna

    2017-06-01

    Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.

  13. Gold nanorod@iron oxide core-shell heterostructures: synthesis, characterization, and photocatalytic performance.

    Science.gov (United States)

    Li, Yue; Zhao, Junwei; You, Wenlong; Cheng, Danhong; Ni, Weihai

    2017-03-17

    Iron oxides are directly coated on the surface of cetyl-trimethylammonium bromide (CTAB)-capped gold nanorods (AuNRs) in aqueous solutions at room temperature, which results in AuNR@Fe 2 O 3 , AuNR@Fe 3 O 4 , and AuNR@Fe 2 O 3 @Fe 3 O 4 core-shell heterostructures. The iron oxide shells are uniform, smooth, with characteristic porous structure, and their thickness can be readily tuned. The shell formation is highly dependent on the reaction parameters including pH and CTAB concentration. The Fe 2 O 3 shell is amorphous and exhibits nearly zero remanence and coercivity, while the Fe 3 O 4 shell is ferromagnetic with a low saturation magnetization of about 0.5 emu g -1 due to its low crystallinity and the porous structure. At elevated temperatures achieved by plasmonic heating of the Au core, the Fe 2 O 3 shell transforms from amorphous to γ-Fe 2 O 3 and α-Fe 2 O 3 phases, while the Fe 3 O 4 phase disappears because of the oxidation of Fe 2+ . A 1.4-fold increase of photocatalytic performance is observed due to the plasmonic resonance provided by the Au core. The photocatalytic efficiency of Fe 3 O 4 is about 1.7-fold higher than Fe 2 O 3 as more surface defects are present on the Fe 3 O 4 shell, promoting the adsorption and activation of reagents on the surface during the catalytic reactions. This approach can be readily extended to other nanostructures including Au spherical nanoparticles and nanostars. These highly uniform and multifunctional core-shell heterostructures can be of great potential in a variety of energy, magnetic, and environment applications.

  14. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-01-01

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  15. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.; Isobata, O.; Kawamata, S.

    1977-01-01

    A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented

  16. Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.

    Science.gov (United States)

    Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A

    2018-05-25

    The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.

  17. Morphologic characterisation and elemental distribution of Octopus vulgaris Cuvier, 1797 vestigial shell

    International Nuclear Information System (INIS)

    Napoleao, P.; Reis, C. Sousa; Alves, L.C.; Pinheiro, T.

    2005-01-01

    The elemental composition of mineral structures in marine organisms can provide useful information to reconstruct environmental histories of individuals and distinguish populations or stocks. In cephalopods, as Octopus vulgaris, morpho-physiological description of vestigial shells may contribute to a better understanding of the physiology, of the process involved in the increment growth and may eventually provide important and useful tools for the validation of age determination methods. Nuclear microprobe analysis was used to map chemical elements in O. vulgaris vestigial shell. The maps contain elemental and morphological information, and enabled especially through Cl and Ca distributions to classify bands of concentric rings. The levels of P, Ca and Sr decrease from central region to external rings, while those of S and Cl showed an inverse tendency. Enhanced concentrations of Fe, Cu and Zn were found in external rings, and no significant variations were detected in the K and Br contents. The results indicate that three regions can be established on the basis of the elemental contents distributions. Specially, the P and Ca variability can distinguish rings from central and external regions. The differential incorporation of elements in the vestigial shell observed may reflect environmental and physiological factors that are affecting the life cycle of this species

  18. Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon

    Science.gov (United States)

    Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira

    2018-04-01

    Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.

  19. Morphologic characterisation and elemental distribution of Octopus vulgaris Cuvier, 1797 vestigial shell

    Energy Technology Data Exchange (ETDEWEB)

    Napoleao, P. [Departamento de Biologia Animal, Faculdade de Ciencias de Lisboa, C2, Campo Grande 1749-016, Lisbon (Portugal); Reis, C. Sousa [Departamento de Biologia Animal, Faculdade de Ciencias de Lisboa, C2, Campo Grande 1749-016, Lisbon (Portugal); Alves, L.C. [Laboratotio de Feixes de Ioes, Instituto Tecnologico e Nuclear, Estrada Nacional no. 10, 2685-953 Sacavem, Lisbon (Portugal); Centro de Fisica Nuclear, Universidade de Lisboa, Av. Prof. Egas Moniz 1700, Lisbon (Portugal); Pinheiro, T. [Laboratotio de Feixes de Ioes, Instituto Tecnologico e Nuclear, Estrada Nacional no. 10, 2685-953 Sacavem, Lisbon (Portugal) and Centro de Fisica Nuclear, Universidade de Lisboa, Av. Prof. Egas Moniz 1700, Lisbon (Portugal)]. E-mail: murmur@itn.mces.pt

    2005-04-01

    The elemental composition of mineral structures in marine organisms can provide useful information to reconstruct environmental histories of individuals and distinguish populations or stocks. In cephalopods, as Octopus vulgaris, morpho-physiological description of vestigial shells may contribute to a better understanding of the physiology, of the process involved in the increment growth and may eventually provide important and useful tools for the validation of age determination methods. Nuclear microprobe analysis was used to map chemical elements in O. vulgaris vestigial shell. The maps contain elemental and morphological information, and enabled especially through Cl and Ca distributions to classify bands of concentric rings. The levels of P, Ca and Sr decrease from central region to external rings, while those of S and Cl showed an inverse tendency. Enhanced concentrations of Fe, Cu and Zn were found in external rings, and no significant variations were detected in the K and Br contents. The results indicate that three regions can be established on the basis of the elemental contents distributions. Specially, the P and Ca variability can distinguish rings from central and external regions. The differential incorporation of elements in the vestigial shell observed may reflect environmental and physiological factors that are affecting the life cycle of this species.

  20. Minimization of stress concentration factor in cylindrical pressure vessels with ellipsoidal heads

    International Nuclear Information System (INIS)

    Magnucki, K.; Szyc, W.; Lewinski, J.

    2002-01-01

    The paper presents the problem of stress concentration in a cylindrical pressure vessel with ellipsoidal heads subject to internal pressure. At the line, where the ellipsoidal head is adjacent to the circular cylindrical shell, a shear force and bending moment occur, disturbing the membrane stress state in the vessel. The degree of stress concentration depends on the ratio of thicknesses of both the adjacent parts of the shells and on the relative convexity of the ellipsoidal head, with the range for radius-to-thickness ratio between 75 and 125. The stress concentration was analytically described and, afterwards, the effect of these values on the stress concentration ratio was numerically examined. Results of the analysis are shown on charts

  1. Removal of Methylene Blue from Aqueous Solution by Activated Carbon Prepared from Pea Shells (Pisum sativum

    Directory of Open Access Journals (Sweden)

    Ünal Geçgel

    2013-01-01

    Full Text Available An activated carbon was prepared from pea shells and used for the removal of methylene blue (MB from aqueous solutions. The influence of various factors such as adsorbent concentration, initial dye concentration, temperature, contact time, pH, and surfactant was studied. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. The adsorption isotherm was found to follow the Langmuir model. The monolayer sorption capacity of activated carbon prepared from pea shell for MB was found to be 246.91 mg g−1 at 25 ∘C. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. Kinetic studies showed that the adsorption followed pseudo-second-order kinetic model. Various thermodynamic parameters such as , , and were evaluated. The results in this study indicated that activated carbon prepared from pea shell could be employed as an adsorbent for the removal of MB from aqueous solutions.

  2. Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and cryo-TEM.

    Science.gov (United States)

    Rochette, Christophe N; Crassous, Jérôme J; Drechsler, Markus; Gaboriaud, Fabien; Eloy, Marie; de Gaudemaris, Benoît; Duval, Jérôme F L

    2013-11-26

    The interfacial structure of natural rubber (NR) colloids is investigated by means of cryogenic transmission electron microscopy (cryo-TEM) and electrokinetics over a broad range of KNO3 electrolyte concentrations (4-300 mM) and pH values (1-8). The asymptotic plateau value reached by NR electrophoretic mobility (μ) in the thin double layer limit supports the presence of a soft (ion- and water-permeable) polyelectrolytic type of layer located at the periphery of the NR particles. This property is confirmed by the analysis of the electron density profile obtained from cryo-TEM that evidences a ∼2-4 nm thick corona surrounding the NR polyisoprene core. The dependence of μ on pH and salt concentration is further marked by a dramatic decrease of the point of zero electrophoretic mobility (PZM) from 3.6 to 0.8 with increasing electrolyte concentration in the range 4-300 mM. Using a recent theory for electrohydrodynamics of soft multilayered particles, this "anomalous" dependence of the PZM on electrolyte concentration is shown to be consistent with a radial organization of anionic and cationic groups across the peripheral NR structure. The NR electrokinetic response in the pH range 1-8 is indeed found to be equivalent to that of particles surrounded by a positively charged ∼3.5 nm thick layer (mean dissociation pK ∼ 4.2) supporting a thin and negatively charged outermost layer (0.6 nm in thickness, pK ∼ 0.7). Altogether, the strong dependence of the PZM on electrolyte concentration suggests that the electrostatic properties of the outer peripheral region of the NR shell are mediated by lipidic residues protruding from a shell containing a significant amount of protein-like charges. This proposed NR shell interfacial structure questions previously reported NR representations according to which the shell consists of either a fully mixed lipid-protein layer, or a layer of phospholipids residing exclusively beneath an outer proteic film.

  3. Lutz's spontaneous sedimentation technique and the paleoparasitological analysis of sambaqui (shell mound sediments

    Directory of Open Access Journals (Sweden)

    Morgana Camacho

    2013-04-01

    Full Text Available Parasite findings in sambaquis (shell mounds are scarce. Although the 121 shell mound samples were previously analysed in our laboratory, we only recently obtained the first positive results. In the sambaqui of Guapi, Rio de Janeiro, Brazil, paleoparasitological analysis was performed on sediment samples collected from various archaeological layers, including the superficial layer as a control. Eggs of Acanthocephala, Ascaridoidea and Heterakoidea were found in the archaeological layers. We applied various techniques and concluded that Lutz's spontaneous sedimentation technique is effective for concentrating parasite eggs in sambaqui soil for microscopic analysis.

  4. Lutz's spontaneous sedimentation technique and the paleoparasitological analysis of sambaqui (shell mound) sediments

    Science.gov (United States)

    Camacho, Morgana; Pessanha, Thaíla; Leles, Daniela; Dutra, Juliana MF; Silva, Rosângela; de Souza, Sheila Mendonça; Araujo, Adauto

    2013-01-01

    Parasite findings in sambaquis (shell mounds) are scarce. Although the 121 shell mound samples were previously analysed in our laboratory, we only recently obtained the first positive results. In the sambaqui of Guapi, Rio de Janeiro, Brazil, paleoparasitological analysis was performed on sediment samples collected from various archaeological layers, including the superficial layer as a control. Eggs of Acanthocephala, Ascaridoidea and Heterakoidea were found in the archaeological layers. We applied various techniques and concluded that Lutz's spontaneous sedimentation technique is effective for concentrating parasite eggs in sambaqui soil for microscopic analysis. PMID:23579793

  5. Dyson shells: a retrospective

    Science.gov (United States)

    Bradbury, Robert J.

    2001-08-01

    More than 40 years have passed since Freeman Dyson suggested that advanced technological civilizations are likely to dismantle planets in their solar systems to harvest all of the energy their stars wastefully radiate into space. Clearly this was an idea that was ahead of its time. Since that time, dozens of SETI searches have been conducted and almost all of them have focused their attention on stars which by definition cannot be the advanced civilizations that Dyson envisioned. I will review the data that created the confusion between Dyson spheres and Dyson shells. The sources that disprove Dyson spheres while still allowing Dyson shells will be discussed. The use of outmoded ideas that have biased the few searches for Dyson Shells that have occurred will be pointed out. An update of the concept of Dyson shells to include our current knowledge of biotechnology, nanotechnology and computer science will be explored. Finally, an approach to setting limits on the abundance of Dyson shells in our galaxy using existing optical astronomical data and future optical satellites will be proposed.

  6. Core-shell nanoparticles optical sensors - Rational design of zinc ions fluorescent nanoprobes of improved analytical performance

    Science.gov (United States)

    Woźnica, Emilia; Gasik, Joanna; Kłucińska, Katarzyna; Kisiel, Anna; Maksymiuk, Krzysztof; Michalska, Agata

    2017-10-01

    In this work the effect of affinity of an analyte to a receptor on the response of nanostructural fluorimetric probes is discussed. Core-shell nanoparticles sensors are prepared that benefit from the properties of the phases involved leading to improved analytical performance. The optical transduction system chosen is independent of pH, thus the change of sample pH can be used to control the analyte - receptor affinity through the "conditional" binding constant prevailing within the lipophilic phase. It is shown that by affecting the "conditional" binding constant the performance of the sensor can be fine-tuned. As expected, increase in "conditional" affinity of the ligand embedded in the lipophilic phase to the analyte results in higher sensitivity over narrow concentration range - bulk reaction and sigmoidal shape response of emission intensity vs. logarithm of concentration changes. To induce a linear dependence of emission intensity vs. logarithm of analyte concentration covering a broad concentration range, a spatial confinement of the reaction zone is proposed, and application of core-shell nanostructures. The core material, polypyrrole nanospheres, is effectively not permeable for the analyte - ligand complex, thus the reaction is limited to the outer shell layer of the polymer prepared from poly(maleic anhydride-alt-1-octadecene). For herein introduced system a linear dependence of emission intensity vs. logarithm of Zn2+ concentration was obtained within the range from 10-7 to 10-1 M.

  7. Mussel Shell Impaction in the Esophagus

    Directory of Open Access Journals (Sweden)

    Sunmin Kim

    2013-03-01

    Full Text Available Mussels are commonly used in cooking around the world. The mussel shell breaks more easily than other shells, and the edge of the broken mussel shell is sharp. Impaction can ultimately cause erosion, perforation and fistula. Aside from these complications, the pain can be very intense. Therefore, it is essential to verify and remove the shell as soon as possible. In this report we describe the process of diagnosing and treating mussel shell impaction in the esophagus. Physicians can overlook this unusual foreign body impaction due to lack of experience. When physicians encounter a patient with severe chest pain after a meal with mussels, mussel shell impaction should be considered when diagnosing and treating the patient.

  8. Origin and diversity of testate amoebae shell composition: Example of Bullinularia indica living in Sphagnum capillifolium.

    Science.gov (United States)

    Delaine, Maxence; Bernard, Nadine; Gilbert, Daniel; Recourt, Philippe; Armynot du Châtelet, Eric

    2017-06-01

    Testate amoebae are free-living shelled protists that build a wide range of shells with various sizes, shapes, and compositions. Recent studies showed that xenosomic testate amoebae shells could be indicators of atmospheric particulate matter (PM) deposition. However, no study has yet been conducted to assess the intra-specific mineral, organic, and biologic grain diversity of a single xenosomic species in a natural undisturbed environment. This study aims at providing new information about grain selection to develop the potential use of xenosomic testate amoebae shells as bioindicators of the multiple-origin mineral/organic diversity of their proximal environment. To fulfil these objectives, we analysed the shell content of 38 Bullinularia indica individuals, a single xenosomic testate amoeba species living in Sphagnum capillifolium, by scanning electron microscope (SEM) coupled with X-ray spectroscopy. The shells exhibited high diversities of mineral, organic, and biomineral grains, which confirms their capability to recycle xenosomes. Mineral grain diversity and size of B. indica matched those of the atmospheric natural mineral PM deposited in the peatbog. Calculation of grain size sorting revealed a discrete selection of grains agglutinated by B. indica. These results are a first step towards understanding the mechanisms of particle selection by xenosomic testate amoebae in natural conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  10. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.

    Science.gov (United States)

    Guo, Xiasheng; Li, Qian; Zhang, Zhe; Zhang, Dong; Tu, Juan

    2013-08-01

    The inertial cavitation (IC) activity of ultrasound contrast agents (UCAs) plays an important role in the development and improvement of ultrasound diagnostic and therapeutic applications. However, various diagnostic and therapeutic applications have different requirements for IC characteristics. Here through IC dose quantifications based on passive cavitation detection, IC thresholds were measured for two commercialized UCAs, albumin-shelled KangRun(®) and lipid-shelled SonoVue(®) microbubbles, at varied UCA volume concentrations (viz., 0.125 and 0.25 vol. %) and acoustic pulse lengths (viz., 5, 10, 20, 50, and 100 cycles). Shell elastic and viscous coefficients of UCAs were estimated by fitting measured acoustic attenuation spectra with Sarkar's model. The influences of sonication condition (viz., acoustic pulse length) and UCA shell properties on IC threshold were discussed based on numerical simulations. Both experimental measurements and numerical simulations indicate that IC thresholds of UCAs decrease with increasing UCA volume concentration and acoustic pulse length. The shell interfacial tension and dilatational viscosity estimated for SonoVue (0.7 ± 0.11 N/m, 6.5 ± 1.01 × 10(-8) kg/s) are smaller than those of KangRun (1.05 ± 0.18 N/m, 1.66 ± 0.38 × 10(-7) kg/s); this might result in lower IC threshold for SonoVue. The current results will be helpful for selecting and utilizing commercialized UCAs for specific clinical applications, while minimizing undesired IC-induced bioeffects.

  11. Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness

    DEFF Research Database (Denmark)

    Jones, Wilm; Su, Ren; Wells, Peter

    2014-01-01

    of these materials towards the reforming of alcohols for hydrogen production. The core–shell structured Au–Pd bimetallic nanoparticle supported on TiO2 has being of interest as it exhibited extremely high quantum efficiencies for hydrogen production. However, the effect of shell composition and thickness...... of the nanoparticles by a combination of X-ray absorption fine structure and X-ray photoelectron spectroscopy. Photocatalytic ethanol reforming showed that the core–shell structured Au–Pd promoters supported on TiO2 exhibit enhanced activity compared to that of monometallic Au and Pd as promoters, whilst the core......–shell Au–Pd promoters containing one ML equivalent Pd provide the optimum reactivity....

  12. Nanostructued core–shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada); Cai, Mei [General Motors Research and Development Center, Warren, MI 48090-9055 (United States); Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2015-03-30

    Graphical abstract: - Highlights: • Sn nanowires encapsulated in CNTs directly grew on current collectors. • The thickness of CNTs were controlled via growth time, gas flow rate and synthesis temperature. • Thick CNTs contributed to a better capacity retention while thin CNTs led to a higher capacity. • The core–shell structures formed in one-step CVD process. - Abstract: Core–shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C{sub 2}H{sub 4}) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g{sup −1}.

  13. Nanostructued core–shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery

    International Nuclear Information System (INIS)

    Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying; Cai, Mei; Sun, Xueliang

    2015-01-01

    Graphical abstract: - Highlights: • Sn nanowires encapsulated in CNTs directly grew on current collectors. • The thickness of CNTs were controlled via growth time, gas flow rate and synthesis temperature. • Thick CNTs contributed to a better capacity retention while thin CNTs led to a higher capacity. • The core–shell structures formed in one-step CVD process. - Abstract: Core–shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C 2 H 4 ) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g −1

  14. Extensions to a nonlinear finite element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    A finite element shell-of-revolution model has been developed to analyze shipping containers under severe impact conditions. To establish the limits for this shell model, I studied the basic assumptions used in its development; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress. (orig./HP)

  15. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  16. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  17. Effects of a Deep Mixed Shell on Solar g-Modes, p-Modes, and Neutrino Flux

    Science.gov (United States)

    Wolff, Charles L.

    2009-08-01

    A mixed-shell model that reflects g-modes away from the Sun's center is developed further by calibrating its parameters and evaluating a mixing mechanism: buoyancy. The shell roughly doubles g-mode oscillation periods and would explain why there is no definitive detection of their periods. But the shell has only minor effects on most p-modes. The model provides a mechanism for causing short-term fluctuations in neutrino flux and makes plausible the correlations between this flux and solar activity levels. Relations are derived for a shell heated asymmetrically by transient increases in nuclear burning in small "hot spots." The size of these spots and the timing of a heating event are governed by sets(ell) of standing asymptotic g-modes, coupled by a maximal principle that greatly enhances their excitation and concentrates power toward the equator, assisting the detection of higher-ell sets. Signals from all sets, except one, in the range 2 energy to mix the corresponding shell in a standard solar model in Lt107 yr.

  18. The effect of polycarboxylate shell of magnetite nanoparticles on protein corona formation in blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Szekeres, Márta, E-mail: szekeres@chem.u-szeged.hu [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary); Tóth, Ildikó Y. [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary); Turcu, R. [National Institute R& D for Isotopic and Molecular Technology, Cluj-Napoca 400293 (Romania); Tombácz, Etelka [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary)

    2017-04-01

    The development of protein corona around nanoparticles upon administration to the human body is responsible in a large part for their biodistribution, cell-internalization and toxicity or biocompatibility. We studied the influence of the chemical composition of polyelectrolyte shells (citric acid (CA) and poly(acrylic-co-maleic acid) (PAM)) of core-shell magnetite nanoparticles (MNPs) on the evolution of protein corona in human plasma (HP). The aggregation state and zeta potential of the particles were measured in the range of HP concentration between 1 and 80 (v/v)% 3 min and 20 h after dispersing the particles in HP diluted with Tris buffered saline. Naked MNPs aggregated in HP solution, but the carboxylated MNPs became stabilized colloidally at higher plasma concentrations. Significant differences were observed at low plasma concentration. CA@MNPs aggregated instantly while the hydrodynamic diameter of PAM@MNP increased only slightly at 1–3 v/v % HP concentrations. The observed differences in protein corona formation can be explained by the differences in the steric effects of the polycarboxylate shells. It is interesting that relatively small but systematic changes in zeta potential alter the aggregation state significantly. - Highlights: • Human plasma protein corona cannot stabilize naked and citrate-coated magnetite nanoparticles. • Polycarboxylic acid (PAM) coated MNPs are well stabilized with HP protein corona. • Stability pattern of naked, CA and PAM-coated MNPs is not predicted by zeta potential.

  19. Core-Shell-Corona Micelles with a Responsive Shell.

    Science.gov (United States)

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  20. Biomineral repair of abalone shell apertures.

    Science.gov (United States)

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A Combined SAXS/SANS Study for the in Situ Characterization of Ligand Shells on Small Nanoparticles: The Case of ZnO.

    Science.gov (United States)

    Schindler, T; Schmiele, M; Schmutzler, T; Kassar, T; Segets, D; Peukert, W; Radulescu, A; Kriele, A; Gilles, R; Unruh, T

    2015-09-22

    ZnO nanoparticles (NPs) have great potential for their use in, e.g., thin film solar cells due to their electro-optical properties adjustable on the nanoscale. Therefore, the production of well-defined NPs is of major interest. For a targeted production process, the knowledge of the stabilization layer of the NPs during and after their formation is of particular importance. For the study of the stabilizer layer of ZnO NPs prepared in a wet chemical synthesis from zinc acetate, only ex situ studies have been performed so far. An acetate layer bound to the surface of the dried NPs was found; however, an in situ study which addresses the stabilizing layer surrounding the NPs in a native dispersion was missing. By the combination of small angle scattering with neutrons and X-rays (SANS and SAXS) for the same sample, we are now able to observe the acetate shell in situ for the first time. In addition, the changes of this shell could be followed during the ripening process for different temperatures. With increasing size of the ZnO core (d(core)) the surrounding shell (d(shell)) becomes larger, and the acetate concentration within the shell is reduced. For all samples, the shell thickness was found to be larger than the maximum extension of an acetate molecule with acetate concentrations within the shell below 50 vol %. Thus, there is not a monolayer of acetate molecules that covers the NPs but rather a swollen shell of acetate ions. This shell is assumed to hinder the growth of the NPs to larger macrostructures. In addition, we found that the partition coefficient μ between acetate in the shell surrounding the NPs and the total amount of acetate in the solution is about 10% which is in good agreement with ex situ data determined by thermogravimetric analysis.

  2. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.

    Science.gov (United States)

    Rieger, Torsten; Zellekens, Patrick; Demarina, Natalia; Hassan, Ali Al; Hackemüller, Franz Josef; Lüth, Hans; Pietsch, Ullrich; Schäpers, Thomas; Grützmacher, Detlev; Lepsa, Mihail Ion

    2017-11-30

    The growth, crystal structure, strain relaxation and room temperature transport characteristics of GaAs/InSb core-shell nanowires grown using molecular beam epitaxy are investigated. Due to the large lattice mismatch between GaAs and InSb of 14%, a transition from island-based to layer-like growth occurs during the formation of the shell. High resolution transmission electron microscopy in combination with geometric phase analyses as well as X-ray diffraction with synchrotron radiation are used to investigate the strain relaxation and prove the existence of different dislocations relaxing the strain on zinc blende and wurtzite core-shell nanowire segments. While on the wurtzite phase only Frank partial dislocations are found, the strain on the zinc blende phase is relaxed by dislocations with perfect, Shockley partial and Frank partial dislocations. Even for ultrathin shells of about 2 nm thickness, the strain caused by the high lattice mismatch between GaAs and InSb is relaxed almost completely. Transfer characteristics of the core-shell nanowires show an ambipolar conductance behavior whose strength strongly depends on the dimensions of the nanowires. The interpretation is given based on an electronic band profile which is calculated for completely relaxed core/shell structures. The peculiarities of the band alignment in this situation implies simultaneously occupied electron and hole channels in the InSb shell. The ambipolar behavior is then explained by the change of carrier concentration in both channels by the gate voltage.

  3. Physical property control in core/shell inorganic nanostructures for fluorescence and magnetic targeting applications

    Science.gov (United States)

    Roberts, Stephen K.

    Nanomaterials show immense promise for the future in numerous areas of application. Properties that are unique from the bulk material and are tunable allow for innovation in material design. This thesis will focus on controlling the physical properties of core/shell nanostructures to enhance the utility of the materials. The first focus is on the impact of different solvent mixtures during the shell growth phase of SILAR based core/shell quantum dot synthesis is studied. Gaining insight into the mechanism for SILAR growth of core/shell nanoparticles allows improved synthetic yields and precursor binding, providing enhanced control to synthesis of core/shell nanoparticles. The second focus of this thesis is exploring the use of magnetic nanoparticles for magnetic drug targeting for cardiovascular conditions. Magnetic targeting for drug delivery enables increased local drug concentration, while minimizing non-specific interactions. In order to be effective for magnetic targeting, it must be shown that low magnetic strength is sufficient to capture flowing nanoparticles. By demonstrating the binding of a therapeutic agent to the surface at medicinal levels, the viability for use as a nanoparticle drug delivery system is improved.

  4. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  5. Adsorption and Pore of Physical-Chemical Activated Coconut Shell Charcoal Carbon

    Science.gov (United States)

    Budi, E.; Umiatin, U.; Nasbey, H.; Bintoro, R. A.; Wulandari, Fi; Erlina, E.

    2018-04-01

    The adsorption of activated carbon of coconut shell charcoal on heavy metals (Cu and Fe) of the wastewater and its relation with the carbon pore structure was investigated. The coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours to produce charcoal and then shieved into milimeter sized granule particles. Chemical activation was done by immersing the charcoal into chemical solution of KOH, NaOH, HCl and H3PO4, with various concentration. The activation was followed by physical activation using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology of activated carbon were characterized by using Scanning Electron Microscopy (SEM). Wastewater was made by dissolving CuSO4.5H2O and FeSO4.7H2O into aquades. The metal adsorption was analized by using Atomic Absorption Spectroscopy (AAS). The result shows that in general, the increase of chemical concentration cause the increase of pore number of activated carbon due to an excessive chemical attack and lead the increase of adsorption. However it tend to decrease as further increasing in chemical activator concentration due to carbon collapsing. In general, the adsorption of Cu and Fe metal from wastewater by activated carbon increased as the activator concentration was increased.

  6. Porous Core-Shell Nanostructures for Catalytic Applications

    Science.gov (United States)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  7. Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size

    Directory of Open Access Journals (Sweden)

    Nekić Nikolina

    2017-03-01

    Full Text Available Ge/Si core/shell quantum dots (QDs recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.

  8. Phanerozoic trends in shell accumulations: A comparison of Ordovician-Silurian and Tertiary records

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, S.M. (Univ. of Chicago, IL (United States). Dept. of Geophysical Sciences); Brenchley, P.J. (Univ. of Liverpool (United Kingdom). Dept. of Earth Sciences)

    1993-04-01

    Evolutionary changes in the diversity and bathymetric deployment of major benthic invertebrate groups, both those that produce and those that modify bioclasts, suggest that the nature of shell accumulations is likely to have also changed through the Phanerozoic. Specifically, it has been suggested that, excepting crinoidal deposits, the Paleozoic-Triassic record is dominated by thin shell concentrations (< few 10s cm) whereas the Cretaceous-Cenozoic record includes much thicker accumulations (> 1 m). To test this, the authors focused on siliciclastic records in two end-point periods. Using the literature on North America and Europe combined with extensive field-checking, they found that brachiopod-, trilobite-, and bryozoan-dominated accumulations in the Ord-Sil are typically thin but that there are important exceptions. In the Tertiary, thick concentrations are composed of a much larger variety of groups, occur in a wider range of environments, and exhibit a greater diversity of biostratinomic features and inferred accumulation histories. Information on the paleobathymetry, paleolatitude and tectonic setting was evaluated for all data points, and so the contrasting patterns of shell accumulation can clearly be related to differences in geologic age rather than to environmental biases in data collection. Even the analysis of only a few shell-bed features, therefore, provides strong evidence for long-term changes in the nature of the bioclastic fossil record. Work still in progress suggests that there are also long-term changes in the distribution and nature of bioclastic deposits through stratigraphic (3rd-order) sequences, particularly in the character of skeletal material associated with key surfaces.

  9. Studies of dust shells around stars

    International Nuclear Information System (INIS)

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  10. Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure

    International Nuclear Information System (INIS)

    Cao, Fangyu; Yang, Bao

    2014-01-01

    Highlights: • A new method for supercooling suppression of microPCMs by optimizing the structure of the microcapsule shell. • Large effective latent heat (up to 213 J/g) of the microPCMs, much higher than those using additive as nucleating agents. • Change of shell composition and structure significantly affects the phase transition processes of the encapsulated PCMs. • The latent heat of the shell-induced phase transition is maximized, reaching 83.7% of the latent heat of bulk octadecane. • Hollow spheres with porous rather than solid resin shell are also formed when the SDS concentration is very high. - Abstract: A new method for supercooling suppression of microencapsulated phase change materials (PCMs) has been developed by optimizing the composition and structure of the microcapsule resin shell. The microcapsules comprising paraffin octadecane encapsulated in melamine–formaldehyde resin shell were synthesized with the use the oil-in-water emulsion technique. These PCM microcapsules are 5–15 μm in diameter. The supercooling of these octadecane microcapsules can be as large as 13.6 °C, when the homogeneous nucleation is dominant during the melt crystallization into the thermodynamically stable triclinic phase. It is discovered that the homogeneous nucleation can be mediated by shell-induced nucleation of the triclinic phase and the metastable rotator phase when the shell composition and structure are optimized, without need of any nucleating additives. The effects of synthesis parameters, such as ratio of melamine to formaldehyde, pH of pre-polymer, and pH of emulsion, on the phase transition properties of the octadecane microcapsules have been investigated systemically. The optimum synthesis conditions have been identified in terms of minimizing the supercooling while maintaining heat capacity. Potential applications of this type of phase changeable microcapsules include high heat capacity thermal fluids, thermal management in smart buildings

  11. A model study of aggregates composed of spherical soot monomers with an acentric carbon shell

    Science.gov (United States)

    Luo, Jie; Zhang, Yongming; Zhang, Qixing

    2018-01-01

    Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.

  12. Covarying Shell Growth Parameters and the Regulation of Shell Shape in Marine Bivalves: A Case Study on Tellinoidea

    Directory of Open Access Journals (Sweden)

    Jean Béguinot

    2014-01-01

    Full Text Available Specific parameters characterising shell shape may arguably have a significant role in the adaptation of bivalve molluscs to their particular environments. Yet, such functionally relevant shape parameters (shell outline elongation, dissymmetry, and ventral convexity are not those parameters that the animal may directly control. Rather than shell shape, the animal regulates shell growth. Accordingly, an alternative, growth-based description of shell-shape is best fitted to understand how the animal may control the achieved shell shape. The key point is, in practice, to bring out the link between those two alternative modes of shell-shape descriptions, that is, to derive the set of equations which connects the growth-based shell-shape parameters to the functionally relevant shell-shape parameters. Thus, a preliminary object of this note is to derive this set of equations as a tool for further investigations. A second object of this work is to provide an illustrative example of implementation of this tool. I report on an unexpected negative covariance between growth-based parameters and show how this covariance results in a severe limitation of the range of interspecific variability of the degree of ventral convexity of the shell outline within the superfamily Tellinoidea. Hypotheses are proposed regarding the constraints possibly at the origin of this limitation of interspecific variability.

  13. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  14. Shell growth and environmental control of methanophyllic Thyasirid bivalves from Svalbard cold seeps

    Science.gov (United States)

    Carroll, Michael; Åström, Emmelie; Ambrose, William; Locke, William; Oliver, Graham; Hong, Wei-Li; Carroll, JoLynn

    2016-04-01

    The analysis of molluscan shell material (sclerochronology) can provide information about an organism's age, growth history, and environmental conditions during its lifetime. Bivalve molluscs are common members of hydrothermal vents and methane cold seeps communities where, supported by chemosynthetic symbionts, they can reach high density and biomass. But little is known about methane-associated bivalve populations inhabiting high-Arctic cold seeps, and sclerochronological analysis of methane-influenced bivalves is rare. We measured growth rates and elemental and isotopic shell signatures in a newly discovered species of bivalve (Thyasiridae) from cold seeps at 350-390m depth southwest of Svalbard. First discovered in 2014, recently described shells of Thyasira capitanea sp.nov. were found at 2 independent seep systems in Storfjordrenna. Mean shell carbon isotopic ratios from inorganic δ13C (mean = -4.8‰) and organic δ13C (mean = -26.9‰) fractions clearly indicate a methane influenced habitat and food source for these organisms. Shell mineral ratios (Li/Ca, Mg/Ca, Mn/Ca, Fe/Ca, Sr/Ca, Ba/Ca, Pb/Ca) sampled along the axis of growth with laser-ablated ICP-MS exhibit variability through time and between sites, suggesting that concentrations of these elements that may be affected by methane emissions. The mineralogical data also elucidates the internal pattern of shell deposition and growth checks, and combined with the isotopic and growth rate data, enables us to interpret the temporal history of methane release from these locations.

  15. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  16. Efficacy of antimicrobials extracted from organic pecan shell for inhibiting the growth of Listeria spp.

    Science.gov (United States)

    Babu, Dinesh; Crandall, Philip G; Johnson, Casey L; O'Bryan, Corliss A; Ricke, Steven C

    2013-12-01

    Growers and processors of USDA certified organic foods are in need of suitable organic antimicrobials. The purpose of the research reported here was to develop and test natural antimicrobials derived from an all-natural by-product, organic pecan shells. Unroasted and roasted organic pecan shells were subjected to solvent free extraction to produce antimicrobials that were tested against Listeria spp. and L. monocytogenes serotypes to determine the minimum inhibitory concentrations (MIC) of antimicrobials. The effectiveness of pecan shell extracts were further tested using a poultry skin model system and the growth inhibition of the Listeria cells adhered onto the skin model were quantified. The solvent free extracts of pecan shells inhibited Listeria strains at MICs as low as 0.38%. The antimicrobial effectiveness tests on a poultry skin model exhibited nearly a 2 log reduction of the inoculated cocktail mix of Listeria strains when extracts of pecan shell powder were used. The extracts also produced greater than a 4 log reduction of the indigenous spoilage bacteria on the chicken skin. Thus, the pecan shell extracts may prove to be very effective alternative antimicrobials against food pathogens and supplement the demand for effective natural antimicrobials for use in organic meat processing. © 2013 Institute of Food Technologists®

  17. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis

    Science.gov (United States)

    Solanky, Bhavana S.; Muhlert, Nils; Tur, Carmen; Edden, Richard A. E.; Wheeler-Kingshott, Claudia A. M.; Miller, David H.; Thompson, Alan J.; Ciccarelli, Olga

    2015-01-01

    Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = −0.403 mM, 95% confidence intervals −0.792, −0.014, P = 0.043) and sensorimotor cortex (adjusted difference = −0.385 mM, 95% confidence intervals −0.667, −0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid

  18. Shells and Patterns

    Science.gov (United States)

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  19. Elevated extracellular pH during early shell formation in the blue mussel Mytilus edulis

    Science.gov (United States)

    Ramesh, K.; Melzner, F.; Himmerkus, N.; Hu, M.; Bleich, M.

    2016-02-01

    Marine calcifiers are amongst the most vulnerable organisms to ocean acidification (OA). However, limited studies investigate the mechanisms underlying their hindered performance under OA stress. Working with larval stages of the blue mussel, Mytilus edulis, we use microsensors to study the pH and calcium conditions necessary for shell deposition. Using 45-48 hour, D-veliger stages, we discover alkaline conditions with respect to ambient seawater pH by 0.28 pH units and higher calcium concentrations (by 0.54mM) in the extra pallial space beneath the growing shell that likely promotes the rapid synthesis of the first shell. We further use enzyme assays in combination with immuno-stainings of sodium-potassium ATPase (NKA) and proton ATPase (VHA) to provide information on the major ion regulatory pathways that enable transport of calcium carbonate required for shell formation and pH homeostasis. We also use the juvenile stages of M. edulis to understand how extracellular pH regulation close to the shell formation site will be influenced by OA stress. This allows us to describe the pH dependency of early shell formation and to begin to develop a model of the ion regulatory network that facilitates biomineralisation in the organism. The results are discussed in the context of environmental change and consequences for mollusc developmental success.

  20. Four-loop on-shell integrals. MS-on-shell relation and g-2

    Energy Technology Data Exchange (ETDEWEB)

    Marquard, P.

    2013-12-15

    We present first results towards a full four-loop calculation for both the anomalous magnetic moment of the muon and the MS-on-shell relation. The calculation requires the detailed study of an up to now not considered class of diagrams, so-called on-shell diagrams, at four-loop order.

  1. Recent developments in anisotropic heterogeneous shell theory

    CERN Document Server

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G

    2016-01-01

    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  2. Concentration reduction of selected pollutants in fish culture ...

    African Journals Online (AJOL)

    Concentration reduction of selected pollutants in fish culture effluents using plastic straws and palm kernel shells. ... Journal of Environmental Extension ... Their effluent treatment ability were evaluated in terms of reduction made to ...

  3. Radiocarbon dating of planktonic foraminifer shells: A cautionary tale

    Science.gov (United States)

    Mekik, Figen

    2014-01-01

    rate, bioturbation, winnowing, and calcite dissolution produce significant radiocarbon age offsets among multiple species of coexisting planktonic foraminifers and pteropod fragments. We compare the radiocarbon age of foraminifer species and pteropod fragments with estimates of percent calcite dissolved made with a sedimentary proxy (Globorotalia menardii fragmentation index—MFI) to delineate the effect of dissolution on radiocarbon age of foraminifers. Data from two core top transects on the Rio Grande Rise (RIO) and Ontong Java Plateau (OJP) and from down core sediments of varying sedimentation rates in the tropical Pacific (ME-27, MD98 2177, and MW91-9 56GGC) reveal that sediments with the greatest accumulation rates produce the least age offsets among coexisting species. Age offsets among coexisting foraminifers are about 3500 years on RIO, and 1000 years on OJP. Two core tops from RIO yield an age of the Last Glacial Maximum possibly due to mass displacement of younger sediments downslope. Foraminifer age increases with increasing dissolution and there is a consistent pattern of older foraminifer fragments coexisting with younger whole shells of the same species. The only exception is sediments which have experienced high dissolution where fragments are younger than whole shells. The age offset between fragments of G. menardii and its coexisting whole shells does not exceed the age offset among other coexisting foraminifer species in the same core tops.

  4. Synthesis, structural, and optical properties of type-II ZnO–ZnS core–shell nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Sookhakian, M., E-mail: m.sokhakian@gmail.com [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Amin, Y.M. [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Nanotechnology and Catalysis Research Centre (NanoCat), Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia); Tajabadi, M.T. [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Kamarulzaman, N. [Centre for Nanomaterials Research Institute of Science, Level 3 Block C (Old Engineering Building), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2014-01-15

    We demonstrate a facile one-step method for the preparation of ZnO–ZnS core–shell type-II nanostructures, pure ZnS quantum dots and pure ZnO nanoparticles with different experimental conditions. Treatment with sodium hydroxide as a capping agent is investigated systematically during the synthesis of ZnS quantum dots (QDs). The thickness of the ZnS shell is controlled by the concentration of the sodium sulphide during the synthesis of ZnO–ZnS core–shell nanostructures. The morphology and structure of samples are verified by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis (EDX). The UV–vis absorption spectra of the pure ZnS QDs exhibit a blue shift in the absorption edge due to the quantum confinement effect. The PL emission spectra of the ZnO–ZnS core–shell nanostructure are compared with the ZnO nanoparticles. The ZnO–ZnS core–shell nanostructures show decrease in the UV and green emissions with the appearance of a blue emission, which are not found in the ZnO nanoparticles. -- Highlights: • It has synthesised ZnO–ZnS core–shell type II in one-step for the first time. • The as-synthesised samples were characterised by using XRD, UV–vis. • The photoluminescence properties of ZnO–ZnS core–shell was compared with ZnO. • The UV and green emission in the PL spectrum of ZnO–ZnS core–shell decreased. • The blue emission in the PL spectrum of ZnO–ZnS core–shell appeared.

  5. Synthesis, structural, and optical properties of type-II ZnO–ZnS core–shell nanostructure

    International Nuclear Information System (INIS)

    Sookhakian, M.; Amin, Y.M.; Basirun, W.J.; Tajabadi, M.T.; Kamarulzaman, N.

    2014-01-01

    We demonstrate a facile one-step method for the preparation of ZnO–ZnS core–shell type-II nanostructures, pure ZnS quantum dots and pure ZnO nanoparticles with different experimental conditions. Treatment with sodium hydroxide as a capping agent is investigated systematically during the synthesis of ZnS quantum dots (QDs). The thickness of the ZnS shell is controlled by the concentration of the sodium sulphide during the synthesis of ZnO–ZnS core–shell nanostructures. The morphology and structure of samples are verified by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis (EDX). The UV–vis absorption spectra of the pure ZnS QDs exhibit a blue shift in the absorption edge due to the quantum confinement effect. The PL emission spectra of the ZnO–ZnS core–shell nanostructure are compared with the ZnO nanoparticles. The ZnO–ZnS core–shell nanostructures show decrease in the UV and green emissions with the appearance of a blue emission, which are not found in the ZnO nanoparticles. -- Highlights: • It has synthesised ZnO–ZnS core–shell type II in one-step for the first time. • The as-synthesised samples were characterised by using XRD, UV–vis. • The photoluminescence properties of ZnO–ZnS core–shell was compared with ZnO. • The UV and green emission in the PL spectrum of ZnO–ZnS core–shell decreased. • The blue emission in the PL spectrum of ZnO–ZnS core–shell appeared

  6. Ni3Si(Al)/a-SiOx core shell nanoparticles: characterization, shell formation, and stability

    Science.gov (United States)

    Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G.

    2006-08-01

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni3Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni3Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiOx). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  7. Historical changes of the anthropogenic impact in a coastal lagoon: Pb isotopes and trace elements on mussel's fleshes and shells

    International Nuclear Information System (INIS)

    Labonne, M.; Othman, D.B.; Luck, J.M.

    1997-01-01

    Molluscs are known to concentrate metals and are used as bioindicators in many programs of coastal survey. The aims of this study were: (1) to better understand the spatial and temporal variations of metals in a greatly anthropized lagoon (Thau, S France) by using concentrations and Pb isotopes in mussel flesh; (2) to compare present and past environment and the different sources of local Pb in recent mussel shells and ones from the Roman empire. Young mussels (Mytilus galloprovincialis) from the sea were introduced at various locations in the lagoon. The ancient shells came from a Roman villa on the lagoon coast. We compare their isotopic compositions to different sources present on the watershed such as rocks, road, harbour, ancient lead castings or Spanish and English ingots. Concentrations of trace metals were determined directly by ICP-MS after proper dilution and the isotopic compositions was determined on a VG Sector mass spectrometer. The Pb concentration variations are difficult to separate from weight variations so we use isotopic compositions for determination of lead sources. The Pb isotopic composition of the flesh define nice alignments in 207 Pb/ 204 Pb vs 206 Pb/ 204 Pb diagram with season, which can be explained by two-component mixtures. However, while one end-member remains quite stable and influenced by road network, the other one shifts to more radiogenic values indicating either a variable origin, or varying proportions of a third component. The ancient shells have more radiogenic isotopes than the current shells but shift towards ancient lead castings and ingots signature. Variations of Pb ratios in the ancient shells can be roughly correlated with age and the evolution of population density around the lagoon over the centuries

  8. Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure

    Science.gov (United States)

    Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.

    2017-03-01

    Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.

  9. Vibration of liquid-filled thin shells

    International Nuclear Information System (INIS)

    Kalnins, A.

    1979-01-01

    This paper describes the analysis of free and forced vibration of a thin, axisymmetric shell, which contains some liquid. The axis of symmetry is vertical. Only such vibration is considered which can be produced by a horizontal movement of the base of shell. The objective of this paper is to examine the response of the coupled shell-liquid system for a frequency range lying between zero and the lowest natural sloshing frequency of the liquid. The mass of the liquid is modeled by a stationary and one or more sloshing masses. It is shown how the stationary mass can be incorporated in the vibration analysis of the shell and how to natural frequency of the coupled shell-liquid system can be obtained from a simple formula, if the lowest natural frequency of the shell, plus the stationary mass of the liquid, can be determined. A numerical example is given. (orig.)

  10. On-shell and half-shell effects of the coulomb potential in quantum mechanics

    NARCIS (Netherlands)

    Maag, Jan Willem de

    1984-01-01

    In dit proefschrift wordt de Coulomb potentiaal in de nietrelativistische quantummechanica bestudeerd. Met gebruik van een streng wiskundige beschrijving onderzoeken we, in het bijzonder, on-shell en off-shell eigenschappen. De overeenkomsten en de verschillen met het geval van een glad afgeschermde

  11. Creep buckling of shell structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Hagihara, Seiya

    2015-01-01

    The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)

  12. Concentric Multiple Rings by Droplet Epitaxy: Fabrication and Study of the Morphological Anisotropy

    Directory of Open Access Journals (Sweden)

    Somaschini C

    2010-01-01

    Full Text Available Abstract We present the Molecular Beam Epitaxy fabrication of complex GaAs/AlGaAs nanostructures by Droplet Epitaxy, characterized by the presence of concentric multiple rings. We propose an innovative experimental procedure that allows the fabrication of individual portions of the structure, controlling their diameter by only changing the substrate temperature. The obtained nanocrystals show a significant anisotropy between [110] and [1–10] crystallographic directions, which can be ascribed to different activation energies for the Ga atoms migration processes.

  13. Systematic investigation of the synthesis of core-shell poly(styrene-co-acrylic acid) colloids with varying shell thickness and core diameter

    DEFF Research Database (Denmark)

    Hinge, Mogens; Keiding, Kristian

    2006-01-01

    the morphology of the material for an specific application is going on. It is known from SFEP of styrene that the final colloidal size can be controlled by adjusting the ionic strength of the synthesis feed [1] and it is suggested that adding acrylic acid to the synthesis will result in a change...... in polymerization locus from the core to the surface [2]. There is at present not performed a systematically investigation in controlling the core size and shell thickness of poly(styrene-co-acrylic acid) core-shell colloids  (poly(ST-co-AA)).   Poly(ST-co-AA) colloids were synthesized by free-radical surfactant......-free emulsion co-polymerization (SFECP) at 70°C, using styrene as monomer and acrylic acid as co-monomer. Different batches of poly(ST-co-AA) colloids were synthesized with varying ionic strength and acrylic acid concentrations in the synthesis feed. The produced poly(ST-co-AA) colloids were analysed...

  14. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products.

    Science.gov (United States)

    Cho, Min Guk; Bae, Su Min; Jeong, Jong Youn

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed ( p cooking loss in samples with natural calcium powder added was similar ( p >0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher ( p egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

  15. 7 CFR 983.29 - Shelled pistachios.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means pistachio...

  16. Vibrations of Thin Piezoelectric Shallow Shells

    Indian Academy of Sciences (India)

    Abstract. In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  17. Patterning of the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A sensitive glucose biosensor based on Ag@C core–shell matrix

    International Nuclear Information System (INIS)

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2015-01-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core–shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as − OH and − COOH. The as-prepared Ag@C core–shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05–2.5 mM, with a detection limit of 0.02 mM (S/N = 3). The apparent Michaelis–Menten constant (K M app ) of the biosensor is calculated to be 1.7 mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core–shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. - Highlights: • Enhanced direct electrochemistry of GOD was achieved at Ag@C modified electrode. • A novel glucose biosensor based on Ag@C core–shell structure was developed. • The designed GOD-Ag@C/Nafion/GCE biosensor showed favorable analysis properties. • The biosensor is easy to prepare and can be applied for real sample assay

  19. A sensitive glucose biosensor based on Ag@C core–shell matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Long, Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China); Li, Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Tu, Yifeng [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China)

    2015-04-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core–shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as − OH and − COOH. The as-prepared Ag@C core–shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05–2.5 mM, with a detection limit of 0.02 mM (S/N = 3). The apparent Michaelis–Menten constant (K{sub M}{sup app}) of the biosensor is calculated to be 1.7 mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core–shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. - Highlights: • Enhanced direct electrochemistry of GOD was achieved at Ag@C modified electrode. • A novel glucose biosensor based on Ag@C core–shell structure was developed. • The designed GOD-Ag@C/Nafion/GCE biosensor showed favorable analysis properties. • The biosensor is easy to prepare and can be applied for real sample assay.

  20. Double-shell inertial confinement fusion target fabrication

    International Nuclear Information System (INIS)

    Hatcher, C.W.; Lorensen, L.E.; Weinstein, B.W.

