WorldWideScience

Sample records for multiple chiral critical

  1. Chiral condensate, susceptibilities, critical coupling and indices in QED$_{4}$

    CERN Document Server

    Azcoiti, V; Galante, A; Grillo, A F; Laliena, V; Piedrafita, C E

    1995-01-01

    We measure chiral susceptibilities in the Coulomb phase of noncompact QED_4 in 8^4, 10^4 and 12^4 lattices. The MFA approach allows simulations in the chiral limit which are therefore free from arbitrary mass extrapolations. Using the critical couplings extracted from these calculations, we study the critical behaviour of the chiral condensate, which we find in disagreement with the predictions of logarithmically improved scalar Mean Field theory.

  2. Reflection and transmission coefficients of multiple chiral layers

    Institute of Scientific and Technical Information of China (English)

    SABAH Cumali; UCKUN Savas

    2006-01-01

    This paper presents a general analysis of reflection and transmission coefficients of multiple chiral layers in detail. Reflection and transmission coefficients through multiple chiral layers are computed and presented particularly for the incident wave of parallel polarization for a number of cases-a wide range of incidence angle, neigh- boring center frequency and different chirality parameters. Transfer matrix method is used in the analysis. From the numerical results, it can be seen that multiple chiral layers may be used as a polarization-conversion transmission filter and antireflection filter at the frequency band around the central frequency.

  3. Electromagnetic transitions in multiple chiral doublet bands

    CERN Document Server

    Jia, Hui; Wang, Shou-Yu; Wang, Shuo; Liu, Chen

    2016-01-01

    Multiple chiral doublet bands (M$\\chi$D) in the $80$, 130 and $190$ mass regions are studied by the model of $\\gamma$=90$^{\\circ}$ triaxial rotor coupled with identical symmetric proton-neutron configurations. By selecting the suitable basis, the calculated wave functions are explicitly exhibited to be symmetric under the operator $\\hat{A}$, which is defined as rotation by $90^{\\circ}$ about 3-axis with the exchange of valance proton and neutron. We found that both $M1$ and $E2$ transitions are allowed between the levels with different values of $A$, while are forbidden between the levels with same values of $A$. Such a selection rule holds true for M$\\chi$D in different mass regions.

  4. Multi critical point structure for chiral phase transition induce by charge neutrality and vector interaction

    CERN Document Server

    Zhang, Zhao

    2010-01-01

    The combined effect of the repulsive vector interaction and the positive electric chemical potential on the chiral phase transition is investigated by considering neutral color superconductivity. Under the charge-neutrality constraint, the chiral condensate, diquark condensate and quark number densities are obtained in two-plus-one-flavor Nambu-Jona-Lasinio model with the so called Kobayashi-Maskawa-'t Hooft term. We demonstrate that multiple chiral critical-point structures always exist in the Nambu-Jona-Lasinio model within the self-consistent mean-field approximation, and that the number of chiral critical points can vary from zero to four, which is dependent on the magnitudes of vector interaction and the diquark coupling.

  5. Spontaneous transmission of chirality through multiple length scales.

    Science.gov (United States)

    Iski, Erin V; Tierney, Heather L; Jewell, April D; Sykes, E Charles H

    2011-06-20

    naphtho[2,3-a]pyrene molecules adsorbed in the second layer. Given its simplicity, reversibility, and rich degree of order, this system represents an ideal test bed for the investigation of symmetry breaking and the hierarchical transmission of chirality through multiple length scales.

  6. Pions near the chiral critical point

    Science.gov (United States)

    Hippert, M.; Fraga, E. S.; Santos, E. M.

    2016-04-01

    It is an exciting possibility that the QCD critical point can be found in ultrarelativistic heavy-ion collision experiments (HICs). While quantities such as some event-by-event moments of specific observables should display strong non-monotonic behavior near the critical point and could, hence, be used as signatures of criticality, it is not clear that this behavior could effectively be observed in the highly non-ideal scenario of HICs. We here employ Monte Carlo simulations to test second-order moments of pion observables as possible signatures of the critical point while taking into account some realistic ingredients, similar to the ones found in HICs. We make use of simplified models to introduce spurious contributions and dynamical effects.

  7. Critical phenomena of emergent magnetic monopoles in a chiral magnet.

    Science.gov (United States)

    Kanazawa, N; Nii, Y; Zhang, X-X; Mishchenko, A S; De Filippis, G; Kagawa, F; Iwasa, Y; Nagaosa, N; Tokura, Y

    2016-05-16

    Second-order continuous phase transitions are characterized by symmetry breaking with order parameters. Topological orders of electrons, characterized by the topological index defined in momentum space, provide a distinct perspective for phase transitions, which are categorized as quantum phase transitions not being accompanied by symmetry breaking. However, there are still limited observations of counterparts in real space. Here we show a real-space topological phase transition in a chiral magnet MnGe, hosting a periodic array of hedgehog and antihedgehog topological spin singularities. This transition is driven by the pair annihilation of the hedgehogs and antihedgehogs acting as monopoles and antimonopoles of the emergent electromagnetic field. Observed anomalies in the magnetoresistivity and phonon softening are consistent with the theoretical prediction of critical phenomena associated with enhanced fluctuations of emergent field near the transition. This finding reveals a vital role of topology of the spins in strongly correlated systems.

  8. Critical Temperature of Chiral Symmetry Restoration for Quark Matter with a Chiral Chemical Potential

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a quark-meson model with vacuum fluctuations included. Vacuum fluctuations give a divergent contribution to the vacuum energy, so the latter has to be renormalized before computing physical quantities. The vacuum term is important for restoration of chiral symmetry at finite temperature and $\\mu_5\

  9. Critical endpoint in the presence of a chiral chemical potential

    CERN Document Server

    Cui, Zhu-Fang; Lu, Ya; Roberts, Craig D; Schmidt, Sebastian M; Xu, Shu-Sheng; Zong, Hong-Shi

    2016-01-01

    A class of Polyakov-loop-modified Nambu--Jona-Lasinio (PNJL) models have been used to support a conjecture that numerical simulations of lattice-regularized quantum chromodynamics (QCD) defined with a chiral chemical potential can provide information about the existence and location of a critical endpoint in the QCD phase diagram drawn in the plane spanned by baryon chemical potential and temperature. That conjecture is challenged by conflicts between the model results and analyses of the same problem using simulations of lattice-regularized QCD (lQCD) and well-constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved in favor of the lQCD and DSE predictions when both a physically-motivated regularization is employed to suppress the contribution of high-momentum quark modes in the definition of the effective potential connected with the PNJL models and the four-fermion coupling in those models does not react strongly to changes in the mean-field that is assumed to mock-up Polyakov l...

  10. Multiple chiral doublet candidate nucleus $^{105}$Rh in a relativistic mean-field approach

    CERN Document Server

    Li, Jian; Meng, J; 10.1103/PhysRevC.83.037301

    2011-01-01

    Following the reports of two pairs of chiral doublet bands observed in $^{105}$Rh, the adiabatic and configuration-fixed constrained triaxial relativistic mean-field (RMF) calculations are performed to investigate their triaxial deformations with the corresponding configuration and the possible multiple chiral doublet (M$\\chi$D) phenomenon. The existence of M$\\chi$D phenomenon in $^{105}$Rh is highly expected.

  11. Weak magnetic field effects on chiral critical temperature in a nonlocal Nambu--Jona-Lasinio model

    CERN Document Server

    Loewe, M; Villavicencio, C; Zamora, R

    2014-01-01

    In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperature for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.

  12. Enantiomeric resolution of multiple chiral centres racemates by capillary electrophoresis.

    Science.gov (United States)

    Ali, Imran; Suhail, Mohd; Al-Othman, Zeid A; Alwarthan, Abdulrahman; Aboul-Enein, Hassan Y

    2016-05-01

    Enantiomeric resolution of multichiral centre racemates is an important area as some multichiral centre racemates are of great medicinal importance. However, enantioseparation of such types of racemates is a challenging task. Amongst many analytical techniques, capillary electrophoresis is a powerful technique and may be used to resolve such racemates. Only few papers are available describing enantiomeric resolution of such racemates. Therefore, efforts have been made to describe the enantiomeric resolution of multichiral centre racemates by capillary electrophoresis. This article discusses the importance of multichiral racemates, the need for capillary electrophoresis in enantiomeric resolution and chiral resolution of multichiral centre racemates using various chiral selectors. Further, attempts have been made to discuss the future challenges and prospects of enantiomeric resolution of multichiral racemates. The various chiral selectors used for the purpose are chiral crown ether, cyclodextrins, polysaccharides, macrocyclic glycopeptide antibiotics and ligand exchange.

  13. The influence of chiral chemical potential, parallel electric and magnetic fields on the critical temperature of QCD

    CERN Document Server

    Ruggieri, M; Peng, G X

    2016-01-01

    We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.

  14. Chiral condensates from tau decay: a critical reappraisal

    CERN Document Server

    Bordes, J; Penarrocha, J; Schilcher, K; Bordes, Jose; Dominguez, Cesareo A.; Penarrocha, Jose; Schilcher, Karl

    2006-01-01

    The saturation of QCD chiral sum rules is reanalyzed in view of the new and complete analysis of the ALEPH experimental data on the difference between vector and axial-vector correlators (V-A). Ordinary finite energy sum rules (FESR) exhibit poor saturation up to energies below the tau-lepton mass. A remarkable improvement is achieved by introducing pinched, as well as minimizing polynomial integral kernels. Both methods are used to determine the dimension d=6 and d=8 vacuum condensates in the Operator Product Expansion, with the results: {O}_{6}=-(0.00226 \\pm 0.00055) GeV^6, and O_8=-(0.0053 \\pm 0.0033) GeV^8 from pinched FESR, and compatible values from the minimizing polynomial FESR. Some higher dimensional condensates are also determined, although we argue against extending the analysis beyond dimension $d = 8$. The value of the finite remainder of the (V-A) correlator at zero momentum is also redetermined: \\Pi (0)= -4 \\bar{L}_{10}=0.02579 \\pm 0.00023. The stability and precision of the predictions are si...

  15. Modeling chiral criticality and its consequences for heavy-ion collisions

    CERN Document Server

    Almási, Gábor András; Redlich, Krzysztof

    2016-01-01

    We explore the critical fluctuations near the chiral critical endpoint (CEP) in a chiral effective model and discuss possible signals of the CEP, recently explored experimentally in nuclear collision. Particular attention is paid to the dependence of such signals on the location of the phase boundary and the EP relative to the chemical freeze-out conditions in nuclear collisions. We argue that in effective models, standard freeze-out fits to heavy-ion data should not be used directly. Instead, the relevant quantities should be examined on lines in the phase diagram that are defined self-consistently, within the framework of the model. We discuss possible choices for such an approach.

  16. Steady water waves with multiple critical layers

    CERN Document Server

    Ehrnström, Mats; Wahlén, Erik

    2010-01-01

    We construct small-amplitude periodic water waves with multiple critical layers. In addition to waves with arbitrarily many critical layers and a single crest in each period, two-dimensional sets of waves with several crests and troughs in each period are found. The setting is that of steady two-dimensional finite-depth gravity water waves with vorticity.

  17. Chiral susceptibilities in noncompact QED a new determination of the $\\gamma$ exponent and the critical couplings

    CERN Document Server

    Azcoiti, V; Galante, A; Grillo, A F; Laliena, V; Piedrafita, C E

    1995-01-01

    We report the results of a measurement of susceptibilities in noncompact QED_4 in 8^4, 10^4 and 12^4 lattices. Due to the potentialities of the MFA approach, we have done simulations in the chiral limit which are therefore free from arbitrary mass extrapolations. Our results in the Coulomb phase show unambiguously that the susceptibility critical exponent \\gamma=1 independently of the flavour symmetry group. The critical couplings extracted from these calculations are in perfect agreement with previous determinations based on the fermion effective action and plaquette energy, and outside the predictions of a logarithmically improved scalar mean field theory by eight standard deviations.

  18. Synthesis of spiro-cyclopropane derivatives containing multiple chiral centers

    Institute of Scientific and Technical Information of China (English)

    黄慧; 陈庆华

    1999-01-01

    Tandem asymmetric double Michael addition/internal nucleophilic substitution of the novel chiral source, 5-(l-menthyloxy)-3-bromo-2(5H)-furanone with nucleophilic alcohol compounds has been investigated. The tandem asymmetric reaction can afford four new stereogenic centers with one reaction and give optically pure spiro-cyclopropane derivatives 5a--5d which are difficult to obtain by routine methods. The synthetic method for 5a--5d was studied in detail and the new compounds were identified on the basis of their analytical data and spectroscopic data, such as [α]20,IR,1H NMR,13C NMR, MS and elementary analysis. The absolute configuration of the sprio [5-l-menthyloxy-3-bromo butyrolactocyclopropane-3″, 3′(4′-methyloxy-5′-menthyloxybutyrolactone)] (5a) was established by X-ray crystallography. The work can provide important synthetic strategy in synthesis of some new optically active spiro-cyclopropane analogues and some biologically active molecules with complex structure.

  19. Finite-size effects, pseudocritical quantities and signatures of the chiral critical endpoint of QCD

    CERN Document Server

    Palhares, L F; Kodama, T

    2009-01-01

    We investigate finite-size effects on the phase diagram of strong interactions, and discuss their influence (and utility) on experimental signatures in high-energy heavy ion collisions. We calculate the modification of the pseudocritical transition line and isentropic trajectories, and discuss how this affects proposed signatures of the chiral critical endpoint. We argue that a finite-size scaling analysis may be crucial in the process of data analysis in the Beam Energy Scan program at RHIC and in future experiments at FAIR-GSI. We propose the use of extrapolations, full scaling plots and a chi-squared method as tools for searching the critical endpoint of QCD and determining its universality class.

  20. (Thiourea-mediated synthesis of functionalized six-membered rings with multiple chiral centers

    Directory of Open Access Journals (Sweden)

    Giorgos Koutoulogenis

    2016-03-01

    Full Text Available Organocatalysis, now running its second decade of life, is being considered one of the main tools a synthetic chemist has to perform asymmetric catalysis. In this review the synthesis of six-membered rings, that contain multiple chiral centers, either by a ring closing process or by a functionalization reaction on an already existing six-membered ring, utilizing bifunctional (thioureas will be summarized. Initially, the use of primary amine-thioureas as organocatalysts for the above transformation is being discussed, followed by the examples employing secondary amine-thioureas. Finally, the use of tertiary amine-thioureas and miscellaneous examples are presented.

  1. (Thio)urea-mediated synthesis of functionalized six-membered rings with multiple chiral centers

    Science.gov (United States)

    Koutoulogenis, Giorgos; Kaplaneris, Nikolaos

    2016-01-01

    Summary Organocatalysis, now running its second decade of life, is being considered one of the main tools a synthetic chemist has to perform asymmetric catalysis. In this review the synthesis of six-membered rings, that contain multiple chiral centers, either by a ring closing process or by a functionalization reaction on an already existing six-membered ring, utilizing bifunctional (thio)ureas will be summarized. Initially, the use of primary amine-thioureas as organocatalysts for the above transformation is being discussed, followed by the examples employing secondary amine-thioureas. Finally, the use of tertiary amine-thioureas and miscellaneous examples are presented. PMID:27340441

  2. Critical end point in the presence of a chiral chemical potential

    Science.gov (United States)

    Cui, Z.-F.; Cloët, I. C.; Lu, Y.; Roberts, C. D.; Schmidt, S. M.; Xu, S.-S.; Zong, H.-S.

    2016-10-01

    A class of Polyakov-loop-modified Nambu-Jona-Lasinio models has been used to support a conjecture that numerical simulations of lattice-regularized QCD defined with a chiral chemical potential can provide information about the existence and location of a critical end point in the QCD phase diagram drawn in the plane spanned by baryon chemical potential and temperature. That conjecture is challenged by conflicts between the model results and analyses of the same problem using simulations of lattice-regularized QCD (lQCD) and well-constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved in favor of the lQCD and DSE predictions when both a physically motivated regularization is employed to suppress the contribution of high-momentum quark modes in the definition of the effective potential connected with the Polyakov-loop-modified Nambu-Jona-Lasinio models and the four-fermion coupling in those models does not react strongly to changes in the mean field that is assumed to mock-up Polyakov-loop dynamics. With the lQCD and DSE predictions thus confirmed, it seems unlikely that simulations of lQCD with μ5>0 can shed any light on a critical end point in the regular QCD phase diagram.

  3. Effect of critical process parameters on the synthesis of chiral amines

    DEFF Research Database (Denmark)

    Pirrung, Silvia; Lima Afonso Neto, Watson; Schwarze, Daniel

    equilibrium, the inhibition profiles for substrates and products but also on the possibilities for in-situ product removal (ISPR) and technologies for shifting the equilibrium. In a challenging process such as the synthesis of optically pure chiral amines using ω-transaminase, these decisions will have...... process parameters involved in the production of two chiral amines (S-methylbenzylamine and 3-amino-1-phenylbutane) (Figure 1) to demonstrate the effects of such decisions....

  4. Critical role of spatial information from chiral-asymmetric peptides in the earliest occurrence of life

    Science.gov (United States)

    Cruz-Rosas, Hugo I.; Riquelme, Francisco; Maldonado, Mariel; Cocho, Germinal

    2017-01-01

    The earliest functional living system on Earth should have been able to reproduce an ordered configuration and a self-organization dynamics. It was capable of resisting a random variability in time and space to keep the functionality. Amino acids (AAs) and nucleobases generated from abiotic reactions as seen in laboratory-based experiments have demonstrated that molecular elements for life can be obtained by predictable physicochemical processes. However, a functional, self-organized living system needs complex molecular interactions to endure. In this paper, we address the transference of spatial information on highly enantiopure polymers as a critical condition to support the dynamics in a self-organized biogenic system. Previous scenarios have considered almost exclusively the information encoded in sequences as the suitable source of prebiotic information. But the spatial information transference has been poorly understood thus far. We provide the supporting statements which predict that the ordered configuration in a biogenic system should be significantly influenced by spatial information, instead of being exclusively generated by sequences of polymers. This theoretical approach takes into consideration that the properties of mutation and inheritance did not develop before definition of the structures that allow the management of information. Rather, we postulate that the molecular structures to store and transfer information must exist at first, in order to retain particular functional `meaning', and subsequently, such information can be `inherited' and eventually modified. Thus, the present contribution follows the theory that life was originated from an unstable prebiotic environment that involves the early spatial information transference based on large chiral asymmetry.

  5. On the Higher Moments of Particle Multiplicity, Chemical Freeze-Out, and QCD Critical Endpoint

    Directory of Open Access Journals (Sweden)

    A. Tawfik

    2013-01-01

    Full Text Available We calculate the first six nonnormalized moments of particle multiplicity within the framework of the hadron resonance gas model. In terms of the lower order moments and corresponding correlation functions, general expressions of higher order moments are derived. Thermal evolution of the first four normalized moments and their products (ratios are studied at different chemical potentials, so that it is possible to evaluate them at chemical freeze-out curve. It is found that a nonmonotonic behaviour reflecting the dynamical fluctuation and strong correlation of particles starts to appear from the normalized third order moment. We introduce novel conditions for describing the chemical freeze-out curve. Although the hadron resonance gas model does not contain any information on the criticality related to the chiral dynamics and singularity in the physical observables, we are able to find out the location of the QCD critical endpoint at μ ~ 350  MeV and temperature T ~ 162  MeV.

  6. The chiral critical line of $N_{f}=2+1$ QCD at ero and non-zero baryon density

    CERN Document Server

    De Forcrand, Philippe; Forcrand, Philippe de; Philipsen, Owe

    2007-01-01

    We present numerical results for the location of the chiral critical line at finite temperature and zero and non-zero baryon density for QCD with N_f=2+1 flavours of staggered fermions on lattices with temporal extent N_t=4. For degenerate quark masses, we compare our results obtained with the exact RHMC algorithm with earlier, inexact R-algorithm results and find a reduction of 25% in the critical quark mass, for which the first order phase transition changes to a smooth crossover. Extending our analysis to non-degenerate quark masses, we map out the chiral critical line up to the neighbourhood of the physical point, which we confirm to be in the crossover region. Our data are consistent with a tricritical point at a strange quark mass of ~500 MeV. Finally, we investigate the shift of the critical line with finite baryon density, by simulating with an imaginary chemical potential for which there is no sign problem. We observe this shift to be very small or, conversely, the critical endpoint \\mu^c(m_{u,d},m_s...

  7. Chiral conducting polymers.

    Science.gov (United States)

    Kane-Maguire, Leon A P; Wallace, Gordon G

    2010-07-01

    This critical review describes the preparation and properties of a relatively new class of chiral macromolecules, namely chiral conducting polymers. It focuses in particular on examples based on polypyrrole, polythiophene and polyaniline. They possess remarkable properties, combining not only chirality with electrical conductivity but also the ability to undergo facile redox and pH switching. These unique properties have opened up a range of exciting new potential applications, including as chiral sensors, as novel stationary phases for chiral separations, and as chiral electrodes for electrochemical asymmetric synthesis (153 references).

  8. Combined chiral and diquark fluctuations along QCD critical line and enhanced baryon production with parity doubling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhao [North China Electric Power University, School of Mathematics and Physics, Beijing (China); Kunihiro, Teiji [Kyoto University, Department of Physics, Kyoto (Japan)

    2016-08-15

    We argue that there should exist the large combined fluctuations of chiral and diquark condensates along the phase boundary of QCD at moderately high density and relatively low temperature. Such fluctuations might lead to anomalous production of nucleons and its parity partner, which we propose to detect at NICA. (orig.)

  9. Multiple chiral topological states in liquid crystals from unstructured light beams

    Energy Technology Data Exchange (ETDEWEB)

    Loussert, Charles; Brasselet, Etienne, E-mail: e.brasselet@loma.u-bordeaux1.fr [Laboratoire Ondes et Matière d' Aquitaine, Univ. Bordeaux, CNRS, UMR 5798, F-33400 Talence (France)

    2014-02-03

    It is shown experimentally that unstructured light beams can generate a wealth of distinct metastable defect structures in thin films of chiral liquid crystals. Various kinds of individual chiral topological states are obtained as well as dimers and trimers, which correspond to the entanglement of several topological unit cells. Self-assembled nested assemblies of several metastable particle-like topological states can also be formed. Finally, we propose and experimentally demonstrate an opto-electrical approach to generate tailor-made architectures.

  10. Steady water waves with multiple critical layers: interior dynamics

    CERN Document Server

    Ehrnström, Mats; Villari, Gabriele

    2010-01-01

    We study small-amplitude steady water waves with multiple critical layers. Those are rotational two-dimensional gravity-waves propagating over a perfect fluid of finite depth. It is found that arbitrarily many critical layers with cat's-eye vortices are possible, with different structure at different levels within the fluid. The corresponding vorticity depends linearly on the stream function.

  11. THE THEORY OF MULTIPLE INTELLIGENCES AND CRITICAL THINKING

    OpenAIRE

    ZOBISCH, Paula J.; PLATINE, Donald G.; SWANSON, Andree

    2015-01-01

    Educators believe that in order to thrive in the 21st century and the Information Age, individuals must ask questions, challenge assumptions, invent new ways of solving problems, connect new knowledge to information already known, and apply their knowledge and reasoning skills in new situations. Individuals must develop critical thinking skills. Using techniques based on Gardner’s (1983, 1993a) theory of multiple intelligences has been shown to increase student critical thinking skills

  12. Chiral Rotational Spectroscopy

    CERN Document Server

    Cameron, Robert P; Barnett, Stephen M

    2015-01-01

    We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.

  13. Challenging Multiple-Choice Questions to Engage Critical Thinking

    Science.gov (United States)

    Kerkman, Dennis D.; Johnson, Andrew T.

    2014-01-01

    This article examines a technique for engaging critical thinking on multiple-choice exams. University students were encouraged to "challenge" the validity of any exam question they believed to be unfair (e.g., more than one equally correct answer, ambiguous wording, etc.). The number of valid challenges a student wrote was a better…

  14. Remyelination strategies in multiple sclerosis: a critical reflection.

    Science.gov (United States)

    Kipp, Markus

    2016-01-01

    Remyelination is the natural repair mechanism of demyelination and can be a highly efficient process in multiple sclerosis. However, in the majority of lesions, this regenerative approach is incomplete or fails. It is believed that remyelination protects against progressive axonal damage and thus long-term disability in patients with multiple sclerosis. For this reason, therapeutic promotion of remyelination represents an attractive option for preventing disease progression. In this editorial we casts a critical eye over the most frequently used experimental settings which aim to uncover potential remyelination promoting drugs. This article reflects upon the personal opinion of the author who currently used animal models allow to assess the potency of pharmacological interventions to accelerate, but not to induce myelin repair. Furthermore, it is discussed how remyelination and neuroprotection might well be two separate entities. Thus, induction of remyelination does not necessarily prevent disease progression in multiple sclerosis patients.

  15. Chiral rotational spectroscopy

    Science.gov (United States)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.

    2016-09-01

    We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.

  16. Multiple Intelligences or Multiply Misleading: The Critic's View of the Multiple Intelligences Theory

    Science.gov (United States)

    Peariso, Jamon F.

    2008-01-01

    Howard Gardner's Multiple Intelligences (MI) theory has been widely accepted in the field of education for the past two decades. Most educators have been subjugated to the MI theory and to the many issues that its implementation in the classroom brings. This is often done without ever looking at or being presented the critic's view or research on…

  17. Chiral non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2014-07-01

    A non-Fermi liquid state without time-reversal and parity symmetries arises when a chiral Fermi surface is coupled with a soft collective mode in two space dimensions. The full Fermi surface is described by a direct sum of chiral patch theories, which are decoupled from each other in the low-energy limit. Each patch includes low-energy excitations near a set of points on the Fermi surface with a common tangent vector. General patch theories are classified by the local shape of the Fermi surface, the dispersion of the critical boson, and the symmetry group, which form the data for distinct universality classes. We prove that a large class of chiral non-Fermi liquid states exists as stable critical states of matter. For this, we use a renormalization group scheme where low-energy excitations of the Fermi surface are interpreted as a collection of (1+1)-dimensional chiral fermions with a continuous flavor labeling the momentum along the Fermi surface. Due to chirality, the Wilsonian effective action is strictly UV finite. This allows one to extract the exact scaling exponents although the theories flow to strongly interacting field theories at low energies. In general, the low-energy effective theory of the full Fermi surface includes patch theories of more than one universality classes. As a result, physical responses include multiple universal components at low temperatures. We also point out that, in quantum field theories with extended Fermi surface, a noncommutative structure naturally emerges between a coordinate and a momentum which are orthogonal to each other. We show that the invalidity of patch description for Fermi liquid states is tied with the presence of UV/IR mixing associated with the emergent noncommutativity. On the other hand, UV/IR mixing is suppressed in non-Fermi liquid states due to UV insensitivity, and the patch description is valid.

  18. Challenging Multiple-Choice Questions to Engage Critical Thinking

    Directory of Open Access Journals (Sweden)

    Dennis D. Kerkman, PhD

    2014-08-01

    Full Text Available This article examines a technique for engaging critical thinking on multiple-choice exams. University students were encouraged to “challenge” the validity of any exam question they believed to be unfair (e.g., more than one equally correct answer, ambiguous wording, etc.. The number of valid challenges a student wrote was a better predictor of exam scores than the number of invalid challenges or GPA. The technique also allows instructors to gain insight into the sources of students’ errors that may be useful in improving instruction.

  19. Finding multiple possible critical paths using fuzzy PERT.

    Science.gov (United States)

    Chen, S M; Chang, T H

    2001-01-01

    Program evaluation and review techniques (PERT) is an efficient tool for large project management. In actual project control decisions, PERT has successfully been applied to business management, industry production, project scheduling control, logistics support, etc. However, classical PERT requires a crisp duration time representation for each activity. This requirement is often difficult for the decision-makers due to the fact that they usually can not estimate these values precisely. In recent years, some fuzzy PERT methods have been proposed based on fuzzy set theory for project management. However, there is a drawback in the existing fuzzy PERT methods, i.e., sometimes they maybe cannot find a critical path in a fuzzy project network. In this paper, we propose a fuzzy PERT algorithm to find multiple possible critical paths in a fuzzy project network, where the duration time of each activity in a fuzzy project network is represented by a fuzzy number. The proposed algorithm can overcome the drawback of the existing fuzzy PERT methods.

  20. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  1. Valuing Multiple Critical Approaches: Penelope, Again...and Again.

    Science.gov (United States)

    Shull, Ellen

    1992-01-01

    Describes the usefulness of helping students use varied critical stances (including feminism, new historicism, psychoanalytic criticism, and deconstruction) in the teaching of literature. Demonstrates with the "The Odyssey." (SR)

  2. Valuing Multiple Critical Approaches: Penelope, Again...and Again.

    Science.gov (United States)

    Shull, Ellen

    1992-01-01

    Describes the usefulness of helping students use varied critical stances (including feminism, new historicism, psychoanalytic criticism, and deconstruction) in the teaching of literature. Demonstrates with the "The Odyssey." (SR)

  3. Identification of critical locations across multiple infrastructures for terrorist actions

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, S.A. [Department of Nuclear Science and Engineering, and Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Apostolakis, G.E. [Department of Nuclear Science and Engineering, and Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States)]. E-mail: apostola@mit.edu

    2007-09-15

    This paper presents a possible approach to ranking geographic regions that can influence multiple infrastructures. Once ranked, decision makers can determine whether these regions are critical locations based on their susceptibility to terrorist acts. We identify these locations by calculating a value for a geographic region that represents the combined values to the decision makers of all the infrastructures crossing through that region. These values, as well as the size of the geographic region, are conditional on an assumed destructive threat of a given size. In our case study, the threat is assumed to be minor, e.g., a bomb that can affect objects within 7 m of it. This approach first requires an assessment of the users of the system. During this assessment, each user is assigned a performance index (PI) based on the disutility of the loss of each infrastructure's resource via multi-attribute utility theory (MAUT). A Monte Carlo network analysis is then performed to develop importance measures (IM) for the elements of each infrastructure for their ability to service each user. We combine the IMs with the user PIs to a value that we call valued worth (VW) for each infrastructure's elements independently. Then we use spatial analysis techniques within a geographic information system (GIS) to combine the VWs of each infrastructure's elements in a geographic area, conditional on the threat, into a total value we call geographic valued worth (GVW). The GVW is displayed graphically in the GIS system in a color scheme that shows the numerical ranking of these geographic areas. The map and rankings are then submitted to the decision makers to better allocate anti-terrorism resources. A case study of this methodology is performed on the Massachusetts Institute of Technology (MIT) campus. The results of the study show how the methodology can bring attention to areas that are important when several infrastructures are considered, but may be ignored when

  4. Multiple critical gravitational collapse of charged scalar with reflecting wall

    CERN Document Server

    Cai, Rong-Gen

    2016-01-01

    In this paper, we present the results on the gravitational collapse of charged massless scalar field in asymptotically flat spacetime with a perfectly reflecting wall. Differing from previous works, we study the system in the double null coordinates, by which we could simulate the system until the black hole forms with higher precision but less performance time. We investigate the influence of charge on the black hole formation and the scaling behavior near the critical collapses. The gapless and gapped critical behaviors for black hole mass and charge are studied numerically. We find that they satisfy the scaling laws for critical gravitational collapse but the gapped critical behavior is different from its AdS counterpart.

  5. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  6. Chiral algebras

    CERN Document Server

    Beilinson, Alexander

    2004-01-01

    Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch

  7. Critical evaluation of monitoring strategy for the multi-residue determination of 90 chiral and achiral micropollutants in effluent wastewater.

    Science.gov (United States)

    Petrie, Bruce; Proctor, Kathryn; Youdan, Jane; Barden, Ruth; Kasprzyk-Hordern, Barbara

    2017-02-01

    It is essential to monitor the release of organic micropollutants from wastewater treatment plants (WWTPs) for developing environmental risk assessment and assessing compliance with legislative regulation. In this study the impact of sampling strategy on the quantitative determination of micropollutants in effluent wastewater was investigated. An extended list of 90 chiral and achiral micropollutants representing a broad range of biological and physico-chemical properties were studied simultaneously for the first time. During composite sample collection micropollutants can degrade resulting in the under-estimation of concentration. Cooling collected sub-samples to 4°C stabilised ≥81 of 90 micropollutants to acceptable levels (±20% of the initial concentration) in the studied effluents. However, achieving stability for all micropollutants will require an integrated approach to sample collection (i.e., multi-bottle sampling with more than one stabilisation method applied). Full-scale monitoring of effluent revealed time-paced composites attained similar information to volume-paced composites (influent wastewater requires a sampling mode responsive to flow variation). The option of monitoring effluent using time-paced composite samplers is advantageous as not all WWTPs have flow controlled samplers or suitable sites for deploying portable flow meters. There has been little research to date on the impact of monitoring strategy on the determination of chiral micropollutants at the enantiomeric level. Variability in wastewater flow results in a dynamic hydraulic retention time within the WWTP (and upstream sewerage system). Despite chiral micropollutants being susceptible to stereo-selective degradation, no diurnal variability in their enantiomeric distribution was observed. However, unused medication can be directly disposed into the sewer network creating short-term (e.g., daily) changes to their enantiomeric distribution. As enantio-specific toxicity is observed

  8. Walking in Their Shoes: Using Multiple-Perspectives Texts as a Bridge to Critical Literacy

    Science.gov (United States)

    Clarke, Lane W.; Whitney, Erin

    2009-01-01

    Many teachers want to incorporate critical literacy into their instruction but are unsure of where to start. In this article, the authors pair Jones's (2006) three tenets of critical literacy (deconstruction, reconstruction, and social action) with books that highlight multiple perspectives. By combining this critical literacy framework with…

  9. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  10. Multiple Intelligence Theory for Gifted Education: Criticisms and Implications

    Science.gov (United States)

    Calik, Basak; Birgili, Bengi

    2013-01-01

    This paper scrutinizes giftedness and gifted learners under the implications of multiple intelligence theory with regard to coaching young scientists. It is one of the pluralistic theories toward intelligence while supporting to view individuals as active participants during teaching and learning processes which correspond with the applications of…

  11. Writing multiple-choice test items that promote and measure critical thinking.

    Science.gov (United States)

    Morrison, S; Free, K W

    2001-01-01

    Faculties are concerned about measurement of critical thinking especially since the National League for Nursing Accrediting Commission cited such measurement as a requirement for accreditation (NLNAC, 1997). Some writers and researchers (Alfaro-LeFevre, 1995; Blat, 1989; McPeck, 1981, 1990) describe the need to measure critical thinking within the context of a specific discipline. Based on McPeck's position that critical thinking is discipline-specific, guidelines for developing multiple-choice test items as a means of measuring critical thinking within the discipline of nursing are discussed. Specifically, criteria described by Morrison, Smith, and Britt (1996) for writing critical-thinking multiple-choice test items are reviewed and explained for promoting and measuring critical thinking.

  12. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  13. Teaching Critical Thinking without (Much) Writing: Multiple-Choice and Metacognition

    Science.gov (United States)

    Bassett, Molly H.

    2016-01-01

    In this essay, I explore an exam format that pairs multiple-choice questions with required rationales. In a space adjacent to each multiple-choice question, students explain why or how they arrived at the answer they selected. This exercise builds the critical thinking skill known as metacognition, thinking about thinking, into an exam that also…

  14. Teaching Critical Thinking without (Much) Writing: Multiple-Choice and Metacognition

    Science.gov (United States)

    Bassett, Molly H.

    2016-01-01

    In this essay, I explore an exam format that pairs multiple-choice questions with required rationales. In a space adjacent to each multiple-choice question, students explain why or how they arrived at the answer they selected. This exercise builds the critical thinking skill known as metacognition, thinking about thinking, into an exam that also…

  15. Chiral liquids

    Directory of Open Access Journals (Sweden)

    Zakharov V.I.

    2015-01-01

    Full Text Available We review briefly properties of chiral liquids, or liquids with massless fermionic constituents. We concentrate on three effects, namely, the low ratio of viscosity η to entropy density s, chiral magnetic and vortical effects. We sketch standard derivations of these effects in the hydrodynamic approximation and then concentrate on possibile unifying approach which is based on consideration of the (anomalously conserved axial current. The point is that the conservation of chirality is specific for the microscopic, field-theoretic description of massless fermions and their interactions. On the macroscopic side, the standard hydrodynamic equations are not consistent, generally speaking, with conservation of a helical macroscopic motion. Imposing extra constraints on the hydrodynamics might resolve this “clash-of-symmetries” paradox.

  16. Prediction Approach of Critical Node Based on Multiple Attribute Decision Making for Opportunistic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qifan Chen

    2016-01-01

    Full Text Available Predicting critical nodes of Opportunistic Sensor Network (OSN can help us not only to improve network performance but also to decrease the cost in network maintenance. However, existing ways of predicting critical nodes in static network are not suitable for OSN. In this paper, the conceptions of critical nodes, region contribution, and cut-vertex in multiregion OSN are defined. We propose an approach to predict critical node for OSN, which is based on multiple attribute decision making (MADM. It takes RC to present the dependence of regions on Ferry nodes. TOPSIS algorithm is employed to find out Ferry node with maximum comprehensive contribution, which is a critical node. The experimental results show that, in different scenarios, this approach can predict the critical nodes of OSN better.

  17. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  18. EXISTENCE AND MULTIPLICITY RESULTS FOR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT AND HARDY TERM

    Institute of Scientific and Technical Information of China (English)

    Shang Yanying; Tang Chunlei

    2007-01-01

    This paper concerns the existence and multiplicity of solutions for some semilinear elliptic equations with critical Sobolev exponent,Hardy term and the sublinear nonlinearity at origin.By using Ekeland's variational principle,we conclude the existence of nontrivial solution for this problem,the Clark's critical point theorem is used to prove the existence of infinitely many solutions for this problem with odd nonlinearity.

  19. Influence of the vector interaction and an external magnetic field on the isentropes near the chiral critical end point

    CERN Document Server

    Costa, Pedro

    2016-01-01

    The location of the critical end point (CEP) and the isentropic trajectories in the QCD phase diagram are investigated. We use the (2+1) Nambu$-$Jona-Lasinio model with the Polyakov loop coupling for different scenarios, namely by imposing zero strange quark density, which is the case in the ultra relativistic heavy-ion collisions, and $\\beta$-equilibrium. The influence of strong magnetic fields and of the vector interaction on the isentropic trajectories around the CEP is discussed. It is shown that the vector interaction and the magnetic field, having opposite effects on the first-order transition, affect the isentropic trajectories differently: as the vector interaction increases, the first-order transition becomes weaker and the isentropes become smoother; when a strong magnetic field is considered, the first-order transition is strengthened and the isentropes are pushed to higher temperatures. No focusing of isentropes in region towards the CEP is seen.

  20. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  1. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    NgSeikWng; HUSheng-Zhi

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations).For a chiral molecule,which must crystallize in a chiral space group,the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  2. Meson Effects on the Chiral Condensate at Finite Density

    Institute of Scientific and Technical Information of China (English)

    HUANG Mei; ZHUANG Peng-Fei; ZHAO Wei-Qin

    2002-01-01

    Meson corrections on the chiral condensate up to next-to-leading order in a 1/Nc expansion at finite densityare investigated in the NJL model with explicit chiral symmetry breaking. Compared with mean-field results, the chiralphase transition is still of the first order while the properties near the critical density for chiral phase transition are foundto change significantly.

  3. Generalized simplicial chiral models

    CERN Document Server

    Alimohammadi, M

    2000-01-01

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...

  4. Active Learning and Threshold Concepts in Multiple Testing That Can Further Develop Student Critical Statistical Thinking

    Science.gov (United States)

    White, Desley

    2015-01-01

    Two practical activities are described, which aim to support critical thinking about statistics as they concern multiple outcomes testing. Formulae are presented in Microsoft Excel spreadsheets, which are used to calculate the inflation of error associated with the quantity of tests performed. This is followed by a decision-making exercise, where…

  5. Multiple actor-critic structures for continuous-time optimal control using input-output data.

    Science.gov (United States)

    Song, Ruizhuo; Lewis, Frank; Wei, Qinglai; Zhang, Hua-Guang; Jiang, Zhong-Ping; Levine, Dan

    2015-04-01

    In industrial process control, there may be multiple performance objectives, depending on salient features of the input-output data. Aiming at this situation, this paper proposes multiple actor-critic structures to obtain the optimal control via input-output data for unknown nonlinear systems. The shunting inhibitory artificial neural network (SIANN) is used to classify the input-output data into one of several categories. Different performance measure functions may be defined for disparate categories. The approximate dynamic programming algorithm, which contains model module, critic network, and action network, is used to establish the optimal control in each category. A recurrent neural network (RNN) model is used to reconstruct the unknown system dynamics using input-output data. NNs are used to approximate the critic and action networks, respectively. It is proven that the model error and the closed unknown system are uniformly ultimately bounded. Simulation results demonstrate the performance of the proposed optimal control scheme for the unknown nonlinear system.

  6. Redox Changes Induced by General Anesthesia in Critically Ill Patients with Multiple Traumas

    Directory of Open Access Journals (Sweden)

    Marius Papurica

    2015-01-01

    Full Text Available The critically ill polytrauma patient is a constant challenge for the trauma team due to the complexity of the complications presented. Intense inflammatory response and infections, as well as multiple organ dysfunctions, significantly increase the rate of morbidity and mortality in these patients. Moreover, due to the physiological and biochemical imbalances present in this type of patients, the bioproduction of free radicals is significantly accelerated, thus installing the oxidative stress. In the therapeutic management of such patients, multiple surgical interventions are required and therefore they are being subjected to repeated general anesthesia. In this paper, we want to present the pathophysiological implications of oxidative stress in critically ill patients with multiple traumas and the implications of general anesthesia on the redox mechanisms of the cell. We also want to summarize the antioxidant treatments able to reduce the intensity of oxidative stress by modulating the biochemical activity of some cellular mechanisms.

  7. Redox Changes Induced by General Anesthesia in Critically Ill Patients with Multiple Traumas

    Science.gov (United States)

    Papurica, Marius; Rogobete, Alexandru Florin; Sandesc, Dorel; Dumache, Raluca; Nartita, Radu; Sarandan, Mirela; Cradigati, Alina Carmen; Luca, Loredana; Vernic, Corina; Bedreag, Ovidiu Horea

    2015-01-01

    The critically ill polytrauma patient is a constant challenge for the trauma team due to the complexity of the complications presented. Intense inflammatory response and infections, as well as multiple organ dysfunctions, significantly increase the rate of morbidity and mortality in these patients. Moreover, due to the physiological and biochemical imbalances present in this type of patients, the bioproduction of free radicals is significantly accelerated, thus installing the oxidative stress. In the therapeutic management of such patients, multiple surgical interventions are required and therefore they are being subjected to repeated general anesthesia. In this paper, we want to present the pathophysiological implications of oxidative stress in critically ill patients with multiple traumas and the implications of general anesthesia on the redox mechanisms of the cell. We also want to summarize the antioxidant treatments able to reduce the intensity of oxidative stress by modulating the biochemical activity of some cellular mechanisms. PMID:26693352

  8. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  9. Stegosaurus chirality

    OpenAIRE

    Cameron, R.P.; Cameron, J. A.; Barnett, S. M.

    2016-01-01

    We explain that Stegosaurus exhibited exterior chirality and observe that the largest plate in particular of USNM 4394, USNM 4714, DMNS 2818 and NHMUK R36730 appears to have tilted to the right rather than to the left in each case. Several instances in which Stegosaurus specimens have been confused with their distinct, hypothetical mirror-image forms are highlighted. We believe our findings to be consistent with the hypothesis that Stegosaurus's plates acted primarily as display structures. A...

  10. Chiral nuclear thermodynamics

    CERN Document Server

    Fiorilla, Salvatore; Weise, Wolfram

    2011-01-01

    We calculate the equation of state of nuclear matter for arbitrary isospin-asymmetry up to three loop order in the free energy density in the framework of in-medium chiral perturbation theory. In our approach 1\\pi- and 2\\pi-exchange dynamics with the inclusion of the \\Delta-isobar excitation as an explicit degree of freedom, corresponding to the long- and intermediate-range correlations, are treated explicitly. Few contact terms fixed to reproduce selected known properties of nuclear matter encode the short-distance physics. Two-body as well as three-body forces are systematically included. We find a critical temperature of about 15 MeV for symmetric nuclear matter. We investigate the dependence of the liquid-gas first-order phase transition on isospin-asymmetry. In the same chiral framework we calculate the chiral condensate of isospin-symmetric nuclear matter at finite temperatures. The contribution of the \\Delta-isobar excitation is essential for stabilizing the condensate. As a result, we find no indicati...

  11. Supramolecular helices: chirality transfer from conjugated molecules to structures.

    Science.gov (United States)

    Yang, Yang; Zhang, Yajie; Wei, Zhixiang

    2013-11-13

    Different scales of chirality endow a material with many excellent properties and potential applications. In this review, using π-conjugated molecules as functional building blocks, recent progress on supramolecular helices inspired by biological helicity is summarized. First, induced chirality on conjugated polymers and small molecules is introduced. Molecular chirality can be amplified to nanostructures, superstructures, and even macroscopic structures by a self-assembly process. Then, the principles for tuning the helicity of supramolecular chirality, as well as formation of helical heterojunctions, are summarized. Finally, the potential applications of chiral structures in chiral sensing and organic electronic devices are critically reviewed. Due to recent progress in chiral structures, an interdisciplinary area called "chiral electronics" is expected to gain wide popularity in the near future.

  12. Teaching Multiple Literacies and Critical Literacy to Pre-Service Teachers through Children's-Literature-Based Engagements

    Science.gov (United States)

    Lee, Cheu-jey

    2016-01-01

    This paper presents a pragmatic way of introducing pre-service teachers to multiple literacies and critical literacy through children's-literature-based engagements. The concepts of multiple literacies and critical literacy are reviewed, and their interrelationship is explained. Two instructional engagements, which connect theory to practice…

  13. C/EBPβ regulates transcription factors critical for proliferation and survival of multiple myeloma cells

    Science.gov (United States)

    Pal, Rekha; Janz, Martin; Galson, Deborah L.; Gries, Margarete; Li, Shirong; Jöhrens, Korinna; Anagnostopoulos, Ioannis; Dörken, Bernd; Mapara, Markus Y.; Borghesi, Lisa; Kardava, Lela; Roodman, G. David; Milcarek, Christine

    2009-01-01

    CCAAT/enhancer-binding protein β (C/EBPβ), also known as nuclear factor–interleukin-6 (NF-IL6), is a transcription factor that plays an important role in the regulation of growth and differentiation of myeloid and lymphoid cells. Mice deficient in C/EBPβ show impaired generation of B lymphocytes. We show that C/EBPβ regulates transcription factors critical for proliferation and survival in multiple myeloma. Multiple myeloma cell lines and primary multiple myeloma cells strongly expressed C/EBPβ, whereas normal B cells and plasma cells had little or no detectable levels of C/EBPβ. Silencing of C/EBPβ led to down-regulation of transcription factors such as IRF4, XBP1, and BLIMP1 accompanied by a strong inhibition of proliferation. Further, silencing of C/EBPβ led to a complete down-regulation of antiapoptotic B-cell lymphoma 2 (BCL2) expression. In chromatin immunoprecipitation assays, C/EBPβ directly bound to the promoter region of IRF4, BLIMP1, and BCL2. Our data indicate that C/EBPβ is involved in the regulatory network of transcription factors that are critical for plasma cell differentiation and survival. Targeting C/EBPβ may provide a novel therapeutic strategy in the treatment of multiple myeloma. PMID:19717648

  14. Chiral phase transition in QED3 at finite temperature

    Science.gov (United States)

    Yin, Pei-Lin; Xiao, Hai-Xiao; Wei, Wei; Feng, Hong-Tao; Zong, Hong-Shi

    2016-12-01

    In the framework of Dyson-Schwinger equations, we employ two kinds of criteria (one kind is the chiral condensate, the other kind is thermodynamic quantities, such as the pressure, the entropy, and the specific heat) to investigate the nature of chiral phase transitions in QED3 for different fermion flavors. It is found that the chiral phase transitions in QED3 for different fermion flavors are all typical second-order phase transitions; the critical temperature and order of the chiral phase transition obtained from the chiral condensate and susceptibility are the same with that obtained by the thermodynamic quantities, which means that they are equivalent in describing the chiral phase transition; the critical temperature decreases as the number of fermion flavors increases and there is a boundary that separates the Tc-Nf plane into chiral symmetry breaking and restoration regions.

  15. The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes

    CERN Document Server

    Yu, Lang; Huang, Mei

    2015-01-01

    We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.

  16. Chiral Nanoscience and Nanotechnology

    Directory of Open Access Journals (Sweden)

    Dibyendu S. Bag

    2008-09-01

    Full Text Available The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale approaches to chiraltechnology such as asymmetric synthesis and catalysis, chiral separation and detection, and enantiomericanalysis. Chiral sensors have also been included. The state-of-the-art chiral research at DMSRDE,Kanpur isalso presented.Defence Science Journal, 2008, 58(5, pp.626-635, DOI:http://dx.doi.org/10.14429/dsj.58.1685

  17. Chirally symmetric but confined hadrons at finite density

    CERN Document Server

    Glozman, L Ya

    2008-01-01

    At a critical finite chemical potential and low temperature QCD undergoes the chiral restoration phase transition. The folklore tradition is that simultaneously hadrons are deconfined and there appears the quark matter. We demonstrate that it is possible to have confined but chirally symmetric hadrons at a finite chemical potential and hence beyond the chiral restoration point at a finite chemical potential and low temperature there could exist a chirally symmetric matter consisting of chirally symmetric but confined hadrons. If it does happen in QCD, then the QCD phase diagram should be reconsidered with obvious implications for heavy ion programs and astrophysics.

  18. Fabrication and characterization of three-dimensional biomimetic chiral composites.

    Science.gov (United States)

    Turner, Mark D; Schröder-Turk, Gerd E; Gu, Min

    2011-05-09

    Here we show the fabrication and characterization of a novel class of biomimetic photonic chiral composites inspired by a recent finding in butterfly wing-scales. These three-dimensional networks have cubic symmetry, are fully interconnected, have robust mechanical strength and possess chirality which can be controlled through the composition of multiple chiral networks, providing an excellent platform for developing novel chiral materials. Using direct laser writing we have fabricated different types of chiral composites that can be engineered to form novel photonic devices. We experimentally show strong circular dichroism and compare with numerical simulations to illustrate the high quality of these three-dimensional photonic structures.

  19. Vacuum Polarization and Dynamical Chiral Symmetry Breaking: Phase Diagram of QED with Four-Fermion Contact Interaction

    CERN Document Server

    Akram, F; Gutierrez-Guerrero, L X; Masud, B; Rodriguez-Quintero, J; Calcaneo-Roldan, C; Tejeda-Yeomans, M E

    2012-01-01

    We study chiral symmetry breaking for fundamental charged fermions coupled electromagnetically to photons with the inclusion of four-fermion contact self-interaction term. We employ multiplicatively renormalizable models for the photon dressing function and the electron-photon vertex which minimally ensures mass anomalous dimension = 1. Vacuum polarization screens the interaction strength. Consequently, the pattern of dynamical mass generation for fermions is characterized by a critical number of massless fermion flavors above which chiral symmetry is restored. This effect is in diametrical opposition to the existence of criticality for the minimum interaction strength necessary to break chiral symmetry dynamically. The presence of virtual fermions dictates the nature of phase transition. Miransky scaling laws for the electromagnetic interaction strength and the four-fermion coupling, observed for quenched QED, are replaced by a mean-field power law behavior corresponding to a second order phase transition. T...

  20. Convenient Syntheses of Some C4 Chiral Building Blocks Starting From (S)-Malic Acid

    Institute of Scientific and Technical Information of China (English)

    WU TianJun; YU XianYong; ZHENG Xiao; HUANG PeiQiang

    2001-01-01

    @@ In the field of chiral technology, the synthesis of chiral intermediates and chiral building blocks occupies an important position. Chiral building blocks bearing double and / or multiple functionalities is particularly useful for the synthesis of chiral pharmaceuticals and chiral agrochemicals. In the recent years, we have been engaged in the development of synthetic methodology based on (S)-malic acid1-s. In these studies, malimide 2, easily accessible from (S)-malic acid, was shown to be a useful multifunctional building block in the asymmetric synthesis of natural products and chiral drugs (Scheme 1).

  1. Convenient Syntheses of Some C4 Chiral Building Blocks Starting From (S)-Malic Acid

    Institute of Scientific and Technical Information of China (English)

    WU; TianJun

    2001-01-01

    In the field of chiral technology, the synthesis of chiral intermediates and chiral building blocks occupies an important position. Chiral building blocks bearing double and / or multiple functionalities is particularly useful for the synthesis of chiral pharmaceuticals and chiral agrochemicals.  In the recent years, we have been engaged in the development of synthetic methodology based on (S)-malic acid1-s. In these studies, malimide 2, easily accessible from (S)-malic acid, was shown to be a useful multifunctional building block in the asymmetric synthesis of natural products and chiral drugs (Scheme 1).  ……

  2. Chiral spiral induced by a strong magnetic field

    CERN Document Server

    Abuki, H

    2016-01-01

    We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it totally washes the tricritical point out of the phase diagram, bringing the continent for the chiral spiral. This is the case no matter how small is the intensity of the magnetic field. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  3. Chiral metamaterials reduce the attractive Casimir force

    Science.gov (United States)

    Zhao, R.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2010-08-01

    In our previous work [R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 103, 103602 (2009)], we demonstrated theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials if the chirality is strong enough. In our recent work [R. Zhao, Th. Koschny, E.N. Economou, and C.M. Soukoulis, Phys. Rev. B 81, 235126 (2010)], we checked some chiral metamaterial designs and found that the artificial chiral metamaterials constructed by passive materials is very difficult to reach the critical chirality to realize repulsive Casimir force. Therefore, in this paper, we give a four-folded rotated Ω-particle chiral metamaterial as an example, use the effective medium approximation to retrieval the constitutive parameters, and take the same procedure as we did before to see how much the chiral metamaterial can reduce the attractive force. It shows that this un-optimized chiral metamaterial can reduce the Casimir attraction by 70%.

  4. Chiral mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  5. Multiplicative logarithmic corrections to quantum criticality in three-dimensional dimerized antiferromagnets

    Science.gov (United States)

    Qin, Yanqi; Normand, Bruce; Sandvik, Anders; Meng, Zi Yang

    We investigate the quantum phase transition in an S=1/2 dimerized Heisenberg antiferromagnet in three spatial dimensions. By means of quantum Monte Carlo simulations and finite-size scaling analyses, we get high-precision results for the quantum critical properties at the transition from the magnetically disordered dimer-singlet phase to the ordered Neel phase. This transition breaks O(N) symmetry with N=3 in D=3+1 dimensions. This is the upper critical dimension, where multiplicative logarithmic corrections to the leading mean-field critical properties are expected; we extract these corrections, establishing their precise forms for both the zero-temperature staggered magnetization, ms, and the Neel temperature, TN. We present a scaling ansatz for TN, including logarithmic corrections, which agrees with our data and indicates exact linearity with ms, implying a complete decoupling of quantum and thermal fluctuation effects close to the quantum critical point. These logarithmic scaling forms have not previously identified or verified by unbiased numerical methods and we discuss their relevance to experimental studies of dimerized quantum antiferromagnets such as TlCuCl3. Ref.: arXiv:1506.06073

  6. Surgical Critical Care for the Patient with Sepsis and Multiple Organ Dysfunction.

    Science.gov (United States)

    Kaml, Gary J; Davis, Kimberly A

    2016-12-01

    Sepsis and multiple organ dysfunction syndrome (MODS) is common in the surgical intensive care unit. Sepsis involves infection and the patient's immune response. Timely recognition of sepsis and swift application of evidence-based interventions is critical to the success of therapy. This article reviews the nature of the septic process, existing definitions of sepsis, and current evidence-based treatment strategies for sepsis and MODS. An improved understanding of the process of sepsis and its relation to MODS has resulted in clinical definitions and scoring systems that allow for the quantification of disease severity and guidelines for treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Molecular chirality at surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Karl-Heinz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Organic Chemistry Institute, University Zurich, 8057 Zuerich (Switzerland)

    2012-11-15

    With the adsorption of larger molecules being increasingly tackled by surface scientists, the aspect of chirality often plays a role. This paper gives a topical review of molecular chirality at surfaces and gives a phenomenological overview of different aspects of adsorption and self-assembly of chiral and prochiral molecules and the principles of mirror-symmetry breaking at a surface. After a brief introduction into the history of molecular chirality and the important role it played for understanding the spatial structure of molecules, definitions of chirality are presented. Topics treated here are principle ways to create single chiral adsorbates, chiral ensembles, and monolayers by achiral molecules, adsorption of intrinsically chiral molecules at achiral and chiral surfaces, long-range symmetry breaking in two-dimensional (2D) crystals due to additional chiral bias, chiral restructuring of solid surfaces under the influence of chiral molecules, switching the handedness of adsorbates, and chirality at the liquid/air interface. An outlook onto further potential research directions and recommendations for further reading, including nonsurface-related sources of chiral topics completes this paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Cooperative expression of atomic chirality in inorganic nanostructures

    Science.gov (United States)

    Wang, Peng-Peng; Yu, Shang-Jie; Govorov, Alexander O.; Ouyang, Min

    2017-02-01

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.

  9. Chiral Gravitational Waves from Chiral Fermions

    CERN Document Server

    Anber, Mohamed M

    2016-01-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  10. Chiral gravitational waves from chiral fermions

    Science.gov (United States)

    Anber, Mohamed M.; Sabancilar, Eray

    2017-07-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  11. Chirally extended quantum chromodynamics

    CERN Document Server

    Brower, R C; Tan, C I; Richard C Brower; Yue Shen; Chung-I Tan

    1994-01-01

    We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar %\\sigma and \\pi fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investiga...

  12. First molecules, biological chirality, origin(s) of life.

    Science.gov (United States)

    Caglioti, Luciano; Micskei, Károly; Pályi, Gyula

    2011-01-01

    Origin(s) of biological chirality appear(s) to be intimately connected to origin(s) of life. Prebiotic evolution toward these important turning points can be traced back to single chiral molecules. These can be small (monomeric) units as amino acids or monosaccharides or oligomers as oligo-RNA type molecules. Earlier speculations about these two kinds of entries to biological chirality are critically reviewed.

  13. Fast assessment of the critical principal stress direction for multiple separated multiaxial loadings

    Directory of Open Access Journals (Sweden)

    M. Cova

    2015-07-01

    Full Text Available The critical plane calculation for multiaxial damage assessment is often a demanding task, particularly for large FEM models of real components. Anyway, in actual engineering requests, sometime, it is possible to take advantage of the specific properties of the investigated case. This paper deals with the problem of a mechanical component loaded by multiple, but “time-separated”, multiaxial external loads. The specific material damage is dependent from the max principal stress variation with a significant mean stress sensitivity too. A specifically fitted procedure was developed for a fast computation, at each node of a large FEM model, of the direction undergoing the maximum fatigue damage; the procedure is defined according to an effective stress definition based on the max principal stress amplitude and mean value. The procedure is presented in a general form, applicable to the similar cases.

  14. Model of complex chiral drug metabolic systems and numerical simulation of the remaining chirality toward analysis of dynamical pharmacological activity.

    Science.gov (United States)

    Ogino, Yoshiyuki; Asahi, Toru

    2015-05-21

    In this study, systems of complicated pathways involved in chiral drug metabolism were investigated. The development of chiral drugs resulted in significant improvement in the remedies available for the treatment of various severe sicknesses. Enantiopure drugs undergo various biological transformations that involve chiral inversion and thus result in the generation of multiple enantiomeric metabolites. Identification of the specific active substances determining a given drug׳s efficacy among such a mixture of different metabolites remains a challenge. To comprehend this complexity, we constructed a mathematical model representing the complicated metabolic pathways simultaneously involving chiral inversion. Moreover, this model is applied to the metabolism of thalidomide, which has recently been revived as a potentially effective prescription drug for a number of intractable diseases. The numerical simulation results indicate that retained chirality in the metabolites reflects the original chirality of the unmetabolized drug, and a higher level of enantiomeric purity is preserved during spontaneous degradation. In addition, chirality remaining after equilibration is directly related to the rate constant not only for chiral inversion but also for generation and degradation. Furthermore, the retention of chirality is quantitatively predictable using this combination of kinetic parameters. Our simulation results well explain the behavior of thalidomide in the practical biological experimental data. Therefore, this model promises a comprehensive understanding of dynamic metabolic systems involving chiral drugs that express multiple enantiospecific drug efficacies.

  15. The brain as a complex system: plasticity at multiple scales and criticality

    Science.gov (United States)

    Ng, Tony; Miller, Paul

    2015-03-01

    As a complex system, a successful organism is one that can react effectively to environmental fluctuations. Not only should its response repertoire be commensurate with the number of independent conditions that it encounters, behavioral and environmental variations need to be matched at the appropriate scales. In the cortex, neuronal clusters, not individual cells, operate at the proper scale that is necessary to generate appropriate responses to external states of the world. Single neurons, however, serve on a finer scale to mediate interactions between neuronal assemblies. The distinction of scales is significant, as plasticity mechanisms can operate on various spatial and temporal scales. The brain has apparently evolved complex-system strategies to calibrate its own dynamics at multiple scales. This makes the joint study of local balance and global homeostasis fundamentally important, where criticality emerges as a signature of a computationally powerful system. We show via simulations how plasticity mechanisms at multiple scales are inextricably tied to spike-based neuronal avalanches, which are microscopic in origin and poorly predictive of animal behavior, and cluster-based avalanches, which are manifest macroscopically and are relevant to cognition and behavior.

  16. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  17. Two-color QCD with non-zero chiral chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, V.V. [Institute for High Energy Physics NRC “Kurchatov Institute' ,142281 Protvino (Russian Federation); Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Goy, V.A. [Far Eastern Federal University, School of Natural Sciences,690950 Vladivostok (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Research,BLTP, 141980 Dubna (Russian Federation); Kotov, A.Yu. [Institute of Theoretical and Experimental Physics,117259 Moscow (Russian Federation); Molochkov, A.V. [Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Müller-Preussker, M.; Petersson, B. [Humboldt-Universität zu Berlin, Institut für Physik,12489 Berlin (Germany)

    2015-06-16

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  18. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  19. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  20. Nuclear chiral dynamics and thermodynamics

    Science.gov (United States)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  1. A New Cluster Updating for 2-D SU(2) × SU(2) Chiral Model

    Science.gov (United States)

    Zhang, Jianbo; Ji, Daren

    1993-09-01

    We propose a variant version of Wolff's cluster algorithm, which may be extended to SU(N) × SU(N) chiral model, and test it in 2-dimensional SU(2) × SU(2) chiral model. The results show that the new method can efficiently reduce the critical slowing down in SU(2) × SU(2) chiral model.

  2. A Cluster Algorithm for the 2-D SU(3) × SU(3) Chiral Model

    Science.gov (United States)

    Ji, Da-ren; Zhang, Jian-bo

    1996-07-01

    To extend the cluster algorithm to SU(N) × SU(N) chiral models, a variant version of Wolff's cluster algorithm is proposed and tested for the 2-dimensional SU(3) × SU(3) chiral model. The results show that the new method can reduce the critical slowing down in SU(3) × SU(3) chiral model.

  3. Charge fluctuations in chiral models and the QCD phase transition

    CERN Document Server

    Skokov, V; Karsch, F; Redlich, K

    2011-01-01

    We consider the Polyakov loop-extended two flavor chiral quark--meson model and discuss critical phenomena related with the spontaneous breaking of the chiral symmetry. The model is explored beyond the mean-field approximation in the framework of the functional renormalisation group. We discuss properties of the net-quark number density fluctuations as well as their higher cumulants. We show that with the increasing net-quark number density, the higher order cumulants exhibit a strong sensitivity to the chiral crossover transition. We discuss their role as probes of the chiral phase transition in heavy-ion collisions at RHIC and LHC.

  4. Solvent-driven chiral-interaction reversion for organogel formation.

    Science.gov (United States)

    Qing, Guangyan; Shan, Xingxing; Chen, Wenrui; Lv, Ziyu; Xiong, Peng; Sun, Taolei

    2014-02-17

    For chiral gels and related applications, one of the critical issues is how to modulate the stereoselective interaction between the gel and the chiral guest precisely, as well as how to translate this information into the macroscopic properties of materials. Herein, we report that this process can also be modulated by nonchiral solvents, which can induce a chiral-interaction reversion for organogel formation. This process could be observed through the clear difference in gelation speed and the morphology of the resulting self-assembly. This chiral effect was successfully applied in the selective separation of quinine enantiomers and imparts "smart" merits to the gel materials.

  5. Extrinsic electromagnetic chirality in metamaterials

    OpenAIRE

    Plum, E.; Fedotov, V. A.; Zheludev, N. I.

    2009-01-01

    Three- and two-dimensional chirality arising from the mutual orientation of non-chiral planar metamaterial structures and the incident electromagnetic wave (extrinsic chirality) lead to pronounced optical activity, circular dichroism and asymmetric transmission indistinguishable from those seen in media consisting of three- and two-dimensionally chiral molecules (intrinsic chirality).

  6. Chiral medium produced by parallel electric and magnetic fields

    CERN Document Server

    Ruggieri, Marco; Chernodub, Maxim

    2016-01-01

    We compute (pseudo)critical temperature, $T_c$, of chiral symmetry restoration for quark matter in the background of parallel electric and magnetic fields. This field configuration leads to the production of a chiral medium on a time scale $\\tau$, characterized by a nonvanishing value of the chiral density that equilibrates due to microscopic processes in the thermal bath. We estimate the relaxation time $\\tau$ to be about $\\approx 0.1-1$ fm/c around the chiral crossover; then we compute the effect of the fields and of the chiral medium on~$T_c$. We find $T_c$ to be lowered by the external fields in the chiral medium.

  7. Antiphospholipid antibodies and multiple organ failure in critically ill cancer patients

    Directory of Open Access Journals (Sweden)

    Jorge I. F. Salluh

    2009-02-01

    Full Text Available OBJECTIVES: To describe the clinical outcomes and thrombotic events in a series of critically ill cancer patients positive for antiphospholipid (aPL antibodies. DESIGN: Retrospective case series study. SETTING: Medical-surgical oncologic intensive care unit (ICU. PATIENTS AND PARTICIPANTS: Eighteen patients with SIRS/sepsis and multiple organ failure (MOF and positive for aPL antibodies, included over a 10-month period. INTERVENTIONS: None MEASUREMENTS AND RESULTS: aPL antibodies and coagulation parameters were measured up to 48 hours after the occurrence of acrocyanosis or arterial/venous thrombotic events. When current criteria for the diagnosis of aPL syndrome were applied, 16 patients met the criteria for "probable" and two patients had a definite diagnosis of APL syndrome in its catastrophic form (CAPS. Acrocyanosis, arterial events and venous thrombosis were present in eighteen, nine and five patients, respectively. Sepsis, cancer and major surgery were the main precipitating factors. All patients developed MOF during the ICU stay, with a hospital mortality rate of 72% (13/18. Five patients were discharged from the hospital. There were three survivors at 90 days of follow-up. New measurements of lupus anticoagulant (LAC antibodies were performed in these three survivors and one patient still tested positive for these antibodies. CONCLUSIONS: In this small series of patients, we observed a high frequency of auto-antibodies and micro- and macro-vascular thrombotic events in critically ill cancer patients. The coexistence of sepsis or SIRS and aPL antibodies was often associated with MOF and death. More studies are necessary to determine the pathophysiological significance of antiphospholipid antibodies in severely ill cancer patients.

  8. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  9. Chiral symmetry breaking from Ginsparg-Wilson fermions

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2000-01-01

    We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.

  10. Chiral symmetry breaking from Ginsparg-Wilson fermions

    Science.gov (United States)

    Hernándes, Pilar; Jansen, Karl; Lellouch, Laurent

    We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter Σ, up to a multiplicative renormalization.

  11. Observation of Intrinsic Magnus Force and Direct Detection of Chirality in Superfluid 3He-A

    Science.gov (United States)

    Ikegami, Hiroki; Tsutsumi, Yasumasa; Kono, Kimitoshi

    2015-04-01

    We report details of the observation of the intrinsic Magnus (IM) force acting on negative and positive ions trapped just below a free surface of the A phase of superfluid 3He (3He-A). From the transport measurements of the ions along the surface, we found that the IM force acts on both the negative and positive ions. We also demonstrate that the transport measurements could distinguish whether the surface is composed of a chiral monodomain or multiple chiral domains. For multiple chiral domains, the current of the ions was found to be irreproducible and unstable, which was reasonably explained by the formation of the chiral domain structure and the dynamics of the chiral domain walls. For chiral monodomains, the appearance ratio of chirality emerging upon cooling through the superfluid transition temperature was found to depend on the direction of the external magnetic field, which implies the existence of an unknown coupling between the chirality and the magnetic field.

  12. Identification and Control of Aircrafts using Multiple Models and Adaptive Critics

    Science.gov (United States)

    Principe, Jose C.

    2007-01-01

    We compared two possible implementations of local linear models for control: one approach is based on a self-organizing map (SOM) to cluster the dynamics followed by a set of linear models operating at each cluster. Therefore the gating function is hard (a single local model will represent the regional dynamics). This simplifies the controller design since there is a one to one mapping between controllers and local models. The second approach uses a soft gate using a probabilistic framework based on a Gaussian Mixture Model (also called a dynamic mixture of experts). In this approach several models may be active at a given time, we can expect a smaller number of models, but the controller design is more involved, with potentially better noise rejection characteristics. Our experiments showed that the SOM provides overall best performance in high SNRs, but the performance degrades faster than with the GMM for the same noise conditions. The SOM approach required about an order of magnitude more models than the GMM, so in terms of implementation cost, the GMM is preferable. The design of the SOM is straight forward, while the design of the GMM controllers, although still reasonable, is more involved and needs more care in the selection of the parameters. Either one of these locally linear approaches outperform global nonlinear controllers based on neural networks, such as the time delay neural network (TDNN). Therefore, in essence the local model approach warrants practical implementations. In order to call the attention of the control community for this design methodology we extended successfully the multiple model approach to PID controllers (still today the most widely used control scheme in the industry), and wrote a paper on this subject. The echo state network (ESN) is a recurrent neural network with the special characteristics that only the output parameters are trained. The recurrent connections are preset according to the problem domain and are fixed. In a

  13. Manipulating the Lorentz force via the chirality of nanoparticles

    Science.gov (United States)

    Wang, Maoyan; Li, Hailong; Dong, Yuliang; Zhang, Xiaochuan; Du, Ming; Wang, Rui; Xu, Tong; Wu, Jian

    2016-12-01

    We demonstrate that a single plane wave pulls a chiral nanoparticle toward the light source. The nanoparticle exhibits optical gain in a particular wavelength region. The equivalence of the generalized and alternative expressions of the Lorentz force density relating to bound charges for chiral media is numerically validated. By considering the two-dimensional electromagnetic problem of incident plane waves normally impinged on active chiral cylinders, it is shown that the gradient force is mainly contributed by the bound electric and magnetic current densities of the cross-polarized waves. We also investigate how the medium parameters and impedance mismatch can be used to manipulate the pulling or pushing Lorentz forces between two chiral cylinders. This finding may provide a recipe to understand the light interaction with multiple chiral nanoparticles of arbitrary shapes (in general) with the aid of the numerical approach. It could be a promising avenue in controlling the optical micromanipulation for chiral nanoparticles with mirroring asymmetry.

  14. A molecular propeller effect for chiral separation and analysis

    Science.gov (United States)

    Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas

    2015-07-01

    Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved.

  15. Dynamic aspect of the chiral phase transition in the mode coupling theory

    CERN Document Server

    Ohnishi, K; Ohta, K

    2005-01-01

    We analyze the dynamic aspect of the chiral phase transition. We apply the mode coupling theory to the linear sigma model and derive the kinetic equation for the chiral phase transition. We challenge Hohenberg and Halperin's classification scheme of dynamic critical phenomena in which the dynamic universality class of the chiral phase transition has been identified with that of the antiferromagnet. We point out a crucial difference between the chiral dynamics and the antiferromagnet system. We also calculate the dynamic critical exponent for the chiral phase transition. Our result is $z=1-\\eta/2\\cong 0.98$ which is contrasted with $z=d/2=1.5$ of the antiferromagnet.

  16. Raman database of amino acids solutions: A critical study of Extended Multiplicative Signal Correction

    KAUST Repository

    Candeloro, Patrizio

    2013-01-01

    The Raman spectra of biological materials always exhibit complex profiles, constituting several peaks and/or bands which arise due to the large variety of biomolecules. The extraction of quantitative information from these spectra is not a trivial task. While qualitative information can be retrieved from the changes in peaks frequencies or from the appearance/disappearance of some peaks, quantitative analysis requires an examination of peak intensities. Unfortunately in biological samples it is not easy to identify a reference peak for normalizing intensities, and this makes it very difficult to study the peak intensities. In the last decades a more refined mathematical tool, the extended multiplicative signal correction (EMSC), has been proposed for treating infrared spectra, which is also capable of providing quantitative information. From the mathematical and physical point of view, EMSC can also be applied to Raman spectra, as recently proposed. In this work the reliability of the EMSC procedure is tested by application to a well defined biological system: the 20 standard amino acids and their combination in peptides. The first step is the collection of a Raman database of these 20 amino acids, and subsequently EMSC processing is applied to retrieve quantitative information from amino acids mixtures and peptides. A critical review of the results is presented, showing that EMSC has to be carefully handled for complex biological systems. © 2013 The Royal Society of Chemistry.

  17. Chiral Superfluidity for QCD

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  18. Emerging chirality in nanoscience.

    Science.gov (United States)

    Wang, Yong; Xu, Jun; Wang, Yawen; Chen, Hongyu

    2013-04-07

    Chirality in nanoscience may offer new opportunities for applications beyond the traditional fields of chirality, such as the asymmetric catalysts in the molecular world and the chiral propellers in the macroscopic world. In the last two decades, there has been an amazing array of chiral nanostructures reported in the literature. This review aims to explore and categorize the common mechanisms underlying these systems. We start by analyzing the origin of chirality in simple systems such as the helical spring and hair vortex. Then, the chiral nanostructures in the literature were categorized according to their material composition and underlying mechanism. Special attention is paid to highlight systems with original discoveries, exceptional structural characteristics, or unique mechanisms.

  19. Mechanical separation of chiral dipoles by chiral light

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.

  20. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  1. Chiral Shock Waves

    CERN Document Server

    Sen, Srimoyee

    2016-01-01

    We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.

  2. Anomalous chiral superfluidity

    Energy Technology Data Exchange (ETDEWEB)

    Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2010-02-08

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.

  3. Chiral phase transition in a planar four-Fermi model in a tilted magnetic field

    CERN Document Server

    Ramos, Rudnei O

    2013-01-01

    We study a planar four-Fermi Gross-Neveu model in the presence of a tilted magnetic field, with components parallel and perpendicular to the system's plane. We determine how this combination of magnetic field components, when applied simultaneously, affects the phase diagram of the model. It is shown that each component of the magnetic field causes a competing effect on the chiral symmetry in these fermionic systems. While the perpendicular component of the magnetic field tends to make the chiral symmetry breaking to become stronger, the effect of the parallel component of the field in these planar systems is to weaken the chiral symmetry. We show that this competing effect, when combined also with temperature and chemical potential, can lead to a rich phase diagram, with the emergence of multiple critical points and reentrant phase transitions. We also study how the presence of these multiple critical points and reentrant phases can manifest in the quantum Hall effect. Our results provide a possible way to p...

  4. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  5. Critical Appraisal of Evidence for Improving Gait Speed in People with Multiple Sclerosis: Dalfampridine Versus Gait Training

    OpenAIRE

    Plummer, Prudence

    2016-01-01

    Background: Research has not yet compared the treatment effects of dalfampridine with traditional rehabilitation of gait impairments in multiple sclerosis (MS). The purpose of this review was to critically appraise the evidence for dalfampridine and gait training for increasing gait speed in people with MS.

  6. Possibilities and Challenges of Early Critical Literacy Practices: Bilingual Preschoolers' Exploring Multiple Voices and Gender Roles

    Science.gov (United States)

    Kim, So Jung

    2016-01-01

    Despite the emphasis on the significance of critical literacy, there has been a startling paucity of studies examining how critical literacy pedagogies can be implemented to preschool bilingual settings. In order to address this gap in the research, this qualitative case study examines the possibilities and challenges of critical literacy in…

  7. Peak of Chiral Susceptibility and Chiral Phase Transition in QED3

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-Qing; YANG Yong-Hong

    2011-01-01

    A general expression for the scalar susceptibility in QEDs is given. We adopt the Dyson-Schwinger equation for the fermion propagator to solve xc within a range of the number of fermion flavors, N, in chiral symmetry breaking phase. We show that the scalar susceptibility has a peak and the corresponding N is less than the critical number of fermion flavors for chiral symmetry.%@@ A general expression for the scalar susceptibility in QED3 is given.We adopt the Dyson-Schwinger equation for the fermion propagator to solve Xc within a range of the number of fermion flavors, N, in chiral symmetry breaking phase.We show that the scalar susceptibility has a peak and the corresponding N is less than thecritical number of fermion flavors for chiral symmetry.

  8. In Search of the Chiral Regime

    CERN Document Server

    Beane, S R

    2004-01-01

    A critical appraisal is given of a recent analysis of the quark-mass and finite-size dependence of unquenched lattice QCD data for the nucleon mass. We use this forum to estimate the boundary of the chiral regime for nucleon properties.

  9. Chiral Thermodynamics in a finite box

    CERN Document Server

    Juričić, Ana

    2016-01-01

    Finite-volume modifications of the two-flavor chiral phase diagram are investigated within an effective quark-meson model in various mean-field approximations. The role of vacuum fluctuations and boundary conditions, their influence on higher cumulants and signatures of a possible pseudo-critical endpoint are amplified with smaller volumes.

  10. Magnetic properties in the inhomogeneous chiral phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Toshitaka

    2016-01-01

    We investigate the magnetic properties of quark matter in the inhomogeneous chiral phase, where both scalar and pseudoscalar condensates spatially modulate. The energy spectrum of the lowest Landau level becomes asymmetric about zero in the external magnetic field, and gives rise to the remarkably magnetic properties: quark matter has a spontaneous magnetization, while the magnetic susceptibility does not diverge on the critical point.

  11. Applications of chiral symmetry

    CERN Document Server

    Pisarski, R D

    1995-01-01

    I discuss several topics in the applications of chiral symmetry at nonzero temperature, including: where the rho goes, disoriented chiral condensates, and the phase diagram for QCD with 2+1 flavors. (Based upon talks presented at the "Workshop on Finite Temperature QCD", Wuhan, P.R.C., April, 1994.)

  12. Dynamics of the chiral phase transition

    CERN Document Server

    van Hees, H; Meistrenko, A; Greiner, C

    2013-01-01

    The intention of this study is the search for signatures of the chiral phase transition in heavy-ion collisions. To investigate the impact of fluctuations, e.g., of the baryon number, at the transition or at a critical point, the linear sigma model is treated in a dynamical (3+1)-dimensional numerical simulation. Chiral fields are approximated as classical mean fields, and quarks are described as quasi particles in a Vlasov equation. Additional dynamics is implemented by quark-quark and quark-sigma-field interactions. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.

  13. Chiral logarithms in the massless limit tamed.

    Science.gov (United States)

    Kivel, Nikolai; Polyakov, Maxim V; Vladimirov, Alexei

    2008-12-31

    We derive nonlinear recursion relations for the leading chiral logarithms (LLs) in massless theories. These relations not only provide a very efficient method of computation of LLs (e.g., the 33-loop contribution is calculated in a dozen of seconds on a PC) but also equip us with a powerful tool for the summation of the LLs. Our method is not limited to chiral perturbation theory only; it is pertinent to any nonrenormalizable effective field theory such as, for instance, the theory of critical phenomena, low-energy quantum gravity, etc.

  14. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  15. Molecular model for chirality phenomena.

    Science.gov (United States)

    Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G

    2016-10-21

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  16. The assessment of critical thinking skills in anatomy and physiology students who practice writing higher order multiple choice questions

    Science.gov (United States)

    Shaw, Jason

    Critical thinking is a complex abstraction that defies homogeneous interpretation. This means that no operational definition is universal and no critical thinking measurement tool is all encompassing. Instructors will likely find evidence based strategies to facilitate thinking skills only as numerous research efforts from multiple disciplines accumulate. This study focuses on a question writing exercise designed to help anatomy and physiology students. Students were asked to design multiple choice questions that combined course concepts in new and novel ways. Instructions and examples were provided on how to construct these questions and student attempts were sorted into levels one through three of Bloom's Cognitive Taxonomy (Bloom et al. 1956). Students submitted their question designs weekly and received individual feedback as to how they might improve. Eight course examinations were created to contain questions that modeled the Bloom's Cognitive Taxonomy levels that students were attempting. Students were assessed on their course examination performance as well as performance on a discipline independent critical thinking test called the California Critical Thinking Skills Test (CCTST). The performance of students in this study was compared to students from two previous years that took the same course but did not have the question writing activity. Results suggest that students do not improve their ability to answer critical thinking multiple choices questions when they practice the task of creating such problems. The effect of class level on critical thinking is examined and it appears that the longer a student has attended college the better the performance on both discipline specific and discipline independent critical thinking questions. The data were also used to analyze students who improved their course examination grades in the second semester of this course. There is a pattern to suggest that students who improve their performance on course examinations

  17. Analysis of chiral symmetry breaking mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Xin-Heng, Guo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Tao, Huang [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Chuang, Wang

    1997-07-01

    The renormalization group invariant quark condensate {mu} is determinate both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like {delta} (q) which is associated with the gluon condensate. The solutions of {mu} in these two equations are consistent. We also obtain the critical strong coupling constant {alpha}c above which chiral symmetry breaks in two approaches. The nonperturbative kernel of the SD equation makes {alpha}c smaller and {mu} bigger. An intuitive picture of the condensation above {alpha}c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity we derive the equations for the nonperturbative quark propagator from SD equation in the presence of the intermediate-range force is also responsible for dynamical chiral symmetry breaking. (author) 32 refs., 2 figs.

  18. Chiral Recognition Mechanisms in Enantiomers Separations: A General View

    Science.gov (United States)

    Berthod, Alain

    In 1858, Louis Pasteur, the first to accomplish the separation of two enantiomers wrote: “Most natural organic products, the essential products of life, are asymmetric and possess such asymmetry that they are not superimposable on their image. This establishes perhaps the only well-marked line of demarcation that can at present be drawn between the chemistry of dead matter and the chemistry of living matter.” Enantiomers have exactly the same properties in isotropic conditions. They behave differently only in anisotropic conditions. Chiral-chiral interactions are needed for enantiomeric separations. The fundamental mechanisms for chiral separations are listed along with the commercially available chiral selectors. Two chemometric examples are commented: one on quantitative structure enantioselectivity relationship and the second one on linear solvation energy relationships. It is shown that the solvents used in the mobile phase may play the most critical role in the chiral mechanism.

  19. Mass dependence of critical parameter and multiplicity of intermediatemass fragments in heavy ion reaction

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The mass dependence of critical parameters for the liquid-gas phase transition andmultiplicity of intermediate mass fragment in the heavyion reaction is qualitatively explored under the frameworkof lattice gas model. Some results are compared with experimental data.

  20. The Effect of Multiple Intelligence-Based Instruction on Critical Thinking of Full Day Islamic Elementary Schools Students

    Directory of Open Access Journals (Sweden)

    Alhamuddin Alhamuddin

    2016-09-01

    Full Text Available Lack of critical thinking skills of elementary schools’ students was influenced by teachers’ domination in instructional activities; meanwhile students did not play independently as the learners. Theoretically, multiple intelligences based instruction is an appropriate solution. For that reason, this research aims to know the impact of multiple intelligences based instruction on students' critical thinking skills. The research was conducted at Al-Amanah and Buahati Islamic Elementary Schools by using a quantitative approach with case study method. Data collected through critical thinking tests was analyzed by using independent sample t-test to examine the impact of instruction on students' critical thinking skills. The results showed that the implementation of multiple intelligences based intruction had significant effect on students’ critical thinking skills. From the finding, some recommendations are given as follows: 1 The teacher’s role is not only for transferring knowledge based on his/her competencies but also students’ characteristics reflecting their instruction styles; and 2 for further researcher, it is suggested to investigate this issues more specifically and comprehensively.   Kurangnya keterampilan berpikir kritis dari siswa sekolah dasar dipengaruhi oleh dominasi guru dalam kegiatan pembelajaran; Sementara itu siswa tidak bermain secara independen sebagai peserta didik. Secara teoritis, pendekatan berbasis kecerdasan ganda merupakan solusi yang tepat. Untuk itu, penelitian ini bertujuan untuk mengetahui dampak pendekatan berbasis kecerdasan ganda pada keterampilan berpikir kritis siswa. Penelitian ini dilakukan di Sekolah Dasar Islam Al-Amanah dan Buahati dengan menggunakan pendekatan kuantitatif dengan metode studi kasus. Data dikumpulkan melalui tes berpikir kritis dianalisis dengan menggunakan sampel independent t-test untuk menguji dampak dari pendekatan pada keterampilan berpikir kritis siswa. Hasil penelitian

  1. Chiral supergravity and anomalies

    CERN Document Server

    Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.

    1999-01-01

    Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.

  2. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  3. Supramolecular tilt chirality in crystals of steroids and alkaloids.

    Science.gov (United States)

    Hisaki, Ichiro; Tohnai, Norimitsu; Miyata, Mikiji

    2008-03-01

    The concept of supramolecular chirality has assumed increasing importance in association with the development of supramolecular chemistry over the last two decades. In chiral crystals, 2 1 helical molecular assemblies are frequently observed as key motifs. Helical handedness of the 2 1 assemblies, however, has not been determined from the mathematical or crystallographical viewpoints. In this context, we have proposed two new concepts, three-axial chirality and tilt chirality. On the basis of the concepts, we describe supramolecular chirality and determine the handedness of 2 1 assemblies that are composed of relatively complicated molecules with multiple stereogenic centers such as brucine, bile acids, and cinchona alkaloids as well as those of simple molecules.

  4. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  5. Color chiral solitons

    CERN Document Server

    Novozhilov, V Yu; Novozhilov, Victor; Novozhilov, Yuri

    2002-01-01

    We discuss specific features of color chiral solitons (asymptotics, possibility of confainment, quantization) at example of isolated SU(2) color skyrmions, i.e. skyrmions in a background field which is the vacuum field forming the gluon condensate.

  6. Chiral brownian heat pump.

    Science.gov (United States)

    van den Broek, M; Van den Broeck, C

    2008-04-04

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  7. Chiral Brownian heat pump

    OpenAIRE

    Van Den Broek, Martijn; Van Den Broeck, Christian

    2007-01-01

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  8. Scalemic and racemic imprinting with a chiral crosslinker.

    Science.gov (United States)

    Hebert, Britney; Meador, Danielle S; Spivak, David A

    2015-08-26

    The development of molecularly imprinted chiral stationary phases has traditionally been limited by the need for a chiral pure template. Paradoxically, availability of a chiral pure template largely defeats the purpose of developing a chiral stationary phase. To solve this paradox, imprinting of scalemic and racemic template mixtures was investigated using both chiral (N-α-bismethacryloyl-L-alanine) and achiral (N,O-bisacrylamide ethanolamine) crosslinkers. Imprinting of scalemic mixtures provided polymers capable of partial separation of Boc-tyrosine enantiomers with virtually the same results when using either the chiral or achiral crosslinker. However, the chiral crosslinker was required for chiral differentiation by the racemic imprinted polymers which were evaluated in both batch rebinding and chromatographic modes. Batch rebinding analysis revealed intersecting binding isotherms for the L- and D-Boc-tyrosine, indicating bias for the D or L enantiomer is concentration dependent. Partial chromatographic separation was achieved by the racemic imprinted polymers providing variable D or L bias in equal probability over multiple replicates of polymer synthesis. Correlation of enantiomer bias with the batch rebinding results and optimization of HPLC parameters are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Multiple critical velocities in oscillatory flow of superfluid 4He due to quartz tuning forks

    Science.gov (United States)

    Schmoranzer, D.; Jackson, M. J.; Tsepelin, V.; Poole, M.; Woods, A. J.; Človečko, M.; Skrbek, L.

    2016-12-01

    We report recent investigations into the transition to turbulence in superfluid 4He, realized experimentally by measuring the drag forces acting on two custom-made quartz tuning forks with fundamental resonances at 6.5 kHz and 55.5 kHz, in the temperature range 10 mK to 2.17 K. In pure superfluid in the zero temperature limit, three distinct critical velocities were observed with both tuning forks. We discuss the significance of all critical velocities and associate the third critical velocity reported here with the development of large vortical structures in the flow, which thus starts to mimic turbulence in classical fluids. The interpretation of our results is directly linked to previous experimental work with oscillators such as tuning forks, grids, and vibrating wires, focusing on the behavior of purely superfluid 4He at very low temperatures.

  10. Electrodynamics of chiral matter

    Science.gov (United States)

    Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang

    2017-02-01

    Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.

  11. Chiral Odd GPDs

    Directory of Open Access Journals (Sweden)

    Goldstein Gary R.

    2015-01-01

    Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.

  12. Binary mixtures of chiral gases

    CERN Document Server

    Presilla, Carlo

    2015-01-01

    A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.

  13. Multiple Intelligences, the Mozart Effect, and Emotional Intelligence: A Critical Review

    Science.gov (United States)

    Waterhouse, Lynn

    2006-01-01

    This article reviews evidence for multiple intelligences theory, the Mozart effect theory, and emotional intelligence theory and argues that despite their wide currency in education these theories lack adequate empirical support and should not be the basis for educational practice. Each theory is compared to theory counterparts in cognitive…

  14. Multiple Choice Questions Can Be Designed or Revised to Challenge Learners' Critical Thinking

    Science.gov (United States)

    Tractenberg, Rochelle E.; Gushta, Matthew M.; Mulroney, Susan E.; Weissinger, Peggy A.

    2013-01-01

    Multiple choice (MC) questions from a graduate physiology course were evaluated by cognitive-psychology (but not physiology) experts, and analyzed statistically, in order to test the independence of content expertise and cognitive complexity ratings of MC items. Integration of higher order thinking into MC exams is important, but widely known to…

  15. Multiple Intelligences, the Mozart Effect, and Emotional Intelligence: A Critical Review

    Science.gov (United States)

    Waterhouse, Lynn

    2006-01-01

    This article reviews evidence for multiple intelligences theory, the Mozart effect theory, and emotional intelligence theory and argues that despite their wide currency in education these theories lack adequate empirical support and should not be the basis for educational practice. Each theory is compared to theory counterparts in cognitive…

  16. Feasibility of a multiple-choice mini mental state examination for chronically critically ill patients

    OpenAIRE

    2014-01-01

    Objectives: Following treatment in an ICU, up to 70% of chronically critically ill patients present neurocognitive impairment that can have negative effects on their quality of life, daily activities, and return to work. The Mini Mental State Examination is a simple, widely used tool for neurocognitive assessment. Although of interest when evaluating ICU patients, the current version is restricted to patients who are able to speak. This study aimed to evaluate the feasibility of a visual, mul...

  17. Chiral Random Matrix Theory and Chiral Perturbation Theory

    CERN Document Server

    Damgaard, P H

    2011-01-01

    Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.

  18. Chiral Random Matrix Theory and Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Damgaard, Poul H, E-mail: phdamg@nbi.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2011-04-01

    Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.

  19. Chiral Graphene Quantum Dots.

    Science.gov (United States)

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  20. Theories of multiple equilibria and weather regimes : A critical reexamination. II - Baroclinic two-layer models

    Science.gov (United States)

    Cehelsky, Priscilla; Tung, Ka Kit

    1987-01-01

    Previous results based on low- and intermediate-order truncations of the two-layer model suggest the existence of multiple equilibria and/or multiple weather regimes for the extratropical large-scale flow. The importance of the transient waves in the synoptic scales in organizing the large-scale flow and in the maintenance of weather regimes was emphasized. The result shows that multiple equilibria/weather regimes that are present in lower-order models examined disappear when a sufficient number of modes are kept in the spectral expansion of the solution to the governing partial differential equations. Much of the chaotic behavior of the large-scale flow that is present in intermediate-order models is now found to be spurious. Physical reasons for the drastic modification are offered. A peculiarity in the formulation of most existing two-layer models is noted that also tends to exaggerate the importance of baroclinic processes and increase the degree of unpredictability of the large-scale flow.

  1. Reconfigurable self-assembly through chiral control of interfacial tension.

    Science.gov (United States)

    Gibaud, Thomas; Barry, Edward; Zakhary, Mark J; Henglin, Mir; Ward, Andrew; Yang, Yasheng; Berciu, Cristina; Oldenbourg, Rudolf; Hagan, Michael F; Nicastro, Daniela; Meyer, Robert B; Dogic, Zvonimir

    2012-01-04

    From determining the optical properties of simple molecular crystals to establishing the preferred handedness in highly complex vertebrates, molecular chirality profoundly influences the structural, mechanical and optical properties of both synthetic and biological matter on macroscopic length scales. In soft materials such as amphiphilic lipids and liquid crystals, the competition between local chiral interactions and global constraints imposed by the geometry of the self-assembled structures leads to frustration and the assembly of unique materials. An example of particular interest is smectic liquid crystals, where the two-dimensional layered geometry cannot support twist and chirality is consequently expelled to the edges in a manner analogous to the expulsion of a magnetic field from superconductors. Here we demonstrate a consequence of this geometric frustration that leads to a new design principle for the assembly of chiral molecules. Using a model system of colloidal membranes, we show that molecular chirality can control the interfacial tension, an important property of multi-component mixtures. This suggests an analogy between chiral twist, which is expelled to the edges of two-dimensional membranes, and amphiphilic surfactants, which are expelled to oil-water interfaces. As with surfactants, chiral control of interfacial tension drives the formation of many polymorphic assemblages such as twisted ribbons with linear and circular topologies, starfish membranes, and double and triple helices. Tuning molecular chirality in situ allows dynamical control of line tension, which powers polymorphic transitions between various chiral structures. These findings outline a general strategy for the assembly of reconfigurable chiral materials that can easily be moved, stretched, attached to one another and transformed between multiple conformational states, thus allowing precise assembly and nanosculpting of highly dynamical and designable materials with complex

  2. Multiple attractors and critical parameters and how to find them numerically: the right, the wrong and the gambling way

    Science.gov (United States)

    True, Hans

    2013-03-01

    In recent years, several authors have proposed 'easier numerical methods' to find the critical speed in railway dynamical problems. Actually, the methods do function in some cases, but in most cases it is really a gamble. In this article, the methods are discussed and the pros and contras are commented upon. I also address the questions when a linearisation is allowed and the curious fact that the hunting motion is more robust than the ideal stationary-state motion on the track. Concepts such as 'multiple attractors', 'subcritical and supercritical bifurcations', 'permitted linearisation', 'the danger of running at supercritical speeds' and 'chaotic motion' are addressed.

  3. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  4. Superconductivity in a chiral nanotube

    Science.gov (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  5. Locally self-organized quasi-critical percolation in a multiple disease model

    CERN Document Server

    Juul, Jeppe

    2011-01-01

    Diseases emerge, persist and vanish in an ongoing battle for available hosts. Hosts, on the other hand, defend themselves by developing immunity that limits the ability of pathogens to reinfect them. We here explore a multi-disease system with emphasis on mutual exclusion. We demonstrate that such a system develops towards a steady state, where the spread of individual diseases self-organizes to a state close to that of critical percolation, without any global control mechanism or separation of time scale. For a broad range of introduction rates of new diseases, the likelihood of transmitting diseases remains approximately constant.

  6. Quarkyonic Chiral Spirals

    CERN Document Server

    Kojo, Toru; McLerran, Larry; Pisarski, Robert D

    2009-01-01

    We consider the formation of chiral density waves in Quarkyonic matter, which is a phase where cold, dense quarks experience confining forces. We model confinement following Gribov and Zwanziger, taking the gluon propagator, in Coulomb gauge and momentum space, as 1/(p^2)^2. We assume that the number of colors, N, is large, and that the quark chemical potential, mu, is much larger than renormalization mass scale, Lambda_QCD. To leading order in 1/N and Lambda_QCD, a gauge theory with Nf flavors of massless quarks in 3+1 dimensions naturally reduces to a gauge theory in 1+1 dimensions, with an enlarged flavor symmetry of SU(2Nf). Through an anomalous chiral rotation, in two dimensions a Fermi sea of massless quarks maps directly onto the corresponding theory in vacuum. A chiral condensate forms locally, and varies with the spatial position, z, as . Following Schon and Thies, we term this two dimensional pion condensate a (Quarkyonic) chiral spiral. Massive quarks also exhibit chiral spirals, with the magnitude...

  7. Random Matrices and Chiral Symmetry in QCD

    CERN Document Server

    Janik, R A; Papp, G; Zahed, I; Janik, Romuald A.; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail

    1998-01-01

    In this talk we review some recent results from random matrix models as applied to some non-perturbative issues in QCD. All of the issues we will discuss touched upon the important phenomenon related to the spontaneous breaking of chiral symmetry. The afore mentioned insights are: 1. Spontaneous breakdown of chiral symmetry and disorder. 2. Universal microscopic properties of the eigenvalues of the Dirac operator in the vacuum. 3. Universal microscopic properties of the eigenvalues of the Dirac operator in matter. 4. Structural changes of the Dirac spectrum - finite temperature. 5. Structural changes of the Dirac spectrum - finite baryonic density - ``phony vacua'' 6. Structural changes of the Dirac spectrum - finite baryonic density - ``true vacua'' . 7. Phase diagram. 8. Critical parameters. 9. Critical exponents. 10. $U(1)_A$ problem. 11. Screening of the pseudoscalar susceptibility. 12. Strong CP violation (finite $\\theta$).

  8. Chiral transition and deconfinement in QCD

    CERN Document Server

    D'Elia, M; Pica, C

    2006-01-01

    The study of QCD with two light dynamical fermions is of fundamental importance to understand the mechanism of color confinement. We present results of a numerical investigation on the order of the chiral phase transition with $N_f = 2$ by use of a novel strategy in finite size scaling analysis. We compare the critical behaviour of the specific heat, of the chiral susceptibility and of the equation of state with the possible critical behaviours. A second order transition in the O(4) and O(2) universality classes are excluded by our data and substantial evidence emerges for a first order transition. Like in most of previous works we have used the standard staggered action with $L_t = 4$: possible scaling violations and the need for further studies are discussed.

  9. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review

    Science.gov (United States)

    Uhde, Britta; Andreas Hahn, W.; Griess, Verena C.; Knoke, Thomas

    2015-08-01

    Multi-criteria decision analysis (MCDA) is a decision aid frequently used in the field of forest management planning. It includes the evaluation of multiple criteria such as the production of timber and non-timber forest products and tangible as well as intangible values of ecosystem services (ES). Hence, it is beneficial compared to those methods that take a purely financial perspective. Accordingly, MCDA methods are increasingly popular in the wide field of sustainability assessment. Hybrid approaches allow aggregating MCDA and, potentially, other decision-making techniques to make use of their individual benefits and leading to a more holistic view of the actual consequences that come with certain decisions. This review is providing a comprehensive overview of hybrid approaches that are used in forest management planning. Today, the scientific world is facing increasing challenges regarding the evaluation of ES and the trade-offs between them, for example between provisioning and regulating services. As the preferences of multiple stakeholders are essential to improve the decision process in multi-purpose forestry, participatory and hybrid approaches turn out to be of particular importance. Accordingly, hybrid methods show great potential for becoming most relevant in future decision making. Based on the review presented here, the development of models for the use in planning processes should focus on participatory modeling and the consideration of uncertainty regarding available information.

  10. Nonperturbative landscape of the Mott-Hubbard transition: Multiple divergence lines around the critical endpoint

    Science.gov (United States)

    Schäfer, T.; Ciuchi, S.; Wallerberger, M.; Thunström, P.; Gunnarsson, O.; Sangiovanni, G.; Rohringer, G.; Toschi, A.

    2016-12-01

    We analyze the highly nonperturbative regime surrounding the Mott-Hubbard metal-to-insulator transition (MIT) by means of dynamical mean field theory (DMFT) calculations at the two-particle level. By extending the results of Schäfer et al. [Phys. Rev. Lett. 110, 246405 (2013), 10.1103/PhysRevLett.110.246405] we show the existence of infinitely many lines in the phase diagram of the Hubbard model where the local Bethe-Salpeter equations, and the related irreducible vertex functions, become singular in the charge as well as the particle-particle channel. By comparing our numerical data for the Hubbard model with analytical calculations for exactly solvable systems of increasing complexity [disordered binary mixture (BM), Falicov-Kimball (FK), and atomic limit (AL)], we have (i) identified two different kinds of divergence lines; (ii) classified them in terms of the frequency structure of the associated singular eigenvectors; and (iii) investigated their relation to the emergence of multiple branches in the Luttinger-Ward functional. In this way, we could distinguish the situations where the multiple divergences simply reflect the emergence of an underlying, single energy scale ν* below which perturbation theory is no longer applicable, from those where the breakdown of perturbation theory affects, not trivially, different energy regimes. Finally, we discuss the implications of our results on the theoretical understanding of the nonperturbative physics around the MIT and for future developments of many-body algorithms applicable in this regime.

  11. Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur.

    Science.gov (United States)

    Geraldes, Diogo M; Modenese, Luca; Phillips, Andrew T M

    2016-10-01

    Functional adaptation of the femur has been investigated in several studies by embedding bone remodelling algorithms in finite element (FE) models, with simplifications often made to the representation of bone's material symmetry and mechanical environment. An orthotropic strain-driven adaptation algorithm is proposed in order to predict the femur's volumetric material property distribution and directionality of its internal structures within a continuum. The algorithm was applied to a FE model of the femur, with muscles, ligaments and joints included explicitly. Multiple load cases representing distinct frames of two activities of daily living (walking and stair climbing) were considered. It is hypothesised that low shear moduli occur in areas of bone that are simply loaded and high shear moduli in areas subjected to complex loading conditions. In addition, it is investigated whether material properties of different femoral regions are stimulated by different activities. The loading and boundary conditions were considered to provide a physiological mechanical environment. The resulting volumetric material property distribution and directionalities agreed with ex vivo imaging data for the whole femur. Regions where non-orthogonal trabecular crossing has been documented coincided with higher values of predicted shear moduli. The topological influence of the different activities modelled was analysed. The influence of stair climbing on the properties of the femoral neck region is highlighted. It is recommended that multiple load cases should be considered when modelling bone adaptation. The orthotropic model of the complete femur is released with this study.

  12. A critical assessment of models for the origin of multiple populations in globular clusters

    Science.gov (United States)

    Bastian, Nate

    2017-03-01

    A number of scenarios have been put forward to explain the origin of the chemical anomalies (and resulting complex colour-magnitude diagrams) observed in globular clusters (GCs), namely the AGB, Fast Rotating Massive Star, Very Massive Star, and Early Disc Accretion scenarios. We compare the predictions of these scenarios with a range of observations (including young massive clusters (YMCs), chemical patterns, and GC population properties) and find that all models are inconsistent with observations. In particular, YMCs do not show evidence for multiple epochs of star-formation and appear to be gas free by an age of ~ 3 Myr. Also, the chemical patterns displayed in GCs vary from one to the next in such a way that cannot be reproduced by standard nucleosynthetic yields. Finally, we show that the ``mass budget problem'' for the scenarios cannot be solved by invoking heavy cluster mass loss (i.e. that clusters were 10-100 times more massive at birth) as this solution makes basic predictions about the GC population that are inconsistent with observations. We conclude that none of the proposed scenarios can explain the multiple population phenomenon, hence alternative theories are needed.

  13. Advances in the treatment of relapsing–remitting multiple sclerosis – critical appraisal of fingolimod

    Directory of Open Access Journals (Sweden)

    Gasperini C

    2013-03-01

    Full Text Available Claudio Gasperini,1 Serena Ruggieri,2 Chiara Rosa Mancinelli,2 Carlo Pozzilli2 1Department of Neurosciences, S Camillo Forlanini Hospital, Rome, Italy; 2Department of Neurology and Psychiatry, Sapienza – University of Rome, Rome, Italy Abstract: Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system, traditionally considered to be an autoimmune, demyelinating disease. Based on this understanding, initial therapeutic strategies were directed at immune modulation and inflammation control. At present, there are five licensed first-line disease-modifying drugs for MS in Europe, and two second-line treatments. Currently available MS therapies have shown significant efficacy throughout many trials, but they produce different side effects. Despite disease-modifying drugs being well known and safe, they require regular and frequent parenteral administration and are associated with limited long-term treatment adherence. Therefore, the development of new therapeutic strategies is warranted. Several oral compounds are in late stages of development for treating MS. Fingolimod is an oral sphingosine-1-phosphate receptor modulator that has demonstrated superior efficacy compared with placebo and interferon β-1a in phase III studies. It has already been approved in the treatment of MS. This review focuses on advances in current and novel oral treatment approaches in MS. We summarily review the oral compounds in this study, focusing on the recent development, approval, and the clinical experience with fingolimod. Keywords: multiple sclerosis, oral compounds, fingolimod, sphingosine-1-phosphate, patient satisfaction, adherence

  14. Chiral Synthons in Pesticide Syntheses

    NARCIS (Netherlands)

    Feringa, Bernard

    1988-01-01

    The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the implicatio

  15. Chiral fermions on the lattice

    CERN Document Server

    Jahn, O; Jahn, Oliver; Pawlowski, Jan M.

    2002-01-01

    We discuss topological obstructions to putting chiral fermions on an even dimensional lattice. The setting includes Ginsparg-Wilson fermions, but is more general. We prove a theorem which relates the total chirality to the difference of generalised winding numbers of chiral projection operators. For an odd number of Weyl fermions this implies that particles and anti-particles live in topologically different spaces.

  16. Connecting an effective model of confinement and chiral symmetry to lattice QCD

    CERN Document Server

    Fraga, E; Fraga, Eduardo; Mocsy, Agnes

    2007-01-01

    We construct an effective model for the chiral field and the Polyakov loop in which we can investigate the interplay between the approximate chiral symmetry restoration and the deconfinement of color in a thermal SU(3) gauge theory with three flavors of massive quarks. The phenomenological couplings between these two sectors can then be related to the recent lattice data on the renormalized Polyakov loop and the chiral condensate close to the critical region.

  17. Deconfinement and chiral transition in AdS/QCD wall models supplemented with a magnetic field

    CERN Document Server

    Dudal, David; Mertens, Thomas G

    2016-01-01

    We discuss the phenomenon of (inverse) magnetic catalysis for both the deconfinement and chiral transition. We discriminate between the hard and soft wall model, which we suitably generalize to include a magnetic field. Our findings show a critical deconfinement temperature going down, in contrast with the chiral restoration temperature growing with increasing magnetic field. This is at odds with contemporary lattice data, so the quest for a holographic QCD model capable of capturing inverse magnetic catalysis in the chiral sector remains open.

  18. Multiple solutions for a singular semilinear elliptic problems with critical exponent and symmetries

    Directory of Open Access Journals (Sweden)

    Alfredo Cano

    2010-08-01

    Full Text Available We consider the singular semilinear elliptic equation $$ -Delta u-frac{mu }{| x| ^2}u-lambda u=f(x| u| ^{2^{ast }-1} $$ in $Omega $, $u=0$ on $partial Omega $, where $Omega $ is a smooth bounded domain, in $mathbb{R}^N$, $Ngeq 4$, $2^{ast }:=frac{2N}{N-2}$ is the critical Sobolev exponent, $f:mathbb{R} ^No mathbb{R}$ is a continuous function, $0

  19. Chiral Quantum Optics

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter

    2016-01-01

    At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...

  20. Doped Chiral Polymer Metamaterials

    Science.gov (United States)

    Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

  1. [Chirality and drugs].

    Science.gov (United States)

    Testa, B; Reist, M; Carrupt, P A

    2000-07-01

    The two enantiomers of a chiral drug may have vastly different pharmacodynamic and pharmacokinetic properties. As a result, the research and development of chiral drugs raises specific problems some of which are discussed here. Thus, various pharmacokinetic interactions may involve two enantiomers, as seen for example when one enantiomer inhibits the metabolism of the other and modifies its effects. A different situation occurs when a third compound stereoselectively inhibits the metabolism of one of the two enantiomers. Another problem examined here results from the lack of configurational stability of some chiral drugs, a little known phenomenon whose consequences can be of pharmacological or pharmaceutical significance depending on the rate of the reaction of racemization or epimerisation. In-depth investigations are needed before choosing between a eutomer or a racemate.

  2. On the Higher Moments of Particle Multiplicity, Chemical Freeze-Out and QCD Critical Endpoint

    CERN Document Server

    Tawfik, A

    2012-01-01

    We calculate the first six non-normalized moments of particle multiplicity within the hadron resonance gas model. In terms of lower moments, general expressions for arbitrary higher moments are deduced, so that it is concluded that going from lower to higher moments is achievable through a series of lower moments and correlation functions. The thermal evolution of the first four normalized moments and their products (ratios) are studied at different chemical potentials $\\mu$, so that it was possible to evaluate them at the chemical freeze-out curve, which is characterized by constant $s/T^3$ at all values of $\\mu$, where $s$ and $T$ are entropy density and temperature, respectively. It has been found that non-monotonic behavior reflecting dynamical fluctuation and strong correlations appears starting from the normalized third moment (skewness $S$). The signatures of non-monotonicity in the normalized fourth moment (kurtosis $\\kappa$) and its products are very clear. Based on these findings, we introduce novel...

  3. Monoclonal antibody therapy in multiple sclerosis: critical appraisal and new perspectives.

    Science.gov (United States)

    D'Amico, Emanuele; Caserta, Cinzia; Patti, Francesco

    2015-03-01

    Monoclonal antibodies (mAbs) have been used as experimental treatments of multiple sclerosis (MS) since the 1980s, with the advantage of a high specificity for their target but disadvantages due to their immunogenicity. A literature review of experimental and disposable mAbs in the treatment of MS was performed, putting into perspective the clinical impact that these novel therapies can have and the main challenges facing their use in the daily practice. mAbs therapy resulted in a clear paradigm shift in MS therapeutics. Their use in early, inflammatory phases could have the potential to prevent or delay disability. However, it is still unclear how and when these powerful biological weapons can be used safely in the management of MS. The challenge then is how to obtain the best benefit-risk ratio and how to monitor and prevent emergent safety concerns.

  4. Multiple choice questions can be designed or revised to challenge learners' critical thinking.

    Science.gov (United States)

    Tractenberg, Rochelle E; Gushta, Matthew M; Mulroney, Susan E; Weissinger, Peggy A

    2013-12-01

    Multiple choice (MC) questions from a graduate physiology course were evaluated by cognitive-psychology (but not physiology) experts, and analyzed statistically, in order to test the independence of content expertise and cognitive complexity ratings of MC items. Integration of higher order thinking into MC exams is important, but widely known to be challenging-perhaps especially when content experts must think like novices. Expertise in the domain (content) may actually impede the creation of higher-complexity items. Three cognitive psychology experts independently rated cognitive complexity for 252 multiple-choice physiology items using a six-level cognitive complexity matrix that was synthesized from the literature. Rasch modeling estimated item difficulties. The complexity ratings and difficulty estimates were then analyzed together to determine the relative contributions (and independence) of complexity and difficulty to the likelihood of correct answers on each item. Cognitive complexity was found to be statistically independent of difficulty estimates for 88 % of items. Using the complexity matrix, modifications were identified to increase some item complexities by one level, without affecting the item's difficulty. Cognitive complexity can effectively be rated by non-content experts. The six-level complexity matrix, if applied by faculty peer groups trained in cognitive complexity and without domain-specific expertise, could lead to improvements in the complexity targeted with item writing and revision. Targeting higher order thinking with MC questions can be achieved without changing item difficulties or other test characteristics, but this may be less likely if the content expert is left to assess items within their domain of expertise.

  5. Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence.

    Science.gov (United States)

    Capon, Samantha J; Lynch, A Jasmyn J; Bond, Nick; Chessman, Bruce C; Davis, Jenny; Davidson, Nick; Finlayson, Max; Gell, Peter A; Hohnberg, David; Humphrey, Chris; Kingsford, Richard T; Nielsen, Daryl; Thomson, James R; Ward, Keith; Mac Nally, Ralph

    2015-11-15

    The concepts of ecosystem regime shifts, thresholds and alternative or multiple stable states are used extensively in the ecological and environmental management literature. When applied to aquatic ecosystems, these terms are used inconsistently reflecting differing levels of supporting evidence among ecosystem types. Although many aquatic ecosystems around the world have become degraded, the magnitude and causes of changes, relative to the range of historical variability, are poorly known. A working group supported by the Australian Centre for Ecological Analysis and Synthesis (ACEAS) reviewed 135 papers on freshwater ecosystems to assess the evidence for pressure-induced non-linear changes in freshwater ecosystems; these papers used terms indicating sudden and non-linear change in their titles and key words, and so was a positively biased sample. We scrutinized papers for study context and methods, ecosystem characteristics and focus, types of pressures and ecological responses considered, and the type of change reported (i.e., gradual, non-linear, hysteretic or irreversible change). There was little empirical evidence for regime shifts and changes between multiple or alternative stable states in these studies although some shifts between turbid phytoplankton-dominated states and clear-water, macrophyte-dominated states were reported in shallow lakes in temperate climates. We found limited understanding of the subtleties of the relevant theoretical concepts and encountered few mechanistic studies that investigated or identified cause-and-effect relationships between ecological responses and nominal pressures. Our results mirror those of reviews for estuarine, nearshore and marine aquatic ecosystems, demonstrating that although the concepts of regime shifts and alternative stable states have become prominent in the scientific and management literature, their empirical underpinning is weak outside of a specific environmental setting. The application of these

  6. Chiral quark model

    Indian Academy of Sciences (India)

    H Weigel

    2003-11-01

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.

  7. Pharmacologically active compounds in the environment and their chirality.

    Science.gov (United States)

    Kasprzyk-Hordern, Barbara

    2010-11-01

    Pharmacologically active compounds including both legally used pharmaceuticals and illicit drugs are potent environmental contaminants. Extensive research has been undertaken over the recent years to understand their environmental fate and toxicity. The one very important phenomenon that has been overlooked by environmental researchers studying the fate of pharmacologically active compounds in the environment is their chirality. Chiral drugs can exist in the form of enantiomers, which have similar physicochemical properties but differ in their biological properties such as distribution, metabolism and excretion, as these processes (due to stereospecific interactions of enantiomers with biological systems) usually favour one enantiomer over the other. Additionally, due to different pharmacological activity, enantiomers of chiral drugs can differ in toxicity. Furthermore, degradation of chiral drugs during wastewater treatment and in the environment can be stereoselective and can lead to chiral products of varied toxicity. The distribution of different enantiomers of the same chiral drug in the aquatic environment and biota can also be stereoselective. Biological processes can lead to stereoselective enrichment or depletion of the enantiomeric composition of chiral drugs. As a result the very same drug might reveal different activity and toxicity and this will depend on its origin and exposure to several factors governing its fate in the environment. In this critical review a discussion of the importance of chirality of pharmacologically active compounds in the environmental context is undertaken and suggestions for directions in further research are made. Several groups of chiral drugs of major environmental relevance are discussed and their pharmacological action and disposition in the body is also outlined as it is a key factor in developing a full understanding of their environmental occurrence, fate and toxicity. This review will be of interest to environmental

  8. Quark matter in a parallel electric and magnetic field background: Chiral phase transition and equilibration of chiral density

    Science.gov (United States)

    Ruggieri, M.; Peng, G. X.

    2016-05-01

    In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.

  9. Artificial multiple criticality and phase equilibria: an investigation of the PC-SAFT approach.

    Science.gov (United States)

    Yelash, Leonid; Müller, Marcus; Paul, Wolfgang; Binder, Kurt

    2005-11-01

    The perturbed-chain statistical associating fluid theory (PC-SAFT) is studied for a wide range of temperature, T, pressure, p, and (effective) chain length, m, to establish the generic phase diagram of polymers according to this theory. In addition to the expected gas-liquid coexistence, two additional phase separations are found, termed "gas-gas" equilibrium (at very low densities) and "liquid-liquid" equilibrium (at densities where the system is expected to be solid already). These phase separations imply that in one-component polymer systems three critical points occur, as well as equilibria of three fluid phases at triple points. However, Monte Carlo simulations of the corresponding system yield no trace of the gas-gas and liquid-liquid equilibria, and we conclude that the latter are just artefacts of the PC-SAFT approach. Using PC-SAFT to correlate data for polybutadiene melts, we suggest that discrepancies in modelling the polymer density at ambient temperature and high pressure can be related to the presumably artificial liquid-liquid phase separation at lower temperatures. Thus, particular care is needed in engineering applications of the PC-SAFT theory that aims at predicting properties of macromolecular materials.

  10. Quantitative determination of free D-Asp, L-Asp and N-methyl-D-aspartate in mouse brain tissues by chiral separation and Multiple Reaction Monitoring tandem mass spectrometry.

    Science.gov (United States)

    Fontanarosa, Carolina; Pane, Francesca; Sepe, Nunzio; Pinto, Gabriella; Trifuoggi, Marco; Squillace, Marta; Errico, Francesco; Usiello, Alessandro; Pucci, Piero; Amoresano, Angela

    2017-01-01

    Several studies have suggested that free d-Asp has a crucial role in N-methyl d-Asp receptor-mediated neurotransmission playing very important functions in physiological and pathological processes. This paper describes the development of an analytical procedure for the direct and simultaneous determination of free d-Asp, l-Asp and N-methyl d-Asp in specimens of different mouse brain tissues using chiral LC-MS/MS in Multiple Reaction Monitoring scan mode. After comparing three procedures and different buffers and extraction solvents, a simple preparation procedure was selected the analytes of extraction. The method was validated by analyzing l-Asp, d-Asp and N-methyl d-Asp recovery at different spiked concentrations (50, 100 and 200 pg/μl) yielding satisfactory recoveries (75-110%), and good repeatability. Limits of detection (LOD) resulted to be 0.52 pg/μl for d-Asp, 0.46 pg/μl for l-Asp and 0.54 pg/μl for NMDA, respectively. Limits of quantification (LOQ) were 1.57 pg/μl for d-Asp, 1.41 pg/μl for l-Asp and 1.64 pg/μl for NMDA, respectively. Different concentration levels were used for constructing the calibration curves which showed good linearity. The validated method was then successfully applied to the simultaneous detection of d-Asp, l-Asp and NMDA in mouse brain tissues. The concurrent, sensitive, fast, and reproducible measurement of these metabolites in brain tissues will be useful to correlate the amount of free d-Asp with relevant neurological processes, making the LC-MS/MS MRM method well suited, not only for research work but also for clinical analyses.

  11. A critical assessment of models for the origin of multiple populations in globular clusters

    CERN Document Server

    Bastian, Nate

    2015-01-01

    A number of scenarios have been put forward to explain the origin of the chemical anomalies (and resulting complex colour-magnitude diagrams) observed in globular clusters (GCs), namely the AGB, Fast Rotating Massive Star, Very Massive Star, and Early Disc Accretion scenarios. We compare the predictions of these scenarios with a range of observations (including young massive clusters (YMCs), chemical patterns, and GC population properties) and find that all models are inconsistent with observations. In particular, YMCs do not show evidence for multiple epochs of star-formation and appear to be gas free by an age of ~3 Myr. Also, the chemical patterns displayed in GCs vary from one to the next in such a way that cannot be reproduced by standard nucleosynthetic yields. Finally, we show that the "mass budget problem" for the scenarios cannot be solved by invoking heavy cluster mass loss (i.e. that clusters were 10-100 times more massive at birth) as this solution makes basic predictions about the GC population t...

  12. Global Testing under Sparse Alternatives: ANOVA, Multiple Comparisons and the Higher Criticism

    CERN Document Server

    Arias-Castro, Ery; Plan, Yaniv

    2010-01-01

    Testing for the significance of a subset of regression coefficients in a linear model, a staple of statistical analysis, goes back at least to the work of Fisher who introduced the analysis of variance (ANOVA). We study this problem under the assumption that the coefficient vector is sparse, a common situation in modern high-dimensional settings. Suppose the regression vector is of dimension p with S non-zero coefficients with S = p^{1 -alpha}. Under moderate sparsity levels, i.e. alpha 1/2. In such settings, a multiple comparison procedure is often preferred and we establish its optimality when alpha >= 3/4. However, these two very popular methods are suboptimal, and sometimes powerless, under moderately strong sparsity where 1/2 1/2. This optimality property is true for a variety of designs, including the classical (balanced) multi-way designs and more modern `p > n' designs arising in genetics and signal processing. In addition to the standard fixed effects model, we establish similar results for a rando...

  13. [Multiple sclerosis and verbal episodic memory: Critical review of cognitive processes and their assessment].

    Science.gov (United States)

    Saenz, A; Bakchine, S; Jonin, P-Y; Ehrlé, N

    2015-09-01

    Memory impairment, especially verbal episodic memory (VEM), represents a common ground for cognitive complaint in patients with multiple sclerosis (MS). Beyond the difficulty caused in daily life, these deficits may impact on occupational activities. Neuropsychological assessment of these patients has to include VEM tests, to describe the level of dysfunction of the different processes contributing to VEM and, if required, to guide adapted cognitive rehabilitation. The objective of the present paper is to propose a critique review of the literature on VEM abilities in MS. This review will present the conceptual references and the psychometric characteristics of the main VEM tests applied in MS (isolated tests or included within more general batteries developed specifically for MS). In a second phase, we propose an inventory of work on MS presented as a function of the cognitive processes involved. This approach provides an approach to the limitations of each conception and possible terminological ambiguities. Contributions to knowledge of MS memory impairments will be clarified, as well as the impact of the disease characteristics (MS forms, disease duration, EDSS). Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Characteristics of the chiral phase transition in nonlocal quark models

    CERN Document Server

    Dumm, D G

    2004-01-01

    The characteristics of the chiral phase transition are analyzed within the framework of chiral quark models with nonlocal interactions in the mean field approximation (MFA). In the chiral limit, we show that there is a region of low values of the chemical potential in which the transition is a second order one. In that region, it is possible to perform a Landau expansion and determine the critical exponents which, as expected, turn out to be the MFA ones. Our analysis also allows to obtain semi-analytical expressions for the transition curve and the location of the tricritical point. For the case of finite current quark masses, we study the behavior of various thermodynamical and chiral response functions across the phase transition.

  15. Criteria of backscattering in chiral one-way photonic crystals

    Science.gov (United States)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  16. Critical appraisal of the role of fingolimod in the treatment of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Warnke C

    2011-09-01

    Full Text Available Clemens Warnke1,2, Olaf Stüve3,4, Hans-Peter Hartung1, Anna Fogdell-Hahn2, Bernd C Kieseier11Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany; 2Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; 3Department of Neurology, Dallas Veterans Affairs Medical Center, TX, USA; 4Department of Neurology, University of Texas Southwestern Medical Center at Dallas, TX, USAAbstract: This review summarizes Phase III clinical trial data available for fingolimod. The main purpose is to evaluate the benefit-risk profile of fingolimod, the first oral compound available for treatment of multiple sclerosis (MS and just recently approved by the European authorities. The authors place this evaluation in the context of the known safety and efficacy profile of established compounds for therapy of MS to outline the current and future potential of fingolimod. The authors conclude that only long-term safety data from post-marketing surveillance plans, together with additional head-to-head studies, would allow evidence-based treatment decisions. Furthermore, risk-profile analyses including patient history, exposure data to certain pathogens, and genetic analyses may potentially help to choose the right drug for individual patients in the future. Until these approaches toward an individualized medicine have been validated, treatment decisions for one or the other compound will have to be based partly on class IV evidence. Therefore, a close dialog with the well-informed patient, secured by effective risk mitigation plans, is required to choose the compound.Keywords: FTY720, oral drug, spingosine 1-phosphate receptor

  17. Experimental demonstration of spontaneous chirality in a nonlinear microresonator

    CERN Document Server

    Cao, Qi-Tao; Dong, Chun-Hua; Jing, Hui; Liu, Rui-Shan; Chen, Xi; Ge, Li; Gong, Qihuang; Xiao, Yun-Feng

    2016-01-01

    Chirality is an important concept that describes the asymmetry property of a system, which usually emerges spontaneously due to mirror symmetry breaking. Such spontaneous chirality manifests predominantly as parity breaking in modern physics, which has been studied extensively, for instance, in Higgs physics, double-well Bose-Einstein condensates, topological insulators and superconductors. In the optical domain, spontaneous chiral symmetry breaking has been elusive experimentally, especially for micro- and nano-photonics which demands multiple identical subsystems, such as photonic nanocavities, meta-molecules and other dual-core settings. Here, for the first time, we observe spontaneous emergence of a chiral field in a single ultrahigh-Q whispering- gallery microresonator. This counter-intuitive effect arises due to the inherent Kerr nonlinearity-modulated coupling between clockwise (CW) and counterclockwise (CCW) propagating waves. At an ultra-weak input threshold of a few hundred microwatts, the initial c...

  18. Interweaving Chiral Spirals

    CERN Document Server

    Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D

    2011-01-01

    We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...

  19. Simplicial chiral models

    CERN Document Server

    Rossi, P; Rossi, Paolo; Tan, Chung I

    1995-01-01

    Principal chiral models on a d-1 dimensional simplex are introduced and studied analytically in the large N limit. The d = 0 , 2, 4 and \\infty models are explicitly solved. Relationship with standard lattice models and with few-matrix systems in the double scaling limit are discussed.

  20. Chiral magnetic effect without chirality source in asymmetric Weyl semimetals

    CERN Document Server

    Kharzeev, Dmitri; Meyer, Rene

    2016-01-01

    We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source generates a non-vanishing chiral chemical potential. This is due to the different capacities of the left- and right-handed (LH and RH) chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation f...

  1. Possible splitting of deconfinement and chiral transitions in strong magnetic fields in QCD

    CERN Document Server

    Fraga, Eduardo S; Chernodub, M N

    2010-01-01

    We show that finite-temperature deconfinement and chiral transitions can split in a strong enough magnetic field. The splitting in critical temperatures of these transitions in a constant magnetic field of a typical LHC magnitude is of the order of 10 MeV. A new deconfined phase with broken chiral symmetry appears.

  2. Collision-free Multiple Unmanned Combat Aerial Vehicles Cooperative Trajectory Planning for Time-critical Missions using Differential Flatness Approach

    Directory of Open Access Journals (Sweden)

    Xueqiang Gu

    2014-01-01

    Full Text Available This paper investigates the cooperative trajectory planning for multiple unmanned combat aerial vehicles in performing autonomous cooperative air-to-ground target attack missions. Firstly, the collision-free cooperative trajectory planning problem for time-critical missions is formulated as a cooperative trajectory optimal control problem (CTP-OCP, which is based on an approximate allowable attack region model, several constraints model, and a multi-criteria objective function. Next, a planning algorithm based on the differential flatness, B-spline curves and nonlinear programming is designed to solve the CTP-OCP. In particular, the notion of the virtual time is introduced to deal with the temporal constraints. Finally, the proposed approach is validated by two typical scenarios and the simulation results show the feasibility and effectiveness of the proposed planning approach.Defence Science Journal, Vol. 64, No. 1, January 2014, DOI:10.14429/dsj.64.2999

  3. Plasmonic hole arrays with extreme optical chirality in linear and nonlinear regimes

    Science.gov (United States)

    Gorkunov, Maxim V.; Kondratov, Alexei V.; Darinskii, Alexander N.; Artemov, Vladimir V.; Rogov, Oleg Y.; Gainutdinov, Radmir V.

    2016-04-01

    Metamaterials with high optical activity (OA) and circular dichroism (CD) are desired for various prospective applications ranging from circular light polarizing to enhanced chiral sensing and biosensing. Modern techniques allow fabricating subwavelength arrays of holes of complex chiral shapes that exhibit extreme optical chirality: their OA and CD take the whole range of possible values in the visible. In order to understand the nature of extreme chirality, we performed the electromagnetic finite difference time domain simulations for the hole shapes resolved by atomic force microscopy. The analysis of the simulation data allowed us to develop an analytical chiral coupled-mode model that nicely fits the results and explains the extreme chirality as determined by the Fano-type transmission resonance due to the interference of a weak background channel and a resonant plasmon channel. The model shows critical importance of the dissipation losses, the hole shape symmetry and chirality. In a planar 2D-chiral hole array, the mirror asymmetry can be induced by the difference of dielectric materials adjacent to the array sides and even their weak deviation results in remarkably strong OA and CD. We note that such deviations can arise due to the dielectric nonlinearity and discuss how 2D-chiral metamaterials in symmetric environment can acquire optical chirality due to the nonlinear symmetry breaking.

  4. Detecting the chirality for coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com

    2008-04-21

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.

  5. The role of multiple-point statistics and model selection in quantitative hydrogeophysical studies of the critical zone

    Science.gov (United States)

    Linde, N.

    2015-12-01

    Geophysical data are routinely used to provide qualitative insights about the main lithologies and the distribution of soil moisture in the critical zone. Quantitative hydrogeophysical inferences of critical zone properties and processes are much more challenging because of the multitude of interacting physical, biological and chemical gradients that may affect the geophysical measurement response. In this context, it is essential to incorporate the geophysical data within a wider modeling framework that centers on a conceptual model that describes the properties and processes under study together with appropriate boundary conditions. Based on recent groundwater applications, I describe how it is now possible to build geologically meaningful realizations of subsurface structure using multiple-point statistics (MPS) and to make uncertainty estimates. I will demonstrate conditioning of MPS simulations to geophysical tomograms, inclusion of summary statistics derived from MPS simulations within a Markov chain Monte Carlo (MCMC) inversion, and full MPS MCMC inversion based on fast (speed-up of 40 times) model proposal algorithms that we have adapted from computer vision. For future applications in the critical zone, I suggest that MPS simulations should be used to derive and perturb primary lithological properties and that biological, chemical, and hydrological state variables (given appropriate boundary conditions) are subsequently simulated using domain-specific algorithms. The geophysical data (an individual snap shot or time-series) are then used to guide the model update of the primary properties (and nuisance parameters such as petrophysical parameters) that in turn influence the predicted state variables and their associated fluxes. Instead of classical parameter estimation, I argue that it is often more appropriate to focus on model selection, in which alternative conceptual models of the subsurface are compared and ranked given the available data.

  6. Soldering Chiralities; 2, Non-Abelian Case

    CERN Document Server

    Wotzasek, C

    1996-01-01

    We study the non-abelian extension of the soldering process of two chiral WZW models of opposite chiralities, resulting in a (non-chiral) WZW model living in a 2D space-time with non trivial Riemanian curvature.

  7. Spiral Galaxies as Chiral Objects?

    CERN Document Server

    Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra

    2005-01-01

    Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.

  8. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  9. Chiral Biomarkers in Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  10. Free-standing chiral plasmonics

    Science.gov (United States)

    Leong, Eunice Sok Ping; Deng, Jie; Wu, Siji; Khoo, Eng Huat; Liu, Yan Jun

    2014-11-01

    Chiral plasmonic nanostructures offer the ability to achieve strong optical circular dichroism (CD) activity over a broad spectral range, which has been challenging for chiral molecules. Chiral plasmonic nanostructures have been extensively studied based on top-down and bottom-up fabrication techniques. Particularly, in the top-down electron-beam lithography, 3D plasmonic nanostructure fabrication involves layer-by-layer patterning and complex alignment, which is time-consuming and causes many defects in the structures. Here, we present a free-standing 3D chiral plamonic nanostructures using the electron-beam lithography technique with much simplified fabrication processes. The 3D chiral plasmonic nanostructures consist of a free-standing ultrathin silicon nitride membrane with well-aligned L-shape metal nanostructures on one side and disk-shape ones on the other side. The free-standing membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the gap between the upper and lower layers in an array of chiral nanostructures. Such free-standing chiral plasmonic nanostructures exhibit strong CD at optical frequencies, which can be engineered by simply changing the disk size on one side of the membrane. Experimental results are in good agreement with the finite-difference time-domain simulations. Such free-standing chiral plasmonics holds great potential for chirality analysis of biomolecules, drugs, and chemicals.

  11. Quark Matter in a Parallel Electric and Magnetic Field Background: Equilibrated Chiral Density Effect on Chiral Phase Transition

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...

  12. Analysis of Chiral Carboxylic Acids in Meteorites

    Science.gov (United States)

    Burton, A. S.; Elsila, J. E.; Hein, J. E.; Aponte, J. C.; Parker, E. T.; Glavin, D. P.; Dworkin, J. P.

    2015-01-01

    Homochirality of amino acids in proteins and sugars in DNA and RNA is a critical feature of life on Earth. In the absence of a chiral driving force, however, reactions leading to the synthesis of amino acids and sugars result in racemic mixtures. It is currently unknown whether homochirality was necessary for the origins of life or if it was a product of early life. The observation of enantiomeric excesses of certain amino acids of extraterrestrial origins in meteorites provides evidence to support the hypothesis that there was a mechanism for the preferential synthesis or destruction of a particular amino acid enantiomer [e.g., 1-3]. The cause of the observed chiral excesses is un-clear, although at least in the case of the amino acid isovaline, the degree of aqueous alteration that occurred on the meteorite parent body is correlated to the isovaline L-enantiomeric excess [3, 4]. This suggests that chiral symmetry is broken and/or amplified within the meteorite parent bodies. Besides amino acids, there have been only a few reports of other meteoritic compounds found in enantiomeric excess: sugars and sugar acids [5, 6] and the hydroxy acid lactic acid [7]. Determining whether or not additional types of molecules in meteorites are also present in enantiomeric excesses of extraterrestrial information will provide insights into mechanisms for breaking chiral symmetry. Though the previous measurements (e.g., enantiomeric composition of lactic acid [7], and chiral carboxylic acids [8]) were made by gas chromatography-mass spectrometry, the potential for increased sensitivity of liquid chromatography-mass spectrometry (LC-MS) analyses is important because for many meteorite samples, only small sample masses are available for study. Furthermore, at least in the case of amino acids, many of the largest amino acid enantiomeric excesses were observed in samples that contained lower abundances (tens of ppb) of a given amino acid enantiomer. In the present work, we describe

  13. Influence of boson mass on chiral phase transition in QED3

    Science.gov (United States)

    Feng, Hong-tao; Wang, Xiu-Zhen; Yu, Xin-hua; Zong, Hong-shi

    2016-08-01

    Based on the truncated Dyson-Schwinger equations for the fermion propagator with N fermion flavors at zero temperature, the chiral phase transition of quantum electrodynamics in 2 +1 dimensions (QED3 ) with boson mass—which is obtained via the Anderson-Higgs mechanism—is investigated. In the chiral limit, we find that the critical behavior of QED3 with a massless boson is different from that with a massive boson: the chiral phase transition in the presence of a nonzero boson mass reveals the typical second-order phase transition, at either the critical boson mass or a critical number of fermion flavors, while for a vanishing boson mass it exhibits a higher than second-order phase transition at the critical number of fermion flavors. Furthermore, it is shown that the system undergoes a crossover behavior from a small number of fermion flavors or boson mass to its larger one beyond the chiral limit.

  14. SU(3) Polyakov Linear $\\sigma$-Model in Magnetic Field: Thermodynamics, Higher-Order Moments, Chiral Phase Structure and Meson Masses

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    Effects of external magnetic field on various properties of the quantum chromodynamics under extreme conditions of temperature and density have been analysed. To this end, we use SU(3) Polyakov linear sigma-model and assume that the external magnetic field eB adds some restrictions to the quarks energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization. This requires an additional temperature to drive the system through the chiral phase-transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase-transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of magnetic field on chiral phase-transition. We found that both critical temperature T_c and critical chemical potential increase with increasing the magnetic f...

  15. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  16. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    Science.gov (United States)

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials. © 2015 Wiley Periodicals, Inc.

  17. Gas dilution system using critical flow Venturi nozzles for generating primary trace-moisture standards in multiple gas species

    Science.gov (United States)

    Amano, Minami; Abe, Hisashi

    2017-02-01

    Gas dilution systems are commonly used to generate calibration gas mixtures for secondary gas standards. However, if a gas dilution system is used to generate gas mixtures for primary trace-moisture standards in multiple gas species, difficulty arises; flow control with relative stability of better than 0.009% is required although the relative uncertainty of the best gas flow meter to date is around 0.3%. In this study, we developed a novel gas dilution system using critical flow Venturi nozzles to address this problem. The developed dilution system can measure and control the flow rates of gases in the range of approximately 0.05 l min-1 to 7 l min-1 (when converted to those measured at 101 325 Pa and 273.15 K) with relative stability of better than 0.007%. Using the dilution system, we developed a magnetic suspension balance/diffusion-tube humidity generator capable of generating trace moisture in N2 in the range of approximately 10 nmol mol-1 to 5 µmol mol-1 in amount fraction. The accuracy of the generated trace-moisture standard was verified by measurement with cavity ring-down spectroscopy.

  18. Deconfinement, chiral transition and localisation in a QCD-like model

    Science.gov (United States)

    Giordano, Matteo; Katz, Sándor D.; Kovács, Tamás G.; Pittler, Ferenc

    2017-02-01

    We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension N T = 4. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.

  19. Chiral symmetry breaking with the Curtis-Pennington vertex

    NARCIS (Netherlands)

    Atkinson, D.; Gusynin, V. P.; Maris, P.

    1992-01-01

    Published in: Phys. Lett. B 303 (1993) 157-162 citations recorded in [Science Citation Index] Abstract: We study chiral symmetry breaking in quenched QED$_4$, using a vertex Ansatz recently proposed by Curtis and Pennington. Bifurcation analysis is employed to establish the existence of a critical c

  20. Chiral Biomarkers and Microfossils in Carbonaceous Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as ?bio-discriminators? that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  1. Chiral biomarkers and microfossils in carbonaceous meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-09-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as "bio-discriminators" that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  2. Extreme Technicolor & The Walking Critical Temperature

    DEFF Research Database (Denmark)

    Sannino, Francesco; Järvinen, Matti

    2011-01-01

    We map the phase diagram of gauge theories of fundamental interactions in the flavor- temperature plane using chiral perturbation theory to estimate the relation between the pion decaying constant and the critical temperature above which chiral symmetry is restored. We then investigate the impact...

  3. Extreme Technicolor & The Walking Critical Temperature

    DEFF Research Database (Denmark)

    Sannino, Francesco; Järvinen, Matti

    2011-01-01

    We map the phase diagram of gauge theories of fundamental interactions in the flavor- temperature plane using chiral perturbation theory to estimate the relation between the pion decaying constant and the critical temperature above which chiral symmetry is restored. We then investigate the impact...

  4. Quark structure of chiral solitons

    CERN Document Server

    Diakonov, D

    2004-01-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  5. Applications Of Chiral Perturbation Theory

    CERN Document Server

    Mohta, V

    2005-01-01

    Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...

  6. Dileptons and Chiral Symmetry Restoration

    CERN Document Server

    Hohler, P M

    2015-01-01

    We report on recent work relating the medium effects observed in dilepton spectra in heavy-ion collisions to potential signals of chiral symmetry restoration. The key connection remains the approach to spectral function degeneracy between the vector-isovector channel with its chiral partner, the axialvector-isovector channel. Several approaches are discussed to elaborate this connection, namely QCD and Weinberg sum rules with input for chiral order parameters from lattice QCD, and chiral hadronic theory to directly evaluate the medium effects of the axialvector channel and the pertinent pion decay constant as function of temperature. A pattern emerges where the chiral mass splitting between rho and a_1 burns off and is accompanied by a strong broadening of the spectral distributions.

  7. Chiral phase transition from string theory.

    Science.gov (United States)

    Parnachev, Andrei; Sahakyan, David A

    2006-09-15

    The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.

  8. Chiral Nuclear Dynamics II

    CERN Document Server

    Rho, Mannque

    2008-01-01

    This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and

  9. Observing Disoriented Chiral Condensates

    CERN Document Server

    Bjorken, James D; Taylor, C C

    1993-01-01

    We speculate that, in very high energy hadronic collisions, large fireballs may be produced with interiors which have anomalous chiral order parameters. Such a process would result in radiation of pions with distinctive momentum and isospin distributions, and may provide an explanation of Centauro and related phenomena in cosmic-ray events. The phenomenology of such events is reviewed, with emphasis on the possibility of observing such phenomena at Fermilab experiment T-864 (MiniMax), or at a Full Acceptance Detector (FAD) at the SSC.

  10. A search for disoriented chiral condensate at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1996-10-01

    A small test/experiment at the Fermilab Collider which measures charged particle and photon multiplicities in the forward direction, {eta} {approx} 4.1, has been carried out, with the primary goal being the search for disoriented chiral condensate (DCC). The author describes the experiment and analysis methods, together with preliminary results.

  11. Spontaneous Chiral Symmetry Breaking as Condensation of Dynamical Chirality

    CERN Document Server

    Alexandru, Andrei

    2012-01-01

    The occurrence of spontaneous chiral symmetry breaking (SChSB) is equivalent to sufficient abundance of Dirac near-zeromodes. However, dynamical mechanism leading to breakdown of chiral symmetry should be naturally reflected in chiral properties of the modes. Here we offer such connection, presenting evidence that SChSB in QCD proceeds via the appearance of modes exhibiting dynamical tendency for local chiral polarization. These modes form a band of finite width Lambda_ch (chiral polarization scale) around the surface of otherwise anti--polarized Dirac sea, and condense. Lambda_ch characterizes the dynamics of the breaking phenomenon and can be converted to a quark mass scale, thus offering conceptual means to determine which quarks of nature are governed by broken chiral dynamics. It is proposed that, within the context of SU(3) gauge theories with fundamental Dirac quarks, mode condensation is equivalent to chiral polarization, making Lambda_ch an "order parameter" of SChSB. Several uses of these features, ...

  12. Repulsive Casimir Force in Chiral Metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E.N.; Soukoulis, C.M.

    2009-09-04

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  13. Repulsive Casimir Force in Chiral Metamaterials

    OpenAIRE

    Zhao, R.; J. Zhou; Koschny, Th.; Economou, E. N.; C M Soukoulis

    2009-01-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  14. Repulsive Casimir Force in Chiral Metamaterials

    Science.gov (United States)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2009-09-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  15. Nanoscale chirality in metal and semiconductor nanoparticles.

    Science.gov (United States)

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  16. Nonequilibrium chiral perturbation theory and disoriented chiral condensates

    CERN Document Server

    Nicola, A G

    1999-01-01

    We analyse the extension of Chiral Perturbation Theory to describe a meson gas out of thermal equilibrium. For that purpose, we let the pion decay constant be a time-dependent function and work within the Schwinger-Keldysh contour technique. A useful connection with curved space-time QFT allows to consistently renormalise the model, introducing two new low-energy constants in the chiral limit. We discuss the applicability of our approach within a Relativistic Heavy-Ion Collision environment. In particular, we investigate the formation of Disoriented Chiral Condensate domains in this model, via the parametric resonance mechanism.

  17. Chiral quantum optics.

    Science.gov (United States)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  18. Chiral imbalance in QCD

    Directory of Open Access Journals (Sweden)

    Andrianov Alexander

    2017-01-01

    Full Text Available The chiral imbalance (ChI is given by a difference between the numbers of RH and LH quarks which may occur in the fireball after heavy ion collision. To characterize it adiabatically a quark chiral (axial chemical potential must be introduced taking into account emergence of a ChI in such a phase. In this report the phenomenology of formation of Local spatial Parity Breaking (LPB in the hot and dense baryon matter is discussed and its simulation within a number of QCD-inspired models is outlined. The appearance of new states in the spectra of scalar, pseudoscalar and vector particles in such a matter is elucidated. In particular, from the effective vector meson theory in the presence of Chern-Simons interaction it is demonstrated that the spectrum of massive vector mesons splits into three polarization components with different effective masses. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton invariant mass can serve as a characteristic indication of the LPB in PHENIX, STAR and ALICE experiments.

  19. Ballistic rectification of vortex domain wall chirality at nanowire corners

    Energy Technology Data Exchange (ETDEWEB)

    Omari, K.; Bradley, R. C.; Broomhall, T. J.; Hodges, M. P. P.; Hayward, T. J. [Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Rosamond, M. C.; Linfield, E. H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Im, M.-Y. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 (Korea, Republic of); Fischer, P. [Materials Sciences Division, Lawrence Berkley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Santa Cruz, California 94056 (United States)

    2015-11-30

    The interactions of vortex domain walls with corners in planar magnetic nanowires are probed using magnetic soft X-ray transmission microscopy. We show that when the domain walls are propagated into sharp corners using applied magnetic fields above a critical value, their chiralities are rectified to either clockwise or anticlockwise circulation depending on whether the corners turn left or right. Single-shot focused magneto-optic Kerr effect measurements are then used to demonstrate how, when combined with modes of domain propagation that conserve vortex chirality, this allows us to dramatically reduce the stochasticity of domain pinning at artificial defect sites. Our results provide a tool for controlling domain wall chirality and pinning behavior both in further experimental studies and in future domain wall-based memory, logic and sensor technologies.

  20. Chiral quantum dot based materials

    Science.gov (United States)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  1. Reflection and refraction properties of plane waves on the interface of uniaxially anisotropic chiral media.

    Science.gov (United States)

    Cheng, Qiang; Cui, Tie Jun

    2006-12-01

    We have investigated the reflection and refraction properties of plane waves incident from free space into a uniaxially anisotropic chiral medium, where the chirality appears only in one direction and the host medium can be either an isotropic dielectric or an anisotropic electric plasma. We show that the reflection and refraction properties are closely related to the dispersion relation of the chiral medium and that negative phase refractions and/or negative group refractions may occur. We further demonstrate that the two eigenwaves within the uniaxially anisotropic chiral medium behave differently with respect to the incident angle, and in some cases only one of them can be supported and transmitted. We have studied the critical angle and Brewster's angle with some special properties. We have also discussed the potential application of the uniaxially anisotropic chiral medium for the polarization beam splitter. Numerical results are given to validate our analysis.

  2. [A comment on chiral thin layer chromatography].

    Science.gov (United States)

    Chen, Xuexian; Yuan, Liming

    2016-01-01

    In recent eight years, authors' group has repeated a lot of experiments of chiral thin layer chromatography coming from literature. From the practical opinion, we summarized that there are nine characteristics for chiral thin layer chromatography. Some progresses of chiral thin layer chromatography are reviewed, and the enantioselectivity of a commercial chiral thin layer plate is introduced. The study of vancomycin as the chiral selector in thin layer chromatography is also reported.

  3. Penicillin G as a novel chiral selector in capillary electrophoresis.

    Science.gov (United States)

    Dixit, Shuchi; Park, Jung Hag

    2014-01-24

    The penicillin sub-class of β-lactam antibiotics has not been examined for its enantiodiscriminating abilities in capillary electrophoresis (CE) until date. The present work was therefore designed to evaluate penicillin G potassium salt (PenG) as an ion-pair chiral selector (CS) using CE for its several attributes, namely, high solubility in water and lower alcohols, structure allowing multiple interactions with analytes and cost-effectiveness. Systematic experiments were performed to investigate the effect of composition of background electrolyte, applied voltage and capillary temperature on chiral separation. Baseline resolutions of enantiomers of five basic chiral drugs (namely, darifenacin, citalopram, sertraline, propranolol and metoprolol) were attained using a background electrolyte composed of water:methanol (90:10, v/v) and consisting of 10.7 or 16.1mM CS at 20°C using an applied voltage of 5kV.

  4. Chiral Fermions on the Lattice

    CERN Document Server

    Bietenholz, Wolfgang

    2010-01-01

    In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.

  5. Coupling chiral bosons to gravity

    CERN Document Server

    Braga, N R F; Braga, N R F; Wotzasek, C

    1995-01-01

    chiral boson actions of Floreanini and Jackiw (FJ), and of McClain,Wu and Yu (MWY) have been recently shown to be different representations of the same chiral boson theory. MWY displays manifest covariance and also a (gauge) symmetry that is hidden in the FJ side, which, on the other hand, displays the physical spectrum in a simple manner. We make use of the covariance of the MWY representation for the chiral boson to couple it to background gravity showing explicitly the equivalence with the previous results for the FJ representation

  6. Chiral gravity in higher dimensions

    CERN Document Server

    Ootsuka, T; Ura, K; Ootsuka, Takayoshi; Tanaka, Erico; Ura, Kousuke

    2003-01-01

    We construct a chiral theory of gravity in 7 and 8 dimensions, which are equivalent to Einstein-Cartan theory using less variables. In these dimensions, we can construct such higher dimensional chiral gravity because of the existence of gravitational instanton. The octonionic-valued variables in the theory represent the deviation from the gravitational instanton, and from their non-associativity, prevents the theory to be SO(n) gauge invariant. Still the chiral gravity holds G_2 (7-D), and Spin(7) (8-D) gauge symmetry.

  7. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    LUO XiangQian

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking,which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero.In standard methods of the lattice gauge theory,one has to perform expensive simulations at multiple bare quark masses,and employ some modeled functions to extrapolate the data to the chiral limit.This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks,without any ambiguous mass extrapolation.The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD,which deserves further investigation.

  8. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.

  9. Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics

    CERN Document Server

    Ruggieri, M; Chernodub, M

    2016-01-01

    We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.

  10. Consistent chiral kinetic theory in Weyl materials: chiral magnetic plasmons

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern--Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. T...

  11. Field induced spin chirality and chirality switching in magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovskaya, Elena V., E-mail: elena_tartakovskaya@yahoo.com [Institute of Magnetism NAS of Ukraine, Vernadsky blvd 36b, 03142 Kiev (Ukraine); Institute of High Technologies, Taras Shevchenko National University of Kiev, 03022 Kiev (Ukraine)

    2015-05-01

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman–Kittel–Kasuya–Yosida and the Dsyaloshinsky–Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness. - Highlights: • Field-induced spin chirality in magnetic multilayers is explained. • The roles of the RKKY, the DM and the Zeeman interactions are clarified. • Theoretical analysis of the chirality factor is in agreement with experimental data.

  12. Reducible chiral metamaterials

    CERN Document Server

    Ciattoni, Alessandro; Rizza, Carlo

    2016-01-01

    We introduce the concept of 3D reducible metamaterials whose constituent permittivity can be modelled by a factorized profile. The separated cartesian coordinates dependence, easily achieved in all-optical reconfigurable materials, allows to physically regard a reducible metamaterial as a superposition of three fictitious 1D generating media. We prove that, in the long-wavelength limit, the electromagnetic response of reducible metamaterials can be reconstructed from the properties of the 1D generating media whose interplay provides large freedom to control the electromagnetic chirality. Our approach introduces an unprecedented decomposition strategy in metamaterial science which allows the full ab-initio and flexible design of a complex 3D bianisotropic response by using 1D metamaterials as basic building blocks.

  13. Chirality in photonic systems

    Science.gov (United States)

    Solnyshkov, Dmitry; Malpuech, Guillaume

    2016-10-01

    The optical modes of photonic structures are the so-called TE and TM modes that bring intrinsic spin-orbit coupling and chirality to these systems. This, combined with the unique flexibility of design of the photonic potential, and the possibility to mix photon states with excitonic resonances, sensitive to magnetic field and interactions, allows us to achieve many phenomena, often analogous to other solid-state systems. In this contribution, we review in a qualitative and comprehensive way several of these realizations, namely the optical spin Hall effect, the creation of spin currents protected by a non-trivial geometry, the Berry curvature for photons, and the photonic/polaritonic topological insulator.

  14. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  15. Chiral Dynamics With Wilson Fermions

    CERN Document Server

    Splittorff, K

    2012-01-01

    Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.

  16. Domains of Disoriented Chiral Condensate

    CERN Document Server

    Amado, R D; Lu, Yang

    1996-01-01

    The probability distribution of neutral pion fraction from independent domains of disoriented chiral condensate is characterized. The signal for the condensate is clear for a small number of domains but is greatly reduced for more than three.

  17. Chiral Quark Model of Mesons

    CERN Document Server

    Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin

    1999-01-01

    We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.

  18. Chirally motivated K - nuclear potentials

    Science.gov (United States)

    Cieplý, A.; Friedman, E.; Gal, A.; Gazda, D.; Mareš, J.

    2011-08-01

    In-medium subthreshold Kbar N scattering amplitudes calculated within a chirally motivated meson-baryon coupled-channel model are used self consistently to confront K- atom data across the periodic table. Substantially deeper K- nuclear potentials are obtained compared to the shallow potentials derived in some approaches from threshold Kbar N amplitudes, with Re VK-chiral = - (85 ± 5) MeV at nuclear matter density. When Kbar NN contributions are incorporated phenomenologically, a very deep K- nuclear potential results, Re VK-chiral + phen . = - (180 ± 5) MeV, in agreement with density dependent potentials obtained in purely phenomenological fits to the data. Self consistent dynamical calculations of K--nuclear quasibound states generated by VK-chiral are reported and discussed.

  19. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    B Ananthanarayan

    2003-11-01

    A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  20. Nonlocal Nambu-Jona-Lasinio model and chiral chemical potential

    CERN Document Server

    Frasca, Marco

    2016-01-01

    We derive the critical temperature in a nonlocal Nambu-Jona-Lasinio model with the presence of a chiral chemical potential. The model we consider uses a form factor derived from recent studies of the gluon propagator in Yang-Mills theory and has the property to fit in excellent way the form factor arising from the instanton liquid picture for the vacuum of the theory. Nambu-Jona-Lasinio model is derived form quantum chromodynamics providing all the constants of the theory without any need for fits. We show that the critical temperature in this case always exists and increases as the square of the chiral chemical potential. The expression we obtain for the critical temperature depends on the mass gap that naturally arises from Yang-Mills theory at low-energy as also confirmed by lattice computations.

  1. Meta-Chirality: Fundamentals, Construction and Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Ma

    2017-05-01

    Full Text Available Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative refractive index. Chiral metamaterials have attracted great attentions in recent years and have given rise to a series of applications in polarization manipulation, imaging, chemical and biological detection, and nonlinear optics. Here we review the fundamental theory of chiral media and analyze the construction principles of some typical chiral metamaterials. Then, the progress in extrinsic chiral metamaterials, absorbing chiral metamaterials, and reconfigurable chiral metamaterials are summarized. In the last section, future trends in chiral metamaterials and application in nonlinear optics are introduced.

  2. Meta-Chirality: Fundamentals, Construction and Applications

    Science.gov (United States)

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Guo, Yinghui; Gao, Ping; Luo, Xiangang

    2017-01-01

    Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative refractive index. Chiral metamaterials have attracted great attentions in recent years and have given rise to a series of applications in polarization manipulation, imaging, chemical and biological detection, and nonlinear optics. Here we review the fundamental theory of chiral media and analyze the construction principles of some typical chiral metamaterials. Then, the progress in extrinsic chiral metamaterials, absorbing chiral metamaterials, and reconfigurable chiral metamaterials are summarized. In the last section, future trends in chiral metamaterials and application in nonlinear optics are introduced. PMID:28513560

  3. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  4. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  5. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  6. Baryon spectrum and chiral dynamics

    CERN Document Server

    Glozman, L Ya

    1995-01-01

    New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.

  7. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation.

    Science.gov (United States)

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-12

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  8. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation

    Science.gov (United States)

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-01

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  9. Chiral-glass transition and replica symmetry breaking of a three-dimensional heisenberg spin glass

    Science.gov (United States)

    Hukushima; Kawamura

    2000-02-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the chiral-glass ordered state.

  10. The chiral phase transition for two-flavour QCD at imaginary and zero chemical potential

    CERN Document Server

    Bonati, Claudio; de Forcrand, Philippe; Philipsen, Owe; Sanfillippo, Francesco

    2013-01-01

    The chiral symmetry of QCD with two massless quark flavours gets restored in a non-analytic chiral phase transition at finite temperature and zero density. Whether this is a first-order or a second-order transition has not yet been determined unambiguously, due to the difficulties of simulating light quarks. We investigate the nature of the chiral transition as a function of quark mass and imaginary chemical potential, using staggered fermions on N_t=4 lattices. At sufficiently large imaginary chemical potential, a clear signal for a first-order transition is obtained for small masses, which weakens with decreasing imaginary chemical potential. The second-order critical line m_c(mu_i), which marks the boundary between first-order and crossover behaviour, extrapolates to a finite m_c(mu_i=0) with known critical exponents. This implies a definitely first-order transition in the chiral limit on relatively coarse, N_t=4 lattices.

  11. Electrolyte effects on the chiral induction and on its temperature dependence in a chiral nematic lyotropic liquid crystal.

    Science.gov (United States)

    Dawin, Ute C; Osipov, Mikhail A; Giesselmann, Frank

    2010-08-19

    We present a study on the effect of added CsCl and of temperature variation on the chiral induction in a chiral nematic lyotropic liquid crystal (LC) composed of the surfactant cesium perfluorooctanoate (CsPFO), water, and the chiral dopant d-Leucine (d-Leu). The chiral induction was measured as the helical pitch P. The role of the additives CsCl and d-Leu on the phase behavior is investigated and discussed. The thermal stabilization effect of CsCl is shown to lead to an apparent salt effect on the pitch when the pitch is compared at a constant temperature. This apparent effect is removed by comparing the pitch measured for different salt concentrations at a temperature relative to the phase-transition temperatures; thus, the real salt effect on the pitch is described. High salt concentrations are shown to increase the pitch, that is, hinder the chiral induction. The effect is discussed in terms of a decreased solubilization of the amphiphilic chiral solute d-Leu in the micelles due to the salt-induced screening of the surfactant head groups and the consequential denser packing of the surfactants. The temperature variation of the pitch is investigated for all CsCl concentrations and is found to be essentially independent of the salt concentration. The temperature variation is analyzed and discussed in the context of a theoretical model taking into account specific properties of lyotropic liquid crystals. A hyperbolic decrease of the pitch is found with increasing temperature, which is known, from thermotropic liquid crystals, to stem from pretransitional critical fluctuations close to the lamellar phase. However, the experimental data confirmed the theoretical prediction that, at high temperature, that is, far away from the transition into the lamellar phase, the pitch is characterized by a linear temperature dependence which is determined by a combination of steric and dispersion chiral interactions. The parameters of the theoretical expression for the pitch have

  12. Chirality in Bare and Passivated Gold Nanoclusters

    CERN Document Server

    Garzon, I L; Rodrigues-Hernandez, J I; Sigal, I; Beltran, M R; Michaelian, K

    2002-01-01

    Chiral structures have been found as the lowest-energy isomers of bare (Au$_{28}$ and Au$_{55}) and thiol-passivated (Au$_{28}(SCH$_{3})$_{16}$ and Au$_{38}$(SCH$_{3}$)$_{24}) gold nanoclusters. The degree of chirality existing in the chiral clusters was calculated using the Hausdorff chirality measure. We found that the index of chirality is higher in the passivated clusters and decreases with the cluster size. These results are consistent with the observed chiroptical activity recently reported for glutahione-passivated gold nanoclusters, and provide theoretical support for the existence of chirality in these novel compounds.

  13. Using the Chiral Organophosphorus Derivatizing Agents for Determination of the Enantiomeric Composition of Chiral Carboxylic Acids by 31PNMR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Chao CHE; Zhong Ning ZHANG; Gui Lan HUANG; Xin Xing WANG; Zhao Hai QIN

    2004-01-01

    The use of chiral organophosphorus derivatizing agents prepared in situ from chiral tartrate or chiral diamine for the 31PNMR determination of the enantiomeric composition of chiral carboxylic acids is described. The method is accurate, reliable and convenient.

  14. Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons

    Science.gov (United States)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-03-01

    We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern-Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields, taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also by oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. This finding suggests an efficient means of extracting the chiral shift parameter from the measurement of the plasma frequencies in Weyl materials.

  15. An Inherent Chiral Calix[4]arene Bearing Chiral Groups without Forming Sub-ring

    Institute of Scientific and Technical Information of China (English)

    Xian Xian LIU; Yan Song ZHENG; Wan Ling MO

    2006-01-01

    The NMR spectra revealed that the calixarene frame of 1, 3-disubstituted calix[4]arenes bearing optically active groups is asymmetric, even without the formation of a sub-ring. This inherent chirality arises from the interaction of the two chiral groups, which hinder the substituents' free rotation. Thus, these chiral calix[4]arenes display good chiral recognition ability.

  16. Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?

    Science.gov (United States)

    LeMarechal, Jean Francois

    2008-01-01

    Several pedagogical objects can be used to discuss chirality. Here, we use the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object. Octahedral chirality is used to find situations equivalent to the cut of the apple. (Contains 5 figures.)

  17. Chaos of chiral condensate

    CERN Document Server

    Hashimoto, Koji; Yoshida, Kentaroh

    2016-01-01

    Assigning a chaos index for vacua of generic quantum field theories is a challenging problem. We find chaotic behavior of chiral condensates of a quantum gauge theory at strong coupling limit, by using the AdS/CFT correspondence. We evaluate the time evolution of homogeneous quark condensates and in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at large 't Hooft coupling lambda. At an equivalent classical gravity picture, a Lyapunov exponent is readily defined. We show that the condensates exhibit chaotic behavior for energy density E > (6x10^2) (N_c/lambda^2) (m_q)^4 where m_q is the quark mass. The energy region of the chaotic vacua of the N=2 supersymmetric QCD increases for smaller N_c or larger lambda. The Lyapunov exponent is calculated as a function of the theory (N_c,lambda,E), showing that the N=2 supersymmetric QCD is more chaotic for smaller N_c.

  18. A critical assessment of shrinkage-based regression approaches for estimating the adverse health effects of multiple air pollutants

    Science.gov (United States)

    Roberts, Steven; Martin, Michael

    Most investigations of the adverse health effects of multiple air pollutants analyse the time series involved by simultaneously entering the multiple pollutants into a Poisson log-linear model. Concerns have been raised about this type of analysis, and it has been stated that new methodology or models should be developed for investigating the adverse health effects of multiple air pollutants. In this paper, we introduce the use of the lasso for this purpose and compare its statistical properties to those of ridge regression and the Poisson log-linear model. Ridge regression has been used in time series analyses on the adverse health effects of multiple air pollutants but its properties for this purpose have not been investigated. A series of simulation studies was used to compare the performance of the lasso, ridge regression, and the Poisson log-linear model. In these simulations, realistic mortality time series were generated with known air pollution mortality effects permitting the performance of the three models to be compared. Both the lasso and ridge regression produced more accurate estimates of the adverse health effects of the multiple air pollutants than those produced using the Poisson log-linear model. This increase in accuracy came at the expense of increased bias. Ridge regression produced more accurate estimates than the lasso, but the lasso produced more interpretable models. The lasso and ridge regression offer a flexible way of obtaining more accurate estimation of pollutant effects than that provided by the standard Poisson log-linear model.

  19. Chiral Thirring–Wess model

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Anisur, E-mail: anisur.rahman@saha.ac.in

    2015-10-15

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.

  20. Chiral Logs in Quenched QCD

    CERN Document Server

    Dong, S J; Horváth, I; Lee, F X; Liu, K F; Mathur, N; Zhang, J B

    2003-01-01

    The quenched chiral logs are examined on a $16^3 \\times 28$ lattice with Iwasaki gauge action and overlap fermions. The pion decay constant $f_{\\pi}$ is used to set the lattice spacing, $a = 0.200(3)$ fm. With pion mass as low as $\\sim 180 {\\rm MeV}$, we see the quenched chiral logs clearly in $m_{\\pi}^2/m$ and $f_P$, the pseudoscalar decay constant. We analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory ($\\chi$PT) to apply. With the constrained curve fitting, we are able to extract the quenched chiral log parameter $\\delta$ together with the chiral cutoff $\\Lambda_{\\chi}$ and other parameters. Only for $m_{\\pi} \\leq 300 {\\rm MeV}$ do we obtain a consistent and stable fit with a constant $\\delta$ which we determine to be 0.23(2). By comparing to the $12^3 \\times 28$ lattice, we estimate the finite volume effect to be about 1.8% for the smallest pion mass. We also study the quenched non-analytic terms in the nucleon and the $\\rho$ masses...

  1. Orientation-dependent handedness and chiral design

    OpenAIRE

    Efrati, Efi; Irvine, William T. M.

    2013-01-01

    Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in ...

  2. Chiral gap effect in curved space

    CERN Document Server

    Flachi, Antonino

    2014-01-01

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  3. Chirality: a relational geometric-physical property.

    Science.gov (United States)

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term.

  4. Bifurcated, modular syntheses of chiral annulet triazacyclononanes.

    Science.gov (United States)

    Argouarch, Gilles; Stones, Graham; Gibson, Colin L; Kennedy, Alan R; Sherrington, David C

    2003-12-21

    Three chiral 2,6-disubstituted tri-N-methyl azamacrocycles have been prepared by modular methods. These macrocycles were accessed from three chiral 1,4,7-triazaheptanes intermediates that were prepared by two independent routes. The first of these routes involved the benzylamine opening of chiral tosyl aziridines followed by debenzylation but was problematic on solubility grounds. A second, more effective, route was developed which avoided debenzylation by using ammonia in the nucleophilic opening of chiral tosyl aziridines.

  5. Chiral Decomposition For Non-Abelian Bosons

    CERN Document Server

    Braga, N R F; Braga, Nelson R. F.; Wotzasek, Clovis

    1996-01-01

    We study the non-abelian extension for the splitting of a scalar field into chiral components. Using this procedure we find a non ambiguous way of coupling a non abelian chiral scalar field to gravity. We start with a (non-chiral) WZW model covariantly coupled to a background metric and, after the splitting, arrive at two chiral Wess-Zumino-Witten (WZW) models coupled to gravity.

  6. On the Biological Advantage of Chirality

    OpenAIRE

    1999-01-01

    The presence of chirality in the main molecules of life may well be not just a structural artifact, but of pure biological advantage. The possibility of the existence of a phenomenon of a special mode of interaction, labeled as "chiral interaction" (CI), for which structural chirality is a necessary condition, is the main reason for such an advantage. In order to demonstrate such a possibility, macroscopic chiral devices are introduced and presented as analogies for such an interaction. For t...

  7. On multiple attractors and critical parameters and how to find them numerically: The right, the wrong and "the American way"

    DEFF Research Database (Denmark)

    True, Hans

    2011-01-01

    In recent years several authors have proposed, "easier" numerical methods' to find the critical speed in railway dynamical problems. Actually the methods do function in some cases, but in most cases it is really a gamble. In this presentation the methods will be discussed and the pros and contras......", "the danger of running at supercrititical speeds" and "chaotic motion", will be addressed....

  8. Multiple attractors and critical parameters and how to find them numerically: the right, the wrong and the gambling way

    DEFF Research Database (Denmark)

    True, Hans

    2013-01-01

    In recent years, several authors have proposed easier numerical methods to find the critical speed in railway dynamical problems. Actually, the methods do function in some cases, but in most cases it is really a gamble. In this article, the methods are discussed and the pros and contras...... of running at supercritical speeds and chaotic motion are addressed....

  9. Reliable Real-time Calculation of Heart-rate Complexity in Critically Ill Patients Using Multiple Noisy Waveform Sources

    Science.gov (United States)

    2014-01-01

    related metrics for detecting sepsis and multior- gan failure, improvement of HRC calculations may help detect significant changes from baseline values...calculations. Equiva- lence tests between mean HRC values derived from man- ually verified sequences and those derived from automatically detected peaks...assessment of HRC in critically ill patients. Keywords Signal detection analysis Electrocardiography Heart rate Clinical decision support

  10. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  11. Field induced spin chirality and chirality switching in magnetic multilayers

    Science.gov (United States)

    Tartakovskaya, Elena V.

    2015-05-01

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman-Kittel-Kasuya-Yosida and the Dsyaloshinsky-Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness.

  12. Neutrino Oscillation Induced by Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei

    2009-01-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  13. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    1998-01-01

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral powe

  14. Shear Viscosity of Turbulent Chiral Plasma

    CERN Document Server

    Kumar, Avdhesh; Das, Amita; Kaw, P K

    2016-01-01

    It is well known that the difference between the chemical potentials of left-handed and right-handed particles in a parity violating (chiral) plasma can lead to an instability. We show that the chiral instability may drive turbulent transport. Further we estimate the anomalous viscosity of chiral plasma arising from the enhanced collisionality due to turbulence.

  15. Exact Chiral Symmetry on the Lattice

    CERN Document Server

    Neuberger, H

    2001-01-01

    Developments during the last eight years have refuted the folklore that chiral symmetries cannot be preserved on the lattice. The mechanism that permits chiral symmetry to coexist with the lattice is quite general and may work in Nature as well. The reconciliation between chiral symmetry and the lattice is likely to revolutionize the field of numerical QCD.

  16. An Exact Chiral Spin Liquid with Non-Abelian Anyons

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Hong

    2010-04-06

    We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontaneously breaks time reversal symmetry but preserves other symmetries. There are two topologically distinct CSLs separated by a quantum critical point. Interestingly, vortex excitations in the topologically nontrivial (Chern number {+-}1) CSL obey non-Abelian statistics.

  17. Synthetic Applications of Chiral Furanboronate

    Institute of Scientific and Technical Information of China (English)

    CHAN; KinFai

    2001-01-01

    We recently uncovered that consecutive reactions of chiral furfural-boronate 1 with a lithium alkoxide and a nucleophile led to the formation of alcohols 2 with good diastereoselection in favor of S-configuration at the newly generated chiral carbon. In addition, it was also found that 2a and 2b were chromatographically separable on a silica gel column. This reaction is believed to involve a tetrahedral borate intermediate, as can be substantiated by 11BNMR spectroscopic studies. Chiral furanmethanolboronates 2a(or 2b) underwent a palladium-catalyzed Suzuki coupling to form enantiomerically pure furans 3, which can be further converted to the synthetically useful hydroxypyranones 4.1,2,3 In addition, Mukaiyama reaction of 1 also led to chromatographically separable diastereomeric aldol-products. The scope and limitation of these conversions will be discussed.  ……

  18. Chiral separation of agricultural fungicides.

    Science.gov (United States)

    Pérez-Fernández, Virginia; García, Maria Ángeles; Marina, Maria Luisa

    2011-09-23

    Fungicides are very important and diverse environmental and agricultural concern species. Their determination in commercial formulations or environmental matrices, requires highly efficient, selective and sensitive methods. A significant number of these chemicals are chiral with the activity residing usually in one of the enantiomers. The different toxicological and degradation behavior observed in many cases for fungicide enantiomers, results in the need to investigate them separately. For this purpose, separation techniques such as GC, HPLC, supercritical fluid chromatography (SFC) and CE have widely been employed although, at present, HPLC still dominates chromatographic chiral analysis of fungicides. This review covers the literature concerning the enantiomeric separation of fungicides usually employed in agriculture grouping the chiral separation methodologies developed for their analysis in environmental, biological, and food samples.

  19. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented.

  20. Chiral cardiovascular drugs: an overview.

    Science.gov (United States)

    Ranade, Vasant V; Somberg, John C

    2005-01-01

    Stereochemistry in drug molecules is rapidly becoming an important aspect in drug research, design, and development. Recently, individual stereoisomers of drug molecules with asymmetric centers such as fexofenadine, cetirizine, verapamil, fluoxetine, levalbutarol, and amphetamine, for example, have been separated and developed as individual drugs. These stereoisomers have different therapeutic activity, and each isomer has contributed differently with respect to its formulation's pharmacologic activity, side effects, and toxicity. The present overview discusses chirality among a select group of cardiovascular drugs, their stereochemical synthesis/preparation, isolation techniques using chiral chromatography, methods for confirmation of their enantiomeric purity, pharmacodynamics, and pharmacokinetics. Chirality has been visualized as an important factor in cardiovascular research. It is also becoming evident in other areas of therapeutics.

  1. Synthetic Applications of Chiral Furanboronate

    Institute of Scientific and Technical Information of China (English)

    CHAN KinFai; WONG Henry N,C.

    2001-01-01

    @@ We recently uncovered that consecutive reactions of chiral furfural-boronate 1 with a lithium alkoxide and a nucleophile led to the formation of alcohols 2 with good diastereoselection in favor of S-configuration at the newly generated chiral carbon. In addition, it was also found that 2a and 2b were chromatographically separable on a silica gel column. This reaction is believed to involve a tetrahedral borate intermediate, as can be substantiated by 11BNMR spectroscopic studies. Chiral furanmethanolboronates 2a(or 2b) underwent a palladium-catalyzed Suzuki coupling to form enantiomerically pure furans 3, which can be further converted to the synthetically useful hydroxypyranones 4.1,2,3 In addition, Mukaiyama reaction of 1 also led to chromatographically separable diastereomeric aldol-products. The scope and limitation of these conversions will be discussed.

  2. Critical versus spurious fluctuations in the search for the QCD critical point

    Science.gov (United States)

    Hippert, M.; Fraga, E. S.; Santos, E. M.

    2016-01-01

    The neighborhood of the QCD chiral critical point is characterized by intense fluctuations of the chiral field which could, in principle, generate pronounced experimental signatures. However, experimental uncertainties which are inherent to heavy-ion collisions, as well as the modest size and duration of the formed plasma, will severely attenuate these signatures. Using Monte Carlo techniques, we study second-order event-by-event moments of pions as a prototype for signatures of the chiral critical point based on the enhancement of the correlation length and event-by-event analysis. We test their viability against some realistic ingredients, similar to the ones found in the RHIC beam energy scan program.

  3. Critical versus spurious fluctuations in the search for the QCD critical point

    CERN Document Server

    Hippert, Maurício; Santos, Edivaldo M

    2015-01-01

    The neighborhood of the QCD chiral critical point is characterized by intense fluctuations of the chiral field which could, in principle, generate pronounced experimental signatures. However, experimental uncertainties which are inherent to heavy ion collisions, as well as the modest size and duration of the formed plasma, will severely attenuate these signatures. Using Monte Carlo techniques, we study second-order event-by-event moments of pions as a prototype for signatures of the chiral critical point based on the enhancement of the correlation length and event-by-event analysis. We test their viability against some realistic ingredients, similar to the ones found in the RHIC Beam Energy Scan program.

  4. Chiral Disorder and Random Matrix Theory with Magnetism

    CERN Document Server

    Nowak, Maciej A; Zahed, Ismail

    2013-01-01

    We revisit the concept of chiral disorder in QCD in the presence of a QED magnetic field |eH|. Weak magnetism corresponds to |eH| < 1/rho^2 with rho\\approx (1/3) fm the vacuum instanton size, while strong magnetism the reverse. Asymptotics (ultra-strong magnetism) is in the realm of perturbative QCD. We analyze weak magnetism using the concept of the quark return probability in the diffusive regime of chiral disorder. The result is in agreement with expectations from chiral perturbation theory. We analyze strong and ultra-strong magnetism in the ergodic regime using random matrix theory including the effects of finite temperature. The strong magnetism results are in agreement with the currently reported lattice data in the presence of a small shift of the Polyakov line. The ultra-strong magnetism results are consistent with expectations from perturbative QCD. We suggest a chiral random matrix effective action with matter and magnetism to analyze the QCD phase diagram near the critical points under the infl...

  5. Chirally symmetric but confining dense and cold matter

    CERN Document Server

    Glozman, L Ya

    2007-01-01

    The folklore tradition about the QCD phase diagram is that the chiral restoration and deconfinement transitions coincide. Very recently McLerran and Pisarski suggested, based on qualitative large $N_c$ arguments, that at moderate temperature and not very small chemical potential it is not the case. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. Single quarks cannot be observed because the single-quark Green function is infrared divergent. We solve this model at T=0 and finite chemical potential \\mu and obtain a clear chiral restoration phase transition at the critical value \\mu_{cr}. Below this value the quarks have a finite momentum-dependent dynamical mass and the spectrum i...

  6. SU(3) Polyakov linear-σ model in magnetic fields: Thermodynamics, higher-order moments, chiral phase structure, and meson masses

    Science.gov (United States)

    Tawfik, Abdel Nasser; Magdy, Niseem

    2015-01-01

    Effects of an external magnetic field on various properties of quantum chromodynamics (QCD) matter under extreme conditions of temperature and density (chemical potential) have been analyzed. To this end, we use SU(3) Polyakov linear-σ model and assume that the external magnetic field (e B ) adds some restrictions to the quarks' energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization, which assumes that the cyclotron orbits of charged particles in a magnetic field should be quantized. This requires an additional temperature to drive the system through the chiral phase transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities (energy density and trace anomaly) and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of the magnetic field on the chiral phase transition. We found that both critical temperature Tc and critical chemical potential increase with increasing magnetic field, e B . Last but not least, the magnetic effects of the thermal evolution of four scalar and four pseudoscalar meson states are studied. We concluded that the meson masses decrease as the temperature increases up to Tc. Then, the vacuum effect becomes dominant and rapidly increases with the temperature T . At low T , the scalar meson masses normalized to the lowest Matsubara frequency rapidly decrease as T increases. Then, starting from Tc, we find that the thermal dependence almost vanishes. Furthermore, the meson masses increase with increasing magnetic field. This gives a characteristic phase diagram of T vs external magnetic field e B . At high T , we find that the masses of almost all meson states become temperature independent. It is worthwhile to highlight that the various meson

  7. Value of joint detecion of multiple biomarkers on early diagnosis of acute kidney injury in critical patients

    Institute of Scientific and Technical Information of China (English)

    许光银

    2014-01-01

    Objective To assess the value of joint detection of serum cysteine proteinase inhibitors C(sCys-C),urinary kidney injury molecule 1(uKIM-1),urinary neutrophil gelatinase-associated lipocalin(uNGAL)and urinary interleukin 18(uIL-18)for early diagnosis of acute kidney injury(AKI)in critically ill patients.Methods A total of256 adult patients who stayed in Intensive Care Unit for

  8. Dehydroepiandrosterone (DHEA): a steroid with multiple effects. Is there any possible option in the treatment of critical illness?

    Science.gov (United States)

    Oberbeck, R; Kobbe, P

    2010-01-01

    DHEA is the major circulating steroid in human blood and it is a central intermediate in the metabolic pathway of sex steroid hormone formation. Although the specific effect of DHEA is still unclear it was demonstrated that DHEA modulates several physiologic processes including metabolism and cardiovascular function. Furthermore, a profound immunomodulatory effect of DHEA was reported. Several data demonstrate the beneficial effect of DHEA in situations of critical illness including trauma hemorrhage and sepsis. Accordingly DHEA improved the survival rate and clinical situation in several animal models of trauma hemorrhage and systemic inflammation. This effect was paralleled by profound changes of immunologic parameters, organ function, and heat shock protein production. Therefore, it was claimed that DHEA may be a new alternative/additive in the treatment of trauma and sepsis. In line, DHEA is a frequently used drug in the field of anti-aging medicine, it is an over-the-counter drug in several countries, and it was reported that DHEA medication is free of major side effects. Therefore, DHEA could easily be used in a clinical trial investigating its effects in critical ill patients. This article reviews the reported effects of DHEA on the base of the literature with the specific focus on trauma and sepsis/critical illness including its clinical perspectives.

  9. Strange chiral nucleon form factors

    CERN Document Server

    Hemmert, T R; Meißner, Ulf G; Hemmert, Thomas R.; Kubis, Bastian; Meissner, Ulf-G.

    1999-01-01

    We investigate the strange electric and magnetic form factors of the nucleon in the framework of heavy baryon chiral perturbation theory to third order in the chiral expansion. All counterterms can be fixed from data. In particular, the two unknown singlet couplings can be deduced from the parity-violating electron scattering experiments performed by the SAMPLE and the HAPPEX collaborations. Within the given uncertainties, our analysis leads to a small and positive electric strangeness radius, $ = (0.05 \\pm 0.16) fm^2$. We also deduce the consequences for the upcoming MAMI A4 experiment.

  10. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  11. Collisions in Chiral Kinetic Theory

    CERN Document Server

    Chen, Jing-Yuan; Stephanov, Mikhail A

    2015-01-01

    Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order $\\mathcal O(\\hbar)$ which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the $H$-function obeying Boltzmann's $H$-theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing chiral vortical effect.

  12. Novel Chiral Auxiliaries of BIAZOLs

    Institute of Scientific and Technical Information of China (English)

    CHEN; Arh-Hwang

    2001-01-01

    Asymmetric catalysis is one of the most challenging and formidable endeavor in organic synthesis. The development of chiral auxiliaries is a key in the asymmetric catalysis. Azulenoids, a parent structure of bicyclo[5.3.0]decapentaene with 10 πelectrons, are useful as dye materials, medical treatment of inflammation and hypertension, and the development of liquid crystals. In continuing to investigate synthetic application of azulenoids, we have studied to develop novel chiral auxiliaries of BIAZOLs. The BIAZOLs were synthesized from dicyclopentadiene and characterized using spectroscopies.  ……

  13. Novel Chiral Auxiliaries of BIAZOLs

    Institute of Scientific and Technical Information of China (English)

    CHEN Arh-Hwang; YUAN Shou-Bin; CHIU Shu-Ching

    2001-01-01

    @@ Asymmetric catalysis is one of the most challenging and formidable endeavor in organic synthesis. The development of chiral auxiliaries is a key in the asymmetric catalysis. Azulenoids, a parent structure of bicyclo[5.3.0]decapentaene with 10 πelectrons, are useful as dye materials, medical treatment of inflammation and hypertension, and the development of liquid crystals. In continuing to investigate synthetic application of azulenoids, we have studied to develop novel chiral auxiliaries of BIAZOLs. The BIAZOLs were synthesized from dicyclopentadiene and characterized using spectroscopies.

  14. Dynamic chirality, chirality transfer and aggregation behaviour of dithienylethene switches

    NARCIS (Netherlands)

    de Jong, Jaap J. D.; van Rijn, Patrick; Tiemersma-Wegeman, Theodora D.; Lucas, Linda N.; Browne, Wesley R.; Kellogg, Richard M.; Uchida, Kingo; Van Esch, Jan H.; Feringa, Ben L.

    2008-01-01

    The synthesis and characterisation of a series of chiral and achiral low molecular weight organogelators (LMWGs) based on bis-amide substituted dithienylethene photochromic switches is reported. The LMWGs gelate a range of solvents depending on the specific functionalisation of the hydrogen bonding

  15. K stability and stability of chiral ring

    CERN Document Server

    Collins, Tristan C; Yau, Shing-Tung

    2016-01-01

    We define a notion of stability for chiral ring of four dimensional N=1 theory by introducing test chiral rings and generalized a maximization. We conjecture that a chiral ring is the chiral ring of a superconformal field theory if and only if it is stable. We then study N=1 field theory derived from D3 branes probing a three-fold singularity X, and show that the K stability which implies the existence of Ricci-flat conic metric on X is equivalent to the stability of chiral ring of the corresponding field theory.

  16. The chicken or the egg; or Who ordered the chiral phase transition?

    CERN Document Server

    Kogan, I I; Tekin, B; Kogan, Ian I.; Kovner, Alex; Tekin, Bayram

    2001-01-01

    We draw an analogy between the deconfining transition in the 2+1 dimensional Georgi-Glashow model and the chiral phase transition in 3+1 dimensional QCD. Based on the detailed analysis of the former (hep-th/0010201) we suggest that the chiral symmetry restoration in QCD at high temperature is driven by the thermal ensemble of baryons and antibaryons. The chiral symmetry is restored when roughly half of the volume is occupied by the baryons. Surprisingly enough, even though baryons are rather heavy, a crude estimate for the critical temperature gives $T_c=180$ Mev. In this scenario the binding of the instantons is not the cause but rather a consequence of the chiral symmetry restoration.

  17. Structure of chiral phase transitions at finite temperature in abelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Fukazawa, Kenji [Kure National College of Technology, Kure (Japan); Inagaki, Tomohiro [Information Media Center, Hiroshima Univ., Hiroshima (Japan); Mukaigawa, