WorldWideScience

Sample records for multiple classification analysis

  1. Classification of multiple sclerosis patients by latent class analysis of magnetic resonance imaging characteristics.

    Zwemmer, J N P; Berkhof, J; Castelijns, J A; Barkhof, F; Polman, C H; Uitdehaag, B M J

    2006-10-01

    Disease heterogeneity is a major issue in multiple sclerosis (MS). Classification of MS patients is usually based on clinical characteristics. More recently, a pathological classification has been presented. While clinical subtypes differ by magnetic resonance imaging (MRI) signature on a group level, a classification of individual MS patients based purely on MRI characteristics has not been presented so far. To investigate whether a restricted classification of MS patients can be made based on a combination of quantitative and qualitative MRI characteristics and to test whether the resulting subgroups are associated with clinical and laboratory characteristics. MRI examinations of the brain and spinal cord of 50 patients were scored for 21 quantitative and qualitative characteristics. Using latent class analysis, subgroups were identified, for whom disease characteristics and laboratory measures were compared. Latent class analysis revealed two subgroups that mainly differed in the extent of lesion confluency and MRI correlates of neuronal loss in the brain. Demographics and disease characteristics were comparable except for cognitive deficits. No correlations with laboratory measures were found. Latent class analysis offers a feasible approach for classifying subgroups of MS patients based on the presence of MRI characteristics. The reproducibility, longitudinal evolution and further clinical or prognostic relevance of the observed classification will have to be explored in a larger and independent sample of patients.

  2. Supervised Cross-Modal Factor Analysis for Multiple Modal Data Classification

    Wang, Jingbin

    2015-10-09

    In this paper we study the problem of learning from multiple modal data for purpose of document classification. In this problem, each document is composed two different modals of data, i.e., An image and a text. Cross-modal factor analysis (CFA) has been proposed to project the two different modals of data to a shared data space, so that the classification of a image or a text can be performed directly in this space. A disadvantage of CFA is that it has ignored the supervision information. In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor in the shared space to use the class label information. The factor analysis parameter and the predictor parameter are learned jointly by solving one single objective function. With this objective function, we minimize the distance between the projections of image and text of the same document, and the classification error of the projection measured by hinge loss function. The objective function is optimized by an alternate optimization strategy in an iterative algorithm. Experiments in two different multiple modal document data sets show the advantage of the proposed algorithm over other CFA methods.

  3. Prognostic Classification Factors Associated With Development of Multiple Autoantibodies, Dysglycemia, and Type 1 Diabetes?A Recursive Partitioning Analysis

    Xu, Ping; Krischer, Jeffrey P.

    2016-01-01

    OBJECTIVE To define prognostic classification factors associated with the progression from single to multiple autoantibodies, multiple autoantibodies to dysglycemia, and dysglycemia to type 1 diabetes onset in relatives of individuals with type 1 diabetes. RESEARCH DESIGN AND METHODS Three distinct cohorts of subjects from the Type 1 Diabetes TrialNet Pathway to Prevention Study were investigated separately. A recursive partitioning analysis (RPA) was used to determine the risk classes. Clini...

  4. The rSPA Processes of River Water-quality Analysis System for Critical Contaminate Detection, Classification Multiple-water-quality-parameter Values and Real-time Notification

    Chalisa VEESOMMAI; Yasushi KIYOKI

    2016-01-01

    The water quality analysis is one of the most important aspects of designing environmental systems. It is necessary to realize detection and classification processes and systems for water quality analysis. The important direction is to lead to uncomplicated understanding for public utilization. This paper presents the river Sensing Processing Actuation processes (rSPA) for determination and classification of multiple-water- parameters in Chaophraya river. According to rSPA processes of multip...

  5. Prognostic Classification Factors Associated With Development of Multiple Autoantibodies, Dysglycemia, and Type 1 Diabetes-A Recursive Partitioning Analysis.

    Xu, Ping; Krischer, Jeffrey P

    2016-06-01

    To define prognostic classification factors associated with the progression from single to multiple autoantibodies, multiple autoantibodies to dysglycemia, and dysglycemia to type 1 diabetes onset in relatives of individuals with type 1 diabetes. Three distinct cohorts of subjects from the Type 1 Diabetes TrialNet Pathway to Prevention Study were investigated separately. A recursive partitioning analysis (RPA) was used to determine the risk classes. Clinical characteristics, including genotype, antibody titers, and metabolic markers were analyzed. Age and GAD65 autoantibody (GAD65Ab) titers defined three risk classes for progression from single to multiple autoantibodies. The 5-year risk was 11% for those subjects >16 years of age with low GAD65Ab titers, 29% for those ≤16 years of age with low GAD65Ab titers, and 45% for those subjects with high GAD65Ab titers regardless of age. Progression to dysglycemia was associated with islet antigen 2 Ab titers, and 2-h glucose and fasting C-peptide levels. The 5-year risk is 28%, 39%, and 51% for respective risk classes defined by the three predictors. Progression to type 1 diabetes was associated with the number of positive autoantibodies, peak C-peptide level, HbA1c level, and age. Four risk classes defined by RPA had a 5-year risk of 9%, 33%, 62%, and 80%, respectively. The use of RPA offered a new classification approach that could predict the timing of transitions from one preclinical stage to the next in the development of type 1 diabetes. Using these RPA classes, new prevention techniques can be tailored based on the individual prognostic risk characteristics at different preclinical stages. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Prognostic Classification Factors Associated With Development of Multiple Autoantibodies, Dysglycemia, and Type 1 Diabetes—A Recursive Partitioning Analysis

    Krischer, Jeffrey P.

    2016-01-01

    OBJECTIVE To define prognostic classification factors associated with the progression from single to multiple autoantibodies, multiple autoantibodies to dysglycemia, and dysglycemia to type 1 diabetes onset in relatives of individuals with type 1 diabetes. RESEARCH DESIGN AND METHODS Three distinct cohorts of subjects from the Type 1 Diabetes TrialNet Pathway to Prevention Study were investigated separately. A recursive partitioning analysis (RPA) was used to determine the risk classes. Clinical characteristics, including genotype, antibody titers, and metabolic markers were analyzed. RESULTS Age and GAD65 autoantibody (GAD65Ab) titers defined three risk classes for progression from single to multiple autoantibodies. The 5-year risk was 11% for those subjects >16 years of age with low GAD65Ab titers, 29% for those ≤16 years of age with low GAD65Ab titers, and 45% for those subjects with high GAD65Ab titers regardless of age. Progression to dysglycemia was associated with islet antigen 2 Ab titers, and 2-h glucose and fasting C-peptide levels. The 5-year risk is 28%, 39%, and 51% for respective risk classes defined by the three predictors. Progression to type 1 diabetes was associated with the number of positive autoantibodies, peak C-peptide level, HbA1c level, and age. Four risk classes defined by RPA had a 5-year risk of 9%, 33%, 62%, and 80%, respectively. CONCLUSIONS The use of RPA offered a new classification approach that could predict the timing of transitions from one preclinical stage to the next in the development of type 1 diabetes. Using these RPA classes, new prevention techniques can be tailored based on the individual prognostic risk characteristics at different preclinical stages. PMID:27208341

  7. Detection of geodesic acoustic mode oscillations, using multiple signal classification analysis of Doppler backscattering signal on Tore Supra

    Vermare, L.; Hennequin, P.; Gürcan, Ö.D.

    2012-01-01

    This paper presents the first observation of geodesic acoustic modes (GAMs) on Tore Supra plasmas. Using the Doppler backscattering system, the oscillations of the plasma flow velocity, localized between r/a = 0.85 and r/a = 0.95, and with a frequency, typically around 10 kHz, have been observed at the plasma edge in numerous discharges. When the additional heating power is varied, the frequency is found to scale with C s /R. The MUltiple SIgnal Classification (MUSIC) algorithm is employed to access the temporal evolution of the perpendicular velocity of density fluctuations. The method is presented in some detail, and is validated and compared against standard methods, such as the conventional fast Fourier transform method, using a synthetic signal. It stands out as a powerful data analysis method to follow the Doppler frequency with a high temporal resolution, which is important in order to extract the dynamics of GAMs. (paper)

  8. Supervised Cross-Modal Factor Analysis for Multiple Modal Data Classification

    Wang, Jingbin; Zhou, Yihua; Duan, Kanghong; Wang, Jim Jing-Yan; Bensmail, Halima

    2015-01-01

    . In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor

  9. Gene features selection for three-class disease classification via multiple orthogonal partial least square discriminant analysis and S-plot using microarray data.

    Yang, Mingxing; Li, Xiumin; Li, Zhibin; Ou, Zhimin; Liu, Ming; Liu, Suhuan; Li, Xuejun; Yang, Shuyu

    2013-01-01

    DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes. Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub's leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.

  10. A New Classification Approach Based on Multiple Classification Rules

    Zhongmei Zhou

    2014-01-01

    A good classifier can correctly predict new data for which the class label is unknown, so it is important to construct a high accuracy classifier. Hence, classification techniques are much useful in ubiquitous computing. Associative classification achieves higher classification accuracy than some traditional rule-based classification approaches. However, the approach also has two major deficiencies. First, it generates a very large number of association classification rules, especially when t...

  11. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system

  12. Combining multiple classifiers for age classification

    Van Heerden, C

    2009-11-01

    Full Text Available The authors compare several different classifier combination methods on a single task, namely speaker age classification. This task is well suited to combination strategies, since significantly different feature classes are employed. Support vector...

  13. Video based object representation and classification using multiple covariance matrices.

    Zhang, Yurong; Liu, Quan

    2017-01-01

    Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.

  14. Multiple Signal Classification for Gravitational Wave Burst Search

    Cao, Junwei; He, Zhengqi

    2013-01-01

    This work is mainly focused on the application of the multiple signal classification (MUSIC) algorithm for gravitational wave burst search. This algorithm extracts important gravitational wave characteristics from signals coming from detectors with arbitrary position, orientation and noise covariance. In this paper, the MUSIC algorithm is described in detail along with the necessary adjustments required for gravitational wave burst search. The algorithm's performance is measured using simulated signals and noise. MUSIC is compared with the Q-transform for signal triggering and with Bayesian analysis for direction of arrival (DOA) estimation, using the Ω-pipeline. Experimental results show that MUSIC has a lower resolution but is faster. MUSIC is a promising tool for real-time gravitational wave search for multi-messenger astronomy.

  15. Classification of Farmland Landscape Structure in Multiple Scales

    Jiang, P.; Cheng, Q.; Li, M.

    2017-12-01

    Farmland is one of the basic terrestrial resources that support the development and survival of human beings and thus plays a crucial role in the national security of every country. Pattern change is the intuitively spatial representation of the scale and quality variation of farmland. Through the characteristic development of spatial shapes as well as through changes in system structures, functions and so on, farmland landscape patterns may indicate the landscape health level. Currently, it is still difficult to perform positioning analyses of landscape pattern changes that reflect the landscape structure variations of farmland with an index model. Depending on a number of spatial properties such as locations and adjacency relations, distance decay, fringe effect, and on the model of patch-corridor-matrix that is applied, this study defines a type system of farmland landscape structure on the national, provincial, and city levels. According to such a definition, the classification model of farmland landscape-structure type at the pixel scale is developed and validated based on mathematical-morphology concepts and on spatial-analysis methods. Then, the laws that govern farmland landscape-pattern change in multiple scales are analyzed from the perspectives of spatial heterogeneity, spatio-temporal evolution, and function transformation. The result shows that the classification model of farmland landscape-structure type can reflect farmland landscape-pattern change and its effects on farmland production function. Moreover, farmland landscape change in different scales displayed significant disparity in zonality, both within specific regions and in urban-rural areas.

  16. Automated otolith image classification with multiple views: an evaluation on Sciaenidae.

    Wong, J Y; Chu, C; Chong, V C; Dhillon, S K; Loh, K H

    2016-08-01

    Combined multiple 2D views (proximal, anterior and ventral aspects) of the sagittal otolith are proposed here as a method to capture shape information for fish classification. Classification performance of single view compared with combined 2D views show improved classification accuracy of the latter, for nine species of Sciaenidae. The effects of shape description methods (shape indices, Procrustes analysis and elliptical Fourier analysis) on classification performance were evaluated. Procrustes analysis and elliptical Fourier analysis perform better than shape indices when single view is considered, but all perform equally well with combined views. A generic content-based image retrieval (CBIR) system that ranks dissimilarity (Procrustes distance) of otolith images was built to search query images without the need for detailed information of side (left or right), aspect (proximal or distal) and direction (positive or negative) of the otolith. Methods for the development of this automated classification system are discussed. © 2016 The Fisheries Society of the British Isles.

  17. Neutron Multiplicity Analysis

    Frame, Katherine Chiyoko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    Neutron multiplicity measurements are widely used for nondestructive assay (NDA) of special nuclear material (SNM). When combined with isotopic composition information, neutron multiplicity analysis can be used to estimate the spontaneous fission rate and leakage multiplication of SNM. When combined with isotopic information, the total mass of fissile material can also be determined. This presentation provides an overview of this technique.

  18. Classification of multiple sclerosis lesions using adaptive dictionary learning.

    Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian

    2015-12-01

    This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Biological signals classification and analysis

    Kiasaleh, Kamran

    2015-01-01

    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  20. Optimizing Multiple Kernel Learning for the Classification of UAV Data

    Caroline M. Gevaert

    2016-12-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are capable of providing high-quality orthoimagery and 3D information in the form of point clouds at a relatively low cost. Their increasing popularity stresses the necessity of understanding which algorithms are especially suited for processing the data obtained from UAVs. The features that are extracted from the point cloud and imagery have different statistical characteristics and can be considered as heterogeneous, which motivates the use of Multiple Kernel Learning (MKL for classification problems. In this paper, we illustrate the utility of applying MKL for the classification of heterogeneous features obtained from UAV data through a case study of an informal settlement in Kigali, Rwanda. Results indicate that MKL can achieve a classification accuracy of 90.6%, a 5.2% increase over a standard single-kernel Support Vector Machine (SVM. A comparison of seven MKL methods indicates that linearly-weighted kernel combinations based on simple heuristics are competitive with respect to computationally-complex, non-linear kernel combination methods. We further underline the importance of utilizing appropriate feature grouping strategies for MKL, which has not been directly addressed in the literature, and we propose a novel, automated feature grouping method that achieves a high classification accuracy for various MKL methods.

  1. Multiple kernel boosting framework based on information measure for classification

    Qi, Chengming; Wang, Yuping; Tian, Wenjie; Wang, Qun

    2016-01-01

    The performance of kernel-based method, such as support vector machine (SVM), is greatly affected by the choice of kernel function. Multiple kernel learning (MKL) is a promising family of machine learning algorithms and has attracted many attentions in recent years. MKL combines multiple sub-kernels to seek better results compared to single kernel learning. In order to improve the efficiency of SVM and MKL, in this paper, the Kullback–Leibler kernel function is derived to develop SVM. The proposed method employs an improved ensemble learning framework, named KLMKB, which applies Adaboost to learning multiple kernel-based classifier. In the experiment for hyperspectral remote sensing image classification, we employ feature selected through Optional Index Factor (OIF) to classify the satellite image. We extensively examine the performance of our approach in comparison to some relevant and state-of-the-art algorithms on a number of benchmark classification data sets and hyperspectral remote sensing image data set. Experimental results show that our method has a stable behavior and a noticeable accuracy for different data set.

  2. Structure D'Ensemble, Multiple Classification, Multiple Seriation and Amount of Irrelevant Information

    Hamel, B. Remmo; Van Der Veer, M. A. A.

    1972-01-01

    A significant positive correlation between multiple classification was found, in testing 65 children aged 6 to 8 years, at the stage of concrete operations. This is interpreted as support for the existence of a structure d'ensemble of operational schemes in the period of concrete operations. (Authors)

  3. Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions

    Najibi, Seyed Morteza

    2017-02-08

    Recently, the study of protein structures using angular representations has attracted much attention among structural biologists. The main challenge is how to efficiently model the continuous conformational space of the protein structures based on the differences and similarities between different Ramachandran plots. Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address this need, we have developed a nonparametric method for collective estimation of multiple bivariate density functions for a collection of populations of protein backbone angles. The proposed method takes into account the circular nature of the angular data using trigonometric spline which is more efficient compared to existing methods. This collective density estimation approach is widely applicable when there is a need to estimate multiple density functions from different populations with common features. Moreover, the coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation that is useful for visualization, clustering, and classification of the densities. The proposed method provides a novel and unique perspective to two important and challenging problems in protein structure research: structure-based protein classification and angular-sampling-based protein loop structure prediction.

  4. Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions

    Najibi, Seyed Morteza; Maadooliat, Mehdi; Zhou, Lan; Huang, Jianhua Z.; Gao, Xin

    2017-01-01

    Recently, the study of protein structures using angular representations has attracted much attention among structural biologists. The main challenge is how to efficiently model the continuous conformational space of the protein structures based on the differences and similarities between different Ramachandran plots. Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address this need, we have developed a nonparametric method for collective estimation of multiple bivariate density functions for a collection of populations of protein backbone angles. The proposed method takes into account the circular nature of the angular data using trigonometric spline which is more efficient compared to existing methods. This collective density estimation approach is widely applicable when there is a need to estimate multiple density functions from different populations with common features. Moreover, the coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation that is useful for visualization, clustering, and classification of the densities. The proposed method provides a novel and unique perspective to two important and challenging problems in protein structure research: structure-based protein classification and angular-sampling-based protein loop structure prediction.

  5. On using the Multiple Signal Classification algorithm to study microbaroms

    Marcillo, O. E.; Blom, P. S.; Euler, G. G.

    2016-12-01

    Multiple Signal Classification (MUSIC) (Schmidt, 1986) is a well-known high-resolution algorithm used in array processing for parameter estimation. We report on the application of MUSIC to infrasonic array data in a study of the structure of microbaroms. Microbaroms can be globally observed and display energy centered around 0.2 Hz. Microbaroms are an infrasonic signal generated by the non-linear interaction of ocean surface waves that radiate into the ocean and atmosphere as well as the solid earth in the form of microseisms. Microbaroms sources are dynamic and, in many cases, distributed in space and moving in time. We assume that the microbarom energy detected by an infrasonic array is the result of multiple sources (with different back-azimuths) in the same bandwidth and apply the MUSIC algorithm accordingly to recover the back-azimuth and trace velocity of the individual components. Preliminary results show that the multiple component assumption in MUSIC allows one to resolve the fine structure in the microbarom band that can be related to multiple ocean surface phenomena.

  6. QA CLASSIFICATION ANALYSIS OF GROUND SUPPORT SYSTEMS

    D. W. Gwyn

    1996-01-01

    The purpose and objective of this analysis is to determine if the permanent function Ground Support Systems (CI: BABEEOOOO) are quality-affecting items and if so, to establish the appropriate Quality Assurance (QA) classification

  7. Application of In-Segment Multiple Sampling in Object-Based Classification

    Nataša Đurić

    2014-12-01

    Full Text Available When object-based analysis is applied to very high-resolution imagery, pixels within the segments reveal large spectral inhomogeneity; their distribution can be considered complex rather than normal. When normality is violated, the classification methods that rely on the assumption of normally distributed data are not as successful or accurate. It is hard to detect normality violations in small samples. The segmentation process produces segments that vary highly in size; samples can be very big or very small. This paper investigates whether the complexity within the segment can be addressed using multiple random sampling of segment pixels and multiple calculations of similarity measures. In order to analyze the effect sampling has on classification results, statistics and probability value equations of non-parametric two-sample Kolmogorov-Smirnov test and parametric Student’s t-test are selected as similarity measures in the classification process. The performance of both classifiers was assessed on a WorldView-2 image for four land cover classes (roads, buildings, grass and trees and compared to two commonly used object-based classifiers—k-Nearest Neighbor (k-NN and Support Vector Machine (SVM. Both proposed classifiers showed a slight improvement in the overall classification accuracies and produced more accurate classification maps when compared to the ground truth image.

  8. Contaminant classification using cosine distances based on multiple conventional sensors.

    Liu, Shuming; Che, Han; Smith, Kate; Chang, Tian

    2015-02-01

    Emergent contamination events have a significant impact on water systems. After contamination detection, it is important to classify the type of contaminant quickly to provide support for remediation attempts. Conventional methods generally either rely on laboratory-based analysis, which requires a long analysis time, or on multivariable-based geometry analysis and sequence analysis, which is prone to being affected by the contaminant concentration. This paper proposes a new contaminant classification method, which discriminates contaminants in a real time manner independent of the contaminant concentration. The proposed method quantifies the similarities or dissimilarities between sensors' responses to different types of contaminants. The performance of the proposed method was evaluated using data from contaminant injection experiments in a laboratory and compared with a Euclidean distance-based method. The robustness of the proposed method was evaluated using an uncertainty analysis. The results show that the proposed method performed better in identifying the type of contaminant than the Euclidean distance based method and that it could classify the type of contaminant in minutes without significantly compromising the correct classification rate (CCR).

  9. Classification and Weakly Supervised Pain Localization using Multiple Segment Representation.

    Sikka, Karan; Dhall, Abhinav; Bartlett, Marian Stewart

    2014-10-01

    Automatic pain recognition from videos is a vital clinical application and, owing to its spontaneous nature, poses interesting challenges to automatic facial expression recognition (AFER) research. Previous pain vs no-pain systems have highlighted two major challenges: (1) ground truth is provided for the sequence, but the presence or absence of the target expression for a given frame is unknown, and (2) the time point and the duration of the pain expression event(s) in each video are unknown. To address these issues we propose a novel framework (referred to as MS-MIL) where each sequence is represented as a bag containing multiple segments, and multiple instance learning (MIL) is employed to handle this weakly labeled data in the form of sequence level ground-truth. These segments are generated via multiple clustering of a sequence or running a multi-scale temporal scanning window, and are represented using a state-of-the-art Bag of Words (BoW) representation. This work extends the idea of detecting facial expressions through 'concept frames' to 'concept segments' and argues through extensive experiments that algorithms such as MIL are needed to reap the benefits of such representation. The key advantages of our approach are: (1) joint detection and localization of painful frames using only sequence-level ground-truth, (2) incorporation of temporal dynamics by representing the data not as individual frames but as segments, and (3) extraction of multiple segments, which is well suited to signals with uncertain temporal location and duration in the video. Extensive experiments on UNBC-McMaster Shoulder Pain dataset highlight the effectiveness of the approach by achieving competitive results on both tasks of pain classification and localization in videos. We also empirically evaluate the contributions of different components of MS-MIL. The paper also includes the visualization of discriminative facial patches, important for pain detection, as discovered by our

  10. Classification, (big) data analysis and statistical learning

    Conversano, Claudio; Vichi, Maurizio

    2018-01-01

    This edited book focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas such as economics, marketing, education, social sciences, medicine, environmental sciences and the pharmaceutical industry. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in Santa Margherita di Pul...

  11. The linear attenuation coefficients as features of multiple energy CT image classification

    Homem, M.R.P.; Mascarenhas, N.D.A.; Cruvinel, P.E.

    2000-01-01

    We present in this paper an analysis of the linear attenuation coefficients as useful features of single and multiple energy CT images with the use of statistical pattern classification tools. We analyzed four CT images through two pointwise classifiers (the first classifier is based on the maximum-likelihood criterion and the second classifier is based on the k-means clustering algorithm) and one contextual Bayesian classifier (ICM algorithm - Iterated Conditional Modes) using an a priori Potts-Strauss model. A feature extraction procedure using the Jeffries-Matusita (J-M) distance and the Karhunen-Loeve transformation was also performed. Both the classification and the feature selection procedures were found to be in agreement with the predicted discrimination given by the separation of the linear attenuation coefficient curves for different materials

  12. Analysis of composition-based metagenomic classification.

    Higashi, Susan; Barreto, André da Motta Salles; Cantão, Maurício Egidio; de Vasconcelos, Ana Tereza Ribeiro

    2012-01-01

    An essential step of a metagenomic study is the taxonomic classification, that is, the identification of the taxonomic lineage of the organisms in a given sample. The taxonomic classification process involves a series of decisions. Currently, in the context of metagenomics, such decisions are usually based on empirical studies that consider one specific type of classifier. In this study we propose a general framework for analyzing the impact that several decisions can have on the classification problem. Instead of focusing on any specific classifier, we define a generic score function that provides a measure of the difficulty of the classification task. Using this framework, we analyze the impact of the following parameters on the taxonomic classification problem: (i) the length of n-mers used to encode the metagenomic sequences, (ii) the similarity measure used to compare sequences, and (iii) the type of taxonomic classification, which can be conventional or hierarchical, depending on whether the classification process occurs in a single shot or in several steps according to the taxonomic tree. We defined a score function that measures the degree of separability of the taxonomic classes under a given configuration induced by the parameters above. We conducted an extensive computational experiment and found out that reasonable values for the parameters of interest could be (i) intermediate values of n, the length of the n-mers; (ii) any similarity measure, because all of them resulted in similar scores; and (iii) the hierarchical strategy, which performed better in all of the cases. As expected, short n-mers generate lower configuration scores because they give rise to frequency vectors that represent distinct sequences in a similar way. On the other hand, large values for n result in sparse frequency vectors that represent differently metagenomic fragments that are in fact similar, also leading to low configuration scores. Regarding the similarity measure, in

  13. Music genre classification via likelihood fusion from multiple feature models

    Shiu, Yu; Kuo, C.-C. J.

    2005-01-01

    Music genre provides an efficient way to index songs in a music database, and can be used as an effective means to retrieval music of a similar type, i.e. content-based music retrieval. A new two-stage scheme for music genre classification is proposed in this work. At the first stage, we examine a couple of different features, construct their corresponding parametric models (e.g. GMM and HMM) and compute their likelihood functions to yield soft classification results. In particular, the timbre, rhythm and temporal variation features are considered. Then, at the second stage, these soft classification results are integrated to result in a hard decision for final music genre classification. Experimental results are given to demonstrate the performance of the proposed scheme.

  14. Classification of Single and Multiple Disturbances in Electric Signals

    Ribeiro Moisés Vidal

    2007-01-01

    Full Text Available This paper discusses and presents a different perspective for classifying single and multiple disturbances in electric signals, such as voltage and current ones. Basically, the principle of divide to conquer is applied to decompose the electric signals into what we call primitive signals or components from which primitive patterns can be independently recognized. A technique based on such concept is introduced to demonstrate the effectiveness of such idea. This technique decomposes the electric signals into three main primitive components. In each primitive component, few high-order-statistics- (HOS- based features are extracted. Then, Bayes' theory-based techniques are applied to verify the ocurrence or not of single or multiple disturbances in the electric signals. The performance analysis carried out on a large number of data indicates that the proposed technique outperforms the performance attained by the technique introduced by He and Starzyk. Additionally, the numerical results verify that the proposed technique is capable of offering interesting results when it is applied to classify several sets of disturbances if one cycle of the main frequency is considered, at least.

  15. Diagnosing Unemployment: The 'Classification' Approach to Multiple Causation

    Rodenburg, P.

    2002-01-01

    The establishment of appropriate policy measures for fighting unemployment has always been difficult since causes of unemployment are hard to identify. This paper analyses an approach used mainly in the 1960s and 1970s in economics, in which classification is used as a way to deal with such a

  16. Automatic classification of hyperactive children: comparing multiple artificial intelligence approaches.

    Delavarian, Mona; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Dibajnia, Parvin

    2011-07-12

    Automatic classification of different behavioral disorders with many similarities (e.g. in symptoms) by using an automated approach will help psychiatrists to concentrate on correct disorder and its treatment as soon as possible, to avoid wasting time on diagnosis, and to increase the accuracy of diagnosis. In this study, we tried to differentiate and classify (diagnose) 306 children with many similar symptoms and different behavioral disorders such as ADHD, depression, anxiety, comorbid depression and anxiety and conduct disorder with high accuracy. Classification was based on the symptoms and their severity. With examining 16 different available classifiers, by using "Prtools", we have proposed nearest mean classifier as the most accurate classifier with 96.92% accuracy in this research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Toward noncooperative iris recognition: a classification approach using multiple signatures.

    Proença, Hugo; Alexandre, Luís A

    2007-04-01

    This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images.

  18. Search and Classification Using Multiple Autonomous Vehicles Decision-Making and Sensor Management

    Wang, Yue

    2012-01-01

    Search and Classification Using Multiple Autonomous Vehicles provides a comprehensive study of decision-making strategies for domain search and object classification using multiple autonomous vehicles (MAV) under both deterministic and probabilistic frameworks. It serves as a first discussion of the problem of effective resource allocation using MAV with sensing limitations, i.e., for search and classification missions over large-scale domains, or when there are far more objects to be found and classified than there are autonomous vehicles available. Under such scenarios, search and classification compete for limited sensing resources. This is because search requires vehicle mobility while classification restricts the vehicles to the vicinity of any objects found. The authors develop decision-making strategies to choose between these competing tasks and vehicle-motion-control laws to achieve the proposed management scheme. Deterministic Lyapunov-based, probabilistic Bayesian-based, and risk-based decision-mak...

  19. CLASS-PAIR-GUIDED MULTIPLE KERNEL LEARNING OF INTEGRATING HETEROGENEOUS FEATURES FOR CLASSIFICATION

    Q. Wang

    2017-10-01

    Full Text Available In recent years, many studies on remote sensing image classification have shown that using multiple features from different data sources can effectively improve the classification accuracy. As a very powerful means of learning, multiple kernel learning (MKL can conveniently be embedded in a variety of characteristics. The conventional combined kernel learned by MKL can be regarded as the compromise of all basic kernels for all classes in classification. It is the best of the whole, but not optimal for each specific class. For this problem, this paper proposes a class-pair-guided MKL method to integrate the heterogeneous features (HFs from multispectral image (MSI and light detection and ranging (LiDAR data. In particular, the one-against-one strategy is adopted, which converts multiclass classification problem to a plurality of two-class classification problem. Then, we select the best kernel from pre-constructed basic kernels set for each class-pair by kernel alignment (KA in the process of classification. The advantage of the proposed method is that only the best kernel for the classification of any two classes can be retained, which leads to greatly enhanced discriminability. Experiments are conducted on two real data sets, and the experimental results show that the proposed method achieves the best performance in terms of classification accuracies in integrating the HFs for classification when compared with several state-of-the-art algorithms.

  20. Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses

    Gabriel Kocevar

    2016-10-01

    Full Text Available Purpose: In this work, we introduce a method to classify Multiple Sclerosis (MS patients into four clinical profiles using structural connectivity information. For the first time, we try to solve this question in a fully automated way using a computer-based method. The main goal is to show how the combination of graph-derived metrics with machine learning techniques constitutes a powerful tool for a better characterization and classification of MS clinical profiles.Materials and methods: Sixty-four MS patients (12 Clinical Isolated Syndrome (CIS, 24 Relapsing Remitting (RR, 24 Secondary Progressive (SP, and 17 Primary Progressive (PP along with 26 healthy controls (HC underwent MR examination. T1 and diffusion tensor imaging (DTI were used to obtain structural connectivity matrices for each subject. Global graph metrics, such as density and modularity, were estimated and compared between subjects’ groups. These metrics were further used to classify patients using tuned Support Vector Machine (SVM combined with Radial Basic Function (RBF kernel.Results: When comparing MS patients to HC subjects, a greater assortativity, transitivity and characteristic path length as well as a lower global efficiency were found. Using all graph metrics, the best F-Measures (91.8%, 91.8%, 75.6% and 70.6% were obtained for binary (HC-CIS, CIS-RR, RR-PP and multi-class (CIS-RR-SP classification tasks, respectively. When using only one graph metric, the best F-Measures (83.6%, 88.9% and 70.7% were achieved for modularity with previous binary classification tasks.Conclusion: Based on a simple DTI acquisition associated with structural brain connectivity analysis, this automatic method allowed an accurate classification of different MS patients’ clinical profiles.

  1. PATTERN CLASSIFICATION APPROACHES TO MATCHING BUILDING POLYGONS AT MULTIPLE SCALES

    X. Zhang

    2012-07-01

    Full Text Available Matching of building polygons with different levels of detail is crucial in the maintenance and quality assessment of multi-representation databases. Two general problems need to be addressed in the matching process: (1 Which criteria are suitable? (2 How to effectively combine different criteria to make decisions? This paper mainly focuses on the second issue and views data matching as a supervised pattern classification. Several classifiers (i.e. decision trees, Naive Bayes and support vector machines are evaluated for the matching task. Four criteria (i.e. position, size, shape and orientation are used to extract information for these classifiers. Evidence shows that these classifiers outperformed the weighted average approach.

  2. Specific classification of financial analysis of enterprise activity

    Synkevych Nadiia I.

    2014-01-01

    Full Text Available Despite the fact that one can find a big variety of classifications of types of financial analysis of enterprise activity, which differ with their approach to classification and a number of classification features and their content, in modern scientific literature, their complex comparison and analysis of existing classification have not been done. This explains urgency of this study. The article studies classification of types of financial analysis of scientists and presents own approach to this problem. By the results of analysis the article improves and builds up a specific classification of financial analysis of enterprise activity and offers classification by the following features: objects, subjects, goals of study, automation level, time period of the analytical base, scope of study, organisation system, classification features of the subject, spatial belonging, sufficiency, information sources, periodicity, criterial base, method of data selection for analysis and time direction. All types of financial analysis significantly differ with their inherent properties and parameters depending on the goals of financial analysis. The developed specific classification provides subjects of financial analysis of enterprise activity with a possibility to identify a specific type of financial analysis, which would correctly meet the set goals.

  3. Multiple kernel learning using single stage function approximation for binary classification problems

    Shiju, S.; Sumitra, S.

    2017-12-01

    In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.

  4. GIS coupled Multiple Criteria based Decision Support for Classification of Urban Coastal Areas in India

    Dhiman, R.; Kalbar, P.; Inamdar, A. B.

    2017-12-01

    Coastal area classification in India is a challenge for federal and state government agencies due to fragile institutional framework, unclear directions in implementation of costal regulations and violations happening at private and government level. This work is an attempt to improvise the objectivity of existing classification methods to synergies the ecological systems and socioeconomic development in coastal cities. We developed a Geographic information system coupled Multi-criteria Decision Making (GIS-MCDM) approach to classify urban coastal areas where utility functions are used to transform the costal features into quantitative membership values after assessing the sensitivity of urban coastal ecosystem. Furthermore, these membership values for costal features are applied in different weighting schemes to derive Coastal Area Index (CAI) which classifies the coastal areas in four distinct categories viz. 1) No Development Zone, 2) Highly Sensitive Zone, 3) Moderately Sensitive Zone and 4) Low Sensitive Zone based on the sensitivity of urban coastal ecosystem. Mumbai, a coastal megacity in India is used as case study for demonstration of proposed method. Finally, uncertainty analysis using Monte Carlo approach to validate the sensitivity of CAI under specific multiple scenarios is carried out. Results of CAI method shows the clear demarcation of coastal areas in GIS environment based on the ecological sensitivity. CAI provides better decision support for federal and state level agencies to classify urban coastal areas according to the regional requirement of coastal resources considering resilience and sustainable development. CAI method will strengthen the existing institutional framework for decision making in classification of urban coastal areas where most effective coastal management options can be proposed.

  5. Logistic regression and multiple classification analyses to explore risk factors of under-5 mortality in bangladesh

    Bhowmik, K.R.; Islam, S.

    2016-01-01

    Logistic regression (LR) analysis is the most common statistical methodology to find out the determinants of childhood mortality. However, the significant predictors cannot be ranked according to their influence on the response variable. Multiple classification (MC) analysis can be applied to identify the significant predictors with a priority index which helps to rank the predictors. The main objective of the study is to find the socio-demographic determinants of childhood mortality at neonatal, post-neonatal, and post-infant period by fitting LR model as well as to rank those through MC analysis. The study is conducted using the data of Bangladesh Demographic and Health Survey 2007 where birth and death information of children were collected from their mothers. Three dichotomous response variables are constructed from children age at death to fit the LR and MC models. Socio-economic and demographic variables significantly associated with the response variables separately are considered in LR and MC analyses. Both the LR and MC models identified the same significant predictors for specific childhood mortality. For both the neonatal and child mortality, biological factors of children, regional settings, and parents socio-economic status are found as 1st, 2nd, and 3rd significant groups of predictors respectively. Mother education and household environment are detected as major significant predictors of post-neonatal mortality. This study shows that MC analysis with or without LR analysis can be applied to detect determinants with rank which help the policy makers taking initiatives on a priority basis. (author)

  6. Classification and Analysis of Computer Network Traffic

    Bujlow, Tomasz

    2014-01-01

    Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models of traffic for academic purposes. We define the objective of this thesis as finding a way to evaluate the performance of various applications in a high-speed Internet infrastructure. To satisfy the obje...

  7. Activation analysis. A basis for chemical similarity and classification

    Beeck, J OP de [Ghent Rijksuniversiteit (Belgium). Instituut voor Kernwetenschappen

    1977-01-01

    It is shown that activation analysis is especially suited to serve as a basis for determining the chemical similarity between samples defined by their trace-element concentration patterns. The general problem of classification and identification is discussed. The nature of possible classification structures and their appropriate clustering strategies is considered. A practical computer method is suggested and its application as well as the graphical representation of classification results are given. The possibility for classification using information theory is mentioned. Classification of chemical elements is discussed and practically realized after Hadamard transformation of the concentration variation patterns in a series of samples.

  8. Classification and Analysis of Computer Network Traffic

    Bujlow, Tomasz

    2014-01-01

    various classification modes (decision trees, rulesets, boosting, softening thresholds) regarding the classification accuracy and the time required to create the classifier. We showed how to use our VBS tool to obtain per-flow, per-application, and per-content statistics of traffic in computer networks...

  9. Cognitive-Behavioral Classifications of Chronic Pain in Patients with Multiple Sclerosis

    Khan, Fary; Pallant, Julie F.; Amatya, Bhasker; Young, Kevin; Gibson, Steven

    2011-01-01

    The aim of this study was to replicate, in patients with multiple sclerosis (MS), the three-cluster cognitive-behavioral classification proposed by Turk and Rudy. Sixty-two patients attending a tertiary MS rehabilitation center completed the Pain Impact Rating questionnaire measuring activity interference, pain intensity, social support, and…

  10. Multiple Sclerosis and Employment: A Research Review Based on the International Classification of Function

    Frain, Michael P.; Bishop, Malachy; Rumrill, Phillip D., Jr.; Chan, Fong; Tansey, Timothy N.; Strauser, David; Chiu, Chung-Yi

    2015-01-01

    Multiple sclerosis (MS) is an unpredictable, sometimes progressive chronic illness affecting people in the prime of their working lives. This article reviews the effects of MS on employment based on the World Health Organization's International Classification of Functioning, Disability and Health model. Correlations between employment and…

  11. Multiple classifier systems in texton-based approach for the classification of CT images of Lung

    Gangeh, Mehrdad J.; Sørensen, Lauge; Shaker, Saher B.

    2010-01-01

    In this paper, we propose using texton signatures based on raw pixel representation along with a parallel multiple classifier system for the classification of emphysema in computed tomography images of the lung. The multiple classifier system is composed of support vector machines on the texton.......e., texton size and k value in k-means. Our results show that while aggregation of single decisions by SVMs over various k values using multiple classifier systems helps to improve the results compared to single SVMs, combining over different texton sizes is not beneficial. The performance of the proposed...

  12. Perinatal mortality classification: an analysis of 112 cases of stillbirth.

    Reis, Ana Paula; Rocha, Ana; Lebre, Andrea; Ramos, Umbelina; Cunha, Ana

    2017-10-01

    This was a retrospective cohort analysis of stillbirths that occurred from January 2004 to December 2013 in our institution. We compared Tulip and Wigglesworth classification systems on a cohort of stillbirths and analysed the main differences between these two classifications. In this period, there were 112 stillbirths of a total of 31,758 births (stillbirth rate of 3.5 per 1000 births). There were 99 antepartum deaths and 13 intrapartum deaths. Foetal autopsy was performed in 99 cases and placental histopathological examination in all of the cases. The Wigglesworth found 'unknown' causes in 47 cases and the Tulip classification allocated 33 of these. Fourteen cases remained in the group of 'unknown' causes. Therefore, the Wigglesworth classification of stillbirths results in a higher proportion of unexplained stillbirths. We suggest that the traditional Wigglesworth classification should be substituted by a classification that manages the available information.

  13. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

    Sun Xun

    2016-12-01

    Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

  14. Classification of astrocyto-mas and meningiomas using statistical discriminant analysis on MRI data

    Siromoney, Anna; Prasad, G.N.S.; Raghuram, Lakshminarayan; Korah, Ipeson; Siromoney, Arul; Chandrasekaran, R.

    2001-01-01

    The objective of this study was to investigate the usefulness of Multivariate Discriminant Analysis for classifying two groups of primary brain tumours, astrocytomas and meningiomas, from Magnetic Resonance Images. Discriminant analysis is a multivariate technique concerned with separating distinct sets of objects and with allocating new objects to previously defined groups. Allocation or classification rules are usually developed from learning examples in a supervised learning environment. Data from signal intensity measurements in the multiple scan performed on each patient in routine clinical scanning was analysed using Fisher's Classification, which is one method of discriminant analysis

  15. Multiple category-lot quality assurance sampling: a new classification system with application to schistosomiasis control.

    Casey Olives

    Full Text Available Originally a binary classifier, Lot Quality Assurance Sampling (LQAS has proven to be a useful tool for classification of the prevalence of Schistosoma mansoni into multiple categories (≤10%, >10 and <50%, ≥50%, and semi-curtailed sampling has been shown to effectively reduce the number of observations needed to reach a decision. To date the statistical underpinnings for Multiple Category-LQAS (MC-LQAS have not received full treatment. We explore the analytical properties of MC-LQAS, and validate its use for the classification of S. mansoni prevalence in multiple settings in East Africa.We outline MC-LQAS design principles and formulae for operating characteristic curves. In addition, we derive the average sample number for MC-LQAS when utilizing semi-curtailed sampling and introduce curtailed sampling in this setting. We also assess the performance of MC-LQAS designs with maximum sample sizes of n=15 and n=25 via a weighted kappa-statistic using S. mansoni data collected in 388 schools from four studies in East Africa.Overall performance of MC-LQAS classification was high (kappa-statistic of 0.87. In three of the studies, the kappa-statistic for a design with n=15 was greater than 0.75. In the fourth study, where these designs performed poorly (kappa-statistic less than 0.50, the majority of observations fell in regions where potential error is known to be high. Employment of semi-curtailed and curtailed sampling further reduced the sample size by as many as 0.5 and 3.5 observations per school, respectively, without increasing classification error.This work provides the needed analytics to understand the properties of MC-LQAS for assessing the prevalance of S. mansoni and shows that in most settings a sample size of 15 children provides a reliable classification of schools.

  16. Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales

    Jihoon Oh

    2017-09-01

    Full Text Available Classification and prediction of suicide attempts in high-risk groups is important for preventing suicide. The purpose of this study was to investigate whether the information from multiple clinical scales has classification power for identifying actual suicide attempts. Patients with depression and anxiety disorders (N = 573 were included, and each participant completed 31 self-report psychiatric scales and questionnaires about their history of suicide attempts. We then trained an artificial neural network classifier with 41 variables (31 psychiatric scales and 10 sociodemographic elements and ranked the contribution of each variable for the classification of suicide attempts. To evaluate the clinical applicability of our model, we measured classification performance with top-ranked predictors. Our model had an overall accuracy of 93.7% in 1-month, 90.8% in 1-year, and 87.4% in lifetime suicide attempts detection. The area under the receiver operating characteristic curve (AUROC was the highest for 1-month suicide attempts detection (0.93, followed by lifetime (0.89, and 1-year detection (0.87. Among all variables, the Emotion Regulation Questionnaire had the highest contribution, and the positive and negative characteristics of the scales similarly contributed to classification performance. Performance on suicide attempts classification was largely maintained when we only used the top five ranked variables for training (AUROC; 1-month, 0.75, 1-year, 0.85, lifetime suicide attempts detection, 0.87. Our findings indicate that information from self-report clinical scales can be useful for the classification of suicide attempts. Based on the reliable performance of the top five predictors alone, this machine learning approach could help clinicians identify high-risk patients in clinical settings.

  17. Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales.

    Oh, Jihoon; Yun, Kyongsik; Hwang, Ji-Hyun; Chae, Jeong-Ho

    2017-01-01

    Classification and prediction of suicide attempts in high-risk groups is important for preventing suicide. The purpose of this study was to investigate whether the information from multiple clinical scales has classification power for identifying actual suicide attempts. Patients with depression and anxiety disorders ( N  = 573) were included, and each participant completed 31 self-report psychiatric scales and questionnaires about their history of suicide attempts. We then trained an artificial neural network classifier with 41 variables (31 psychiatric scales and 10 sociodemographic elements) and ranked the contribution of each variable for the classification of suicide attempts. To evaluate the clinical applicability of our model, we measured classification performance with top-ranked predictors. Our model had an overall accuracy of 93.7% in 1-month, 90.8% in 1-year, and 87.4% in lifetime suicide attempts detection. The area under the receiver operating characteristic curve (AUROC) was the highest for 1-month suicide attempts detection (0.93), followed by lifetime (0.89), and 1-year detection (0.87). Among all variables, the Emotion Regulation Questionnaire had the highest contribution, and the positive and negative characteristics of the scales similarly contributed to classification performance. Performance on suicide attempts classification was largely maintained when we only used the top five ranked variables for training (AUROC; 1-month, 0.75, 1-year, 0.85, lifetime suicide attempts detection, 0.87). Our findings indicate that information from self-report clinical scales can be useful for the classification of suicide attempts. Based on the reliable performance of the top five predictors alone, this machine learning approach could help clinicians identify high-risk patients in clinical settings.

  18. Functional Multiple-Set Canonical Correlation Analysis

    Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.

    2012-01-01

    We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…

  19. Logit Analysis for Profit Maximizing Loan Classification

    Watt, David L.; Mortensen, Timothy L.; Leistritz, F. Larry

    1988-01-01

    Lending criteria and loan classification methods are developed. Rating system breaking points are analyzed to present a method to maximize loan revenues. Financial characteristics of farmers are used as determinants of delinquency in a multivariate logistic model. Results indicate that debt-to-asset and operating ration are most indicative of default.

  20. Classification

    Clary, Renee; Wandersee, James

    2013-01-01

    In this article, Renee Clary and James Wandersee describe the beginnings of "Classification," which lies at the very heart of science and depends upon pattern recognition. Clary and Wandersee approach patterns by first telling the story of the "Linnaean classification system," introduced by Carl Linnacus (1707-1778), who is…

  1. Multiple category-lot quality assurance sampling: a new classification system with application to schistosomiasis control.

    Olives, Casey; Valadez, Joseph J; Brooker, Simon J; Pagano, Marcello

    2012-01-01

    Originally a binary classifier, Lot Quality Assurance Sampling (LQAS) has proven to be a useful tool for classification of the prevalence of Schistosoma mansoni into multiple categories (≤10%, >10 and LQAS (MC-LQAS) have not received full treatment. We explore the analytical properties of MC-LQAS, and validate its use for the classification of S. mansoni prevalence in multiple settings in East Africa. We outline MC-LQAS design principles and formulae for operating characteristic curves. In addition, we derive the average sample number for MC-LQAS when utilizing semi-curtailed sampling and introduce curtailed sampling in this setting. We also assess the performance of MC-LQAS designs with maximum sample sizes of n=15 and n=25 via a weighted kappa-statistic using S. mansoni data collected in 388 schools from four studies in East Africa. Overall performance of MC-LQAS classification was high (kappa-statistic of 0.87). In three of the studies, the kappa-statistic for a design with n=15 was greater than 0.75. In the fourth study, where these designs performed poorly (kappa-statistic less than 0.50), the majority of observations fell in regions where potential error is known to be high. Employment of semi-curtailed and curtailed sampling further reduced the sample size by as many as 0.5 and 3.5 observations per school, respectively, without increasing classification error. This work provides the needed analytics to understand the properties of MC-LQAS for assessing the prevalance of S. mansoni and shows that in most settings a sample size of 15 children provides a reliable classification of schools.

  2. Classification

    Hjørland, Birger

    2017-01-01

    This article presents and discusses definitions of the term “classification” and the related concepts “Concept/conceptualization,”“categorization,” “ordering,” “taxonomy” and “typology.” It further presents and discusses theories of classification including the influences of Aristotle...... and Wittgenstein. It presents different views on forming classes, including logical division, numerical taxonomy, historical classification, hermeneutical and pragmatic/critical views. Finally, issues related to artificial versus natural classification and taxonomic monism versus taxonomic pluralism are briefly...

  3. Integrating Multiple Data Views for Improved Malware Analysis

    Anderson, Blake H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-31

    Exploiting multiple views of a program makes obfuscating the intended behavior of a program more difficult allowing for better performance in classification, clustering, and phylogenetic reconstruction.

  4. Prediction of pediatric unipolar depression using multiple neuromorphometric measurements: a pattern classification approach.

    Wu, Mon-Ju; Wu, Hanjing Emily; Mwangi, Benson; Sanches, Marsal; Selvaraj, Sudhakar; Zunta-Soares, Giovana B; Soares, Jair C

    2015-03-01

    Diagnosis of pediatric neuropsychiatric disorders such as unipolar depression is largely based on clinical judgment - without objective biomarkers to guide diagnostic process and subsequent therapeutic interventions. Neuroimaging studies have previously reported average group-level neuroanatomical differences between patients with pediatric unipolar depression and healthy controls. In the present study, we investigated the utility of multiple neuromorphometric indices in distinguishing pediatric unipolar depression patients from healthy controls at an individual subject level. We acquired structural T1-weighted scans from 25 pediatric unipolar depression patients and 26 demographically matched healthy controls. Multiple neuromorphometric indices such as cortical thickness, volume, and cortical folding patterns were obtained. A support vector machine pattern classification model was 'trained' to distinguish individual subjects with pediatric unipolar depression from healthy controls based on multiple neuromorphometric indices and model predictive validity (sensitivity and specificity) calculated. The model correctly identified 40 out of 51 subjects translating to 78.4% accuracy, 76.0% sensitivity and 80.8% specificity, chi-square p-value = 0.000049. Volumetric and cortical folding abnormalities in the right thalamus and right temporal pole respectively were most central in distinguishing individual patients with pediatric unipolar depression from healthy controls. These findings provide evidence that a support vector machine pattern classification model using multiple neuromorphometric indices may qualify as diagnostic marker for pediatric unipolar depression. In addition, our results identified the most relevant neuromorphometric features in distinguishing PUD patients from healthy controls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Racial classification in the evolutionary sciences: a comparative analysis.

    Billinger, Michael S

    2007-01-01

    Human racial classification has long been a problem for the discipline of anthropology, but much of the criticism of the race concept has focused on its social and political connotations. The central argument of this paper is that race is not a specifically human problem, but one that exists in evolutionary thought in general. This paper looks at various disciplinary approaches to racial or subspecies classification, extending its focus beyond the anthropological race concept by providing a comparative analysis of the use of racial classification in evolutionary biology, genetics, and anthropology.

  6. Seeing is believing: video classification for computed tomographic colonography using multiple-instance learning.

    Wang, Shijun; McKenna, Matthew T; Nguyen, Tan B; Burns, Joseph E; Petrick, Nicholas; Sahiner, Berkman; Summers, Ronald M

    2012-05-01

    In this paper, we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3-D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods.

  7. Diagnostic Criteria, Classification and Treatment Goals in Multiple Sclerosis: The Chronicles of Time and Space.

    Ntranos, Achilles; Lublin, Fred

    2016-10-01

    Multiple sclerosis (MS) is one of the most diverse human diseases. Since its first description by Charcot in the nineteenth century, the diagnostic criteria, clinical course classification, and treatment goals for MS have been constantly revised and updated to improve diagnostic accuracy, physician communication, and clinical trial design. These changes have improved the clinical outcomes and quality of life for patients with the disease. Recent technological and research breakthroughs will almost certainly further change how we diagnose, classify, and treat MS in the future. In this review, we summarize the key events in the history of MS, explain the reasoning behind the current criteria for MS diagnosis, classification, and treatment, and provide suggestions for further improvements that will keep enhancing the clinical practice of MS.

  8. Event recognition in personal photo collections via multiple instance learning-based classification of multiple images

    Ahmad, Kashif; Conci, Nicola; Boato, Giulia; De Natale, Francesco G. B.

    2017-11-01

    Over the last few years, a rapid growth has been witnessed in the number of digital photos produced per year. This rapid process poses challenges in the organization and management of multimedia collections, and one viable solution consists of arranging the media on the basis of the underlying events. However, album-level annotation and the presence of irrelevant pictures in photo collections make event-based organization of personal photo albums a more challenging task. To tackle these challenges, in contrast to conventional approaches relying on supervised learning, we propose a pipeline for event recognition in personal photo collections relying on a multiple instance-learning (MIL) strategy. MIL is a modified form of supervised learning and fits well for such applications with weakly labeled data. The experimental evaluation of the proposed approach is carried out on two large-scale datasets including a self-collected and a benchmark dataset. On both, our approach significantly outperforms the existing state-of-the-art.

  9. Mediation Analysis with Multiple Mediators

    VanderWeele, T.J.; Vansteelandt, S.

    2014-01-01

    Recent advances in the causal inference literature on mediation have extended traditional approaches to direct and indirect effects to settings that allow for interactions and non-linearities. In this paper, these approaches from causal inference are further extended to settings in which multiple mediators may be of interest. Two analytic approaches, one based on regression and one based on weighting are proposed to estimate the effect mediated through multiple mediators and the effects throu...

  10. Acne image analysis: lesion localization and classification

    Abas, Fazly Salleh; Kaffenberger, Benjamin; Bikowski, Joseph; Gurcan, Metin N.

    2016-03-01

    Acne is a common skin condition present predominantly in the adolescent population, but may continue into adulthood. Scarring occurs commonly as a sequel to severe inflammatory acne. The presence of acne and resultant scars are more than cosmetic, with a significant potential to alter quality of life and even job prospects. The psychosocial effects of acne and scars can be disturbing and may be a risk factor for serious psychological concerns. Treatment efficacy is generally determined based on an invalidated gestalt by the physician and patient. However, the validated assessment of acne can be challenging and time consuming. Acne can be classified into several morphologies including closed comedones (whiteheads), open comedones (blackheads), papules, pustules, cysts (nodules) and scars. For a validated assessment, the different morphologies need to be counted independently, a method that is far too time consuming considering the limited time available for a consultation. However, it is practical to record and analyze images since dermatologists can validate the severity of acne within seconds after uploading an image. This paper covers the processes of region-ofinterest determination using entropy-based filtering and thresholding as well acne lesion feature extraction. Feature extraction methods using discrete wavelet frames and gray-level co-occurence matrix were presented and their effectiveness in separating the six major acne lesion classes were discussed. Several classifiers were used to test the extracted features. Correct classification accuracy as high as 85.5% was achieved using the binary classification tree with fourteen principle components used as descriptors. Further studies are underway to further improve the algorithm performance and validate it on a larger database.

  11. Classification of Multiple Seizure-Like States in Three Different Rodent Models of Epileptogenesis.

    Guirgis, Mirna; Serletis, Demitre; Zhang, Jane; Florez, Carlos; Dian, Joshua A; Carlen, Peter L; Bardakjian, Berj L

    2014-01-01

    Epilepsy is a dynamical disease and its effects are evident in over fifty million people worldwide. This study focused on objective classification of the multiple states involved in the brain's epileptiform activity. Four datasets from three different rodent hippocampal preparations were explored, wherein seizure-like-events (SLE) were induced by the perfusion of a low - Mg(2+) /high-K(+) solution or 4-Aminopyridine. Local field potentials were recorded from CA3 pyramidal neurons and interneurons and modeled as Markov processes. Specifically, hidden Markov models (HMM) were used to determine the nature of the states present. Properties of the Hilbert transform were used to construct the feature spaces for HMM training. By sequentially applying the HMM training algorithm, multiple states were identified both in episodes of SLE and nonSLE activity. Specifically, preSLE and postSLE states were differentiated and multiple inner SLE states were identified. This was accomplished using features extracted from the lower frequencies (1-4 Hz, 4-8 Hz) alongside those of both the low- (40-100 Hz) and high-gamma (100-200 Hz) of the recorded electrical activity. The learning paradigm of this HMM-based system eliminates the inherent bias associated with other learning algorithms that depend on predetermined state segmentation and renders it an appropriate candidate for SLE classification.

  12. A Comparative Analysis of Classification Algorithms on Diverse Datasets

    M. Alghobiri

    2018-04-01

    Full Text Available Data mining involves the computational process to find patterns from large data sets. Classification, one of the main domains of data mining, involves known structure generalizing to apply to a new dataset and predict its class. There are various classification algorithms being used to classify various data sets. They are based on different methods such as probability, decision tree, neural network, nearest neighbor, boolean and fuzzy logic, kernel-based etc. In this paper, we apply three diverse classification algorithms on ten datasets. The datasets have been selected based on their size and/or number and nature of attributes. Results have been discussed using some performance evaluation measures like precision, accuracy, F-measure, Kappa statistics, mean absolute error, relative absolute error, ROC Area etc. Comparative analysis has been carried out using the performance evaluation measures of accuracy, precision, and F-measure. We specify features and limitations of the classification algorithms for the diverse nature datasets.

  13. Average Likelihood Methods of Classification of Code Division Multiple Access (CDMA)

    2016-05-01

    subject to code matrices that follows the structure given by (113). [⃗ yR y⃗I ] = √ Es 2L [ GR1 −GI1 GI2 GR2 ] [ QR −QI QI QR ] [⃗ bR b⃗I ] + [⃗ nR n⃗I... QR ] [⃗ b+ b⃗− ] + [⃗ n+ n⃗− ] (115) The average likelihood for type 4 CDMA (116) is a special case of type 1 CDMA with twice the code length and...AVERAGE LIKELIHOOD METHODS OF CLASSIFICATION OF CODE DIVISION MULTIPLE ACCESS (CDMA) MAY 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE

  14. Biosensors and multiple mycotoxin analysis

    Gaag, B. van der; Spath, S.; Dietrich, H.; Stigter, E.; Boonzaaijer, G.; Osenbruggen, T. van; Koopal, K.

    2003-01-01

    An immunochemical biosensor assay for the detection of multiple mycotoxins in a sample is described.The inhibition assay is designed to measure four different mycotoxins in a single measurement, following extraction, sample clean-up and incubation with an appropriate cocktail of anti-mycotoxin

  15. Classification of Hypertrophy of Labia Minora: Consideration of a Multiple Component Approach.

    González, Pablo I

    2015-11-01

    Labia minora hypertrophy of unknown and under-reported incidence in the general population is considered a variant of normal anatomy. Its origin is multi-factorial including genetic, hormonal, and infectious factors, and voluntary elongation of the labiae minorae in some cultures. Consults with patients bothered by this condition have been increasing with patients complaining of poor aesthetics and symptoms such as difficulty with vaginal secretions, vulvovaginitis, chronic irritation, and superficial dyspareunia, all of which can have a negative effect on these patients' sexuality and self esteem. Surgical management of labial hypertrophy is an option for women with these physical complaints or aesthetic issues. Labia minora hypertrophy can consist of multiple components, including the clitoral hood, lateral prepuce, frenulum, and the body of the labia minora. To date, there is not a consensus in the literature with respect to the classification and definition of varying grades of hypertrophy, aside from measurement of the length in centimeters. In order to offer patients the most appropriate surgical technique, an objective and understandable classification that can be used as part of the preoperative evaluation is necessary. Such a classification should have the aim of offering patients the best cosmetic and functional results with the fewest complications.

  16. Lesion classification using clinical and visual data fusion by multiple kernel learning

    Kisilev, Pavel; Hashoul, Sharbell; Walach, Eugene; Tzadok, Asaf

    2014-03-01

    To overcome operator dependency and to increase diagnosis accuracy in breast ultrasound (US), a lot of effort has been devoted to developing computer-aided diagnosis (CAD) systems for breast cancer detection and classification. Unfortunately, the efficacy of such CAD systems is limited since they rely on correct automatic lesions detection and localization, and on robustness of features computed based on the detected areas. In this paper we propose a new approach to boost the performance of a Machine Learning based CAD system, by combining visual and clinical data from patient files. We compute a set of visual features from breast ultrasound images, and construct the textual descriptor of patients by extracting relevant keywords from patients' clinical data files. We then use the Multiple Kernel Learning (MKL) framework to train SVM based classifier to discriminate between benign and malignant cases. We investigate different types of data fusion methods, namely, early, late, and intermediate (MKL-based) fusion. Our database consists of 408 patient cases, each containing US images, textual description of complaints and symptoms filled by physicians, and confirmed diagnoses. We show experimentally that the proposed MKL-based approach is superior to other classification methods. Even though the clinical data is very sparse and noisy, its MKL-based fusion with visual features yields significant improvement of the classification accuracy, as compared to the image features only based classifier.

  17. Classification of Multiple Chinese Liquors by Means of a QCM-based E-Nose and MDS-SVM Classifier.

    Li, Qiang; Gu, Yu; Jia, Jing

    2017-01-30

    Chinese liquors are internationally well-known fermentative alcoholic beverages. They have unique flavors attributable to the use of various bacteria and fungi, raw materials, and production processes. Developing a novel, rapid, and reliable method to identify multiple Chinese liquors is of positive significance. This paper presents a pattern recognition system for classifying ten brands of Chinese liquors based on multidimensional scaling (MDS) and support vector machine (SVM) algorithms in a quartz crystal microbalance (QCM)-based electronic nose (e-nose) we designed. We evaluated the comprehensive performance of the MDS-SVM classifier that predicted all ten brands of Chinese liquors individually. The prediction accuracy (98.3%) showed superior performance of the MDS-SVM classifier over the back-propagation artificial neural network (BP-ANN) classifier (93.3%) and moving average-linear discriminant analysis (MA-LDA) classifier (87.6%). The MDS-SVM classifier has reasonable reliability, good fitting and prediction (generalization) performance in classification of the Chinese liquors. Taking both application of the e-nose and validation of the MDS-SVM classifier into account, we have thus created a useful method for the classification of multiple Chinese liquors.

  18. Classification of Multiple Chinese Liquors by Means of a QCM-based E-Nose and MDS-SVM Classifier

    Qiang Li

    2017-01-01

    Full Text Available Chinese liquors are internationally well-known fermentative alcoholic beverages. They have unique flavors attributable to the use of various bacteria and fungi, raw materials, and production processes. Developing a novel, rapid, and reliable method to identify multiple Chinese liquors is of positive significance. This paper presents a pattern recognition system for classifying ten brands of Chinese liquors based on multidimensional scaling (MDS and support vector machine (SVM algorithms in a quartz crystal microbalance (QCM-based electronic nose (e-nose we designed. We evaluated the comprehensive performance of the MDS-SVM classifier that predicted all ten brands of Chinese liquors individually. The prediction accuracy (98.3% showed superior performance of the MDS-SVM classifier over the back-propagation artificial neural network (BP-ANN classifier (93.3% and moving average-linear discriminant analysis (MA-LDA classifier (87.6%. The MDS-SVM classifier has reasonable reliability, good fitting and prediction (generalization performance in classification of the Chinese liquors. Taking both application of the e-nose and validation of the MDS-SVM classifier into account, we have thus created a useful method for the classification of multiple Chinese liquors.

  19. Multiple factor analysis by example using R

    Pagès, Jérôme

    2014-01-01

    Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also includes examples of applications and details of how to implement MFA using an R package (FactoMineR).The first two chapters cover the basic factorial analysis methods of principal component analysis (PCA) and multiple correspondence analysis (MCA). The

  20. Full-motion video analysis for improved gender classification

    Flora, Jeffrey B.; Lochtefeld, Darrell F.; Iftekharuddin, Khan M.

    2014-06-01

    The ability of computer systems to perform gender classification using the dynamic motion of the human subject has important applications in medicine, human factors, and human-computer interface systems. Previous works in motion analysis have used data from sensors (including gyroscopes, accelerometers, and force plates), radar signatures, and video. However, full-motion video, motion capture, range data provides a higher resolution time and spatial dataset for the analysis of dynamic motion. Works using motion capture data have been limited by small datasets in a controlled environment. In this paper, we explore machine learning techniques to a new dataset that has a larger number of subjects. Additionally, these subjects move unrestricted through a capture volume, representing a more realistic, less controlled environment. We conclude that existing linear classification methods are insufficient for the gender classification for larger dataset captured in relatively uncontrolled environment. A method based on a nonlinear support vector machine classifier is proposed to obtain gender classification for the larger dataset. In experimental testing with a dataset consisting of 98 trials (49 subjects, 2 trials per subject), classification rates using leave-one-out cross-validation are improved from 73% using linear discriminant analysis to 88% using the nonlinear support vector machine classifier.

  1. Mediation Analysis with Multiple Mediators.

    VanderWeele, T J; Vansteelandt, S

    2014-01-01

    Recent advances in the causal inference literature on mediation have extended traditional approaches to direct and indirect effects to settings that allow for interactions and non-linearities. In this paper, these approaches from causal inference are further extended to settings in which multiple mediators may be of interest. Two analytic approaches, one based on regression and one based on weighting are proposed to estimate the effect mediated through multiple mediators and the effects through other pathways. The approaches proposed here accommodate exposure-mediator interactions and, to a certain extent, mediator-mediator interactions as well. The methods handle binary or continuous mediators and binary, continuous or count outcomes. When the mediators affect one another, the strategy of trying to assess direct and indirect effects one mediator at a time will in general fail; the approach given in this paper can still be used. A characterization is moreover given as to when the sum of the mediated effects for multiple mediators considered separately will be equal to the mediated effect of all of the mediators considered jointly. The approach proposed in this paper is robust to unmeasured common causes of two or more mediators.

  2. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  3. Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry.

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y; Drake, Steven K; Gucek, Marjan; Sacks, David B; Yu, Yi-Kuo

    2018-06-05

    Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.

  4. Classification of scintigrams on the base of an automatic analysis

    Vidyukov, V.I.; Kasatkin, Yu.N.; Kal'nitskaya, E.F.; Mironov, S.P.; Rotenberg, E.M.

    1980-01-01

    The stages of drawing a discriminative system based on self-education for an automatic analysis of scintigrams have been considered. The results of the classification of 240 scintigrams of the liver into ''normal'', ''diffuse lesions'', ''focal lesions'' have been evaluated by medical experts and computer. The accuracy of the computerized classification was 91.7%, that of the experts-85%. The automatic analysis methods of scintigrams of the liver have been realized using the specialized MDS system of data processing. The quality of the discriminative system has been assessed on 125 scintigrams. The accuracy of the classification is equal to 89.6%. The employment of the self-education; methods permitted one to single out two subclasses depending on the severity of diffuse lesions

  5. Paper 5: Surveillance of multiple congenital anomalies: implementation of a computer algorithm in European registers for classification of cases

    Garne, Ester; Dolk, Helen; Loane, Maria

    2011-01-01

    Surveillance of multiple congenital anomalies is considered to be more sensitive for the detection of new teratogens than surveillance of all or isolated congenital anomalies. Current literature proposes the manual review of all cases for classification into isolated or multiple congenital anomal...

  6. Classification of adulterated honeys by multivariate analysis.

    Amiry, Saber; Esmaiili, Mohsen; Alizadeh, Mohammad

    2017-06-01

    In this research, honey samples were adulterated with date syrup (DS) and invert sugar syrup (IS) at three concentrations (7%, 15% and 30%). 102 adulterated samples were prepared in six batches with 17 replications for each batch. For each sample, 32 parameters including color indices, rheological, physical, and chemical parameters were determined. To classify the samples, based on type and concentrations of adulterant, a multivariate analysis was applied using principal component analysis (PCA) followed by a linear discriminant analysis (LDA). Then, 21 principal components (PCs) were selected in five sets. Approximately two-thirds were identified correctly using color indices (62.75%) or rheological properties (67.65%). A power discrimination was obtained using physical properties (97.06%), and the best separations were achieved using two sets of chemical properties (set 1: lactone, diastase activity, sucrose - 100%) (set 2: free acidity, HMF, ash - 95%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Genomewide identification, classification and analysis of NAC type ...

    Supplementary data: Genomewide identification, classification and analysis of NAC type gene family in maize. Xiaojian Peng, Yang Zhao, Xiaoming Li, Min Wu, Wenbo Chai, Lei Sheng, Yu Wang, Qing Dong,. Haiyang Jiang and Beijiu Cheng. J. Genet. 94, 377–390. Table 1. Detailed information of NAC proteins in maize.

  8. Multispectral Image Analysis for Astaxanthin Coating Classification

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2012-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. The pellets were divided into two groups: one with pellets coated using synthetic astaxanthin in fish oil and the other with pellets coated...

  9. Classification of mammographic masses using geometric symmetry and fractal analysis

    Guo Qi; Ruiz, V.F. [Cybernetics, School of Systems Engineering, Univ. of Reading (United Kingdom); Shao Jiaqing [Dept. of Electronics, Univ. of Kent (United Kingdom); Guo Falei [WanDe Industrial Engineering Co. (China)

    2007-06-15

    In this paper, we propose a fuzzy symmetry measure based on geometrical operations to characterise shape irregularity of mammographic mass lesion. Group theory, a powerful tool in the investigation of geometric transformation, is employed in our work to define and describe the underlying mathematical relations. We investigate the usefulness of fuzzy symmetry measure in combination with fractal analysis for classification of masses. Comparative studies show that fuzzy symmetry measure is useful for shape characterisation of mass lesions and is a good complementary feature for benign-versus-malignant classification of masses. (orig.)

  10. Magnetic resonance imaging texture analysis classification of primary breast cancer

    Waugh, S.A.; Lerski, R.A.; Purdie, C.A.; Jordan, L.B.; Vinnicombe, S.; Martin, P.; Thompson, A.M.

    2016-01-01

    Patient-tailored treatments for breast cancer are based on histological and immunohistochemical (IHC) subtypes. Magnetic Resonance Imaging (MRI) texture analysis (TA) may be useful in non-invasive lesion subtype classification. Women with newly diagnosed primary breast cancer underwent pre-treatment dynamic contrast-enhanced breast MRI. TA was performed using co-occurrence matrix (COM) features, by creating a model on retrospective training data, then prospectively applying to a test set. Analyses were blinded to breast pathology. Subtype classifications were performed using a cross-validated k-nearest-neighbour (k = 3) technique, with accuracy relative to pathology assessed and receiver operator curve (AUROC) calculated. Mann-Whitney U and Kruskal-Wallis tests were used to assess raw entropy feature values. Histological subtype classifications were similar across training (n = 148 cancers) and test sets (n = 73 lesions) using all COM features (training: 75 %, AUROC = 0.816; test: 72.5 %, AUROC = 0.823). Entropy features were significantly different between lobular and ductal cancers (p < 0.001; Mann-Whitney U). IHC classifications using COM features were also similar for training and test data (training: 57.2 %, AUROC = 0.754; test: 57.0 %, AUROC = 0.750). Hormone receptor positive and negative cancers demonstrated significantly different entropy features. Entropy features alone were unable to create a robust classification model. Textural differences on contrast-enhanced MR images may reflect underlying lesion subtypes, which merits testing against treatment response. (orig.)

  11. Magnetic resonance imaging texture analysis classification of primary breast cancer

    Waugh, S.A.; Lerski, R.A. [Ninewells Hospital and Medical School, Department of Medical Physics, Dundee (United Kingdom); Purdie, C.A.; Jordan, L.B. [Ninewells Hospital and Medical School, Department of Pathology, Dundee (United Kingdom); Vinnicombe, S. [University of Dundee, Division of Imaging and Technology, Ninewells Hospital and Medical School, Dundee (United Kingdom); Martin, P. [Ninewells Hospital and Medical School, Department of Clinical Radiology, Dundee (United Kingdom); Thompson, A.M. [University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Houston, TX (United States)

    2016-02-15

    Patient-tailored treatments for breast cancer are based on histological and immunohistochemical (IHC) subtypes. Magnetic Resonance Imaging (MRI) texture analysis (TA) may be useful in non-invasive lesion subtype classification. Women with newly diagnosed primary breast cancer underwent pre-treatment dynamic contrast-enhanced breast MRI. TA was performed using co-occurrence matrix (COM) features, by creating a model on retrospective training data, then prospectively applying to a test set. Analyses were blinded to breast pathology. Subtype classifications were performed using a cross-validated k-nearest-neighbour (k = 3) technique, with accuracy relative to pathology assessed and receiver operator curve (AUROC) calculated. Mann-Whitney U and Kruskal-Wallis tests were used to assess raw entropy feature values. Histological subtype classifications were similar across training (n = 148 cancers) and test sets (n = 73 lesions) using all COM features (training: 75 %, AUROC = 0.816; test: 72.5 %, AUROC = 0.823). Entropy features were significantly different between lobular and ductal cancers (p < 0.001; Mann-Whitney U). IHC classifications using COM features were also similar for training and test data (training: 57.2 %, AUROC = 0.754; test: 57.0 %, AUROC = 0.750). Hormone receptor positive and negative cancers demonstrated significantly different entropy features. Entropy features alone were unable to create a robust classification model. Textural differences on contrast-enhanced MR images may reflect underlying lesion subtypes, which merits testing against treatment response. (orig.)

  12. Defect detection and classification of machined surfaces under multiple illuminant directions

    Liao, Yi; Weng, Xin; Swonger, C. W.; Ni, Jun

    2010-08-01

    Continuous improvement of product quality is crucial to the successful and competitive automotive manufacturing industry in the 21st century. The presence of surface porosity located on flat machined surfaces such as cylinder heads/blocks and transmission cases may allow leaks of coolant, oil, or combustion gas between critical mating surfaces, thus causing damage to the engine or transmission. Therefore 100% inline inspection plays an important role for improving product quality. Although the techniques of image processing and machine vision have been applied to machined surface inspection and well improved in the past 20 years, in today's automotive industry, surface porosity inspection is still done by skilled humans, which is costly, tedious, time consuming and not capable of reliably detecting small defects. In our study, an automated defect detection and classification system for flat machined surfaces has been designed and constructed. In this paper, the importance of the illuminant direction in a machine vision system was first emphasized and then the surface defect inspection system under multiple directional illuminations was designed and constructed. After that, image processing algorithms were developed to realize 5 types of 2D or 3D surface defects (pore, 2D blemish, residue dirt, scratch, and gouge) detection and classification. The steps of image processing include: (1) image acquisition and contrast enhancement (2) defect segmentation and feature extraction (3) defect classification. An artificial machined surface and an actual automotive part: cylinder head surface were tested and, as a result, microscopic surface defects can be accurately detected and assigned to a surface defect class. The cycle time of this system can be sufficiently fast that implementation of 100% inline inspection is feasible. The field of view of this system is 150mm×225mm and the surfaces larger than the field of view can be stitched together in software.

  13. Application of multiple signal classification algorithm to frequency estimation in coherent dual-frequency lidar

    Li, Ruixiao; Li, Kun; Zhao, Changming

    2018-01-01

    Coherent dual-frequency Lidar (CDFL) is a new development of Lidar which dramatically enhances the ability to decrease the influence of atmospheric interference by using dual-frequency laser to measure the range and velocity with high precision. Based on the nature of CDFL signals, we propose to apply the multiple signal classification (MUSIC) algorithm in place of the fast Fourier transform (FFT) to estimate the phase differences in dual-frequency Lidar. In the presence of Gaussian white noise, the simulation results show that the signal peaks are more evident when using MUSIC algorithm instead of FFT in condition of low signal-noise-ratio (SNR), which helps to improve the precision of detection on range and velocity, especially for the long distance measurement systems.

  14. Detection and Classification of Multiple Objects using an RGB-D Sensor and Linear Spatial Pyramid Matching

    Dimitriou, Michalis; Kounalakis, Tsampikos; Vidakis, Nikolaos; Triantafyllidis, Georgios

    2013-01-01

    This paper presents a complete system for multiple object detection and classification in a 3D scene using an RGB-D sensor such as the Microsoft Kinect sensor. Successful multiple object detection and classification are crucial features in many 3D computer vision applications. The main goal is making machines see and understand objects like humans do. To this goal, the new RGB-D sensors can be utilized since they provide real-time depth map which can be used along with the RGB images for our ...

  15. Application of texture analysis method for mammogram density classification

    Nithya, R.; Santhi, B.

    2017-07-01

    Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.

  16. Multiple Signal Classification Algorithm Based Electric Dipole Source Localization Method in an Underwater Environment

    Yidong Xu

    2017-10-01

    Full Text Available A novel localization method based on multiple signal classification (MUSIC algorithm is proposed for positioning an electric dipole source in a confined underwater environment by using electric dipole-receiving antenna array. In this method, the boundary element method (BEM is introduced to analyze the boundary of the confined region by use of a matrix equation. The voltage of each dipole pair is used as spatial-temporal localization data, and it does not need to obtain the field component in each direction compared with the conventional fields based localization method, which can be easily implemented in practical engineering applications. Then, a global-multiple region-conjugate gradient (CG hybrid search method is used to reduce the computation burden and to improve the operation speed. Two localization simulation models and a physical experiment are conducted. Both the simulation results and physical experiment result provide accurate positioning performance, with the help to verify the effectiveness of the proposed localization method in underwater environments.

  17. N-opcode Analysis for Android Malware Classification and Categorization

    Kang, BooJoong; Yerima, Suleiman Y.; McLaughlin, Kieran; Sezer, Sakir

    2016-01-01

    Malware detection is a growing problem particularly on the Android mobile platform due to its increasing popularity and accessibility to numerous third party app markets. This has also been made worse by the increasingly sophisticated detection avoidance techniques employed by emerging malware families. This calls for more effective techniques for detection and classification of Android malware. Hence, in this paper we present an n-opcode analysis based approach that utilizes machine learning...

  18. Classification of analysis methods for characterization of magnetic nanoparticle properties

    Posth, O.; Hansen, Mikkel Fougt; Steinhoff, U.

    2015-01-01

    The aim of this paper is to provide a roadmap for the standardization of magnetic nanoparticle (MNP) characterization. We have assessed common MNP analysis techniques under various criteria in order to define the methods that can be used as either standard techniques for magnetic particle...... characterization or those that can be used to obtain a comprehensive picture of a MNP system. This classification is the first step on the way to develop standards for nanoparticle characterization....

  19. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  20. Data classification and MTBF prediction with a multivariate analysis approach

    Braglia, Marcello; Carmignani, Gionata; Frosolini, Marco; Zammori, Francesco

    2012-01-01

    The paper presents a multivariate statistical approach that supports the classification of mechanical components, subjected to specific operating conditions, in terms of the Mean Time Between Failure (MTBF). Assessing the influence of working conditions and/or environmental factors on the MTBF is a prerequisite for the development of an effective preventive maintenance plan. However, this task may be demanding and it is generally performed with ad-hoc experimental methods, lacking of statistical rigor. To solve this common problem, a step by step multivariate data classification technique is proposed. Specifically, a set of structured failure data are classified in a meaningful way by means of: (i) cluster analysis, (ii) multivariate analysis of variance, (iii) feature extraction and (iv) predictive discriminant analysis. This makes it possible not only to define the MTBF of the analyzed components, but also to identify the working parameters that explain most of the variability of the observed data. The approach is finally demonstrated on 126 centrifugal pumps installed in an oil refinery plant; obtained results demonstrate the quality of the final discrimination, in terms of data classification and failure prediction.

  1. Classification of hydrocephalus: critical analysis of classification categories and advantages of "Multi-categorical Hydrocephalus Classification" (Mc HC).

    Oi, Shizuo

    2011-10-01

    Hydrocephalus is a complex pathophysiology with disturbed cerebrospinal fluid (CSF) circulation. There are numerous numbers of classification trials published focusing on various criteria, such as associated anomalies/underlying lesions, CSF circulation/intracranial pressure patterns, clinical features, and other categories. However, no definitive classification exists comprehensively to cover the variety of these aspects. The new classification of hydrocephalus, "Multi-categorical Hydrocephalus Classification" (Mc HC), was invented and developed to cover the entire aspects of hydrocephalus with all considerable classification items and categories. Ten categories include "Mc HC" category I: onset (age, phase), II: cause, III: underlying lesion, IV: symptomatology, V: pathophysiology 1-CSF circulation, VI: pathophysiology 2-ICP dynamics, VII: chronology, VII: post-shunt, VIII: post-endoscopic third ventriculostomy, and X: others. From a 100-year search of publication related to the classification of hydrocephalus, 14 representative publications were reviewed and divided into the 10 categories. The Baumkuchen classification graph made from the round o'clock classification demonstrated the historical tendency of deviation to the categories in pathophysiology, either CSF or ICP dynamics. In the preliminary clinical application, it was concluded that "Mc HC" is extremely effective in expressing the individual state with various categories in the past and present condition or among the compatible cases of hydrocephalus along with the possible chronological change in the future.

  2. Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes

    Eils Roland

    2005-11-01

    Full Text Available Abstract Background The extensive use of DNA microarray technology in the characterization of the cell transcriptome is leading to an ever increasing amount of microarray data from cancer studies. Although similar questions for the same type of cancer are addressed in these different studies, a comparative analysis of their results is hampered by the use of heterogeneous microarray platforms and analysis methods. Results In contrast to a meta-analysis approach where results of different studies are combined on an interpretative level, we investigate here how to directly integrate raw microarray data from different studies for the purpose of supervised classification analysis. We use median rank scores and quantile discretization to derive numerically comparable measures of gene expression from different platforms. These transformed data are then used for training of classifiers based on support vector machines. We apply this approach to six publicly available cancer microarray gene expression data sets, which consist of three pairs of studies, each examining the same type of cancer, i.e. breast cancer, prostate cancer or acute myeloid leukemia. For each pair, one study was performed by means of cDNA microarrays and the other by means of oligonucleotide microarrays. In each pair, high classification accuracies (> 85% were achieved with training and testing on data instances randomly chosen from both data sets in a cross-validation analysis. To exemplify the potential of this cross-platform classification analysis, we use two leukemia microarray data sets to show that important genes with regard to the biology of leukemia are selected in an integrated analysis, which are missed in either single-set analysis. Conclusion Cross-platform classification of multiple cancer microarray data sets yields discriminative gene expression signatures that are found and validated on a large number of microarray samples, generated by different laboratories and

  3. Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps

    Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.

    2017-07-01

    Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed

  4. Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data.

    Qingzhong Liu

    Full Text Available Microarray data has a high dimension of variables but available datasets usually have only a small number of samples, thereby making the study of such datasets interesting and challenging. In the task of analyzing microarray data for the purpose of, e.g., predicting gene-disease association, feature selection is very important because it provides a way to handle the high dimensionality by exploiting information redundancy induced by associations among genetic markers. Judicious feature selection in microarray data analysis can result in significant reduction of cost while maintaining or improving the classification or prediction accuracy of learning machines that are employed to sort out the datasets. In this paper, we propose a gene selection method called Recursive Feature Addition (RFA, which combines supervised learning and statistical similarity measures. We compare our method with the following gene selection methods: Support Vector Machine Recursive Feature Elimination (SVMRFE, Leave-One-Out Calculation Sequential Forward Selection (LOOCSFS, Gradient based Leave-one-out Gene Selection (GLGS. To evaluate the performance of these gene selection methods, we employ several popular learning classifiers on the MicroArray Quality Control phase II on predictive modeling (MAQC-II breast cancer dataset and the MAQC-II multiple myeloma dataset. Experimental results show that gene selection is strictly paired with learning classifier. Overall, our approach outperforms other compared methods. The biological functional analysis based on the MAQC-II breast cancer dataset convinced us to apply our method for phenotype prediction. Additionally, learning classifiers also play important roles in the classification of microarray data and our experimental results indicate that the Nearest Mean Scale Classifier (NMSC is a good choice due to its prediction reliability and its stability across the three performance measurements: Testing accuracy, MCC values, and

  5. Comparison and analysis for item classifications between AP1000 and traditional PWR

    Luo Shuiyun; Liu Xiaoyan

    2012-01-01

    The comparison and analysis for the safety classification, seismic category, code classification and QA classification between AP1000 and traditional PWR were presented. The safety could be guaranteed and the construction and manufacture costs could be cut down since all sorts of AP1000 classifications. It is suggested that the QA classification and the QA requirements correspond to the national conditions should be drafted in the process of AP1000 domestication. (authors)

  6. Sound Classification in Hearing Aids Inspired by Auditory Scene Analysis

    Büchler, Michael; Allegro, Silvia; Launer, Stefan; Dillier, Norbert

    2005-12-01

    A sound classification system for the automatic recognition of the acoustic environment in a hearing aid is discussed. The system distinguishes the four sound classes "clean speech," "speech in noise," "noise," and "music." A number of features that are inspired by auditory scene analysis are extracted from the sound signal. These features describe amplitude modulations, spectral profile, harmonicity, amplitude onsets, and rhythm. They are evaluated together with different pattern classifiers. Simple classifiers, such as rule-based and minimum-distance classifiers, are compared with more complex approaches, such as Bayes classifier, neural network, and hidden Markov model. Sounds from a large database are employed for both training and testing of the system. The achieved recognition rates are very high except for the class "speech in noise." Problems arise in the classification of compressed pop music, strongly reverberated speech, and tonal or fluctuating noises.

  7. Classification analysis of organization factors related to system safety

    Liu Huizhen; Zhang Li; Zhang Yuling; Guan Shihua

    2009-01-01

    This paper analyzes the different types of organization factors which influence the system safety. The organization factor can be divided into the interior organization factor and exterior organization factor. The latter includes the factors of political, economical, technical, law, social culture and geographical, and the relationships among different interest groups. The former includes organization culture, communication, decision, training, process, supervision and management and organization structure. This paper focuses on the description of the organization factors. The classification analysis of the organization factors is the early work of quantitative analysis. (authors)

  8. Multiple classification analysis. Theory and application to Demography

    Suseł, Aleksander

    2011-01-01

    Model analizy klasyfikacji wielokrotnej (MCA) jest addytywnym modelem mającym szersze możliwości zastosowania niż, np. modele regresji liniowej. Przede wszystkim ze względu na to, gdyż zmienne w modelu MCA mogą pochodzić ze skal np. przedziałowej czy nominalnej. Poza tym, możliwe jest określenie stopnia wpływu zmiennych niezależnych zarówno przed jak i po uwzględnieniu zmiennych kontrolnych. Wreszcie, nie jest wymagane spełnienie założenia liniowej zależności p...

  9. Independent component analysis classification of laser induced breakdown spectroscopy spectra

    Forni, Olivier; Maurice, Sylvestre; Gasnault, Olivier; Wiens, Roger C.; Cousin, Agnès; Clegg, Samuel M.; Sirven, Jean-Baptiste; Lasue, Jérémie

    2013-01-01

    The ChemCam instrument on board Mars Science Laboratory (MSL) rover uses the laser-induced breakdown spectroscopy (LIBS) technique to remotely analyze Martian rocks. It retrieves spectra up to a distance of seven meters to quantify and to quantitatively analyze the sampled rocks. Like any field application, on-site measurements by LIBS are altered by diverse matrix effects which induce signal variations that are specific to the nature of the sample. Qualitative aspects remain to be studied, particularly LIBS sample identification to determine which samples are of interest for further analysis by ChemCam and other rover instruments. This can be performed with the help of different chemometric methods that model the spectra variance in order to identify a the rock from its spectrum. In this paper we test independent components analysis (ICA) rock classification by remote LIBS. We show that using measures of distance in ICA space, namely the Manhattan and the Mahalanobis distance, we can efficiently classify spectra of an unknown rock. The Mahalanobis distance gives overall better performances and is easier to manage than the Manhattan distance for which the determination of the cut-off distance is not easy. However these two techniques are complementary and their analytical performances will improve with time during MSL operations as the quantity of available Martian spectra will grow. The analysis accuracy and performances will benefit from a combination of the two approaches. - Highlights: • We use a novel independent component analysis method to classify LIBS spectra. • We demonstrate the usefulness of ICA. • We report the performances of the ICA classification. • We compare it to other classical classification schemes

  10. Electromyographic Pattern Analysis and Classification for a Robotic Prosthetic Arm

    M. José H. Erazo Macias

    2006-01-01

    Full Text Available This paper deals with the statistical analysis and pattern classification of electromyographic signals from the biceps of a person with amputation below the humerus. Such signals collected from an amputation simulator are synergistically generated to produce discrete elbow movements. The purpose of this study is to utilise these signals to control an electrically driven prosthetic or orthotic elbow with minimum extra mental effort on the part of the subject. The results show very good separability of classes of movements when a learning pattern classification scheme is used, and a superposition of any composite motion to the three basic primitive motions—humeral rotation in and out, flexion and extension, and pronation and supination. Since no synergy was detected for the wrist movement, different inputs have to be provided for a grip. In addition, the method described is not limited by the location of the electrodes. For amputees with shorter stumps, synergistic signals could be obtained from the shoulder muscles. However, the presentation in this paper is limited to biceps signal classification only.

  11. CLASSIFICATION ALGORITHMS FOR BIG DATA ANALYSIS, A MAP REDUCE APPROACH

    V. A. Ayma

    2015-03-01

    Full Text Available Since many years ago, the scientific community is concerned about how to increase the accuracy of different classification methods, and major achievements have been made so far. Besides this issue, the increasing amount of data that is being generated every day by remote sensors raises more challenges to be overcome. In this work, a tool within the scope of InterIMAGE Cloud Platform (ICP, which is an open-source, distributed framework for automatic image interpretation, is presented. The tool, named ICP: Data Mining Package, is able to perform supervised classification procedures on huge amounts of data, usually referred as big data, on a distributed infrastructure using Hadoop MapReduce. The tool has four classification algorithms implemented, taken from WEKA’s machine learning library, namely: Decision Trees, Naïve Bayes, Random Forest and Support Vector Machines (SVM. The results of an experimental analysis using a SVM classifier on data sets of different sizes for different cluster configurations demonstrates the potential of the tool, as well as aspects that affect its performance.

  12. Detection and Classification of Multiple Objects using an RGB-D Sensor and Linear Spatial Pyramid Matching

    Dimitriou, Michalis; Kounalakis, Tsampikos; Vidakis, Nikolaos

    2013-01-01

    , connected components detection and filtering approaches, in order to design a complete image processing algorithm for efficient object detection of multiple individual objects in a single scene, even in complex scenes with many objects. Besides, we apply the Linear Spatial Pyramid Matching (LSPM) [1] method......This paper presents a complete system for multiple object detection and classification in a 3D scene using an RGB-D sensor such as the Microsoft Kinect sensor. Successful multiple object detection and classification are crucial features in many 3D computer vision applications. The main goal...... is making machines see and understand objects like humans do. To this goal, the new RGB-D sensors can be utilized since they provide real-time depth map which can be used along with the RGB images for our tasks. In our system we employ effective depth map processing techniques, along with edge detection...

  13. On the Feature Selection and Classification Based on Information Gain for Document Sentiment Analysis

    Asriyanti Indah Pratiwi

    2018-01-01

    Full Text Available Sentiment analysis in a movie review is the needs of today lifestyle. Unfortunately, enormous features make the sentiment of analysis slow and less sensitive. Finding the optimum feature selection and classification is still a challenge. In order to handle an enormous number of features and provide better sentiment classification, an information-based feature selection and classification are proposed. The proposed method reduces more than 90% unnecessary features while the proposed classification scheme achieves 96% accuracy of sentiment classification. From the experimental results, it can be concluded that the combination of proposed feature selection and classification achieves the best performance so far.

  14. Multiplicative calculus in biomedical image analysis

    Florack, L.M.J.; Assen, van H.C.

    2011-01-01

    We advocate the use of an alternative calculus in biomedical image analysis, known as multiplicative (a.k.a. non-Newtonian) calculus. It provides a natural framework in problems in which positive images or positive definite matrix fields and positivity preserving operators are of interest. Indeed,

  15. Using Correspondence Analysis in Multiple Case Studies

    Kienstra, Natascha; van der Heijden, Peter G.M.

    2015-01-01

    In qualitative research of multiple case studies, Miles and Huberman proposed to summarize the separate cases in a so-called meta-matrix that consists of cases by variables. Yin discusses cross-case synthesis to study this matrix. We propose correspondence analysis (CA) as a useful tool to study

  16. Using correspondence analysis in multiple case studies

    Kienstra, N.H.H.; van der Heijden, P.G.M.

    2015-01-01

    In qualitative research of multiple case studies, Miles and Huberman proposed to summarize the separate cases in a so-called meta-matrix that consists of cases by variables. Yin discusses cross-case synthesis to study this matrix. We propose correspondence analysis (CA) as a useful tool to study

  17. A comprehensive quality evaluation method by FT-NIR spectroscopy and chemometric: Fine classification and untargeted authentication against multiple frauds for Chinese Ganoderma lucidum

    Fu, Haiyan; Yin, Qiaobo; Xu, Lu; Wang, Weizheng; Chen, Feng; Yang, Tianming

    2017-07-01

    The origins and authenticity against frauds are two essential aspects of food quality. In this work, a comprehensive quality evaluation method by FT-NIR spectroscopy and chemometrics were suggested to address the geographical origins and authentication of Chinese Ganoderma lucidum (GL). Classification for 25 groups of GL samples (7 common species from 15 producing areas) was performed using near-infrared spectroscopy and interval-combination One-Versus-One least squares support vector machine (IC-OVO-LS-SVM). Untargeted analysis of 4 adulterants of cheaper mushrooms was performed by one-class partial least squares (OCPLS) modeling for each of the 7 GL species. After outlier diagnosis and comparing the influences of different preprocessing methods and spectral intervals on classification, IC-OVO-LS-SVM with standard normal variate (SNV) spectra obtained a total classification accuracy of 0.9317, an average sensitivity and specificity of 0.9306 and 0.9971, respectively. With SNV or second-order derivative (D2) spectra, OCPLS could detect at least 2% or more doping levels of adulterants for 5 of the 7 GL species and 5% or more doping levels for the other 2 GL species. This study demonstrates the feasibility of using new chemometrics and NIR spectroscopy for fine classification of GL geographical origins and species as well as for untargeted analysis of multiple adulterants.

  18. Quantitative analysis and classification of AFM images of human hair.

    Gurden, S P; Monteiro, V F; Longo, E; Ferreira, M M C

    2004-07-01

    The surface topography of human hair, as defined by the outer layer of cellular sheets, termed cuticles, largely determines the cosmetic properties of the hair. The condition of the cuticles is of great cosmetic importance, but also has the potential to aid diagnosis in the medical and forensic sciences. Atomic force microscopy (AFM) has been demonstrated to offer unique advantages for analysis of the hair surface, mainly due to the high image resolution and the ease of sample preparation. This article presents an algorithm for the automatic analysis of AFM images of human hair. The cuticular structure is characterized using a series of descriptors, such as step height, tilt angle and cuticle density, allowing quantitative analysis and comparison of different images. The usefulness of this approach is demonstrated by a classification study. Thirty-eight AFM images were measured, consisting of hair samples from (a) untreated and bleached hair samples, and (b) the root and distal ends of the hair fibre. The multivariate classification technique partial least squares discriminant analysis is used to test the ability of the algorithm to characterize the images according to the properties of the hair samples. Most of the images (86%) were found to be classified correctly.

  19. Mapping patent classifications: Portfolio and statistical analysis, and the comparison of strengths and weaknesses

    Leydesdorff, L.; Kogler, D.F.; Yan, B.

    The Cooperative Patent Classifications (CPC) recently developed cooperatively by the European and US Patent Offices provide a new basis for mapping patents and portfolio analysis. CPC replaces International Patent Classifications (IPC) of the World Intellectual Property Organization. In this study,

  20. Using discriminant analysis as a nucleation event classification method

    S. Mikkonen

    2006-01-01

    Full Text Available More than three years of measurements of aerosol size-distribution and different gas and meteorological parameters made in Po Valley, Italy were analysed for this study to examine which of the meteorological and trace gas variables effect on the emergence of nucleation events. As the analysis method, we used discriminant analysis with non-parametric Epanechnikov kernel, included in non-parametric density estimation method. The best classification result in our data was reached with the combination of relative humidity, ozone concentration and a third degree polynomial of radiation. RH appeared to have a preventing effect on the new particle formation whereas the effects of O3 and radiation were more conductive. The concentration of SO2 and NO2 also appeared to have significant effect on the emergence of nucleation events but because of the great amount of missing observations, we had to exclude them from the final analysis.

  1. A review and analysis of neural networks for classification of remotely sensed multispectral imagery

    Paola, Justin D.; Schowengerdt, Robert A.

    1993-01-01

    A literature survey and analysis of the use of neural networks for the classification of remotely sensed multispectral imagery is presented. As part of a brief mathematical review, the backpropagation algorithm, which is the most common method of training multi-layer networks, is discussed with an emphasis on its application to pattern recognition. The analysis is divided into five aspects of neural network classification: (1) input data preprocessing, structure, and encoding; (2) output encoding and extraction of classes; (3) network architecture, (4) training algorithms; and (5) comparisons to conventional classifiers. The advantages of the neural network method over traditional classifiers are its non-parametric nature, arbitrary decision boundary capabilities, easy adaptation to different types of data and input structures, fuzzy output values that can enhance classification, and good generalization for use with multiple images. The disadvantages of the method are slow training time, inconsistent results due to random initial weights, and the requirement of obscure initialization values (e.g., learning rate and hidden layer size). Possible techniques for ameliorating these problems are discussed. It is concluded that, although the neural network method has several unique capabilities, it will become a useful tool in remote sensing only if it is made faster, more predictable, and easier to use.

  2. Classification of Malaysia aromatic rice using multivariate statistical analysis

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.

    2015-01-01

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties

  3. Classification of Malaysia aromatic rice using multivariate statistical analysis

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A. [School of Mechatronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia); Omar, O. [Malaysian Agriculture Research and Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor (Malaysia)

    2015-05-15

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.

  4. Classification of Malaysia aromatic rice using multivariate statistical analysis

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.

    2015-05-01

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC-MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.

  5. Classifying Classifications

    Debus, Michael S.

    2017-01-01

    This paper critically analyzes seventeen game classifications. The classifications were chosen on the basis of diversity, ranging from pre-digital classification (e.g. Murray 1952), over game studies classifications (e.g. Elverdam & Aarseth 2007) to classifications of drinking games (e.g. LaBrie et...... al. 2013). The analysis aims at three goals: The classifications’ internal consistency, the abstraction of classification criteria and the identification of differences in classification across fields and/or time. Especially the abstraction of classification criteria can be used in future endeavors...... into the topic of game classifications....

  6. A simple method to combine multiple molecular biomarkers for dichotomous diagnostic classification

    Amin Manik A

    2006-10-01

    Full Text Available Abstract Background In spite of the recognized diagnostic potential of biomarkers, the quest for squelching noise and wringing in information from a given set of biomarkers continues. Here, we suggest a statistical algorithm that – assuming each molecular biomarker to be a diagnostic test – enriches the diagnostic performance of an optimized set of independent biomarkers employing established statistical techniques. We validated the proposed algorithm using several simulation datasets in addition to four publicly available real datasets that compared i subjects having cancer with those without; ii subjects with two different cancers; iii subjects with two different types of one cancer; and iv subjects with same cancer resulting in differential time to metastasis. Results Our algorithm comprises of three steps: estimating the area under the receiver operating characteristic curve for each biomarker, identifying a subset of biomarkers using linear regression and combining the chosen biomarkers using linear discriminant function analysis. Combining these established statistical methods that are available in most statistical packages, we observed that the diagnostic accuracy of our approach was 100%, 99.94%, 96.67% and 93.92% for the real datasets used in the study. These estimates were comparable to or better than the ones previously reported using alternative methods. In a synthetic dataset, we also observed that all the biomarkers chosen by our algorithm were indeed truly differentially expressed. Conclusion The proposed algorithm can be used for accurate diagnosis in the setting of dichotomous classification of disease states.

  7. Analysis of dynamic multiplicity fluctuations at PHOBOS

    Chai, Zhengwei; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J. L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2005-01-01

    This paper presents the analysis of the dynamic fluctuations in the inclusive charged particle multiplicity measured by PHOBOS for Au+Au collisions at surdsNN = 200GeV within the pseudo-rapidity range of -3 < η < 3. First the definition of the fluctuations observables used in this analysis is presented, together with the discussion of their physics meaning. Then the procedure for the extraction of dynamic fluctuations is described. Some preliminary results are included to illustrate the correlation features of the fluctuation observable. New dynamic fluctuations results will be available in a later publication.

  8. Diversity Performance Analysis on Multiple HAP Networks

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  9. Diversity Performance Analysis on Multiple HAP Networks

    Feihong Dong

    2015-06-01

    Full Text Available One of the main design challenges in wireless sensor networks (WSNs is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV. In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF and cumulative distribution function (CDF of the received signal-to-noise ratio (SNR are derived. In addition, the average symbol error rate (ASER with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  10. Analysis of Chi-square Automatic Interaction Detection (CHAID) and Classification and Regression Tree (CRT) for Classification of Corn Production

    Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.

    2017-11-01

    To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.

  11. A Preliminary Study on the Multiple Mapping Structure of Classification Systems for Heterogeneous Databases

    Seok-Hyoung Lee; Hwan-Min Kim; Ho-Seop Choe

    2012-01-01

    While science and technology information service portals and heterogeneous databases produced in Korea and other countries are integrated, methods of connecting the unique classification systems applied to each database have been studied. Results of technologists' research, such as, journal articles, patent specifications, and research reports, are organically related to each other. In this case, if the most basic and meaningful classification systems are not connected, it is difficult to ach...

  12. Application of Classification Algorithm of Machine Learning and Buffer Analysis in Torism Regional Planning

    Zhang, T. H.; Ji, H. W.; Hu, Y.; Ye, Q.; Lin, Y.

    2018-04-01

    Remote Sensing (RS) and Geography Information System (GIS) technologies are widely used in ecological analysis and regional planning. With the advantages of large scale monitoring, combination of point and area, multiple time-phases and repeated observation, they are suitable for monitoring and analysis of environmental information in a large range. In this study, support vector machine (SVM) classification algorithm is used to monitor the land use and land cover change (LUCC), and then to perform the ecological evaluation for Chaohu lake tourism area quantitatively. The automatic classification and the quantitative spatial-temporal analysis for the Chaohu Lake basin are realized by the analysis of multi-temporal and multispectral satellite images, DEM data and slope information data. Furthermore, the ecological buffer zone analysis is also studied to set up the buffer width for each catchment area surrounding Chaohu Lake. The results of LUCC monitoring from 1992 to 2015 has shown obvious affections by human activities. Since the construction of the Chaohu Lake basin is in the crucial stage of the rapid development of urbanization, the application of RS and GIS technique can effectively provide scientific basis for land use planning, ecological management, environmental protection and tourism resources development in the Chaohu Lake Basin.

  13. Coefficient of variation for use in crop area classification across multiple climates

    Whelen, Tracy; Siqueira, Paul

    2018-05-01

    In this study, the coefficient of variation (CV) is introduced as a unitless statistical measurement for the classification of croplands using synthetic aperture radar (SAR) data. As a measurement of change, the CV is able to capture changing backscatter responses caused by cycles of planting, growing, and harvesting, and thus is able to differentiate these areas from a more static forest or urban area. Pixels with CV values above a given threshold are classified as crops, and below the threshold are non-crops. This paper uses cross-polarized L-band SAR data from the ALOS PALSAR satellite to classify eleven regions across the United States, covering a wide range of major crops and climates. Two separate sets of classification were done, with the first targeting the optimum classification thresholds for each dataset, and the second using a generalized threshold for all datasets to simulate a large-scale operationalized situation. Overall accuracies for the first phase of classification ranged from 66%-81%, and 62%-84% for the second phase. Visual inspection of the results shows numerous possibilities for improving the classifications while still using the same classification method, including increasing the number and temporal frequency of input images in order to better capture phenological events and mitigate the effects of major precipitation events, as well as more accurate ground truth data. These improvements would make the CV method a viable tool for monitoring agriculture throughout the year on a global scale.

  14. Two-Way Regularized Fuzzy Clustering of Multiple Correspondence Analysis.

    Kim, Sunmee; Choi, Ji Yeh; Hwang, Heungsun

    2017-01-01

    Multiple correspondence analysis (MCA) is a useful tool for investigating the interrelationships among dummy-coded categorical variables. MCA has been combined with clustering methods to examine whether there exist heterogeneous subclusters of a population, which exhibit cluster-level heterogeneity. These combined approaches aim to classify either observations only (one-way clustering of MCA) or both observations and variable categories (two-way clustering of MCA). The latter approach is favored because its solutions are easier to interpret by providing explicitly which subgroup of observations is associated with which subset of variable categories. Nonetheless, the two-way approach has been built on hard classification that assumes observations and/or variable categories to belong to only one cluster. To relax this assumption, we propose two-way fuzzy clustering of MCA. Specifically, we combine MCA with fuzzy k-means simultaneously to classify a subgroup of observations and a subset of variable categories into a common cluster, while allowing both observations and variable categories to belong partially to multiple clusters. Importantly, we adopt regularized fuzzy k-means, thereby enabling us to decide the degree of fuzziness in cluster memberships automatically. We evaluate the performance of the proposed approach through the analysis of simulated and real data, in comparison with existing two-way clustering approaches.

  15. Multiple predictor smoothing methods for sensitivity analysis

    Helton, Jon Craig; Storlie, Curtis B.

    2006-01-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present

  16. Multiple predictor smoothing methods for sensitivity analysis.

    Helton, Jon Craig; Storlie, Curtis B.

    2006-08-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.

  17. A Visual Analytics Approach for Correlation, Classification, and Regression Analysis

    Steed, Chad A [ORNL; SwanII, J. Edward [Mississippi State University (MSU); Fitzpatrick, Patrick J. [Mississippi State University (MSU); Jankun-Kelly, T.J. [Mississippi State University (MSU)

    2012-02-01

    New approaches that combine the strengths of humans and machines are necessary to equip analysts with the proper tools for exploring today's increasing complex, multivariate data sets. In this paper, a novel visual data mining framework, called the Multidimensional Data eXplorer (MDX), is described that addresses the challenges of today's data by combining automated statistical analytics with a highly interactive parallel coordinates based canvas. In addition to several intuitive interaction capabilities, this framework offers a rich set of graphical statistical indicators, interactive regression analysis, visual correlation mining, automated axis arrangements and filtering, and data classification techniques. The current work provides a detailed description of the system as well as a discussion of key design aspects and critical feedback from domain experts.

  18. A Preliminary Study on the Multiple Mapping Structure of Classification Systems for Heterogeneous Databases

    Seok-Hyoung Lee

    2012-06-01

    Full Text Available While science and technology information service portals and heterogeneous databases produced in Korea and other countries are integrated, methods of connecting the unique classification systems applied to each database have been studied. Results of technologists' research, such as, journal articles, patent specifications, and research reports, are organically related to each other. In this case, if the most basic and meaningful classification systems are not connected, it is difficult to achieve interoperability of the information and thus not easy to implement meaningful science technology information services through information convergence. This study aims to address the aforementioned issue by analyzing mapping systems between classification systems in order to design a structure to connect a variety of classification systems used in the academic information database of the Korea Institute of Science and Technology Information, which provides science and technology information portal service. This study also aims to design a mapping system for the classification systems to be applied to actual science and technology information services and information management systems.

  19. Review and classification of variability analysis techniques with clinical applications.

    Bravi, Andrea; Longtin, André; Seely, Andrew J E

    2011-10-10

    Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis.

  20. Review and classification of variability analysis techniques with clinical applications

    2011-01-01

    Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis. PMID:21985357

  1. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  2. An analysis of correlation between occlusion classification and skeletal pattern

    Lu Xinhua; Cai Bin; Wang Dawei; Wu Liping

    2003-01-01

    Objective: To study the correlation between dental relationship and skeletal pattern of individuals. Methods: 194 cases were selected and classified by angle classification, incisor relationship and skeletal pattern respectively. The correlation of angle classification and incisor relationship to skeletal pattern was analyzed with SPSS 10.0. Results: The values of correlation index (Kappa) were 0.379 and 0.494 respectively. Conclusion: The incisor relationship is more consistent with skeletal pattern than angle classification

  3. Image segmentation and particles classification using texture analysis method

    Mayar Aly Atteya

    Full Text Available Introduction: Ingredients of oily fish include a large amount of polyunsaturated fatty acids, which are important elements in various metabolic processes of humans, and have also been used to prevent diseases. However, in an attempt to reduce cost, recent developments are starting a replace the ingredients of fish oil with products of microalgae, that also produce polyunsaturated fatty acids. To do so, it is important to closely monitor morphological changes in algae cells and monitor their age in order to achieve the best results. This paper aims to describe an advanced vision-based system to automatically detect, classify, and track the organic cells using a recently developed SOPAT-System (Smart On-line Particle Analysis Technology, a photo-optical image acquisition device combined with innovative image analysis software. Methods The proposed method includes image de-noising, binarization and Enhancement, as well as object recognition, localization and classification based on the analysis of particles’ size and texture. Results The methods allowed for correctly computing cell’s size for each particle separately. By computing an area histogram for the input images (1h, 18h, and 42h, the variation could be observed showing a clear increase in cell. Conclusion The proposed method allows for algae particles to be correctly identified with accuracies up to 99% and classified correctly with accuracies up to 100%.

  4. Global classification of human facial healthy skin using PLS discriminant analysis and clustering analysis.

    Guinot, C; Latreille, J; Tenenhaus, M; Malvy, D J

    2001-04-01

    Today's classifications of healthy skin are predominantly based on a very limited number of skin characteristics, such as skin oiliness or susceptibility to sun exposure. The aim of the present analysis was to set up a global classification of healthy facial skin, using mathematical models. This classification is based on clinical, biophysical skin characteristics and self-reported information related to the skin, as well as the results of a theoretical skin classification assessed separately for the frontal and the malar zones of the face. In order to maximize the predictive power of the models with a minimum of variables, the Partial Least Square (PLS) discriminant analysis method was used. The resulting PLS components were subjected to clustering analyses to identify the plausible number of clusters and to group the individuals according to their proximities. Using this approach, four PLS components could be constructed and six clusters were found relevant. So, from the 36 hypothetical combinations of the theoretical skin types classification, we tended to a strengthened six classes proposal. Our data suggest that the association of the PLS discriminant analysis and the clustering methods leads to a valid and simple way to classify healthy human skin and represents a potentially useful tool for cosmetic and dermatological research.

  5. Wagner classification and culture analysis of diabetic foot infection

    Fatma Bozkurt

    2011-03-01

    Full Text Available The aim of this study was to determine the concordance ratio between microorganisms isolated from deep tissue culture and those from superficial culture in patients with diabetic foot according to Wagner’s wound classification method.Materials and methods: A total of 63 patients with Diabetic foot infection, who were admitted to Dicle University Hospital between October 2006 and November 2007, were included into the study. Wagner’s classification method was used for wound classification. For microbiologic studies superficial and deep tissue specimens were obtained from each patient, and were rapidly sent to laboratory for aerob and anaerob cultures. Microbiologic data were analyzed and interpreted in line with sensitivity and specifity formula.Results: Thirty-eight (60% of the patients were in Wagner’s classification ≤2, while 25 (40% patients were Wagner’s classification ≥3. According to our culture results, 66 (69% Gr (+ and 30 (31% Gr (- microorganisms grew in Wagner classification ≤2 patients. While in Wagner classification ≥3; 25 (35% Gr (+ and 46 (65% Gr (- microorganisms grew. Microorganisms grew in 89% of superficial cultures and 64% of the deep tissue cultures in patients with Wagner classification ≤2, while microorganism grew in 64% of Wagner classification ≥3.Conclusion: In ulcers of diabetic food infections, initial treatment should be started according to result of sterile superficial culture, but deep tissue culture should be taken, if unresponsive to initial treatment.

  6. MRI analysis of the rotator cuff pathology a new classification

    Tavernier, T.; Lapra, C.; Bochu, M.; Walch, G.; Noel, E.

    1995-01-01

    The different classifications use for the rotator cuff pathology seem to be incomplete. We propose a new classification with many advantages: (1) Differentiate the tendinopathy between less serious (grade 2A) and serious (grade 2B). (2) Recognize the intra-tendinous cleavage of the infra-spinatus associated with complete tear of the supra-spinatus. (3) Differentiate partial and complete tears of the supra-spinatus. We established this classification after a retrospective study of 42 patients operated on for a rotator cuff pathology. Every case had had a preoperative MRI. This classification is simple, especially for the associated intra tendinous cleavage. (authors). 24 refs., 9 figs., 2 tabs

  7. Complications in Endovascular Neurosurgery: Critical Analysis and Classification.

    Ravindra, Vijay M; Mazur, Marcus D; Park, Min S; Kilburg, Craig; Moran, Christopher J; Hardman, Rulon L; Couldwell, William T; Taussky, Philipp

    2016-11-01

    Precisely defining complications, which are used to measure overall quality, is necessary for critical review of delivery of care and quality improvement in endovascular neurosurgery, which lacks common definitions for complications. Furthermore, in endovascular interventions, events that may be labeled complications may not always negatively affect outcome. Our objective is to provide precise definitions for quality evaluation within endovascular neurosurgery. Thus, we propose an endovascular-specific classification system of complications based on our own patient series. This single-center review included all patients who had endovascular interventions from September 2013 to August 2015. Complication types were analyzed, and a descriptive analysis was undertaken to calculate the incidence of complications overall and in each category. Two hundred and seventy-five endovascular interventions were performed in 245 patients (65% female; mean age, 55 years). Forty complications occurred in 39 patients (15%), most commonly during treatment of intracranial aneurysms (24/40). Mechanical complications (eg, device deployment, catheter, or closure device failure) occurred in 8/40, technical complications (eg, failure to deploy flow diverter, unintended embolization, air emboli, retroperitoneal hemorrhage, dissection) in 11/40, judgment errors (eg, patient or equipment selection) in 9/40, and critical events (eg, groin hematoma, hemorrhagic or thromboembolic complications) in 12/40 patients. Only 12/40 complications (30%) resulted in new neurologic deficits, vessel injury requiring surgery, or blood transfusion. We propose an endovascular-specific classification system of complications with 4 categories: mechanical, technical, judgment errors, and critical events. This system provides a framework for future studies and quality control in endovascular neurosurgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Thyroid nodule classification using ultrasound elastography via linear discriminant analysis.

    Luo, Si; Kim, Eung-Hun; Dighe, Manjiri; Kim, Yongmin

    2011-05-01

    The non-surgical diagnosis of thyroid nodules is currently made via a fine needle aspiration (FNA) biopsy. It is estimated that somewhere between 250,000 and 300,000 thyroid FNA biopsies are performed in the United States annually. However, a large percentage (approximately 70%) of these biopsies turn out to be benign. Since the aggressive FNA management of thyroid nodules is costly, quantitative risk assessment and stratification of a nodule's malignancy is of value in triage and more appropriate healthcare resources utilization. In this paper, we introduce a new method for classifying the thyroid nodules based on the ultrasound (US) elastography features. Unlike approaches to assess the stiffness of a thyroid nodule by visually inspecting the pseudo-color pattern in the strain image, we use a classification algorithm to stratify the nodule by using the power spectrum of strain rate waveform extracted from the US elastography image sequence. Pulsation from the carotid artery was used to compress the thyroid nodules. Ultrasound data previously acquired from 98 thyroid nodules were used in this retrospective study to evaluate our classification algorithm. A classifier was developed based on the linear discriminant analysis (LDA) and used to differentiate the thyroid nodules into two types: (I) no FNA (observation-only) and (II) FNA. Using our method, 62 nodules were classified as type I, all of which were benign, while 36 nodules were classified as Type-II, 16 malignant and 20 benign, resulting in a sensitivity of 100% and specificity of 75.6% in detecting malignant thyroid nodules. This indicates that our triage method based on US elastography has the potential to substantially reduce the number of FNA biopsies (63.3%) by detecting benign nodules and managing them via follow-up observations rather than an FNA biopsy. Published by Elsevier B.V.

  9. Quantitative Outline-based Shape Analysis and Classification of Planetary Craterforms using Supervised Learning Models

    Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric

    2017-10-01

    The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.

  10. Analysis of a Bibliographic Database Enhanced with a Library Classification.

    Drabenstott, Karen Markey; And Others

    1990-01-01

    Describes a project that examined the effects of incorporating subject terms from the Dewey Decimal Classification (DDC) into a bibliographic database. It is concluded that the incorporation of DDC and possibly other library classifications into online catalogs can enhance subject access and provide additional subject searching strategies. (11…

  11. Acoustic analysis and mood classification of pain-relieving music.

    Knox, Don; Beveridge, Scott; Mitchell, Laura A; MacDonald, Raymond A R

    2011-09-01

    Listening to preferred music (that which is chosen by the participant) has been shown to be effective in mitigating the effects of pain when compared to silence and a variety of distraction techniques. The wide range of genre, tempo, and structure in music chosen by participants in studies utilizing experimentally induced pain has led to the assertion that structure does not play a significant role, rather listening to preferred music renders the music "functionally equivalent" as regards its effect upon pain perception. This study addresses this assumption and performs detailed analysis of a selection of music chosen from three pain studies. Music analysis showed significant correlation between timbral and tonal aspects of music and measurements of pain tolerance and perceived pain intensity. Mood classification was performed using a hierarchical Gaussian Mixture Model, which indicated the majority of the chosen music expressed contentment. The results suggest that in addition to personal preference, associations with music and the listening context, emotion expressed by music, as defined by its acoustical content, is important to enhancing emotional engagement with music and therefore enhances the level of pain reduction and tolerance. © 2011 Acoustical Society of America

  12. System diagnostics using qualitative analysis and component functional classification

    Reifman, J.; Wei, T.Y.C.

    1993-01-01

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system. 5 figures

  13. Structural model analysis of multiple quantitative traits.

    Renhua Li

    2006-07-01

    Full Text Available We introduce a method for the analysis of multilocus, multitrait genetic data that provides an intuitive and precise characterization of genetic architecture. We show that it is possible to infer the magnitude and direction of causal relationships among multiple correlated phenotypes and illustrate the technique using body composition and bone density data from mouse intercross populations. Using these techniques we are able to distinguish genetic loci that affect adiposity from those that affect overall body size and thus reveal a shortcoming of standardized measures such as body mass index that are widely used in obesity research. The identification of causal networks sheds light on the nature of genetic heterogeneity and pleiotropy in complex genetic systems.

  14. Suggestions on performance of finite element limit analysis for eliminating the necessity of stress classifications in design and defect assessment

    Fujioka, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2001-07-01

    In structural design of a nuclear power component, stress classification from elastic stress analysis resultants is often used. Alternatively, to improve accuracy, finite element limit analysis may be performed. This paper examines some issues relating to the use of limit analysis; specifically, the treatment of multiple applied loads and the definition of the limit load from analysis using hardening plasticity laws. These are addressed both by detailed analysis for a simple geometry and by using the reference stress approach to estimate the inelastic displacement. The proposals are also applicable to a defect assessment of a cracked component, and treatment of distributed loads. It is shown that multiple or distributed loads should be treated as if they were applied proportionally irrespective of the actual nature of loads, and that the limit load from analysis with general plasticity laws may be estimated using a newly suggested reduced elastic slope method. (author)

  15. Suggestions on performance of finite element limit analysis for eliminating the necessity of stress classifications in design and defect assessment

    Fujioka, T.

    2001-01-01

    In structural design of a nuclear power component, stress classification from elastic stress analysis resultants is often used. Alternatively, to improve accuracy, finite element limit analysis may be performed. This paper examines some issues relating to the use of limit analysis; specifically, the treatment of multiple applied loads and the definition of the limit load from analysis using hardening plasticity laws. These are addressed both by detailed analysis for a simple geometry and by using the reference stress approach to estimate the inelastic displacement. The proposals are also applicable to a defect assessment of a cracked component, and treatment of distributed loads. It is shown that multiple or distributed loads should be treated as if they were applied proportionally irrespective of the actual nature of loads, and that the limit load from analysis with general plasticity laws may be estimated using a newly suggested reduced elastic slope method. (author)

  16. ANALYSIS OF THE GUIDELINES FOR CLASSIFICATION OFADVERTISING COSTS IN TAXATION

    A. Diederichs

    2016-07-01

    Full Text Available Advertising plays a distinct role in economies around the world. Previous studieshave not resolved the question related to the classification of advertising as anexpense or capital asset. Understanding the principles set out in TheIncome TaxAct 58 of 1962, with regard to the classification of advertising cost as capital orrevenue of nature is important, since the incorrect interpretation of principles willhave a direct impact on tax liability. The focus of this study is the classification ofadvertising costs for tax purposes. Research questions posed in this paper areanswered through the development of a classification process that may assist withthe classification of advertising costs for the purpose of taxation. Guidelines forthe classification of advertising costs as capital or revenue of nature are needed tocorrectly classify advertising costs for tax purposes. Furthermore, thedetermination of when advertising costs will be regarded as capital of nature isalso determined. A qualitative research approach is applied, including a literaturereview of case law and income tax acts. The contribution of this study is found inthe guidelines set for the classification of advertising costs for tax purposes byusing principles from national and international case law.

  17. Deep neural networks for texture classification-A theoretical analysis.

    Basu, Saikat; Mukhopadhyay, Supratik; Karki, Manohar; DiBiano, Robert; Ganguly, Sangram; Nemani, Ramakrishna; Gayaka, Shreekant

    2018-01-01

    We investigate the use of Deep Neural Networks for the classification of image datasets where texture features are important for generating class-conditional discriminative representations. To this end, we first derive the size of the feature space for some standard textural features extracted from the input dataset and then use the theory of Vapnik-Chervonenkis dimension to show that hand-crafted feature extraction creates low-dimensional representations which help in reducing the overall excess error rate. As a corollary to this analysis, we derive for the first time upper bounds on the VC dimension of Convolutional Neural Network as well as Dropout and Dropconnect networks and the relation between excess error rate of Dropout and Dropconnect networks. The concept of intrinsic dimension is used to validate the intuition that texture-based datasets are inherently higher dimensional as compared to handwritten digits or other object recognition datasets and hence more difficult to be shattered by neural networks. We then derive the mean distance from the centroid to the nearest and farthest sampling points in an n-dimensional manifold and show that the Relative Contrast of the sample data vanishes as dimensionality of the underlying vector space tends to infinity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comprehensive Study on Lexicon-based Ensemble Classification Sentiment Analysis

    Łukasz Augustyniak

    2015-12-01

    Full Text Available We propose a novel method for counting sentiment orientation that outperforms supervised learning approaches in time and memory complexity and is not statistically significantly different from them in accuracy. Our method consists of a novel approach to generating unigram, bigram and trigram lexicons. The proposed method, called frequentiment, is based on calculating the frequency of features (words in the document and averaging their impact on the sentiment score as opposed to documents that do not contain these features. Afterwards, we use ensemble classification to improve the overall accuracy of the method. What is important is that the frequentiment-based lexicons with sentiment threshold selection outperform other popular lexicons and some supervised learners, while being 3–5 times faster than the supervised approach. We compare 37 methods (lexicons, ensembles with lexicon’s predictions as input and supervised learners applied to 10 Amazon review data sets and provide the first statistical comparison of the sentiment annotation methods that include ensemble approaches. It is one of the most comprehensive comparisons of domain sentiment analysis in the literature.

  19. Analysis of reproductive toxicity and classification of glufosinate-ammonium.

    Schulte-Hermann, Rolf; Wogan, Gerald N; Berry, Colin; Brown, Nigel A; Czeizel, Andrew; Giavini, Erminio; Holmes, Lewis B; Kroes, Robert; Nau, Heinz; Neubert, Diether; Oesch, Franz; Ott, Tilmann; Pelkonen, Olavi; Robert-Gnansia, Elisabeth; Sullivan, Frank M

    2006-04-01

    CONCLUSION REGARDING CLASSIFICATION OF GLUFOSINATE-AMMONIUM: Science Partners' Evaluation Group (Evaluation Group) has conducted an independent analysis of the herbicide glufosinate-ammonium (GA) relative to its potential to cause reproductive toxicity in humans. Further, the Evaluation Group has evaluated the implementation of Annex 6 of Commission Directive 2001/59/EC (28th ATP of Council Directive 67/548/EEC) and Council Directive 91/414/EEC, with respect to classification of chemicals posing potential reproductive hazards. After consideration of all information available to us relevant to the potential of glufosinate-ammonium (GA) to cause reproductive toxicity, the Science Partners Evaluation Group concludes that no classification of GA is justified. The following form the basis of this conclusion. There are no human data to suggest that GA causes reproductive toxicity in women or in their conceptus. The issue concerning possible reproductive hazard to humans is raised solely on the basis of positive animal test results that show GA to cause preimplantation or implantation losses in rats. SPECIFICALLY: a. Daily treatment with GA had no detectable effect on the earliest stages of the reproductive sequence including gametogenesis, ovulation, mating and conception; b. Treatment with GA interfered with rat gestation before and at the stage when the conceptus implants into the uterus. This effect occurred at doses of 360 ppm in the feed (corresponding to daily doses of 27.8 mg/kg bw) and above; and c. After implantation, no further effect of GA on prenatal and post-natal development was recognized. Previous concerns that GA might be toxic to embryonic stages after implantation were not supported by the data. Abortions and stillbirth seen were associated with, and regarded as secondary to, maternal toxicity. There was no evidence suggesting the induction of malformations in the offspring. The mechanism underlying this adverse effect in experimental laboratory

  20. Flexible Mediation Analysis With Multiple Mediators.

    Steen, Johan; Loeys, Tom; Moerkerke, Beatrijs; Vansteelandt, Stijn

    2017-07-15

    The advent of counterfactual-based mediation analysis has triggered enormous progress on how, and under what assumptions, one may disentangle path-specific effects upon combining arbitrary (possibly nonlinear) models for mediator and outcome. However, current developments have largely focused on single mediators because required identification assumptions prohibit simple extensions to settings with multiple mediators that may depend on one another. In this article, we propose a procedure for obtaining fine-grained decompositions that may still be recovered from observed data in such complex settings. We first show that existing analytical approaches target specific instances of a more general set of decompositions and may therefore fail to provide a comprehensive assessment of the processes that underpin cause-effect relationships between exposure and outcome. We then outline conditions for obtaining the remaining set of decompositions. Because the number of targeted decompositions increases rapidly with the number of mediators, we introduce natural effects models along with estimation methods that allow for flexible and parsimonious modeling. Our procedure can easily be implemented using off-the-shelf software and is illustrated using a reanalysis of the World Health Organization's Large Analysis and Review of European Housing and Health Status (WHO-LARES) study on the effect of mold exposure on mental health (2002-2003). © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Classification using diffraction patterns for single-particle analysis

    Hu, Hongli; Zhang, Kaiming [Department of Biophysics, the Health Science Centre, Peking University, Beijing 100191 (China); Meng, Xing, E-mail: xmeng101@gmail.com [Wadsworth Centre, New York State Department of Health, Albany, New York 12201 (United States)

    2016-05-15

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  2. Classification using diffraction patterns for single-particle analysis

    Hu, Hongli; Zhang, Kaiming; Meng, Xing

    2016-01-01

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  3. Comparative analysis of methods for classification in predicting the quality of bread

    E. A. Balashova; V. K. Bitjukov; E. A. Savvina

    2013-01-01

    The comparative analysis of classification methods of two-stage cluster and discriminant analysis and neural networks was performed. System of informative signs which classifies with a minimum of errors has been proposed.

  4. Comparative analysis of methods for classification in predicting the quality of bread

    E. A. Balashova

    2013-01-01

    Full Text Available The comparative analysis of classification methods of two-stage cluster and discriminant analysis and neural networks was performed. System of informative signs which classifies with a minimum of errors has been proposed.

  5. Causal mediation analysis with multiple mediators.

    Daniel, R M; De Stavola, B L; Cousens, S N; Vansteelandt, S

    2015-03-01

    In diverse fields of empirical research-including many in the biological sciences-attempts are made to decompose the effect of an exposure on an outcome into its effects via a number of different pathways. For example, we may wish to separate the effect of heavy alcohol consumption on systolic blood pressure (SBP) into effects via body mass index (BMI), via gamma-glutamyl transpeptidase (GGT), and via other pathways. Much progress has been made, mainly due to contributions from the field of causal inference, in understanding the precise nature of statistical estimands that capture such intuitive effects, the assumptions under which they can be identified, and statistical methods for doing so. These contributions have focused almost entirely on settings with a single mediator, or a set of mediators considered en bloc; in many applications, however, researchers attempt a much more ambitious decomposition into numerous path-specific effects through many mediators. In this article, we give counterfactual definitions of such path-specific estimands in settings with multiple mediators, when earlier mediators may affect later ones, showing that there are many ways in which decomposition can be done. We discuss the strong assumptions under which the effects are identified, suggesting a sensitivity analysis approach when a particular subset of the assumptions cannot be justified. These ideas are illustrated using data on alcohol consumption, SBP, BMI, and GGT from the Izhevsk Family Study. We aim to bridge the gap from "single mediator theory" to "multiple mediator practice," highlighting the ambitious nature of this endeavor and giving practical suggestions on how to proceed. © 2014 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  6. APPLICATION OF MULTIPLE LOGISTIC REGRESSION, BAYESIAN LOGISTIC AND CLASSIFICATION TREE TO IDENTIFY THE SIGNIFICANT FACTORS INFLUENCING CRASH SEVERITY

    MILAD TAZIK

    2017-11-01

    Full Text Available Identifying cases in which road crashes result in fatality or injury of drivers may help improve their safety. In this study, datasets of crashes happened in TehranQom freeway, Iran, were examined by three models (multiple logistic regression, Bayesian logistic and classification tree to analyse the contribution of several variables to fatal accidents. For multiple logistic regression and Bayesian logistic models, the odds ratio was calculated for each variable. The model which best suited the identification of accident severity was determined based on AIC and DIC criteria. Based on the results of these two models, rollover crashes (OR = 14.58, %95 CI: 6.8-28.6, not using of seat belt (OR = 5.79, %95 CI: 3.1-9.9, exceeding speed limits (OR = 4.02, %95 CI: 1.8-7.9 and being female (OR = 2.91, %95 CI: 1.1-6.1 were the most important factors in fatalities of drivers. In addition, the results of the classification tree model have verified the findings of the other models.

  7. MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification.

    Burgess, K E V; Borutzki, Y; Rankin, N; Daly, R; Jourdan, F

    2017-12-15

    Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Large-scale gene function analysis with the PANTHER classification system.

    Mi, Huaiyu; Muruganujan, Anushya; Casagrande, John T; Thomas, Paul D

    2013-08-01

    The PANTHER (protein annotation through evolutionary relationship) classification system (http://www.pantherdb.org/) is a comprehensive system that combines gene function, ontology, pathways and statistical analysis tools that enable biologists to analyze large-scale, genome-wide data from sequencing, proteomics or gene expression experiments. The system is built with 82 complete genomes organized into gene families and subfamilies, and their evolutionary relationships are captured in phylogenetic trees, multiple sequence alignments and statistical models (hidden Markov models or HMMs). Genes are classified according to their function in several different ways: families and subfamilies are annotated with ontology terms (Gene Ontology (GO) and PANTHER protein class), and sequences are assigned to PANTHER pathways. The PANTHER website includes a suite of tools that enable users to browse and query gene functions, and to analyze large-scale experimental data with a number of statistical tests. It is widely used by bench scientists, bioinformaticians, computer scientists and systems biologists. In the 2013 release of PANTHER (v.8.0), in addition to an update of the data content, we redesigned the website interface to improve both user experience and the system's analytical capability. This protocol provides a detailed description of how to analyze genome-wide experimental data with the PANTHER classification system.

  9. Parallel multiple instance learning for extremely large histopathology image analysis.

    Xu, Yan; Li, Yeshu; Shen, Zhengyang; Wu, Ziwei; Gao, Teng; Fan, Yubo; Lai, Maode; Chang, Eric I-Chao

    2017-08-03

    Histopathology images are critical for medical diagnosis, e.g., cancer and its treatment. A standard histopathology slice can be easily scanned at a high resolution of, say, 200,000×200,000 pixels. These high resolution images can make most existing imaging processing tools infeasible or less effective when operated on a single machine with limited memory, disk space and computing power. In this paper, we propose an algorithm tackling this new emerging "big data" problem utilizing parallel computing on High-Performance-Computing (HPC) clusters. Experimental results on a large-scale data set (1318 images at a scale of 10 billion pixels each) demonstrate the efficiency and effectiveness of the proposed algorithm for low-latency real-time applications. The framework proposed an effective and efficient system for extremely large histopathology image analysis. It is based on the multiple instance learning formulation for weakly-supervised learning for image classification, segmentation and clustering. When a max-margin concept is adopted for different clusters, we obtain further improvement in clustering performance.

  10. Comparison analysis for classification algorithm in data mining and the study of model use

    Chen, Junde; Zhang, Defu

    2018-04-01

    As a key technique in data mining, classification algorithm was received extensive attention. Through an experiment of classification algorithm in UCI data set, we gave a comparison analysis method for the different algorithms and the statistical test was used here. Than that, an adaptive diagnosis model for preventive electricity stealing and leakage was given as a specific case in the paper.

  11. [Analysis of binary classification repeated measurement data with GEE and GLMMs using SPSS software].

    An, Shengli; Zhang, Yanhong; Chen, Zheng

    2012-12-01

    To analyze binary classification repeated measurement data with generalized estimating equations (GEE) and generalized linear mixed models (GLMMs) using SPSS19.0. GEE and GLMMs models were tested using binary classification repeated measurement data sample using SPSS19.0. Compared with SAS, SPSS19.0 allowed convenient analysis of categorical repeated measurement data using GEE and GLMMs.

  12. Estimating Classification Errors Under Edit Restrictions in Composite Survey-Register Data Using Multiple Imputation Latent Class Modelling (MILC

    Boeschoten Laura

    2017-12-01

    Full Text Available Both registers and surveys can contain classification errors. These errors can be estimated by making use of a composite data set. We propose a new method based on latent class modelling to estimate the number of classification errors across several sources while taking into account impossible combinations with scores on other variables. Furthermore, the latent class model, by multiply imputing a new variable, enhances the quality of statistics based on the composite data set. The performance of this method is investigated by a simulation study, which shows that whether or not the method can be applied depends on the entropy R2 of the latent class model and the type of analysis a researcher is planning to do. Finally, the method is applied to public data from Statistics Netherlands.

  13. Classification Systems for Individual Differences in Multiple-task Performance and Subjective Estimates of Workload

    Damos, D. L.

    1984-01-01

    Human factors practitioners often are concerned with mental workload in multiple-task situations. Investigations of these situations have demonstrated repeatedly that individuals differ in their subjective estimates of workload. These differences may be attributed in part to individual differences in definitions of workload. However, after allowing for differences in the definition of workload, there are still unexplained individual differences in workload ratings. The relation between individual differences in multiple-task performance, subjective estimates of workload, information processing abilities, and the Type A personality trait were examined.

  14. Classification of voice disorder in children with cochlear implantation and hearing aid using multiple classifier fusion

    Tayarani Hamid

    2011-01-01

    Full Text Available Abstract Background Speech production and speech phonetic features gradually improve in children by obtaining audio feedback after cochlear implantation or using hearing aids. The aim of this study was to develop and evaluate automated classification of voice disorder in children with cochlear implantation and hearing aids. Methods We considered 4 disorder categories in children's voice using the following definitions: Level_1: Children who produce spontaneous phonation and use words spontaneously and imitatively. Level_2: Children, who produce spontaneous phonation, use words spontaneously and make short sentences imitatively. Level_3: Children, who produce spontaneous phonations, use words and arbitrary sentences spontaneously. Level_4: Normal children without any hearing loss background. Thirty Persian children participated in the study, including six children in each level from one to three and 12 children in level four. Voice samples of five isolated Persian words "mashin", "mar", "moosh", "gav" and "mouz" were analyzed. Four levels of the voice quality were considered, the higher the level the less significant the speech disorder. "Frame-based" and "word-based" features were extracted from voice signals. The frame-based features include intensity, fundamental frequency, formants, nasality and approximate entropy and word-based features include phase space features and wavelet coefficients. For frame-based features, hidden Markov models were used as classifiers and for word-based features, neural network was used. Results After Classifiers fusion with three methods: Majority Voting Rule, Linear Combination and Stacked fusion, the best classification rates were obtained using frame-based and word-based features with MVR rule (level 1:100%, level 2: 93.75%, level 3: 100%, level 4: 94%. Conclusions Result of this study may help speech pathologists follow up voice disorder recovery in children with cochlear implantation or hearing aid who are

  15. Variable precision rough set for multiple decision attribute analysis

    Lai; Kin; Keung

    2008-01-01

    A variable precision rough set (VPRS) model is used to solve the multi-attribute decision analysis (MADA) problem with multiple conflicting decision attributes and multiple condition attributes. By introducing confidence measures and a β-reduct, the VPRS model can rationally solve the conflicting decision analysis problem with multiple decision attributes and multiple condition attributes. For illustration, a medical diagnosis example is utilized to show the feasibility of the VPRS model in solving the MADA...

  16. Prediction of customer behaviour analysis using classification algorithms

    Raju, Siva Subramanian; Dhandayudam, Prabha

    2018-04-01

    Customer Relationship management plays a crucial role in analyzing of customer behavior patterns and their values with an enterprise. Analyzing of customer data can be efficient performed using various data mining techniques, with the goal of developing business strategies and to enhance the business. In this paper, three classification models (NB, J48, and MLPNN) are studied and evaluated for our experimental purpose. The performance measures of the three classifications are compared using three different parameters (accuracy, sensitivity, specificity) and experimental results expose J48 algorithm has better accuracy with compare to NB and MLPNN algorithm.

  17. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients

    Broyl, Annemiek; Hose, Dirk; Lokhorst, Henk; de Knegt, Yvonne; Peeters, Justine; Jauch, Anna; Bertsch, Uta; Buijs, Arjan; Stevens-Kroef, Marian; Beverloo, H. Berna; Vellenga, Edo; Zweegman, Sonja; Kersten, Marie-Josée; van der Holt, Bronno; el Jarari, Laila; Mulligan, George; Goldschmidt, Hartmut; van Duin, Mark; Sonneveld, Pieter

    2010-01-01

    To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138(+) plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6

  18. Molecular sub-classification of renal epithelial tumors using meta-analysis of gene expression microarrays.

    Thomas Sanford

    Full Text Available To evaluate the accuracy of the sub-classification of renal cortical neoplasms using molecular signatures.A search of publicly available databases was performed to identify microarray datasets with multiple histologic sub-types of renal cortical neoplasms. Meta-analytic techniques were utilized to identify differentially expressed genes for each histologic subtype. The lists of genes obtained from the meta-analysis were used to create predictive signatures through the use of a pair-based method. These signatures were organized into an algorithm to sub-classify renal neoplasms. The use of these signatures according to our algorithm was validated on several independent datasets.We identified three Gene Expression Omnibus datasets that fit our criteria to develop a training set. All of the datasets in our study utilized the Affymetrix platform. The final training dataset included 149 samples represented by the four most common histologic subtypes of renal cortical neoplasms: 69 clear cell, 41 papillary, 16 chromophobe, and 23 oncocytomas. When validation of our signatures was performed on external datasets, we were able to correctly classify 68 of the 72 samples (94%. The correct classification by subtype was 19/20 (95% for clear cell, 14/14 (100% for papillary, 17/19 (89% for chromophobe, 18/19 (95% for oncocytomas.Through the use of meta-analytic techniques, we were able to create an algorithm that sub-classified renal neoplasms on a molecular level with 94% accuracy across multiple independent datasets. This algorithm may aid in selecting molecular therapies and may improve the accuracy of subtyping of renal cortical tumors.

  19. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning.

    Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui

    2015-10-30

    Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Analysis and application of classification methods of complex carbonate reservoirs

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  1. Bladder cancer: Analysis of the 2004 WHO classification in ...

    Objectives: Bladder cancer (BCA) is aworldwide disease and shows a wide range of geographical variation. The aim of this study is to analyze the prevalence of schistosomal and non-schistosomal associated BCA as well as compare our findings with the 2004 WHO consensus classification of urothelial neoplasms and ...

  2. An analysis of network traffic classification for botnet detection

    Stevanovic, Matija; Pedersen, Jens Myrup

    2015-01-01

    of detecting botnet network traffic using three methods that target protocols widely considered as the main carriers of botnet Command and Control (C&C) and attack traffic, i.e. TCP, UDP and DNS. We propose three traffic classification methods based on capable Random Forests classifier. The proposed methods...

  3. TESTING THE GENERALIZATION EFFICIENCY OF OIL SLICK CLASSIFICATION ALGORITHM USING MULTIPLE SAR DATA FOR DEEPWATER HORIZON OIL SPILL

    C. Ozkan

    2012-07-01

    Full Text Available Marine oil spills due to releases of crude oil from tankers, offshore platforms, drilling rigs and wells, etc. are seriously affecting the fragile marine and coastal ecosystem and cause political and environmental concern. A catastrophic explosion and subsequent fire in the Deepwater Horizon oil platform caused the platform to burn and sink, and oil leaked continuously between April 20th and July 15th of 2010, releasing about 780,000 m3 of crude oil into the Gulf of Mexico. Today, space-borne SAR sensors are extensively used for the detection of oil spills in the marine environment, as they are independent from sun light, not affected by cloudiness, and more cost-effective than air patrolling due to covering large areas. In this study, generalization extent of an object based classification algorithm was tested for oil spill detection using multiple SAR imagery data. Among many geometrical, physical and textural features, some more distinctive ones were selected to distinguish oil and look alike objects from each others. The tested classifier was constructed from a Multilayer Perception Artificial Neural Network trained by ABC, LM and BP optimization algorithms. The training data to train the classifier were constituted from SAR data consisting of oil spill originated from Lebanon in 2007. The classifier was then applied to the Deepwater Horizon oil spill data in the Gulf of Mexico on RADARSAT-2 and ALOS PALSAR images to demonstrate the generalization efficiency of oil slick classification algorithm.

  4. DOA Estimation of Low Altitude Target Based on Adaptive Step Glowworm Swarm Optimization-multiple Signal Classification Algorithm

    Zhou Hao

    2015-06-01

    Full Text Available The traditional MUltiple SIgnal Classification (MUSIC algorithm requires significant computational effort and can not be employed for the Direction Of Arrival (DOA estimation of targets in a low-altitude multipath environment. As such, a novel MUSIC approach is proposed on the basis of the algorithm of Adaptive Step Glowworm Swarm Optimization (ASGSO. The virtual spatial smoothing of the matrix formed by each snapshot is used to realize the decorrelation of the multipath signal and the establishment of a fullorder correlation matrix. ASGSO optimizes the function and estimates the elevation of the target. The simulation results suggest that the proposed method can overcome the low altitude multipath effect and estimate the DOA of target readily and precisely without radar effective aperture loss.

  5. Classification of Multichannel ECG Signals Using a Cross-Distance Analysis

    Shahram, Morteza

    2001-01-01

    This paper presents a multi-stage algorithm for multi-channel ECG beat classification into normal and abnormal categories using a sequential beat clustering and a cross- distance analysis algorithm...

  6. Toward genetics-based virus taxonomy: comparative analysis of a genetics-based classification and the taxonomy of picornaviruses.

    Lauber, Chris; Gorbalenya, Alexander E

    2012-04-01

    Virus taxonomy has received little attention from the research community despite its broad relevance. In an accompanying paper (C. Lauber and A. E. Gorbalenya, J. Virol. 86:3890-3904, 2012), we have introduced a quantitative approach to hierarchically classify viruses of a family using pairwise evolutionary distances (PEDs) as a measure of genetic divergence. When applied to the six most conserved proteins of the Picornaviridae, it clustered 1,234 genome sequences in groups at three hierarchical levels (to which we refer as the "GENETIC classification"). In this study, we compare the GENETIC classification with the expert-based picornavirus taxonomy and outline differences in the underlying frameworks regarding the relation of virus groups and genetic diversity that represent, respectively, the structure and content of a classification. To facilitate the analysis, we introduce two novel diagrams. The first connects the genetic diversity of taxa to both the PED distribution and the phylogeny of picornaviruses. The second depicts a classification and the accommodated genetic diversity in a standardized manner. Generally, we found striking agreement between the two classifications on species and genus taxa. A few disagreements concern the species Human rhinovirus A and Human rhinovirus C and the genus Aphthovirus, which were split in the GENETIC classification. Furthermore, we propose a new supergenus level and universal, level-specific PED thresholds, not reached yet by many taxa. Since the species threshold is approached mostly by taxa with large sampling sizes and those infecting multiple hosts, it may represent an upper limit on divergence, beyond which homologous recombination in the six most conserved genes between two picornaviruses might not give viable progeny.

  7. Page Layout Analysis of the Document Image Based on the Region Classification in a Decision Hierarchical Structure

    Hossein Pourghassem

    2010-10-01

    Full Text Available The conversion of document image to its electronic version is a very important problem in the saving, searching and retrieval application in the official automation system. For this purpose, analysis of the document image is necessary. In this paper, a hierarchical classification structure based on a two-stage segmentation algorithm is proposed. In this structure, image is segmented using the proposed two-stage segmentation algorithm. Then, the type of the image regions such as document and non-document image is determined using multiple classifiers in the hierarchical classification structure. The proposed segmentation algorithm uses two algorithms based on wavelet transform and thresholding. Texture features such as correlation, homogeneity and entropy that extracted from co-occurrenc matrix and also two new features based on wavelet transform are used to classifiy and lable the regions of the image. The hierarchical classifier is consisted of two Multilayer Perceptron (MLP classifiers and a Support Vector Machine (SVM classifier. The proposed algorithm is evaluated on a database consisting of document and non-document images that provides from Internet. The experimental results show the efficiency of the proposed approach in the region segmentation and classification. The proposed algorithm provides accuracy rate of 97.5% on classification of the regions.

  8. Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground

    Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.

  9. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels.

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Classification analysis of emotional appeals on sample Czech television commercials

    Káčerková, Radka

    2013-01-01

    Abstract: The work deals with the possibilities of using emotional appeals in advertising. The main goal was classification and definition of emotions and emotional appeals with regard to marketing. The work focused on emotional appeals in Czech TV adverts and found out the way how emotional appeals are used in these adverts. Research question used in this work concerned the problem of which emmotional appeals are in adverts the most. Research sample consisting of 150 TV adverts was divided i...

  11. Image Analysis and Classification Based on Soil Strength

    2016-08-01

    Impact Hammer, which is light, easy to operate, and cost effective . The Clegg Impact Hammer measures stiffness of the soil surface by drop- ping a... effect on out-of-scene classifications. More statistical analy- sis should, however, be done to compare the measured field spectra, the WV2 training...DISCLAIMER: The contents of this report are not to be used for advertising , publication, or promotional purposes. Ci- tation of trade names does not

  12. A Pruning Neural Network Model in Credit Classification Analysis

    Yajiao Tang

    2018-01-01

    Full Text Available Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency.

  13. Event Classification using Concepts

    Boer, M.H.T. de; Schutte, K.; Kraaij, W.

    2013-01-01

    The semantic gap is one of the challenges in the GOOSE project. In this paper a Semantic Event Classification (SEC) system is proposed as an initial step in tackling the semantic gap challenge in the GOOSE project. This system uses semantic text analysis, multiple feature detectors using the BoW

  14. Association analysis of multiple traits by an approach of combining ...

    Lili Chen

    diseases. Joint analysis of multiple traits can increase statistical power of association analysis and uncover the underlying genetic ... genthaler and Thilly 2007), the combined multivariate and ... Because of using reverse regression model, our.

  15. Simultaneous Two-Way Clustering of Multiple Correspondence Analysis

    Hwang, Heungsun; Dillon, William R.

    2010-01-01

    A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which "k"-means is…

  16. Spacecraft Multiple Array Communication System Performance Analysis

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  17. Digitisation of films and texture analysis for digital classification of pulmonary opacities

    Desaga, J.F.; Dengler, J.; Wolf, T.; Engelmann, U.; Scheppelmann, D.; Meinzer, H.P.

    1988-01-01

    The study aimed at evaluating the effect of different methods of digitisation of radiographic films on the digital classification of pulmonary opacities. Test sets from the standard of the International Labour Office (ILO) Classification of Radiographs of Pneumoconiosis were prepared by film digitsation using a scanning microdensitometer or a video digitiser based on a personal computer equipped with a real time digitiser board and a vidicon or a Charge Coupled Device (CCD) camera. Seven different algorithms were used for texture analysis resulting in 16 texture parameters for each region. All methods used for texture analysis were independent of the mean grey value level and the size of the image analysed. Classification was performed by discriminant analysis using the classes from the ILO classification. A hit ratio of at least 85% was achieved for a digitisation by scanner digitisation or the vidicon, while the corresponding results of the CCD camera were significantly less good. Classification by texture analysis of opacities of chest X-rays of pneumoconiosis digitised by a personal computer based video digitiser and a vidicon are of equal quality compared to digitisation by a scanning microdensitometer. Correct classification of 90% was achieved via the described statistical approach. (orig.) [de

  18. An Analysis of Social Class Classification Based on Linguistic Variables

    QU Xia-sha

    2016-01-01

    Since language is an influential tool in social interaction, the relationship of speech and social factors, such as social class, gender, even age is worth studying. People employ different linguistic variables to imply their social class, status and iden-tity in the social interaction. Thus the linguistic variation involves vocabulary, sounds, grammatical constructions, dialects and so on. As a result, a classification of social class draws people’s attention. Linguistic variable in speech interactions indicate the social relationship between people. This paper attempts to illustrate three main linguistic variables which influence the social class, and further sociolinguistic studies need to be more concerned about.

  19. Chemometrics Methods for Specificity, Authenticity and Traceability Analysis of Olive Oils: Principles, Classifications and Applications

    Habib Messai

    2016-11-01

    Full Text Available Background. Olive oils (OOs show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends’ preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i characterization by specific markers; (ii authentication by fingerprint patterns; and (iii monitoring by traceability analysis. Methods. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. Results. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Conclusion. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors.

  20. Chemometrics Methods for Specificity, Authenticity and Traceability Analysis of Olive Oils: Principles, Classifications and Applications

    Messai, Habib; Farman, Muhammad; Sarraj-Laabidi, Abir; Hammami-Semmar, Asma; Semmar, Nabil

    2016-01-01

    Background. Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends’ preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis. Methods. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. Results. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Conclusion. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors. PMID:28231172

  1. Seismic analysis of piping systems subjected to multiple support excitations

    Sundararajan, C.; Vaish, A.K.; Slagis, G.C.

    1981-01-01

    The paper presents the results of a comparative study between the multiple response spectrum method and the time-history method for the seismic analysis of nuclear piping systems subjected to different excitation at different supports or support groups. First, the necessary equations for the above analysis procedures are derived. Then, three actual nuclear piping systems subjected to single and multiple excitations are analyzed by the different methods, and extensive comparisons of the results (stresses) are made. Based on the results, it is concluded that the multiple response spectrum analysis gives acceptable results as compared to the ''exact'', but much more costly, time-history analysis. 6 refs

  2. Global terrain classification using Multiple-Error-Removed Improved-Terrain (MERIT) to address susceptibility of landslides and other geohazards

    Iwahashi, J.; Yamazaki, D.; Matsuoka, M.; Thamarux, P.; Herrick, J.; Yong, A.; Mital, U.

    2017-12-01

    A seamless model of landform classifications with regional accuracy will be a powerful platform for geophysical studies that forecast geologic hazards. Spatial variability as a function of landform on a global scale was captured in the automated classifications of Iwahashi and Pike (2007) and additional developments are presented here that incorporate more accurate depictions using higher-resolution elevation data than the original 1-km scale Shuttle Radar Topography Mission digital elevation model (DEM). We create polygon-based terrain classifications globally by using the 280-m DEM interpolated from the Multi-Error-Removed Improved-Terrain DEM (MERIT; Yamazaki et al., 2017). The multi-scale pixel-image analysis method, known as Multi-resolution Segmentation (Baatz and Schäpe, 2000), is first used to classify the terrains based on geometric signatures (slope and local convexity) calculated from the 280-m DEM. Next, we apply the machine learning method of "k-means clustering" to prepare the polygon-based classification at the globe-scale using slope, local convexity and surface texture. We then group the divisions with similar properties by hierarchical clustering and other statistical analyses using geological and geomorphological data of the area where landslides and earthquakes are frequent (e.g. Japan and California). We find the 280-m DEM resolution is only partially sufficient for classifying plains. We nevertheless observe that the categories correspond to reported landslide and liquefaction features at the global scale, suggesting that our model is an appropriate platform to forecast ground failure. To predict seismic amplification, we estimate site conditions using the time-averaged shear-wave velocity in the upper 30-m (VS30) measurements compiled by Yong et al. (2016) and the terrain model developed by Yong (2016; Y16). We plan to test our method on finer resolution DEMs and report our findings to obtain a more globally consistent terrain model as there

  3. A comparison of autonomous techniques for multispectral image analysis and classification

    Valdiviezo-N., Juan C.; Urcid, Gonzalo; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso

    2012-10-01

    Multispectral imaging has given place to important applications related to classification and identification of objects from a scene. Because of multispectral instruments can be used to estimate the reflectance of materials in the scene, these techniques constitute fundamental tools for materials analysis and quality control. During the last years, a variety of algorithms has been developed to work with multispectral data, whose main purpose has been to perform the correct classification of the objects in the scene. The present study introduces a brief review of some classical as well as a novel technique that have been used for such purposes. The use of principal component analysis and K-means clustering techniques as important classification algorithms is here discussed. Moreover, a recent method based on the min-W and max-M lattice auto-associative memories, that was proposed for endmember determination in hyperspectral imagery, is introduced as a classification method. Besides a discussion of their mathematical foundation, we emphasize their main characteristics and the results achieved for two exemplar images conformed by objects similar in appearance, but spectrally different. The classification results state that the first components computed from principal component analysis can be used to highlight areas with different spectral characteristics. In addition, the use of lattice auto-associative memories provides good results for materials classification even in the cases where some spectral similarities appears in their spectral responses.

  4. Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles.

    Tariq Ahmad

    Full Text Available Classification of acute decompensated heart failure (ADHF is based on subjective criteria that crudely capture disease heterogeneity. Improved phenotyping of the syndrome may help improve therapeutic strategies.To derive cluster analysis-based groupings for patients hospitalized with ADHF, and compare their prognostic performance to hemodynamic classifications derived at the bedside.We performed a cluster analysis on baseline clinical variables and PAC measurements of 172 ADHF patients from the ESCAPE trial. Employing regression techniques, we examined associations between clusters and clinically determined hemodynamic profiles (warm/cold/wet/dry. We assessed association with clinical outcomes using Cox proportional hazards models. Likelihood ratio tests were used to compare the prognostic value of cluster data to that of hemodynamic data.We identified four advanced HF clusters: 1 male Caucasians with ischemic cardiomyopathy, multiple comorbidities, lowest B-type natriuretic peptide (BNP levels; 2 females with non-ischemic cardiomyopathy, few comorbidities, most favorable hemodynamics; 3 young African American males with non-ischemic cardiomyopathy, most adverse hemodynamics, advanced disease; and 4 older Caucasians with ischemic cardiomyopathy, concomitant renal insufficiency, highest BNP levels. There was no association between clusters and bedside-derived hemodynamic profiles (p = 0.70. For all adverse clinical outcomes, Cluster 4 had the highest risk, and Cluster 2, the lowest. Compared to Cluster 4, Clusters 1-3 had 45-70% lower risk of all-cause mortality. Clusters were significantly associated with clinical outcomes, whereas hemodynamic profiles were not.By clustering patients with similar objective variables, we identified four clinically relevant phenotypes of ADHF patients, with no discernable relationship to hemodynamic profiles, but distinct associations with adverse outcomes. Our analysis suggests that ADHF classification using

  5. A deviation based assessment methodology for multiple machine health patterns classification and fault detection

    Jia, Xiaodong; Jin, Chao; Buzza, Matt; Di, Yuan; Siegel, David; Lee, Jay

    2018-01-01

    Successful applications of Diffusion Map (DM) in machine failure detection and diagnosis have been reported in several recent studies. DM provides an efficient way to visualize the high-dimensional, complex and nonlinear machine data, and thus suggests more knowledge about the machine under monitoring. In this paper, a DM based methodology named as DM-EVD is proposed for machine degradation assessment, abnormality detection and diagnosis in an online fashion. Several limitations and challenges of using DM for machine health monitoring have been analyzed and addressed. Based on the proposed DM-EVD, a deviation based methodology is then proposed to include more dimension reduction methods. In this work, the incorporation of Laplacian Eigen-map and Principal Component Analysis (PCA) are explored, and the latter algorithm is named as PCA-Dev and is validated in the case study. To show the successful application of the proposed methodology, case studies from diverse fields are presented and investigated in this work. Improved results are reported by benchmarking with other machine learning algorithms.

  6. Source location in plates based on the multiple sensors array method and wavelet analysis

    Yang, Hong Jun; Shin, Tae Jin; Lee, Sang Kwon

    2014-01-01

    A new method for impact source localization in a plate is proposed based on the multiple signal classification (MUSIC) and wavelet analysis. For source localization, the direction of arrival of the wave caused by an impact on a plate and the distance between impact position and sensor should be estimated. The direction of arrival can be estimated accurately using MUSIC method. The distance can be obtained by using the time delay of arrival and the group velocity of the Lamb wave in a plate. Time delay is experimentally estimated using the continuous wavelet transform for the wave. The elasto dynamic theory is used for the group velocity estimation.

  7. Source location in plates based on the multiple sensors array method and wavelet analysis

    Yang, Hong Jun; Shin, Tae Jin; Lee, Sang Kwon [Inha University, Incheon (Korea, Republic of)

    2014-01-15

    A new method for impact source localization in a plate is proposed based on the multiple signal classification (MUSIC) and wavelet analysis. For source localization, the direction of arrival of the wave caused by an impact on a plate and the distance between impact position and sensor should be estimated. The direction of arrival can be estimated accurately using MUSIC method. The distance can be obtained by using the time delay of arrival and the group velocity of the Lamb wave in a plate. Time delay is experimentally estimated using the continuous wavelet transform for the wave. The elasto dynamic theory is used for the group velocity estimation.

  8. Dynamic Principal Component Analysis with Nonoverlapping Moving Window and Its Applications to Epileptic EEG Classification

    Shengkun Xie

    2014-01-01

    Full Text Available Classification of electroencephalography (EEG is the most useful diagnostic and monitoring procedure for epilepsy study. A reliable algorithm that can be easily implemented is the key to this procedure. In this paper a novel signal feature extraction method based on dynamic principal component analysis and nonoverlapping moving window is proposed. Along with this new technique, two detection methods based on extracted sparse features are applied to deal with signal classification. The obtained results demonstrated that our proposed methodologies are able to differentiate EEGs from controls and interictal for epilepsy diagnosis and to separate EEGs from interictal and ictal for seizure detection. Our approach yields high classification accuracy for both single-channel short-term EEGs and multichannel long-term EEGs. The classification performance of the method is also compared with other state-of-the-art techniques on the same datasets and the effect of signal variability on the presented methods is also studied.

  9. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  10. A History of Cluster Analysis Using the Classification Society's Bibliography Over Four Decades

    Murtagh, Fionn; Kurtz, Michael J.

    2016-04-01

    The Classification Literature Automated Search Service, an annual bibliography based on citation of one or more of a set of around 80 book or journal publications, ran from 1972 to 2012. We analyze here the years 1994 to 2011. The Classification Society's Service, as it was termed, has been produced by the Classification Society. In earlier decades it was distributed as a diskette or CD with the Journal of Classification. Among our findings are the following: an enormous increase in scholarly production post approximately 2000; a very major increase in quantity, coupled with work in different disciplines, from approximately 2004; and a major shift also from cluster analysis in earlier times having mathematics and psychology as disciplines of the journals published in, and affiliations of authors, contrasted with, in more recent times, a "centre of gravity" in management and engineering.

  11. Failure analysis of multiple delaminated composite plates due

    The present work aims at the first ply failure analysis of laminated composite plates with arbitrarily located multiple delaminations subjected to transverse static load as well as impact. The theoretical formulation is based on a simple multiple delamination model. Conventional first order shear deformation is assumed using ...

  12. Using module analysis for multiple choice responses

    Brewe, Eric; Bruun, Jesper; Bearden, Ian

    2016-01-01

    We describe a methodology for carrying out a network analysis of Force Concept Inventory (FCI) responses that aims to identify communities of incorrect responses. This method first treats FCI responses as a bipartite, student X response, network. We then use Locally Adaptive Network Sparsificatio...

  13. Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification

    Norbert Pfeifer

    2008-08-01

    Full Text Available Airborne laser scanning (ALS is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (> 20 echoes/m2 and additional classification variables from full-waveform (FWF ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original

  14. Online Learning for Classification of Alzheimer Disease based on Cortical Thickness and Hippocampal Shape Analysis.

    Lee, Ga-Young; Kim, Jeonghun; Kim, Ju Han; Kim, Kiwoong; Seong, Joon-Kyung

    2014-01-01

    Mobile healthcare applications are becoming a growing trend. Also, the prevalence of dementia in modern society is showing a steady growing trend. Among degenerative brain diseases that cause dementia, Alzheimer disease (AD) is the most common. The purpose of this study was to identify AD patients using magnetic resonance imaging in the mobile environment. We propose an incremental classification for mobile healthcare systems. Our classification method is based on incremental learning for AD diagnosis and AD prediction using the cortical thickness data and hippocampus shape. We constructed a classifier based on principal component analysis and linear discriminant analysis. We performed initial learning and mobile subject classification. Initial learning is the group learning part in our server. Our smartphone agent implements the mobile classification and shows various results. With use of cortical thickness data analysis alone, the discrimination accuracy was 87.33% (sensitivity 96.49% and specificity 64.33%). When cortical thickness data and hippocampal shape were analyzed together, the achieved accuracy was 87.52% (sensitivity 96.79% and specificity 63.24%). In this paper, we presented a classification method based on online learning for AD diagnosis by employing both cortical thickness data and hippocampal shape analysis data. Our method was implemented on smartphone devices and discriminated AD patients for normal group.

  15. Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification.

    Wen, Zaidao; Hou, Biao; Jiao, Licheng

    2017-05-03

    Linear synthesis model based dictionary learning framework has achieved remarkable performances in image classification in the last decade. Behaved as a generative feature model, it however suffers from some intrinsic deficiencies. In this paper, we propose a novel parametric nonlinear analysis cosparse model (NACM) with which a unique feature vector will be much more efficiently extracted. Additionally, we derive a deep insight to demonstrate that NACM is capable of simultaneously learning the task adapted feature transformation and regularization to encode our preferences, domain prior knowledge and task oriented supervised information into the features. The proposed NACM is devoted to the classification task as a discriminative feature model and yield a novel discriminative nonlinear analysis operator learning framework (DNAOL). The theoretical analysis and experimental performances clearly demonstrate that DNAOL will not only achieve the better or at least competitive classification accuracies than the state-of-the-art algorithms but it can also dramatically reduce the time complexities in both training and testing phases.

  16. Classification in hyperspectral images by independent component analysis, segmented cross-validation and uncertainty estimates

    Beatriz Galindo-Prieto

    2018-02-01

    Full Text Available Independent component analysis combined with various strategies for cross-validation, uncertainty estimates by jack-knifing and critical Hotelling’s T2 limits estimation, proposed in this paper, is used for classification purposes in hyperspectral images. To the best of our knowledge, the combined approach of methods used in this paper has not been previously applied to hyperspectral imaging analysis for interpretation and classification in the literature. The data analysis performed here aims to distinguish between four different types of plastics, some of them containing brominated flame retardants, from their near infrared hyperspectral images. The results showed that the method approach used here can be successfully used for unsupervised classification. A comparison of validation approaches, especially leave-one-out cross-validation and regions of interest scheme validation is also evaluated.

  17. Dimensions of cultural consumption among tourists : Multiple correspondence analysis

    Richards, G.W.; van der Ark, L.A.

    2013-01-01

    The cultural tourism market has diversified and fragmented into many different niches. Previous attempts to segment cultural tourists have been largely unidimensional, failing to capture the complexity of cultural production and consumption. We employ multiple correspondence analysis to visualize

  18. Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region

    Manier, Daniel J.; Rover, Jennifer R.

    2018-02-15

    To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for

  19. An Analysis of Machine- and Human-Analytics in Classification.

    Tam, Gary K L; Kothari, Vivek; Chen, Min

    2017-01-01

    In this work, we present a study that traces the technical and cognitive processes in two visual analytics applications to a common theoretic model of soft knowledge that may be added into a visual analytics process for constructing a decision-tree model. Both case studies involved the development of classification models based on the "bag of features" approach. Both compared a visual analytics approach using parallel coordinates with a machine-learning approach using information theory. Both found that the visual analytics approach had some advantages over the machine learning approach, especially when sparse datasets were used as the ground truth. We examine various possible factors that may have contributed to such advantages, and collect empirical evidence for supporting the observation and reasoning of these factors. We propose an information-theoretic model as a common theoretic basis to explain the phenomena exhibited in these two case studies. Together we provide interconnected empirical and theoretical evidence to support the usefulness of visual analytics.

  20. Approaches to data analysis of multiple-choice questions

    Lin Ding; Robert Beichner

    2009-01-01

    This paper introduces five commonly used approaches to analyzing multiple-choice test data. They are classical test theory, factor analysis, cluster analysis, item response theory, and model analysis. Brief descriptions of the goals and algorithms of these approaches are provided, together with examples illustrating their applications in physics education research. We minimize mathematics, instead placing emphasis on data interpretation using these approaches.

  1. Approaches to Data Analysis of Multiple-Choice Questions

    Ding, Lin; Beichner, Robert

    2009-01-01

    This paper introduces five commonly used approaches to analyzing multiple-choice test data. They are classical test theory, factor analysis, cluster analysis, item response theory, and model analysis. Brief descriptions of the goals and algorithms of these approaches are provided, together with examples illustrating their applications in physics…

  2. Reproducible statistical analysis with multiple languages

    Lenth, Russell; Højsgaard, Søren

    2011-01-01

    This paper describes the system for making reproducible statistical analyses. differs from other systems for reproducible analysis in several ways. The two main differences are: (1) Several statistics programs can be in used in the same document. (2) Documents can be prepared using OpenOffice or ......Office or \\LaTeX. The main part of this paper is an example showing how to use and together in an OpenOffice text document. The paper also contains some practical considerations on the use of literate programming in statistics....

  3. Multi-spectral Image Analysis for Astaxanthin Coating Classification

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2011-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. In this study multi-spectral image analysis of pellets was performed using LDA, QDA, SNV and PCA on pixel level and mean value of pixels...

  4. Cladistic analysis and revised classification of fossil and recent mysticetes

    Steeman, Mette Elstrup

    2007-01-01

    A cladistic analysis that includes representatives of all recent genera of mysticetes and several fossil species that were previously referred to the family Cetotheriidae, with tooth-bearing mysticetes and an archaeocete as an outgroup, is presented here. The result of this analysis forms the base...

  5. Improving discrimination of savanna tree species through a multiple endmember spectral-angle-mapper (SAM) approach: canopy level analysis

    Cho, Moses A

    2010-11-01

    Full Text Available sensing. The objectives of this paper were to (i) evaluate the classification performance of a multiple-endmember spectral angle mapper (SAM) classification approach (conventionally known as the nearest neighbour) in discriminating ten common African...

  6. Optimization of a Non-traditional Unsupervised Classification Approach for Land Cover Analysis

    Boyd, R. K.; Brumfield, J. O.; Campbell, W. J.

    1982-01-01

    The conditions under which a hybrid of clustering and canonical analysis for image classification produce optimum results were analyzed. The approach involves generation of classes by clustering for input to canonical analysis. The importance of the number of clusters input and the effect of other parameters of the clustering algorithm (ISOCLS) were examined. The approach derives its final result by clustering the canonically transformed data. Therefore the importance of number of clusters requested in this final stage was also examined. The effect of these variables were studied in terms of the average separability (as measured by transformed divergence) of the final clusters, the transformation matrices resulting from different numbers of input classes, and the accuracy of the final classifications. The research was performed with LANDSAT MSS data over the Hazleton/Berwick Pennsylvania area. Final classifications were compared pixel by pixel with an existing geographic information system to provide an indication of their accuracy.

  7. Estimating Classification Errors under Edit Restrictions in Composite Survey-Register Data Using Multiple Imputation Latent Class Modelling (MILC)

    Boeschoten, Laura; Oberski, Daniel; De Waal, Ton

    2017-01-01

    Both registers and surveys can contain classification errors. These errors can be estimated by making use of a composite data set. We propose a new method based on latent class modelling to estimate the number of classification errors across several sources while taking into account impossible

  8. Integrating cross-scale analysis in the spatial and temporal domains for classification of behavioral movement

    Ali Soleymani

    2014-06-01

    Full Text Available Since various behavioral movement patterns are likely to be valid within different, unique ranges of spatial and temporal scales (e.g., instantaneous, diurnal, or seasonal with the corresponding spatial extents, a cross-scale approach is needed for accurate classification of behaviors expressed in movement. Here, we introduce a methodology for the characterization and classification of behavioral movement data that relies on computing and analyzing movement features jointly in both the spatial and temporal domains. The proposed methodology consists of three stages. In the first stage, focusing on the spatial domain, the underlying movement space is partitioned into several zonings that correspond to different spatial scales, and features related to movement are computed for each partitioning level. In the second stage, concentrating on the temporal domain, several movement parameters are computed from trajectories across a series of temporal windows of increasing sizes, yielding another set of input features for the classification. For both the spatial and the temporal domains, the ``reliable scale'' is determined by an automated procedure. This is the scale at which the best classification accuracy is achieved, using only spatial or temporal input features, respectively. The third stage takes the measures from the spatial and temporal domains of movement, computed at the corresponding reliable scales, as input features for behavioral classification. With a feature selection procedure, the most relevant features contributing to known behavioral states are extracted and used to learn a classification model. The potential of the proposed approach is demonstrated on a dataset of adult zebrafish (Danio rerio swimming movements in testing tanks, following exposure to different drug treatments. Our results show that behavioral classification accuracy greatly increases when firstly cross-scale analysis is used to determine the best analysis scale, and

  9. A multiple kernel classification approach based on a Quadratic Successive Geometric Segmentation methodology with a fault diagnosis case.

    Honório, Leonardo M; Barbosa, Daniele A; Oliveira, Edimar J; Garcia, Paulo A Nepomuceno; Santos, Murillo F

    2018-03-01

    This work presents a new approach for solving classification and learning problems. The Successive Geometric Segmentation technique is applied to encapsulate large datasets by using a series of Oriented Bounding Hyper Box (OBHBs). Each OBHB is obtained through linear separation analysis and each one represents a specific region in a pattern's solution space. Also, each OBHB can be seen as a data abstraction layer and be considered as an individual Kernel. Thus, it is possible by applying a quadratic discriminant function, to assemble a set of nonlinear surfaces separating each desirable pattern. This approach allows working with large datasets using high speed linear analysis tools and yet providing a very accurate non-linear classifier as final result. The methodology was tested using the UCI Machine Learning repository and a Power Transformer Fault Diagnosis real scenario problem. The results were compared with different approaches provided by literature and, finally, the potential and further applications of the methodology were also discussed. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Multiple endmember spectral-angle-mapper (SAM) analysis improves discrimination of Savanna tree species

    Cho, Moses A

    2009-08-01

    Full Text Available of this paper was to evaluate the classification performance of a multiple-endmember spectral angle mapper (SAM) classification approach in discriminating seven common African savanna tree species and to compare the results with the traditional SAM classifier...

  11. Analysis of Landsat-4 Thematic Mapper data for classification of forest stands in Baldwin County, Alabama

    Hill, C. L.

    1984-01-01

    A computer-implemented classification has been derived from Landsat-4 Thematic Mapper data acquired over Baldwin County, Alabama on January 15, 1983. One set of spectral signatures was developed from the data by utilizing a 3x3 pixel sliding window approach. An analysis of the classification produced from this technique identified forested areas. Additional information regarding only the forested areas. Additional information regarding only the forested areas was extracted by employing a pixel-by-pixel signature development program which derived spectral statistics only for pixels within the forested land covers. The spectral statistics from both approaches were integrated and the data classified. This classification was evaluated by comparing the spectral classes produced from the data against corresponding ground verification polygons. This iterative data analysis technique resulted in an overall classification accuracy of 88.4 percent correct for slash pine, young pine, loblolly pine, natural pine, and mixed hardwood-pine. An accuracy assessment matrix has been produced for the classification.

  12. A Comprehensive Classification and Evolutionary Analysis of Plant Homeobox Genes

    Mukherjee, Krishanu; Brocchieri, Luciano; B?rglin, Thomas R.

    2009-01-01

    The full complement of homeobox transcription factor sequences, including genes and pseudogenes, was determined from the analysis of 10 complete genomes from flowering plants, moss, Selaginella, unicellular green algae, and red algae. Our exhaustive genome-wide searches resulted in the discovery in each class of a greater number of homeobox genes than previously reported. All homeobox genes can be unambiguously classified by sequence evolutionary analysis into 14 distinct classes also charact...

  13. Effectiveness of Partition and Graph Theoretic Clustering Algorithms for Multiple Source Partial Discharge Pattern Classification Using Probabilistic Neural Network and Its Adaptive Version: A Critique Based on Experimental Studies

    S. Venkatesh

    2012-01-01

    Full Text Available Partial discharge (PD is a major cause of failure of power apparatus and hence its measurement and analysis have emerged as a vital field in assessing the condition of the insulation system. Several efforts have been undertaken by researchers to classify PD pulses utilizing artificial intelligence techniques. Recently, the focus has shifted to the identification of multiple sources of PD since it is often encountered in real-time measurements. Studies have indicated that classification of multi-source PD becomes difficult with the degree of overlap and that several techniques such as mixed Weibull functions, neural networks, and wavelet transformation have been attempted with limited success. Since digital PD acquisition systems record data for a substantial period, the database becomes large, posing considerable difficulties during classification. This research work aims firstly at analyzing aspects concerning classification capability during the discrimination of multisource PD patterns. Secondly, it attempts at extending the previous work of the authors in utilizing the novel approach of probabilistic neural network versions for classifying moderate sets of PD sources to that of large sets. The third focus is on comparing the ability of partition-based algorithms, namely, the labelled (learning vector quantization and unlabelled (K-means versions, with that of a novel hypergraph-based clustering method in providing parsimonious sets of centers during classification.

  14. Multiple scattering problems in heavy ion elastic recoil detection analysis

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    A number of groups use Heavy Ion Elastic Recoil Detection Analysis (HIERDA) to study materials science problems. Nevertheless, there is no standard methodology for the analysis of HIERDA spectra. To overcome this deficiency we have been establishing codes for 2-dimensional data analysis. A major problem involves the effects of multiple and plural scattering which are very significant, even for quite thin (∼100 nm) layers of the very heavy elements. To examine the effects of multiple scattering we have made comparisons between the small-angle model of Sigmund et al. and TRIM calculations. (authors)

  15. Identification, classification and expression pattern analysis of sugarcane cysteine proteinases

    Gustavo Coelho Correa

    2001-12-01

    Full Text Available Cysteine proteases are peptidyl hydrolyses dependent on a cysteine residue at the active center. The physical and chemical properties of cysteine proteases have been extensively characterized, but their precise biological functions have not yet been completely understood, although it is known that they are involved in a number of events such as protein turnover, cancer, germination, programmed cell death and senescence. Protein sequences from different cysteine proteinases, classified as members of the E.C.3.4.22 sub-sub-class, were used to perform a T-BLAST-n search on the Brazilian Sugarcane Expressed Sequence Tags project (SUCEST data bank. Sequence homology was found with 76 cluster sequences that corresponded to possible cysteine proteinases. The alignments of these SUCEST clusters with the sequence of cysteine proteinases of known origins provided important information about the classification and possible function of these sugarcane enzymes. Inferences about the expression pattern of each gene were made by direct correlation with the SUCEST cDNA libraries from which each cluster was derived. Since no previous reports of sugarcane cysteine proteinases genes exists, this study represents a first step in the study of new biochemical, physiological and biotechnological aspects of sugarcane cysteine proteases.Proteinases cisteínicas são peptidil-hidrolases dependentes de um resíduo de cisteína em seu sítio ativo. As propriedades físico-químicas destas proteinases têm sido amplamente caracterizadas, entretanto suas funções biológicas ainda não foram completamente elucidadas. Elas estão envolvidas em um grande número de eventos, tais como: processamento e degradação protéica, câncer, germinação, morte celular programada e processos de senescência. Diferentes proteinases cisteínicas, classificadas pelo Comitê de Nomenclatura da União Internacional de Bioquímica e Biologia Molecular (IUBMB como pertencentes à sub

  16. A study on feature analysis for musical instrument classification.

    Deng, Jeremiah D; Simmermacher, Christian; Cranefield, Stephen

    2008-04-01

    In tackling data mining and pattern recognition tasks, finding a compact but effective set of features has often been found to be a crucial step in the overall problem-solving process. In this paper, we present an empirical study on feature analysis for recognition of classical instrument, using machine learning techniques to select and evaluate features extracted from a number of different feature schemes. It is revealed that there is significant redundancy between and within feature schemes commonly used in practice. Our results suggest that further feature analysis research is necessary in order to optimize feature selection and achieve better results for the instrument recognition problem.

  17. An Addendum to "A New Tool for Climatic Analysis Using Köppen Climate Classification"

    Larson, Paul R.; Lohrengel, C. Frederick, II

    2014-01-01

    The Köppen climatic classification system in a modified format is the most widely applied system in use today. Mapping and analysis of hundreds of arid and semiarid climate stations has made the use of the additional fourth letter in BW/BS climates essential. The addition of "s," "w," or "f" to the standard…

  18. Experiments in Discourse Analysis Impact on Information Classification and Retrieval Algorithms.

    Morato, Jorge; Llorens, J.; Genova, G.; Moreiro, J. A.

    2003-01-01

    Discusses the inclusion of contextual information in indexing and retrieval systems to improve results and the ability to carry out text analysis by means of linguistic knowledge. Presents research that investigated whether discourse variables have an impact on information and retrieval and classification algorithms. (Author/LRW)

  19. Power Load Event Detection and Classification Based on Edge Symbol Analysis and Support Vector Machine

    Lei Jiang

    2012-01-01

    Full Text Available Energy signature analysis of power appliance is the core of nonintrusive load monitoring (NILM where the detailed data of the appliances used in houses are obtained by analyzing changes in the voltage and current. This paper focuses on developing an automatic power load event detection and appliance classification based on machine learning. In power load event detection, the paper presents a new transient detection algorithm. By turn-on and turn-off transient waveforms analysis, it can accurately detect the edge point when a device is switched on or switched off. The proposed load classification technique can identify different power appliances with improved recognition accuracy and computational speed. The load classification method is composed of two processes including frequency feature analysis and support vector machine. The experimental results indicated that the incorporation of the new edge detection and turn-on and turn-off transient signature analysis into NILM revealed more information than traditional NILM methods. The load classification method has achieved more than ninety percent recognition rate.

  20. Refining the Classification of Children with Selective Mutism: A Latent Profile Analysis

    Cohan, Sharon L.; Chavira, Denise A.; Shipon-Blum, Elisa; Hitchcock, Carla; Roesch, Scott C.; Stein, Murray B.

    2008-01-01

    The goal of this study was to develop an empirically derived classification system for selective mutism (SM) using parent-report measures of social anxiety, behavior problems, and communication delays. The sample consisted of parents of 130 children (ages 5-12) with SM. Results from latent profile analysis supported a 3-class solution made up of…

  1. Crown-condition classification: a guide to data collection and analysis

    Michael E. Schomaker; Stanley J. Zarnoch; William A. Bechtold; David J. Latelle; William G. Burkman; Susan M. Cox

    2007-01-01

    The Forest Inventory and Analysis (FIA) Program of the Forest Service, U.S. Department of Agriculture, conducts a national inventory of forests across the United States. A systematic subset of permanent inventory plots in 38 States is currently sampled every year for numerous forest health indicators. One of these indicators, crown-condition classification, is designed...

  2. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

    Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

    2016-01-01

    Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

  3. Unsupervised action classification using space-time link analysis

    Liu, Haowei; Feris, Rogerio; Krüger, Volker

    2010-01-01

    In this paper we address the problem of unsupervised discovery of action classes in video data. Different from all existing methods thus far proposed for this task, we present a space-time link analysis approach which matches the performance of traditional unsupervised action categorization metho...

  4. Automation of the Analysis and Classification of the Line Material

    A. A. Machuev

    2011-03-01

    Full Text Available The work is devoted to the automation of the process of the analysis and verification of various formats of data presentation for what the special software is developed. Working out and testing the special software were made on an example of files with the typical expansions which features of structure are known in advance.

  5. Visual Analytics Applied to Image Analysis : From Segmentation to Classification

    Rauber, Paulo

    2017-01-01

    Image analysis is the field of study concerned with extracting information from images. This field is immensely important for commercial and scientific applications, from identifying people in photographs to recognizing diseases in medical images. The goal behind the work presented in this thesis is

  6. Accident analysis. A review of the various accidents classifications

    Martin Martin, L.; Figueras, J.M.

    1982-01-01

    The objective of the accident analysis, in relation with the safety evaluation, environmental impact and emergency planning, should be to identify the total risk to the population and workers from potential accidents in the facility, analizing it over full spectrum of severity. (auth.)

  7. Auditable safety analysis and final hazard classification for Buildings 1310-N and 1314-N

    Kloster, G.L.

    1997-05-01

    This document is a graded auditable safety analysis (ASA) of the deactivation activities planned for the 100-N facility segment comprised of the Building 1310-N pump silo (part of the Liquid Radioactive Waste Treatment Facility) and 1314-N Building (Liquid Waste Disposal Building).The ASA describes the hazards within the facility and evaluates the adequacy of the measures taken to reduce, control, or mitigate the identified hazards. This document also serves as the Final Hazard Classification (FHC) for the 1310-N pump silo and 1314-N Building segment. The FHC is radiological based on the Preliminary Hazard Classification and the total inventory of radioactive and hazardous materials in the segment

  8. A novel scheme for the validation of an automated classification method for epileptic spikes by comparison with multiple observers.

    Sharma, Niraj K; Pedreira, Carlos; Centeno, Maria; Chaudhary, Umair J; Wehner, Tim; França, Lucas G S; Yadee, Tinonkorn; Murta, Teresa; Leite, Marco; Vos, Sjoerd B; Ourselin, Sebastien; Diehl, Beate; Lemieux, Louis

    2017-07-01

    To validate the application of an automated neuronal spike classification algorithm, Wave_clus (WC), on interictal epileptiform discharges (IED) obtained from human intracranial EEG (icEEG) data. Five 10-min segments of icEEG recorded in 5 patients were used. WC and three expert EEG reviewers independently classified one hundred IED events into IED classes or non-IEDs. First, we determined whether WC-human agreement variability falls within inter-reviewer agreement variability by calculating the variation of information for each classifier pair and quantifying the overlap between all WC-reviewer and all reviewer-reviewer pairs. Second, we compared WC and EEG reviewers' spike identification and individual spike class labels visually and quantitatively. The overlap between all WC-human pairs and all human pairs was >80% for 3/5 patients and >58% for the other 2 patients demonstrating WC falling within inter-human variation. The average sensitivity of spike marking for WC was 91% and >87% for all three EEG reviewers. Finally, there was a strong visual and quantitative similarity between WC and EEG reviewers. WC performance is indistinguishable to that of EEG reviewers' suggesting it could be a valid clinical tool for the assessment of IEDs. WC can be used to provide quantitative analysis of epileptic spikes. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. Hazard classification methodology

    Brereton, S.J.

    1996-01-01

    This document outlines the hazard classification methodology used to determine the hazard classification of the NIF LTAB, OAB, and the support facilities on the basis of radionuclides and chemicals. The hazard classification determines the safety analysis requirements for a facility

  10. Socializing the human factors analysis and classification system: incorporating social psychological phenomena into a human factors error classification system.

    Paletz, Susannah B F; Bearman, Christopher; Orasanu, Judith; Holbrook, Jon

    2009-08-01

    The presence of social psychological pressures on pilot decision making was assessed using qualitative analyses of critical incident interviews. Social psychological phenomena have long been known to influence attitudes and behavior but have not been highlighted in accident investigation models. Using a critical incident method, 28 pilots who flew in Alaska were interviewed. The participants were asked to describe a situation involving weather when they were pilot in command and found their skills challenged. They were asked to describe the incident in detail but were not explicitly asked to identify social pressures. Pressures were extracted from transcripts in a bottom-up manner and then clustered into themes. Of the 28 pilots, 16 described social psychological pressures on their decision making, specifically, informational social influence, the foot-in-the-door persuasion technique, normalization of deviance, and impression management and self-consistency motives. We believe accident and incident investigations can benefit from explicit inclusion of common social psychological pressures. We recommend specific ways of incorporating these pressures into theHuman Factors Analysis and Classification System.

  11. General classification and analysis of neutron β-decay experiments

    Gudkov, V.; Greene, G.L.; Calarco, J.R.

    2006-01-01

    A general analysis of the sensitivities of neutron β-decay experiments to manifestations of possible interaction beyond the standard model is carried out. In a consistent fashion, we take into account all known radiative and recoil corrections arising in the standard model. This provides a description of angular correlations in neutron decay in terms of one parameter, which is accurate to the level of ∼10 -5 . Based on this general expression, we present an analysis of the sensitivities to new physics for selected neutron decay experiments. We emphasize that the usual parametrization of experiments in terms of the tree-level coefficients a,A, and B is inadequate when the experimental sensitivities are at the same or higher level relative to the size of the corrections to the tree-level description

  12. Hazard classification and auditable safety analysis for the 1300-N Emergency Dump Basin

    Kretzschmar, S.P.; Larson, A.R.

    1996-06-01

    This document combines the following four analytical functions: (1) hazards baseline of the Emergency Dump Basin (EDB) in the quiescent state; (2) preliminary hazard classification for intrusive activities (i.e., basin stabilization); (3) final hazard classification for intrusive activities; and (4) an auditable safety analysis. This document describes the potential hazards contained within the EDB at the N Reactor complex and the vulnerabilities of those hazards during the quiescent state (when only surveillance and maintenance activities take place) and during basin stabilization activities. This document also identifies the inventory of both radioactive and hazardous material in the EDB. Result is that the final hazard classification for the EDB segment intrusive activities is radiological

  13. Activation analysis and classification to source of samples from the Kimberley Reef Conglomerates

    Rasmussen, S.E.

    1977-01-01

    Three boreholes were drilled in the west, central, and eastern sections of the Durban Roodepoort Deep Mine, and twelve distinct strata were intersected. Twenty-two samples from the three borehole cores were analysed in triplicate for twenty-six elements, and, including standards, a total of 2000 determinations were made. Statistical analysis of the results obtained for twenty-four elements shows a successful back-classification of 98 per cent, whereas, if the conglomerates or quartzites are treated separately, 100 per cent success is obtained. When the present data are used for classification of the samples from the three cores analysed during the first phase of this project, 100 per cent accuracy of classification is achieved by use of only ten selected elements. The objects of this investigation have therefore been met successfully, and extension to further strata and to sampling beyond the confines of the mine is justified [af

  14. Classification of viral zoonosis through receptor pattern analysis.

    Bae, Se-Eun; Son, Hyeon Seok

    2011-04-13

    Viral zoonosis, the transmission of a virus from its primary vertebrate reservoir species to humans, requires ubiquitous cellular proteins known as receptor proteins. Zoonosis can occur not only through direct transmission from vertebrates to humans, but also through intermediate reservoirs or other environmental factors. Viruses can be categorized according to genotype (ssDNA, dsDNA, ssRNA and dsRNA viruses). Among them, the RNA viruses exhibit particularly high mutation rates and are especially problematic for this reason. Most zoonotic viruses are RNA viruses that change their envelope proteins to facilitate binding to various receptors of host species. In this study, we sought to predict zoonotic propensity through the analysis of receptor characteristics. We hypothesized that the major barrier to interspecies virus transmission is that receptor sequences vary among species--in other words, that the specific amino acid sequence of the receptor determines the ability of the viral envelope protein to attach to the cell. We analysed host-cell receptor sequences for their hydrophobicity/hydrophilicity characteristics. We then analysed these properties for similarities among receptors of different species and used a statistical discriminant analysis to predict the likelihood of transmission among species. This study is an attempt to predict zoonosis through simple computational analysis of receptor sequence differences. Our method may be useful in predicting the zoonotic potential of newly discovered viral strains.

  15. Hyperspectral Biofilm Classification Analysis for Carrying Capacity of Migratory Birds in the South Bay Salt Ponds

    Hsu, Wei-Chen; Kuss, Amber Jean; Ketron, Tyler; Nguyen, Andrew; Remar, Alex Covello; Newcomer, Michelle; Fleming, Erich; Debout, Leslie; Debout, Brad; Detweiler, Angela; hide

    2011-01-01

    Tidal marshes are highly productive ecosystems that support migratory birds as roosting and over-wintering habitats on the Pacific Flyway. Microphytobenthos, or more commonly 'biofilms' contribute significantly to the primary productivity of wetland ecosystems, and provide a substantial food source for macroinvertebrates and avian communities. In this study, biofilms were characterized based on taxonomic classification, density differences, and spectral signatures. These techniques were then applied to remotely sensed images to map biofilm densities and distributions in the South Bay Salt Ponds and predict the carrying capacity of these newly restored ponds for migratory birds. The GER-1500 spectroradiometer was used to obtain in situ spectral signatures for each density-class of biofilm. The spectral variation and taxonomic classification between high, medium, and low density biofilm cover types was mapped using in-situ spectral measurements and classification of EO-1 Hyperion and Landsat TM 5 images. Biofilm samples were also collected in the field to perform laboratory analyses including chlorophyll-a, taxonomic classification, and energy content. Comparison of the spectral signatures between the three density groups shows distinct variations useful for classification. Also, analysis of chlorophyll-a concentrations show statistically significant differences between each density group, using the Tukey-Kramer test at an alpha level of 0.05. The potential carrying capacity in South Bay Salt Ponds is estimated to be 250,000 birds.

  16. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    Raja Syamsul Azmir Raja Abdullah

    2016-09-01

    Full Text Available The passive bistatic radar (PBR system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR. The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  17. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  18. Analysis of approaches to classification of forms of non-standard employment

    N. V. Dorokhova

    2017-01-01

    Full Text Available Currently becoming more widespread non-standard forms of employment. If this is not clear approach to the definition and maintenance of non-standard employment. In the article the analysis of diverse interpretations of the concept, on what basis, the author makes a conclusion about the complexity and contradictory nature of precarious employment as an economic category. It examines different approaches to classification of forms of precarious employment. The main forms of precarious employment such as flexible working year, flexible working week, flexible working hours, remote work, employees on call, shift forwarding; Agency employment, self-employment, negotiator, underemployment, over employment, employment on the basis of fixed-term contracts employment based on contract of civil-legal nature, one-time employment, casual employment, temporary employment, secondary employment and part-time. The author’s approach to classification of non-standard forms of employment, based on identifying the impact of atypical employment on the development of human potential. For the purpose of classification of non-standard employment forms from the standpoint of their impact on human development as the criteria of classification proposed in the following: working conditions, wages and social guarantees, possibility of workers ' participation in management, personal development and self-employment stability. Depending on what value each of these criteria, some form of non-standard employment can be attributed to the progressive or regressive. Classification of non-standard forms of employment should be the basis of the state policy of employment management.

  19. A bootstrap based analysis pipeline for efficient classification of phylogenetically related animal miRNAs

    Gu Xun

    2007-03-01

    Full Text Available Abstract Background Phylogenetically related miRNAs (miRNA families convey important information of the function and evolution of miRNAs. Due to the special sequence features of miRNAs, pair-wise sequence identity between miRNA precursors alone is often inadequate for unequivocally judging the phylogenetic relationships between miRNAs. Most of the current methods for miRNA classification rely heavily on manual inspection and lack measurements of the reliability of the results. Results In this study, we designed an analysis pipeline (the Phylogeny-Bootstrap-Cluster (PBC pipeline to identify miRNA families based on branch stability in the bootstrap trees derived from overlapping genome-wide miRNA sequence sets. We tested the PBC analysis pipeline with the miRNAs from six animal species, H. sapiens, M. musculus, G. gallus, D. rerio, D. melanogaster, and C. elegans. The resulting classification was compared with the miRNA families defined in miRBase. The two classifications were largely consistent. Conclusion The PBC analysis pipeline is an efficient method for classifying large numbers of heterogeneous miRNA sequences. It requires minimum human involvement and provides measurements of the reliability of the classification results.

  20. Approaches to data analysis of multiple-choice questions

    Lin Ding

    2009-09-01

    Full Text Available This paper introduces five commonly used approaches to analyzing multiple-choice test data. They are classical test theory, factor analysis, cluster analysis, item response theory, and model analysis. Brief descriptions of the goals and algorithms of these approaches are provided, together with examples illustrating their applications in physics education research. We minimize mathematics, instead placing emphasis on data interpretation using these approaches.

  1. Better and Faster: Knowledge Transfer from Multiple Self-supervised Learning Tasks via Graph Distillation for Video Classification

    Zhang, Chenrui; Peng, Yuxin

    2018-01-01

    Video representation learning is a vital problem for classification task. Recently, a promising unsupervised paradigm termed self-supervised learning has emerged, which explores inherent supervisory signals implied in massive data for feature learning via solving auxiliary tasks. However, existing methods in this regard suffer from two limitations when extended to video classification. First, they focus only on a single task, whereas ignoring complementarity among different task-specific feat...

  2. Survival analysis and classification methods for forest fire size.

    Tremblay, Pier-Olivier; Duchesne, Thierry; Cumming, Steven G

    2018-01-01

    Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at "being held" (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at "being held" exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances.

  3. Survival analysis and classification methods for forest fire size

    2018-01-01

    Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at “being held” (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at “being held” exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances. PMID:29320497

  4. Classification of Phase Transitions by Microcanonical Inflection-Point Analysis

    Qi, Kai; Bachmann, Michael

    2018-05-01

    By means of the principle of minimal sensitivity we generalize the microcanonical inflection-point analysis method by probing derivatives of the microcanonical entropy for signals of transitions in complex systems. A strategy of systematically identifying and locating independent and dependent phase transitions of any order is proposed. The power of the generalized method is demonstrated in applications to the ferromagnetic Ising model and a coarse-grained model for polymer adsorption onto a substrate. The results shed new light on the intrinsic phase structure of systems with cooperative behavior.

  5. Noncoding sequence classification based on wavelet transform analysis: part I

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.

  6. Computer and Internet Addiction: Analysis and Classification of Approaches

    Zaretskaya O.V.

    2017-08-01

    Full Text Available The theoretical analysis of modern research works on the problem of computer and Internet addiction is carried out. The main features of different approaches are outlined. The attempt is made to systematize researches conducted and to classify scientific approaches to the problem of Internet addiction. The author distinguishes nosological, cognitive-behavioral, socio-psychological and dialectical approaches. She justifies the need to use an approach that corresponds to the essence, goals and tasks of social psychology in the field of research as the problem of Internet addiction, and the dependent behavior in general. In the opinion of the author, this dialectical approach integrates the experience of research within the framework of the socio-psychological approach and focuses on the observed inconsistencies in the phenomenon of Internet addiction – the compensatory nature of Internet activity, when people who are interested in the Internet are in a dysfunctional life situation.

  7. Analysis of multiple scattering effects in optical Doppler tomography

    Yura, H.T.; Thrane, L.; Andersen, Peter E.

    2005-01-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where...... multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed...

  8. Analysis and Classification of Acoustic Emission Signals During Wood Drying Using the Principal Component Analysis

    Kang, Ho Yang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Ki Bok [Chungnam National University, Daejeon (Korea, Republic of)

    2003-06-15

    In this study, acoustic emission (AE) signals due to surface cracking and moisture movement in the flat-sawn boards of oak (Quercus Variablilis) during drying under the ambient conditions were analyzed and classified using the principal component analysis. The AE signals corresponding to surface cracking showed higher in peak amplitude and peak frequency, and shorter in rise time than those corresponding to moisture movement. To reduce the multicollinearity among AE features and to extract the significant AE parameters, correlation analysis was performed. Over 99% of the variance of AE parameters could be accounted for by the first to the fourth principal components. The classification feasibility and success rate were investigated in terms of two statistical classifiers having six independent variables (AE parameters) and six principal components. As a result, the statistical classifier having AE parameters showed the success rate of 70.0%. The statistical classifier having principal components showed the success rate of 87.5% which was considerably than that of the statistical classifier having AE parameters

  9. Analysis and Classification of Acoustic Emission Signals During Wood Drying Using the Principal Component Analysis

    Kang, Ho Yang; Kim, Ki Bok

    2003-01-01

    In this study, acoustic emission (AE) signals due to surface cracking and moisture movement in the flat-sawn boards of oak (Quercus Variablilis) during drying under the ambient conditions were analyzed and classified using the principal component analysis. The AE signals corresponding to surface cracking showed higher in peak amplitude and peak frequency, and shorter in rise time than those corresponding to moisture movement. To reduce the multicollinearity among AE features and to extract the significant AE parameters, correlation analysis was performed. Over 99% of the variance of AE parameters could be accounted for by the first to the fourth principal components. The classification feasibility and success rate were investigated in terms of two statistical classifiers having six independent variables (AE parameters) and six principal components. As a result, the statistical classifier having AE parameters showed the success rate of 70.0%. The statistical classifier having principal components showed the success rate of 87.5% which was considerably than that of the statistical classifier having AE parameters

  10. Morphological images analysis and chromosomic aberrations classification based on fuzzy logic

    Souza, Leonardo Peres

    2011-01-01

    This work has implemented a methodology for automation of images analysis of chromosomes of human cells irradiated at IEA-R1 nuclear reactor (located at IPEN, Sao Paulo, Brazil), and therefore subject to morphological aberrations. This methodology intends to be a tool for helping cytogeneticists on identification, characterization and classification of chromosomal metaphasic analysis. The methodology development has included the creation of a software application based on artificial intelligence techniques using Fuzzy Logic combined with image processing techniques. The developed application was named CHRIMAN and is composed of modules that contain the methodological steps which are important requirements in order to achieve an automated analysis. The first step is the standardization of the bi-dimensional digital image acquisition procedure through coupling a simple digital camera to the ocular of the conventional metaphasic analysis microscope. Second step is related to the image treatment achieved through digital filters application; storing and organization of information obtained both from image content itself, and from selected extracted features, for further use on pattern recognition algorithms. The third step consists on characterizing, counting and classification of stored digital images and extracted features information. The accuracy in the recognition of chromosome images is 93.9%. This classification is based on classical standards obtained at Buckton [1973], and enables support to geneticist on chromosomic analysis procedure, decreasing analysis time, and creating conditions to include this method on a broader evaluation system on human cell damage due to ionizing radiation exposure. (author)

  11. Integrative Analysis of Prognosis Data on Multiple Cancer Subtypes

    Liu, Jin; Huang, Jian; Zhang, Yawei; Lan, Qing; Rothman, Nathaniel; Zheng, Tongzhang; Ma, Shuangge

    2014-01-01

    Summary In cancer research, profiling studies have been extensively conducted, searching for genes/SNPs associated with prognosis. Cancer is diverse. Examining the similarity and difference in the genetic basis of multiple subtypes of the same cancer can lead to a better understanding of their connections and distinctions. Classic meta-analysis methods analyze each subtype separately and then compare analysis results across subtypes. Integrative analysis methods, in contrast, analyze the raw data on multiple subtypes simultaneously and can outperform meta-analysis methods. In this study, prognosis data on multiple subtypes of the same cancer are analyzed. An AFT (accelerated failure time) model is adopted to describe survival. The genetic basis of multiple subtypes is described using the heterogeneity model, which allows a gene/SNP to be associated with prognosis of some subtypes but not others. A compound penalization method is developed to identify genes that contain important SNPs associated with prognosis. The proposed method has an intuitive formulation and is realized using an iterative algorithm. Asymptotic properties are rigorously established. Simulation shows that the proposed method has satisfactory performance and outperforms a penalization-based meta-analysis method and a regularized thresholding method. An NHL (non-Hodgkin lymphoma) prognosis study with SNP measurements is analyzed. Genes associated with the three major subtypes, namely DLBCL, FL, and CLL/SLL, are identified. The proposed method identifies genes that are different from alternatives and have important implications and satisfactory prediction performance. PMID:24766212

  12. Analysis on correlation between overall classification on color doppler ultrasound and clinical stages of atherosclerosis obliterans

    Zhang Dongmei; Liu Meihan; Shi Weidong; Chen Enqi; Li Xinying; Lin Yu

    2010-01-01

    Objective: To investigate the correlation and the clinical significance between the overall classification on color Doppler ultrasound and the clinical stages of atherosclerosis obliterans (ASO), and evaluate the extent of arterial lesions comprehensively. Methods: 125 patients of ASO, who were divided into three groups of mild, moderate and severe with Color Doppler ultrasound according to differences of occlusion, quantity, degree of stenosis and collateral number, were analyzed with clinical stages, then their associations were studied with Spearman rank analysis. Results: The clinical manifestations of ASO patients who were divided into three groups of mild, moderate and severe according to overall classification on color Doppler ultrasound were respectively gradually serious, which had positive correlations with the stages of I, II and III according to clinical stages. Spearman rank analysis showed that the correlation coefficients (rs)was 0.797 2 between two groups (P<0.01), there was good consistency between the overall classification on color Doppler ultrasound and the clinical stagesof ASO. Conclusion: The overall classification of ASO on color Doppler ultrasound has considered impact of many other factors on the clinical symptoms,such as the level of the local narrow, narrow scope, segments of occlusion and collateral arteries, which divides the lesions more objectively, shows good consistency with the clinical stages. (authors)

  13. Dichotomous classification of black-colored metal using spectral analysis

    Abramovich A.O.

    2017-05-01

    Full Text Available The task of detecting metal objects in different environments has always been important. To solve it metal detectors are used. They are designed to detect and identify objects that in their electric or magnetic properties different from the environment in which they are located. The most common among them are the metal detectors of the «detection of very low frequency» type (Very Low Frequency (VLF detectors. They use eddy current testing for detecting metal targets, which solves the problem of dichotomous distinction, that is a problem of splitting (or set into two parts (subsets: black or colored target. The target distinction is performed by a threshold level of the received signal. However, this approach does not allow to identify the type of target, if two samples of different metals are nearby. To overcome the above described limitations we propose another way of distinction based on the use of spectral analysis, which occurs in the metal detector antenna by Foucault current. We show that the problem of dichotomous distinction can be solved in just a measurement of width and area by the envelope of amplitude spectrum (hereinafter spectrum of the received signal. In this regard the laboratory model using eddy current metal detector will combat withdrawal from two samples – steel and copper, located along and calculate its range. The task of distinguishing between metal targets reduced to determining the hit spectra of reference samples obtained spectrum. The ratio between the areas is measured and reference spectra indicates the percentage of specific metals (e.g. two identical samples of different metals lying side by side. Signal processing is performed by specially designed program that compares two spectra along posted samples of black and colored metals with base.

  14. Association between expression of random gene sets and survival is evident in multiple cancer types and may be explained by sub-classification

    2018-01-01

    One of the goals of cancer research is to identify a set of genes that cause or control disease progression. However, although multiple such gene sets were published, these are usually in very poor agreement with each other, and very few of the genes proved to be functional therapeutic targets. Furthermore, recent findings from a breast cancer gene-expression cohort showed that sets of genes selected randomly can be used to predict survival with a much higher probability than expected. These results imply that many of the genes identified in breast cancer gene expression analysis may not be causal of cancer progression, even though they can still be highly predictive of prognosis. We performed a similar analysis on all the cancer types available in the cancer genome atlas (TCGA), namely, estimating the predictive power of random gene sets for survival. Our work shows that most cancer types exhibit the property that random selections of genes are more predictive of survival than expected. In contrast to previous work, this property is not removed by using a proliferation signature, which implies that proliferation may not always be the confounder that drives this property. We suggest one possible solution in the form of data-driven sub-classification to reduce this property significantly. Our results suggest that the predictive power of random gene sets may be used to identify the existence of sub-classes in the data, and thus may allow better understanding of patient stratification. Furthermore, by reducing the observed bias this may allow more direct identification of biologically relevant, and potentially causal, genes. PMID:29470520

  15. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    YangDai, Tianyi; Zhang, Li

    2016-01-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  16. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    YangDai, Tianyi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Zhang, Li, E-mail: zhangli@nuctech.com [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China)

    2016-02-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  17. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    YangDai, Tianyi; Zhang, Li

    2016-02-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  18. Neutron Activation Analysis and Moessbauer Correlations of Archaeological Pottery from Amazon Basin for Classification Studies

    Bellido, A. V. B.; Latini, R. M.; Nicoli, I.; Scorzelli, R. B.; Solorzano, P. M.

    2011-01-01

    The aim of the present work was to investigate the correlation between data obtained by means of two analytical methods, instrumental neutron activation analysis (INAA) and Moessbauer Spectroscopy of pottery samples combined with multivariate statistical analysis in order to optimize quantitative analysis in the classification studies. Ceramics recently discovered in archaeological earth circular structures sites in Acre state Brazil. 199 samples were analyzed by INAA, allowing simultaneous determination of twenty elements chemical concentrations, and 44 samples by using Moessbauer Spectroscopy, allowing the determination of fourteen hyperfine parameters. For the correlation study, data were treated by two multivariate statistical methods: cluster analysis for the classification and the principal component analysis for the data correlations. INAA data show that some of REE (rare earth elements) were the discriminating variables for this technique. Mossbauer parameters that exhibit the same behavior are being investigated, remarkable improve can be seem for the combined REE and the Mossbauer variables showing a good results considering the limited number of samples. This data matrix is being used for the understanding in the studies of classification and provenance of ceramics prehistory of the Amazonic basin.

  19. Evaluation of dairy effluent management options using multiple criteria analysis.

    Hajkowicz, Stefan A; Wheeler, Sarah A

    2008-04-01

    This article describes how options for managing dairy effluent on the Lower Murray River in South Australia were evaluated using multiple criteria analysis (MCA). Multiple criteria analysis is a framework for combining multiple environmental, social, and economic objectives in policy decisions. At the time of the study, dairy irrigation in the region was based on flood irrigation which involved returning effluent to the river. The returned water contained nutrients, salts, and microbial contaminants leading to environmental, human health, and tourism impacts. In this study MCA was used to evaluate 11 options against 6 criteria for managing dairy effluent problems. Of the 11 options, the MCA model selected partial rehabilitation of dairy paddocks with the conversion of remaining land to other agriculture. Soon after, the South Australian Government adopted this course of action and is now providing incentives for dairy farmers in the region to upgrade irrigation infrastructure and/or enter alternative industries.

  20. Multiple Feature Fusion Based on Co-Training Approach and Time Regularization for Place Classification in Wearable Video

    Vladislavs Dovgalecs

    2013-01-01

    Full Text Available The analysis of video acquired with a wearable camera is a challenge that multimedia community is facing with the proliferation of such sensors in various applications. In this paper, we focus on the problem of automatic visual place recognition in a weakly constrained environment, targeting the indexing of video streams by topological place recognition. We propose to combine several machine learning approaches in a time regularized framework for image-based place recognition indoors. The framework combines the power of multiple visual cues and integrates the temporal continuity information of video. We extend it with computationally efficient semisupervised method leveraging unlabeled video sequences for an improved indexing performance. The proposed approach was applied on challenging video corpora. Experiments on a public and a real-world video sequence databases show the gain brought by the different stages of the method.

  1. Automated classification of mouse pup isolation syllables: from cluster analysis to an Excel based ‘mouse pup syllable classification calculator’

    Jasmine eGrimsley

    2013-01-01

    Full Text Available Mouse pups vocalize at high rates when they are cold or isolated from the nest. The proportions of each syllable type produced carry information about disease state and are being used as behavioral markers for the internal state of animals. Manual classifications of these vocalizations identified ten syllable types based on their spectro-temporal features. However, manual classification of mouse syllables is time consuming and vulnerable to experimenter bias. This study uses an automated cluster analysis to identify acoustically distinct syllable types produced by CBA/CaJ mouse pups, and then compares the results to prior manual classification methods. The cluster analysis identified two syllable types, based on their frequency bands, that have continuous frequency-time structure, and two syllable types featuring abrupt frequency transitions. Although cluster analysis computed fewer syllable types than manual classification, the clusters represented well the probability distributions of the acoustic features within syllables. These probability distributions indicate that some of the manually classified syllable types are not statistically distinct. The characteristics of the four classified clusters were used to generate a Microsoft Excel-based mouse syllable classifier that rapidly categorizes syllables, with over a 90% match, into the syllable types determined by cluster analysis.

  2. Occupation and multiple myeloma: an occupation and industry analysis.

    Gold, Laura S; Milliken, Kevin; Stewart, Patricia; Purdue, Mark; Severson, Richard; Seixas, Noah; Blair, Aaron; Davis, Scott; Hartge, Patricia; De Roos, Anneclaire J

    2010-08-01

    Multiple myeloma (MM) is an incurable plasma cell malignancy with a poorly understood etiology. The purpose of our research was to examine the relationships between lifetime occupations and MM in a relatively large case-control study. MM cases (n = 180) were identified through cancer registries in the Seattle-Puget Sound area and Detroit. Population-based controls (n = 481) were identified using random digit dialing and Medicare and Medicaid Services files. In-person interviews were conducted to ascertain occupational histories. Standard occupational classification (SOC) and standard industrial classification (SIC) codes were assigned to each job held by each participant. Unconditional logistic regression was used to generate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between MM and having ever worked in each occupation/industry and according to duration of employment in an occupation/industry. The risk of MM was associated with several manufacturing occupations and industries, including machine operators and tenders, not elsewhere classified (SOC 76) (OR = 1.8, CI = 1.0-3.3); textile, apparel, and furnishing machine operators and tenders (SOC 765) (OR = 6.0, CI = 1.7-21); and machinery manufacturing, except electrical (SIC 35) (OR = 3.3, CI = 1.7-6.7). Several service occupations and industries, such as food and beverage preparation (SOC 521) (OR = 2.0, CI = 1.1-3.8), were also associated with MM. One occupation that has been associated with MM in several previous studies, painters, paperhangers, and plasterers (SOC 644) was associated with a non-significantly elevated risk (OR = 3.6, CI = 0.7-19). We found associations between the risk of MM and employment in several manufacturing and service-related occupations and industries. Copyright 2010 Wiley-Liss, Inc.

  3. General Nature of Multicollinearity in Multiple Regression Analysis.

    Liu, Richard

    1981-01-01

    Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)

  4. MULGRES: a computer program for stepwise multiple regression analysis

    A. Jeff Martin

    1971-01-01

    MULGRES is a computer program source deck that is designed for multiple regression analysis employing the technique of stepwise deletion in the search for most significant variables. The features of the program, along with inputs and outputs, are briefly described, with a note on machine compatibility.

  5. Modeling time-to-event (survival) data using classification tree analysis.

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  6. Classification of grass pollen through the quantitative analysis of surface ornamentation and texture.

    Mander, Luke; Li, Mao; Mio, Washington; Fowlkes, Charless C; Punyasena, Surangi W

    2013-11-07

    Taxonomic identification of pollen and spores uses inherently qualitative descriptions of morphology. Consequently, identifications are restricted to categories that can be reliably classified by multiple analysts, resulting in the coarse taxonomic resolution of the pollen and spore record. Grass pollen represents an archetypal example; it is not routinely identified below family level. To address this issue, we developed quantitative morphometric methods to characterize surface ornamentation and classify grass pollen grains. This produces a means of quantifying morphological features that are traditionally described qualitatively. We used scanning electron microscopy to image 240 specimens of pollen from 12 species within the grass family (Poaceae). We classified these species by developing algorithmic features that quantify the size and density of sculptural elements on the pollen surface, and measure the complexity of the ornamentation they form. These features yielded a classification accuracy of 77.5%. In comparison, a texture descriptor based on modelling the statistical distribution of brightness values in image patches yielded a classification accuracy of 85.8%, and seven human subjects achieved accuracies between 68.33 and 81.67%. The algorithmic features we developed directly relate to biologically meaningful features of grass pollen morphology, and could facilitate direct interpretation of unsupervised classification results from fossil material.

  7. Can the Ni classification of vessels predict neoplasia? A systematic review and meta-analysis.

    Mehlum, Camilla S; Rosenberg, Tine; Dyrvig, Anne-Kirstine; Groentved, Aagot Moeller; Kjaergaard, Thomas; Godballe, Christian

    2018-01-01

    The Ni classification of vascular change from 2011 is well documented for evaluating pharyngeal and laryngeal lesions, primarily focusing on cancer. In the planning of surgery it may be more relevant to differentiate neoplasia from non-neoplasia. We aimed to evaluate the ability of the Ni classification to predict laryngeal or hypopharyngeal neoplasia and to investigate if a changed cutoff value would support the recent European Laryngological Society (ELS) proposal of perpendicular vascular changes as indicative of neoplasia. PubMed, Embase, Cochrane, and Scopus databases. A systematic review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. We systematically searched for publications from 2011 until 2016. All retrieved studies were reviewed and qualitatively assessed. The pooled sensitivity and specificity of the Ni classification with two different cutoffs were calculated, and bubble and summary receiver operating characteristics plots were created. The combined sensitivity of five studies (n = 687) with Ni type IV-V defined as test-positive was 0.89 (95% confidence interval [CI]: 0.76-0.95), and specificity was 0.82 (95% CI: 0.72-0.89). The equivalent combined sensitivity of four studies (n = 624) with Ni type V defined as test-positive was 0.82 (95% CI: 0.75-0.87), and specificity was 0.93 (95% CI: 0.82-0.97). The diagnostic accuracy of the Ni classification in predicting neoplasia was high, without significant difference between the two analyzed cutoff values. Implementation of the proposed ELS classification of vascular changes seems reasonable from a clinical perspective, with comparable accuracy. Attention must be drawn to the accompanying risk of exposing patients to unnecessary surgery. Laryngoscope, 128:168-176, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  8. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration.

    Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena

    2018-05-01

    Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.

  9. Classification of soil samples according to their geographic origin using gamma-ray spectrometry and principal component analysis

    Dragovic, Snezana; Onjia, Antonije

    2006-01-01

    A principal component analysis (PCA) was used for classification of soil samples from different locations in Serbia and Montenegro. Based on activities of radionuclides ( 226 Ra, 238 U, 235 U, 4 K, 134 Cs, 137 Cs, 232 Th and 7 Be) detected by gamma-ray spectrometry, the classification of soils according to their geographical origin was performed. Application of PCA to our experimental data resulted in satisfactory classification rate (86.0% correctly classified samples). The obtained results indicate that gamma-ray spectrometry in conjunction with PCA is a viable tool for soil classification

  10. Prediction of Depression in Cancer Patients With Different Classification Criteria, Linear Discriminant Analysis versus Logistic Regression.

    Shayan, Zahra; Mohammad Gholi Mezerji, Naser; Shayan, Leila; Naseri, Parisa

    2015-11-03

    Logistic regression (LR) and linear discriminant analysis (LDA) are two popular statistical models for prediction of group membership. Although they are very similar, the LDA makes more assumptions about the data. When categorical and continuous variables used simultaneously, the optimal choice between the two models is questionable. In most studies, classification error (CE) is used to discriminate between subjects in several groups, but this index is not suitable to predict the accuracy of the outcome. The present study compared LR and LDA models using classification indices. This cross-sectional study selected 243 cancer patients. Sample sets of different sizes (n = 50, 100, 150, 200, 220) were randomly selected and the CE, B, and Q classification indices were calculated by the LR and LDA models. CE revealed the a lack of superiority for one model over the other, but the results showed that LR performed better than LDA for the B and Q indices in all situations. No significant effect for sample size on CE was noted for selection of an optimal model. Assessment of the accuracy of prediction of real data indicated that the B and Q indices are appropriate for selection of an optimal model. The results of this study showed that LR performs better in some cases and LDA in others when based on CE. The CE index is not appropriate for classification, although the B and Q indices performed better and offered more efficient criteria for comparison and discrimination between groups.

  11. Gas Classification Using Combined Features Based on a Discriminant Analysis for an Electronic Nose

    Sang-Il Choi

    2016-01-01

    Full Text Available This paper proposes a gas classification method for an electronic nose (e-nose system, for which combined features that have been configured through discriminant analysis are used. First, each global feature is extracted from the entire measurement section of the data samples, while the same process is applied to the local features of the section that corresponds to the stabilization, exposure, and purge stages. The discriminative information amounts in the individual features are then measured based on the discriminant analysis, and the combined features are subsequently composed by selecting the features that have a large amount of discriminative information. Regarding a variety of volatile organic compound data, the results of the experiment show that, in a noisy environment, the proposed method exhibits classification performance that is relatively excellent compared to the other feature types.

  12. Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses.

    Leydesdorff, Loet; Kogler, Dieter Franz; Yan, Bowen

    2017-01-01

    The Cooperative Patent Classifications (CPC) recently developed cooperatively by the European and US Patent Offices provide a new basis for mapping patents and portfolio analysis. CPC replaces International Patent Classifications (IPC) of the World Intellectual Property Organization. In this study, we update our routines previously based on IPC for CPC and use the occasion for rethinking various parameter choices. The new maps are significantly different from the previous ones, although this may not always be obvious on visual inspection. We provide nested maps online and a routine for generating portfolio overlays on the maps; a new tool is provided for "difference maps" between patent portfolios of organizations or firms. This is illustrated by comparing the portfolios of patents granted to two competing firms-Novartis and MSD-in 2016. Furthermore, the data is organized for the purpose of statistical analysis.

  13. Malware Classification Based on the Behavior Analysis and Back Propagation Neural Network

    Pan Zhi-Peng

    2016-01-01

    Full Text Available With the development of the Internet, malwares have also been expanded on the network systems rapidly. In order to deal with the diversity and amount of the variants, a number of automated behavior analysis tools have emerged as the time requires. Yet these tools produce detailed behavior reports of the malwares, it still needs to specify its category and judge its criticality manually. In this paper, we propose an automated malware classification approach based on the behavior analysis. We firstly perform dynamic analyses to obtain the detailed behavior profiles of the malwares, which are then used to abstract the main features of the malwares and serve as the inputs of the Back Propagation (BP Neural Network model.The experimental results demonstrate that our classification technique is able to classify the malware variants effectively and detect malware accurately.

  14. Study of Image Analysis Algorithms for Segmentation, Feature Extraction and Classification of Cells

    Margarita Gamarra

    2017-08-01

    Full Text Available Recent advances in microcopy and improvements in image processing algorithms have allowed the development of computer-assisted analytical approaches in cell identification. Several applications could be mentioned in this field: Cellular phenotype identification, disease detection and treatment, identifying virus entry in cells and virus classification; these applications could help to complement the opinion of medical experts. Although many surveys have been presented in medical image analysis, they focus mainly in tissues and organs and none of the surveys about image cells consider an analysis following the stages in the typical image processing: Segmentation, feature extraction and classification. The goal of this study is to provide comprehensive and critical analyses about the trends in each stage of cell image processing. In this paper, we present a literature survey about cell identification using different image processing techniques.

  15. A Similarity-Based Approach for Audiovisual Document Classification Using Temporal Relation Analysis

    Ferrane Isabelle

    2011-01-01

    Full Text Available Abstract We propose a novel approach for video classification that bases on the analysis of the temporal relationships between the basic events in audiovisual documents. Starting from basic segmentation results, we define a new representation method that is called Temporal Relation Matrix (TRM. Each document is then described by a set of TRMs, the analysis of which makes events of a higher level stand out. This representation has been first designed to analyze any audiovisual document in order to find events that may well characterize its content and its structure. The aim of this work is to use this representation to compute a similarity measure between two documents. Approaches for audiovisual documents classification are presented and discussed. Experimentations are done on a set of 242 video documents and the results show the efficiency of our proposals.

  16. Steady State Analysis of Stochastic Systems with Multiple Time Delays

    Xu, W.; Sun, C. Y.; Zhang, H. Q.

    In this paper, attention is focused on the steady state analysis of a class of nonlinear dynamic systems with multi-delayed feedbacks driven by multiplicative correlated Gaussian white noises. The Fokker-Planck equations for delayed variables are at first derived by Novikov's theorem. Then, under small delay assumption, the approximate stationary solutions are obtained by the probability density approach. As a special case, the effects of multidelay feedbacks and the correlated additive and multiplicative Gaussian white noises on the response of a bistable system are considered. It is shown that the obtained analytical results are in good agreement with experimental results in Monte Carlo simulations.

  17. Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments.

    Li, Man; Ling, Cheng; Xu, Qi; Gao, Jingyang

    2018-02-01

    Sequence classification is crucial in predicting the function of newly discovered sequences. In recent years, the prediction of the incremental large-scale and diversity of sequences has heavily relied on the involvement of machine-learning algorithms. To improve prediction accuracy, these algorithms must confront the key challenge of extracting valuable features. In this work, we propose a feature-enhanced protein classification approach, considering the rich generation of multiple sequence alignment algorithms, N-gram probabilistic language model and the deep learning technique. The essence behind the proposed method is that if each group of sequences can be represented by one feature sequence, composed of homologous sites, there should be less loss when the sequence is rebuilt, when a more relevant sequence is added to the group. On the basis of this consideration, the prediction becomes whether a query sequence belonging to a group of sequences can be transferred to calculate the probability that the new feature sequence evolves from the original one. The proposed work focuses on the hierarchical classification of G-protein Coupled Receptors (GPCRs), which begins by extracting the feature sequences from the multiple sequence alignment results of the GPCRs sub-subfamilies. The N-gram model is then applied to construct the input vectors. Finally, these vectors are imported into a convolutional neural network to make a prediction. The experimental results elucidate that the proposed method provides significant performance improvements. The classification error rate of the proposed method is reduced by at least 4.67% (family level I) and 5.75% (family Level II), in comparison with the current state-of-the-art methods. The implementation program of the proposed work is freely available at: https://github.com/alanFchina/CNN .

  18. Towards an Italian Lexicon for Polarity Classification (polarITA): a Comparative Analysis of Lexical Resources for Sentiment Analysis

    Hernández Farías, Delia Irazú; Laganà, Irene; Patti, Viviana; Bosco, Cristina

    2018-01-01

    The paper describes a preliminary study for the development of a novel lexicon for Italian sentiment analysis, i.e. where words are associated with polarity values. Given the influence of sentiment lexica on the performance of sentiment analysis systems, a methodology based on the detection and classification of errors in existing lexical resources is proposed and an extrinsic evaluation of the impact of such errors is applied. The final aim is to build a novel resource from the filtering app...

  19. Automated classification and quantitative analysis of arterial and venous vessels in fundus images

    Alam, Minhaj; Son, Taeyoon; Toslak, Devrim; Lim, Jennifer I.; Yao, Xincheng

    2018-02-01

    It is known that retinopathies may affect arteries and veins differently. Therefore, reliable differentiation of arteries and veins is essential for computer-aided analysis of fundus images. The purpose of this study is to validate one automated method for robust classification of arteries and veins (A-V) in digital fundus images. We combine optical density ratio (ODR) analysis and blood vessel tracking algorithm to classify arteries and veins. A matched filtering method is used to enhance retinal blood vessels. Bottom hat filtering and global thresholding are used to segment the vessel and skeleton individual blood vessels. The vessel tracking algorithm is used to locate the optic disk and to identify source nodes of blood vessels in optic disk area. Each node can be identified as vein or artery using ODR information. Using the source nodes as starting point, the whole vessel trace is then tracked and classified as vein or artery using vessel curvature and angle information. 50 color fundus images from diabetic retinopathy patients were used to test the algorithm. Sensitivity, specificity, and accuracy metrics were measured to assess the validity of the proposed classification method compared to ground truths created by two independent observers. The algorithm demonstrated 97.52% accuracy in identifying blood vessels as vein or artery. A quantitative analysis upon A-V classification showed that average A-V ratio of width for NPDR subjects with hypertension decreased significantly (43.13%).

  20. Automated Detection of Connective Tissue by Tissue Counter Analysis and Classification and Regression Trees

    Josef Smolle

    2001-01-01

    Full Text Available Objective: To evaluate the feasibility of the CART (Classification and Regression Tree procedure for the recognition of microscopic structures in tissue counter analysis. Methods: Digital microscopic images of H&E stained slides of normal human skin and of primary malignant melanoma were overlayed with regularly distributed square measuring masks (elements and grey value, texture and colour features within each mask were recorded. In the learning set, elements were interactively labeled as representing either connective tissue of the reticular dermis, other tissue components or background. Subsequently, CART models were based on these data sets. Results: Implementation of the CART classification rules into the image analysis program showed that in an independent test set 94.1% of elements classified as connective tissue of the reticular dermis were correctly labeled. Automated measurements of the total amount of tissue and of the amount of connective tissue within a slide showed high reproducibility (r=0.97 and r=0.94, respectively; p < 0.001. Conclusions: CART procedure in tissue counter analysis yields simple and reproducible classification rules for tissue elements.

  1. HARMONIC ANALYSIS OF SVPWM INVERTER USING MULTIPLE-PULSES METHOD

    Mehmet YUMURTACI

    2009-01-01

    Full Text Available Space Vector Modulation (SVM technique is a popular and an important PWM technique for three phases voltage source inverter in the control of Induction Motor. In this study harmonic analysis of Space Vector PWM (SVPWM is investigated using multiple-pulses method. Multiple-Pulses method calculates the Fourier coefficients of individual positive and negative pulses of the output PWM waveform and adds them together using the principle of superposition to calculate the Fourier coefficients of the all PWM output signal. Harmonic magnitudes can be calculated directly by this method without linearization, using look-up tables or Bessel functions. In this study, the results obtained in the application of SVPWM for values of variable parameters are compared with the results obtained with the multiple-pulses method.

  2. Modular risk analysis for assessing multiple waste sites

    Whelan, G.; Buck, J.W.; Nazarali, A.

    1994-06-01

    Human-health impacts, especially to the surrounding public, are extremely difficult to assess at installations that contain multiple waste sites and a variety of mixed-waste constituents (e.g., organic, inorganic, and radioactive). These assessments must address different constituents, multiple waste sites, multiple release patterns, different transport pathways (i.e., groundwater, surface water, air, and overland soil), different receptor types and locations, various times of interest, population distributions, land-use patterns, baseline assessments, a variety of exposure scenarios, etc. Although the process is complex, two of the most important difficulties to overcome are associated with (1) establishing an approach that allows for modifying the source term, transport, or exposure component as an individual module without having to re-evaluate the entire installation-wide assessment (i.e., all modules simultaneously), and (2) displaying and communicating the results in an understandable and useable maimer to interested parties. An integrated, physics-based, compartmentalized approach, which is coupled to a Geographical Information System (GIS), captures the regional health impacts associated with multiple waste sites (e.g., hundreds to thousands of waste sites) at locations within and surrounding the installation. Utilizing a modular/GIS-based approach overcomes difficulties in (1) analyzing a wide variety of scenarios for multiple waste sites, and (2) communicating results from a complex human-health-impact analysis by capturing the essence of the assessment in a relatively elegant manner, so the meaning of the results can be quickly conveyed to all who review them

  3. Analysis of (n, 2n) multiplication in lead

    Segev, M.

    1984-01-01

    Lead is being considered as a possible amplifier of neutrons for fusion blankets. A simple one-group model of neutron multiplications in Pb is presented. Given the 14 MeV neutron cross section on Pb, the model predicts the multiplication. Given measured multiplications, the model enables the determination of the (n, 2n) and transport cross sections. Required for the model are: P-the collision probability for source neutrons in the Pb body-and W- an average collision probability for non-virgin, non-degraded neutrons. In simple geometries, such as a source in the center of a spherical shell, P and an approximate W can be expressed analytically in terms of shell dimensions and the Pb transport cross section. The model was applied to Takahashi's measured multiplications in Pb shells in order to understand the apparent very high multiplicative power of Pb. The results of the analysis are not consistent with basic energy-balance and cross section magnitude constraints in neutron interaction theory. (author)

  4. Multiplicity Analysis during Photon Interrogation of Fissionable Material

    Clarke, Shaun D.; Pozzi, Sara A.; Padovani, Enrico; Downar, Thomas J.

    2007-01-01

    Simulation of multiplicity distributions with the Monte Carlo method is difficult because each history is treated individually. In order to accurately model the multiplicity distribution, the intensity and time width of the interrogation pulse must be incorporated into the calculation. This behavior dictates how many photons arrive at the target essentially simultaneously. In order to model the pulse width correctly, a Monte Carlo code system consisting of modified versions of the codes MCNPX and MCNP-PoliMi has been developed in conjunction with a post-processing algorithm to operate on the MCNP-PoliMi output file. The purpose of this subroutine is to assemble the interactions into groups corresponding to the number of interactions which would occur during a given pulse. The resulting multiplicity distributions appear more realistic and capture the higher-order multiplets which are a product of multiple reactions occurring during a single accelerator pulse. Plans are underway to gather relevant experimental data to verify and validate the methodology developed and presented here. This capability will enable the simulation of a large number of materials and detector geometries. Analysis of this information will determine the feasibility of using multiplicity distributions as an identification tool for special nuclear material.

  5. An initial analysis of LANDSAT 4 Thematic Mapper data for the classification of agricultural, forested wetland, and urban land covers

    Quattrochi, D. A.; Anderson, J. E.; Brannon, D. P.; Hill, C. L.

    1982-01-01

    An initial analysis of LANDSAT 4 thematic mapper (TM) data for the delineation and classification of agricultural, forested wetland, and urban land covers was conducted. A study area in Poinsett County, Arkansas was used to evaluate a classification of agricultural lands derived from multitemporal LANDSAT multispectral scanner (MSS) data in comparison with a classification of TM data for the same area. Data over Reelfoot Lake in northwestern Tennessee were utilized to evaluate the TM for delineating forested wetland species. A classification of the study area was assessed for accuracy in discriminating five forested wetland categories. Finally, the TM data were used to identify urban features within a small city. A computer generated classification of Union City, Tennessee was analyzed for accuracy in delineating urban land covers. An evaluation of digitally enhanced TM data using principal components analysis to facilitate photointerpretation of urban features was also performed.

  6. Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm.

    Al Ajmi, Eiman; Forghani, Behzad; Reinhold, Caroline; Bayat, Maryam; Forghani, Reza

    2018-06-01

    There is a rich amount of quantitative information in spectral datasets generated from dual-energy CT (DECT). In this study, we compare the performance of texture analysis performed on multi-energy datasets to that of virtual monochromatic images (VMIs) at 65 keV only, using classification of the two most common benign parotid neoplasms as a testing paradigm. Forty-two patients with pathologically proven Warthin tumour (n = 25) or pleomorphic adenoma (n = 17) were evaluated. Texture analysis was performed on VMIs ranging from 40 to 140 keV in 5-keV increments (multi-energy analysis) or 65-keV VMIs only, which is typically considered equivalent to single-energy CT. Random forest (RF) models were constructed for outcome prediction using separate randomly selected training and testing sets or the entire patient set. Using multi-energy texture analysis, tumour classification in the independent testing set had accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 92%, 86%, 100%, 100%, and 83%, compared to 75%, 57%, 100%, 100%, and 63%, respectively, for single-energy analysis. Multi-energy texture analysis demonstrates superior performance compared to single-energy texture analysis of VMIs at 65 keV for classification of benign parotid tumours. • We present and validate a paradigm for texture analysis of DECT scans. • Multi-energy dataset texture analysis is superior to single-energy dataset texture analysis. • DECT texture analysis has high accura\\cy for diagnosis of benign parotid tumours. • DECT texture analysis with machine learning can enhance non-invasive diagnostic tumour evaluation.

  7. Multiple Criteria and Multiple Periods Performance Analysis: The Comparison of North African Railways

    Sabri, Karim; Colson, Gérard E.; Mbangala, Augustin M.

    2008-10-01

    Multi-period differences of technical and financial performances are analysed by comparing five North African railways over the period (1990-2004). A first approach is based on the Malmquist DEA TFP index for measuring the total factors productivity change, decomposed into technical efficiency change and technological changes. A multiple criteria analysis is also performed using the PROMETHEE II method and the software ARGOS. These methods provide complementary detailed information, especially by discriminating the technological and management progresses by Malmquist and the two dimensions of performance by Promethee: that are the service to the community and the enterprises performances, often in conflict.

  8. Research and analyze of physical health using multiple regression analysis

    T. S. Kyi

    2014-01-01

    Full Text Available This paper represents the research which is trying to create a mathematical model of the "healthy people" using the method of regression analysis. The factors are the physical parameters of the person (such as heart rate, lung capacity, blood pressure, breath holding, weight height coefficient, flexibility of the spine, muscles of the shoulder belt, abdominal muscles, squatting, etc.., and the response variable is an indicator of physical working capacity. After performing multiple regression analysis, obtained useful multiple regression models that can predict the physical performance of boys the aged of fourteen to seventeen years. This paper represents the development of regression model for the sixteen year old boys and analyzed results.

  9. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement

    Shenoy Handiru, Vikram; Vinod, A. P.; Guan, Cuntai

    2017-08-01

    Objective. In electroencephalography (EEG)-based brain-computer interface (BCI) systems for motor control tasks the conventional practice is to decode motor intentions by using scalp EEG. However, scalp EEG only reveals certain limited information about the complex tasks of movement with a higher degree of freedom. Therefore, our objective is to investigate the effectiveness of source-space EEG in extracting relevant features that discriminate arm movement in multiple directions. Approach. We have proposed a novel feature extraction algorithm based on supervised factor analysis that models the data from source-space EEG. To this end, we computed the features from the source dipoles confined to Brodmann areas of interest (BA4a, BA4p and BA6). Further, we embedded class-wise labels of multi-direction (multi-class) source-space EEG to an unsupervised factor analysis to make it into a supervised learning method. Main Results. Our approach provided an average decoding accuracy of 71% for the classification of hand movement in four orthogonal directions, that is significantly higher (>10%) than the classification accuracy obtained using state-of-the-art spatial pattern features in sensor space. Also, the group analysis on the spectral characteristics of source-space EEG indicates that the slow cortical potentials from a set of cortical source dipoles reveal discriminative information regarding the movement parameter, direction. Significance. This study presents evidence that low-frequency components in the source space play an important role in movement kinematics, and thus it may lead to new strategies for BCI-based neurorehabilitation.

  10. [Classification of gamblers from self-help groups using cluster analysis].

    Meyer, G

    1991-01-01

    In an empirically based classification by cluster analysis of 437 gamblers from self-help groups five distinct homogeneous subgroups were determined on the basis of such characteristics as frequency of gambling of various kinds, function of gambling and sensation during gambling, symptoms of pathological gambling as well as personality characteristics. These can be characterized as: Pathological slot-machine gamblers with 1) an emotionally instable, depressive-aggressive personality structure and 2) an emotionally instable, depressive personality structure; 3) pathological gamblers on German-style slot-machines and 4) pathological gamblers on classical games of chance--both without conspicuous personality, and 5) gamblers on German-style slot-machines under a subjective strain. On the whole, the distinctions are due to psychological variables, the social data hardly differ. A comparison of the subgroups on the basis of variables regarding the course and result of treatment shows that the pathological gamblers with a conspicuous personality structure more often failed to reach, the goal of abstinence set by "Gamblers Anonymous" and instead report about an improvement of their gambling behaviour. On the other hand, the gamblers on German-style slot-machines who were under a subjective strain more often found it easier to stop gambling completely. The results of the cluster analysis are compared with clinical diagnostic classifications of gamblers who received out-patient or in-patient treatment as well as with empirical classifications of addicts, and first hypotheses of a differential therapy indication are being discussed.

  11. Recursive Partitioning Analysis for New Classification of Patients With Esophageal Cancer Treated by Chemoradiotherapy

    Nomura, Motoo; Shitara, Kohei; Kodaira, Takeshi; Kondoh, Chihiro; Takahari, Daisuke; Ura, Takashi; Kojima, Hiroyuki; Kamata, Minoru; Muro, Kei; Sawada, Satoshi

    2012-01-01

    Background: The 7th edition of the American Joint Committee on Cancer staging system does not include lymph node size in the guidelines for staging patients with esophageal cancer. The objectives of this study were to determine the prognostic impact of the maximum metastatic lymph node diameter (ND) on survival and to develop and validate a new staging system for patients with esophageal squamous cell cancer who were treated with definitive chemoradiotherapy (CRT). Methods: Information on 402 patients with esophageal cancer undergoing CRT at two institutions was reviewed. Univariate and multivariate analyses of data from one institution were used to assess the impact of clinical factors on survival, and recursive partitioning analysis was performed to develop the new staging classification. To assess its clinical utility, the new classification was validated using data from the second institution. Results: By multivariate analysis, gender, T, N, and ND stages were independently and significantly associated with survival (p < 0.05). The resulting new staging classification was based on the T and ND. The four new stages led to good separation of survival curves in both the developmental and validation datasets (p < 0.05). Conclusions: Our results showed that lymph node size is a strong independent prognostic factor and that the new staging system, which incorporated lymph node size, provided good prognostic power, and discriminated effectively for patients with esophageal cancer undergoing CRT.

  12. Comparative study of wine tannin classification using Fourier transform mid-infrared spectrometry and sensory analysis.

    Fernández, Katherina; Labarca, Ximena; Bordeu, Edmundo; Guesalaga, Andrés; Agosin, Eduardo

    2007-11-01

    Wine tannins are fundamental to the determination of wine quality. However, the chemical and sensorial analysis of these compounds is not straightforward and a simple and rapid technique is necessary. We analyzed the mid-infrared spectra of white, red, and model wines spiked with known amounts of skin or seed tannins, collected using Fourier transform mid-infrared (FT-MIR) transmission spectroscopy (400-4000 cm(-1)). The spectral data were classified according to their tannin source, skin or seed, and tannin concentration by means of discriminant analysis (DA) and soft independent modeling of class analogy (SIMCA) to obtain a probabilistic classification. Wines were also classified sensorially by a trained panel and compared with FT-MIR. SIMCA models gave the most accurate classification (over 97%) and prediction (over 60%) among the wine samples. The prediction was increased (over 73%) using the leave-one-out cross-validation technique. Sensory classification of the wines was less accurate than that obtained with FT-MIR and SIMCA. Overall, these results show the potential of FT-MIR spectroscopy, in combination with adequate statistical tools, to discriminate wines with different tannin levels.

  13. Shift-invariant discrete wavelet transform analysis for retinal image classification.

    Khademi, April; Krishnan, Sridhar

    2007-12-01

    This work involves retinal image classification and a novel analysis system was developed. From the compressed domain, the proposed scheme extracts textural features from wavelet coefficients, which describe the relative homogeneity of localized areas of the retinal images. Since the discrete wavelet transform (DWT) is shift-variant, a shift-invariant DWT was explored to ensure that a robust feature set was extracted. To combat the small database size, linear discriminant analysis classification was used with the leave one out method. 38 normal and 48 abnormal (exudates, large drusens, fine drusens, choroidal neovascularization, central vein and artery occlusion, histoplasmosis, arteriosclerotic retinopathy, hemi-central retinal vein occlusion and more) were used and a specificity of 79% and sensitivity of 85.4% were achieved (the average classification rate is 82.2%). The success of the system can be accounted to the highly robust feature set which included translation, scale and semi-rotational, features. Additionally, this technique is database independent since the features were specifically tuned to the pathologies of the human eye.

  14. Application of two way indicator species analysis in lowland plant types classification.

    Kooch, Yahya; Jalilvand, Hamid; Bahmanyar, Mohammad Ali; Pormajidian, Mohammad Reza

    2008-03-01

    A TWINSPAN classification of 60 sample plots from the Khanikan forest (North of Iran) is presented. Plant types were determined from field observations and sample plot data arranged and analyzed in association tables. The types were defined on the basis of species patterns of presence, absence and coverage values. Vegetation was sampled with randomized-systematic method. Vegetation data including density and cover percentage were estimated quantitatively within each quadrate and using the two-way indicator species analysis. The objectives of the study were to plant type's classification for Khanikan lowland forest in North of Iran, Identification of indicator species in plant types and increase our understanding in regarding to one of Multivariate analysis methods (TWINSPAN). Five plant types were produced for the study area by TWINSPAN, i.e., Menta aquatica, Oplismenus undulatifolius, Carex grioletia, Viola odarata and Rubus caesius. Therefore, at each step of the process, the program identifies indicator species that show strongly differential distributions between groups and so can severe to distinguish the groups. The final result, incorporating elements of classification can provide a compact and powerful summary of pattern in the data set.

  15. Support vector machine and principal component analysis for microarray data classification

    Astuti, Widi; Adiwijaya

    2018-03-01

    Cancer is a leading cause of death worldwide although a significant proportion of it can be cured if it is detected early. In recent decades, technology called microarray takes an important role in the diagnosis of cancer. By using data mining technique, microarray data classification can be performed to improve the accuracy of cancer diagnosis compared to traditional techniques. The characteristic of microarray data is small sample but it has huge dimension. Since that, there is a challenge for researcher to provide solutions for microarray data classification with high performance in both accuracy and running time. This research proposed the usage of Principal Component Analysis (PCA) as a dimension reduction method along with Support Vector Method (SVM) optimized by kernel functions as a classifier for microarray data classification. The proposed scheme was applied on seven data sets using 5-fold cross validation and then evaluation and analysis conducted on term of both accuracy and running time. The result showed that the scheme can obtained 100% accuracy for Ovarian and Lung Cancer data when Linear and Cubic kernel functions are used. In term of running time, PCA greatly reduced the running time for every data sets.

  16. Individual classification of children with epilepsy using support vector machine with multiple indices of diffusion tensor imaging

    Ishmael Amarreh

    2014-01-01

    Conclusion: DTI-based SVM classification appears promising for distinguishing children with active epilepsy from either those with remitted epilepsy or controls, and the question that arises is whether it will prove useful as a prognostic index of seizure remission. While SVM can correctly identify children with active epilepsy from other groups' diagnosis, further research is needed to determine the efficacy of SVM as a prognostic tool in longitudinal clinical studies.

  17. Sparse Group Penalized Integrative Analysis of Multiple Cancer Prognosis Datasets

    Liu, Jin; Huang, Jian; Xie, Yang; Ma, Shuangge

    2014-01-01

    SUMMARY In cancer research, high-throughput profiling studies have been extensively conducted, searching for markers associated with prognosis. Because of the “large d, small n” characteristic, results generated from the analysis of a single dataset can be unsatisfactory. Recent studies have shown that integrative analysis, which simultaneously analyzes multiple datasets, can be more effective than single-dataset analysis and classic meta-analysis. In most of existing integrative analysis, the homogeneity model has been assumed, which postulates that different datasets share the same set of markers. Several approaches have been designed to reinforce this assumption. In practice, different datasets may differ in terms of patient selection criteria, profiling techniques, and many other aspects. Such differences may make the homogeneity model too restricted. In this study, we assume the heterogeneity model, under which different datasets are allowed to have different sets of markers. With multiple cancer prognosis datasets, we adopt the AFT (accelerated failure time) model to describe survival. This model may have the lowest computational cost among popular semiparametric survival models. For marker selection, we adopt a sparse group MCP (minimax concave penalty) approach. This approach has an intuitive formulation and can be computed using an effective group coordinate descent algorithm. Simulation study shows that it outperforms the existing approaches under both the homogeneity and heterogeneity models. Data analysis further demonstrates the merit of heterogeneity model and proposed approach. PMID:23938111

  18. Comparison of rule induction, decision trees and formal concept analysis approaches for classification

    Kotelnikov, E. V.; Milov, V. R.

    2018-05-01

    Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.

  19. Quantitative Classification of Quartz by Laser Induced Breakdown Spectroscopy in Conjunction with Discriminant Function Analysis

    A. Ali

    2016-01-01

    Full Text Available A responsive laser induced breakdown spectroscopic system was developed and improved for utilizing it as a sensor for the classification of quartz samples on the basis of trace elements present in the acquired samples. Laser induced breakdown spectroscopy (LIBS in conjunction with discriminant function analysis (DFA was applied for the classification of five different types of quartz samples. The quartz plasmas were produced at ambient pressure using Nd:YAG laser at fundamental harmonic mode (1064 nm. We optimized the detection system by finding the suitable delay time of the laser excitation. This is the first study, where the developed technique (LIBS+DFA was successfully employed to probe and confirm the elemental composition of quartz samples.

  20. A cross-cultural investigation of college student alcohol consumption: a classification tree analysis.

    Kitsantas, Panagiota; Kitsantas, Anastasia; Anagnostopoulou, Tanya

    2008-01-01

    In this cross-cultural study, the authors attempted to identify high-risk subgroups for alcohol consumption among college students. American and Greek students (N = 132) answered questions about alcohol consumption, religious beliefs, attitudes toward drinking, advertisement influences, parental monitoring, and drinking consequences. Heavy drinkers in the American group were younger and less religious than were infrequent drinkers. In the Greek group, heavy drinkers tended to deny the negative results of drinking alcohol and use a permissive attitude to justify it, whereas infrequent drinkers were more likely to be monitored by their parents. These results suggest that parental monitoring and an emphasis on informing students about the negative effects of alcohol on their health and social and academic lives may be effective methods of reducing alcohol consumption. Classification tree analysis revealed that student attitudes toward drinking were important in the classification of American and Greek drinkers, indicating that this is a powerful predictor of alcohol consumption regardless of ethnic background.

  1. Dating ancient Chinese celadon porcelain by neutron activation analysis and bayesian classification

    Xie Guoxi; Feng Songlin; Feng Xiangqian; Zhu Jihao; Yan Lingtong; Li Li

    2009-01-01

    Dating ancient Chinese porcelain is one of the most important and difficult problems in porcelain archaeological field. Eighteen elements in bodies of ancient celadon porcelains fired in Southern Song to Yuan period (AD 1127-1368) and Ming dynasty (AD 1368-1644), including La, Sm, U, Ce, etc., were determined by neutron activation analysis (NAA). After the outliers of experimental data were excluded and multivariate normal distribution was tested, and Bayesian classification was used for dating of 165 ancient celadon porcelain samples. The results show that 98.2% of total ancient celadon porcelain samples are classified correctly. It means that NAA and Bayesian classification are very useful for dating ancient porcelain. (authors)

  2. Analysis of steranes and triterpanes in geolipid extracts by automatic classification of mass spectra

    Wardroper, A. M. K.; Brooks, P. W.; Humberston, M. J.; Maxwell, J. R.

    1977-01-01

    A computer method is described for the automatic classification of triterpanes and steranes into gross structural type from their mass spectral characteristics. The method has been applied to the spectra obtained by gas-chromatographic/mass-spectroscopic analysis of two mixtures of standards and of hydrocarbon fractions isolated from Green River and Messel oil shales. Almost all of the steranes and triterpanes identified previously in both shales were classified, in addition to a number of new components. The results indicate that classification of such alkanes is possible with a laboratory computer system. The method has application to diagenesis and maturation studies as well as to oil/oil and oil/source rock correlations in which rapid screening of large numbers of samples is required.

  3. Analysis of multiple spurions and associated circuits in Cofrentes

    Molina, J. J.; Celaya, M. A.

    2015-01-01

    The article describes the process followed by the Cofrentes Nuclear Power Plant (CNC) to conduct the analysis of multiple spurious in compliance with regulatory standards IS-30 rev 1 and CSN Safety Guide 1.19 based on the recommendations of the NEI-00-01 Guidance for Post-fire Safe Shutdown Circuit and NUREG/CR-6850. Fire PRA Methodology for Nuclear Power Facilities. (Author)

  4. Convergence Analysis for the Multiplicative Schwarz Preconditioned Inexact Newton Algorithm

    Liu, Lulu

    2016-10-26

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm, based on decomposition by field type rather than by subdomain, was recently introduced to improve the convergence of systems with unbalanced nonlinearities. This paper provides a convergence analysis of the MSPIN algorithm. Under reasonable assumptions, it is shown that MSPIN is locally convergent, and desired superlinear or even quadratic convergence can be obtained when the forcing terms are picked suitably.

  5. Convergence Analysis for the Multiplicative Schwarz Preconditioned Inexact Newton Algorithm

    Liu, Lulu; Keyes, David E.

    2016-01-01

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm, based on decomposition by field type rather than by subdomain, was recently introduced to improve the convergence of systems with unbalanced nonlinearities. This paper provides a convergence analysis of the MSPIN algorithm. Under reasonable assumptions, it is shown that MSPIN is locally convergent, and desired superlinear or even quadratic convergence can be obtained when the forcing terms are picked suitably.

  6. Methodological issues underlying multiple decrement life table analysis.

    Mode, C J; Avery, R C; Littman, G S; Potter, R G

    1977-02-01

    In this paper, the actuarial method of multiple decrement life table analysis of censored, longitudinal data is examined. The discussion is organized in terms of the first segment of usage of an intrauterine device. Weaknesses of the actuarial approach are pointed out, and an alternative approach, based on the classical model of competing risks, is proposed. Finally, the actuarial and the alternative method of analyzing censored data are compared, using data from the Taichung Medical Study on Intrauterine Devices.

  7. mma: An R Package for Mediation Analysis with Multiple Mediators

    Qingzhao Yu; Bin Li

    2017-01-01

    Mediation refers to the effect transmitted by mediators that intervene in the relationship between an exposure and a response variable. Mediation analysis has been broadly studied in many fields. However, it remains a challenge for researchers to consider complicated associations among variables and to differentiate individual effects from multiple mediators. [1] proposed general definitions of mediation effects that were adaptable to all different types of response (categorical or continuous...

  8. Multi-element neutron activation analysis and solution of classification problems using multidimensional statistics

    Vaganov, P.A.; Kol'tsov, A.A.; Kulikov, V.D.; Mejer, V.A.

    1983-01-01

    The multi-element instrumental neutron activation analysis of samples of mountain rocks (sandstones, aleurolites and shales of one of gold deposits) is performed. The spectra of irradiated samples are measured by Ge(Li) detector of the volume of 35 mm 3 . The content of 22 chemical elements is determined in each sample. The results of analysis serve as reliable basis for multi-dimensional statistic information processing, they constitute the basis for the generalized characteristics of rocks which brings about the solution of classification problem for rocks of different deposits

  9. Multivariant design and multiple criteria analysis of building refurbishments

    Kaklauskas, A.; Zavadskas, E. K.; Raslanas, S. [Faculty of Civil Engineering, Vilnius Gediminas Technical University, Vilnius (Lithuania)

    2005-07-01

    In order to design and realize an efficient building refurbishment, it is necessary to carry out an exhaustive investigation of all solutions that form it. The efficiency level of the considered building's refurbishment depends on a great many of factors, including: cost of refurbishment, annual fuel economy after refurbishment, tentative pay-back time, harmfulness to health of the materials used, aesthetics, maintenance properties, functionality, comfort, sound insulation and longevity, etc. Solutions of an alternative character allow for a more rational and realistic assessment of economic, ecological, legislative, climatic, social and political conditions, traditions and for better the satisfaction of customer requirements. They also enable one to cut down on refurbishment costs. In carrying out the multivariant design and multiple criteria analysis of a building refurbishment much data was processed and evaluated. Feasible alternatives could be as many as 100,000. How to perform a multivariant design and multiple criteria analysis of alternate alternatives based on the enormous amount of information became the problem. Method of multivariant design and multiple criteria of a building refurbishment's analysis were developed by the authors to solve the above problems. In order to demonstrate the developed method, a practical example is presented in this paper. (author)

  10. On the construction of a new stellar classification template library for the LAMOST spectral analysis pipeline

    Wei, Peng; Luo, Ali; Li, Yinbi; Tu, Liangping; Wang, Fengfei; Zhang, Jiannan; Chen, Xiaoyan; Hou, Wen; Kong, Xiao; Wu, Yue; Zuo, Fang; Yi, Zhenping; Zhao, Yongheng; Chen, Jianjun; Du, Bing; Guo, Yanxin; Ren, Juanjuan [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Pan, Jingchang; Jiang, Bin; Liu, Jie, E-mail: lal@nao.cas.cn, E-mail: weipeng@nao.cas.cn [School of Mechanical, Electrical, and Information Engineering, Shandong University, Weihai 264209 (China); and others

    2014-05-01

    The LAMOST spectral analysis pipeline, called the 1D pipeline, aims to classify and measure the spectra observed in the LAMOST survey. Through this pipeline, the observed stellar spectra are classified into different subclasses by matching with template spectra. Consequently, the performance of the stellar classification greatly depends on the quality of the template spectra. In this paper, we construct a new LAMOST stellar spectral classification template library, which is supposed to improve the precision and credibility of the present LAMOST stellar classification. About one million spectra are selected from LAMOST Data Release One to construct the new stellar templates, and they are gathered in 233 groups by two criteria: (1) pseudo g – r colors obtained by convolving the LAMOST spectra with the Sloan Digital Sky Survey ugriz filter response curve, and (2) the stellar subclass given by the LAMOST pipeline. In each group, the template spectra are constructed using three steps. (1) Outliers are excluded using the Local Outlier Probabilities algorithm, and then the principal component analysis method is applied to the remaining spectra of each group. About 5% of the one million spectra are ruled out as outliers. (2) All remaining spectra are reconstructed using the first principal components of each group. (3) The weighted average spectrum is used as the template spectrum in each group. Using the previous 3 steps, we initially obtain 216 stellar template spectra. We visually inspect all template spectra, and 29 spectra are abandoned due to low spectral quality. Furthermore, the MK classification for the remaining 187 template spectra is manually determined by comparing with 3 template libraries. Meanwhile, 10 template spectra whose subclass is difficult to determine are abandoned. Finally, we obtain a new template library containing 183 LAMOST template spectra with 61 different MK classes by combining it with the current library.

  11. Comparison of Standard and Novel Signal Analysis Approaches to Obstructive Sleep Apnoea Classification

    Aoife eRoebuck

    2015-08-01

    Full Text Available Obstructive sleep apnoea (OSA is a disorder characterised by repeated pauses in breathing during sleep, which leads to deoxygenation and voiced chokes at the end of each episode. OSA is associated by daytime sleepiness and an increased risk of serious conditions such as cardiovascular disease, diabetes and stroke. Between 2-7% of the adult population globally has OSA, but it is estimated that up to 90% of those are undiagnosed and untreated. Diagnosis of OSA requires expensive and cumbersome screening. Audio offers a potential non-contact alternative, particularly with the ubiquity of excellent signal processing on every phone.Previous studies have focused on the classification of snoring and apnoeic chokes. However, such approaches require accurate identification of events. This leads to limited accuracy and small study populations. In this work we propose an alternative approach which uses multiscale entropy (MSE coefficients presented to a classifier to identify disorder in vocal patterns indicative of sleep apnoea. A database of 858 patients was used, the largest reported in this domain. Apnoeic choke, snore, and noise events encoded with speech analysis features were input into a linear classifier. Coefficients of MSE derived from the first 4 hours of each recording were used to train and test a random forest to classify patients as apnoeic or not.Standard speech analysis approaches for event classification achieved an out of sample accuracy (Ac of 76.9% with a sensitivity (Se of 29.2% and a specificity (Sp of 88.7% but high variance. For OSA severity classification, MSE provided an out of sample Ac of 79.9%, Se of 66.0% and Sp = 88.8%. Including demographic information improved the MSE-based classification performance to Ac = 80.5%, Se = 69.2%, Sp = 87.9%. These results indicate that audio recordings could be used in screening for OSA, but are generally under-sensitive.

  12. Probability Density Components Analysis: A New Approach to Treatment and Classification of SAR Images

    Osmar Abílio de Carvalho Júnior

    2014-04-01

    Full Text Available Speckle noise (salt and pepper is inherent to synthetic aperture radar (SAR, which causes a usual noise-like granular aspect and complicates the image classification. In SAR image analysis, the spatial information might be a particular benefit for denoising and mapping classes characterized by a statistical distribution of the pixel intensities from a complex and heterogeneous spectral response. This paper proposes the Probability Density Components Analysis (PDCA, a new alternative that combines filtering and frequency histogram to improve the classification procedure for the single-channel synthetic aperture radar (SAR images. This method was tested on L-band SAR data from the Advanced Land Observation System (ALOS Phased-Array Synthetic-Aperture Radar (PALSAR sensor. The study area is localized in the Brazilian Amazon rainforest, northern Rondônia State (municipality of Candeias do Jamari, containing forest and land use patterns. The proposed algorithm uses a moving window over the image, estimating the probability density curve in different image components. Therefore, a single input image generates an output with multi-components. Initially the multi-components should be treated by noise-reduction methods, such as maximum noise fraction (MNF or noise-adjusted principal components (NAPCs. Both methods enable reducing noise as well as the ordering of multi-component data in terms of the image quality. In this paper, the NAPC applied to multi-components provided large reductions in the noise levels, and the color composites considering the first NAPC enhance the classification of different surface features. In the spectral classification, the Spectral Correlation Mapper and Minimum Distance were used. The results obtained presented as similar to the visual interpretation of optical images from TM-Landsat and Google Maps.

  13. Place-classification analysis of community vulnerability to near-field tsunami threats in the U.S. Pacific Northwest

    Wood, N. J.; Spielman, S.

    2012-12-01

    Near-field tsunami hazards are credible threats to many coastal communities throughout the world. Along the U.S. Pacific Northwest coast, low-lying areas could be inundated by a series of catastrophic tsunamis that begin to arrive in a matter of minutes following a major Cascadia subduction zone (CSZ) earthquake. Previous research has documented the residents, employees, tourists at public venues, customers at local businesses, and vulnerable populations at dependent-care facilities that are in CSZ-related tsunami-prone areas of northern California, Oregon, and the open-ocean coast of Washington. Community inventories of demographic attributes and other characteristics of the at-risk population have helped emergency managers to develop preparedness and outreach efforts. Although useful for distinct risk-reduction issues, these data can be difficult to fully appreciate holistically given the large number of community attributes. This presentation summarizes analytical efforts to classify communities with similar characteristics of community exposure to tsunami hazards. This work builds on past State-focused inventories of community exposure to CSZ-related tsunami hazards in northern California, Oregon, and Washington. Attributes used in the classification, or cluster analysis, fall into several categories, including demography of residents, spatial extent of the developed footprint based on mid-resolution land cover data, distribution of the local workforce, and the number and type of public venues, dependent-care facilities, and community-support businesses. As we were unsure of the number of different types of communities, we used an unsupervised-model-based clustering algorithm and a v-fold, cross-validation procedure (v=50) to identify the appropriate number of community types. Ultimately we selected class solutions that provided the appropriate balance between parsimony and model fit. The goal of the exposure classification is to provide emergency managers with

  14. Assessing and monitoring of urban vegetation using multiple endmember spectral mixture analysis

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.

    2013-08-01

    During last years urban vegetation with significant health, biological and economical values had experienced dramatic changes due to urbanization and human activities in the metropolitan area of Bucharest in Romania. We investigated the utility of remote sensing approaches of multiple endmember spectral mixture analysis (MESMA) applied to IKONOS and Landsat TM/ETM satellite data for estimating fractional cover of urban/periurban forest, parks, agricultural vegetation areas. Because of the spectral heterogeneity of same physical features of urban vegetation increases with the increase of image resolution, the traditional spectral information-based statistical method may not be useful to classify land cover dynamics from high resolution imageries like IKONOS. So we used hierarchy tree classification method in classification and MESMA for vegetation land cover dynamics assessment based on available IKONOS high-resolution imagery of Bucharest town. This study employs thirty two endmembers and six hundred and sixty spectral models to identify all Earth's features (vegetation, water, soil, impervious) and shade in the Bucharest area. The mean RMS error for the selected vegetation land cover classes range from 0.0027 to 0.018. The Pearson correlation between the fraction outputs from MESMA and reference data from all IKONOS images 1m panchromatic resolution data for urban/periurban vegetation were ranging in the domain 0.7048 - 0.8287. The framework in this study can be applied to other urban vegetation areas in Romania.

  15. Robustness Analysis of Real Network Topologies Under Multiple Failure Scenarios

    Manzano, M.; Marzo, J. L.; Calle, E.

    2012-01-01

    on topological characteristics. Recently approaches also consider the services supported by such networks. In this paper we carry out a robustness analysis of five real backbone telecommunication networks under defined multiple failure scenarios, taking into account the consequences of the loss of established......Nowadays the ubiquity of telecommunication networks, which underpin and fulfill key aspects of modern day living, is taken for granted. Significant large-scale failures have occurred in the last years affecting telecommunication networks. Traditionally, network robustness analysis has been focused...... connections. Results show which networks are more robust in response to a specific type of failure....

  16. An engineering geological appraisal of the Chamshir dam foundation using DMR classification and kinematic analysis, southwest of Iran

    Torabi Kaveh Mehdi

    2011-12-01

    Full Text Available This paper describes the results of engineering geological  investigations and rock mechanics studies carried out at the proposed Chamshir dam site. It is proposed that a 155 m high solid concrete gravity-arc dam be built across the Zuhreh River to the southeast of the city of Gachsaran in south-western Iran. The dam and its associated structures are mainly located on the Mishan formation. Analysis consisted of rock mass classification and a kinematic
    analysis of the dam foundation's rock masses. The studies were carried out in the field and the laboratory. The field studies included geological mapping, intensive discontinuity surveying, core drilling and sampling for laboratory testing. Rock mass classifications were made in line with RMR and DMR classification for the dam foundation. Dam foundation analysis regarding stability using DMR classification and kinematic analysis indicated that the left abutment's rock foundation (area 2 was unstable for planar, wedge and toppling failure modes.

  17. Use of International Classification of Functioning, Disability and Health (ICF) to describe patient-reported disability in multiple sclerosis and identification of relevant environmental factors.

    Khan, Fary; Pallant, Julie F

    2007-01-01

    To use the International Classification of Functioning, Disability and Health (ICF) to describe patient-reported disability in multiple sclerosis and identify relevant environmental factors. Cross-sectional survey of 101 participants in the community. Their multiple sclerosis-related problems were linked with ICF categories (second level) using a checklist, consensus between health professionals and the "linking rules". The impact of multiple sclerosis on health areas corresponding to 48 ICF categories was also assessed. A total of 170 ICF categories were identified (mean age 49 years, 72 were female). Average number of problems reported was 18. The categories include 48 (42%) for body function, 16 (34%) body structure, 68 (58%) activities and participation and 38 (51%) for environmental factors. Extreme impact in health areas corresponding to ICF categories for activities and participation were reported for mobility, work, everyday home activities, community and social activities. While those for the environmental factors (barriers) included products for mobility, attitudes of extended family, restriction accessing social security and health resources. This study is a first step in the use of the ICF in persons with multiple sclerosis and towards development of the ICF Core set for multiple sclerosis from a broader international perspective.

  18. Atmospheric pressure chemical ionisation mass spectrometry analysis linked with chemometrics for food classification - a case study: geographical provenance and cultivar classification of monovarietal clarified apple juices.

    Gan, Heng-Hui; Soukoulis, Christos; Fisk, Ian

    2014-03-01

    In the present work, we have evaluated for first time the feasibility of APCI-MS volatile compound fingerprinting in conjunction with chemometrics (PLS-DA) as a new strategy for rapid and non-destructive food classification. For this purpose 202 clarified monovarietal juices extracted from apples differing in their botanical and geographical origin were used for evaluation of the performance of APCI-MS as a classification tool. For an independent test set PLS-DA analyses of pre-treated spectral data gave 100% and 94.2% correct classification rate for the classification by cultivar and geographical origin, respectively. Moreover, PLS-DA analysis of APCI-MS in conjunction with GC-MS data revealed that masses within the spectral ACPI-MS data set were related with parent ions or fragments of alkyesters, carbonyl compounds (hexanal, trans-2-hexenal) and alcohols (1-hexanol, 1-butanol, cis-3-hexenol) and had significant discriminating power both in terms of cultivar and geographical origin. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Application of texture analysis method for classification of benign and malignant thyroid nodules in ultrasound images.

    Abbasian Ardakani, Ali; Gharbali, Akbar; Mohammadi, Afshin

    2015-01-01

    The aim of this study was to evaluate computer aided diagnosis (CAD) system with texture analysis (TA) to improve radiologists' accuracy in identification of thyroid nodules as malignant or benign. A total of 70 cases (26 benign and 44 malignant) were analyzed in this study. We extracted up to 270 statistical texture features as a descriptor for each selected region of interests (ROIs) in three normalization schemes (default, 3s and 1%-99%). Then features by the lowest probability of classification error and average correlation coefficients (POE+ACC), and Fisher coefficient (Fisher) eliminated to 10 best and most effective features. These features were analyzed under standard and nonstandard states. For TA of the thyroid nodules, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA) were applied. First Nearest-Neighbour (1-NN) classifier was performed for the features resulting from PCA and LDA. NDA features were classified by artificial neural network (A-NN). Receiver operating characteristic (ROC) curve analysis was used for examining the performance of TA methods. The best results were driven in 1-99% normalization with features extracted by POE+ACC algorithm and analyzed by NDA with the area under the ROC curve ( Az) of 0.9722 which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Our results indicate that TA is a reliable method, can provide useful information help radiologist in detection and classification of benign and malignant thyroid nodules.

  20. Classification of Ilex species based on metabolomic fingerprinting using nuclear magnetic resonance and multivariate data analysis.

    Choi, Young Hae; Sertic, Sarah; Kim, Hye Kyong; Wilson, Erica G; Michopoulos, Filippos; Lefeber, Alfons W M; Erkelens, Cornelis; Prat Kricun, Sergio D; Verpoorte, Robert

    2005-02-23

    The metabolomic analysis of 11 Ilex species, I. argentina, I. brasiliensis, I. brevicuspis, I. dumosavar. dumosa, I. dumosa var. guaranina, I. integerrima, I. microdonta, I. paraguariensis var. paraguariensis, I. pseudobuxus, I. taubertiana, and I. theezans, was carried out by NMR spectroscopy and multivariate data analysis. The analysis using principal component analysis and classification of the (1)H NMR spectra showed a clear discrimination of those samples based on the metabolites present in the organic and aqueous fractions. The major metabolites that contribute to the discrimination are arbutin, caffeine, phenylpropanoids, and theobromine. Among those metabolites, arbutin, which has not been reported yet as a constituent of Ilex species, was found to be a biomarker for I. argentina,I. brasiliensis, I. brevicuspis, I. integerrima, I. microdonta, I. pseudobuxus, I. taubertiana, and I. theezans. This reliable method based on the determination of a large number of metabolites makes the chemotaxonomical analysis of Ilex species possible.

  1. Improving Cross-Day EEG-Based Emotion Classification Using Robust Principal Component Analysis

    Yuan-Pin Lin

    2017-07-01

    Full Text Available Constructing a robust emotion-aware analytical framework using non-invasively recorded electroencephalogram (EEG signals has gained intensive attentions nowadays. However, as deploying a laboratory-oriented proof-of-concept study toward real-world applications, researchers are now facing an ecological challenge that the EEG patterns recorded in real life substantially change across days (i.e., day-to-day variability, arguably making the pre-defined predictive model vulnerable to the given EEG signals of a separate day. The present work addressed how to mitigate the inter-day EEG variability of emotional responses with an attempt to facilitate cross-day emotion classification, which was less concerned in the literature. This study proposed a robust principal component analysis (RPCA-based signal filtering strategy and validated its neurophysiological validity and machine-learning practicability on a binary emotion classification task (happiness vs. sadness using a five-day EEG dataset of 12 subjects when participated in a music-listening task. The empirical results showed that the RPCA-decomposed sparse signals (RPCA-S enabled filtering off the background EEG activity that contributed more to the inter-day variability, and predominately captured the EEG oscillations of emotional responses that behaved relatively consistent along days. Through applying a realistic add-day-in classification validation scheme, the RPCA-S progressively exploited more informative features (from 12.67 ± 5.99 to 20.83 ± 7.18 and improved the cross-day binary emotion-classification accuracy (from 58.31 ± 12.33% to 64.03 ± 8.40% as trained the EEG signals from one to four recording days and tested against one unseen subsequent day. The original EEG features (prior to RPCA processing neither achieved the cross-day classification (the accuracy was around chance level nor replicated the encouraging improvement due to the inter-day EEG variability. This result

  2. Functional analysis screening for multiple topographies of problem behavior.

    Bell, Marlesha C; Fahmie, Tara A

    2018-04-23

    The current study evaluated a screening procedure for multiple topographies of problem behavior in the context of an ongoing functional analysis. Experimenters analyzed the function of a topography of primary concern while collecting data on topographies of secondary concern. We used visual analysis to predict the function of secondary topographies and a subsequent functional analysis to test those predictions. Results showed that a general function was accurately predicted for five of six (83%) secondary topographies. A specific function was predicted and supported for a subset of these topographies. The experimenters discuss the implication of these results for clinicians who have limited time for functional assessment. © 2018 Society for the Experimental Analysis of Behavior.

  3. Common pitfalls in statistical analysis: The perils of multiple testing

    Ranganathan, Priya; Pramesh, C. S.; Buyse, Marc

    2016-01-01

    Multiple testing refers to situations where a dataset is subjected to statistical testing multiple times - either at multiple time-points or through multiple subgroups or for multiple end-points. This amplifies the probability of a false-positive finding. In this article, we look at the consequences of multiple testing and explore various methods to deal with this issue. PMID:27141478

  4. CLASSIFICATION OF LIDAR DATA OVER BUILDING ROOFS USING K-MEANS AND PRINCIPAL COMPONENT ANALYSIS

    Renato César dos Santos

    Full Text Available Abstract: The classification is an important step in the extraction of geometric primitives from LiDAR data. Normally, it is applied for the identification of points sampled on geometric primitives of interest. In the literature there are several studies that have explored the use of eigenvalues to classify LiDAR points into different classes or structures, such as corner, edge, and plane. However, in some works the classes are defined considering an ideal geometry, which can be affected by the inadequate sampling and/or by the presence of noise when using real data. To overcome this limitation, in this paper is proposed the use of metrics based on eigenvalues and the k-means method to carry out the classification. So, the concept of principal component analysis is used to obtain the eigenvalues and the derived metrics, while the k-means is applied to cluster the roof points in two classes: edge and non-edge. To evaluate the proposed method four test areas with different levels of complexity were selected. From the qualitative and quantitative analyses, it could be concluded that the proposed classification procedure gave satisfactory results, resulting in completeness and correctness above 92% for the non-edge class, and between 61% to 98% for the edge class.

  5. Classification of peacock feather reflectance using principal component analysis similarity factors from multispectral imaging data.

    Medina, José M; Díaz, José A; Vukusic, Pete

    2015-04-20

    Iridescent structural colors in biology exhibit sophisticated spatially-varying reflectance properties that depend on both the illumination and viewing angles. The classification of such spectral and spatial information in iridescent structurally colored surfaces is important to elucidate the functional role of irregularity and to improve understanding of color pattern formation at different length scales. In this study, we propose a non-invasive method for the spectral classification of spatial reflectance patterns at the micron scale based on the multispectral imaging technique and the principal component analysis similarity factor (PCASF). We demonstrate the effectiveness of this approach and its component methods by detailing its use in the study of the angle-dependent reflectance properties of Pavo cristatus (the common peacock) feathers, a species of peafowl very well known to exhibit bright and saturated iridescent colors. We show that multispectral reflectance imaging and PCASF approaches can be used as effective tools for spectral recognition of iridescent patterns in the visible spectrum and provide meaningful information for spectral classification of the irregularity of the microstructure in iridescent plumage.

  6. Improving breast cancer classification with mammography, supported on an appropriate variable selection analysis

    Pérez, Noel; Guevara, Miguel A.; Silva, Augusto

    2013-02-01

    This work addresses the issue of variable selection within the context of breast cancer classification with mammography. A comprehensive repository of feature vectors was used including a hybrid subset gathering image-based and clinical features. It aimed to gather experimental evidence of variable selection in terms of cardinality, type and find a classification scheme that provides the best performance over the Area Under Receiver Operating Characteristics Curve (AUC) scores using the ranked features subset. We evaluated and classified a total of 300 subsets of features formed by the application of Chi-Square Discretization, Information-Gain, One-Rule and RELIEF methods in association with Feed-Forward Backpropagation Neural Network (FFBP), Support Vector Machine (SVM) and Decision Tree J48 (DTJ48) Machine Learning Algorithms (MLA) for a comparative performance evaluation based on AUC scores. A variable selection analysis was performed for Single-View Ranking and Multi-View Ranking groups of features. Features subsets representing Microcalcifications (MCs), Masses and both MCs and Masses lesions achieved AUC scores of 0.91, 0.954 and 0.934 respectively. Experimental evidence demonstrated that classification performance was improved by combining image-based and clinical features. The most important clinical and image-based features were StromaDistortion and Circularity respectively. Other less important but worth to use due to its consistency were Contrast, Perimeter, Microcalcification, Correlation and Elongation.

  7. mma: An R Package for Mediation Analysis with Multiple Mediators

    Qingzhao Yu

    2017-04-01

    Full Text Available Mediation refers to the effect transmitted by mediators that intervene in the relationship between an exposure and a response variable. Mediation analysis has been broadly studied in many fields. However, it remains a challenge for researchers to consider complicated associations among variables and to differentiate individual effects from multiple mediators. [1] proposed general definitions of mediation effects that were adaptable to all different types of response (categorical or continuous, exposure, or mediation variables. With these definitions, multiple mediators of different types can be considered simultaneously, and the indirect effects carried by individual mediators can be separated from the total effect. Moreover, the derived mediation analysis can be performed with general predictive models. That is, the relationships among variables can be modeled using not only generalized linear models but also nonparametric models such as the Multiple Additive Regression Trees. Therefore, more complicated variable transformations and interactions can be considered in analyzing the mediation effects. The proposed method is realized by the R package 'mma'. We illustrate in this paper the proposed method and how to use 'mma' to estimate mediation effects and make inferences.

  8. Clinicopathological analysis of biopsy-proven diabetic nephropathy based on the Japanese classification of diabetic nephropathy.

    Furuichi, Kengo; Shimizu, Miho; Yuzawa, Yukio; Hara, Akinori; Toyama, Tadashi; Kitamura, Hiroshi; Suzuki, Yoshiki; Sato, Hiroshi; Uesugi, Noriko; Ubara, Yoshifumi; Hohino, Junichi; Hisano, Satoshi; Ueda, Yoshihiko; Nishi, Shinichi; Yokoyama, Hitoshi; Nishino, Tomoya; Kohagura, Kentaro; Ogawa, Daisuke; Mise, Koki; Shibagaki, Yugo; Makino, Hirofumi; Matsuo, Seiichi; Wada, Takashi

    2018-06-01

    The Japanese classification of diabetic nephropathy reflects the risks of mortality, cardiovascular events and kidney prognosis and is clinically useful. Furthermore, pathological findings of diabetic nephropathy are useful for predicting prognoses. In this study, we evaluated the characteristics of pathological findings in relation to the Japanese classification of diabetic nephropathy and their ability to predict prognosis. The clinical data of 600 biopsy-confirmed diabetic nephropathy patients were collected retrospectively from 13 centers across Japan. Composite kidney events, kidney death, cardiovascular events, all-cause mortality, and decreasing rate of estimated GFR (eGFR) were evaluated based on the Japanese classification of diabetic nephropathy. The median observation period was 70.4 (IQR 20.9-101.0) months. Each stage had specific characteristic pathological findings. Diffuse lesions, interstitial fibrosis and/or tubular atrophy (IFTA), interstitial cell infiltration, arteriolar hyalinosis, and intimal thickening were detected in more than half the cases, even in Stage 1. An analysis of the impacts on outcomes in all data showed that hazard ratios of diffuse lesions, widening of the subendothelial space, exudative lesions, mesangiolysis, IFTA, and interstitial cell infiltration were 2.7, 2.8, 2.7, 2.6, 3.5, and 3.7, respectively. Median declining speed of eGFR in all cases was 5.61 mL/min/1.73 m 2 /year, and the median rate of declining kidney function within 2 years after kidney biopsy was 24.0%. This study indicated that pathological findings could categorize the high-risk group as well as the Japanese classification of diabetic nephropathy. Further study using biopsy specimens is required to clarify the pathogenesis of diabetic kidney disease.

  9. Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification.

    Dai, Baisheng; Wu, Xiangqian; Bu, Wei

    2016-01-01

    Retinal microaneurysms (MAs) are the earliest clinically observable lesions of diabetic retinopathy. Reliable automated MAs detection is thus critical for early diagnosis of diabetic retinopathy. This paper proposes a novel method for the automated MAs detection in color fundus images based on gradient vector analysis and class imbalance classification, which is composed of two stages, i.e. candidate MAs extraction and classification. In the first stage, a candidate MAs extraction algorithm is devised by analyzing the gradient field of the image, in which a multi-scale log condition number map is computed based on the gradient vectors for vessel removal, and then the candidate MAs are localized according to the second order directional derivatives computed in different directions. Due to the complexity of fundus image, besides a small number of true MAs, there are also a large amount of non-MAs in the extracted candidates. Classifying the true MAs and the non-MAs is an extremely class imbalanced classification problem. Therefore, in the second stage, several types of features including geometry, contrast, intensity, edge, texture, region descriptors and other features are extracted from the candidate MAs and a class imbalance classifier, i.e., RUSBoost, is trained for the MAs classification. With the Retinopathy Online Challenge (ROC) criterion, the proposed method achieves an average sensitivity of 0.433 at 1/8, 1/4, 1/2, 1, 2, 4 and 8 false positives per image on the ROC database, which is comparable with the state-of-the-art approaches, and 0.321 on the DiaRetDB1 V2.1 database, which outperforms the state-of-the-art approaches.

  10. Probabilistic topic modeling for the analysis and classification of genomic sequences

    2015-01-01

    Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734

  11. Automatic visual tracking and social behaviour analysis with multiple mice.

    Luca Giancardo

    Full Text Available Social interactions are made of complex behavioural actions that might be found in all mammalians, including humans and rodents. Recently, mouse models are increasingly being used in preclinical research to understand the biological basis of social-related pathologies or abnormalities. However, reliable and flexible automatic systems able to precisely quantify social behavioural interactions of multiple mice are still missing. Here, we present a system built on two components. A module able to accurately track the position of multiple interacting mice from videos, regardless of their fur colour or light settings, and a module that automatically characterise social and non-social behaviours. The behavioural analysis is obtained by deriving a new set of specialised spatio-temporal features from the tracker output. These features are further employed by a learning-by-example classifier, which predicts for each frame and for each mouse in the cage one of the behaviours learnt from the examples given by the experimenters. The system is validated on an extensive set of experimental trials involving multiple mice in an open arena. In a first evaluation we compare the classifier output with the independent evaluation of two human graders, obtaining comparable results. Then, we show the applicability of our technique to multiple mice settings, using up to four interacting mice. The system is also compared with a solution recently proposed in the literature that, similarly to us, addresses the problem with a learning-by-examples approach. Finally, we further validated our automatic system to differentiate between C57B/6J (a commonly used reference inbred strain and BTBR T+tf/J (a mouse model for autism spectrum disorders. Overall, these data demonstrate the validity and effectiveness of this new machine learning system in the detection of social and non-social behaviours in multiple (>2 interacting mice, and its versatility to deal with different

  12. Mode Shape Analysis of Multiple Cracked Functionally Graded Timoshenko Beams

    Tran Van Lien

    Full Text Available Abstract The present paper addresses free vibration of multiple cracked Timoshenko beams made of Functionally Graded Material (FGM. Cracks are modeled by rotational spring of stiffness calculated from the crack depth and material properties vary according to the power law throughout the beam thickness. Governing equations for free vibration of the beam are formulated with taking into account actual position of the neutral plane. The obtained frequency equation and mode shapes are used for analysis of the beam mode shapes in dependence on the material and crack parameters. Numerical results validate usefulness of the proposed herein theory and show that mode shapes are good indication for detecting multiple cracks in Timoshenko FGM beams.

  13. Multifractal detrended fluctuation analysis of analog random multiplicative processes

    Silva, L.B.M.; Vermelho, M.V.D. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil); Lyra, M.L. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)], E-mail: marcelo@if.ufal.br; Viswanathan, G.M. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)

    2009-09-15

    We investigate non-Gaussian statistical properties of stationary stochastic signals generated by an analog circuit that simulates a random multiplicative process with weak additive noise. The random noises are originated by thermal shot noise and avalanche processes, while the multiplicative process is generated by a fully analog circuit. The resulting signal describes stochastic time series of current interest in several areas such as turbulence, finance, biology and environment, which exhibit power-law distributions. Specifically, we study the correlation properties of the signal by employing a detrended fluctuation analysis and explore its multifractal nature. The singularity spectrum is obtained and analyzed as a function of the control circuit parameter that tunes the asymptotic power-law form of the probability distribution function.

  14. Data analysis and pattern recognition in multiple databases

    Adhikari, Animesh; Pedrycz, Witold

    2014-01-01

    Pattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyse them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery, and mining patterns of select items provide different...

  15. Multiple predictor smoothing methods for sensitivity analysis: Description of techniques

    Storlie, Curtis B.; Helton, Jon C.

    2008-01-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (i) locally weighted regression (LOESS), (ii) additive models, (iii) projection pursuit regression, and (iv) recursive partitioning regression. Then, in the second and concluding part of this presentation, the indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present

  16. Multiple predictor smoothing methods for sensitivity analysis: Example results

    Storlie, Curtis B.; Helton, Jon C.

    2008-01-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described in the first part of this presentation: (i) locally weighted regression (LOESS), (ii) additive models, (iii) projection pursuit regression, and (iv) recursive partitioning regression. In this, the second and concluding part of the presentation, the indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present

  17. Two-locus linkage analysis in multiple sclerosis (MS)

    Tienari, P.J. (National Public Health Institute, Helsinki (Finland) Univ. of Helsinki (Finland)); Terwilliger, J.D.; Ott, J. (Columbia Univ., New York (United States)); Palo, J. (Univ. of Helsinki (Finland)); Peltonen, L. (National Public Health Institute, Helsinki (Finland))

    1994-01-15

    One of the major challenges in genetic linkage analyses is the study of complex diseases. The authors demonstrate here the use of two-locus linkage analysis in multiple sclerosis (MS), a multifactorial disease with a complex mode of inheritance. In a set of Finnish multiplex families, they have previously found evidence for linkage between MS susceptibility and two independent loci, the myelin basic protein gene (MBP) on chromosome 18 and the HLA complex on chromosome 6. This set of families provides a unique opportunity to perform linkage analysis conditional on two loci contributing to the disease. In the two-trait-locus/two-marker-locus analysis, the presence of another disease locus is parametrized and the analysis more appropriately treats information from the unaffected family member than single-disease-locus analysis. As exemplified here in MS, the two-locus analysis can be a powerful method for investigating susceptibility loci in complex traits, best suited for analysis of specific candidate genes, or for situations in which preliminary evidence for linkage already exists or is suggested. 41 refs., 6 tabs.

  18. Rasch analysis of the Multiple Sclerosis Impact Scale (MSIS-29

    Misajon Rose

    2009-06-01

    Full Text Available Abstract Background Multiple Sclerosis (MS is a degenerative neurological disease that causes impairments, including spasticity, pain, fatigue, and bladder dysfunction, which negatively impact on quality of life. The Multiple Sclerosis Impact Scale (MSIS-29 is a disease-specific health-related quality of life (HRQoL instrument, developed using the patient's perspective on disease impact. It consists of two subscales assessing the physical (MSIS-29-PHYS and psychological (MSIS-29-PSYCH impact of MS. Although previous studies have found support for the psychometric properties of the MSIS-29 using traditional methods of scale evaluation, the scale has not been subjected to a detailed Rasch analysis. Therefore, the objective of this study was to use Rasch analysis to assess the internal validity of the scale, and its response format, item fit, targeting, internal consistency and dimensionality. Methods Ninety-two persons with definite MS residing in the community were recruited from a tertiary hospital database. Patients completed the MSIS-29 as part of a larger study. Rasch analysis was undertaken to assess the psychometric properties of the MSIS-29. Results Rasch analysis showed overall support for the psychometric properties of the two MSIS-29 subscales, however it was necessary to reduce the response format of the MSIS-29-PHYS to a 3-point response scale. Both subscales were unidimensional, had good internal consistency, and were free from item bias for sex and age. Dimensionality testing indicated it was not appropriate to combine the two subscales to form a total MSIS score. Conclusion In this first study to use Rasch analysis to fully assess the psychometric properties of the MSIS-29 support was found for the two subscales but not for the use of the total scale. Further use of Rasch analysis on the MSIS-29 in larger and broader samples is recommended to confirm these findings.

  19. Rasch analysis of the Multiple Sclerosis Impact Scale (MSIS-29)

    Ramp, Melina; Khan, Fary; Misajon, Rose Anne; Pallant, Julie F

    2009-01-01

    Background Multiple Sclerosis (MS) is a degenerative neurological disease that causes impairments, including spasticity, pain, fatigue, and bladder dysfunction, which negatively impact on quality of life. The Multiple Sclerosis Impact Scale (MSIS-29) is a disease-specific health-related quality of life (HRQoL) instrument, developed using the patient's perspective on disease impact. It consists of two subscales assessing the physical (MSIS-29-PHYS) and psychological (MSIS-29-PSYCH) impact of MS. Although previous studies have found support for the psychometric properties of the MSIS-29 using traditional methods of scale evaluation, the scale has not been subjected to a detailed Rasch analysis. Therefore, the objective of this study was to use Rasch analysis to assess the internal validity of the scale, and its response format, item fit, targeting, internal consistency and dimensionality. Methods Ninety-two persons with definite MS residing in the community were recruited from a tertiary hospital database. Patients completed the MSIS-29 as part of a larger study. Rasch analysis was undertaken to assess the psychometric properties of the MSIS-29. Results Rasch analysis showed overall support for the psychometric properties of the two MSIS-29 subscales, however it was necessary to reduce the response format of the MSIS-29-PHYS to a 3-point response scale. Both subscales were unidimensional, had good internal consistency, and were free from item bias for sex and age. Dimensionality testing indicated it was not appropriate to combine the two subscales to form a total MSIS score. Conclusion In this first study to use Rasch analysis to fully assess the psychometric properties of the MSIS-29 support was found for the two subscales but not for the use of the total scale. Further use of Rasch analysis on the MSIS-29 in larger and broader samples is recommended to confirm these findings. PMID:19545445

  20. Analysis of powered two-wheeler crashes in Italy by classification trees and rules discovery.

    Montella, Alfonso; Aria, Massimo; D'Ambrosio, Antonio; Mauriello, Filomena

    2012-11-01

    Aim of the study was the analysis of powered two-wheeler (PTW) crashes in Italy in order to detect interdependence as well as dissimilarities among crash characteristics and provide insights for the development of safety improvement strategies focused on PTWs. At this aim, data mining techniques were used to analyze the data relative to the 254,575 crashes involving PTWs occurred in Italy in the period 2006-2008. Classification trees analysis and rules discovery were performed. Tree-based methods are non-linear and non-parametric data mining tools for supervised classification and regression problems. They do not require a priori probabilistic knowledge about the phenomena under studying and consider conditional interactions among input data. Rules discovery is the identification of sets of items (i.e., crash patterns) that occur together in a given event (i.e., a crash in our study) more often than they would if they were independent of each other. Thus, the method can detect interdependence among crash characteristics. Due to the large number of patterns considered, both methods suffer from an extreme risk of finding patterns that appear due to chance alone. To overcome this problem, in our study we randomly split the sample data in two data sets and used well-established statistical practices to evaluate the statistical significance of the results. Both the classification trees and the rules discovery were effective in providing meaningful insights about PTW crash characteristics and their interdependencies. Even though in several cases different crash characteristics were highlighted, the results of the two the analysis methods were never contradictory. Furthermore, most of the findings of this study were consistent with the results of previous studies which used different analytical techniques, such as probabilistic models of crash injury severity. Basing on the analysis results, engineering countermeasures and policy initiatives to reduce PTW injuries and

  1. Hazard Classification and Auditable Safety Analysis for the 1300-N Emergency Dump Basin

    Kloster, G.L.

    1998-01-01

    This document combines three analytical functions consisting of (1) the hazards baseline of the Emergency Dump Basin (EDB) for surveillance and maintenance, (2) the final hazard classification for the facility, and (3) and auditable safety analysis. This document also describes the potential hazards contained within the EDB at the N Reactor complex and the vulnerabilities of those hazards. The EDB segment is defined and confirmed its independence from other segments at the site by demonstrating that no potential adverse interactions exist between the segments. No EDB hazards vulnerabilities were identified that require reliance on either active, mitigative, or protective measures; adequate facility structural integrity exists to safely control the hazards

  2. Object Classification Based on Analysis of Spectral Characteristics of Seismic Signal Envelopes

    Morozov, Yu. V.; Spektor, A. A.

    2017-11-01

    A method for classifying moving objects having a seismic effect on the ground surface is proposed which is based on statistical analysis of the envelopes of received signals. The values of the components of the amplitude spectrum of the envelopes obtained applying Hilbert and Fourier transforms are used as classification criteria. Examples illustrating the statistical properties of spectra and the operation of the seismic classifier are given for an ensemble of objects of four classes (person, group of people, large animal, vehicle). It is shown that the computational procedures for processing seismic signals are quite simple and can therefore be used in real-time systems with modest requirements for computational resources.

  3. Final Hazard Classification and Auditable Safety Analysis for the N Basin Segment

    Kloster, G.L.

    1998-08-01

    The purposes of this report are to serve as the auditable safety analysis (ASA) for the N Basin Segment, during surveillance and maintenance preceding decontamination and decommissioning; to determine and document the final hazard classification (FHC) for the N Basin Segment. The result of the ASA evaluation are: based on hazard analyses and the evaluation of accidents, no activity could credibly result in an unacceptable exposure to an individual; controls are identified that serve to protect worker health and safety. The results of the FHC evaluation are: potential exposure is much below 10 rem (0.46 rem), and the FHC for the N Basin Segment is Radiological

  4. Classification of Error-Diffused Halftone Images Based on Spectral Regression Kernel Discriminant Analysis

    Zhigao Zeng

    2016-01-01

    Full Text Available This paper proposes a novel algorithm to solve the challenging problem of classifying error-diffused halftone images. We firstly design the class feature matrices, after extracting the image patches according to their statistics characteristics, to classify the error-diffused halftone images. Then, the spectral regression kernel discriminant analysis is used for feature dimension reduction. The error-diffused halftone images are finally classified using an idea similar to the nearest centroids classifier. As demonstrated by the experimental results, our method is fast and can achieve a high classification accuracy rate with an added benefit of robustness in tackling noise.

  5. Classification of root canal microorganisms using electronic-nose and discriminant analysis

    Özbilge Hatice

    2010-11-01

    Full Text Available Abstract Background Root canal treatment is a debridement process which disrupts and removes entire microorganisms from the root canal system. Identification of microorganisms may help clinicians decide on treatment alternatives such as using different irrigants, intracanal medicaments and antibiotics. However, the difficulty in cultivation and the complexity in isolation of predominant anaerobic microorganisms make clinicians resort to empirical medical treatments. For this reason, identification of microorganisms is not a routinely used procedure in root canal treatment. In this study, we aimed at classifying 7 different standard microorganism strains which are frequently seen in root canal infections, using odor data collected using an electronic nose instrument. Method Our microorganism odor data set consisted of 5 repeated samples from 7 different classes at 4 concentration levels. For each concentration, 35 samples were classified using 3 different discriminant analysis methods. In order to determine an optimal setting for using electronic-nose in such an application, we have tried 3 different approaches in evaluating sensor responses. Moreover, we have used 3 different sensor baseline values in normalizing sensor responses. Since the number of sensors is relatively large compared to sample size, we have also investigated the influence of two different dimension reduction methods on classification performance. Results We have found that quadratic type dicriminant analysis outperforms other varieties of this method. We have also observed that classification performance decreases as the concentration decreases. Among different baseline values used for pre-processing the sensor responses, the model where the minimum values of sensor readings in the sample were accepted as the baseline yields better classification performance. Corresponding to this optimal choice of baseline value, we have noted that among different sensor response model and

  6. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin

    Hoadley, Katherine A; Yau, Christina; Wolf, Denise M

    2014-01-01

    Recent genomic analyses of pathologically defined tumor types identify "within-a-tissue" disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform...... on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head and neck, and a subset...

  7. Multiple murder and criminal careers: a latent class analysis of multiple homicide offenders.

    Vaughn, Michael G; DeLisi, Matt; Beaver, Kevin M; Howard, Matthew O

    2009-01-10

    To construct an empirically rigorous typology of multiple homicide offenders (MHOs). The current study conducted latent class analysis of the official records of 160 MHOs sampled from eight states to evaluate their criminal careers. A 3-class solution best fit the data (-2LL=-1123.61, Bayesian Information Criterion (BIC)=2648.15, df=81, L(2)=1179.77). Class 1 (n=64, class assignment probability=.999) was the low-offending group marked by little criminal record and delayed arrest onset. Class 2 (n=51, class assignment probability=.957) was the severe group that represents the most violent and habitual criminals. Class 3 (n=45, class assignment probability=.959) was the moderate group whose offending careers were similar to Class 2. A sustained criminal career with involvement in versatile forms of crime was observed for two of three classes of MHOs. Linkages to extant typologies and recommendations for additional research that incorporates clinical constructs are proffered.

  8. Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis.

    Muye Gan

    Full Text Available Urban greenness is increasingly recognized as an essential constituent of the urban environment and can provide a range of services and enhance residents' quality of life. Understanding the pattern of urban greenness and exploring its spatiotemporal dynamics would contribute valuable information for urban planning. In this paper, we investigated the pattern of urban greenness in Hangzhou, China, over the past two decades using time series Landsat-5 TM data obtained in 1990, 2002, and 2010. Multiple endmember spectral mixture analysis was used to derive vegetation cover fractions at the subpixel level. An RGB-vegetation fraction model, change intensity analysis and the concentric technique were integrated to reveal the detailed, spatial characteristics and the overall pattern of change in the vegetation cover fraction. Our results demonstrated the ability of multiple endmember spectral mixture analysis to accurately model the vegetation cover fraction in pixels despite the complex spectral confusion of different land cover types. The integration of multiple techniques revealed various changing patterns in urban greenness in this region. The overall vegetation cover has exhibited a drastic decrease over the past two decades, while no significant change occurred in the scenic spots that were studied. Meanwhile, a remarkable recovery of greenness was observed in the existing urban area. The increasing coverage of small green patches has played a vital role in the recovery of urban greenness. These changing patterns were more obvious during the period from 2002 to 2010 than from 1990 to 2002, and they revealed the combined effects of rapid urbanization and greening policies. This work demonstrates the usefulness of time series of vegetation cover fractions for conducting accurate and in-depth studies of the long-term trajectories of urban greenness to obtain meaningful information for sustainable urban development.

  9. The NWRA Classification Infrastructure: description and extension to the Discriminant Analysis Flare Forecasting System (DAFFS)

    Leka, K. D.; Barnes, Graham; Wagner, Eric

    2018-04-01

    A classification infrastructure built upon Discriminant Analysis (DA) has been developed at NorthWest Research Associates for examining the statistical differences between samples of two known populations. Originating to examine the physical differences between flare-quiet and flare-imminent solar active regions, we describe herein some details of the infrastructure including: parametrization of large datasets, schemes for handling "null" and "bad" data in multi-parameter analysis, application of non-parametric multi-dimensional DA, an extension through Bayes' theorem to probabilistic classification, and methods invoked for evaluating classifier success. The classifier infrastructure is applicable to a wide range of scientific questions in solar physics. We demonstrate its application to the question of distinguishing flare-imminent from flare-quiet solar active regions, updating results from the original publications that were based on different data and much smaller sample sizes. Finally, as a demonstration of "Research to Operations" efforts in the space-weather forecasting context, we present the Discriminant Analysis Flare Forecasting System (DAFFS), a near-real-time operationally-running solar flare forecasting tool that was developed from the research-directed infrastructure.

  10. Classification of Opium by UPLC-Q-TOF Analysis of Principal and Minor Alkaloids.

    Liu, Cuimei; Hua, Zhendong; Bai, Yanping

    2016-11-01

    Opium is the raw material for the production of heroin, and the characterization of opium seizures through laboratory analysis is a valuable tool for law enforcement agencies to trace clandestine opium production and trafficking. In this work, a method for opium profiling based on the relative content of five principal and 14 minor opium alkaloids was developed and validated. UPLC-Q-TOF was adopted in alkaloid analysis for its high selectivity and sensitivity, which facilitated the sample preparation and testing. The authentic sample set consisted of 100 "Myanmar" and 45 "Afghanistan" opium seizures; based on the data set of the 19 alkaloid variables in them, a partial least squares discriminant analysis classification model was successfully achieved. Minor alkaloids were found to be vitally important for opium profiling, although combined use of both principal and minor alkaloids resulted in the best geographical classification result. The developed method realized a simple and accurate way to differentiate opium from Myanmar and Afghanistan, which may find wide application in forensic laboratories. © 2016 American Academy of Forensic Sciences.

  11. Enhanced DET-Based Fault Signature Analysis for Reliable Diagnosis of Single and Multiple-Combined Bearing Defects

    In-Kyu Jeong

    2015-01-01

    Full Text Available To early identify cylindrical roller bearing failures, this paper proposes a comprehensive bearing fault diagnosis method, which consists of spectral kurtosis analysis for finding the most informative subband signal well representing abnormal symptoms about the bearing failures, fault signature calculation using this subband signal, enhanced distance evaluation technique- (EDET- based fault signature analysis that outputs the most discriminative fault features for accurate diagnosis, and identification of various single and multiple-combined cylindrical roller bearing defects using the simplified fuzzy adaptive resonance map (SFAM. The proposed comprehensive bearing fault diagnosis methodology is effective for accurate bearing fault diagnosis, yielding an average classification accuracy of 90.35%. In this paper, the proposed EDET specifically addresses shortcomings in the conventional distance evaluation technique (DET by accurately estimating the sensitivity of each fault signature for each class. To verify the efficacy of the EDET-based fault signature analysis for accurate diagnosis, a diagnostic performance comparison is carried between the proposed EDET and the conventional DET in terms of average classification accuracy. In fact, the proposed EDET achieves up to 106.85% performance improvement over the conventional DET in average classification accuracy.

  12. Analysis of underlying and multiple-cause mortality data.

    Moussa, M A; El Sayed, A M; Sugathan, T N; Khogali, M M; Verma, D

    1992-01-01

    "A variety of life table models were used for the analysis of the (1984-86) Kuwaiti cause-specific mortality data. These models comprised total mortality, multiple-decrement, cause-elimination, cause-delay and disease dependency. The models were illustrated by application to a set of four chronic diseases: hypertensive, ischaemic heart, cerebrovascular and diabetes mellitus. The life table methods quantify the relative weights of different diseases as hazards to mortality after adjustment for other causes. They can also evaluate the extent of dependency between underlying cause of death and other causes mentioned on [the] death certificate using an extended underlying-cause model." (SUMMARY IN FRE AND ITA) excerpt

  13. Multiple regression analysis of Jominy hardenability data for boron treated steels

    Komenda, J.; Sandstroem, R.; Tukiainen, M.

    1997-01-01

    The relations between chemical composition and their hardenability of boron treated steels have been investigated using a multiple regression analysis method. A linear model of regression was chosen. The free boron content that is effective for the hardenability was calculated using a model proposed by Jansson. The regression analysis for 1261 steel heats provided equations that were statistically significant at the 95% level. All heats met the specification according to the nordic countries producers classification. The variation in chemical composition explained typically 80 to 90% of the variation in the hardenability. In the regression analysis elements which did not significantly contribute to the calculated hardness according to the F test were eliminated. Carbon, silicon, manganese, phosphorus and chromium were of importance at all Jominy distances, nickel, vanadium, boron and nitrogen at distances above 6 mm. After the regression analysis it was demonstrated that very few outliers were present in the data set, i.e. data points outside four times the standard deviation. The model has successfully been used in industrial practice replacing some of the necessary Jominy tests. (orig.)

  14. Interventional Effects for Mediation Analysis with Multiple Mediators.

    Vansteelandt, Stijn; Daniel, Rhian M

    2017-03-01

    The mediation formula for the identification of natural (in)direct effects has facilitated mediation analyses that better respect the nature of the data, with greater consideration of the need for confounding control. The default assumptions on which it relies are strong, however. In particular, they are known to be violated when confounders of the mediator-outcome association are affected by the exposure. This complicates extensions of counterfactual-based mediation analysis to settings that involve repeatedly measured mediators, or multiple correlated mediators. VanderWeele, Vansteelandt, and Robins introduced so-called interventional (in)direct effects. These can be identified under much weaker conditions than natural (in)direct effects, but have the drawback of not adding up to the total effect. In this article, we adapt their proposal to achieve an exact decomposition of the total effect, and extend it to the multiple mediator setting. Interestingly, the proposed effects capture the path-specific effects of an exposure on an outcome that are mediated by distinct mediators, even when-as often-the structural dependence between the multiple mediators is unknown, for instance, when the direction of the causal effects between the mediators is unknown, or there may be unmeasured common causes of the mediators.

  15. Mediation analysis with multiple versions of the mediator.

    Vanderweele, Tyler J

    2012-05-01

    The causal inference literature has provided definitions of direct and indirect effects based on counterfactuals that generalize the approach found in the social science literature. However, these definitions presuppose well-defined hypothetical interventions on the mediator. In many settings, there may be multiple ways to fix the mediator to a particular value, and these various hypothetical interventions may have very different implications for the outcome of interest. In this paper, we consider mediation analysis when multiple versions of the mediator are present. Specifically, we consider the problem of attempting to decompose a total effect of an exposure on an outcome into the portion through the intermediate and the portion through other pathways. We consider the setting in which there are multiple versions of the mediator but the investigator has access only to data on the particular measurement, not information on which version of the mediator may have brought that value about. We show that the quantity that is estimated as a natural indirect effect using only the available data does indeed have an interpretation as a particular type of mediated effect; however, the quantity estimated as a natural direct effect, in fact, captures both a true direct effect and an effect of the exposure on the outcome mediated through the effect of the version of the mediator that is not captured by the mediator measurement. The results are illustrated using 2 examples from the literature, one in which the versions of the mediator are unknown and another in which the mediator itself has been dichotomized.

  16. Gradient Analysis and Classification of Carolina Bay Vegetation: A Framework for Bay Wetlands Conservation and Restoration

    Diane De Steven,Ph.D.; Maureen Tone,PhD.

    1997-10-01

    This report address four project objectives: (1) Gradient model of Carolina bay vegetation on the SRS--The authors use ordination analyses to identify environmental and landscape factors that are correlated with vegetation composition. Significant factors can provide a framework for site-based conservation of existing diversity, and they may also be useful site predictors for potential vegetation in bay restorations. (2) Regional analysis of Carolina bay vegetation diversity--They expand the ordination analyses to assess the degree to which SRS bays encompass the range of vegetation diversity found in the regional landscape of South Carolina's western Upper Coastal Plain. Such comparisons can indicate floristic status relative to regional potentials and identify missing species or community elements that might be re-introduced or restored. (3) Classification of vegetation communities in Upper Coastal Plain bays--They use cluster analysis to identify plant community-types at the regional scale, and explore how this classification may be functional with respect to significant environmental and landscape factors. An environmentally-based classification at the whole-bay level can provide a system of templates for managing bays as individual units and for restoring bays to desired plant communities. (4) Qualitative model for bay vegetation dynamics--They analyze present-day vegetation in relation to historic land uses and disturbances. The distinctive history of SRS bays provides the possibility of assessing pathways of post-disturbance succession. They attempt to develop a coarse-scale model of vegetation shifts in response to changing site factors; such qualitative models can provide a basis for suggesting management interventions that may be needed to maintain desired vegetation in protected or restored bays.

  17. Recursive partitioning analysis (RPA) classification predicts survival in patients with brain metastases from sarcoma.

    Grossman, Rachel; Ram, Zvi

    2014-12-01

    Sarcoma rarely metastasizes to the brain, and there are no specific treatment guidelines for these tumors. The recursive partitioning analysis (RPA) classification is a well-established prognostic scale used in many malignancies. In this study we assessed the clinical characteristics of metastatic sarcoma to the brain and the validity of the RPA classification system in a subset of 21 patients who underwent surgical resection of metastatic sarcoma to the brain We retrospectively analyzed the medical, radiological, surgical, pathological, and follow-up clinical records of 21 patients who were operated for metastatic sarcoma to the brain between 1996 and 2012. Gliosarcomas, sarcomas of the head and neck with local extension into the brain, and metastatic sarcomas to the spine were excluded from this reported series. The patients' mean age was 49.6 ± 14.2 years (range, 25-75 years) at the time of diagnosis. Sixteen patients had a known history of systemic sarcoma, mostly in the extremities, and had previously received systemic chemotherapy and radiation therapy for their primary tumor. The mean maximal tumor diameter in the brain was 4.9 ± 1.7 cm (range 1.7-7.2 cm). The group's median preoperative Karnofsky Performance Scale was 80, with 14 patients presenting with Karnofsky Performance Scale of 70 or greater. The median overall survival was 7 months (range 0.2-204 months). The median survival time stratified by the Radiation Therapy Oncology Group RPA classes were 31, 7, and 2 months for RPA class I, II, and III, respectively (P = 0.0001). This analysis is the first to support the prognostic utility of the Radiation Therapy Oncology Group RPA classification for sarcoma brain metastases and may be used as a treatment guideline tool in this rare disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Analysis and classification of commercial ham slice images using directional fractal dimension features.

    Mendoza, Fernando; Valous, Nektarios A; Allen, Paul; Kenny, Tony A; Ward, Paddy; Sun, Da-Wen

    2009-02-01

    This paper presents a novel and non-destructive approach to the appearance characterization and classification of commercial pork, turkey and chicken ham slices. Ham slice images were modelled using directional fractal (DF(0°;45°;90°;135°)) dimensions and a minimum distance classifier was adopted to perform the classification task. Also, the role of different colour spaces and the resolution level of the images on DF analysis were investigated. This approach was applied to 480 wafer thin ham slices from four types of hams (120 slices per type): i.e., pork (cooked and smoked), turkey (smoked) and chicken (roasted). DF features were extracted from digitalized intensity images in greyscale, and R, G, B, L(∗), a(∗), b(∗), H, S, and V colour components for three image resolution levels (100%, 50%, and 25%). Simulation results show that in spite of the complexity and high variability in colour and texture appearance, the modelling of ham slice images with DF dimensions allows the capture of differentiating textural features between the four commercial ham types. Independent DF features entail better discrimination than that using the average of four directions. However, DF dimensions reveal a high sensitivity to colour channel, orientation and image resolution for the fractal analysis. The classification accuracy using six DF dimension features (a(90°)(∗),a(135°)(∗),H(0°),H(45°),S(0°),H(90°)) was 93.9% for training data and 82.2% for testing data.

  19. A comprehensive sensitivity analysis of microarray breast cancer classification under feature variability

    Reinders Marcel JT

    2009-11-01

    Full Text Available Abstract Background Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear. Results We have performed a comprehensive sensitivity analysis of microarray breast cancer classification under the two types of feature variability mentioned above. We used data from six state of the art preprocessing methods, using a compendium consisting of eight diferent datasets, involving 1131 hybridizations, containing data from both one and two-color array technology. For a wide range of classifiers, we performed a joint study on performance, concordance and stability. In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed expression profiles that are based on uncertainty information directly related to the preprocessing methods. Our results indicate that signature composition is strongly influenced by feature variability, even if the array platform and the stratification of patient samples are identical. In addition, we show that there is often a high level of discordance between individual class assignments for signatures constructed on data coming from different preprocessing schemes, even if the actual signature composition is identical

  20. Development of an auditable safety analysis in support of a radiological facility classification

    Kinney, M.D.; Young, B.

    1995-01-01

    In recent years, U.S. Department of Energy (DOE) facilities commonly have been classified as reactor, non-reactor nuclear, or nuclear facilities. Safety analysis documentation was prepared for these facilities, with few exceptions, using the requirements in either DOE Order 5481.1B, Safety Analysis and Review System; or DOE Order 5480.23, Nuclear Safety Analysis Reports. Traditionally, this has been accomplished by development of an extensive Safety Analysis Report (SAR), which identifies hazards, assesses risks of facility operation, describes and analyzes adequacy of measures taken to control hazards, and evaluates potential accidents and their associated risks. This process is complicated by analysis of secondary hazards and adequacy of backup (redundant) systems. The traditional SAR process is advantageous for DOE facilities with appreciable hazards or operational risks. SAR preparation for a low-risk facility or process can be cost-prohibitive and quite challenging because conventional safety analysis protocols may not readily be applied to a low-risk facility. The DOE Office of Environmental Restoration and Waste Management recognized this potential disadvantage and issued an EM limited technical standard, No. 5502-94, Hazard Baseline Documentation. This standard can be used for developing documentation for a facility classified as radiological, including preparation of an auditable (defensible) safety analysis. In support of the radiological facility classification process, the Uranium Mill Tailings Remedial Action (UMTRA) Project has developed an auditable safety analysis document based upon the postulation criteria and hazards analysis techniques defined in DOE Order 5480.23

  1. Classification-based quantitative analysis of stable isotope labeling by amino acids in cell culture (SILAC) data.

    Kim, Seongho; Carruthers, Nicholas; Lee, Joohyoung; Chinni, Sreenivasa; Stemmer, Paul

    2016-12-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a practical and powerful approach for quantitative proteomic analysis. A key advantage of SILAC is the ability to simultaneously detect the isotopically labeled peptides in a single instrument run and so guarantee relative quantitation for a large number of peptides without introducing any variation caused by separate experiment. However, there are a few approaches available to assessing protein ratios and none of the existing algorithms pays considerable attention to the proteins having only one peptide hit. We introduce new quantitative approaches to dealing with SILAC protein-level summary using classification-based methodologies, such as Gaussian mixture models with EM algorithms and its Bayesian approach as well as K-means clustering. In addition, a new approach is developed using Gaussian mixture model and a stochastic, metaheuristic global optimization algorithm, particle swarm optimization (PSO), to avoid either a premature convergence or being stuck in a local optimum. Our simulation studies show that the newly developed PSO-based method performs the best among others in terms of F1 score and the proposed methods further demonstrate the ability of detecting potential markers through real SILAC experimental data. No matter how many peptide hits the protein has, the developed approach can be applicable, rescuing many proteins doomed to removal. Furthermore, no additional correction for multiple comparisons is necessary for the developed methods, enabling direct interpretation of the analysis outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Visualization-based analysis of multiple response survey data

    Timofeeva, Anastasiia

    2017-11-01

    During the survey, the respondents are often allowed to tick more than one answer option for a question. Analysis and visualization of such data have difficulties because of the need for processing multiple response variables. With standard representation such as pie and bar charts, information about the association between different answer options is lost. The author proposes a visualization approach for multiple response variables based on Venn diagrams. For a more informative representation with a large number of overlapping groups it is suggested to use similarity and association matrices. Some aggregate indicators of dissimilarity (similarity) are proposed based on the determinant of the similarity matrix and the maximum eigenvalue of association matrix. The application of the proposed approaches is well illustrated by the example of the analysis of advertising sources. Intersection of sets indicates that the same consumer audience is covered by several advertising sources. This information is very important for the allocation of the advertising budget. The differences between target groups in advertising sources are of interest. To identify such differences the hypothesis of homogeneity and independence are tested. Recent approach to the problem are briefly reviewed and compared. An alternative procedure is suggested. It is based on partition of a consumer audience into pairwise disjoint subsets and includes hypothesis testing of the difference between the population proportions. It turned out to be more suitable for the real problem being solved.

  3. Classification of Networks in Higher Education: A Marketing Analysis of the Club of Ten (Russia

    Irina V.

    2018-03-01

    Full Text Available Introduction: the networking as a development practice in business has not yet become widespread. Moreover, there are very few studies of network interactions in the field of science and education. Advances in marketing evaluation of network entities are very rare. The goal of this article is to develop methodological criteria for such an assessment. These methods were tested on findings from the network partnership established by federal universities in Russia. Materials and Methods: to study and generalise real-world experience, a case study method was used, which the authors understand as an empirical research method aimed at studying phenomena in real time and in the context of real life. Results: the authors proposed a comprehensive methodology for estimation of networks. The application of this method of analysis enabled identification of the key problems and barriers to the implementation of the project. One of the main problems is the lack of marketing analysis, lack of understanding of its target audience, and, accordingly, the lack of a transparent vision of development. Besides, the authors have developed a classification of network partnerships. Тhe analysis empowers classification of the network of Russian universities as an inter-organisational polycentric partnership of a quasi-integration type, based on a neoclassical contract with relational elements. The analysis of the network development has revealed significant deviations of the results from the initially claimed ones. Discussion and Conclusions: the theoretical significance of the work consists in the application of the network theory to an atypical object for the economic theory, i.e. the analysis of the sphere of higher education. Practical significance lies in the possibility of application of results obtained through real projects in real-time mode. The results of the study are applicable to educational systems for practically all countries with a transition type of

  4. Prospective identification of adolescent suicide ideation using classification tree analysis: Models for community-based screening.

    Hill, Ryan M; Oosterhoff, Benjamin; Kaplow, Julie B

    2017-07-01

    Although a large number of risk markers for suicide ideation have been identified, little guidance has been provided to prospectively identify adolescents at risk for suicide ideation within community settings. The current study addressed this gap in the literature by utilizing classification tree analysis (CTA) to provide a decision-making model for screening adolescents at risk for suicide ideation. Participants were N = 4,799 youth (Mage = 16.15 years, SD = 1.63) who completed both Waves 1 and 2 of the National Longitudinal Study of Adolescent to Adult Health. CTA was used to generate a series of decision rules for identifying adolescents at risk for reporting suicide ideation at Wave 2. Findings revealed 3 distinct solutions with varying sensitivity and specificity for identifying adolescents who reported suicide ideation. Sensitivity of the classification trees ranged from 44.6% to 77.6%. The tree with greatest specificity and lowest sensitivity was based on a history of suicide ideation. The tree with moderate sensitivity and high specificity was based on depressive symptoms, suicide attempts or suicide among family and friends, and social support. The most sensitive but least specific tree utilized these factors and gender, ethnicity, hours of sleep, school-related factors, and future orientation. These classification trees offer community organizations options for instituting large-scale screenings for suicide ideation risk depending on the available resources and modality of services to be provided. This study provides a theoretically and empirically driven model for prospectively identifying adolescents at risk for suicide ideation and has implications for preventive interventions among at-risk youth. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Bioelectric signal classification using a recurrent probabilistic neural network with time-series discriminant component analysis.

    Hayashi, Hideaki; Shima, Keisuke; Shibanoki, Taro; Kurita, Yuichi; Tsuji, Toshio

    2013-01-01

    This paper outlines a probabilistic neural network developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower-dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model that incorporates a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into a neural network so that parameters can be obtained appropriately as network coefficients according to backpropagation-through-time-based training algorithm. The network is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. In the experiments conducted during the study, the validity of the proposed network was demonstrated for EEG signals.

  6. Multiple Sclerosis Increases Fracture Risk: A Meta-Analysis

    Guixian Dong

    2015-01-01

    Full Text Available Purpose. The association between multiple sclerosis (MS and fracture risk has been reported, but results of previous studies remain controversial and ambiguous. To assess the association between MS and fracture risk, a meta-analysis was performed. Method. Based on comprehensive searches of the PubMed, Embase, and Web of Science, we identified outcome data from all articles estimating the association between MS and fracture risk. The pooled risk ratios (RRs with 95% confidence intervals (CIs were calculated. Results. A significant association between MS and fracture risk was found. This result remained statistically significant when the adjusted RRs were combined. Subgroup analysis stratified by the site of fracture suggested significant associations between MS and tibia fracture risk, femur fracture risk, hip fracture risk, pelvis fracture risk, vertebrae fracture risk, and humerus fracture risk. In the subgroup analysis by gender, female MS patients had increased fracture risk. When stratified by history of drug use, use of antidepressants, hypnotics/anxiolytics, anticonvulsants, and glucocorticoids increased the risk of fracture risk in MS patients. Conclusions. This meta-analysis demonstrated that MS was significantly associated with fracture risk.

  7. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling.

    Daniel P Riordan

    Full Text Available Characterization of the molecular attributes and spatial arrangements of cells and features within complex human tissues provides a critical basis for understanding processes involved in development and disease. Moreover, the ability to automate steps in the analysis and interpretation of histological images that currently require manual inspection by pathologists could revolutionize medical diagnostics. Toward this end, we developed a new imaging approach called multidimensional microscopic molecular profiling (MMMP that can measure several independent molecular properties in situ at subcellular resolution for the same tissue specimen. MMMP involves repeated cycles of antibody or histochemical staining, imaging, and signal removal, which ultimately can generate information analogous to a multidimensional flow cytometry analysis on intact tissue sections. We performed a MMMP analysis on a tissue microarray containing a diverse set of 102 human tissues using a panel of 15 informative antibody and 5 histochemical stains plus DAPI. Large-scale unsupervised analysis of MMMP data, and visualization of the resulting classifications, identified molecular profiles that were associated with functional tissue features. We then directly annotated H&E images from this MMMP series such that canonical histological features of interest (e.g. blood vessels, epithelium, red blood cells were individually labeled. By integrating image annotation data, we identified molecular signatures that were associated with specific histological annotations and we developed statistical models for automatically classifying these features. The classification accuracy for automated histology labeling was objectively evaluated using a cross-validation strategy, and significant accuracy (with a median per-pixel rate of 77% per feature from 15 annotated samples for de novo feature prediction was obtained. These results suggest that high-dimensional profiling may advance the

  8. Combining multiple hypothesis testing and affinity propagation clustering leads to accurate, robust and sample size independent classification on gene expression data

    Sakellariou Argiris

    2012-10-01

    Full Text Available Abstract Background A feature selection method in microarray gene expression data should be independent of platform, disease and dataset size. Our hypothesis is that among the statistically significant ranked genes in a gene list, there should be clusters of genes that share similar biological functions related to the investigated disease. Thus, instead of keeping N top ranked genes, it would be more appropriate to define and keep a number of gene cluster exemplars. Results We propose a hybrid FS method (mAP-KL, which combines multiple hypothesis testing and affinity propagation (AP-clustering algorithm along with the Krzanowski & Lai cluster quality index, to select a small yet informative subset of genes. We applied mAP-KL on real microarray data, as well as on simulated data, and compared its performance against 13 other feature selection approaches. Across a variety of diseases and number of samples, mAP-KL presents competitive classification results, particularly in neuromuscular diseases, where its overall AUC score was 0.91. Furthermore, mAP-KL generates concise yet biologically relevant and informative N-gene expression signatures, which can serve as a valuable tool for diagnostic and prognostic purposes, as well as a source of potential disease biomarkers in a broad range of diseases. Conclusions mAP-KL is a data-driven and classifier-independent hybrid feature selection method, which applies to any disease classification problem based on microarray data, regardless of the available samples. Combining multiple hypothesis testing and AP leads to subsets of genes, which classify unknown samples from both, small and large patient cohorts with high accuracy.

  9. Modern Methods of Multidimensional Data Visualization: Analysis, Classification, Implementation, and Applications in Technical Systems

    I. K. Romanova

    2016-01-01

    Full Text Available The article deals with theoretical and practical aspects of solving the problem of visualization of multidimensional data as an effective means of multivariate analysis of systems. Several classifications are proposed for visualization techniques, according to data types, visualization objects, the method of transformation of coordinates and data. To represent classification are used charts with links to the relevant work. The article also proposes two classifications of modern trends in display technology, including integration of visualization techniques as one of the modern trends of development, along with the introduction of interactive technologies and the dynamics of development processes. It describes some approaches to the visualization problem, which are concerned with fulfilling the needs. The needs are generated by the relevant tasks such as information retrieval in global networks, development of bioinformatics, study and control of business processes, development of regions, etc. The article highlights modern visualization tools, which are capable of improving the efficiency of the multivariate analysis and searching for solutions in multi-objective optimization of technical systems, but are not very actively used for such studies. These are horizontal graphs, graphics "quantile-quantile", etc. The paper proposes to use Choropleth cards traditionally used in cartography for simultaneous presentation of the distribution parameters of several criteria in the space. It notes that visualizations of graphs in network applications can be more actively used to describe the control system. The article suggests using the heat maps to provide graphical representation of the sensitivity of the system quality criteria under variations of options (multivariate analysis of technical systems. It also mentions that it is useful to extend the supervising heat maps to the task of estimating quality of identify in constructing system models. A

  10. A New Tool for Climatic Analysis Using the Koppen Climate Classification

    Larson, Paul R.; Lohrengel, C. Frederick, II

    2011-01-01

    The purpose of climate classification is to help make order of the seemingly endless spatial distribution of climates. The Koppen classification system in a modified format is the most widely applied system in use today. This system may not be the best nor most complete climate classification that can be conceived, but it has gained widespread…

  11. Weibull and lognormal Taguchi analysis using multiple linear regression

    Piña-Monarrez, Manuel R.; Ortiz-Yañez, Jesús F.

    2015-01-01

    The paper provides to reliability practitioners with a method (1) to estimate the robust Weibull family when the Taguchi method (TM) is applied, (2) to estimate the normal operational Weibull family in an accelerated life testing (ALT) analysis to give confidence to the extrapolation and (3) to perform the ANOVA analysis to both the robust and the normal operational Weibull family. On the other hand, because the Weibull distribution neither has the normal additive property nor has a direct relationship with the normal parameters (µ, σ), in this paper, the issues of estimating a Weibull family by using a design of experiment (DOE) are first addressed by using an L_9 (3"4) orthogonal array (OA) in both the TM and in the Weibull proportional hazard model approach (WPHM). Then, by using the Weibull/Gumbel and the lognormal/normal relationships and multiple linear regression, the direct relationships between the Weibull and the lifetime parameters are derived and used to formulate the proposed method. Moreover, since the derived direct relationships always hold, the method is generalized to the lognormal and ALT analysis. Finally, the method’s efficiency is shown through its application to the used OA and to a set of ALT data. - Highlights: • It gives the statistical relations and steps to use the Taguchi Method (TM) to analyze Weibull data. • It gives the steps to determine the unknown Weibull family to both the robust TM setting and the normal ALT level. • It gives a method to determine the expected lifetimes and to perform its ANOVA analysis in TM and ALT analysis. • It gives a method to give confidence to the extrapolation in an ALT analysis by using the Weibull family of the normal level.

  12. Sensitivity analysis in multiple imputation in effectiveness studies of psychotherapy.

    Crameri, Aureliano; von Wyl, Agnes; Koemeda, Margit; Schulthess, Peter; Tschuschke, Volker

    2015-01-01

    The importance of preventing and treating incomplete data in effectiveness studies is nowadays emphasized. However, most of the publications focus on randomized clinical trials (RCT). One flexible technique for statistical inference with missing data is multiple imputation (MI). Since methods such as MI rely on the assumption of missing data being at random (MAR), a sensitivity analysis for testing the robustness against departures from this assumption is required. In this paper we present a sensitivity analysis technique based on posterior predictive checking, which takes into consideration the concept of clinical significance used in the evaluation of intra-individual changes. We demonstrate the possibilities this technique can offer with the example of irregular longitudinal data collected with the Outcome Questionnaire-45 (OQ-45) and the Helping Alliance Questionnaire (HAQ) in a sample of 260 outpatients. The sensitivity analysis can be used to (1) quantify the degree of bias introduced by missing not at random data (MNAR) in a worst reasonable case scenario, (2) compare the performance of different analysis methods for dealing with missing data, or (3) detect the influence of possible violations to the model assumptions (e.g., lack of normality). Moreover, our analysis showed that ratings from the patient's and therapist's version of the HAQ could significantly improve the predictive value of the routine outcome monitoring based on the OQ-45. Since analysis dropouts always occur, repeated measurements with the OQ-45 and the HAQ analyzed with MI are useful to improve the accuracy of outcome estimates in quality assurance assessments and non-randomized effectiveness studies in the field of outpatient psychotherapy.

  13. Sensory classification of table olives using an electronic tongue: Analysis of aqueous pastes and brines.

    Marx, Ítala; Rodrigues, Nuno; Dias, Luís G; Veloso, Ana C A; Pereira, José A; Drunkler, Deisy A; Peres, António M

    2017-01-01

    Table olives are highly appreciated and consumed worldwide. Different aspects are used for trade category classification being the sensory assessment of negative defects present in the olives and brines one of the most important. The trade category quality classification must follow the International Olive Council directives, requiring the organoleptic assessment of defects by a trained sensory panel. However, the training process is a hard, complex and sometimes subjective task, being the low number of samples that can be evaluated per day a major drawback considering the real needs of the olive industry. In this context, the development of electronic tongues as taste sensors for defects' sensory evaluation is of utmost relevance. So, an electronic tongue was used for table olives classification according to the presence and intensity of negative defects. Linear discrimination models were established based on sub-sets of sensor signals selected by a simulated annealing algorithm. The predictive potential of the novel approach was first demonstrated for standard solutions of chemical compounds that mimic butyric, putrid and zapateria defects (≥93% for cross-validation procedures). Then its applicability was verified; using reference table olives/brine solutions samples identified with a single intense negative attribute, namely butyric, musty, putrid, zapateria or winey-vinegary defects (≥93% cross-validation procedures). Finally, the E-tongue coupled with the same chemometric approach was applied to classify table olive samples according to the trade commercial categories (extra, 1 st choice, 2 nd choice and unsuitable for consumption) and an additional quality category (extra free of defects), established based on sensory analysis data. Despite the heterogeneity of the samples studied and number of different sensory defects perceived, the predictive linear discriminant model established showed sensitivities greater than 86%. So, the overall performance

  14. Sensitivity analysis for the effects of multiple unmeasured confounders.

    Groenwold, Rolf H H; Sterne, Jonathan A C; Lawlor, Debbie A; Moons, Karel G M; Hoes, Arno W; Tilling, Kate

    2016-09-01

    Observational studies are prone to (unmeasured) confounding. Sensitivity analysis of unmeasured confounding typically focuses on a single unmeasured confounder. The purpose of this study was to assess the impact of multiple (possibly weak) unmeasured confounders. Simulation studies were performed based on parameters estimated from the British Women's Heart and Health Study, including 28 measured confounders and assuming no effect of ascorbic acid intake on mortality. In addition, 25, 50, or 100 unmeasured confounders were simulated, with various mutual correlations and correlations with measured confounders. The correlated unmeasured confounders did not need to be strongly associated with exposure and outcome to substantially bias the exposure-outcome association at interest, provided that there are sufficiently many unmeasured confounders. Correlations between unmeasured confounders, in addition to the strength of their relationship with exposure and outcome, are key drivers of the magnitude of unmeasured confounding and should be considered in sensitivity analyses. However, if the unmeasured confounders are correlated with measured confounders, the bias yielded by unmeasured confounders is partly removed through adjustment for the measured confounders. Discussions of the potential impact of unmeasured confounding in observational studies, and sensitivity analyses to examine this, should focus on the potential for the joint effect of multiple unmeasured confounders to bias results. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Classification of functional interactions from multi-electrodes data using conditional modularity analysis

    Makhtar, Siti Noormiza; Senik, Mohd Harizal

    2018-02-01

    The availability of massive amount of neuronal signals are attracting widespread interest in functional connectivity analysis. Functional interactions estimated by multivariate partial coherence analysis in the frequency domain represent the connectivity strength in this study. Modularity is a network measure for the detection of community structure in network analysis. The discovery of community structure for the functional neuronal network was implemented on multi-electrode array (MEA) signals recorded from hippocampal regions in isoflurane-anaesthetized Lister-hooded rats. The analysis is expected to show modularity changes before and after local unilateral kainic acid (KA)-induced epileptiform activity. The result is presented using color-coded graphic of conditional modularity measure for 19 MEA nodes. This network is separated into four sub-regions to show the community detection within each sub-region. The results show that classification of neuronal signals into the inter- and intra-modular nodes is feasible using conditional modularity analysis. Estimation of segregation properties using conditional modularity analysis may provide further information about functional connectivity from MEA data.

  16. Classification of dried vegetables using computer image analysis and artificial neural networks

    Koszela, K.; Łukomski, M.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Zaborowicz, M.; Wojcieszak, D.

    2017-07-01

    In the recent years, there has been a continuously increasing demand for vegetables and dried vegetables. This trend affects the growth of the dehydration industry in Poland helping to exploit excess production. More and more often dried vegetables are used in various sectors of the food industry, both due to their high nutritional qualities and changes in consumers' food preferences. As we observe an increase in consumer awareness regarding a healthy lifestyle and a boom in health food, there is also an increase in the consumption of such food, which means that the production and crop area can increase further. Among the dried vegetables, dried carrots play a strategic role due to their wide application range and high nutritional value. They contain high concentrations of carotene and sugar which is present in the form of crystals. Carrots are also the vegetables which are most often subjected to a wide range of dehydration processes; this makes it difficult to perform a reliable qualitative assessment and classification of this dried product. The many qualitative properties of dried carrots determining their positive or negative quality assessment include colour and shape. The aim of the research was to develop and implement the model of a computer system for the recognition and classification of freeze-dried, convection-dried and microwave vacuum dried products using the methods of computer image analysis and artificial neural networks.

  17. Analysis of Time n Frequency EEG Feature Extraction Methods for Mental Task Classification

    Caglar Uyulan

    2017-01-01

    Full Text Available Many endogenous and external components may affect the physiological, mental and behavioral states in humans. Monitoring tools are required to evaluate biomarkers, identify biological events, and predict their outcomes. Being one of the valuable indicators, brain biomarkers derived from temporal or spectral electroencephalography (EEG signals processing, allow for the classification of mental disorders and mental tasks. An EEG signal has a nonstationary nature and individual frequency feature, hence it can be concluded that each subject has peculiar timing and data to extract unique features. In order to classify data, which are collected by performing four mental task (reciting the alphabet backwards, imagination of rotation of a cube, imagination of right hand movements (open/close and performing mathematical operations, discriminative features were extracted using four competitive time-frequency techniques; Wavelet Packet Decomposition (WPD, Morlet Wavelet Transform (MWT, Short Time Fourier Transform (STFT and Wavelet Filter Bank (WFB, respectively. The extracted features using both time and frequency domain information were then reduced using a principal component analysis for subset reduction. Finally, the reduced subsets were fed into a multi-layer perceptron neural network (MP-NN trained with back propagation (BP algorithm to generate a predictive model. This study mainly focuses on comparing the relative performance of time-frequency feature extraction methods that are used to classify mental tasks. The real-time (RT conducted experimental results underlined that the WPD feature extraction method outperforms with 92% classification accuracy compared to three other aforementioned methods for four different mental tasks.

  18. Breast tissue classification using x-ray scattering measurements and multivariate data analysis

    Ryan, Elaine A.; Farquharson, Michael J.

    2007-11-01

    This study utilized two radiation scatter interactions in order to differentiate malignant from non-malignant breast tissue. These two interactions were Compton scatter, used to measure the electron density of the tissues, and coherent scatter to obtain a measure of structure. Measurements of these parameters were made using a laboratory experimental set-up comprising an x-ray tube and HPGe detector. The breast tissue samples investigated comprise five different tissue classifications: adipose, malignancy, fibroadenoma, normal fibrous tissue and tissue that had undergone fibrocystic change. The coherent scatter spectra were analysed using a peak fitting routine, and a technique involving multivariate analysis was used to combine the peak fitted scatter profile spectra and the electron density values into a tissue classification model. The number of variables used in the model was refined by finding the sensitivity and specificity of each model and concentrating on differentiating between two tissues at a time. The best model that was formulated had a sensitivity of 54% and a specificity of 100%.

  19. Breast tissue classification using x-ray scattering measurements and multivariate data analysis

    Ryan, Elaine A; Farquharson, Michael J [School of Allied Health Sciences, City University, Charterhouse Square, London EC1M 6PA (United Kingdom)

    2007-11-21

    This study utilized two radiation scatter interactions in order to differentiate malignant from non-malignant breast tissue. These two interactions were Compton scatter, used to measure the electron density of the tissues, and coherent scatter to obtain a measure of structure. Measurements of these parameters were made using a laboratory experimental set-up comprising an x-ray tube and HPGe detector. The breast tissue samples investigated comprise five different tissue classifications: adipose, malignancy, fibroadenoma, normal fibrous tissue and tissue that had undergone fibrocystic change. The coherent scatter spectra were analysed using a peak fitting routine, and a technique involving multivariate analysis was used to combine the peak fitted scatter profile spectra and the electron density values into a tissue classification model. The number of variables used in the model was refined by finding the sensitivity and specificity of each model and concentrating on differentiating between two tissues at a time. The best model that was formulated had a sensitivity of 54% and a specificity of 100%.

  20. Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis

    Jane Southworth

    2010-12-01

    Full Text Available Savanna ecosystems are an important component of dryland regions and yet are exceedingly difficult to study using satellite imagery. Savannas are composed are varying amounts of trees, shrubs and grasses and typically traditional classification schemes or vegetation indices cannot differentiate across class type. This research utilizes object based classification (OBC for a region in Namibia, using IKONOS imagery, to help differentiate tree canopies and therefore woodland savanna, from shrub or grasslands. The methodology involved the identification and isolation of tree canopies within the imagery and the creation of tree polygon layers had an overall accuracy of 84%. In addition, the results were scaled up to a corresponding Landsat image of the same region, and the OBC results compared to corresponding pixel values of NDVI. The results were not compelling, indicating once more the problems of these traditional image analysis techniques for savanna ecosystems. Overall, the use of the OBC holds great promise for this ecosystem and could be utilized more frequently in studies of vegetation structure.

  1. Objective classification of ecological status in marine water bodies using ecotoxicological information and multivariate analysis.

    Beiras, Ricardo; Durán, Iria

    2014-12-01

    Some relevant shortcomings have been identified in the current approach for the classification of ecological status in marine water bodies, leading to delays in the fulfillment of the Water Framework Directive objectives. Natural variability makes difficult to settle fixed reference values and boundary values for the Ecological Quality Ratios (EQR) for the biological quality elements. Biological responses to environmental degradation are frequently of nonmonotonic nature, hampering the EQR approach. Community structure traits respond only once ecological damage has already been done and do not provide early warning signals. An alternative methodology for the classification of ecological status integrating chemical measurements, ecotoxicological bioassays and community structure traits (species richness and diversity), and using multivariate analyses (multidimensional scaling and cluster analysis), is proposed. This approach does not depend on the arbitrary definition of fixed reference values and EQR boundary values, and it is suitable to integrate nonlinear, sensitive signals of ecological degradation. As a disadvantage, this approach demands the inclusion of sampling sites representing the full range of ecological status in each monitoring campaign. National or international agencies in charge of coastal pollution monitoring have comprehensive data sets available to overcome this limitation.

  2. A statistically harmonized alignment-classification in image space enables accurate and robust alignment of noisy images in single particle analysis.

    Kawata, Masaaki; Sato, Chikara

    2007-06-01

    In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.

  3. Laplace transform analysis of a multiplicative asset transfer model

    Sokolov, Andrey; Melatos, Andrew; Kieu, Tien

    2010-07-01

    We analyze a simple asset transfer model in which the transfer amount is a fixed fraction f of the giver’s wealth. The model is analyzed in a new way by Laplace transforming the master equation, solving it analytically and numerically for the steady-state distribution, and exploring the solutions for various values of f∈(0,1). The Laplace transform analysis is superior to agent-based simulations as it does not depend on the number of agents, enabling us to study entropy and inequality in regimes that are costly to address with simulations. We demonstrate that Boltzmann entropy is not a suitable (e.g. non-monotonic) measure of disorder in a multiplicative asset transfer system and suggest an asymmetric stochastic process that is equivalent to the asset transfer model.

  4. CHOOSING A HEALTH INSTITUTION WITH MULTIPLE CORRESPONDENCE ANALYSIS AND CLUSTER ANALYSIS IN A POPULATION BASED STUDY

    ASLI SUNER

    2013-06-01

    Full Text Available Multiple correspondence analysis is a method making easy to interpret the categorical variables given in contingency tables, showing the similarities, associations as well as divergences among these variables via graphics on a lower dimensional space. Clustering methods are helped to classify the grouped data according to their similarities and to get useful summarized data from them. In this study, interpretations of multiple correspondence analysis are supported by cluster analysis; factors affecting referred health institute such as age, disease group and health insurance are examined and it is aimed to compare results of the methods.

  5. METHODS OF ANALYSIS AND CLASSIFICATION OF THE COMPONENTS OF GRAIN MIXTURES BASED ON MEASURING THE REFLECTION AND TRANSMISSION SPECTRA

    Artem O. Donskikh*

    2017-10-01

    Full Text Available The paper considers methods of classification of grain mixture components based on spectral analysis in visible and near-infrared wavelength ranges using various measurement approaches - reflection, transmission and combined spectrum methods. It also describes the experimental measuring units used and suggests the prototype of a multispectral grain mixture analyzer. The results of the spectral measurement were processed using neural network based classification algorithms. The probabilities of incorrect recognition for various numbers of spectral parts and combinations of spectral methods were estimated. The paper demonstrates that combined usage of two spectral analysis methods leads to higher classification accuracy and allows for reducing the number of the analyzed spectral parts. A detailed description of the proposed measurement device for high-performance real-time multispectral analysis of the components of grain mixtures is given.

  6. Oil classification using X-ray scattering and principal component analysis

    Almeida, Danielle S.; Souza, Amanda S.; Lopes, Ricardo T., E-mail: dani.almeida84@gmail.com, E-mail: ricardo@lin.ufrj.br, E-mail: amandass@bioqmed.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Oliveira, Davi F.; Anjos, Marcelino J., E-mail: davi.oliveira@uerj.br, E-mail: marcelin@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica Armando Dias Tavares

    2015-07-01

    X-ray scattering techniques have been considered promising for the classification and characterization of many types of samples. This study employed this technique combined with chemical analysis and multivariate analysis to characterize 54 vegetable oil samples (being 25 olive oils)with different properties obtained in commercial establishments in Rio de Janeiro city. The samples were chemically analyzed using the following indexes: iodine, acidity, saponification and peroxide. In order to obtain the X-ray scattering spectrum, an X-ray tube with a silver anode operating at 40kV and 50 μA was used. The results showed that oils cab ne divided in tow large groups: olive oils and non-olive oils. Additionally, in a multivariate analysis (Principal Component Analysis - PCA), two components were obtained and accounted for more than 80% of the variance. One component was associated with chemical parameters and the other with scattering profiles of each sample. Results showed that use of X-ray scattering spectra combined with chemical analysis and PCA can be a fast, cheap and efficient method for vegetable oil characterization. (author)

  7. Oil classification using X-ray scattering and principal component analysis

    Almeida, Danielle S.; Souza, Amanda S.; Lopes, Ricardo T.; Oliveira, Davi F.; Anjos, Marcelino J.

    2015-01-01

    X-ray scattering techniques have been considered promising for the classification and characterization of many types of samples. This study employed this technique combined with chemical analysis and multivariate analysis to characterize 54 vegetable oil samples (being 25 olive oils)with different properties obtained in commercial establishments in Rio de Janeiro city. The samples were chemically analyzed using the following indexes: iodine, acidity, saponification and peroxide. In order to obtain the X-ray scattering spectrum, an X-ray tube with a silver anode operating at 40kV and 50 μA was used. The results showed that oils cab ne divided in tow large groups: olive oils and non-olive oils. Additionally, in a multivariate analysis (Principal Component Analysis - PCA), two components were obtained and accounted for more than 80% of the variance. One component was associated with chemical parameters and the other with scattering profiles of each sample. Results showed that use of X-ray scattering spectra combined with chemical analysis and PCA can be a fast, cheap and efficient method for vegetable oil characterization. (author)

  8. Systematic analysis of ocular trauma by a new proposed ocular trauma classification

    Bhartendu Shukla

    2017-01-01

    Full Text Available Purpose: The current classification of ocular trauma does not incorporate adnexal trauma, injuries that are attributable to a nonmechanical cause and destructive globe injuries. This study proposes a new classification system of ocular trauma which is broader-based to allow for the classification of a wider range of ocular injuries not covered by the current classification. Methods: A clinic-based cross-sectional study to validate the proposed classification. We analyzed 535 cases of ocular injury from January 1, 2012 to February 28, 2012 over a 4-year period in an eye hospital in central India using our proposed classification system and compared it with conventional classification. Results: The new classification system allowed for classification of all 535 cases of ocular injury. The conventional classification was only able to classify 364 of the 535 trauma cases. Injuries involving the adnexa, nonmechanical injuries and destructive globe injuries could not be classified by the conventional classification, thus missing about 33% of cases. Conclusions: Our classification system shows an improvement over existing ocular trauma classification as it allows for the classification of all type of ocular injuries and will allow for better and specific prognostication. This system has the potential to aid communication between physicians and result in better patient care. It can also provide a more authentic, wide spectrum of ocular injuries in correlation with etiology. By including adnexal injuries and nonmechanical injuries, we have been able to classify all 535 cases of trauma. Otherwise, about 30% of cases would have been excluded from the study.

  9. Site effect classification based on microtremor data analysis using a concentration-area fractal model

    Adib, A.; Afzal, P.; Heydarzadeh, K.

    2015-01-01

    The aim of this study is to classify the site effect using concentration-area (C-A) fractal model in Meybod city, central Iran, based on microtremor data analysis. Log-log plots of the frequency, amplification and vulnerability index (k-g) indicate a multifractal nature for the parameters in the area. The results obtained from the C-A fractal modelling reveal that proper soil types are located around the central city. The results derived via the fractal modelling were utilized to improve the Nogoshi and Igarashi (1970, 1971) classification results in the Meybod city. The resulting categories are: (1) hard soil and weak rock with frequency of 6.2 to 8 Hz, (2) stiff soil with frequency of about 4.9 to 6.2 Hz, (3) moderately soft soil with the frequency of 2.4 to 4.9 Hz, and (4) soft soil with the frequency lower than 2.4 Hz.

  10. Site effect classification based on microtremor data analysis using concentration-area fractal model

    Adib, A.; Afzal, P.; Heydarzadeh, K.

    2014-07-01

    The aim of this study is to classify the site effect using concentration-area (C-A) fractal model in Meybod city, Central Iran, based on microtremor data analysis. Log-log plots of the frequency, amplification and vulnerability index (k-g) indicate a multifractal nature for the parameters in the area. The results obtained from the C-A fractal modeling reveal that proper soil types are located around the central city. The results derived via the fractal modeling were utilized to improve the Nogoshi's classification results in the Meybod city. The resulted categories are: (1) hard soil and weak rock with frequency of 6.2 to 8 Hz, (2) stiff soil with frequency of about 4.9 to 6.2 Hz, (3) moderately soft soil with the frequency of 2.4 to 4.9 Hz, and (4) soft soil with the frequency lower than 2.4 Hz.

  11. Final hazard classification and auditable safety analysis for the N basin segment

    Kloster, G.; Smith, R.I.; Larson, A.R.; Duncan, G.M.

    1996-12-01

    The purpose of this report is to provide the following: To serve as the auditable safety analysis (ASA) for the N Basin Segment, including both the quiescent state and planned intrusive activities. The ASA is developed through the realistic evaluation of potential hazards that envelope the threat to personnel. The ASA also includes the specification of the programmatic, baseline, and activity- specific controls that are necessary for the protection of workers. To determine and document the final hazard classification (FHC) for the N Basin Segment. The FHC is developed through the use of bounding accident analyses that envelope the potential exposures to personnel. The FHC also includes the specification of the special controls that are necessary to remain within the envelope of those accident analyses

  12. A mathematical analysis of multiple-target SELEX.

    Seo, Yeon-Jung; Chen, Shiliang; Nilsen-Hamilton, Marit; Levine, Howard A

    2010-10-01

    SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a procedure by which a mixture of nucleic acids can be fractionated with the goal of identifying those with specific biochemical activities. One combines the mixture with a specific target molecule and then separates the target-NA complex from the resulting reactions. The target-NA complex is separated from the unbound NA by mechanical means (such as by filtration), the NA is eluted from the complex, amplified by PCR (polymerase chain reaction), and the process repeated. After several rounds, one should be left with the nucleic acids that best bind to the target. The problem was first formulated mathematically in Irvine et al. (J. Mol. Biol. 222:739-761, 1991). In Levine and Nilsen-Hamilton (Comput. Biol. Chem. 31:11-25, 2007), a mathematical analysis of the process was given. In Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998), multiple target SELEX was considered. It was assumed that each target has a single nucleic acid binding site that permits occupation by no more than one nucleic acid. Here, we revisit Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998) using the same assumptions. The iteration scheme is shown to be convergent and a simplified algorithm is given. Our interest here is in the behavior of the multiple target SELEX process as a discrete "time" dynamical system. Our goal is to characterize the limiting states and their dependence on the initial distribution of nucleic acid and target fraction components. (In multiple target SELEX, we vary the target component fractions, but not their concentrations, as fixed and the initial pool of nucleic acids as a variable starting condition). Given N nucleic acids and a target consisting of M subtarget component species, there is an M × N matrix of affinities, the (i,j) entry corresponding to the affinity of the jth nucleic acid for the ith subtarget. We give a structure condition on this matrix that is equivalent to the following

  13. Classification of diabetic retinopathy using fractal dimension analysis of eye fundus image

    Safitri, Diah Wahyu; Juniati, Dwi

    2017-08-01

    Diabetes Mellitus (DM) is a metabolic disorder when pancreas produce inadequate insulin or a condition when body resist insulin action, so the blood glucose level is high. One of the most common complications of diabetes mellitus is diabetic retinopathy which can lead to a vision problem. Diabetic retinopathy can be recognized by an abnormality in eye fundus. Those abnormalities are characterized by microaneurysms, hemorrhage, hard exudate, cotton wool spots, and venous's changes. The diabetic retinopathy is classified depends on the conditions of abnormality in eye fundus, that is grade 1 if there is a microaneurysm only in the eye fundus; grade 2, if there are a microaneurysm and a hemorrhage in eye fundus; and grade 3: if there are microaneurysm, hemorrhage, and neovascularization in the eye fundus. This study proposed a method and a process of eye fundus image to classify of diabetic retinopathy using fractal analysis and K-Nearest Neighbor (KNN). The first phase was image segmentation process using green channel, CLAHE, morphological opening, matched filter, masking, and morphological opening binary image. After segmentation process, its fractal dimension was calculated using box-counting method and the values of fractal dimension were analyzed to make a classification of diabetic retinopathy. Tests carried out by used k-fold cross validation method with k=5. In each test used 10 different grade K of KNN. The accuracy of the result of this method is 89,17% with K=3 or K=4, it was the best results than others K value. Based on this results, it can be concluded that the classification of diabetic retinopathy using fractal analysis and KNN had a good performance.

  14. Trace element analysis of environmental samples by multiple prompt gamma-ray analysis method

    Oshima, Masumi; Matsuo, Motoyuki; Shozugawa, Katsumi

    2011-01-01

    The multiple γ-ray detection method has been proved to be a high-resolution and high-sensitivity method in application to nuclide quantification. The neutron prompt γ-ray analysis method is successfully extended by combining it with the γ-ray detection method, which is called Multiple prompt γ-ray analysis, MPGA. In this review we show the principle of this method and its characteristics. Several examples of its application to environmental samples, especially river sediments in the urban area and sea sediment samples are also described. (author)

  15. Columbia Classification Algorithm of Suicide Assessment (C-CASA): classification of suicidal events in the FDA's pediatric suicidal risk analysis of antidepressants.

    Posner, Kelly; Oquendo, Maria A; Gould, Madelyn; Stanley, Barbara; Davies, Mark

    2007-07-01

    To evaluate the link between antidepressants and suicidal behavior and ideation (suicidality) in youth, adverse events from pediatric clinical trials were classified in order to identify suicidal events. The authors describe the Columbia Classification Algorithm for Suicide Assessment (C-CASA), a standardized suicidal rating system that provided data for the pediatric suicidal risk analysis of antidepressants conducted by the Food and Drug Administration (FDA). Adverse events (N=427) from 25 pediatric antidepressant clinical trials were systematically identified by pharmaceutical companies. Randomly assigned adverse events were evaluated by three of nine independent expert suicidologists using the Columbia classification algorithm. Reliability of the C-CASA ratings and agreement with pharmaceutical company classification were estimated. Twenty-six new, possibly suicidal events (behavior and ideation) that were not originally identified by pharmaceutical companies were identified in the C-CASA, and 12 events originally labeled as suicidal by pharmaceutical companies were eliminated, which resulted in a total of 38 discrepant ratings. For the specific label of "suicide attempt," a relatively low level of agreement was observed between the C-CASA and pharmaceutical company ratings, with the C-CASA reporting a 50% reduction in ratings. Thus, although the C-CASA resulted in the identification of more suicidal events overall, fewer events were classified as suicide attempts. Additionally, the C-CASA ratings were highly reliable (intraclass correlation coefficient [ICC]=0.89). Utilizing a methodical, anchored approach to categorizing suicidality provides an accurate and comprehensive identification of suicidal events. The FDA's audit of the C-CASA demonstrated excellent transportability of this approach. The Columbia algorithm was used to classify suicidal adverse events in the recent FDA adult antidepressant safety analyses and has also been mandated to be applied to all

  16. Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods. 10; Chapter

    Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.

    2013-01-01

    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post-classification

  17. Pros and cons of conjoint analysis of discrete choice experiments to define classification and response criteria in rheumatology.

    Taylor, William J

    2016-03-01

    Conjoint analysis of choice or preference data has been used in marketing for over 40 years but has appeared in healthcare settings much more recently. It may be a useful technique for applications within the rheumatology field. Conjoint analysis in rheumatology contexts has mainly used the approaches implemented in 1000Minds Ltd, Dunedin, New Zealand, Sawtooth Software, Orem UT, USA. Examples include classification criteria, composite response criteria, service prioritization tools and utilities assessment. Limitations imposed by very many attributes can be managed using new techniques. Conjoint analysis studies of classification and response criteria suggest that the assumption of equal weighting of attributes cannot be met, which challenges traditional approaches to composite criteria construction. Weights elicited through choice experiments with experts can derive more accurate classification criteria, than unweighted criteria. Studies that find significant variation in attribute weights for composite response criteria for gout make construction of such criteria problematic. Better understanding of various multiattribute phenomena is likely to increase with increased use of conjoint analysis, especially when the attributes concern individual perceptions or opinions. In addition to classification criteria, some applications for conjoint analysis that are emerging in rheumatology include prioritization tools, remission criteria, and utilities for life areas.

  18. Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface

    Noman Naseer

    2016-01-01

    Full Text Available We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest using functional near-infrared spectroscopy (fNIRS signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO signals. Two- and three-dimensional combinations of those features were used for classification of mental tasks. In the classification, six different modalities, linear discriminant analysis (LDA, quadratic discriminant analysis (QDA, k-nearest neighbour (kNN, the Naïve Bayes approach, support vector machine (SVM, and artificial neural networks (ANN, were utilized. With these classifiers, the average classification accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6, 90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classification accuracies: 91.4 and 96.3%. In order to validate the results, a statistical significance test was performed, which confirmed that the p values were statistically significant relative to all of the other classifiers (p < 0.005 using HbO signals.

  19. An observation on inappropriate probiotic subgroup classifications in the meta-analysis by Lau and Chamberlain

    McFarl

    2016-09-01

    Full Text Available Lynne V McFarland Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA I read with great interest the systematic review of meta-analysis assessing probiotics for the prevention of Clostridium difficile-associated diarrhea (CDAD published in the International Journal of General Medicine. These authors pooled 26 randomized controlled trials (RCTs and concluded that Lactobacilli, mixtures, and Saccharomyces probiotics were effective in preventing CDAD. However, the meta-analysis by Lau and Chamberlain is flawed due to improper classification by the types of probiotics. It is important to recognize that the efficacy of probiotics for various diseases has been shown to be strain specific for each probiotic product, and thus the data should only be pooled for probiotics that are of the identical type. In their analysis of probiotic subgroups by various species, the authors have inappropriately merged different types of Lactobacilli into one subgroup “Lactobacilli” and different types of mixtures into one group classified as “Mix”.View the original paper by Lau and Chamberlain. 

  20. Classification of emotions by multivariate analysis and individual differences of nuclear power plant operators' emotion

    Hasegawa, Naoko; Yoshimura, Seiichi

    1999-01-01

    The purpose of this study is the development of a simulation model which expresses operators' emotion under plant emergency. This report shows the classification of emotions by multivariate analysis and investigation results conducted to clarify individual differences of activated emotion influenced by personal traits. Although a former investigation was conducted to classify emotions into five basic emotions proposed by Johnson-Laird, the basic emotions was not based on real data. For the development of more realistic and accurate simulation model, it is necessary to recognize basic emotion and to classify emotions into them. As a result of analysis by qualification method 3 and cluster analysis, four basic clusters were clarified, i.e., Emotion expressed towards objects, Emotion affected by objects, Pleasant emotion, and Surprise. Moreover, 51 emotions were ranked in the order according to their similarities in each cluster. An investigation was conducted to clarify individual differences in emotion process using 87 plant operators. The results showed the differences of emotion depending on the existence of operators' foresight, cognitive style, experience in operation, and consciousness of attribution to an operating team. For example, operators with low self-efficacy, short experience or low consciousness of attribution to a team, feel more intensive emotion under plant emergency and more affected by severe plant conditions. The model which can express individual differences will be developed utilizing and converting these data hereafter. (author)

  1. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  2. Classification of emotions by multivariate analysis and individual differences of nuclear power plant operators` emotion

    Hasegawa, Naoko; Yoshimura, Seiichi [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1999-03-01

    The purpose of this study is the development of a simulation model which expresses operators` emotion under plant emergency. This report shows the classification of emotions by multivariate analysis and investigation results conducted to clarify individual differences of activated emotion influenced by personal traits. Although a former investigation was conducted to classify emotions into five basic emotions proposed by Johnson-Laird, the basic emotions was not based on real data. For the development of more realistic and accurate simulation model, it is necessary to recognize basic emotion and to classify emotions into them. As a result of analysis by qualification method 3 and cluster analysis, four basic clusters were clarified, i.e., Emotion expressed towards objects, Emotion affected by objects, Pleasant emotion, and Surprise. Moreover, 51 emotions were ranked in the order according to their similarities in each cluster. An investigation was conducted to clarify individual differences in emotion process using 87 plant operators. The results showed the differences of emotion depending on the existence of operators` foresight, cognitive style, experience in operation, and consciousness of attribution to an operating team. For example, operators with low self-efficacy, short experience or low consciousness of attribution to a team, feel more intensive emotion under plant emergency and more affected by severe plant conditions. The model which can express individual differences will be developed utilizing and converting these data hereafter. (author)

  3. Classification of Surface and Deep Soil Samples Using Linear Discriminant Analysis

    Wasim, M.; Ali, M.; Daud, M.

    2015-01-01

    A statistical analysis was made of the activity concentrations measured in surface and deep soil samples for natural and anthropogenic gamma-emitting radionuclides. Soil samples were obtained from 48 different locations in Gilgit, Pakistan covering about 50 km/sup 2/ areas at an average altitude of 1550 m above sea level. From each location two samples were collected: one from the top soil (2-6 cm) and another from a depth of 6-10 cm. Four radionuclides including /sup 226/Ra, /sup 232/Th, /sup 40/K and /sup 137/Cs were quantified. The data was analyzed using t-test to find out activity concentration difference between the surface and depth samples. At the surface, the median activity concentrations were 23.7, 29.1, 4.6 and 115 Bq kg/sup -1/ for 226Ra, 232Th, 137Cs and 40K respectively. For the same radionuclides, the activity concentrations were respectively 25.5, 26.2, 2.9 and 191 Bq kg/sup -1/ for the depth samples. Principal component analysis (PCA) was applied to explore patterns within the data. A positive significant correlation was observed between the radionuclides /sup 226/Ra and /sup 232/Th. The data from PCA was further utilized in linear discriminant analysis (LDA) for the classification of surface and depth samples. LDA classified surface and depth samples with good predictability. (author)

  4. Drug-induced sedation endoscopy (DISE) classification systems: a systematic review and meta-analysis.

    Dijemeni, Esuabom; D'Amone, Gabriele; Gbati, Israel

    2017-12-01

    Drug-induced sedation endoscopy (DISE) classification systems have been used to assess anatomical findings on upper airway obstruction, and decide and plan surgical treatments and act as a predictor for surgical treatment outcome for obstructive sleep apnoea management. The first objective is to identify if there is a universally accepted DISE grading and classification system for analysing DISE findings. The second objective is to identify if there is one DISE grading and classification treatment planning framework for deciding appropriate surgical treatment for obstructive sleep apnoea (OSA). The third objective is to identify if there is one DISE grading and classification treatment outcome framework for determining the likelihood of success for a given OSA surgical intervention. A systematic review was performed to identify new and significantly modified DISE classification systems: concept, advantages and disadvantages. Fourteen studies proposing a new DISE classification system and three studies proposing a significantly modified DISE classification were identified. None of the studies were based on randomised control trials. DISE is an objective method for visualising upper airway obstruction. The classification and assessment of clinical findings based on DISE is highly subjective due to the increasing number of DISE classification systems. Hence, this creates a growing divergence in surgical treatment planning and treatment outcome. Further research on a universally accepted objective DISE assessment is critically needed.

  5. Place-classification analysis of community vulnerability to near-field tsunami threats in the U.S. Pacific Northwest (Invited)

    Wood, N. J.; Jones, J.; Spielman, S.

    2013-12-01

    Near-field tsunami hazards are credible threats to many coastal communities throughout the world. Along the U.S. Pacific Northwest coast, low-lying areas could be inundated by a series of catastrophic tsunami waves that begin to arrive in a matter of minutes following a Cascadia subduction zone (CSZ) earthquake. This presentation summarizes analytical efforts to classify communities with similar characteristics of community vulnerability to tsunami hazards. This work builds on past State-focused inventories of community exposure to CSZ-related tsunami hazards in northern California, Oregon, and Washington. Attributes used in the classification, or cluster analysis, include demography of residents, spatial extent of the developed footprint based on mid-resolution land cover data, distribution of the local workforce, and the number and type of public venues, dependent-care facilities, and community-support businesses. Population distributions also are characterized by a function of travel time to safety, based on anisotropic, path-distance, geospatial modeling. We used an unsupervised-model-based clustering algorithm and a v-fold, cross-validation procedure (v=50) to identify the appropriate number of community types. We selected class solutions that provided the appropriate balance between parsimony and model fit. The goal of the vulnerability classification is to provide emergency managers with a general sense of the types of communities in tsunami hazard zones based on similar characteristics instead of only providing an exhaustive list of attributes for individual communities. This classification scheme can be then used to target and prioritize risk-reduction efforts that address common issues across multiple communities. The presentation will include a discussion of the utility of proposed place classifications to support regional preparedness and outreach efforts.

  6. A public finance analysis of multiple reserve requirements

    Espinosa-Vega, Marco; Russell, Steven

    1998-01-01

    This paper analyzes multiple reserve requirements of the type that have been imposed by a number of developing countries. We show that previous theoretical work on this topic has not succeeded in providing a social welfare rationale for the existence of multiple reserve requirements: in the basic reserve requirements model, any allocation that can be supported by a multiple-reserves regime can also be supported by a single-bond reserve requirement. We go on to present extended versions of the...

  7. Classification of Small-Scale Eucalyptus Plantations Based on NDVI Time Series Obtained from Multiple High-Resolution Datasets

    Hailang Qiao

    2016-02-01

    Full Text Available Eucalyptus, a short-rotation plantation, has been expanding rapidly in southeast China in recent years owing to its short growth cycle and high yield of wood. Effective identification of eucalyptus, therefore, is important for monitoring land use changes and investigating environmental quality. For this article, we used remote sensing images over 15 years (one per year with a 30-m spatial resolution, including Landsat 5 thematic mapper images, Landsat 7-enhanced thematic mapper images, and HJ 1A/1B images. These data were used to construct a 15-year Normalized Difference Vegetation Index (NDVI time series for several cities in Guangdong Province, China. Eucalyptus reference NDVI time series sub-sequences were acquired, including one-year-long and two-year-long growing periods, using invested eucalyptus samples in the study region. In order to compensate for the discontinuity of the NDVI time series that is a consequence of the relatively coarse temporal resolution, we developed an inverted triangle area methodology. Using this methodology, the images were classified on the basis of the matching degree of the NDVI time series and two reference NDVI time series sub-sequences during the growing period of the eucalyptus rotations. Three additional methodologies (Bounding Envelope, City Block, and Standardized Euclidian Distance were also tested and used as a comparison group. Threshold coefficients for the algorithms were adjusted using commission–omission error criteria. The results show that the triangle area methodology out-performed the other methodologies in classifying eucalyptus plantations. Threshold coefficients and an optimal discriminant function were determined using a mosaic photograph that had been taken by an unmanned aerial vehicle platform. Good stability was found as we performed further validation using multiple-year data from the high-resolution Gaofen Satellite 1 (GF-1 observations of larger regions. Eucalyptus planting dates

  8. Active neutron multiplicity analysis and Monte Carlo calculations

    Krick, M.S.; Ensslin, N.; Langner, D.G.; Miller, M.C.; Siebelist, R.; Stewart, J.E.; Ceo, R.N.; May, P.K.; Collins, L.L. Jr

    1994-01-01

    Active neutron multiplicity measurements of high-enrichment uranium metal and oxide samples have been made at Los Alamos and Y-12. The data from the measurements of standards at Los Alamos were analyzed to obtain values for neutron multiplication and source-sample coupling. These results are compared to equivalent results obtained from Monte Carlo calculations. An approximate relationship between coupling and multiplication is derived and used to correct doubles rates for multiplication and coupling. The utility of singles counting for uranium samples is also examined

  9. Upper limb movement analysis during gait in multiple sclerosis patients.

    Elsworth-Edelsten, Charlotte; Bonnefoy-Mazure, Alice; Laidet, Magali; Armand, Stephane; Assal, Frederic; Lalive, Patrice; Allali, Gilles

    2017-08-01

    Gait disorders in multiple sclerosis (MS) are well studied; however, no previous study has described upper limb movements during gait. However, upper limb movements have an important role during locomotion and can be altered in MS patients due to direct MS lesions or mechanisms of compensation. The aim of this study was to describe the arm movements during gait in a population of MS patients with low disability compared with a healthy control group. In this observational study we analyzed the arm movements during gait in 52 outpatients (mean age: 39.7±9.6years, female: 40%) with relapsing-remitting MS with low disability (mean EDSS: 2±1) and 25 healthy age-matched controls using a 3-dimension gait analysis. MS patients walked slower, with increased mean elbow flexion and decreased amplitude of elbow flexion (ROM) compared to the control group, whereas shoulder and hand movements were similar to controls. These differences were not explained by age or disability. Upper limb alterations in movement during gait in MS patients with low disability can be characterized by an increase in mean elbow flexion and a decrease in amplitude (ROM) for elbow flexion/extension. This upper limb movement pattern should be considered as a new component of gait disorders in MS and may reflect subtle motor deficits or the use of compensatory mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Multiple criteria decision analysis for health technology assessment.

    Thokala, Praveen; Duenas, Alejandra

    2012-12-01

    Multicriteria decision analysis (MCDA) has been suggested by some researchers as a method to capture the benefits beyond quality adjusted life-years in a transparent and consistent manner. The objectives of this article were to analyze the possible application of MCDA approaches in health technology assessment and to describe their relative advantages and disadvantages. This article begins with an introduction to the most common types of MCDA models and a critical review of state-of-the-art methods for incorporating multiple criteria in health technology assessment. An overview of MCDA is provided and is compared against the current UK National Institute for Health and Clinical Excellence health technology appraisal process. A generic MCDA modeling approach is described, and the different MCDA modeling approaches are applied to a hypothetical case study. A comparison of the different MCDA approaches is provided, and the generic issues that need consideration before the application of MCDA in health technology assessment are examined. There are general practical issues that might arise from using an MCDA approach, and it is suggested that appropriate care be taken to ensure the success of MCDA techniques in the appraisal process. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  11. Seismic structural response analysis for multiple support excitation

    Shaw, D.E.

    1975-01-01

    In the seismic analysis of nuclear power plant equipment such as piping systems situations often arise in which piping systems span between adjacent structures or between different elevations in the same structure. Owing to the differences in the seismic time history response of different structures or different elevations of the same structure, the input support motion will differ for different supports. The concept of a frequency dependent participation factor and rotational response spectra accounting for phase differences between support excitations is developed by using classical equations of motion to formulate the seismic response of a structure subjected to multiple support excitation. The essence of the method lies in describing the seismic excitation of a multiply excited structure in terms of translational and rotational spectra used at every support and a frequency dependent spatial distribution function derived from the phase relationships of the different support time histories. In this manner it is shown that frequency dependent participation factors can be derived from the frequency dependent distribution functions. Examples are shown and discussed relative to closed form solutions and the state-of-the-art techniques presently being used for the solution of problems of multiply excited structures

  12. A Multiple-Scale Analysis of Evaporation Induced Marangoni Convection

    Hennessy, Matthew G.

    2013-04-23

    This paper considers the stability of thin liquid layers of binary mixtures of a volatile (solvent) species and a nonvolatile (polymer) species. Evaporation leads to a depletion of the solvent near the liquid surface. If surface tension increases for lower solvent concentrations, sufficiently strong compositional gradients can lead to Bénard-Marangoni-type convection that is similar to the kind which is observed in films that are heated from below. The onset of the instability is investigated by a linear stability analysis. Due to evaporation, the base state is time dependent, thus leading to a nonautonomous linearized system which impedes the use of normal modes. However, the time scale for the solvent loss due to evaporation is typically long compared to the diffusive time scale, so a systematic multiple scales expansion can be sought for a finite-dimensional approximation of the linearized problem. This is determined to leading and to next order. The corrections indicate that the validity of the expansion does not depend on the magnitude of the individual eigenvalues of the linear operator, but it requires these eigenvalues to be well separated. The approximations are applied to analyze experiments by Bassou and Rharbi with polystyrene/toluene mixtures [Langmuir, 25 (2009), pp. 624-632]. © 2013 Society for Industrial and Applied Mathematics.

  13. Microseismic Monitoring Design Optimization Based on Multiple Criteria Decision Analysis

    Kovaleva, Y.; Tamimi, N.; Ostadhassan, M.

    2017-12-01

    Borehole microseismic monitoring of hydraulic fracture treatments of unconventional reservoirs is a widely used method in the oil and gas industry. Sometimes, the quality of the acquired microseismic data is poor. One of the reasons for poor data quality is poor survey design. We attempt to provide a comprehensive and thorough workflow, using multiple criteria decision analysis (MCDA), to optimize planning micriseismic monitoring. So far, microseismic monitoring has been used extensively as a powerful tool for determining fracture parameters that affect the influx of formation fluids into the wellbore. The factors that affect the quality of microseismic data and their final results include average distance between microseismic events and receivers, complexity of the recorded wavefield, signal-to-noise ratio, data aperture, etc. These criteria often conflict with each other. In a typical microseismic monitoring, those factors should be considered to choose the best monitoring well(s), optimum number of required geophones, and their depth. We use MDCA to address these design challenges and develop a method that offers an optimized design out of all possible combinations to produce the best data acquisition results. We believe that this will be the first research to include the above-mentioned factors in a 3D model. Such a tool would assist companies and practicing engineers in choosing the best design parameters for future microseismic projects.

  14. A Multiple-Scale Analysis of Evaporation Induced Marangoni Convection

    Hennessy, Matthew G.; Mü nch, Andreas

    2013-01-01

    This paper considers the stability of thin liquid layers of binary mixtures of a volatile (solvent) species and a nonvolatile (polymer) species. Evaporation leads to a depletion of the solvent near the liquid surface. If surface tension increases for lower solvent concentrations, sufficiently strong compositional gradients can lead to Bénard-Marangoni-type convection that is similar to the kind which is observed in films that are heated from below. The onset of the instability is investigated by a linear stability analysis. Due to evaporation, the base state is time dependent, thus leading to a nonautonomous linearized system which impedes the use of normal modes. However, the time scale for the solvent loss due to evaporation is typically long compared to the diffusive time scale, so a systematic multiple scales expansion can be sought for a finite-dimensional approximation of the linearized problem. This is determined to leading and to next order. The corrections indicate that the validity of the expansion does not depend on the magnitude of the individual eigenvalues of the linear operator, but it requires these eigenvalues to be well separated. The approximations are applied to analyze experiments by Bassou and Rharbi with polystyrene/toluene mixtures [Langmuir, 25 (2009), pp. 624-632]. © 2013 Society for Industrial and Applied Mathematics.

  15. Smoking and multiple sclerosis: an updated meta-analysis.

    Adam E Handel

    2011-01-01

    Full Text Available Multiple sclerosis (MS is a leading cause of disability in young adults. Susceptibility to MS is determined by environmental exposure on the background of genetic risk factors. A previous meta-analysis suggested that smoking was an important risk factor for MS but many other studies have been published since then.We performed a Medline search to identify articles published that investigated MS risk following cigarette smoking. A total of 14 articles were included in this study. This represented data on 3,052 cases and 457,619 controls. We analysed these studies in both a conservative (limiting our analysis to only those where smoking behaviour was described prior to disease onset and non-conservative manner. Our results show that smoking is associated with MS susceptibility (conservative: risk ratio (RR 1.48, 95% confidence interval (CI 1.35-1.63, p < 10⁻¹⁵; non-conservative: RR 1.52, 95% CI 1.39-1.66, p < 10⁻¹⁹. We also analysed 4 studies reporting risk of secondary progression in MS and found that this fell just short of statistical significance with considerable heterogeneity (RR 1.88, 95% CI 0.98-3.61, p = 0.06.Our results demonstrate that cigarette smoking is important in determining MS susceptibility but the effect on the progression of disease is less certain. Further work is needed to understand the mechanism behind this association and how smoking integrates with other established risk factors.

  16. Extension of ship accident analysis to multiple-package shipments

    Mills, G.S.; Neuhauser, K.S.

    1997-11-01

    Severe ship accidents and the probability of radioactive material release from spent reactor fuel casks were investigated previously. Other forms of RAM, e.g., plutonium oxide powder, may be shipped in large numbers of packagings rather than in one to a few casks. These smaller, more numerous packagings are typically placed in ISO containers for ease of handling, and several ISO containers may be placed in one of several holds of a cargo ship. In such cases, the size of a radioactive release resulting from a severe collision with another ship is determined not by the likelihood of compromising a single, robust package but by the probability that a certain fraction of 10's or 100's of individual packagings is compromised. The previous analysis involved a statistical estimation of the frequency of accidents which would result in damage to a cask located in one of seven cargo holds in a collision with another ship. The results were obtained in the form of probabilities (frequencies) of accidents of increasing severity and of release fractions for each level of severity. This paper describes an extension of the same general method in which the multiple packages are assumed to be compacted by an intruding ship's bow until there is no free space in the hold. At such a point, the remaining energy of the colliding ship is assumed to be dissipated by progressively crushing the RAM packagings and the probability of a particular fraction of package failures is estimated by adaptation of the statistical method used previously. The parameters of a common, well characterized packaging, the 6M with 2R inner containment vessel, were employed as an illustrative example of this analysis method. However, the method is readily applicable to other packagings for which crush strengths have been measured or can be estimated with satisfactory confidence

  17. Extension of ship accident analysis to multiple-package shipments

    Mills, G.S.; Neuhauser, K.S.

    1998-01-01

    Severe ship accidents and the probability of radioactive material release from spent reactor fuel casks were investigated previously (Spring, 1995). Other forms of RAM, e.g., plutonium oxide powder, may be shipped in large numbers of packagings rather than in one to a few casks. These smaller, more numerous packagings are typically placed in ISO containers for ease of handling, and several ISO containers may be placed in one of several holds of a cargo ship. In such cases, the size of a radioactive release resulting from a severe collision with another ship is determined not by the likelihood of compromising a single, robust package but by the probability that a certain fraction of 10's or 100's of individual packagings is compromised. The previous analysis (Spring, 1995) involved a statistical estimation of the frequency of accidents which would result in damage to a cask located in one of seven cargo holds in a collision with another ship. The results were obtained in the form of probabilities (frequencies) of accidents of increasing severity and of release fractions for each level of severity. This paper describes an extension of the same general method in which the multiple packages are assumed to be compacted by an intruding ship's bow until there is no free space in the hold. At such a point, the remaining energy of the colliding ship is assumed to be dissipated by progressively crushing the RAM packagings and the probability of a particular fraction of package failures is estimated by adaptation of the statistical method used previously. The parameters of a common, well-characterized packaging, the 6M with 2R inner containment vessel, were employed as an illustrative example of this analysis method. However, the method is readily applicable to other packagings for which crush strengths have been measured or can be estimated with satisfactory confidence. (authors)

  18. Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients

    A. Dessa Sadovnick

    2016-07-01

    Full Text Available Multiple sclerosis (MS is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D in plasminogen (PLG as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351 in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117, despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93–1.87. To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility.

  19. Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients

    Sadovnick, A. Dessa; Traboulsee, Anthony L.; Bernales, Cecily Q.; Ross, Jay P.; Forwell, Amanda L.; Yee, Irene M.; Guillot-Noel, Lena; Fontaine, Bertrand; Cournu-Rebeix, Isabelle; Alcina, Antonio; Fedetz, Maria; Izquierdo, Guillermo; Matesanz, Fuencisla; Hilven, Kelly; Dubois, Bénédicte; Goris, An; Astobiza, Ianire; Alloza, Iraide; Antigüedad, Alfredo; Vandenbroeck, Koen; Akkad, Denis A.; Aktas, Orhan; Blaschke, Paul; Buttmann, Mathias; Chan, Andrew; Epplen, Joerg T.; Gerdes, Lisa-Ann; Kroner, Antje; Kubisch, Christian; Kümpfel, Tania; Lohse, Peter; Rieckmann, Peter; Zettl, Uwe K.; Zipp, Frauke; Bertram, Lars; Lill, Christina M; Fernandez, Oscar; Urbaneja, Patricia; Leyva, Laura; Alvarez-Cermeño, Jose Carlos; Arroyo, Rafael; Garagorri, Aroa M.; García-Martínez, Angel; Villar, Luisa M.; Urcelay, Elena; Malhotra, Sunny; Montalban, Xavier; Comabella, Manuel; Berger, Thomas; Fazekas, Franz; Reindl, Markus; Schmied, Mascha C.; Zimprich, Alexander; Vilariño-Güell, Carles

    2016-01-01

    Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93–1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility. PMID:27194806

  20. Identification of Sexually Abused Female Adolescents at Risk for Suicidal Ideations: A Classification and Regression Tree Analysis

    Brabant, Marie-Eve; Hebert, Martine; Chagnon, Francois

    2013-01-01

    This study explored the clinical profiles of 77 female teenager survivors of sexual abuse and examined the association of abuse-related and personal variables with suicidal ideations. Analyses revealed that 64% of participants experienced suicidal ideations. Findings from classification and regression tree analysis indicated that depression,…

  1. Containment analysis of the 9975 transportation package with multiple barriers

    Vinson, D.W.

    2000-01-01

    A containment analysis has been performed for the scenario of non-routine transfer of a damaged 9975 package containing plutonium metal from K-area monitored storage to F-area on the Savannah River Site. A multiple barrier system with each barrier having a defined leakage rate of less than 1times10 -3 cm 3 /sec of air at Standard Temperature and Pressure was analyzed to determine the number of barriers needed to transport the package under normal transportation conditions to meet transportation requirements for containment. The barrier system was analyzed parametrically to achieve a composite system that met the federal requirements for the maximum permissible release rate given in Title 10 of the Code of Federal Regulations, Part 71. The multiple barrier system acts to retard the release of radioactivity. That is, a build-up in the radioactivity release rate occurs with time. For example, a system with three barriers (e.g., sealed plastic barrier) with a total free volume of 4,500 cm 3 could be transported for a total time of up to approximately 10 days with a release rate within the permissible rate. Additional number of barriers, or volume of the barriers, or both, would extend to this period of time. For example, a system with seven barriers with a total free volume of 4,500 cm 3 could be transported for up to 100 days. Plastic bags are one type of barrier used in movement of radioactive materials and capable of achieving a leak rate of 1times10 -3 cm 3 /sec of air at STP. Low-density polyethylene bags can withstand high temperature (up to 180 degrees C); a barrier thickness of 10 mils should be suitable for the barrier system. Additional requirements for barriers are listed in Section 4.2 of this report. Container testing per ANSI N14.5 is required to demonstrate leak rates for the individual barriers of less than 1times10 -3 cm 3 /sec

  2. Hydrologic classification of rivers based on cluster analysis of dimensionless hydrologic signatures: Applications for environmental instream flows

    Praskievicz, S. J.; Luo, C.

    2017-12-01

    Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.

  3. Childhood Mourning: Prospective Case Analysis of Multiple Losses

    Kaufman, Kenneth R.; Kaufman, Nathaniel D.

    2005-01-01

    Multiple losses within short time periods make one question life and can exponentially influence one's coping skills. But what are the effects on a child and what should be done when the next loss occurs? This case addresses the multiple losses suffered by a child while assessing coping skills of the child and coping strategies used by the parents…

  4. Speech-Language and Nutritional Sciences in hospital environment: analysis of terminology of food consistencies classification.

    Amaral, Ana Cláudia Fernandes; Rodrigues, Lívia Azevedo; Furlan, Renata Maria Moreira Moraes; Vicente, Laélia Cristina Caseiro; Motta, Andréa Rodrigues

    2015-01-01

    To verify if there is an agreement between speech-language pathologists and nutritionists about the classification of food textures used in hospitals and their opinions about the possible consequences of differences in this classification. This is a descriptive, cross-sectional study with 30 speech-language pathologists and 30 nutritionists who worked in 14 hospitals of public and/or private network in Belo Horizonte, Brazil. The professionals answered a questionnaire, prepared by the researchers, and classified five different foods, with and without theoretical direction. The data were analyzed using Fisher's exact and Z -tests to compare ratios with a 5% significance level. Both speech-language therapists (100%) and nutritionists (90%) perceive divergence in the classification and, 86.2% and 100% of them, respectively, believe that this difference may affect the patients' recovery. Aspiration risk was the most mentioned problem. For the general classification of food textures, most of the professionals (88.5%) suggested four to six terms. As to the terminology used in the classification of food presented without theoretical direction, the professionals cited 49 terms and agreed only in the solid and liquid classifications. With theoretical direction, the professionals also agreed in the classification of thick and thin paste. Both the professionals recognized divergences in the classification of food textures and the consequent risk of damage to patient's recovery. The use of theoretical direction increased the agreement between these professionals.

  5. Analysis of the Carnegie Classification of Community Engagement: Patterns and Impact on Institutions

    Driscoll, Amy

    2014-01-01

    This chapter describes the impact that participation in the Carnegie Classification for Community Engagement had on the institutions of higher learning that applied for the classification. This is described in terms of changes in direct community engagement, monitoring and reporting on community engagement, and levels of student and professor…

  6. Prognostic classification index in Iranian colorectal cancer patients: Survival tree analysis

    Amal Saki Malehi

    2016-01-01

    Full Text Available Aims: The aim of this study was to determine the prognostic index for separating homogenous subgroups in colorectal cancer (CRC patients based on clinicopathological characteristics using survival tree analysis. Methods: The current study was conducted at the Research Center of Gastroenterology and Liver Disease, Shahid Beheshti Medical University in Tehran, between January 2004 and January 2009. A total of 739 patients who already have been diagnosed with CRC based on pathologic report were enrolled. The data included demographic and clinical-pathological characteristic of patients. Tree-structured survival analysis based on a recursive partitioning algorithm was implemented to evaluate prognostic factors. The probability curves were calculated according to the Kaplan-Meier method, and the hazard ratio was estimated as an interest effect size. Result: There were 526 males (71.2% of these patients. The mean survival time (from diagnosis time was 42.46± (3.4. Survival tree identified three variables as main prognostic factors and based on their four prognostic subgroups was constructed. The log-rank test showed good separation of survival curves. Patients with Stage I-IIIA and treated with surgery as the first treatment showed low risk (median = 34 months whereas patients with stage IIIB, IV, and more than 68 years have the worse survival outcome (median = 9.5 months. Conclusion: Constructing the prognostic classification index via survival tree can aid the researchers to assess interaction between clinical variables and determining the cumulative effect of these variables on survival outcome.

  7. Performance Analysis of Classification Methods for Indoor Localization in Vlc Networks

    Sánchez-Rodríguez, D.; Alonso-González, I.; Sánchez-Medina, J.; Ley-Bosch, C.; Díaz-Vilariño, L.

    2017-09-01

    Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.

  8. Final Hazard Classification and Auditable Safety Analysis for the 105-F Building Interim Safe Storage Project

    Rodovsky, T.J.; Bond, S.L.

    1998-07-01

    The auditable safety analysis (ASA) documents the authorization basis for the partial decommissioning and facility modifications to place the 105-F Building into interim safe storage (ISS). Placement into the ISS is consistent with the preferred alternative identified in the Record of Decision (58 FR). Modifications will reduce the potential for release and worker exposure to hazardous and radioactive materials, as well as lower surveillance and maintenance (S ampersand M) costs. This analysis includes the following: A description of the activities to be performed in the course of the 105-F Building ISS Project. An assessment of the inventory of radioactive and other hazardous materials within the 105-F Building. Identification of the hazards associated with the activities of the 105-F Building ISS Project. Identification of internally and externally initiated accident scenarios with the potential to produce significant local or offsite consequences during the 105-F Building ISS Project. Bounding evaluation of the consequences of the potentially significant accident scenarios. Hazard classification based on the bounding consequence evaluation. Associated safety function and controls, including commitments. Radiological and other employee safety and health considerations

  9. Ingredient classification according to the digestible amino acid profile: an exploratory analysis

    DE Faria Filho

    2005-09-01

    Full Text Available This study aimed: 1 to classify ingredients according to the digestible amino acid (AA profile; 2 to determine ingredients with AA profile closer to the ideal for broiler chickens; and 3 to compare digestible AA profiles from simulated diets with the ideal protein profile. The digestible AA levels of 30 ingredients were compiled from the literature and presented as percentages of lysine according to the ideal protein concept. Cluster and principal component analyses (exploratory analyses were used to compose and describe groups of ingredients according to AA profiles. Four ingredient groups were identified by cluster analysis, and the classification of the ingredients within each of these groups was obtained from a principal component analysis, showing 11 classes of ingredients with similar digestible AA profiles. The ingredients with AA profiles closer to the ideal protein were meat and bone meal 45, fish meal 60 and wheat germ meal, all of them constituting Class 1; the ingredients from the other classes gradually diverged from the ideal protein. Soybean meal, which is the main protein source for poultry, showed good AA balance since it was included in Class 3. On the contrary, corn, which is the main energy source in poultry diets, was classified in Class 8. Dietary AA profiles were improved when corn and/or soybean meal were partially or totally replaced in the simulations by ingredients with better AA balance.

  10. Injury severity in ice skating: an epidemiologic analysis using a standardised injury classification system.

    Ostermann, Roman C; Hofbauer, Marcus; Tiefenböck, Thomas M; Pumberger, Matthias; Tiefenböck, Michael; Platzer, Patrick; Aldrian, Silke

    2015-01-01

    Although injuries sustained during ice skating have been reported to be more serious than other forms of skating, the potential injury risks are often underestimated by skating participants. The purpose of this study was to give a descriptive overview of injury patterns occurring during ice skating. Special emphasis was put on injury severity by using a standardised injury classification system. Over a six month period, all patients treated with ice-skating-related injuries at Europe's largest hospital were included. Patient demographics were collected and all injuries categorised according to the Abbreviated Injury Scale (AIS) 2005. A descriptive statistic and logistic regression analysis was performed. Three hundred and forty-one patients (134 M, 207 F) were included in this study. Statistical analysis revealed that age had a significant influence on injury severity. People > 50 years had a higher risk of sustaining a more severe injury according to the AIS compared with younger skaters. Furthermore, the risk of head injury was significantly lower for people aged between 18 and 50 years than for people  50 years than for people aged between 18 and 50 years (p = 0.04). The severity of ice-skating injuries is associated with the patient's age, showing more severe injuries in older patients. Awareness should be raised among the public and physicians about the risks associated with this activity in order to promote further educational interventions and the use of protective gear.

  11. PERFORMANCE ANALYSIS OF CLASSIFICATION METHODS FOR INDOOR LOCALIZATION IN VLC NETWORKS

    D. Sánchez-Rodríguez

    2017-09-01

    Full Text Available Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.

  12. Finding stability regions for preserving efficiency classification of variable returns to scale technology in data envelopment analysis

    Zamani, P.; Borzouei, M.

    2016-12-01

    This paper addresses issue of sensitivity of efficiency classification of variable returns to scale (VRS) technology for enhancing the credibility of data envelopment analysis (DEA) results in practical applications when an additional decision making unit (DMU) needs to be added to the set being considered. It also develops a structured approach to assisting practitioners in making an appropriate selection of variation range for inputs and outputs of additional DMU so that this DMU be efficient and the efficiency classification of VRS technology remains unchanged. This stability region is simply specified by the concept of defining hyperplanes of production possibility set of VRS technology and the corresponding halfspaces. Furthermore, this study determines a stability region for the additional DMU within which, in addition to efficiency classification, the efficiency score of a specific inefficient DMU is preserved and also using a simulation method, a region in which some specific efficient DMUs become inefficient is provided.

  13. Automatic classification for mammogram backgrounds based on bi-rads complexity definition and on a multi content analysis framework

    Wu, Jie; Besnehard, Quentin; Marchessoux, Cédric

    2011-03-01

    Clinical studies for the validation of new medical imaging devices require hundreds of images. An important step in creating and tuning the study protocol is the classification of images into "difficult" and "easy" cases. This consists of classifying the image based on features like the complexity of the background, the visibility of the disease (lesions). Therefore, an automatic medical background classification tool for mammograms would help for such clinical studies. This classification tool is based on a multi-content analysis framework (MCA) which was firstly developed to recognize image content of computer screen shots. With the implementation of new texture features and a defined breast density scale, the MCA framework is able to automatically classify digital mammograms with a satisfying accuracy. BI-RADS (Breast Imaging Reporting Data System) density scale is used for grouping the mammograms, which standardizes the mammography reporting terminology and assessment and recommendation categories. Selected features are input into a decision tree classification scheme in MCA framework, which is the so called "weak classifier" (any classifier with a global error rate below 50%). With the AdaBoost iteration algorithm, these "weak classifiers" are combined into a "strong classifier" (a classifier with a low global error rate) for classifying one category. The results of classification for one "strong classifier" show the good accuracy with the high true positive rates. For the four categories the results are: TP=90.38%, TN=67.88%, FP=32.12% and FN =9.62%.

  14. Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis

    Myakalwar, Ashwin Kumar; Sreedhar, S.; Barman, Ishan; Dingari, Narahara Chari; Rao, S. Venugopal; Kiran, P. Prem; Tewari, Surya P.; Kumar, G. Manoj

    2012-01-01

    We report the effectiveness of laser-induced breakdown spectroscopy (LIBS) in probing the content of pharmaceutical tablets and also investigate its feasibility for routine classification. This method is particularly beneficial in applications where its exquisite chemical specificity and suitability for remote and on site characterization significantly improves the speed and accuracy of quality control and assurance process. Our experiments reveal that in addition to the presence of carbon, hydrogen, nitrogen and oxygen, which can be primarily attributed to the active pharmaceutical ingredients, specific inorganic atoms were also present in all the tablets. Initial attempts at classification by a ratiometric approach using oxygen to nitrogen compositional values yielded an optimal value (at 746.83 nm) with the least relative standard deviation but nevertheless failed to provide an acceptable classification. To overcome this bottleneck in the detection process, two chemometric algorithms, i.e. principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA), were implemented to exploit the multivariate nature of the LIBS data demonstrating that LIBS has the potential to differentiate and discriminate among pharmaceutical tablets. We report excellent prospective classification accuracy using supervised classification via the SIMCA algorithm, demonstrating its potential for future applications in process analytical technology, especially for fast on-line process control monitoring applications in the pharmaceutical industry. PMID:22099648

  15. Comparison of multiple obesity indices for cardiovascular disease risk classification in South Asian adults: The CARRS Study.

    Shivani A Patel

    Full Text Available We comparatively assessed the performance of six simple obesity indices to identify adults with cardiovascular disease (CVD risk factors in a diverse and contemporary South Asian population.8,892 participants aged 20-60 years in 2010-2011 were analyzed. Six obesity indices were examined: body mass index (BMI, waist circumference (WC, waist-height ratio (WHtR, waist-hip ratio (WHR, log of the sum of triceps and subscapular skin fold thickness (LTS, and percent body fat derived from bioelectric impedance analysis (BIA. We estimated models with obesity indices specified as deciles and as continuous linear variables to predict prevalent hypertension, diabetes, and high cholesterol and report associations (prevalence ratios, PRs, discrimination (area-under-the-curve, AUCs, and calibration (index χ2. We also examined a composite unhealthy cardiovascular profile score summarizing glucose, lipids, and blood pressure.No single obesity index consistently performed statistically significantly better than the others across the outcome models. Based on point estimates, WHtR trended towards best performance in classifying diabetes (PR = 1.58 [1.45-1.72], AUC = 0.77, men; PR = 1.59 [1.47-1.71], AUC = 0.80, women and hypertension (PR = 1.34 [1.26,1.42], AUC = 0.70, men; PR = 1.41 [1.33,1.50], AUC = 0.78, women. WC (mean difference = 0.24 SD [0.21-0.27] and WHtR (mean difference = 0.24 SD [0.21,0.28] had the strongest associations with the composite unhealthy cardiovascular profile score in women but not in men.WC and WHtR were the most useful indices for identifying South Asian adults with prevalent diabetes and hypertension. Collection of waist circumference data in South Asian health surveys will be informative for population-based CVD surveillance efforts.

  16. Validation of the RTOG recursive partitioning analysis (RPA) classification for brain metastases

    Gaspar, Laurie E.; Scott, Charles; Murray, Kevin; Curran, Walter

    2000-01-01

    Purpose: The Radiation Therapy Oncology Group (RTOG) previously developed three prognostic classes for brain metastases using recursive partitioning analysis (RPA) of a large database. These classes were based on Karnofsky performance status (KPS), primary tumor status, presence of extracranial system metastases, and age. An analysis of RTOG 91-04, a randomized study comparing two dose-fractionation schemes with a comparison to the established RTOG database, was considered important to validate the RPA classes. Methods and Materials: A total of 445 patients were randomized on RTOG 91-04, a Phase III study of accelerated hyperfractionation versus accelerated fractionation. No difference was observed between the two treatment arms with respect to survival. Four hundred thirty-two patients were included in this analysis. The majority of the patients were under age 65, had KPS 70-80, primary tumor controlled, and brain-only metastases. The initial RPA had three classes, but only patients in RPA Classes I and II were eligible for RTOG 91-04. Results: For RPA Class I, the median survival time was 6.2 months and 7.1 months for 91-04 and the database, respectively. The 1-year survival was 29% for 91-04 versus 32% for the database. There was no significant difference in the two survival distributions (p = 0.72). For RPA Class II, the median survival time was 3.8 months for 91-04 versus 4.2 months for the database. The 1-year survival was 12% and 16% for 91-04 and the database, respectively (p = 0.22). Conclusion: This analysis indicates that the RPA classes are valid and reliable for historical comparisons. Both the RTOG and other clinical trial organizers should currently utilize this RPA classification as a stratification factor for clinical trials

  17. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Giger, Maryellen L.; Li, Hui [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A. [Radiology Department, University of California, San Francisco, California 94143 (United States); Flowers, Chris I. [Department of Radiology, University of South Florida, Tampa, Florida 33612 (United States); Drukteinis, Jennifer S. [Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 (United States)

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CB alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  18. Computer analysis of digital sky surveys using citizen science and manual classification

    Kuminski, Evan; Shamir, Lior

    2015-01-01

    As current and future digital sky surveys such as SDSS, LSST, DES, Pan-STARRS and Gaia create increasingly massive databases containing millions of galaxies, there is a growing need to be able to efficiently analyze these data. An effective way to do this is through manual analysis, however, this may be insufficient considering the extremely vast pipelines of astronomical images generated by the present and future surveys. Some efforts have been made to use citizen science to classify galaxies by their morphology on a larger scale than individual or small groups of scientists can. While these citizen science efforts such as Zooniverse have helped obtain reasonably accurate morphological information about large numbers of galaxies, they cannot scale to provide complete analysis of billions of galaxy images that will be collected by future ventures such as LSST. Since current forms of manual classification cannot scale to the masses of data collected by digital sky surveys, it is clear that in order to keep up with the growing databases some form of automation of the data analysis will be required, and will work either independently or in combination with human analysis such as citizen science. Here we describe a computer vision method that can automatically analyze galaxy images and deduce galaxy morphology. Experiments using Galaxy Zoo 2 data show that the performance of the method increases as the degree of agreement between the citizen scientists gets higher, providing a cleaner dataset. For several morphological features, such as the spirality of the galaxy, the algorithm agreed with the citizen scientists on around 95% of the samples. However, the method failed to analyze some of the morphological features such as the number of spiral arms, and provided accuracy of just ~36%.

  19. Novel Approach to Tourism Analysis with Multiple Outcome Capability Using Rough Set Theory

    Chun-Che Huang

    2016-12-01

    Full Text Available To explore the relationship between characteristics and decision-making outcomes of the tourist is critical to keep competitive tourism business. In investigation of tourism development, most of the existing studies lack of a systematic approach to analyze qualitative data. Although the traditional Rough Set (RS based approach is an excellent classification method in qualitative modeling, but it is canarsquo;t deal with the case of multiple outcomes, which is a common situation in tourism. Consequently, the Multiple Outcome Reduct Generation (MORG and Multiple Outcome Rule Extraction (MORE approaches based on RS to handle multiple outcomes are proposed. This study proposes a ranking based approach to induct meaningful reducts and ensure the strength and robustness of decision rules, which helps decision makers understand touristarsquo;s characteristics in a tourism case.

  20. Simultaneous colour visualizations of multiple ALS point cloud attributes for land cover and vegetation analysis

    Zlinszky, András; Schroiff, Anke; Otepka, Johannes; Mandlburger, Gottfried; Pfeifer, Norbert

    2014-05-01

    LIDAR point clouds hold valuable information for land cover and vegetation analysis, not only in the spatial distribution of the points but also in their various attributes. However, LIDAR point clouds are rarely used for visual interpretation, since for most users, the point cloud is difficult to interpret compared to passive optical imagery. Meanwhile, point cloud viewing software is available allowing interactive 3D interpretation, but typically only one attribute at a time. This results in a large number of points with the same colour, crowding the scene and often obscuring detail. We developed a scheme for mapping information from multiple LIDAR point attributes to the Red, Green, and Blue channels of a widely used LIDAR data format, which are otherwise mostly used to add information from imagery to create "photorealistic" point clouds. The possible combinations of parameters are therefore represented in a wide range of colours, but relative differences in individual parameter values of points can be well understood. The visualization was implemented in OPALS software, using a simple and robust batch script, and is viewer independent since the information is stored in the point cloud data file itself. In our case, the following colour channel assignment delivered best results: Echo amplitude in the Red, echo width in the Green and normalized height above a Digital Terrain Model in the Blue channel. With correct parameter scaling (but completely without point classification), points belonging to asphalt and bare soil are dark red, low grassland and crop vegetation are bright red to yellow, shrubs and low trees are green and high trees are blue. Depending on roof material and DTM quality, buildings are shown from red through purple to dark blue. Erroneously high or low points, or points with incorrect amplitude or echo width usually have colours contrasting from terrain or vegetation. This allows efficient visual interpretation of the point cloud in planar

  1. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  2. 231 Using Multiple Regression Analysis in Modelling the Role of ...

    User

    of Internal Revenue, Tourism Bureau and hotel records. The multiple regression .... additional guest facilities such as restaurant, a swimming pool or child care and social function ... and provide good quality service to the public. Conclusion.

  3. Rasch analysis of the Multiple Sclerosis Impact Scale (MSIS-29)

    Ramp, Melina; Khan, Fary; Misajon, Rose Anne; Pallant, Julie F

    2009-01-01

    Abstract Background Multiple Sclerosis (MS) is a degenerative neurological disease that causes impairments, including spasticity, pain, fatigue, and bladder dysfunction, which negatively impact on quality of life. The Multiple Sclerosis Impact Scale (MSIS-29) is a disease-specific health-related quality of life (HRQoL) instrument, developed using the patient's perspective on disease impact. It consists of two subscales assessing the physical (MSIS-29-PHYS) and psychological (MSIS-29-PSYCH) im...

  4. Classification of brain tumors using texture based analysis of T1-post contrast MR scans in a preclinical model

    Tang, Tien T.; Zawaski, Janice A.; Francis, Kathleen N.; Qutub, Amina A.; Gaber, M. Waleed

    2018-02-01

    Accurate diagnosis of tumor type is vital for effective treatment planning. Diagnosis relies heavily on tumor biopsies and other clinical factors. However, biopsies do not fully capture the tumor's heterogeneity due to sampling bias and are only performed if the tumor is accessible. An alternative approach is to use features derived from routine diagnostic imaging such as magnetic resonance (MR) imaging. In this study we aim to establish the use of quantitative image features to classify brain tumors and extend the use of MR images beyond tumor detection and localization. To control for interscanner, acquisition and reconstruction protocol variations, the established workflow was performed in a preclinical model. Using glioma (U87 and GL261) and medulloblastoma (Daoy) models, T1-weighted post contrast scans were acquired at different time points post-implant. The tumor regions at the center, middle, and peripheral were analyzed using in-house software to extract 32 different image features consisting of first and second order features. The extracted features were used to construct a decision tree, which could predict tumor type with 10-fold cross-validation. Results from the final classification model demonstrated that middle tumor region had the highest overall accuracy at 79%, while the AUC accuracy was over 90% for GL261 and U87 tumors. Our analysis further identified image features that were unique to certain tumor region, although GL261 tumors were more homogenous with no significant differences between the central and peripheral tumor regions. In conclusion our study shows that texture features derived from MR scans can be used to classify tumor type with high success rates. Furthermore, the algorithm we have developed can be implemented with any imaging datasets and may be applicable to multiple tumor types to determine diagnosis.

  5. Application of classification algorithms for analysis of road safety risk factor dependencies.

    Kwon, Oh Hoon; Rhee, Wonjong; Yoon, Yoonjin

    2015-02-01

    Transportation continues to be an integral part of modern life, and the importance of road traffic safety cannot be overstated. Consequently, recent road traffic safety studies have focused on analysis of risk factors that impact fatality and injury level (severity) of traffic accidents. While some of the risk factors, such as drug use and drinking, are widely known to affect severity, an accurate modeling of their influences is still an open research topic. Furthermore, there are innumerable risk factors that are waiting to be discovered or analyzed. A promising approach is to investigate historical traffic accident data that have been collected in the past decades. This study inspects traffic accident reports that have been accumulated by the California Highway Patrol (CHP) since 1973 for which each accident report contains around 100 data fields. Among them, we investigate 25 fields between 2004 and 2010 that are most relevant to car accidents. Using two classification methods, the Naive Bayes classifier and the decision tree classifier, the relative importance of the data fields, i.e., risk factors, is revealed with respect to the resulting severity level. Performances of the classifiers are compared to each other and a binary logistic regression model is used as the basis for the comparisons. Some of the high-ranking risk factors are found to be strongly dependent on each other, and their incremental gains on estimating or modeling severity level are evaluated quantitatively. The analysis shows that only a handful of the risk factors in the data dominate the severity level and that dependency among the top risk factors is an imperative trait to consider for an accurate analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  7. Reliability in content analysis: The case of semantic feature norms classification.

    Bolognesi, Marianna; Pilgram, Roosmaryn; van den Heerik, Romy

    2017-12-01

    Semantic feature norms (e.g., STIMULUS: car → RESPONSE: ) are commonly used in cognitive psychology to look into salient aspects of given concepts. Semantic features are typically collected in experimental settings and then manually annotated by the researchers into feature types (e.g., perceptual features, taxonomic features, etc.) by means of content analyses-that is, by using taxonomies of feature types and having independent coders perform the annotation task. However, the ways in which such content analyses are typically performed and reported are not consistent across the literature. This constitutes a serious methodological problem that might undermine the theoretical claims based on such annotations. In this study, we first offer a review of some of the released datasets of annotated semantic feature norms and the related taxonomies used for content analysis. We then provide theoretical and methodological insights in relation to the content analysis methodology. Finally, we apply content analysis to a new dataset of semantic features and show how the method should be applied in order to deliver reliable annotations and replicable coding schemes. We tackle the following issues: (1) taxonomy structure, (2) the description of categories, (3) coder training, and (4) sustainability of the coding scheme-that is, comparison of the annotations provided by trained versus novice coders. The outcomes of the project are threefold: We provide methodological guidelines for semantic feature classification; we provide a revised and adapted taxonomy that can (arguably) be applied to both concrete and abstract concepts; and we provide a dataset of annotated semantic feature norms.

  8. Using Module Analysis for Multiple Choice Responses: A New Method Applied to Force Concept Inventory Data

    Brewe, Eric; Bruun, Jesper; Bearden, Ian G.

    2016-01-01

    We describe "Module Analysis for Multiple Choice Responses" (MAMCR), a new methodology for carrying out network analysis on responses to multiple choice assessments. This method is used to identify modules of non-normative responses which can then be interpreted as an alternative to factor analysis. MAMCR allows us to identify conceptual…

  9. The future of general classification

    Mai, Jens Erik

    2013-01-01

    Discusses problems related to accessing multiple collections using a single retrieval language. Surveys the concepts of interoperability and switching language. Finds that mapping between more indexing languages always will be an approximation. Surveys the issues related to general classification...... and contrasts that to special classifications. Argues for the use of general classifications to provide access to collections nationally and internationally....

  10. Principal coordinate analysis assisted chromatographic analysis of bacterial cell wall collection: A robust classification approach.

    Kumar, Keshav; Cava, Felipe

    2018-04-10

    In the present work, Principal coordinate analysis (PCoA) is introduced to develop a robust model to classify the chromatographic data sets of peptidoglycan sample. PcoA captures the heterogeneity present in the data sets by using the dissimilarity matrix as input. Thus, in principle, it can even capture the subtle differences in the bacterial peptidoglycan composition and can provide a more robust and fast approach for classifying the bacterial collection and identifying the novel cell wall targets for further biological and clinical studies. The utility of the proposed approach is successfully demonstrated by analysing the two different kind of bacterial collections. The first set comprised of peptidoglycan sample belonging to different subclasses of Alphaproteobacteria. Whereas, the second set that is relatively more intricate for the chemometric analysis consist of different wild type Vibrio Cholerae and its mutants having subtle differences in their peptidoglycan composition. The present work clearly proposes a useful approach that can classify the chromatographic data sets of chromatographic peptidoglycan samples having subtle differences. Furthermore, present work clearly suggest that PCoA can be a method of choice in any data analysis workflow. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Analysis On Land Cover In Municipality Of Malang With Landsat 8 Image Through Unsupervised Classification

    Nahari, R. V.; Alfita, R.

    2018-01-01

    Remote sensing technology has been widely used in the geographic information system in order to obtain data more quickly, accurately and affordably. One of the advantages of using remote sensing imagery (satellite imagery) is to analyze land cover and land use. Satellite image data used in this study were images from the Landsat 8 satellite combined with the data from the Municipality of Malang government. The satellite image was taken in July 2016. Furthermore, the method used in this study was unsupervised classification. Based on the analysis towards the satellite images and field observations, 29% of the land in the Municipality of Malang was plantation, 22% of the area was rice field, 12% was residential area, 10% was land with shrubs, and the remaining 2% was water (lake/reservoir). The shortcoming of the methods was 25% of the land in the area was unidentified because it was covered by cloud. It is expected that future researchers involve cloud removal processing to minimize unidentified area.

  12. Classification Preictal and Interictal Stages via Integrating Interchannel and Time-Domain Analysis of EEG Features.

    Lin, Lung-Chang; Chen, Sharon Chia-Ju; Chiang, Ching-Tai; Wu, Hui-Chuan; Yang, Rei-Cheng; Ouyang, Chen-Sen

    2017-03-01

    The life quality of patients with refractory epilepsy is extremely affected by abrupt and unpredictable seizures. A reliable method for predicting seizures is important in the management of refractory epilepsy. A critical factor in seizure prediction involves the classification of the preictal and interictal stages. This study aimed to develop an efficient, automatic, quantitative, and individualized approach for preictal/interictal stage identification. Five epileptic children, who had experienced at least 2 episodes of seizures during a 24-hour video EEG recording, were included. Artifact-free preictal and interictal EEG epochs were acquired, respectively, and characterized with 216 global feature descriptors. The best subset of 5 discriminative descriptors was identified. The best subsets showed differences among the patients. Statistical analysis revealed most of the 5 descriptors in each subset were significantly different between the preictal and interictal stages for each patient. The proposed approach yielded weighted averages of 97.50% correctness, 96.92% sensitivity, 97.78% specificity, and 95.45% precision on classifying test epochs. Although the case number was limited, this study successfully integrated a new EEG analytical method to classify preictal and interictal EEG segments and might be used further in predicting the occurrence of seizures.

  13. Classification of Effective Soil Depth by Using Multinomial Logistic Regression Analysis

    Chang, C. H.; Chan, H. C.; Chen, B. A.

    2016-12-01

    Classification of effective soil depth is a task of determining the slopeland utilizable limitation in Taiwan. The "Slopeland Conservation and Utilization Act" categorizes the slopeland into agriculture and husbandry land, land suitable for forestry and land for enhanced conservation according to the factors including average slope, effective soil depth, soil erosion and parental rock. However, sit investigation of the effective soil depth requires a cost-effective field work. This research aimed to classify the effective soil depth by using multinomial logistic regression with the environmental factors. The Wen-Shui Watershed located at the central Taiwan was selected as the study areas. The analysis of multinomial logistic regression is performed by the assistance of a Geographic Information Systems (GIS). The effective soil depth was categorized into four levels including deeper, deep, shallow and shallower. The environmental factors of slope, aspect, digital elevation model (DEM), curvature and normalized difference vegetation index (NDVI) were selected for classifying the soil depth. An Error Matrix was then used to assess the model accuracy. The results showed an overall accuracy of 75%. At the end, a map of effective soil depth was produced to help planners and decision makers in determining the slopeland utilizable limitation in the study areas.

  14. Classification and analysis of factors that affect stability of oil and gas enterprise staff

    Zelinska Haluna Olexiivna

    2016-12-01

    Full Text Available The relevance of human resources as a strategic goal of sustainable development of oil and gas companies is determined. It is shown that the stability of staff, as the main component of the social components of sustainable enterprise development, research and evaluation needs in terms of an integrated system of factors influence the behavior of staff. Addressing issues related to the management personnel can be based classification study the factors affecting its stability in the formation of high quality human resources strategy. In particular noted that the needs of each employee should become an integral part of the concept of work and life balance. Analysis of the results of the study showed that in areas of oil and gas industry has a number of factors that negatively affect its operation and development, which are caused not only technical, technological and natural factors, but also due to neglect behavioral characteristics personnel. It is found that without understanding of the behavioral characteristics of staff and its values can`t implement a quality model of human resource management and provide optimal scenarios of oil companies in general.

  15. Automatic classification of singular elements for the electrostatic analysis of microelectromechanical systems

    Su, Y.; Ong, E. T.; Lee, K. H.

    2002-05-01

    The past decade has seen an accelerated growth of technology in the field of microelectromechanical systems (MEMS). The development of MEMS products has generated the need for efficient analytical and simulation methods for minimizing the requirement for actual prototyping. The boundary element method is widely used in the electrostatic analysis for MEMS devices. However, singular elements are needed to accurately capture the behavior at singular regions, such as sharp corners and edges, where standard elements fail to give an accurate result. The manual classification of boundary elements based on their singularity conditions is an immensely laborious task, especially when the boundary element model is large. This process can be automated by querying the geometric model of the MEMS device for convex edges based on geometric information of the model. The associated nodes of the boundary elements on these edges can then be retrieved. The whole process is implemented in the MSC/PATRAN platform using the Patran Command Language (the source code is available as supplementary data in the electronic version of this journal issue).

  16. Streamflow profile classification using functional data analysis: A case study on the Kelantan River Basin

    Jamaludin, Suhaila

    2017-05-01

    Extreme rainfall events such as floods and prolonged dry spells have become common phenomena in tropical countries like Malaysia. Floods are regular natural disasters in Malaysia, and happen nearly every year during the monsoon season. Recently, the magnitude of streamflow seems to have altered frequently, both spatially and temporally. Therefore, in order to have effective planning and an efficient water management system, it is advisable that streamflow data are analysed continuously over a period of time. If the data are treated as a set of functions rather than as a set of discrete values, then this ensures that they are not restricted by physical time. In addition, the derivatives of the functions may themselves be treated as functional data, which provides new information. The objective of this study is to develop a functional framework for hydrological applications using streamflow as the functional data. The daily flow series from the Kelantan River Basin were used as the main input in this study. Seven streamflow stations were employed in the analysis. Classification between the stations was done using the functional principal component, which was based on the results of the factor scores. The results indicated that two stations, namely the Kelantan River (Guillemard Bridge) and the Galas River, have a different flow pattern from the other streamflow stations. The flow curves of these two rivers are considered as the extreme curves because of their different magnitude and shape.

  17. Analysis of the payment rates and classification of services on radiation oncology

    Shin, K. H.; Shin, H. S.; Pyo, H. R.; Lee, K. C.; Lee, Y. T.; Myoung, H. B.; Yeom, Y. K.

    1997-01-01

    The main purpose of this study is to develop new payment rates for services of radiation oncology, considering costs of treating patients. A survey of forty hospitals has been conducted in order to analyze the costs of treating patients. Before conducting the survey, we evaluated and reclassified the individual service items currently using as payments units on the fee-for-service reimbursement system. This study embodies the analysis of replies received from the twenty four hospitals. The survey contains information about the hospitals' costs of 1995 for the reclassified service items on radiation oncology. After we adjust the hospital costs by the operating rate of medical equipment, we compare the adjusted costs with the current payment rates of individual services. The current payment rates were 5.05-6.58 times lower than the adjusted costs in treatment planning services, 2.22 times lower in block making service, 1.57-2.86 times lower in external beam irradiation services, 3.82-5.01 times lower in intracavitary and interstitial irradiation and 1.12-2.55 times lower in total body irradiation. We could conclude that the current payment system on radiation oncology does not only reflect the costs of treating patients appropriately but also classify the service items correctly. For an example, when the appropriate costs and classification are applied to TBI, the payment rates of TBI should be increased five times more than current level. (author)

  18. Structural Analysis: Folds Classification of metasedimentary rock in the Peninsular Malaysia

    Shamsuddin, A.

    2017-10-01

    Understanding shear zone characteristics of deformation are a crucial part in the oil and gas industry as it might increase the knowledge of the fracture characteristics and lead to the prediction of the location of fracture zones or fracture swarms. This zone might give high influence on reservoir performance. There are four general types of shear zones which are brittle, ductile, semibrittle and brittle-ductile transition zones. The objective of this study is to study and observe the structural geometry of the shear zones and its implication as there is a lack of understanding, especially in the subsurface area because of the limitation of seismic resolution. A field study was conducted on the metasedimentary rocks (shear zone) which are exposed along the coastal part of the Peninsular Malaysia as this type of rock resembles the types of rock in the subsurface. The analysis in this area shows three main types of rock which are non-foliated metaquartzite and foliated rock which can be divided into slate and phyllite. Two different fold classification can be determined in this study. Layer 1 with phyllite as the main type of rock can be classified in class 1C and layer 2 with slate as the main type of rock can be classified in class 1A. This study will benefit in predicting the characteristics of the fracture and fracture zones.

  19. Classification tree analysis of second neoplasms in survivors of childhood cancer

    Jazbec, Janez; Todorovski, Ljupčo; Jereb, Berta

    2007-01-01

    Reports on childhood cancer survivors estimated cumulative probability of developing secondary neoplasms vary from 3,3% to 25% at 25 years from diagnosis, and the risk of developing another cancer to several times greater than in the general population. In our retrospective study, we have used the classification tree multivariate method on a group of 849 first cancer survivors, to identify childhood cancer patients with the greatest risk for development of secondary neoplasms. In observed group of patients, 34 develop secondary neoplasm after treatment of primary cancer. Analysis of parameters present at the treatment of first cancer, exposed two groups of patients at the special risk for secondary neoplasm. First are female patients treated for Hodgkin's disease at the age between 10 and 15 years, whose treatment included radiotherapy. Second group at special risk were male patients with acute lymphoblastic leukemia who were treated at the age between 4,6 and 6,6 years of age. The risk groups identified in our study are similar to the results of studies that used more conventional approaches. Usefulness of our approach in study of occurrence of second neoplasms should be confirmed in larger sample study, but user friendly presentation of results makes it attractive for further studies

  20. Mechanisms of disease: mechanism-based classification of neuropathic pain - a critical analysis

    Finnerup, Nanna Brix; Jensen, Troels Staehelin

    2006-01-01

    Classification of neuropathic pain according to etiology or localization has clear limitations. The discovery of specific molecular and cellular events following experimental nerve injury has raised the possibility of classifying neuropathic pain on the basis of the underlying neurobiological...

  1. Performance analysis of commercial multiple-input-multiple-output access point in distributed antenna system.

    Fan, Yuting; Aighobahi, Anthony E; Gomes, Nathan J; Xu, Kun; Li, Jianqiang

    2015-03-23

    In this paper, we experimentally investigate the throughput of IEEE 802.11n 2x2 multiple-input-multiple-output (MIMO) signals in a radio-over-fiber-based distributed antenna system (DAS) with different fiber lengths and power imbalance. Both a MIMO-supported access point (AP) and a spatial-diversity-supported AP were separately employed in the experiments. Throughput measurements were carried out with wireless users at different locations in a typical office environment. For the different fiber length effect, the results indicate that MIMO signals can maintain high throughput when the fiber length difference between the two remote antenna units (RAUs) is under 100 m and falls quickly when the length difference is greater. For the spatial diversity signals, high throughput can be maintained even when the difference is 150 m. On the other hand, the separation of the MIMO antennas allows additional freedom in placing the antennas in strategic locations for overall improved system performance, although it may also lead to received power imbalance problems. The results show that the throughput performance drops in specific positions when the received power imbalance is above around 13 dB. Hence, there is a trade-off between the extent of the wireless coverage for moderate bit-rates and the area over which peak bit-rates can be achieved.

  2. Comparison of Principal Component Analysis and Linear Discriminant Analysis applied to classification of excitation-emission matrices of the selected biological material

    Maciej Leśkiewicz

    2016-03-01

    Full Text Available Quality of two linear methods (PCA and LDA applied to reduce dimensionality of feature analysis is compared and efficiency of their algorithms in classification of the selected biological materials according to their excitation-emission fluorescence matrices is examined. It has been found that LDA method reduces the dimensions (or a number of significant variables more effectively than PCA method. A relatively good discrimination within the examined biological material has been obtained with the use of LDA algorithm.[b]Keywords[/b]: Feature Analysis, Fluorescence Spectroscopy, Biological Material Classification

  3. An automated form of video image analysis applied to classification of movement disorders.

    Chang, R; Guan, L; Burne, J A

    Video image analysis is able to provide quantitative data on postural and movement abnormalities and thus has an important application in neurological diagnosis and management. The conventional techniques require patients to be videotaped while wearing markers in a highly structured laboratory environment. This restricts the utility of video in routine clinical practise. We have begun development of intelligent software which aims to provide a more flexible system able to quantify human posture and movement directly from whole-body images without markers and in an unstructured environment. The steps involved are to extract complete human profiles from video frames, to fit skeletal frameworks to the profiles and derive joint angles and swing distances. By this means a given posture is reduced to a set of basic parameters that can provide input to a neural network classifier. To test the system's performance we videotaped patients with dopa-responsive Parkinsonism and age-matched normals during several gait cycles, to yield 61 patient and 49 normal postures. These postures were reduced to their basic parameters and fed to the neural network classifier in various combinations. The optimal parameter sets (consisting of both swing distances and joint angles) yielded successful classification of normals and patients with an accuracy above 90%. This result demonstrated the feasibility of the approach. The technique has the potential to guide clinicians on the relative sensitivity of specific postural/gait features in diagnosis. Future studies will aim to improve the robustness of the system in providing accurate parameter estimates from subjects wearing a range of clothing, and to further improve discrimination by incorporating more stages of the gait cycle into the analysis.

  4. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  5. A Discrete Wavelet Based Feature Extraction and Hybrid Classification Technique for Microarray Data Analysis

    Jaison Bennet

    2014-01-01

    Full Text Available Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN, naive Bayes, and support vector machine (SVM. Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT and moving window technique (MWT is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection.

  6. Perturbative analysis of multiple-field cosmological inflation

    Lahiri, Joydev; Bhattacharya, Gautam

    2006-01-01

    We develop a general formalism for analyzing linear perturbations in multiple-field cosmological inflation based on the gauge-ready approach. Our inflationary model consists of an arbitrary number of scalar fields with non-minimal kinetic terms. We solve the equations for scalar- and tensor-type perturbations during inflation to the first order in slow roll, and then obtain the super-horizon solutions for adiabatic and isocurvature perturbations after inflation. Analytic expressions for power-spectra and spectral indices arising from multiple-field inflation are presented

  7. Flutter analysis of an airfoil with multiple nonlinearities and uncertainties

    Haitao Liao

    2013-09-01

    Full Text Available An original method for calculating the limit cycle oscillations of nonlinear aero-elastic system is presented. The problem of determining the maximum vibration amplitude of limit cycle is transformed into a nonlinear optimization problem. The harmonic balance method and the Floquet theory are selected to construct the general nonlinear equality and inequality constraints. The resulting constrained maximization problem is then solved by using the MultiStart algorithm. Finally, the proposed approach is validated and used to analyse the limit cycle oscillations of an airfoil with multiple nonlinearities and uncertainties. Numerical examples show that the coexistence of multiple nonlinearities may lead to low amplitude limit cycle oscillation.

  8. Evaluation of Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis: Analysis of kinematics.

    Severini, Giacomo; Manca, Mario; Ferraresi, Giovanni; Caniatti, Luisa Maria; Cosma, Michela; Baldasso, Francesco; Straudi, Sofia; Morelli, Monica; Basaglia, Nino

    2017-06-01

    Clinical Gait Analysis is commonly used to evaluate specific gait characteristics of patients affected by Multiple Sclerosis. The aim of this report is to present a retrospective cross-sectional analysis of the changes in Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis. In this study a sample of 51 patients with different levels of disability (Expanded Disability Status Scale 2-6.5) was analyzed. We extracted a set of 52 parameters from the Clinical Gait Analysis of each patient and used statistical analysis and linear regression to assess differences among several groups of subjects stratified according to the Expanded Disability Status Scale and 6-Minutes Walking Test. The impact of assistive devices (e.g. canes and crutches) on the kinematics was also assessed in a subsample of patients. Subjects showed decreased range of motion at hip, knee and ankle that translated in increased pelvic tilt and hiking. Comparison between the two stratifications showed that gait speed during 6-Minutes Walking Test is better at discriminating patients' kinematics with respect to Expanded Disability Status Scale. Assistive devices were shown not to significantly impact gait kinematics and the Clinical Gait Analysis parameters analyzed. We were able to characterize disability-related trends in gait kinematics. The results presented in this report provide a small atlas of the changes in gait characteristics associated with different disability levels in the Multiple Sclerosis population. This information could be used to effectively track the progression of MS and the effect of different therapies. Copyright © 2017. Published by Elsevier Ltd.

  9. Automatic progressive damage detection of rotor bar in induction motor using vibration analysis and multiple classifiers

    Cruz-Vega, Israel; Rangel-Magdaleno, Jose; Ramirez-Cortes, Juan; Peregrina-Barreto, Hayde

    2017-01-01

    There is an increased interest in developing reliable condition monitoring and fault diagnosis systems of machines like induction motors; such interest is not only in the final phase of the failure but also at early stages. In this paper, several levels of damage of rotor bars under different load conditions are identified by means of vibration signals. The importance of this work relies on a simple but effective automatic detection algorithm of the damage before a break occurs. The feature extraction is based on discrete wavelet analysis and auto- correlation process. Then, the automatic classification of the fault degree is carried out by a binary classification tree. In each node, com- paring the learned levels of the breaking off correctly identifies the fault degree. The best results of classification are obtained employing computational intelligence techniques like support vector machines, multilayer perceptron, and the k-NN algorithm, with a proper selection of their optimal parameters.

  10. Automatic progressive damage detection of rotor bar in induction motor using vibration analysis and multiple classifiers

    Cruz-Vega, Israel; Rangel-Magdaleno, Jose; Ramirez-Cortes, Juan; Peregrina-Barreto, Hayde [Santa María Tonantzintla, Puebla (Mexico)

    2017-06-15

    There is an increased interest in developing reliable condition monitoring and fault diagnosis systems of machines like induction motors; such interest is not only in the final phase of the failure but also at early stages. In this paper, several levels of damage of rotor bars under different load conditions are identified by means of vibration signals. The importance of this work relies on a simple but effective automatic detection algorithm of the damage before a break occurs. The feature extraction is based on discrete wavelet analysis and auto- correlation process. Then, the automatic classification of the fault degree is carried out by a binary classification tree. In each node, com- paring the learned levels of the breaking off correctly identifies the fault degree. The best results of classification are obtained employing computational intelligence techniques like support vector machines, multilayer perceptron, and the k-NN algorithm, with a proper selection of their optimal parameters.

  11. Statistical Analysis of Questionnaire on Physical Rehabilitation in Multiple Sclerosis

    Martinková, Patrícia; Řasová, K.

    -, č. 3 (2010), S340 ISSN 1210-7859. [Obnovené neuroimunologickjé a likvorologické dny. 21.05.2010-22.05.2010, Praha] R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : questionnaire * physical rehabilitation * multiple sclerosis Subject RIV: IN - Informatics, Computer Science

  12. Multiple Intelligences Theory and Iranian Textbooks: An Analysis

    Taase, Yoones

    2012-01-01

    The purpose of this study is to investigate locally designed ELT textbooks in the light of multiple intelligences theory. Three textbooks (grade 1.2.3) used in guidance school of Iranian educational system were analyzed using MI checklist developed by Botelho, Mario do Rozarioand. Catered for kinds of intelligences in the activities and exercises…

  13. Failure analysis of multiple delaminated composite plates due to ...

    Unknown

    plates are assumed to contain both single and multiple delaminations. For the case of impact, ... delamination on the first ply failure of the laminate is scarce. ..... 1 in the bottom layer, it was of the opposite sign for the top layer. The plots for ...

  14. Interactive Classification of Construction Materials: Feedback Driven Framework for Annotation and Analysis of 3d Point Clouds

    Hess, M. R.; Petrovic, V.; Kuester, F.

    2017-08-01

    Digital documentation of cultural heritage structures is increasingly more common through the application of different imaging techniques. Many works have focused on the application of laser scanning and photogrammetry techniques for the acquisition of threedimensional (3D) geometry detailing cultural heritage sites and structures. With an abundance of these 3D data assets, there must be a digital environment where these data can be visualized and analyzed. Presented here is a feedback driven visualization framework that seamlessly enables interactive exploration and manipulation of massive point cloud data. The focus of this work is on the classification of different building materials with the goal of building more accurate as-built information models of historical structures. User defined functions have been tested within the interactive point cloud visualization framework to evaluate automated and semi-automated classification of 3D point data. These functions include decisions based on observed color, laser intensity, normal vector or local surface geometry. Multiple case studies are presented here to demonstrate the flexibility and utility of the presented point cloud visualization framework to achieve classification objectives.

  15. Diagnostic value of stool DNA testing for multiple markers of colorectal cancer and advanced adenoma: a meta-analysis.

    Yang, Hua; Xia, Bing-Qing; Jiang, Bo; Wang, Guozhen; Yang, Yi-Peng; Chen, Hao; Li, Bing-Sheng; Xu, An-Gao; Huang, Yun-Bo; Wang, Xin-Ying

    2013-08-01

    The diagnostic value of stool DNA (sDNA) testing for colorectal neoplasms remains controversial. To compensate for the lack of large-scale unbiased population studies, a meta-analysis was performed to evaluate the diagnostic value of sDNA testing for multiple markers of colorectal cancer (CRC) and advanced adenoma. The PubMed, Science Direct, Biosis Review, Cochrane Library and Embase databases were systematically searched in January 2012 without time restriction. Meta-analysis was performed using a random-effects model using sensitivity, specificity, diagnostic OR (DOR), summary ROC curves, area under the curve (AUC), and 95% CIs as effect measures. Heterogeneity was measured using the χ(2) test and Q statistic; subgroup analysis was also conducted. A total of 20 studies comprising 5876 individuals were eligible. There was no heterogeneity for CRC, but adenoma and advanced adenoma harboured considerable heterogeneity influenced by risk classification and various detection markers. Stratification analysis according to risk classification showed that multiple markers had a high DOR for the high-risk subgroups of both CRC (sensitivity 0.759 [95% CI 0.711 to 0.804]; specificity 0.883 [95% CI 0.846 to 0.913]; AUC 0.906) and advanced adenoma (sensitivity 0.683 [95% CI 0.584 to 0.771]; specificity 0.918 [95% CI 0.866 to 0.954]; AUC 0.946) but not for the average-risk subgroups of either. In the methylation subgroup, sDNA testing had significantly higher DOR for CRC (sensitivity 0.753 [95% CI 0.685 to 0.812]; specificity 0.913 [95% CI 0.860 to 0.950]; AUC 0.918) and advanced adenoma (sensitivity 0.623 [95% CI 0.527 to 0.712]; specificity 0.926 [95% CI 0.882 to 0.958]; AUC 0.910) compared with the mutation subgroup. There was no significant heterogeneity among studies for subgroup analysis. sDNA testing for multiple markers had strong diagnostic significance for CRC and advanced adenoma in high-risk subjects. Methylation makers had more diagnostic value than mutation

  16. Multiple-Group Analysis Using the sem Package in the R System

    Evermann, Joerg

    2010-01-01

    Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…

  17. Organoleptic damage classification of potatoes with the use of image analysis in production process

    Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.

    2014-04-01

    In the agro-food sector security it is required the safety of a healthy food. Therefore, the farms are inspected by the quality standards of production in all sectors of production. Farms must meet the requirements dictated by the legal regulations in force in the European Union. Currently, manufacturers are seeking to make their food products have become unbeatable. This gives you the chance to form their own brand on the market. In addition, they use technologies that can increase the scale of production. Moreover, in the manufacturing process they tend to maintain a high level of quality of their products. Potatoes may be included in this group of agricultural products. Potatoes have become one of the major and popular edible plants. Globally, potatoes are used for consumption at 60%, Poland 40%. This is due to primarily advantages, consumer and nutritional qualities. Potatoes are easy to digest. Medium sized potato bigger than 60 mm in diameter contains only about 60 calories and very little fat. Moreover, it is the source of many vitamins such as vitamin C, vitamin B1, vitamin B2, vitamin E, etc. [1]. The parameters of quality consumer form, called organoleptic sensory properties, are evaluated by means of sensory organs by using the point method. The most important are: flavor, flesh color, darkening of the tuber flesh when raw and after cooking. In the production process it is important to adequate, relevant and accurate preparing potatoes for use and sale. Evaluation of the quality of potatoes is determined on the basis of organoleptic quality standards for potatoes. Therefore, there is a need to automate this process. To do this, use the appropriate tools, image analysis and classification models using artificial neural networks that will help assess the quality of potatoes [2, 3, 4].

  18. DNA barcode analysis: a comparison of phylogenetic and statistical classification methods.

    Austerlitz, Frederic; David, Olivier; Schaeffer, Brigitte; Bleakley, Kevin; Olteanu, Madalina; Leblois, Raphael; Veuille, Michel; Laredo, Catherine

    2009-11-10

    DNA barcoding aims to assign individuals to given species according to their sequence at a small locus, generally part of the CO1 mitochondrial gene. Amongst other issues, this raises the question of how to deal with within-species genetic variability and potential transpecific polymorphism. In this context, we examine several assignation methods belonging to two main categories: (i) phylogenetic methods (neighbour-joining and PhyML) that attempt to account for the genealogical framework of DNA evolution and (ii) supervised classification methods (k-nearest neighbour, CART, random forest and kernel methods). These methods range from basic to elaborate. We investigated the ability of each method to correctly classify query sequences drawn from samples of related species using both simulated and real data. Simulated data sets were generated using coalescent simulations in which we varied the genealogical history, mutation parameter, sample size and number of species. No method was found to be the best in all cases. The simplest method of all, "one nearest neighbour", was found to be the most reliable with respect to changes in the parameters of the data sets. The parameter most influencing the performance of the various methods was molecular diversity of the data. Addition of genetically independent loci--nuclear genes--improved the predictive performance of most methods. The study implies that taxonomists can influence the quality of their analyses either by choosing a method best-adapted to the configuration of their sample, or, given a certain method, increasing the sample size or altering the amount of molecular diversity. This can be achieved either by sequencing more mtDNA or by sequencing additional nuclear genes. In the latter case, they may also have to modify their data analysis method.

  19. DNA barcode analysis: a comparison of phylogenetic and statistical classification methods

    Leblois Raphael

    2009-11-01

    Full Text Available Abstract Background DNA barcoding aims to assign individuals to given species according to their sequence at a small locus, generally part of the CO1 mitochondrial gene. Amongst other issues, this raises the question of how to deal with within-species genetic variability and potential transpecific polymorphism. In this context, we examine several assignation methods belonging to two main categories: (i phylogenetic methods (neighbour-joining and PhyML that attempt to account for the genealogical framework of DNA evolution and (ii supervised classification methods (k-nearest neighbour, CART, random forest and kernel methods. These methods range from basic to elaborate. We investigated the ability of each method to correctly classify query sequences drawn from samples of related species using both simulated and real data. Simulated data sets were generated using coalescent simulations in which we varied the genealogical history, mutation parameter, sample size and number of species. Results No method was found to be the best in all cases. The simplest method of all, "one nearest neighbour", was found to be the most reliable with respect to changes in the parameters of the data sets. The parameter most influencing the performance of the various methods was molecular diversity of the data. Addition of genetically independent loci - nuclear genes - improved the predictive performance of most methods. Conclusion The study implies that taxonomists can influence the quality of their analyses either by choosing a method best-adapted to the configuration of their sample, or, given a certain method, increasing the sample size or altering the amount of molecular diversity. This can be achieved either by sequencing more mtDNA or by sequencing additional nuclear genes. In the latter case, they may also have to modify their data analysis method.

  20. Analysis and Evaluation of IKONOS Image Fusion Algorithm Based on Land Cover Classification

    Xia; JING; Yan; BAO

    2015-01-01

    Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object images was also depended upon the sensor types and special research purposes. Firstly,five fusion methods,i. e. IHS,Brovey,PCA,SFIM and Gram-Schmidt,were briefly described in the paper. And then visual judgment and quantitative statistical parameters were used to assess the five algorithms. Finally,in order to determine which one is the best suitable fusion method for land cover classification of IKONOS image,the maximum likelihood classification( MLC) was applied using the above five fusion images. The results showed that the fusion effect of SFIM transform and Gram-Schmidt transform were better than the other three image fusion methods in spatial details improvement and spectral information fidelity,and Gram-Schmidt technique was superior to SFIM transform in the aspect of expressing image details. The classification accuracy of the fused image using Gram-Schmidt and SFIM algorithms was higher than that of the other three image fusion methods,and the overall accuracy was greater than 98%. The IHS-fused image classification accuracy was the lowest,the overall accuracy and kappa coefficient were 83. 14% and 0. 76,respectively. Thus the IKONOS fusion images obtained by the Gram-Schmidt and SFIM were better for improving the land cover classification accuracy.