    1980-01-01

    First generation hemishells, from which spherical shells are constructed, were fabricated by micromachining coated mandrels and by molding. The remachining of coated mandrels are described in detail. Techniques were developed for coating the microsized mandrels with polymeric and metallic materials by methods including conformal coating, vapor deposition, plasma polymerization and thermoforming. Micropositioning equipment and bonding techniques have also been developed to assemble the hemishells about a fuel pellet maintaining a spherical concentricity of better than 2 μm and voids in the hemishell bonding line of a few hundred angstroms or less

  1. Synthesis of Aqueous CdTe/CdS/ZnS Core/shell/shell Quantum Dots by a Chemical Aerosol Flow Method

    Directory of Open Access Journals (Sweden)

    Chen Dong

    2009-01-01

    Full Text Available Abstract This work described a continuous method to synthesize CdTe/CdS/ZnS core/shell/shell quantum dots. In an integrated system by flawlessly combining the chemical aerosol flow system working at high temperature (200–300°C to generate CdTe/CdS intermediate products and an additional heat-up setup at relatively low temperature to overcoat the ZnS shells, the CdTe/CdS/ZnS multishell structures were realized. The as-synthesized CdTe/CdS/ZnS core/shell/shell quantum dots are characterized by photoluminescence spectra, X-ray diffraction (XRD, energy-dispersive X-ray spectra (EDS, transmission electron microscopy (TEM, and high-resolution transmission electron microscopy (HRTEM. Fluorescence and XRD results confirm that the obtained quantum dots have a core/shell/shell structure. It shows the highest quantum yield above 45% when compared to the rhodamine 6G. The core/shell/shell QDs were more stable via the oxidation experiment by H2O2.

  2. Automatic determination of 3D orientations of fossilized oyster shells from a densely packed Miocene shell bed

    Science.gov (United States)

    Puttonen, Ana; Harzhauser, Mathias; Puttonen, Eetu; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2018-02-01

    Shell beds represent a useful source of information on various physical processes that cause the depositional condition. We present an automated method to calculate the 3D orientations of a large number of elongate and platy objects (fossilized oyster shells) on a sedimentary bedding plane, developed to support the interpretation of possible depositional patterns, imbrications, or impact of local faults. The study focusses on more than 1900 fossil oyster shells exposed in a densely packed Miocene shell bed. 3D data were acquired by terrestrial laser scanning on an area of 459 m2 with a resolution of 1 mm. Bivalve shells were manually defined as 3D-point clouds of a digital surface model and stored in an ArcGIS database. An individual shell coordinate system (ISCS) was virtually embedded into each shell and its orientation was determined relative to the coordinate system of the entire, tectonically tilted shell bed. Orientation is described by the rotation angles roll, pitch, and yaw in a Cartesian coordinate system. This method allows an efficient measurement and analysis of the orientation of thousands of specimens and is a major advantage compared to the traditional 2D approach, which measures only the azimuth (yaw) angles. The resulting data can variously be utilized for taphonomic analyses and the reconstruction of prevailing hydrodynamic regimes and depositional environments. For the first time, the influence of possible post-sedimentary vertical displacements can be quantified with high accuracy. Here, the effect of nearby fault lines—present in the reef—was tested on strongly tilted oyster shells, but it was found out that the fault lines did not have a statistically significant effect on the large tilt angles. Aside from the high reproducibility, a further advantage of the method is its non-destructive nature, which is especially suitable for geoparks and protected sites such as the studied shell bed.

  3. Hydrogeology and water quality of the Shell Valley Aquifer, Rolette County, North Dakota

    Science.gov (United States)

    Strobel, M.L.

    1997-01-01

    The Shell Valley aquifer is the sole source of water for the city of Belcourt and the primary source of water for most of the Turtle Mountain Indian Reservation. The Turtle Mountain Band of Chippewa Indians is concerned about the quantity and quality of water in the Shell Valley aquifer, which underlies about 56 square miles in central Rolette County and has an average saturated thickness of about 35 feet. Water levels across most of the Shell Valley aquifer fluctuate with variations in precipitation but generally are stable. Withdrawals from the north well field decreased slightly during 1976-95, but withdrawals from the south well field increased during 1983-95. Water levels in the south well field declined as withdrawals increased. The average decline during the last 8 years was about 1.75 feet per year. The water level has reached the well screen in at least one of the production wells. Most of the water in the aquifer is a bicarbonate type and has dissolved-solids concentrations ranging from 479 to 1,510 milligrams per liter. None of the samples analyzed had detectable concentrations of pesticides, but hydrocarbons were detected in both ground- and surfacewater samples. Polycyclic aromatic hydrocarbons (PAH) were the most frequently detected hydrocarbons. Benzene, toluene, ethylbenzene, and xylene (BTEX), polychlorinated biphenyls (PCB), and pentachlorophenol (PCP) also were detected.Generally, the Shell Valley aquifer is an adequate source of water for current needs, but evaluation of withdrawals in relation to a knowledge of aquifer hydrology would be important in quantifying sustainable water supplies. Water quality in the aquifer generally is good; the Turtle Mountain Band of Chippewa Indians filters the water to reduce concentrations of dissolved constituents. Hydrocarbons, although present in the aquifer, have not been quantified and may not pose a general health risk. Further analysis of the quantity and distribution of the hydrocarbons would be useful

  4. Signatures of shell evolution in alpha decay across the N = 126 shell closure

    Science.gov (United States)

    Rui-Wang; Wang, Rui-Yao; Qian, Yi-Bin; Ren, Zhong-Zhou

    2017-06-01

    Within the alpha-cluster model, we particularly investigate the alpha decay of exotic nuclei in the vicinity of the N = 126 neutron shell plus the Z = 82 proton shell. The systematics of alpha-preformation probability (P α ), as an indicator of the shell effect, is deduced from the ratio of the experimental decay width to the calculated one. Through the comparative analysis of the P α trend in the N = 124-130 isotonic chain, the N = 126 and Z = 82 shell closures are believed to strongly affect the formation of the alpha particle before its penetration. Additionally, the P α variety in Po and Rn isotopes is presented as another proof for such an influence. More importantly, it may be concluded that the expected neutron (or proton) shell effect gradually fades away along with the increasing valence proton (or neutron) number. The odd-even staggering presented in the P α value is also discussed. Supported by National Natural Science Foundation of China (11375086, 11535004, 11605089, 11120101005), Natural Science Youth Fund of Jiangsu Province (BK20150762), Fundamental Research Funds for the Central Universities (30916011339), 973 National Major State Basic Research and Development Program of China (2013CB834400), and a Project Funded by the Priority Academic Programme Development of JiangSu Higher Education Institutions (PAPD)

  5. Exact solutions for shells collapsing towards a pre-existing black hole

    International Nuclear Information System (INIS)

    Liu Yuan; Zhang Shuangnan

    2009-01-01

    The gravitational collapse of a star is an important issue both for general relativity and astrophysics, which is related to the well-known 'frozen star' paradox. This paradox has been discussed intensively and seems to have been solved in the comoving-like coordinates. However, to a real astrophysical observer within a finite time, this problem should be discussed in the point of view of the distant rest-observer, which is the main purpose of this Letter. Following the seminal work of Oppenheimer and Snyder (1939), we present the exact solution for one or two dust shells collapsing towards a pre-existing black hole. We find that the metric of the inner region of the shell is time-dependent and the clock inside the shell becomes slower as the shell collapses towards the pre-existing black hole. This means the inner region of the shell is influenced by the property of the shell, which is contrary to the result in Newtonian theory. It does not contradict the Birkhoff's theorem, since in our case we cannot arbitrarily select the clock inside the shell in order to ensure the continuity of the metric. This result in principle may be tested experimentally if a beam of light travels across the shell, which will take a longer time than without the shell. It can be considered as the generalized Shapiro effect, because this effect is due to the mass outside, but not inside as the case of the standard Shapiro effect. We also found that in real astrophysical settings matter can indeed cross a black hole's horizon according to the clock of an external observer and will not accumulate around the event horizon of a black hole, i.e., no 'frozen star' is formed for an external observer as matter falls towards a black hole. Therefore, we predict that only gravitational wave radiation can be produced in the final stage of the merging process of two coalescing black holes. Our results also indicate that for the clock of an external observer, matter, after crossing the event horizon

  6. Shell film- and video catalogue 1996

    International Nuclear Information System (INIS)

    1996-01-01

    An overview is given of films and videos that are available through 'Shell Nederland Filmcentrale' (Shell Netherlands Film Center), subdivided into the subjects (1) About Shell; (2) Health, Safety and Environment; (3) Science and Technology; (4) The History of Car(racing); and (5) Historical Overview. 5 ills

  7. 7 CFR 981.6 - Shelled almonds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds after...

  8. Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells.

    Science.gov (United States)

    Zhao, Fang; Malayev, Vyacheslav; Rao, Venkatramana; Hussain, Munir

    2004-01-01

    Sodium lauryl sulfate (SLS) is a commonly used surfactant in dissolution media for poorly water soluble drugs. However, it has occasionally been observed that SLS negatively impacts the dissolution of drug products formulated in gelatin capsules. This study investigated the effect of SLS on the dissolution of hard gelatin capsule shells. The USP paddle method was used with online UV monitoring at 214 nm (peptide bond). Empty size #0 capsule shells were held to the bottom of the dissolution vessel by magnetic three-prong sinkers. SLS significantly slowed down the dissolution of gelatin shells at pH < 5. Visually, the gelatin shells transformed into some less-soluble precipitate under these conditions. This precipitate was found to contain a higher sulfur content than the gelatin control sample by elemental analysis, indicating that SLS is part of the precipitate. Additionally, the slowdown of capsule shell dissolution was shown to be dependent on the SLS concentration and the ionic strength of the media. SLS interacts with gelatin to form a less-soluble precipitate at pH < 5. The use of SLS in dissolution media at acidic pH should be carefully evaluated for gelatin capsule products.

  9. Eggshell Biliverdin and Protoporphyrin Pigments in a Songbird: Are They Derived from Erythrocytes, Blood Plasma, or the Shell Gland?

    Science.gov (United States)

    Hargitai, Rita; Boross, Nóra; Hámori, Susanne; Neuberger, Eszter; Nyiri, Zoltán

    Biliverdin and protoporphyrin pigments are deposited into the eggshell when the developing egg is in the shell gland. However, the site of synthesis of eggshell pigments is still uncertain, although it may influence the possible costs and potential functions of eggshell coloration in avian species. Eggshell pigments may be derived from red blood cells or be produced in other organs and then transferred to the shell gland, or they may be synthesized de novo in the shell gland. We studied in the canary (Serinus canaria) whether eggshell blue-green and brown pigmentations are associated with experimentally elevated anemia, female hematocrit level, immature erythrocyte percentage, and feces and plasma pigment levels during egg laying to find out the possible origin of eggshell pigments. We found no significant effects of hematocrit level or experimentally elevated anemia on intensity of eggshell blue-green and brown pigmentations; therefore, we consider it less likely that eggshell pigments are derived from erythrocytes. In addition, we found no significant associations between female feces biliverdin concentration during egg laying and intensity of eggshell blue-green pigmentation, suggesting that eggshell biliverdin may not originate from the spleen or liver. We found a negative association between plasma and feces protoporphyrin concentrations during egg laying and eggshell brown chroma. This result suggests that an increased production of protoporphyrin in the liver, which could have elevated plasma and feces protoporphyrin concentrations, could inhibit eggshell protoporphyrin pigmentation, probably through affecting enzymatic activities. We suggest that both pigments are produced de novo in the shell gland in the canary, but circulating pigment levels may influence shell gland pigment synthesis, thus connecting the physiological status of the female to eggshell coloration.

  10. Methodology of shell structure reinforcement layout optimization

    Science.gov (United States)

    Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof

    2018-01-01

    This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.

  11. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  12. Double containment shell for nuclear power plants

    International Nuclear Information System (INIS)

    Sykora, D.

    1977-01-01

    A double containment shell is proposed for nuclear power plants, especially those equipped with pressurized water reactors. The shell offers increased environmental protection from primary circuit accidents. The inner shell is built of steel or concrete while the outer shell is always built of concrete. The space between the two shells is filled with water and is provided with several manholes and with stiffeners designed for compensation for load due to the water hydrostatic pressure. Water serves the airtight separation of the containment shell inside from the environment and the absorption of heat released in a primary circuit accident. In case the inner shell is made of concrete, it is provided with heat-removal tubes in-built in its walls ensuring rapid heat transfer from the inside of the containment to the water in the interwall space. (Z.M.)

  13. Creep analysis of orthotropic shells

    International Nuclear Information System (INIS)

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  14. Monte Carlo simulations of core/shell nanoparticles containing interfacial defects: Role of disordered ferromagnetic spins

    International Nuclear Information System (INIS)

    Ho, Le Bin; Lan, Tran Nguyen; Hai, Tran Hoang

    2013-01-01

    In this work, we have used the Monte Carlo simulation to investigate the magnetic properties of an isolated composite magnetic nanoparticle with ferromagnetic (FM) core and antiferromagnetic (AFM) shell morphology. The defects were assumed to be randomly located at the AFM interface. The Néel anisotropy was used for the FM interface spins at where there are the lacks of crystal symmetry due to the vacancies at AFM interface. With a moderate defect concentration, the coercive field non-monotonously depends on the Néel anisotropy. We have examined the dependence of coercivity, exchange bias field, and vertical shift on defect concentration. We found that in addition to AFM shell, the disordered FM interface is another pining-source for exchange bias phenomenon. We discuss our simulated results in the relation to recent experimental findings

  15. Optical and structural investigation of ZnO@ZnS core–shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Efracio Mamani; Raubach, Cristiane W.; Gouvea, Rogério [CCAF, Instituto de Física e Matemática (IFM), Departamento de Física, Universidade Federal de Pelotas, Campus Capão do Leão PO Box 354, CEP: 96010970, Pelotas, RS (Brazil); Longo, Elson [INCTMN-UNESP, Universidade Estadual Paulista, P.O. Box 355, Araraquara 14801-907, SP (Brazil); Cava, Sergio [CCAF, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Rua Félix da Cunha 809, Pelotas, RS (Brazil); Moreira, Mário L., E-mail: mlucio3001@gmail.com [CCAF, Instituto de Física e Matemática (IFM), Departamento de Física, Universidade Federal de Pelotas, Campus Capão do Leão PO Box 354, CEP: 96010970, Pelotas, RS (Brazil)

    2016-04-15

    In the present work, are reported the experimental study of ZnO@ZnS core–shell synthesised by a microwave-assisted solvothermal (MAS) method. Some synthesis parameters such as, time, precursor concentration and temperature were fixed. In order to investigate the effect of growing shell on the structural and optical properties, the samples were grown with two different solvent (water or ethylene glycol). The characterizations were performed by X-ray diffraction, absorption spectroscopy in the UV–vis range, scanning electron microscopy, and photoluminescence spectroscopy. The results show that both ZnO and ZnS diffractions are present for all samples, however the crystallinity degree of ZnS shell are too low. The better decorations of ZnS (shell) on the ZnO (core) are obtained for ethylene glycol (EG) solvent, which is verified through FE-SEM images of ZnO@ZnS (EG). On the other hand, non morphological solvent dependence was observed for ZnO multi-wires. Also the luminescent emission for decorated system in water were more intense and leads to form a type-II band alignment for ZnO@ZnS core–shell system. - Highlights: • Obtation of ZnO@ZnS decorated systens using different solvents by MAS methodology. • Growth solvent dependence of hexagonal and cubic phases for ZnS. • Potential application of ZnO@ZnS decorated nanostructures as replacement material for solar cells. • Control over band alignment between ZnO and ZnS.

  16. Faraday Wave Turbulence on a Spherical Liquid Shell

    Science.gov (United States)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  17. Leading singularities and off-shell conformal integrals

    CERN Document Server

    Drummond, James; Eden, Burkhard; Heslop, Paul; Pennington, Jeffrey; Smirnov, Vladimir A.

    2013-01-01

    The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In this paper we evaluate the unknown integrals, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of leading singularities to obtain the rational coefficients, the symbol - with an appropriate ansatz for its structure - as a means of characterising multiple polylogarithms, and the technique of asymptotic expansion of Feynman integrals to obtain the integrals in certain limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then lift to find the corresponding polylogarithmic functions. The final formulae are numerically confirmed. The techniques we develop can be applied more generally, and we illustrate this by analytically evaluating one of the ...

  18. Radionuclides, Trace Metals, and Organic Compounds in Shells of Native Freshwater Mussels Along the Hanford Reach of the Columbia River: 6000 Years Before Present to Current Times

    Energy Technology Data Exchange (ETDEWEB)

    B. L. Tiller; T. E. Marceau

    2006-01-25

    This report documents concentrations of radionuclides, trace metals, and semivolatile organic compounds measured in shell samples of the western pearl shell mussel collected along the Hanford Reach of the Columbia River.

  19. Radioactive and stable cobalt concentrations in mussel in Kyushu island, Japan

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Shiki, Atsushi; Takashima, Yoshimasa; Maki, Takao; Koriyama, Munehiro; Shimozono, Seika; Imamura, Hiroka; Nakamata, Kojiro.

    1985-01-01

    Two kinds of mussel, Septifer virgatus and Mytilus edulis, were collected from Kyushu island, Japan, in order to elucidate a background level of 60 Co, which is one of the most significant radionuclide for environmental monitoring around a nuclear power plant. The mussels were collected from 7 locations in 1983 and classified 2 or 3 groups depending on their shell size at each location. Activities of 60 Co were measured by a low-background β counter after purified by means of chemical separation and electrodeposition. Stable cobalt concentrations were determined by colorimetric method. The concentrations of cobalt in Septifer virgatus are one order higher level than that in Mytilus edulis. There are not so large difference in cobalt content depending on shell size so long as comparing them at the same location. The radioactivities in mussels show the same trend as stable cobalt. It has become apparent that Septifer virgatus has a tendency to concentrate cobalt with growing but Mytilus edulis is opposite. The cobalt-60 introduced to sea from nuclear explosions seems to be relatively constant in coastal seawater since specific activities are distributed in a narrow range in spite of kind, shell size and location. (author)

  20. Production of biodiesel from Chlorella sp. enriched with oyster shell extracts.

    Science.gov (United States)

    Choi, Cheol Soon; Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2014-01-01

    This study investigated the cultivation of the marine microalga Chlorella sp. without supplying an inorganic carbon source, but instead with enriching the media with extracts of oyster shells pretreated by a high-pressure homogenization process. The pretreated oyster shells were extracted by a weak acid, acetic acid, that typically has harmful effects on cell growth and also poses environmental issues. The concentration of the residual dissolved carbon dioxide in the medium was sufficient to maintain cell growth at 32 ppm and pH 6.5 by only adding 5% (v/v) of oyster shell extracts. Under this condition, the maximum cell density observed was 2.74 g dry wt./L after 27 days of cultivation. The total lipid content was also measured as 18.1 (%, w/w), and this value was lower than the 23.6 (%, w/w) observed under nitrogen deficient conditions or autotrophic conditions. The fatty acid compositions of the lipids were also measured as 10.9% of C16:1 and 16.4% of C18:1 for the major fatty acids, which indicates that the biodiesel from this culture process should be a suitable biofuel. These results suggest that oyster shells, environmental waste from the food industry, can be used as a nutrient and carbon source with seawater, and this reused material should be important for easily scaling up the process for an outdoor culture system.

  1. Analgesic effect of coconut shell (Cocos nucifera L liquid smoke on mice

    Directory of Open Access Journals (Sweden)

    Meircurius Dwi C.S

    2012-09-01

    Full Text Available Background: Drugs can be used to eliminate pain by inhibiting the activity of conversing arachidonic acid into prostaglandin. The chemical compositions of coconut shell are cellulose, pentosan, lignin, solvent extraction, uronat anhydrous, nitrogen, and water. One active ingredient in coconut shell is phenyl propanoid (consisting in lignin structure and guaicol. Phenyl propanoid and guaicol are phenolic compounds that can be used as antioxidant, antiseptic, anti-inflammatory, anesthetic and analgesic. Liquid smoke of coconut shell (Cocos nucifera L contains phenolic compound is believed able to bind a component conversing arachidonic acid into prostaglandin. Purpose: The study was aimed to examine the analgesic effect of liquid smoke of coconut shell (Cocos nucifera L. Methods: The study was a laboratory experimental research, conducted on 2-3 months old male mice (Mus musculus with 20-30 grams of weight. There were control group and treatment groups each of which had seven mice. Control group was orally given 0.01 ml/weight (ml/gr of distilled water, after 30 minutes 0.01 ml/weight (ml/gr of acetic acid 0.6% was delivered via intraperitoneal injection. The treatment groups were given liquid smoke of coconut shell (Cocos nucifera L with the concentrations of 25%, 50%, and 100% respectively. The analgesic effect was then determined by decreasing of writhing reflex on mice recorded every 5 minutes for 30 minutes. Results: There were significant differences of writhing reflexes in the treatment groups given liquid smoke of coconut shell with the concentrations of 25%, 50%, and 100%. The higher concentration of liquid smoke the higher its analgesic effect. Conclusion: Liquid smoke of coconut shell (Cocos nucifera L has analgesic effect.Latar belakang: Salah satu mekanisme obat yang digunakan untuk menghilangkan rasa nyeri adalah menghambat aktivitas konversi asam arakhidonat menjadi prostaglandin. Komposisi kimia tempurung kelapa terdiri dari

  2. Synthesis and characterization of Na(Gd0.5Lu0.5)F4: Nd3+,a core-shell free multifunctional contrast agent.

    Science.gov (United States)

    Mimun, L Christopher; Ajithkumar, G; Rightsell, Chris; Langloss, Brian W; Therien, Michael J; Sardar, Dhiraj K

    2017-02-25

    Compared to conventional core-shell structures, core-shell free nanoparticles with multiple functionalities offer several advantages such as minimal synthetic complexity and low production cost. In this paper, we present the synthesis and characterization of Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 as a core-shell free nanoparticle system with three functionalities. Nanocrystals with 20 nm diameter, high crystallinity and a narrow particle size distributions were synthesized by the solvothermal method and characterized by various analytical techniques to understand their phase and morphology. Fluorescence characteristics under near infrared (NIR) excitation at 808 nm as well as X-ray excitation were studied to explore their potential in NIR optical and X-ray imaging. At 1.0 mol% Nd concentration, we observed a quantum yield of 25% at 1064 nm emission with 13 W/cm 2 excitation power density which is sufficiently enough for imaging applications. Under 130 kVp (5 mA) power of X-ray excitation, Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 shows the characteristic emission bands of Gd 3+ and Nd 3+ with the strongest emission peak at 1064 nm due to Nd 3+ . Furthermore, magnetization measurements show that the nanocrystals are paramagnetic in nature with a calculated magnetic moment per particle of ~570 μB at 2T. These preliminary results support the suitability of the present nanophosphor as a multimodal contrast agent with three imaging features viz. optical, magnetic and X-ray.

  3. Foam shell project: Progress report

    International Nuclear Information System (INIS)

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-01-01

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE

  4. The Shell of the Invasive Bivalve Species Dreissena polymorpha: Biochemical, Elemental and Textural Investigations.

    Directory of Open Access Journals (Sweden)

    Françoise Immel

    Full Text Available The zebra mussel Dreissena polymorpha is a well-established invasive model organism. Although extensively used in environmental sciences, virtually nothing is known of the molecular process of its shell calcification. By describing the microstructure, geochemistry and biochemistry/proteomics of the shell, the present study aims at promoting this species as a model organism in biomineralization studies, in order to establish a bridge with ecotoxicology, while sketching evolutionary conclusions. The shell of D. polymorpha exhibits the classical crossed-lamellar/complex crossed lamellar combination found in several heterodont bivalves, in addition to an external thin layer, the characteristics of which differ from what was described in earlier publication. We show that the shell selectively concentrates some heavy metals, in particular uranium, which predisposes D. polymorpha to local bioremediation of this pollutant. We establish the biochemical signature of the shell matrix, demonstrating that it interacts with the in vitro precipitation of calcium carbonate and inhibits calcium carbonate crystal formation, but these two properties are not strongly expressed. This matrix, although overall weakly glycosylated, contains a set of putatively calcium-binding proteins and a set of acidic sulphated proteins. 2D-gels reveal more than fifty proteins, twenty of which we identify by MS-MS analysis. We tentatively link the shell protein profile of D. polymorpha and the peculiar recent evolution of this invasive species of Ponto-Caspian origin, which has spread all across Europe in the last three centuries.

  5. Thin-shell wormholes in dilaton gravity

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2005-01-01

    In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed

  6. Thickness, Doping Accuracy, and Roughness Control in Graded Germanium Doped Ch{sub x} Micro-shells for Lmj

    Energy Technology Data Exchange (ETDEWEB)

    Legay, G.; Theobald, M.; Barnouin, J.; Peche, E.; Bednarczyk, S.; Hermerel, C. [CEA Valduc, Dept Rech Mat Nucl, Serv Microcibles, 21 - Is-sur-Tille (France)

    2009-05-15

    In the Commissariat a l'Energie Atomique Laser Megajoule (LMJ) facility, amorphous hydrogenated carbon (a-C: H or CH{sub x}) is the nominal ablator used to achieve inertial confinement fusion experiments. These targets are filled with of fusible mixture of deuterium-tritium in order to perform ignition. The a-C: H shell is deposited on a poly-alpha-methylstyrene (PAMS) mandrel by glow discharge polymerization with trans-2-butene, hydrogen, and helium. Graded germanium doped CH{sub x} micro-shells are supposed to be more stable regarding hydrodynamic instabilities. The shells are composed of four layers for a total thickness of 180 {mu}m. The germanium gradient is obtained by doping the different a-C: H layers with the addition of tetra-methylgermanium in the gas mixture. As the achievement of ignition greatly depends on the physical properties of the shell, the thicknesses, doping concentration, and roughness must be precisely controlled. Quartz microbalances were used to perform an in situ and real-time measurement of the thickness in order to reduce the variations and so our fabrication tolerances on each layer thickness. Ex situ control of the thickness of each layer was carried out, with both optical coherent tomography and interferometry, (wall-mapper). High-quality, PAMS and a rolling system have been used to lower the low-mode roughness [root-mean-square (rms) (mode 2) {<=} 70 nm]. High modes were clearly, reduced by, coating the pan containing the shells with polyvinyl alcohol + CH{sub x} instead of polystyrene + CH{sub x} resulting in an rms ({>=}mode 10) {<=} 20 nm, which can be {<=}15 nm for the best micro-shells. The germanium concentration (0. 4 and 0. 75 at. %) in the a-CH layer is obtained by regulating the tetramethyl-germanium flow. Low range mass flow controllers have been used to improve the doping accuracy. (authors)

  7. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    OpenAIRE

    P. Sangeetha; K. Jeganathan; V. Ramakrishnan

    2013-01-01

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E2 (high) and A1 (LO) phonon mode of InN core at 490 and 590 cm−1 respectively and E2 (high) phonon mode of GaN shell at 573 cm−1. The free carrier concentration of InN core is foun...

  8. The dorsal shell wall structure of Mesozoic ammonoids

    Directory of Open Access Journals (Sweden)

    Gregor Radtke

    2017-03-01

    Full Text Available The study of pristine preserved shells of Mesozoic Ammonoidea shows different types of construction and formation of the dorsal shell wall. We observe three major types: (i The vast majority of Ammonoidea, usually planispirally coiled, has a prismatic reduced dorsal shell wall which consists of an outer organic component (e.g., wrinkle layer, which is the first layer to be formed, and the subsequently formed dorsal inner prismatic layer. The dorsal mantle tissue suppresses the formation of the outer prismatic layer and nacreous layer. With the exception of the outer organic component, secretion of a shell wall is omitted at the aperture. A prismatic reduced dorsal shell wall is always secreted immediately after the hatching during early teleoconch formation. Due to its broad distribution in (planispiral Ammonoidea, the prismatic reduced dorsal shell wall is probably the general state. (ii Some planispirally coiled Ammonoidea have a nacreous reduced dorsal shell wall which consists of three mineralized layers: two prismatic layers (primary and secondary dorsal inner prismatic layer and an enclosed nacreous layer (secondary dorsal nacreous layer. The dorsal shell wall is omitted at the aperture and was secreted in the rear living chamber. Its layers are a continuation of an umbilical shell doubling (reinforcement by additional shell layers that extends towards the ventral crest of the preceding whorl. The nacreous reduced dorsal shell wall is formed in the process of ontogeny following a prismatic reduced dorsal shell wall. (iii Heteromorph and some planispirally coiled taxa secrete a complete dorsal shell wall which forms a continuation of the ventral and lateral shell layers. It is formed during ontogeny following a prismatic reduced dorsal shell wall or a priori. The construction is identical with the ventral and lateral shell wall, including a dorsal nacreous layer. The wide distribution of the ability to form dorsal nacre indicates that it is

  9. Preparation of yolk-shell MoS2 nanospheres covered with carbon shell for excellent lithium-ion battery anodes

    Science.gov (United States)

    Guo, Bangjun; Feng, Yu; Chen, Xiaofan; Li, Bo; Yu, Ke

    2018-03-01

    Molybdenum disulfide is regarded as one of the most promising electrode materials for high performance lithium-ion batteries. Designing firm basal structure is a key point to fully utilize the high capacity of layered MoS2 nanomaterials. Here, yolk-shell structured MoS2 nanospheres is firstly designed and fabricated to meet this needs. This unique yolk-shell nanospheres are transformed from solid nanospheres by a simply weak alkaline etching method. Then, the yolk-shell MoS2/C is synthesized by a facile process to protect the outside MoS2 shell and promote the conductivity. Taking advantages of high capacity and well-defined cavity space, allowing the core MoS2 to expand freely without breaking the outer shells, yolk-shell MoS2/C nanospheres delivers long cycle life (94% of capacity retained after 200 cycles) and high rate behaviour (830 mA h g-1 at 5 A g-1). This design of yolk-shell structure may set up a new strategy for preparing next generation anode materials for LIBs.

  10. Improved microbial growth inhibition activity of bio-surfactant induced Ag–TiO{sub 2} core shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nithyadevi, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Ponpandian, N.; Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Meena, P. [Department of Physics, PSGR Krishnammal college for women, Coimbatore 641 004 (India)

    2015-02-01

    Graphical abstract: - Highlights: • TiO{sub 2} nanoparticles were synthesized by hydrolysis process and Ag nanoparticles were prepared by using hydrazine reduction method. • Ag–TiO{sub 2} core shell nanoparticles were synthesized by reverse micelle method. • Coatings of TiO{sub 2} shell leads to decrease the usage of silver particles and also it reduces the release of silver ions from the matrix. • Optimum ratio of TiO{sub 2} particles: Ag atoms are needed for better antibacterial activity. • Sodium alginate (Bio-copolymer) induced core shell nanoparticles results 100% cell growth inhibition toward Staphylococcus aureus. - Abstract: Surfactant induced silver–titanium dioxide core shell nanoparticles within the size range of 10–50 nm were applied in the antibacterial agent to inhibit the growth of bacterial cells. The single crystalline silver was located in the core part of the composite powder and the titanium dioxide components were uniformly distributed in the shell part. HRTEM and XRD results indicated that silver was completely covered by titanium dioxide and its crystal structure was not affected after being coated by titanium dioxide. The effect of silver–titanium dioxide nanoparticles in the inhibition of bacterial cell growth was studied by means of disk diffusion method. The inhibition zone results reveal that sodium alginate induced silver–titanium dioxide nanoparticles exhibit 100% more antibacterial activity than that with cetyltrimethylbromide or without surfactant. UV–vis spectroscopic analysis showed a large concentration of silver was rapidly released into phosphate buffer solution (PBS) within a period of 1 day, with a much smaller concentration being released after this 1-day period. It was concluded that sodium alginate induced silver–titanium dioxide core shell nanoparticles could enhance long term cell growth inhibition in comparison with cetyltrimethylbromide or without surfactant. The surfactant mediated core shell

  11. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties.

    Science.gov (United States)

    Ma, Yanyun; Li, Weiyang; Cho, Eun Chul; Li, Zhiyuan; Yu, Taekyung; Zeng, Jie; Xie, Zhaoxiong; Xia, Younan

    2010-11-23

    This paper describes a facile method for generating Au@Ag core-shell nanocubes with edge lengths controllable in the range of 13.4-50 nm. The synthesis involved the use of single-crystal, spherical Au nanocrystals of 11 nm in size as the seeds in an aqueous system, with ascorbic acid serving as the reductant and cetyltrimethylammonium chloride (CTAC) as the capping agent. The thickness of the Ag shells could be finely tuned from 1.2 to 20 nm by varying the ratio of AgNO(3) precursor to Au seeds. We also investigated the growth mechanism by examining the effects of seeds (capped by CTAC or cetyltrimethylammonium bromide(CTAB)) and capping agent (CTAC vs CTAB) on both size and shape of the resultant core-shell nanocrystals. Our results clearly indicate that CTAC worked much better than CTAB as a capping agent in both the syntheses of Au seeds and Au@Ag core-shell nanocubes. We further studied the localized surface plasmon resonance properties of the Au@Ag nanocubes as a function of the Ag shell thickness. By comparing with the extinction spectra obtained from theoretical calculations, we derived a critical value of ca. 3 nm for the shell thickness at which the plasmon excitation of the Au cores would be completely screened by the Ag shells. Moreover, these Au@Ag core-shell nanocubes could be converted into Au-based hollow nanostructures containing the original Au seeds in the interiors through a galvanic replacement reaction.

  12. Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.

    Science.gov (United States)

    Pigozzi, G; Mukherji, D; Gilles, R; Barbier, B; Kostorz, G

    2006-08-28

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni(3)Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni(3)Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiO(x)). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  13. Controlled-release and preserved bioactivity of proteins from (self-assembled core-shell double-walled microspheres

    Directory of Open Access Journals (Sweden)

    Yuan W

    2012-01-01

    Full Text Available Weien Yuan1,2, Zhenguo Liu11Department of Neurology, Xinhua Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In order to address preserved protein bioactivities and protein sustained-release problems, a method for preparing double-walled microspheres with a core (protein-loaded nanoparticles with a polymer-suspended granule system-formed core and a second shell (a polymer-formed shell for controlled drug release and preserved protein bioactivities has been developed using (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W phases. The method, based on our previous microsphere preparation method (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W, employs different concentric poly(D,L-lactide-co-glycolide, poly(D,L-lactide, and protein-loaded nanoparticles to produce a suspended liquid which then self-assembles to form shell-core microspheres in the hydrophilic oil phase, which are then solidified in the water phase. Variations in the preparation parameters allowed complete encapsulation by the shell phase, including the efficient formation of a poly(D,L-lactide shell encapsulating a protein-loaded nanoparticle-based poly(D,L-lactide-co-glycolide core. This method produces core-shell double-walled microspheres that show controlled protein release and preserved protein bioactivities for 60 days. Based upon these results, we concluded that the core-shell double-walled microspheres might be applied for tissue engineering and therapy for chronic diseases, etc.Keywords: protein delivery, protein stability, core-shell microspheres, dextran nanoparticles

  14. Inner shell ionization by incident nuclei

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1974-10-01

    The atomic Coulomb excitation process induced by impinging heavy charged particles such as protons, deuterons, α-particles and complex heavy ions is reviewed. Recent experimental and theoretical efforts have led toimproved understanding of the atomic Coulomb excitation as well as to discovery of new types of ionization mechanisms. The following models are mentioned: the Plane Wave Born Approximation (PWBA); theeeeeeeeeeeee modified PWBA model; the Binary Encounter Approximation (BEA); the Semi-Classical Approximation (SCA); the Perturbed-Stationary-State model (PSS). The structure of the SCA model is more thoroughly treated. Experimental results on single Coulomb ionizations of the K-, L-, and M-shells, and of the connected sub-shells by protons are compared with predictions. Most calculations are based on straight line projectile paths and non-relativistic hydrogen-like target electron wave functions. The BEA model and the SCA model seem to work reasonably well for multiple Coulomb ionizations by stripped light ions. Background effects in ion-atom collisions are commented upon. Future aspects of atomic Coulomb excitation by incident nuclei and ions are discussed. The interplay between Coulomb induced processes and united atom phenomena is especially mentioned. The simple ionization models have yielded valuable insights but it is suggested that this branch of collision physics has reached a turning point where new and more advanced and unifying models are needed. (JIW)

  15. A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs.

    Science.gov (United States)

    Akkineni, Ashwini Rahul; Ahlfeld, Tilman; Lode, Anja; Gelinsky, Michael

    2016-10-07

    Three-dimensional extrusion of two different biomaterials in a core/shell (c/s) fashion has gained much interest in the last couple of years as it allows for fabricating constructs with novel and interesting properties. We now demonstrate that combining high concentrated (16.7 wt%) alginate hydrogels as shell material with low concentrated, soft biopolymer hydrogels as core leads to mechanically stable and robust 3D scaffolds. Alginate, chitosan, gellan gum, gelatin and collagen hydrogels were utilized successfully as core materials-hydrogels which are too soft for 3D plotting of open-porous structures without an additional mechanical support. The respective c/s scaffolds were characterized concerning their morphology, mechanical properties and swelling behavior. It could be shown that core as well as shell part can be loaded with growth factors and that the release depends on core composition and shell thickness. Neither the plotting process nor the crosslinking with 1M CaCl 2 denatured the proteins. When core and shell were loaded with different growth factors (VEGF and BMP-2, respectively) a dual release was achieved. Finally, live human endothelial cells were integrated in the core material, demonstrating that this new strategy can be used for bioprinting purposes as well.

  16. Study of the effect of shell stabilization of the collective isovector valence-shell excitations along the N=80 isotonic chain

    CERN Multimedia

    Blazhev, A A; Kruecken, R; Coquard, L; Bloch, T P; Wadsworth, R; Danchev, M T; Jenkins, D G; Kroell, T; Leske, J

    It is proposed to initiate an experimental program to study the quadrupole-collective isovector valence-shell excitations the so-called mixed-symmetry states (MSSs) of unstable nuclei from the N = 80 isotonic chain. The main aim of this program is to investigate the microscopic mechanism which leads to a concentration or a fragmentation of the MSSs, an effect dubbed $\\textit{shell stabilization}$ of MSSs. This will be achieved by identification of MSSs of the unstable nuclei $^{140}$Nd and $^{142}$Sm. The MSSs of these nuclei will be identified experimentally by measuring their relative populations with respect to the population of the first 2$^{+}$ states in inverse kinematics Coulomb excitation (CE) reactions on light targets. As a first step of this program we apply for a beam time for the radioactive $^{140}$Nd and $^{142}$Sm beams at beam energy of 2.85 MeV/u. These beams will be used to determine the absolute B(E2;2$_{1}^{+} \\rightarrow$ 0$_{1}^{+}$) values for $^{140}$Nd and $^{142}$Sm in Coulomb excit...

  17. Radar attenuation in Europa's ice shell: obstacles and opportunities for constraining shell thickness and thermal structure

    Science.gov (United States)

    Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe

    2016-10-01

    With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the

  18. Effect of organic matrices on the determination of the trace element chemistry (Mg, Sr, Mg/Ca, Sr/Ca) of aragonitic bivalve shells (Arctica islandica). Comparison of ICP-OES and LA-ICP-MS data

    International Nuclear Information System (INIS)

    Schoene, Bernd R.; Zhang, Zengjie; Jacob, Dorrit; Soldate, Analia; Gillikin, David P.; Tuetken, Thomas; Garbe-Shoenberg, Dieter; McConnaughey, Ted

    2010-01-01

    The element chemistry of biogenic carbonates can provide important data on past environments. However, the Sr/Ca and Mg/Ca ratios as well as the Mg and Sr concentrations of biological carbonates, especially aragonitic bivalves often depart from apparent thermodynamic equilibrium. When measured in situ by means of LA-ICP-MS, the Mg concentration is often substantially enriched (two- to threefold) near the organic-rich, annual growth lines. To test the hypothesis that some organic components exert a major influence on the skeletal metal content, the element chemistry of different shell components (insoluble organic matrix, IOM; dissolved CaCO 3 and soluble organics, SOM) of Arctica islandica was measured by means of ICP-OES and LA-ICP-MS. The ICP-OES data indicate that the IOM is strongly enriched in Mg (130 ppm) and depleted in Sr and Ca (10 ppm and 0.22 wt%, respectively) when compared to the whole biomineral (Mg: 68 to 99 ppm, Sr: 860 to 1,060 ppm, Ca: ∼35.72 wt%). Although the average relative abundance of the IOM barely exceeds 0.46 wt%, its chemical composition in combination with its heterogeneous distribution across the shell can significantly increase estimates of the Mg concentration if measured in situ by LA-ICP-MS. Depending on the distribution of the IOM, the Ca concentration may be significantly lower locally than the average Ca concentration of the whole shell (35.72 wt%). If this remains undetected, the Mg concentration of shell portions with higher than average IOM content is overestimated by LA-ICP-MS and, conversely, the Mg concentration is underestimated in shell portions with lower than average IOM content. Removal of the IOM prior to the chemical analysis by LA-ICP-MS or mathematical correction for the IOM-derived magnesium concentrations is therefore strongly advised. The different chemistry of the IOM may also exert a major control on the trace element to calcium ratios. Shell portions enriched in IOM will show up to 200 times higher Mg

  19. Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells.

    Science.gov (United States)

    Harini, K; Chandra Mohan, C; Ramya, K; Karthikeyan, S; Sukumar, M

    2018-03-15

    The main aim of the present study is to extract and characterize cashew nut shell (CNS) starch and walnut shell cellulose (WNC) for development of cellulose reinforced starch films. Moreover, the extraction and characterization of pomegranate peel extract, for incorporation with CNS-WNC films, was investigated. CNS starch was examined to be a moderate amylose starch with 26.32 ± 0.43% amylose content. Thermal degradation temperature of CNS starch was found to be 310 °C. Walnut shell cellulose was found to have high crystallinity index of 72%, with two thermal degradation temperatures of 319 °C and 461 °C. 2% WN cellulose reinforced CNS starch films were examined to have good oxygen transfer rate, mechanical and physical properties. Thermal degradation temperature of CNS-WNC starch films were found to be at the range of 298-302 °C. Surface roughness of CNS-WNC starch films were found to be increasing with increase in concentration of cellulose in films. Hydroxymethylfurfurole, Benzene, 2-methoxy-1,3,4-trimethyl and 1,2,3-Propanetriol, 1-acetate were found to be major active compounds present in hydrophilic extracts of Punica granatum peels. 2% WN cellulose reinforced starch films infused with hydrophilic active compounds of pomegranate peel was examined to be having good active package properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Ionization effects in electronic inner-shells of ionized atoms

    International Nuclear Information System (INIS)

    Shchornak, G.

    1983-01-01

    A review of the atomic physics of ionization atoms has been presented. Interaction and structure effects in atomic shells, correlated to the occurrence of vacancies in several subshells of the atom have been considered. The methods of calculations of atomic states and wave functions have been reviewed. The energy shift of characteristic X-rays is discussed as a function of the ionization stage of the atom. The influence of inner and outer-shell vacancies on the energy of the X-rays is shown in detail. The influence of chemical effects on the parameters of X-rays is also taken into account. Further on, the change of transition probabilities in radiative and non-radiative transitions by changing stage of ionization is discussed; and among them the leading part of Auger and Coster-Kronig transitions by the arearrangement of the atomic states is shown. The influence of non-radiative electronic transitions on ionization cross-sections for multiple ionization is discussed. Using these results, ionization cross-sections for direct and indirect processes for several ionization stages are given

  1. Stationary spherical shells around Kerr-Newman naked singularities

    International Nuclear Information System (INIS)

    Zdenek Stuchlik; Stanislav Hledik

    1998-01-01

    It is shown that in the field of some Kerr-Newman naked singularities a stationary spherical shell of charged dust can exist, with the specific charge being the same for all particles of the dusty shell. Gravitational attractions acting on the particles are balanced by electromagnetic repulsion in such a way that the shell is stable against radial perturbations. Particles of the shell move along orbits with constant latitude and radius. Rotation of the shell is differential. The shell is corotating relative to static observers at infinity, but it is counter rotating relative to the family of locally non-rotating observers. No such a shell can exist in the field of Kerr-Newman black holes. (authors)

  2. Modeling plate shell structures using pyFormex

    DEFF Research Database (Denmark)

    Bagger, Anne; Verhegghe, Benedict; Hertz, Kristian Dahl

    2009-01-01

    A shell structure made of glass combines a light-weight structural concept with glass’ high permeability to light. If the geometry of the structure is plane-based facetted (plate shell structure), the glass elements will be plane panes, and these glass panes will comprise the primary load...... (plate shells and triangulated lattice shells) may not differ in complexity regarding the topology, but when it comes to the practical generation of the geometry, e.g. in CAD, the plate shell is far more troublesome to handle than the triangulated geometry. The free software tool “pyFormex”, developed...

  3. Preparation, process optimization and characterization of core-shell polyurethane/chitosan nanofibers as a potential platform for bioactive scaffolds.

    Science.gov (United States)

    Maleknia, Laleh; Dilamian, Mandana; Pilehrood, Mohammad Kazemi; Sadeghi-Aliabadi, Hojjat; Hekmati, Amir Houshang

    2018-06-01

    In this paper, polyurethane (PU), chitosan (Cs)/polyethylene oxide (PEO), and core-shell PU/Cs nanofibers were produced at the optimal processing conditions using electrospinning technique. Several methods including SEM, TEM, FTIR, XRD, DSC, TGA and image analysis were utilized to characterize these nanofibrous structures. SEM images exhibited that the core-shell PU/Cs nanofibers were spun without any structural imperfections at the optimized processing conditions. TEM image confirmed the PU/Cs core-shell nanofibers were formed apparently. It that seems the inclusion of Cs/PEO to the shell, did not induce the significant variations in the crystallinity in the core-shell nanofibers. DSC analysis showed that the inclusion of Cs/PEO led to the glass temperature of the composition increased significantly compared to those of neat PU nanofibers. The thermal degradation of core-shell PU/Cs was similar to PU nanofibers degradation due to the higher PU concentration compared to other components. It was hypothesized that the core-shell PU/Cs nanofibers can be used as a potential platform for the bioactive scaffolds in tissue engineering. Further biological tests should be conducted to evaluate this platform as a three dimensional scaffold with the capabilities of releasing the bioactive molecules in a sustained manner.

  4. Spherical thin-shell wormholes and modified Chaplygin gas

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Azam, M., E-mail: msharif.math@pu.edu.pk, E-mail: azammath@gmail.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)

    2013-05-01

    The purpose of this paper is to construct spherical thin-shell wormhole solutions through cut and paste technique and investigate the stability of these solutions in the vicinity of modified Chaplygin gas. The Darmois-Israel formalism is used to formulate the stresses of the surface concentrating the exotic matter. We explore the stability of the wormhole solutions by using the standard potential method. We conclude that there exist more stable as well as unstable solutions than the previous study with generalized Chaplygin gas [19].

  5. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.

    Science.gov (United States)

    El-Naggar, Mehrez E; Shaheen, Tharwat I; Fouda, Moustafa M G; Hebeish, Ali A

    2016-01-20

    Herein, we present a new approach for the synthesis of gold nanoparticles (AuNPs) individually and as bimetallic core-shell nanoparticles (AgNPs-AuNPs). The novelty of the approach is further maximized by using curdlan (CRD) biopolymer to perform the dual role of reducing and capping agents and microwave-aided technology for affecting the said nanoparticles with varying concentrations in addition to those affected by precursor concentrations. Thus, for preparation of AuNPs, curdlan was solubilized in alkali solution followed by an addition of tetrachloroauric acid (HAuCl4). The curdlan solution containing HAuCl4 was then subjected to microwave radiation for up to 10 min. The optimum conditions obtained with the synthesis of AuNPs were employed for preparation of core-shell silver-gold nanoparticles by replacing definite portion of HAuCl4 with an equivalent portion of silver nitrate (AgNO3). The portion of AgNO3 was added initially and allowed to be reduced by virtue of the dual role of curdlan under microwave radiation. The corresponding portion of HAuCl4 was then added and allowed to complete the reaction. Characterization of AuNPs and AgNPs-AuNPs core-shell were made using UV-vis spectra, TEM, FTIR, XRD, zeta potential, and AFM analysis. Accordingly, strong peaks of the colloidal particles show surface plasmon resonance (SPR) at maximum wavelength of 540 nm, proving the formation of well-stabilized gold nanoparticles. TEM investigations reveal that the major size of AuNPs formed at different Au(+3)concentration lie below 20 nm with narrow size distribution. Whilst, the SPR bands of AgNPs-AuNPs core-shell differ than those obtained from original AgNPs (420 nm) and AuNPs (540 nm). Such shifting due to SPR of Au nanoshell deposited onto AgNPs core was significantly affected by the variation of bimetallic ratios applied. TEM micrographs show variation in contrast between dark silver core and the lighter gold shell. Increasing the ratio of silver ions leads to

  6. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas.

    Science.gov (United States)

    Song, Han; Luo, Zhijie; Liu, Mingyao; Zhang, Gang; Peng, Wang; Wang, Boyi; Zhu, Yong

    2018-05-06

    In the present work, centrifugal deposited Au-Pd core-shell nanoparticle (NP) film was proposed for the room-temperature optical detection of hydrogen gas. The size dimension of 44, 48, 54, and 62 nm Au-Pd core-shell nanocubes with 40 nm Au core were synthesized following a solution-based seed-mediated growth method. Compared to a pure Pd NP, this core-shell structure with an inert Au core could decrease the H diffusion length in the Pd shell. Through a modified centrifugal deposition process, continues film samples with different core-shell NPs were deposited on 10 mm diameter quartz substrates. Under various hydrogen concentration conditions, the optical response properties of these samples were characterized by an intensity-based optical fiber bundle sensor. Experimental results show that the continues film that was composed of 62 nm Au-Pd core-shell NPs has achieved a stable and repeatable reflectance response with low zero drift in the range of 4 to 0.1% hydrogen after a stress relaxation mechanism at first few loading/unloading cycles. Because of the short H diffusion length due to the thinner Pd shell, the film sample composed of 44 nm Au-Pd NPs has achieved a dramatically decreased response/recovery time to 4 s/30 s. The experiments present the promising prospect of this simple method to fabricate optical hydrogen sensors with controllable high sensitivity and response rate at low cost.

  7. Some Differential Geometric Relations in the Elastic Shell

    Directory of Open Access Journals (Sweden)

    Xiaoqin Shen

    2016-01-01

    Full Text Available The theory of the elastic shells is one of the most important parts of the theory of solid mechanics. The elastic shell can be described with its middle surface; that is, the three-dimensional elastic shell with equal thickness comprises a series of overlying surfaces like middle surface. In this paper, the differential geometric relations between elastic shell and its middle surface are provided under the curvilinear coordinate systems, which are very important for forming two-dimensional linear and nonlinear elastic shell models. Concretely, the metric tensors, the determinant of metric matrix field, the Christoffel symbols, and Riemann tensors on the three-dimensional elasticity are expressed by those on the two-dimensional middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell. Thus, the novelty of this work is that we can further split three-dimensional mechanics equations into two-dimensional variation problems. Finally, two kinds of special shells, hemispherical shell and semicylindrical shell, are provided as the examples.

  8. Analysis of the results of serum tumor markers in patients with multiple abnormal concentrations in bone imagines

    International Nuclear Information System (INIS)

    Wu Xingyong; Jiang Min; Geng Jun; Hu Desheng; He Jian; Fan Xiandong

    2008-01-01

    To study the serum tumor markers in patients with multiple abnormal concentration of radiopharmaceuticals in whole body bone imagine, 73 patients with malignancy were under a whole body bone scan. The serum tumor markers levels of AFP, CEA, CA125, CA15-3 and CA19-9 were measured in 73 patients and 37 normal people. The results showed that there was significant difference only on serum CEA level (P<0.005), and no significant difference on CA125, CA15-3 and CA19-9 levels (P<0.05) between 36 patients with multiple abnormal concentration and the others with normal bone imagine. The serum levels of CEA, CA125 and CA19-9 in patients were significant higher than that of normal controls (P<0.005). Combined the whole body bone scan and detection of serum tumor markers might be regarded as clinical significance for the diagnosis of bone metastases. (authors)

  9. Determination of shell energies. Nuclear deformations and fission barriers

    International Nuclear Information System (INIS)

    Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.

    1996-01-01

    We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)

  10. New approach to multishell calculations in multiple angular momentum coupling schemes

    International Nuclear Information System (INIS)

    Chen, J.; Novoselsky, A.; Vallieres, M.; Gilmore, R.

    1989-01-01

    The procedure developed recently to calculate single-shell wave functions and matrix elements for multiple angular momentum shell-model calculations is extended to the multishell case. This was based on a factorization procedure introduced by Jahn. As a consequence of the factorization, coefficients of fractional parentage between states of arbitrary symmetry must be constructed to build up single-shell N-particle states from single-shell N-1-particle states. Multishell N-particle states are built up recursively from multishell N-1-particle states by using outer-product isoscalar factors. Symmetrized multishell states in one angular momentum subspace are combined with states of conjugate symmetry in a second angular momentum subspace to construct fermion wave functions. This is done using inner-product isoscalar factors. The coefficients of fractional parentage, outer-product isoscalar factors, and inner-product isoscalar factors are computed recursively using a matrix diagonalization algorithm. Shell-model matrix elements are constructed from these factors by using a new sum over path overlaps method. This computational procedure involving factorization is substantially more efficient than computational procedures which do not exploit factorization

  11. Lessons Not Learned. The Other Shell Report 2004

    International Nuclear Information System (INIS)

    Harden, M.; Walker, N.; Griffiths, H.; Verweij, M.

    2005-06-01

    The third alternative Shell Corporate Social Responsibility (CSR) report is presented on behalf of several of the many communities that live on Shell's 'fencelines', next to Shell's refineries, depots and pipelines. This 2004 report builds on reports of the past two years 'Failing the Challenge', (2002) and 'Behind the Shine' (2003) which chronicled Shell's impacts around the world. It gives critical updates of Shell's performance over the past year

  12. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng; Deng, Renren; Wang, Juan; Wang, Qingxiao; Han, Yu; Zhu, Haomiao; Chen, Xueyuan; Liu, Xiaogang

    2011-01-01

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  13. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng

    2011-10-23

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  14. Study of the U and Th series in Crassostrea mangle shell

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Wellington M.; Damatto, Sandra R.; Silva, Paulo S.C., E-mail: wellington.m@usp.br, E-mail: damatto@ipen.br, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Simone, Luiz R.L.; Amaral, Vanessa S., E-mail: lrsimone@usp.br, E-mail: vanessamolusco@gmail.com [Universidade de Sao Paulo (MZ/USP), Sao Paulo, SP (Brazil). Museu de Zoologia

    2015-07-01

    Foraminifera, corals and mollusks shells have been used as proxies for environmental, paleoenvironmental and climatic change studies in marine system by using elemental and isotopic ratios as recorder of such events. Nevertheless, there is little information available on the U and Th radionuclides decay series applied on those fields. In this sense, the objective of this paper was to evaluate the activity concentrations of the U and Th nuclide decay series in Crassostrea mangle shell samples as a function of the geographic location. Samples from Sao Paulo, Parana, Alagoas, Rio Grande do Norte and Pernambuco states were analyzed by Neutron Activation Analysis and Gross Alpha and Beta Counting. Statistical analysis applied to the obtained results allowed differencing samples coming from Sao Paulo from that coming from Parana. (author)

  15. Study of the U and Th series in Crassostrea mangle shell

    International Nuclear Information System (INIS)

    Farias, Wellington M.; Damatto, Sandra R.; Silva, Paulo S.C.; Simone, Luiz R.L.; Amaral, Vanessa S.

    2015-01-01

    Foraminifera, corals and mollusks shells have been used as proxies for environmental, paleoenvironmental and climatic change studies in marine system by using elemental and isotopic ratios as recorder of such events. Nevertheless, there is little information available on the U and Th radionuclides decay series applied on those fields. In this sense, the objective of this paper was to evaluate the activity concentrations of the U and Th nuclide decay series in Crassostrea mangle shell samples as a function of the geographic location. Samples from Sao Paulo, Parana, Alagoas, Rio Grande do Norte and Pernambuco states were analyzed by Neutron Activation Analysis and Gross Alpha and Beta Counting. Statistical analysis applied to the obtained results allowed differencing samples coming from Sao Paulo from that coming from Parana. (author)

  16. Mercury concentrations in snapping turtles (Chelydra serpentina) correlate with environmental and landscape characteristics.

    Science.gov (United States)

    Turnquist, Madeline A; Driscoll, Charles T; Schulz, Kimberly L; Schlaepfer, Martin A

    2011-10-01

    Mercury (Hg) deposited onto the landscape can be transformed into methylmercury (MeHg), a neurotoxin that bioaccumulates up the aquatic food chain. Here, we report on Hg concentrations in snapping turtles (Chelydra serpentina) across New York State, USA. The objectives of this study were to: (1) test which landscape, water, and biometric characteristics correlate with total Hg (THg) concentrations in snapping turtles; and (2) determine whether soft tissue THg concentrations correlate with scute (shell) concentrations. Forty-eight turtles were sampled non-lethally from ten lakes and wetlands across New York to observe patterns under a range of ecosystem variables and water chemistry conditions. THg concentrations ranged from 0.041 to 1.50 μg/g and 0.47 to 7.43 μg/g wet weight of muscle tissue and shell, respectively. The vast majority of mercury (~94%) was in the MeHg form. Sixty-one percent of turtle muscle samples exceeded U.S. Environmental Protection Agency (U.S. EPA) consumption advisory limit of 0.3 μg Hg/g for fish. Muscle THg concentrations were significantly correlated with sulfate in water and the maximum elevation of the watershed. Shell THg concentrations were significantly correlated with the acid neutralizing capacity (ANC) of water, the maximum elevation of the watershed, the percent open water in the watershed, the lake to watershed size, and various forms of atmospheric Hg deposition. Thus, our results demonstrate that THg concentrations in snapping turtles are spatially variable, frequently exceed advisory limits, and are significantly correlated with several landscape and water characteristics.

  17. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    NARCIS (Netherlands)

    Schilthuizen, M.

    2003-01-01

    Background: Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not

  18. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    Science.gov (United States)

    Sangeetha, P.; Jeganathan, K.; Ramakrishnan, V.

    2013-06-01

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E2 (high) and A1 (LO) phonon mode of InN core at 490 and 590 cm-1 respectively and E2 (high) phonon mode of GaN shell at 573 cm-1. The free carrier concentration of InN core is found to be low in the order ˜ 1016 cm-3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ˜15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ˜0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E2 (high) phonon mode of GaN shell at 573 cm-1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  19. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111 substrate

    Directory of Open Access Journals (Sweden)

    P. Sangeetha

    2013-06-01

    Full Text Available The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE on Si (111 substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E2 (high and A1 (LO phonon mode of InN core at 490 and 590 cm−1 respectively and E2 (high phonon mode of GaN shell at 573 cm−1. The free carrier concentration of InN core is found to be low in the order ∼ 1016 cm−3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ∼15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ∼0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E2 (high phonon mode of GaN shell at 573 cm−1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  20. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    International Nuclear Information System (INIS)

    Sangeetha, P.; Ramakrishnan, V.; Jeganathan, K.

    2013-01-01

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E 2 (high) and A 1 (LO) phonon mode of InN core at 490 and 590 cm −1 respectively and E 2 (high) phonon mode of GaN shell at 573 cm −1 . The free carrier concentration of InN core is found to be low in the order ∼ 10 16 cm −3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ∼15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ∼0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E 2 (high) phonon mode of GaN shell at 573 cm −1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  1. Shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Hennekes, B. [Shell Global Solutions (US) Inc. (United States). Technology Marketing

    2002-07-01

    The presentation, on which 17 slides/overheads are included in the papers, explained the principles of the Shell coal gasification process and the methods incorporated for control of sulfur dioxide, nitrogen oxides, particulates and mercury. The economics of the process were discussed. The differences between gasification and burning, and the differences between the Shell process and other processes were discussed.

  2. Cylindrical thin-shell wormholes

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2004-01-01

    A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity

  3. Serum uric acid concentrations are directly associated with the presence of benign multiple sclerosis.

    Science.gov (United States)

    Simental-Mendía, Esteban; Simental-Mendía, Luis E; Guerrero-Romero, Fernando

    2017-09-01

    It has been reported that patients with multiple sclerosis (MS) exhibit lower serum uric acid levels; however, the association between uric acid concentrations and benign MS (BMS) has not been assessed. Hence, the objective of the present study was to determine whether the serum concentrations of uric acid are associated with the presence of BMS. Men and non-pregnant women over 16 years of age with diagnosis of MS were enrolled in a cross-sectional study. Expanded Disability Status Scale score acid were exclusion criteria. According to subtype of disease, the eligible patients were allocated into groups with BMS and other varieties of MS. A logistic regression analysis was conducted in order to evaluate the association between serum concentrations of uric acid and BMS. A total of 106 patients were included, 39 in the group with BMS and 67 in the group with other varieties of MS. The logistic regression analysis adjusted by age, sex, and disease duration showed that increased concentrations of uric acid, indeed within the physiological levels, are significantly associated with the presence of BMS (OR = 2.60; 95% CI: 1.55-4.38, p uric acid, indeed within the physiological range, are likely linked to the presence of BMS.

  4. Standardized CSR and climate performance: why is Shell willing, but Hydro reluctant?; Shell; Hydro

    Energy Technology Data Exchange (ETDEWEB)

    Boasson, Elin Lerum; Wettestad, Joergen

    2007-06-15

    This report aims to contribute to the ongoing discussion concerning whether CSR merely serves to streamline company rhetoric or also has an influence on actual efforts. We discuss the tangible effects of CSR instruments on the climate-related rules and performances of the two different oil companies Hydro and Shell. First we explore whether similar CSR instruments lead to similar climate-related rules and practices in the two companies. Both Hydro and Shell adhere to the Global Compact (GC), the Global Reporting Initiative (GRI), the Carbon Disclosure Project (CDP) and the Global Gas Flaring Reduction Public-Private Partnership (GGFR). The report concludes that the GC has not rendered any tangible effects in either of the companies. Concerning the other instruments, Hydro has only followed the instrument requirements that fit their initial approach, and refrained from all deviating requirements. Shell has been more malleable, but we have noted few effects on the actual emissions and business portfolio resulting from the instrument adherence. Second, we assess how the differing results of the similar CSR portfolio may be explained. The reluctant attitude of the leaders in Hydro and the strong CSR motivation of Shell's executives result in significant differences. Hydro executives are able to constrain the effects of the instrument adherence. With Shell we note the opposite pattern: Its leaders promoted the instruments to be translated into internal rules, but a general lack of hierarchical structures hinders them from governing the conduct of various sub-organisations. The very diversity of the Shell culture helps to explain why the efforts of its executives have resulted in limited impact. The strength of the Hydro culture makes the corporation resistant to the instruments. Moreover, Hydro is strikingly shielded by virtue of its strong position in Norway. In contrast, Shell is more strongly affected by the global field of petroleum and the global field of CSR

  5. The influence of MOVPE growth conditions on the shell of core-shell GaN microrod structures

    Science.gov (United States)

    Schimpke, Tilman; Avramescu, Adrian; Koller, Andreas; Fernando-Saavedra, Amalia; Hartmann, Jana; Ledig, Johannes; Waag, Andreas; Strassburg, Martin; Lugauer, Hans-Jürgen

    2017-05-01

    A core-shell geometry is employed for most next-generation, three-dimensional opto-electric devices based on III-V semiconductors and grown by metal organic vapor phase epitaxy (MOVPE). Controlling the shape of the shell layers is fundamental for device optimization, however no detailed analysis of the influence of growth conditions has been published to date. We study homogeneous arrays of gallium nitride core-shell microrods with height and diameter in the micrometer range and grown in a two-step selective area MOVPE process. Changes in shell shape and homogeneity effected by deliberately altered shell growth conditions were accurately assessed by digital analysis of high-resolution scanning electron microscope images. Most notably, two temperature regimes could be established, which show a significantly different behavior with regard to material distribution. Above 900 °C of wafer carrier temperature, the shell thickness along the growth axis of the rods was very homogeneous, however variations between vicinal rods increase. In contrast, below 830 °C the shell thickness is higher close to the microrod tip than at the base of the rods, while the lateral homogeneity between neighboring microrods is very uniform. This temperature effect could be either amplified or attenuated by changing the remaining growth parameters such as reactor pressure, structure distance, gallium precursor, carrier gas composition and dopant materials. Possible reasons for these findings are discussed with respect to GaN decomposition as well as the surface and gas phase diffusion of growth species, leading to an improved control of the functional layers in next-generation 3D V-III devices.

  6. Sensitive electrochemical sensor of tryptophan based on Ag-C core–shell nanocomposite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Mao Shuxian; Li Weifeng; Long Yumei; Tu Yifeng; Deng, Anping

    2012-01-01

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: ► The electrochemical behavior of Ag-C core–shell nanocomposite was firstly proposed. ► Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. ► The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. ► The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core–shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 × 10 −7 to 1.0 × 10 −4 M with a detection limit of 4.0 × 10 −8 M (S/N = 3). In addition, the proposed electrode was applied for the determination of Trp concentration in real samples and satisfactory results were obtained. The technique offers

  7. Statistical characterization report for Single-Shell Tank 241-T-107

    International Nuclear Information System (INIS)

    Cromar, R.D.; Wilmarth, S.R.; Jensen, L.

    1994-01-01

    This report contains the results of the statistical analysis of data from three core samples obtained from single-shell tank 241-T-107 (T-107). Four specific topics are addressed. They are summarized below. Section 3.0 contains mean concentration estimates of analytes found in T-107. The estimates of open-quotes errorclose quotes associated with the concentration estimates are given as 95% confidence intervals (CI) on the mean. The results given are based on three types of samples: core composite samples, core segment samples, and drainable liquid samples. Section 4.0 contains estimates of the spatial variability (variability between cores and between segments) and the analytical variability (variability between the primary and the duplicate analysis). Statistical tests were performed to test the hypothesis that the between cores and the between segments spatial variability is zero. The results of the tests are as follows. Based on the core composite data, the between cores variance is significantly different from zero for 35 out of 74 analytes; i.e., for 53% of the analytes there is no statistically significant difference between the concentration means for two cores. Based on core segment data, the between segments variance is significantly different from zero for 22 out of 24 analytes and the between cores variance is significantly different from zero for 4 out of 24 analytes; i.e., for 8% of the analytes there is no statistically significant difference between segment means and for 83% of the analytes there is no difference between the means from the three cores. Section 5.0 contains the results of the application of multiple comparison methods to the core composite data, the core segment data, and the drainable liquid data. Section 6.0 contains the results of a statistical test conducted to determine the 222-S Analytical Laboratory's ability to homogenize solid core segments

  8. Topological optimization of opening fence brackets on ring-stiffened cylindrical shell

    Directory of Open Access Journals (Sweden)

    SONG Xiaofei

    2018-02-01

    Full Text Available [Objectives] Stress concentration is prone to take place at connections between the opening fence and ring ribs of a ring-stiffened cylindrical shell under external pressure. [Methods] In this paper, a topological optimization method for the brackets that connect the fence to the ring ribs is proposed in order to effectively reduce the local high stress in the brackets. The sub-model technique is used to analyze the stress of the connecting brackets. In the design, the connection brackets are used as design variables and the stress of the shell, fence and ribs are used as constraints. The maximum stress of the bracket is minimized as the objective function. The topology optimization results are engineered to obtain the final form of the brackets. [Results] The calculation results show that brackets of which the panel is partially widened can effectively reduce the stress concentration position of the opening fence transverse offset if the side of the bracket away from the longitudinal section is longer; the opening fence is offset relative to the brackets, and the symmetrical design of the brackets is feasible. [Conclusions] This research provides a reference for similar structural design.

  9. Iron/iron oxide core-shell nanoclusters for biomedical applications

    International Nuclear Information System (INIS)

    Qiang You; Antony, Jiji; Sharma, Amit; Nutting, Joseph; Sikes, Daniel; Meyer, Daniel

    2006-01-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. Most magnetic particles or beads currently used in biomedical applications are based on ferromagnetic iron oxides with very low specific magnetic moments of about 20-30 emu/g. Here we report a new approach to synthesize monodispersed core-shell nanostructured clusters with high specific magnetic moments above 200 emu/g. Iron nanoclusters with monodispersive size of diameters from 2 nm to 100 nm are produced by our newly developed nanocluster source and go to a deposition chamber, where a chemical reaction starts, and the nanoclusters are coated with iron oxides. HRTEM Images show the coatings are very uniform and stable. The core-shell nanoclusters are superparamagnetic at room temperature for sizes less than 15 nm, and then become ferromagnetic when the cluster size increases. The specific magnetic moment of core-shell nanoclusters is size dependent, and increases rapidly from about 80 emu/g at the cluster size of around 3 nm to over 200 emu/g up to the size of 100 nm. The use of high magnetic moment nanoclusters for biomedical applications could dramatically enhance the contrast for MRI, reduce the concentration of magnetic particle needs for cell separation, or make drug delivery possible with much lower magnetic field gradients

  10. Electron spin resonance dating of shells from the sambaqui (shell mound) Capelinha, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Kinoshita, A.; Figuty, L.; Baffa, O.

    2006-01-01

    Capelinha is a fluvial sambaqui (Brazilian Shell Mound) located in the Ribeira Valley in the State of Sao Paulo that is being studied. It is one of the oldest sambaquis located along a river dated so far in this region. The use of ESR to date other shells stimulated our group to apply this method to the Capelinha site. Shells from land snails (Megalobulimus sp.) obtained in two levels of excavations were analyzed; one of them was in contact with a skeleton that was dated by C-14. The archaeological doses obtained were (8.05±0.07) Gy and (9.50±0.03) Gy. Since the last site was previously dated by C-14 (Beta -Analytics, Beta 153988) giving: 8860 +/- 60 years BP (conventional age) and 10180 to 9710 years BP (calibrated age), the archaeological dose found for this shell was used to determine the local rate of (0.93 to 0.98) mGy/year, that aggress with other surveys done in the region. Using this dose rate the age of the second shell was found to be 8.14 to 8.73 ky BP that agrees with the stratigraphy of the site. (author)

  11. Soft template synthesis of yolk/silica shell particles.

    Science.gov (United States)

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-06

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.

  12. WHAT IS THE SHELL AROUND R CORONAE BOREALIS?

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, Edward J.; Clayton, Geoffrey C.; Marcello, Dominic C. [Dept. of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Lockman, Felix J., E-mail: emonti2@lsu.edu, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: dmarce1@tigers.lsu.edu, E-mail: jlockman@nrao.edu [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States)

    2015-07-15

    The hydrogen-deficient, carbon-rich R Coronae Borealis (RCB) stars are known for being prolific producers of dust which causes their large iconic declines in brightness. Several RCB stars, including R Coronae Borealis (R CrB), itself, have large extended dust shells seen in the far-infrared. The origin of these shells is uncertain but they may give us clues to the evolution of the RCB stars. The shells could form in three possible ways. (1) They are fossil Planetary Nebula (PN) shells, which would exist if RCB stars are the result of a final, helium-shell flash, (2) they are material left over from a white-dwarf (WD) merger event which formed the RCB stars, or (3) they are material lost from the star during the RCB phase. Arecibo 21 cm observations establish an upper limit on the column density of H I in the R CrB shell implying a maximum shell mass of ≲0.3 M{sub ☉}. A low-mass fossil PN shell is still a possible source of the shell although it may not contain enough dust. The mass of gas lost during a WD merger event will not condense enough dust to produce the observed shell, assuming a reasonable gas-to-dust ratio. The third scenario where the shell around R CrB has been produced during the star’s RCB phase seems most likely to produce the observed mass of dust and the observed size of the shell. But this means that R CrB has been in its RCB phase for ∼10{sup 4} years.

  13. Studies on Freezing of Shell-Fish-I

    Science.gov (United States)

    Song, Dae Jin; Konagaya, Shiro; Tanaka, Takeo

    Ark shell, Anadara broughtonii(Shrenk), are commonly eaten raw or under-done in Korea, Japan, and East Asian countries. Along with a recent remarkable development of culture fisheries, Ark shell has become one of the commercially important shell-fish species. Transportation and storage of large quantities of shell-fish is becoming increasingly important. This work was begun with this background to make clear the effects of temperature and length of storage time on the quality of frozen stored ark shell. Results are as follows : (1) There was little chang in amounts of free and expressible drip from ark shell flesh frozen stored at -40°CdegC for 6 months. Water holding capacity of the same meat was almost constant over 6 months storage. However, a mounts of both drip increased markedly after 2 months storage at -10°C. (2) Protein extractibility of ark shell flesh tended to decrease gradually from the begining when stored at -10°C, while at -20°C, the protein extractibility was stable for 3 months before decreasing gradually. However at -40°C, the protein extractibility was stable for 6 months. It was found that paramyosin was very stable even when the ark shell was frozen stored at -10°C. (3) It was observed that ark shell flesh became tough when frozen. The toughness of ark shell flesh as measured by an instrument increased with frozen storage time and increased temperature. (4) In the smooth muscle, it was histologically observed that initial small ice crystals formed between muscle bundles grew larger during frozen storage. It was found that the higher the storage temperature, the bigger the ice crystals formed. Aggregation of some muscle fiber and empty spaces between muscle bundles were observd after thawed muscles frozen stored at relatively high temperature such as -10°C.

  14. An ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anish, E-mail: anish@igcar.gov.in; Rajkumar, K.V.; Sharma, Govind K.; Dhayalan, R.; Jayakumar, T.

    2015-02-15

    Highlights: • We demonstrate a novel ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast breeder reactor. • The methodology comprises of the inspection of shell weld immersed in sodium from the outside surface of the main vessel using ultrasonic guided wave. • The formation and propagation of guided wave modes are validated by finite element simulation of the inspection methodology. • A defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably using the developed methodology. - Abstract: The paper presents a novel ultrasonic methodology developed for in-service inspection (ISI) of shell weld of core support structure of main vessel of 500 MWe prototype fast breeder reactor (PFBR). The methodology comprises of the inspection of shell weld immersed in sodium from the outsider surface of the main vessel using a normal beam longitudinal wave ultrasonic transducer. Because of the presence of curvature in the knuckle region of the main vessel, the normal beam longitudinal wave enters the support shell plate at an angle and forms the guided waves by mode conversion and multiple reflections from the boundaries of the shell plate. Hence, this methodology can be used to detect defects in the shell weld of the core support structure. The successful demonstration of the methodology on a mock-up sector made of stainless steel indicated that an artificial defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably.

  15. Atomistic tight-binding computations of the structural and optical properties of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals

    Science.gov (United States)

    Sukkabot, Worasak

    2018-05-01

    A study of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals is carried out using atomistic tight-binding theory and the configuration interaction method to provide information for applications in bioimaging, biolabeling, display devices and near-infrared electronic instruments. The calculations yield the dependences of the internal and external passivated shells on the natural behaviours of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals. The reduction of the optical band gaps is observed with increasing numbers of monolayers in the external ZnS shell due to quantum confinement. Interestingly, the optical band gaps of CdTe/CdS/ZnS core/shell/shell nanocrystals are greater than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. In the presence of an external ZnS-coated shell, electron-hole wave function overlaps, oscillation strengths, ground-state exchange energies and Stokes shift are improved, whereas ground-state coulomb energies and fine-structure splitting are reduced. The oscillation strengths, Stokes shift and fine-structure splitting are reduced with the increase in external ZnS shell thickness. The oscillation strengths, Stokes shift and fine-structure splitting of CdTe/CdS/ZnS core/shell/shell nanocrystals are larger than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. Reduction of the atomistic electron-hole interactions is observed with increasing external ZnS shell size. The strong electron-hole interactions are more probed in CdTe/CdS/ZnS core/shell/shell nanocrystals than in CdTe/CdSe/ZnS core/shell/shell nanocrystals.

  16. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    Directory of Open Access Journals (Sweden)

    A. Fedaravicius

    2007-01-01

    Full Text Available The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warhead must be determined, and the problem of internal ballistics – where the design of the cartridge and the ballistic barrel must be performed.

  17. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source.

    Science.gov (United States)

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun

    2011-06-10

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 °C for 24 h by using a P source of P(N(CH(3))(2))(3). The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  18. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source

    International Nuclear Information System (INIS)

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun

    2011-01-01

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 deg. C for 24 h by using a P source of P(N(CH 3 ) 2 ) 3 . The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  19. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source

    Science.gov (United States)

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun

    2011-06-01

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 °C for 24 h by using a P source of P(N(CH3)2)3. The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  20. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun, E-mail: hyang@hongik.ac.kr [Department of Materials Science and Engineering, Hongik University, Seoul 121-791 (Korea, Republic of)

    2011-06-10

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 deg. C for 24 h by using a P source of P(N(CH{sub 3}){sub 2}){sub 3}. The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  1. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Science.gov (United States)

    Guo, Kuo; Haikal, Ghadir

    2017-11-01

    The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  2. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Directory of Open Access Journals (Sweden)

    Guo Kuo

    2017-11-01

    Full Text Available The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love plate and thick (Reissner-Mindlin plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  3. Defect-tuning exchange bias of ferromagnet/antiferromagnet core/shell nanoparticles by numerical study

    International Nuclear Information System (INIS)

    Mao Zhongquan; Chen Xi; Zhan Xiaozhi

    2012-01-01

    The influence of non-magnetic defects on the exchange bias (EB) of ferromagnet (FM)/antiferromagnet (AFM) core/shell nanoparticles is studied by Monte Carlo simulations. It is found that the EB can be tuned by defects in different positions. Defects at both the AFM and FM interfaces reduce the EB field while they enhance the coercive field by decreasing the effective interface coupling. However, the EB field and the coercive field show respectively a non-monotonic and a monotonic dependence on the defect concentration when the defects are located inside the AFM shell, indicating a similar microscopic mechanism to that proposed in the domain state model. These results suggest a way to optimize the EB effect for applications. (paper)

  4. Structural shell analysis understanding and application

    CERN Document Server

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  5. Thermoluminescence analysis of irradiated oyster shells

    International Nuclear Information System (INIS)

    Cruz-Zaragoza, E.; Marcazzó, J.; Della Monaca, S.; Boniglia, C.; Gargiulo, R.; Bortolin, E.

    2012-01-01

    This paper reports the thermoluminescence (TL) analysis performed on the oyster shells powder. TL response of 60 Co gamma-rays irradiated samples were studied in the range from 80 Gy to 8 kGy doses. TL signal of irradiated shell powder was higher as compared to the unirradiated control samples, which allowed to identify the irradiated oysters. Results show that the oyster shells have good TL properties and can be useful for the identification of irradiated seafood as well as for the evaluation of the treatment dose. - Highlights: ► TL properties of irradiated oyster shell powder were studied. ► The SEM analysis shows that several elements are present in oyster shell powder. ► Calcite is the main component in the samples and β-calcite is also present. ► Following the European Standard EN 1788, the irradiated oyster can be identified. ► Determination of absorbed dose is possible by performing a preheat treatment.

  6. A shell-resolved analysis of preferential solvation of coffee ingredients in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate

    Science.gov (United States)

    Zeindlhofer, Veronika; Berger, Magdalena; Steinhauser, Othmar; Schröder, Christian

    2018-05-01

    Ionic liquids increase the solubility of various coffee ingredients in aqueous solution but little is known about the underlying mechanism. Kirkwood-Buff integrals as well as the potential of mean force indicate that the imidazolium cations are accumulated at the surface of the solutes, removing water molecules from the solute surface. Although hydrogen bonding of the anions to hydroxy groups of the solutes can be detected, their concentration at the surface is less enhanced compared to the cations. The decomposition into solvation shells by Voronoi tessellation reveals that structural features are only observed in the first solvation shell. Nevertheless, the depletion of water and the excess concentration of the ions and, in particular, of the cations are visible in the next solvation shells as well. Therefore, classical arguments of hydrotropic theory fail to explain this behavior.

  7. Heavy metal concentrations in the razor clams (Solen spp.) from Muara Tebas, Sarawak

    International Nuclear Information System (INIS)

    Devagi Kanakaraju; Connie Jios; Shabdin Mohd Long

    2008-01-01

    The razor clams (Solen spp) or locally known as ambal in Sarawak collected from Muara Tebas were studied for their heavy metals contents in tissues and shells. Sediment samples were also tested for their metal contents. Concentrations of Pb, Fe, Zn, Cu, Cd and Mn were determined by using Flame Atomic Absorption Spectrophotometer (FAAS). Tissues of razor clams showed highest concentrations of Fe and Zn, while shells accumulated highest concentrations of Pb and Mn. The lowest metal concentrations found were Cu and Cd. In general, the levels of metals in ambal were within the permissible limit recommended by international standard, the Food and Agricultural Organization (FAO). However, the study revealed that the sediments at Muara Tebas fall under the category of slightly polluted (for Pb) when compared to the guidelines suggested by United States Environment Protection Agency (USEPA). (author)

  8. MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles

    Science.gov (United States)

    Mao, Chengyu; Kong, Aiguo; Wang, Yuan; Bu, Xianhui; Feng, Pingyun

    2015-06-01

    The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst.The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst. Electronic supplementary information (ESI) available: Material synthesis and elemental analysis, electrochemistry measurements, and additional figures. See DOI: 10.1039/c5nr02346g

  9. Selective degradation of model pollutants in the presence of core@shell TiO{sub 2}@SiO{sub 2} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nadrah, Peter, E-mail: peter.nadrah@zag.si [Slovenian National Building and Civil Engineering Institute, Dimičeva ul. 12, SI-1000 Ljubljana (Slovenia); Gaberšček, Miran [National Institute of Chemistry, Hajdrihova ul. 19, SI-1000 Ljubljana (Slovenia); Sever Škapin, Andrijana [Slovenian National Building and Civil Engineering Institute, Dimičeva ul. 12, SI-1000 Ljubljana (Slovenia)

    2017-05-31

    Highlights: • TiO{sub 2} encapsulated in mesoporous silica exhibits selective photocatalytic degradation of low-molecular-weight molecules. • Core@shell photocatalyst degrades rhodamine B in presence of fivefold mass concentration of starch, while pure TiO{sub 2} does not. • Potential use for removing water pollutants, while retaining non-harmful and beneficial macromolecules. - Abstract: Photocatalytic TiO{sub 2} degrades organic matter unselectively. However, in certain applications, such as degradation of pollutants, selectivity towards pollutants is beneficial. We synthesized core@shell TiO{sub 2}@SiO{sub 2} nanoparticles with photocatalytic activity featuring a significantly faster preferential degradation of model pollutant (rhodamine B) in presence of abundant concentration of natural organic matter compared to pure TiO{sub 2} (P25). The material’s photocatalytic activity was tested in aqueous medium. The selectivity of prepared effect of core@shell materials is explained based on transmission electron microscopy, nitrogen adsorption, X-ray powder diffraction and zeta potential measurements.

  10. An equations of motion approach for open shell systems

    International Nuclear Information System (INIS)

    Yeager, D.L.; McKoy, V.

    1975-01-01

    A straightforward scheme is developed for extending the equations of motion formalism to systems with simple open shell ground states. Equations for open shell random phase approximation (RPA) are given for the cases of one electron outside of a closed shell in a nondegenerate molecular orbital and for the triplet ground state with two electrons outside of a closed shell in degenerate molecular orbitals. Applications to other open shells and extension of the open shell EOM to higher orders are both straightforward. Results for the open shell RPA for lithium atom and oxygen molecule are given

  11. Construction of carbon nanoflakes shell on CuO nanowires core as enhanced core/shell arrays anode of lithium ion batteries

    International Nuclear Information System (INIS)

    Cao, F.; Xia, X.H.; Pan, G.X.; Chen, J.; Zhang, Y.J.

    2015-01-01

    Highlights: • CuO/C core/shell nanowire arrays are prepared by electro-deposition + ALD method. • Carbon shell is favorable for structural stability. • CuO/C core/shell arrays show enhanced cycle stability and high capacity. - Abstract: Tailored metal oxide/carbon composite structures have attracted great attention due to potential synergistic effects and enhanced properties. In this work, novel CuO/C core/shell nanowire arrays are prepared by the combination of electro-deposition of CuO and atomic-layer-deposition-assisted formation of carbon nanoflakes shell. The CuO nanowires with diameters of ∼200 nm are homogenously coated by carbon nanoflakes shell. When evaluated as anode materials for lithium ion batteries (LIBs), compared to the unmodified CuO nanowire arrays, the CuO/C core/shell nanowire arrays exhibit improved electrochemical performances with higher capacity, better electrochemical reactivity and high-rate capability as well as superior cycling life (610 mAh g"−"1 at 0.5C after 290 cycles). The enhanced electrochemical performance is mainly attributed to the introduction of carbon flake shell in the core/shell nanowire arrays structure, which provides higher active material-electrolyte contact area, improved electrical conductivity, and better accommodation of volume change. The proposed method provides a new way for fabrication of high-performance metal oxides anodes of LIBs.

  12. Nuclear reactor installation with outer shell enclosing a primary pressure vessel

    International Nuclear Information System (INIS)

    1975-01-01

    The high temperature nuclear reactor installation described includes a fluid cooled nuclear heat source, a primary pressure vessel containing the heat source, an outer shell enclosing the primary pressure vessel and acting as a secondary means of containment for this vessel against outside projectiles. Multiple auxiliary equipment points are arranged outside the outer shell which comprises a part of a lower wall around the primary pressure vessel, an annular part integrated in the lower wall and extending outwards as from this wall and an upper part integrated in the annular part and extending above this annular part and above the primary pressure vessel. The annular part and the primary pressure vessel are formed with vertical penetrations which can be closed communicating respectively with the auxiliary equipment points and with inside the pressure vessel whilst handling gear is provided in the upper part for vertically raising reactor components through these penetrations and for transporting them over the annular part and over the primary pressure vessel [fr

  13. Recent shell-model results for exotic nuclei

    Directory of Open Access Journals (Sweden)

    Utsuno Yusuke

    2014-03-01

    Full Text Available We report on our recent advancement in the shell model and its applications to exotic nuclei, focusing on the shell evolution and large-scale calculations with the Monte Carlo shell model (MCSM. First, we test the validity of the monopole-based universal interaction (VMU as a shell-model interaction by performing large-scale shell-model calculations in two different mass regions using effective interactions which partly comprise VMU. Those calculations are successful and provide a deeper insight into the shell evolution beyond the single-particle model, in particular showing that the evolution of the spin-orbit splitting due to the tensor force plays a decisive role in the structure of the neutron-rich N ∼ 28 region and antimony isotopes. Next, we give a brief overview of recent developments in MCSM, and show that it is applicable to exotic nuclei that involve many valence orbits. As an example of its applications to exotic nuclei, shape coexistence in 32Mg is examined.

  14. Constraints for system specifications for the double-shell and single-shell tank systems

    International Nuclear Information System (INIS)

    SHAW, C.P.

    1999-01-01

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations

  15. Constraints for system specifications for the double-shell and single-shell tank systems

    Energy Technology Data Exchange (ETDEWEB)

    SHAW, C.P.

    1999-05-18

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations.

  16. Ionization of inner shells of atoms taking account of outer shell rearrangement

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    1977-01-01

    The application of the general many-body theory and methods formulated with its help, in particular, the so-called random phase approximation with exchange (RPAE) and the many-body perturbation theory (MBPT) makes possible a description of ionization processes for many outer and intermediate shells of a number of atoms. This investigation of outer- and intermediate-shell ionization by photons and electrons demonstrates the collective character of these processes and the possibility of describing them by RPAE. 28 references

  17. Fast-dissolving core-shell composite microparticles of quercetin fabricated using a coaxial electrospray process.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available This study reports on novel fast-dissolving core-shell composite microparticles of quercetin fabricated using coaxial electrospraying. A PVC-coated concentric spinneret was developed to conduct the electrospray process. A series of analyses were undertaken to characterize the resultant particles in terms of their morphology, the physical form of their components, and their functional performance. Scanning and transmission electron microscopies revealed that the microparticles had spherical morphologies with clear core-shell structure visible. Differential scanning calorimetry and X-ray diffraction verified that the quercetin active ingredient in the core and sucralose and sodium dodecyl sulfate (SDS excipients in the shell existed in the amorphous state. This is believed to be a result of second-order interactions between the components; these could be observed by Fourier transform infrared spectroscopy. In vitro dissolution and permeation studies showed that the microparticles rapidly released the incorporated quercetin within one minute, and had permeation rates across the sublingual mucosa around 10 times faster than raw quercetin.

  18. Stability of bubble nuclei through Shell-Effects

    OpenAIRE

    Dietrich, Klaus; Pomorski, Krzysztof

    1997-01-01

    We investigate the shell structure of bubble nuclei in simple phenomenological shell models and study their binding energy as a function of the radii and of the number of neutron and protons using Strutinsky's method. Shell effects come about, on the one hand, by the high degeneracy of levels with large angular momentum and, on the other, by the big energy gaps between states with a different number of radial nodes. Shell energies down to -40 MeV are shown to occur for certain magic nuclei. E...

  19. Obtainment of calcium carbonate from mussels shell

    International Nuclear Information System (INIS)

    Hamester, M.R.R.; Becker, D.

    2010-01-01

    The mussels and oyster shell are discarded at environment, and this accumulation is causing negative consequences to ecosystem. Calcium carbonate is main constituent of the shell chemical composition. Aiming to reduce environmental aggression and generate income to shellfish producer, there was the possibility of using these shells as an alternative to commercial calcium carbonate. For this physics, chemicals and thermal properties were evaluated, using X-ray fluorescence, thermogravimetric analysis, size distribution, abrasiveness and scanning electronic microscopy. The results indicate that mussels shells have an initial degradation temperature higher than commercial calcium carbonate e same lost weight behavior and 95% of shell chemical composition is calcium carbonate. The sample size distribution was influenced by grinding condition and time as well as its abrasiveness. (author)

  20. Leading singularities and off-shell conformal integrals

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, James; Duhr, Claude; Eden, Burkhard; Heslop, Paul; Pennington, Jeffrey; Smirnov, Vladimir A.

    2013-08-29

    The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In our paper we evaluate the unknown integrals, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of leading singularities to obtain the rational coefficients, the symbol — with an appropriate ansatz for its structure — as a means of characterising multiple polylogarithms, and the technique of asymptotic expansion of Feynman integrals to obtain the integrals in certain limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then lift to find the corresponding polylogarithmic functions. The final formulae are numerically confirmed. Furthermore, we develop techniques that can be applied more generally, and we illustrate this by analytically evaluating one of the integrals contributing to the same four-point function at four loops. This example shows a connection between the leading singularities and the entries of the symbol.

  1. A design chart for long vacuum pipes and shells

    International Nuclear Information System (INIS)

    Krempetz, K.; Grimson, J.; Kelly, P.

    1986-01-01

    This paper presents a design chart to aid designers in the selection of a wall thickness for long cylindrical shells having atmospheric pressure outside the shell and a pressure less than atmospheric inside the shell. The chart indicates a conservative value for the minimum wall thickness for a given shell diameter and material when the shell is completely evacuated

  2. Effects of ocean acidification driven by elevated CO2 on larval shell growth and abnormal rates of the venerid clam, Mactra veneriformis

    Science.gov (United States)

    Kim, Jee-Hoon; Yu, Ok Hwan; Yang, Eun Jin; Kang, Sung-Ho; Kim, Won; Choy, Eun Jung

    2016-11-01

    The venerid clam ( Mactra veneriformis Reeve 1854) is one of the main cultured bivalve species in intertidal and shallow subtidal ecosystems along the west coast of Korea. To understand the effects of ocean acidification on the early life stages of Korean clams, we investigated shell growth and abnormality rates and types in the D-shaped, umbonate veliger, and pediveliger stages of the venerid clam M. veneriformis during exposure to elevated seawater pCO2. In particular, we examined abnormal types of larval shell morphology categorized as shell deformations, shell distortions, and shell fissures. Specimens were incubated in seawater equilibrated with bubbled CO2-enriched air at (400±25)×10-6 (ambient control), (800±25)×10-6 (high pCO2), or (1 200±28)×10-6 (extremely high pCO2), the atmospheric CO2 concentrations predicted for the years 2014, 2084, and 2154 (70-year intervals; two human generations), respectively, in the Representative Concentration Pathway (RCP) 8.5 scenario. The mean shell lengths of larvae were significantly decreased in the high and extremely high pCO2 groups compared with the ambient control groups. Furthermore, under high and extremely high pCO2 conditions, the cultures exhibited significantly increased abundances of abnormal larvae and increased severity of abnormalities compared with the ambient control. In the umbonate veliger stage of the experimental larvae, the most common abnormalities were shell deformations, distortions, and fissures; on the other hand, convex hinges and mantle protuberances were absent. These results suggest that elevated CO2 exerts an additional burden on the health of M. veneriformis larvae by impairing early development.

  3. Tuning of Ag doped core−shell ZnO NWs/Cu2O grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Makhlouf, Houssin; Messaoudi, Olfa; Souissi, Ahmed; Ben Assaker, Ibtissem; Oueslati, Mihrez; Bechelany, Mikhael; Chtourou, Radhouane

    2015-01-01

    ZnO nanowires (NWs)/Cu 2 O–Ag core–shell nanostructures (NSs) have been synthesized by electrochemical deposition method on ITO-coated glass substrates in order to improve the efficiency of the type-II transition of core–shell ZnO NWs/Cu 2 O–Ag NSs. The morphologies of the obtained NSs were studied by scanning electron microscopy confirming the presence of core–shell NSs. The crystalline proprieties were analyzed by x-ray diffraction and micro-Raman measurement: wurtzite ZnO and cuprit Cu 2 O phase were founded. The presence of Ag content in core–shell NS was detected by EDX. Optical measurement reveals an additional contribution δE at about 1.72 eV attributed to the type-II interfacial transition between the valance band of cuprit−Cu 2 O and the conduction band of W−ZnO. The effect of the Ag doping into the type-II transition was investigated. A red shift of the type-II transition was detected according to the Ag concentration. These materials could have potential applications in photocatalytic and photovoltaic fields. (paper)

  4. Statistical mechanics of microscopically thin thermalized shells

    Science.gov (United States)

    Kosmrlj, Andrej

    Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.

  5. Shell model in large spaces and statistical spectroscopy

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1996-01-01

    For many nuclear structure problems of current interest it is essential to deal with shell model in large spaces. For this, three different approaches are now in use and two of them are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the shell model Monte Carlo method. A brief overview of these two methods is given. Large space shell model studies raise fundamental questions regarding the information content of the shell model spectrum of complex nuclei. This led to the third approach- the statistical spectroscopy methods. The principles of statistical spectroscopy have their basis in nuclear quantum chaos and they are described (which are substantiated by large scale shell model calculations) in some detail. (author)

  6. Application of walnut shell modified with Zinc Oxide (ZnO nanoparticles in removal of natural organic matters (NOMs from aqueous solution

    Directory of Open Access Journals (Sweden)

    ali naghizadeh

    2015-10-01

    Full Text Available Background & Aims of the Study: Natural organic matters (NOMs are a mixture of chemically complex polyelectrolytes produced mainly from the decomposition of plant and animal residues that are present in all surface and groundwater resources. This paper evaluates the aqueous NOMs adsorption efficiency on walnut shell modified with Zinc Oxide (ZnO. Materials & Methods: This study examined the feasibility of removing NOMs from aqueous solutions using walnut shell modified with ZnO. The effects of NOMs concentration, modified walnut shell with ZnO dosage, and pH on adsorption of NOMs by modified walnut shell with ZnO were evaluated. Results: The adsorption capacities of modified walnut shell with ZnO in the best conditions were 37.93 mg/g. The results also demonstrated that adsorption capacity of NOMs on modified walnut shell with ZnO was higher in lower pHs due to significantly high electrostatic attraction exists between the positively charged surface of the adsorbent and negatively charged NOMs. And finally adsorption capacity decreases as adsorbent dose increase. Conclusion: Walnut shell modified with ZnO can be proposed as a natural adsorbent in the removal of NOMs from aqueous solutions

  7. Mechanical stability of cylindrical thin-shell wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2013-04-15

    In this paper, we apply the cut and paste procedure to the charged black string for the construction of a thin-shell wormhole. We consider the Darmois-Israel formalism to determine the surface stresses of the shell. We take the Chaplygin gas to deal with the matter distribution on shell. The radial perturbation approach (preserving the symmetry) is used to investigate the stability of static solutions. We conclude that stable static solutions exist both for uncharged and charged black string thin-shell wormholes for particular values of the parameters. (orig.)

  8. Horizon shells and BMS-like soldering transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); O’Loughlin, Martin [University of Nova Gorica,Vipavska 13, 5000 Nova Gorica (Slovenia)

    2016-03-07

    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  9. Axisymmetric vibrations of thick shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)

  10. A finite element for plates and shells

    International Nuclear Information System (INIS)

    Muller, A.; Feijoo, R.A.; Bevilacqua, L.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt

  11. Tank characterization report for single-shell Tank B-201

    International Nuclear Information System (INIS)

    Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

    1994-09-01

    The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank

  12. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  13. Semiclassical shell structure in rotating Fermi systems

    International Nuclear Information System (INIS)

    Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.

    2010-01-01

    The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.

  14. Core@shell@shell structured carbon-based magnetic ternary nanohybrids: Synthesis and their enhanced microwave absorption properties

    Science.gov (United States)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-05-01

    High encapsulation efficiency of core@shell@shell structured carbon-based magnetic ternary nanohybrids have been synthesized in high yield by chemical vapor deposition of acetylene directly over octahedral-shaped Fe2O3 nanoparticles. By controlling the pyrolysis temperature, Fe3O4@Fe3C@carbon nanotubes (CNTs) and Fe@Fe3C@CNTs ternary nanohybrids could be selectively produced. The optimal RL values for the as-prepared ternary nanohybrids could reach up to ca. -46.7, -52.7 and -29.5 dB, respectively. The excellent microwave absorption properties of the obtaiend ternary nanohybrids were proved to ascribe to the quarter-wavelength matching model. Moreover, the as-prepared Fe@Fe3C@CNTs ternary nanohybrids displayed remarkably enhanced EM wave absorption capabilities compared to Fe3O4@Fe3C@CNTs due to their excellent dielectric loss abilities, good complementarities between the dielectric loss and the magnetic loss, and high attenuation constant. Generally, this strategy can be extended to explore other categories of core@shell or core@shell@shell structured carbon-based nanohybrids, which is very beneficial to accelerate the advancements of high performance MAMs.

  15. Effect of cadmium doses on chickens. 3. Long term influence of cadmium on feed consumption weight gain, egg performance and egg shell quality of laying hens

    Energy Technology Data Exchange (ETDEWEB)

    Suelz, M; Hardebeck, H; Krampitz, G

    1974-01-01

    In long-lasting experiments the application of Cd resulted in a decreased state of health (nephritis) of hens. Feed consumption, weight gain and egg production were reduced. Egg shell quality was not changed under practical Cd-concentrations. Studies of the ultrastructure of egg shells of animals fed with Cd did not yield any hints of damages. The protein-profiles of egg shells revealed an additional component under Cd-application. 17 references, 2 figures, 2 tables.

  16. Folding of non-Euclidean curved shells

    Science.gov (United States)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  17. Double shell planar experiments on OMEGA

    Science.gov (United States)

    Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.

    2017-10-01

    The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.

  18. Synthesis of parallel and antiparallel core-shell triangular nanoparticles

    Science.gov (United States)

    Bhattacharjee, Gourab; Satpati, Biswarup

    2018-04-01

    Core-shell triangular nanoparticles were synthesized by seed mediated growth. Using triangular gold (Au) nanoparticle as template, we have grown silver (Ag) shellto get core-shell nanoparticle. Here by changing the chemistry we have grown two types of core-shell structures where core and shell is having same symmetry and also having opposite symmetry. Both core and core-shell nanoparticles were characterized using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) to know the crystal structure and composition of these synthesized core-shell nanoparticles. From diffraction pattern analysis and energy filtered TEM (EFTEM) we have confirmed the crystal facet in core is responsible for such two dimensional growth of core-shell nanostructures.

  19. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, P.; Ramakrishnan, V. [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625 021 (India); Jeganathan, K. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli-620 024 (India)

    2013-06-15

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E{sub 2} (high) and A{sub 1} (LO) phonon mode of InN core at 490 and 590 cm{sup -1} respectively and E{sub 2} (high) phonon mode of GaN shell at 573 cm{sup -1}. The free carrier concentration of InN core is found to be low in the order {approx} 10{sup 16} cm{sup -3} due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of {approx}15 nm. The phonon-life time of core-shell nanowire structure is estimated to be {approx}0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E{sub 2} (high) phonon mode of GaN shell at 573 cm{sup -1} as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  20. Spring molybdenum enrichment in scallop shells: a potential tracer of diatom productivity in coastal temperate environments (Brittany, NW France)?

    Science.gov (United States)

    Barats, A.; Amouroux, D.; Pécheyran, C.; Chauvaud, L.; Thébault, J.; Donard, O. F. X.

    2009-08-01

    Skeletal molybdenum/calcium ([Mo]/[Ca])shell ratios were recently examined in bivalves. These ratios were determined by quantitative LA-ICP-MS analyses every third daily striae (i.e. a temporal resolution of 3 days) in 36 flat valves of the Great Scallop shells Pecten maximus (2-year old; 3 shells/year) collected in temperate coastal environments of Western Europe (42 to 49° N). Variations of ([Mo]/[Ca])shell ratio were significant and reproducible for scallops from a same population, from different years (1998-2004) and from different coastal temperate locations. ([Mo]/[Ca])shell exhibits typical profiles characterized by a background content, below the method detection limit (<0.003 μmol/mol) for most of the shell growth period, which is punctuated by a significant transient enrichment (0.031-2.1 μmol/mol) mainly occurring from May to June. The Bay of Brest (France) was especially investigated because of long term observations on scallop communities, environmental variables, and high resolution analyses of dissolved Mo in bottom seawater in 2000. In 2000, dissolved Mo exhibited significant increasing concentration just preceding a maximum of ([Mo]/[Ca])shell ratio. The environmental conditions preceding ([Mo]/[Ca])shell maximum events, both in 2000 and over the 7-year survey indicates a direct influence of the scallop environmental conditions at the sediment water interface subsequent to the intense and periodic spring bloom event. Spring maxima of ([Mo]/[Ca])shell ratio were found to be specifically related to the dynamic of spring diatom blooms and to the extent of the subsequent silicate depletion. ([Mo]/[Ca])shell records reveal thus unexpected biogeochemical routes of Mo, potentially related to coastal spring productivity.

  1. The evolution of mollusc shells.

    Science.gov (United States)

    McDougall, Carmel; Degnan, Bernard M

    2018-05-01

    Molluscan shells are externally fabricated by specialized epithelial cells on the dorsal mantle. Although a conserved set of regulatory genes appears to underlie specification of mantle progenitor cells, the genes that contribute to the formation of the mature shell are incredibly diverse. Recent comparative analyses of mantle transcriptomes and shell proteomes of gastropods and bivalves are consistent with shell diversity being underpinned by a rapidly evolving mantle secretome (suite of genes expressed in the mantle that encode secreted proteins) that is the product of (a) high rates of gene co-option into and loss from the mantle gene regulatory network, and (b) the rapid evolution of coding sequences, particular those encoding repetitive low complexity domains. Outside a few conserved genes, such as carbonic anhydrase, a so-called "biomineralization toolkit" has yet to be discovered. Despite this, a common suite of protein domains, which are often associated with the extracellular matrix and immunity, appear to have been independently and often uniquely co-opted into the mantle secretomes of different species. The evolvability of the mantle secretome provides a molecular explanation for the evolution and diversity of molluscan shells. These genomic processes are likely to underlie the evolution of other animal biominerals, including coral and echinoderm skeletons. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties. © 2018 Wiley Periodicals, Inc.

  2. Removal of Dissolved Cadmium by Adsorption onto Walnut and Almond Shell Charcoal: Comparison with Granular Activated Carbon (GAC

    Directory of Open Access Journals (Sweden)

    Mohsen Saeedi

    2009-06-01

    Full Text Available In the present study, adsorption of dissolved Cadmium (Cd onto walnut and almond shell charcoal and the standard granular activated carbon (GAC has been investigated and compared. The effect of pH value, initial concentration of dissolved Cadmium and amount of adsorbent on the adsorption of Cd by the mentioned adsorbents were investigated. Results showed that the adsorption process was highly dependent on pH. Maximum Cd removal was achieved when the final pH of the mixture fell within 6.5-7. Adsorption test results revealed that Cd adsorption on the studied adsorbents could be better described by Longmuir isotherm. Maximum Cd removal efficiencies were obtained by walnut shell charcoal (91%, almond shell charcoal (85%, and GAC (81%.

  3. Deriving the nuclear shell model from first principles

    Science.gov (United States)

    Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.

    2014-09-01

    The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under

  4. Tank characterization report for double-shell tank 241-AP-102

    International Nuclear Information System (INIS)

    LAMBERT, S.L.

    1999-01-01

    In April 1993, Double-Shell Tank 241-AP-102 was sampled to determine waste feed characteristics for the Hanford Grout Disposal Program. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics, expected bulk inventory, and concentration data for the waste contents based on this latest sampling data and information on the history of the tank. Finally, this report makes recommendations and conclusions regarding tank operational safety issues

  5. Geographical variation of shell thickness in the mussel Perumytilus purpuratus along the southeast Pacific coast.

    Science.gov (United States)

    Briones, Carolina; Rivadeneira, Marcelo M; Fernández, Miriam; Guiñez, Ricardo

    2014-12-01

    At broad geographical scales, the variation in bivalve shell thickness can be modulated by environmental factors that vary with latitude, such as sea surface temperature (SST), seawater pH, or calcium carbonate availability. Mussels usually form multilayered beds, and shell thickness is also expected to be affected by density and layering due to intraspecific competition. In this work, we explored the geographical variation of shell thickness in the intertidal mussel Perumytilus purpuratus between 18° and 42°S along the southeastern Pacific coast. We tested the hypothesis that there was a positive relationship between shell thickness and SST, and then we explored other variables that could have an effect on thickness, such as density, number of layers, and others environmental variables (pH and calcite concentration). The expected positive linear relationship between shell thickness and sea surface temperature was not found, but when the other population variables were included in the analysis, an unexpected inverse SST-thickness relationships appeared as significant, probably because this species could be adapted to colder and more acid seawater as are those of the tips of South America. Thickness was also negatively affected by density, which was expected for a gregarious species showing high intraspecific competition. Finally, our results highlight the importance of including density and crowding effects when macroscale patterns are explored, particularly in gregarious species, since these patterns could also be modulated by density-dependent processes, which might then override latitudinal trends of shell thickness when they are not included in the analyses. © 2014 Marine Biological Laboratory.

  6. Unified description of pf-shell nuclei by the Monte Carlo shell model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio

    1998-03-01

    The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)

  7. Aqueous-phase synthesis and color-tuning of core/shell/shell inorganic nanocrystals consisting of ZnSe, (Cu, Mn)-doped ZnS, and ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongwan; Yoon, Sujin [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Felix Sunjoo, E-mail: fskim@cau.ac.kr [School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Kim, Nakjoong, E-mail: kimnj@hanyang.ac.kr [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-06-25

    We report synthesis of colloidal nanocrystals based on ZnSe core, (Cu,Mn)-doped ZnS inner-shell, and ZnS outer-shell by using an eco-friendly method and their optical properties. Synthesis of core/shell/shell nanocrystals was performed by using a one-pot/three-step colloidal method with 3-mercaptopropionic acid as a stabilizer in aqueous phase at low temperature. A double-shell structure was employed with inner-shell as a host for doping and outer-shell as a passivation layer for covering surface defects. Copper and manganese were introduced as single- or co-dopants during inner-shell formation, providing an effective means to control the emission color of the nanocrystals. The synthesized nanocrystals showed fluorescent emission ranging from blue to green, to white, and to orange, adjusted by doping components, amounts, and ratios. The photoluminescence quantum yields of the core/doped-shell/shell nanocrystals approached 36%. - Highlights: • ZnSe/ZnS:(Cu,Ms)/ZnS core/(doped)shell/shell nanocrystals were synthesized in an aqueous phase. • Emission color of nanocrystals was controlled from blue to white to orange by adjusting the atomic ratio of Cu and Mn co-dopants. • Photoluminescence quantum yields of the colloidal nanocrystals approached 36%.

  8. Conventional shell model: some issues

    International Nuclear Information System (INIS)

    Vallieres, M.; Pan, X.W.; Feng, D.H.; Novoselsky, A.

    1997-01-01

    We discuss some important issues in shell-model calculations related to the effective interactions used in different regions of the periodic table; in particular the quality of different interactions is discussed, as well as the mass dependence of the interactions. Mention is made of the recently developed Drexel University shell-model (DUSM). (orig.)

  9. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    Directory of Open Access Journals (Sweden)

    B.V. Yavkin, G.V. Mamin, M.R. Gafurov, S.B. Orlinskii

    2015-12-01

    Full Text Available Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT technique were studied by high-frequency W- and conventional X-band electron paramagnetic resonance (EPR spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of structures in the nanodiamond shell.

  10. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.

    Science.gov (United States)

    Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-21

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  11. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity

    International Nuclear Information System (INIS)

    Li Qian; Tu Juan; Guo Xiasheng; Zhang Dong; Matula, Thomas J

    2013-01-01

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius–time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity. (paper)

  12. Vanishing clams on an Iberian beach: local consequences and global implications of accelerating loss of shells to tourism.

    Science.gov (United States)

    Kowalewski, Michał; Domènech, Rosa; Martinell, Jordi

    2014-01-01

    Multi-decadal increase in shell removal by tourists, a process that may accelerate degradation of natural habitats, was quantified via two series of monthly surveys, conducted thirty years apart (1978-1981 and 2008-2010) in one small embayment on the Mediterranean coast of the Iberian Peninsula. Over the last three decades, the local tourist arrivals have increased almost three-fold (2.74), while the area has remained unaffected by urban encroachment and commercial fisheries. During the same time interval the abundance of mollusk shells along the shoreline decreased by a comparable factor (2.62) and was significantly and negatively correlated with tourist arrivals (r = -0.52). The strength of the correlation increased when data were restricted to months with high tourist arrivals (r = -0.72). In contrast, the maximum monthly wave energy (an indirect proxy for changes in rate of onshore shell transport) was not significantly correlated with shell abundance (r = 0.10). Similarly, rank dominance of common species, drilling predation intensity, and body size-frequency distribution patterns have all remained stable over recent decades. A four-fold increase in global tourist arrivals over the last 30 years may have induced a comparable worldwide acceleration in shell removal from marine shorelines, resulting in multiple, currently unquantifiable, habitat changes such as increased beach erosion, changes in calcium carbonate recycling, and declines in diversity and abundance of organisms, which are dependent on shell availability.

  13. Vanishing Clams on an Iberian Beach: Local Consequences and Global Implications of Accelerating Loss of Shells to Tourism

    Science.gov (United States)

    Kowalewski, Michał; Domènech, Rosa; Martinell, Jordi

    2014-01-01

    Multi-decadal increase in shell removal by tourists, a process that may accelerate degradation of natural habitats, was quantified via two series of monthly surveys, conducted thirty years apart (1978–1981 and 2008–2010) in one small embayment on the Mediterranean coast of the Iberian Peninsula. Over the last three decades, the local tourist arrivals have increased almost three-fold (2.74), while the area has remained unaffected by urban encroachment and commercial fisheries. During the same time interval the abundance of mollusk shells along the shoreline decreased by a comparable factor (2.62) and was significantly and negatively correlated with tourist arrivals (r = −0.52). The strength of the correlation increased when data were restricted to months with high tourist arrivals (r = −0.72). In contrast, the maximum monthly wave energy (an indirect proxy for changes in rate of onshore shell transport) was not significantly correlated with shell abundance (r = 0.10). Similarly, rank dominance of common species, drilling predation intensity, and body size-frequency distribution patterns have all remained stable over recent decades. A four-fold increase in global tourist arrivals over the last 30 years may have induced a comparable worldwide acceleration in shell removal from marine shorelines, resulting in multiple, currently unquantifiable, habitat changes such as increased beach erosion, changes in calcium carbonate recycling, and declines in diversity and abundance of organisms, which are dependent on shell availability. PMID:24421895

  14. Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight

    International Nuclear Information System (INIS)

    Nguyen, Phuc H; Matzner, Richard A

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.

  15. Molluscan shell evolution with review of shell calcification hypothesis

    Czech Academy of Sciences Publication Activity Database

    Furuhashi, T.; Schwarzinger, C.; Mikšík, Ivan; Smrž, Miloslav; Beran, A.

    2009-01-01

    Roč. 154, č. 3 (2009), s. 351-371 ISSN 1096-4959 Institutional research plan: CEZ:AV0Z50110509 Keywords : mollusca * shell * biomineralization Subject RIV: CE - Biochemistry Impact factor: 1.607, year: 2009

  16. On the physical mechanism at the origin of multiple double layers appearance in plasma

    International Nuclear Information System (INIS)

    Dimitriu, D.G.; Gurlui, S.; Aflori, M.; Ivan, L.M.

    2005-01-01

    Double layers (DLs) in plasma are nonlinear potential structures consisting of two adjacent layers of positive and negative space charge, respectively. Between these layers a potential jump exists, creating an electric field. A common way to obtain a DL structure is to positively bias an electrode immersed in asymptotic stable plasma. In this way, a complex space charge structure (CSCS) in form of a positive 'nucleus' surrounded by a nearly spherical DL is obtained. Under certain experimental conditions (gas nature and pressure, plasma density, electron temperature) a more complex structure in form of two or more subsequent DLs was observed, which was called multiple double layers (MDL). It appears as several bright and concentric plasma shells attached to the electrode. The successive DLs are located at the abrupt changes of luminosity between two adjacent plasma shells. Probe measurements emphasized that the axial profile of the plasma potential has a stair steps shape, with potential jumps close to the ionization potential of the used gas. Experimental results clarify the essential role of excitation and ionization electron-neutral collisions for the generation and dynamics of MDL structures. However, if the electrode is large, the MDL structure appears non-concentrically, as a network of plasma spheres, near each other, almost equally distributed on the electrode surface. Each of the plasma spots is a CSCS as described above. Here, we will present experimental result on concentric and non-concentric MDL, which prove that the same physical mechanism is at the origin of their appearance in plasma. In this mechanism the electron-neutral impact excitations and ionizations play the key role. A simultaneously generation of both types of MDL was recorded. The dynamics of the MDL structures was analyzed by using the modern methods provided by the nonlinear dynamics. In this way, a scenario of transition to chaos by torus breakdown was emphasized, related with the

  17. Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage

    International Nuclear Information System (INIS)

    Li, Qiyuan; Tehrani, S. Saeed Mostafavi; Taylor, Robert A.

    2017-01-01

    In this paper, the feasibility of a medium temperature, low profile concentrated solar thermal collector integrated with latent heat thermal energy storage (LHTES) is investigated. The proposed modular integrated collector storage (ICS) system consists of six solar receiver units and seven cylindrical shell and tube LHTES tanks. By implementing an innovative optical concentration assembly and an internal linear tracking mechanism, the collector can concentrate beam radiation to the tube receivers during the highest flux hours of a day without any external or rotational motion. The collector's efficiency correlations were obtained experimentally and its integrated performance – with the LHTES units – was evaluated numerically. To demonstrate the potential of this proposed ICS system, an annual analysis was carried out for a characteristic industrial application – a dairy dehydration process that requires a constant 50 kW th of heat in the 120–150 °C temperature range. It was found that adding the storage units will increase the capital costs by ∼10%, but it can increase the annual thermal output of the system by up to ∼20%. A solar fraction of 65% was achievable with some design alternatives, but the optimum techno-economic design had a solar fraction of ∼35% and an annual charging efficiency of nearly 100%. It was also found that if the capital cost of the ICS (collector and LHTES tank) system could be reduced by 50% from an estimated ∼1000 US$/m 2 to ∼500 US$/m 2 through mass production and/or further design optimizations, this system could provide industrial process heat with a levelized cost of heating (LCOH) of ∼0.065 US$/kWh th . - Highlights: • An innovative ICS system was proposed and analyzed for industrial heat applications. • The optimum design can achieve a ∼35% solar fraction with ∼100% charging efficiency. • A 0.12 US$/kWh LCOH was found, but further reductions could result in 0.065 US$/kWh. • Costs reductions of

  18. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  19. Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control.

    Science.gov (United States)

    Kotz, Kaylee; Cinar, Ali; Mei, Yong; Roggendorf, Amy; Littlejohn, Elizabeth; Quinn, Laurie; Rollins, Derrick K

    2014-11-26

    The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC.

  20. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water

    International Nuclear Information System (INIS)

    Merschel, Gila; Bau, Michael

    2015-01-01

    High-technology metals — such as the rare earth elements (REE) — have become emerging contaminants in the hydrosphere, yet little is known about their bioavailability. The Rhine River and the Weser River in Germany are two prime examples of rivers that are subjected to anthropogenic REE input. While both rivers carry significant loads of anthropogenic Gd, originating from contrast agents used for magnetic resonance imaging, the Rhine River also carries large amounts of anthropogenic La and lately Sm which are discharged into the river from an industrial point source. Here, we assess the bioavailability of these anthropogenic microcontaminants in these rivers by analyzing the aragonitic shells of the freshwater bivalve Corbicula fluminea. Concentrations of purely geogenic REE in shells of comparable size cover a wide range of about one order of magnitude between different sampling sites. At a given sampling site, geogenic REE concentrations depend on shell size, i.e. mussel age. Although both rivers show large positive Gd anomalies in their dissolved loads, no anomalous enrichment of Gd relative to the geogenic REE can be observed in any of the analyzed shells. This indicates that the speciations of geogenic and anthropogenic Gd in the river water differ from each other and that the geogenic, but not the anthropogenic Gd is incorporated into the shells. In contrast, all shells sampled at sites downstream of the industrial point source of anthropogenic La and Sm in the Rhine River show positive La and Sm anomalies, revealing that these anthropogenic REE are bioavailable. Only little is known about the effects of long-term exposure to dissolved REE and their general ecotoxicity, but considering that anthropogenic Gd and even La have already been identified in German tap water and that anthropogenic La and Sm are bioavailable, this should be monitored and investigated further. - Highlights: • Corbicula fluminea shells are bioarchives of dissolved geogenic REE in

  1. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water

    Energy Technology Data Exchange (ETDEWEB)

    Merschel, Gila, E-mail: g.merschel@jacobs-university.de; Bau, Michael

    2015-11-15

    High-technology metals — such as the rare earth elements (REE) — have become emerging contaminants in the hydrosphere, yet little is known about their bioavailability. The Rhine River and the Weser River in Germany are two prime examples of rivers that are subjected to anthropogenic REE input. While both rivers carry significant loads of anthropogenic Gd, originating from contrast agents used for magnetic resonance imaging, the Rhine River also carries large amounts of anthropogenic La and lately Sm which are discharged into the river from an industrial point source. Here, we assess the bioavailability of these anthropogenic microcontaminants in these rivers by analyzing the aragonitic shells of the freshwater bivalve Corbicula fluminea. Concentrations of purely geogenic REE in shells of comparable size cover a wide range of about one order of magnitude between different sampling sites. At a given sampling site, geogenic REE concentrations depend on shell size, i.e. mussel age. Although both rivers show large positive Gd anomalies in their dissolved loads, no anomalous enrichment of Gd relative to the geogenic REE can be observed in any of the analyzed shells. This indicates that the speciations of geogenic and anthropogenic Gd in the river water differ from each other and that the geogenic, but not the anthropogenic Gd is incorporated into the shells. In contrast, all shells sampled at sites downstream of the industrial point source of anthropogenic La and Sm in the Rhine River show positive La and Sm anomalies, revealing that these anthropogenic REE are bioavailable. Only little is known about the effects of long-term exposure to dissolved REE and their general ecotoxicity, but considering that anthropogenic Gd and even La have already been identified in German tap water and that anthropogenic La and Sm are bioavailable, this should be monitored and investigated further. - Highlights: • Corbicula fluminea shells are bioarchives of dissolved geogenic REE in

  2. THE FORMATION OF SHELL GALAXIES SIMILAR TO NGC 7600 IN THE COLD DARK MATTER COSMOGONY

    International Nuclear Information System (INIS)

    Cooper, Andrew P.; Martínez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.; Jay GaBany, R.

    2011-01-01

    We present new deep observations of 'shell' structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.

  3. The Formation of Shell Galaxies Similar to NGC 7600 in the Cold Dark Matter Cosmogony

    Science.gov (United States)

    Cooper, Andrew P.; Martínez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.; GaBany, R. Jay

    2011-12-01

    We present new deep observations of "shell" structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.

  4. Pressure-induced drastic collapse of a high oxygen coordination shell in quartz-like α-GeO2

    International Nuclear Information System (INIS)

    Dong, Juncai; Zhang, Xiaoli; Wu, Ziyu; Chen, Dongliang; Zhang, Qian; Wu, Ye; Wu, Xiang

    2014-01-01

    With the combination of a single crystal diamond anvil cell and a polycapillary half-lens, the local structural evolution around germanium in tetrahedrally networked quartz-like α-GeO 2 has been investigated using extended x-ray absorption fine structure spectroscopy of up to 14 GPa by multiple-scattering analysis method. While the first shell Ge–O bond distances show a slight contraction with increasing pressure, the third shell Ge–O bond distances are found to decrease dramatically. The sluggish lengthening of the first shell Ge–O bond distances, initiated by coordination increase from fourfold to sixfold, occurs in the 7–14 GPa range just when the third shell Ge–O bond distances fall in the region of the second shell Ge–Ge bond distances. Moreover, these features are accompanied by the closing of intertetrahedral Ge–O–Ge angles and the opening of two intratetrahedral O–Ge–O angles, whose topological configuration surprisingly exhibits a helical chirality along the c axis that is opposite to the double helices of the corner-linked GeO 4 tetrahedra. These results suggest that the high-pressure phase transitions in quartz and quartz-like materials could be associated with a structural instability that is driven by the drastic collapse of the next-nearest-neighbour anion shell, which is consistent with the emergence of high-symmetry anion sublattice. Our findings provide crucial insights into the densification mechanisms of quartz-like oxides, which would have broad implications for our understanding of the metastability of various post-quartz crystalline phases and pressure-induced amorphization. (paper)

  5. Collapse analysis of toroidal shell

    International Nuclear Information System (INIS)

    Pomares, R.J.

    1990-01-01

    This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation

  6. Micromagnetic studies of three-dimensional pyramidal shell structures

    International Nuclear Information System (INIS)

    Knittel, A; Franchin, M; Fischbacher, T; Fangohr, H; Nasirpouri, F; Bending, S J

    2010-01-01

    We present a systematic numerical analysis of the magnetic properties of pyramidal-shaped core-shell structures in a size range below 400 nm. These are three-dimensional structures consisting of a ferromagnetic shell which is grown on top of a non-magnetic core. The standard micromagnetic model without the magnetocrystalline anisotropy term is used to describe the properties of the shell. We vary the thickness of the shell between the limiting cases of an ultra-thin shell and a conventional pyramid and delineate different stable magnetic configurations. We find different kinds of single-domain states, which predominantly occur at smaller system sizes. In analogy to equivalent states in thin square films we term these onion, flower, C and S states. At larger system sizes, we also observe two types of vortex states, which we refer to as symmetric and asymmetric vortex states. For a classification of the observed states, we derive a phase diagram that specifies the magnetic ground state as a function of structure size and shell thickness. The transitions between different ground states can be understood qualitatively. We address the issue of metastability by investigating the stability of all occurring configurations for different shell thicknesses. For selected geometries and directions hysteresis measurements are analysed and discussed. We observe that the magnetic behaviour changes distinctively in the limit of ultra-thin shells. The study has been motivated by the recent progress made in the growth of faceted core-shell structures.

  7. Snap-Through Buckling Problem of Spherical Shell Structure

    Directory of Open Access Journals (Sweden)

    Sumirin Sumirin

    2014-12-01

    Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.

  8. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  9. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  10. Computed tomographic evaluation of dinosar egg shell integrity

    International Nuclear Information System (INIS)

    Jones, J.C.; Greenberg, W.; Ayers, S.

    1998-01-01

    The purpose of this study was to determine whether computed tomography (CT) could be used to identify hatching holes in partially embedded dinosaur eggs. One Faveololithus and two Dendroolithus eggs were examined using a fourth generation CT scanner. The eggs were partially embedded in a fossilized sediment matrix, with the exposed portion of the shell appearing intact. In CT images of all three eggs, the shells appeared hyperdense relative to the matrix. Hatching holes were visible as large gaps in the embedded portion of the shell, with inwardly displaced shell fragments. It was concluded that CT is an effective technique for nondestructively assessing dinosaur egg shell integrity

  11. Do climate variables and human density affect Achatina fulica (Bowditch) (Gastropoda: Pulmonata) shell length, total weight and condition factor?

    Science.gov (United States)

    Albuquerque, F S; Peso-Aguiar, M C; Assunção-Albuquerque, M J T; Gálvez, L

    2009-08-01

    The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm). The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.

  12. Do climate variables and human density affect Achatina fulica (Bowditch (Gastropoda: Pulmonata shell length, total weight and condition factor?

    Directory of Open Access Journals (Sweden)

    FS. Albuquerque

    Full Text Available The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm. The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.

  13. Shell model and spectroscopic factors

    International Nuclear Information System (INIS)

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  14. Passive neutron-multiplication measurements

    International Nuclear Information System (INIS)

    Zolnay, A.S.; Barnett, C.S.; Spracklen, H.P.

    1982-01-01

    We have developed an instrument to measure neutron multiplication by statistical analysis of the timing of neutrons emitted from fissionable material. This instrument is capable of repeated analysis of the same recorded data with selected algorithms, graphical displays showing statistical properties of the data, and preservation of raw data on disk for future comparisons. In our measurements we have made a comparison of the covariance to mean and Feynman variance to mean analysis algorithms to show that the covariance avoids a bias term and measures directly the effect due to the presence of neutron chains. A spherical assembly of enriched uranium shells and acrylic resin reflector/moderator components used for the measurements is described. Preliminary experimental results of the Feynman variance to mean measurements show the expected correlation with assembly multiplication

  15. Optimal designs of mollusk shells from bivalves to snails.

    Science.gov (United States)

    Okabe, Takuya; Yoshimura, Jin

    2017-02-10

    Bivalve, ammonite and snail shells are described by a small number of geometrical parameters. Raup noted that the vast majority of theoretically possible shell forms do not occur in nature. The constraint factors that regulate the biased distribution of natural form have long since been an open problem in evolution. The problem of whether natural shell form is a result of optimization remains unsolved despite previous attempts. Here we solve this problem by considering the scaling exponent of shell thickness as a morphological parameter. The scaling exponent has a drastic effect on the optimal design of shell shapes. The observed characteristic shapes of natural shells are explained in a unified manner as a result of optimal utilization of shell material resources, while isometric growth in thickness leads to impossibly tight coiling.

  16. Adaptative mixed methods to axisymmetric shells

    International Nuclear Information System (INIS)

    Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.

    1989-09-01

    The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt

  17. Selective colors reflection from stratified aragonite calcium carbonate plates of mollusk shells.

    Science.gov (United States)

    Lertvachirapaiboon, Chutiparn; Parnklang, Tewarak; Pienpinijtham, Prompong; Wongravee, Kanet; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2015-08-01

    An interaction between the incident light and the structural architecture within the shell of Asian green mussel (Perna viridis) induces observable pearlescent colors. In this paper, we investigate the influence of the structural architecture on the expressed colors. After a removal of the organic binder, small flakes from crushed shells show vivid rainbow reflection under an optical microscope. An individual flake expresses vivid color under a bright-field illumination while become transparent under a dark-field illumination. The expressed colors of the aragonite flakes are directly associated with its structural architecture. The flakes with aragonite thickness of 256, 310, and 353 nm, respectively, appear blue, green, and red under an optical microscope. The spectral simulation corroborates the experimentally observed optical effects as the flakes with thicker aragonite layers selectively reflected color with longer wavelengths. Flakes with multiple aragonite thicknesses expressed multi-color as the upper aragonite layers allow reflected colors from the lower layers to be observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Process to make core-shell structured nanoparticles

    Science.gov (United States)

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  19. Bending stresses in Facetted Glass Shells

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik

    2008-01-01

    A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...

  20. Amplitude structure of off-shell processes

    International Nuclear Information System (INIS)

    Fearing, H.W.; Goldstein, G.R.; Moravcsik, M.J.

    1984-01-01

    The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is discussed with the objective of determining how one can obtain information on off-shell amplitudes of a process in terms of the physical observables of a larger process in which the first process is embedded. The procedure found is inevitably model dependent, but within a particular model for embedding, a determination of the physically measurable amplitudes of the larger process is able to yield a determination of the off-shell amplitudes of the embedded process

  1. Type I Shell Galaxies as a Test of Gravity Models

    Energy Technology Data Exchange (ETDEWEB)

    Vakili, Hajar; Rahvar, Sohrab [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Kroupa, Pavel, E-mail: vakili@physics.sharif.edu [Helmholtz-Institut für Strahlen-und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2017-10-10

    Shell galaxies are understood to form through the collision of a dwarf galaxy with an elliptical galaxy. Shell structures and kinematics have been noted to be independent tools to measure the gravitational potential of the shell galaxies. We compare theoretically the formation of shells in Type I shell galaxies in different gravity theories in this work because this is so far missing in the literature. We include Newtonian plus dark halo gravity, and two non-Newtonian gravity models, MOG and MOND, in identical initial systems. We investigate the effect of dynamical friction, which by slowing down the dwarf galaxy in the dark halo models limits the range of shell radii to low values. Under the same initial conditions, shells appear on a shorter timescale and over a smaller range of distances in the presence of dark matter than in the corresponding non-Newtonian gravity models. If galaxies are embedded in a dark matter halo, then the merging time may be too rapid to allow multi-generation shell formation as required by observed systems because of the large dynamical friction effect. Starting from the same initial state, the observation of small bright shells in the dark halo model should be accompanied by large faint ones, while for the case of MOG, the next shell generation patterns iterate with a specific time delay. The first shell generation pattern shows a degeneracy with the age of the shells and in different theories, but the relative distance of the shells and the shell expansion velocity can break this degeneracy.

  2. Fossil shell emission in dying radio loud AGNs

    Science.gov (United States)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  3. Spring molybdenum enrichment in scallop shells: a potential tracer of diatom productivity in temperate coastal environments (Brittany, NW France)

    Science.gov (United States)

    Barats, A.; Amouroux, D.; Pécheyran, C.; Chauvaud, L.; Thébault, J.; Donard, O. F. X.

    2010-01-01

    Skeletal molybdenum/calcium ([Mo]/[Ca])shell ratios were examined in shells of the Great Scallop Pecten maximus collected in temperate coastal environments of Western Europe (42 to 49° N). These ratios were determined by quantitative LA-ICP-MS analyses of daily striae taken every third day (i.e. a temporal resolution of 3 days) in 36 flat valves (2-years old; 3 shells/year). Variations of ([Mo]/[Ca])shell ratios were significant and reproducible for scallops from the same population, from different years (1998-2004) and temperate coastal locations (NW France). The [Mo]/[Ca])shell ratios exhibit typical profiles characterized by a background content, below the detection limit for this method (<0.003 μmol/mol) for most of the shell growth period, which is punctuated by a significant transient enrichment (0.031-2.1 μmol/mol) mainly occurring from May to June. The Bay of Brest (France) was investigated in particular because of its long term observations on scallop communities, environmental variables, and high resolution analyses of dissolved Mo in bottom seawater in 2000. In 2000, dissolved Mo exhibited a significant increase in concentration just preceding the maximum ([Mo]/[Ca])shell ratio. Both the intense monitoring survey in 2000 and over the 7-year period indicates that the ([Mo]/[Ca])shell maximum is directly influenced by spring changes of environmental conditions at the sediment water interface (SWI), occurring subsequent to the intense and periodic spring bloom. Spring maxima of ([Mo]/[Ca])shell ratios are closely correlated to the extent of silicic acid and nitrate depletion in seawater between winter and late spring (r2=0.878 and 0.780, p<0.05, n=6) that reflects diatom uptake and productivity in the Bay of Brest. The Mo inputs in bottom waters and subsequent shell enrichment are thus suggested to be directly or indirectly influenced by such biogenic material input at the SWI. The [Mo]/[Ca])shell records thus reveal unexpected biogeochemical cycles of

  4. Inner-shell excitation of alkali-metal atoms

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1987-06-01

    Inner-shell excitation of alkali-metal atoms, which leads to auto-ionization, is reviewed. The validity of quantum mechanical approximation is analyzed and the importance of exchange and correlation is demonstrated. Basic difficulties in making accurate calculations for inner-shell excitation process are discussed. Suggestions are made for further study of inner-shell process in atoms and ions. (author). 26 refs, 4 figs, 1 tab

  5. Antioxidant response of the hard shelled mussel Mytilus coruscus exposed to reduced pH and oxygen concentration.

    Science.gov (United States)

    Sui, Yanming; Hu, Menghong; Shang, Yueyong; Wu, Fangli; Huang, Xizhi; Dupont, Sam; Storch, Daniela; Pörtner, Hans-Otto; Li, Jiale; Lu, Weiqun; Wang, Youji

    2017-03-01

    Ocean acidification (OA) and hypoxic events are increasing worldwide problems, their interactive effects have not been well clarified, although their co-occurrence is prevalent. The East China Sea (the Yangtze River estuary area) suffers from not only coastal hypoxia but also pH fluctuation, representing an ideal study site to explore the combined effect of OA and hypoxia on marine bivalves. We experimentally evaluated the antioxidant response of the mussel Mytilus coruscus exposed to three pH levels (8.1, 7.7 and 7.3) at two dissolved oxygen (DO) levels (2.0mgL -1 and 6.0mgL -1 ) for 72h. Activities of superoxide dismutase, catalase, glutathione peroxidase, acid phosphatase, and alkaline phosphatase and levels of malondialdehyde were measured in gills and hemolymph. All enzymatic activities in hemolymph and gills followed a similar pattern throughout the experiment duration. Generally, low DO showed greater effects on enzyme activities than elevated CO 2 . Significant interactions between DO, pH and time were only observed at superoxide dismutase and catalase in both tissues. PCA revealed positive relationships between most enzyme activities in both gills and hemolymph with the exception of alkaline phosphatase activity and the level of malondialdehyde in the hemolymph. Overall, our results suggested that decreased pH and low DO induced similar antioxidant responses in the hard shelled mussel, and showed an additive effect on most enzyme activities. The evaluation of multiple environmental stressors, a more realistic scenario than single ones, is crucial to predict the effect of future global changes on coastal species and our results supply some insights on the potential combined effects of reduced pH and DO on marine bivalves. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    International Nuclear Information System (INIS)

    Amendt, Peter; Cerjan, C.; Hamza, A.; Hinkel, D. E.; Milovich, J. L.; Robey, H. F.

    2007-01-01

    The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (≅4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT (≅790 atm) in the inner shell, strict concentricity requirements on the two shells ( 2 nanoporous aerogels with suspended Cu particles. A prototype demonstration of an ignition DS is planned for 2008, incorporating the needed novel nanomaterials science developments and the required fabrication tolerances for a realistic ignition attempt after 2010

  7. Influence of the solvent environments on the spectral features of CdSe quantum dots with and without ZnS shell

    Energy Technology Data Exchange (ETDEWEB)

    Ibnaouf, K.H., E-mail: kheo90@gmail.com [Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Physics Department, College of Science, P.O. Box 90905, Riyadh 11623 (Saudi Arabia); Prasad, Saradh; Al Salhi, M.S.; Hamdan, A. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Research Chair for Laser Diagnosis of Cancer, King Saud University (Saudi Arabia); Zaman, M.B. [CEREM, College of Engineering, King Saud University (Saudi Arabia); Advanced Medical Research Institute of Canada, Sudbury (Canada); El Mir, L. [Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Physics Department, College of Science, P.O. Box 90905, Riyadh 11623 (Saudi Arabia)

    2014-05-01

    The spectral properties of 5 nm size of bare CdSe and (CdSe)ZnS core–shell quantum dots (QDs) have been recorded and investigated under different solvent environments with different polarities and different concentrations. The results showed that the spectral profile of absorption did not change for both quantum dots in different solvents under a wide range of concentrations. On the other hand, the photoluminescence (PL) spectra of (CdSe)ZnS core–shell quantum dots in non-polar solvents showed two bands; the primary around 420 nm and the secondary around 620 nm. In contrast, the PL spectra of bare CdSe in non-polar solvents, showed a very strong band around 590 nm, with a total absence of the primary wavelength band at 420 nm. Under high polar solvent environments, bare CdSe showed a new peak around 420 nm, which was totally absent in non-polar solvent. Therefore, the solvent plays an important role in the PL spectra of bare CdSe and (CdSe)ZnS core–shell quantum dots.

  8. EXTENDED NEUTRAL HYDROGEN IN THE ALIGNED SHELL GALAXIES Arp 230 AND MCG -5-7-1: FORMATION OF DISKS IN MERGING GALAXIES?

    Energy Technology Data Exchange (ETDEWEB)

    Schiminovich, David; Van Gorkom, J. H. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Van der Hulst, J. M. [Kapteyn Astronomical Institute, 9700-AV Groningen (Netherlands)

    2013-02-01

    As part of an ongoing study of the neutral hydrogen (H I) morphology and kinematics of 'shell' elliptical galaxies, we present Very Large Array observations of two shell galaxies with aligned shells, Arp 230 and MCG -5-7-1. Our data provide the first H I images of Arp 230 and deeper images of MCG -5-7-1 than previously reported. Optical images of Arp 230 reveal a bright, aligned, interleaved shell system, making it an ideal candidate for 'phase-wrapped' shell formation following a radial encounter with a smaller companion. The fainter, non-interleaved shells of MCG -5-7-1 do not clearly favor a particular formation scenario. The H I we detect in both galaxies extends to nearly the same projected distance as the optical shells. In Arp 230 this gas appears to be anti-correlated with the aligned shells, consistent with our expectations for phase-wrapped shells produced in a radial encounter. In MCG -5-7-1, we observe gas associated with the shells making a 'spatial wrapping' or looping scenario more plausible. Although the extended gas component in both galaxies is unevenly distributed, the gas kinematics are surprisingly regular, looking almost like complete disks in rotation. We use the H I kinematics and optical data to determine mass-to-light ratios M/L{sub B} of 2.4{sup +3.0}{sub -0.5} (at 13.5 kpc, 4.5 R{sub e} ) for Arp 230 and M/L{sub B} of 30 {+-} 7 (at 40 kpc, 7 R{sub e} ) in MCG -5-7-1. In both systems we find that this ratio changes as a function of radius, indicating the presence of a dark halo. By comparing orbital and precession timescales, we conclude that the potentials are slightly flattened. We infer a 5%-10% flattening for Arp 230 and less flattening in the case of MCG -5-7-1. Finally, we present images of the H I associated with the inner disk or (polar) ring of each galaxy and discuss possible explanations for their different present-day star formation rates. We detect total H I masses of 1.1 Multiplication-Sign 10

  9. Effect of shell thickness on the exchange bias blocking temperature and coercivity in Co-CoO core-shell nanoparticles

    Science.gov (United States)

    Thomas, S.; Reethu, K.; Thanveer, T.; Myint, M. T. Z.; Al-Harthi, S. H.

    2017-08-01

    The exchange bias blocking temperature distribution of naturally oxidized Co-CoO core-shell nanoparticles exhibits two distinct signatures. These are associated with the existence of two magnetic entities which are responsible for the temperature dependence of an exchange bias field. One is from the CoO grains which undergo thermally activated magnetization reversal. The other is from the disordered spins at the Co-CoO interface which exhibits spin-glass-like behavior. We investigated the oxide shell thickness dependence of the exchange bias effect. For particles with a 3 nm thick CoO shell, the predominant contribution to the temperature dependence of exchange bias is the interfacial spin-glass layer. On increasing the shell thickness to 4 nm, the contribution from the spin-glass layer decreases, while upholding the antiferromagnetic grain contribution. For samples with a 4 nm CoO shell, the exchange bias training was minimal. On the other hand, 3 nm samples exhibited both the training effect and a peak in coercivity at an intermediate set temperature Ta. This is explained using a magnetic core-shell model including disordered spins at the interface.

  10. Shell Thickness Dependence of Interparticle Energy Transfer in Core-Shell ZnSe/ZnSe Quantum Dots Doping with Europium

    Science.gov (United States)

    Liu, Ni; Li, Shuxin; Wang, Caifeng; Li, Jie

    2018-04-01

    Low-toxic core-shell ZnSe:Eu/ZnS quantum dots (QDs) were prepared through two steps in water solution: nucleation doping and epitaxial shell grown. The structural and morphological characteristics of ZnSe/ZnS:Eu QDs with different shell thickness were explored by transmission electron microscopy (TEM) and X-ray diffraction (XRD) results. The characteristic photoluminescence (PL) intensity of Eu ions was enhanced whereas that of band-edge luminescence and defect-related luminescence of ZnSe QDs was decreased with increasing shell thickness. The transformation of PL intensity revealed an efficient energy transfer process between ZnSe and Eu. The PL intensity ratio of Eu ions ( I 613) to ZnSe QDs ( I B ) under different shell thickness was systemically analyzed by PL spectra and time-resolved PL spectra. The obtained results were in agreement with the theory analysis results by the kinetic theory of energy transfer, revealing that energy was transmitted in the form of dipole-electric dipole interaction. This particular method of adjusting luminous via changing the shell thickness can provide valuable insights towards the fundamental understanding and application of QDs in the field of optoelectronics.

  11. Active constrained layer damping treatments for shell structures: a deep-shell theory, some intuitive results, and an energy analysis

    Science.gov (United States)

    Shen, I. Y.

    1997-02-01

    This paper studies vibration control of a shell structure through use of an active constrained layer (ACL) damping treatment. A deep-shell theory that assumes arbitrary Lamé parameters 0964-1726/6/1/011/img1 and 0964-1726/6/1/011/img2 is first developed. Application of Hamilton's principle leads to the governing Love equations, the charge equation of electrostatics, and the associated boundary conditions. The Love equations and boundary conditions imply that the control action of the ACL for shell treatments consists of two components: free-end boundary actuation and membrane actuation. The free-end boundary actuation is identical to that of beam and plate ACL treatments, while the membrane actuation is unique to shell treatments as a result of the curvatures of the shells. In particular, the membrane actuation may reinforce or counteract the boundary actuation, depending on the location of the ACL treatment. Finally, an energy analysis is developed to determine the proper control law that guarantees the stability of ACL shell treatments. Moreover, the energy analysis results in a simple rule predicting whether or not the membrane actuation reinforces the boundary actuation.

  12. From Bash to Z shell in 5 min

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Chances are you're spending a good amount of your time working on a shell. While Bash is the standard shell on Linux, some alternatives exist. I'll show you how to switch to one of them (Z shell) and what benefits come with it.

  13. Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular  Salmonella model

    Directory of Open Access Journals (Sweden)

    Ashish Ranjan

    2009-12-01

    Full Text Available Ashish Ranjan1, Nikorn Pothayee2,3, Mohammed N Seleem2, Ronald D Tyler Jr4, Bonnie Brenseke4, Nammalwar Sriranganathan2,4, Judy S Riffle2,3, Ramanathan Kasimanickam11Department of Large Animal Clinical Sciences, 2Institute for Critical Technology and Applied Science, 3Macromolecules and Interfaces Institute, 4Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VAAbstract: Pluronic based core-shell nanostructures encapsulating gentamicin were designed in this study. Block copolymers of (PAA–+Na-b-(PEO-b-PPO-b-PEO-b-PAA– +Na were blended with PAA– Na+ and complexed with the polycationic antibiotic gentamicin to form nanostructures. Synthesized nanostructures had a hydrodynamic diameter of 210 nm, zeta potentials of –0.7 (±0.2, and incorporated ~20% by weight of gentamicin. Nanostructures upon co-incubation with J774A.1 macrophage cells showed no adverse toxicity in vitro. Nanostructures administered in vivo either at multiple dosage of 5 µg g–1 or single dosage of 15 µg g–1 in AJ-646 mice infected with Salmonella resulted in significant reduction of viable bacteria in the liver and spleen. Histopathological evaluation for concentration-dependent toxicity at a dosage of 15 µg g–1 revealed mineralized deposits in 50% kidney tissues of free gentamicin-treated mice which in contrast was absent in nanostructure-treated mice. Thus, encapsulation of gentamicin in nanostructures may reduce toxicity and improve in vivo bacterial clearance.Keywords: gentamicin, core-shell nanostructures, Salmonella

  14. Super-paramagnetic core-shell material with tunable magnetic behavior by regulating electron transfer efficiency and structure stability of the shell

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    Full Text Available In this work, a spherical nano core-shell material was constructed by encapsulating Fe3O4 microsphere into conductive polymer-metal composite shell. The Fe3O4 microspheres were fabricated by assembling large amounts of Fe3O4 nano-crystals, which endowed the microspheres with super-paramagnetic property and high saturation magnetization. The polymer-metal composite shell was constructed by inserting Pt nano-particles (NPs into the conductive polymer polypyrrole (PPy. As size and dispersion of the Pt NPs has an important influence on their surface area and surface energy, it was effective to enlarge the interface area between PPy and Pt NPs, enhance the electron transfer efficiency of PPy/Pt composite shell, and reinforced the shell’s structural stability just by tuning the size and dispersion of Pt NPs. Moreover, core-shell structure of the materials made it convenient to investigate the PPy/Pt shell’s shielding effect on the Fe3O4 core’s magnetic response to external magnetic fields. It was found that the saturation magnetization of Fe3O4/PPy/Pt core-shell material could be reduced by 20.5% by regulating the conductivity of the PPy/Pt shell. Keywords: Super-paramagnetic, Conductivity, Magnetic shielding, Structural stability

  15. Trace metal variations in the shells of Ensis siliqua record pollution and environmental conditions in the sea to the west of mainland Britain

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, Nicholas J.G. [Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, SY23 3DB, Wales (United Kingdom)]. E-mail Nick.Pearce@aber.ac.uk; Mann, Victoria L. [Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, SY23 3DB, Wales (United Kingdom)

    2006-07-15

    Shells of the pod razor shell (Ensis siliqua) from 13 locations around the west coast of mainland Britain have been analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for a range of trace metals including Zn, Cd, Pb, U, Ba, Sr and Mg. The trace metal record in these shells is a proxy record for changes in seawater chemistry during the 1990s. Regional variations exist in the median concentrations of the analysed metals. Barium concentrations are related to increased productivity from sewage sludge dumping at sea. Strontium shows a local relationship to salinity, but there is no clear relationship over the study area, instead high Sr is often associated with high Ba, and may reflect ontogenetic factors such as growth rate. Magnesium shows a seasonal variation within individual shells and can be used to calculate sea surface temperatures from groups of shells. Contaminant metals show a clear regional relationship with known sources, thus high Pb and Zn are typically associated with former metal mining areas (e.g. Cardigan Bay, Anglesey), and high Pb, Zn, Cd and U are associated with industrial activity in Liverpool Bay. Anomalies such as the high U in shells from northern Scotland cannot at present be explained. A seasonal variation of Pb is also seen in Cardigan Bay and Liverpool Bay, relating to increased winter fluxes of these metals to the marine environment. The regional distribution of these metals is consistent with known sources of contamination and patterns of seawater migration around the coast of Britain.

  16. Shell Trumpets from Western Mexico

    Directory of Open Access Journals (Sweden)

    Robert Novella

    1991-11-01

    Full Text Available Marine shells have been used as musical instruments in almost all parts of the world (Izikowitz 1935, including Mesoamerica, where large univalves, also called conch shells in the literature, had a utilitarian function as trumpets. Their use is well documented in most cultural areas of Mesoamerica, as in Western Mexico, through their various occurrences in archaeological contexts and museums collections.

  17. P-shell hyperon binding energies

    International Nuclear Information System (INIS)

    Koetsier, D.; Amos, K.

    1991-01-01

    A shell model for lambda hypernuclei has been used to determine the binding energy of the hyperon in nuclei throughout the p shell. Conventional (Cohen and Kurath) potential energies for nucleon-nucleon interactions were used with hyperon-nucleon interactions taken from Nijmegen one boson exchange potentials. The hyperon binding energies calculated from these potentials compare well with measured values. 7 refs., 2 figs

  18. A time-varying magnetic flux concentrator

    International Nuclear Information System (INIS)

    Kibret, B; Premaratne, M; Lewis, P M; Thomson, R; Fitzgerald, P B

    2016-01-01

    It is known that diverse technological applications require the use of focused magnetic fields. This has driven the quest for controlling the magnetic field. Recently, the principles in transformation optics and metamaterials have allowed the realization of practical static magnetic flux concentrators. Extending such progress, here, we propose a time-varying magnetic flux concentrator cylindrical shell that uses electric conductors and ferromagnetic materials to guide magnetic flux to its center. Its performance is discussed based on finite-element simulation results. Our proposed design has potential applications in magnetic sensors, medical devices, wireless power transfer, and near-field wireless communications. (paper)

  19. Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate core–shell composite nanoparticles

    Directory of Open Access Journals (Sweden)

    Dafu Wei

    2017-09-01

    Full Text Available Carbon nanospheres with a high Brunauer–Emmett–Teller (BET specific surface area were fabricated via the pyrolysis of polyacrylonitrile–poly(methyl methacrylate (PAN–PMMA core–shell nanoparticles. Firstly, PAN–PMMA nanoparticles at high concentration and low surfactant content were controllably synthesized by a two-stage azobisisobutyronitrile (AIBN-initiated semicontinuous emulsion polymerization. The carbon nanospheres were obtained after the PAN core domain was converted into carbon and the PMMA shell was sacrificed via the subsequent heat treatment steps. The thickness of the PMMA shell can be easily adjusted by changing the feeding volume ratio (FVR of methyl methacrylate (MMA to acrylonitrile (AN. At an FVR of 1.6, the coarse PAN cores were completely buried in the PMMA shells, and the surface of the obtained PAN–PMMA nanoparticles became smooth. The thick PMMA shell can inhibit the adhesion between carbon nanospheres caused by cyclization reactions during heat treatment. The carbon nanospheres with a diameter of 35–65 nm and a high BET specific surface area of 612.8 m2/g were obtained from the PAN–PMMA nanoparticles synthesized at an FVR of 1.6. The carbon nanospheres exhibited a large adsorption capacity of 190.0 mg/g for methylene blue, thus making them excellent adsorbents for the removal of organic pollutants from water.

  20. Manganese speciation in Diplodon chilensis patagonicus shells: a XANES study

    Science.gov (United States)

    Soldati, A. L.; Vicente-Vilas, V.; Goettlicher, J.; Jacob, D. E.

    2009-04-01

    In addition to other types of climate archives, biogenic skeletons of a variety of different organisms (i.e. shells of bivalves, skeletal hard parts of corals or sponges) are increasingly used for high-resolution climate reconstructions. Bivalves are particularly suited for such analyses because they are geographically broadly distributed and have been shown to record climate and environmental information reliably and over long time intervals. Variation of environmental parameters such as food supply, substratum type, salinity, illumination, temperature, concentration of dissolved oxygen or oxygen/carbon dioxide ratio, among others, may affect growth pattern, shell structure, mineralogy, isotopic fractionation and chemistry. Thus, shell features, minor and trace element composition patterns and isotopic signals may serve as an archive of environmental history. In turn, palaeoclimatic parameters such as ambient temperature, precipitation gradients, seawater salinity and primary production can be reconstructed from the shells by means of sclerochronological and geochemical methods. However, the distribution of minor and trace elements in the biominerals is not only influenced by the environment or vital effects, but also by intrinsic biomineralisation parameters like the carbonate polymorphism and the mineral habit (Soldati et al., 2008a). Generally, it is assumed that the X2+ ions are replacing the Ca2+ ion in the calcium carbonate (CaCO3) structure, but newest findings show that amorphous (or disordered) phases may play a role in hosting some of the elements use as proxies (Meibom et al., 2008; and Finch and Allison, 2007). In this work we focused on the freshwater clam Diplodon chilensis patagonicus, a widely distributed inhabitant of lakes and rivers in southern South America. Thanks to its long life span and seasonal growth Diplodon mussels exhibit excellent characteristics to construct an accurate chronological archive, with time windows of up to around a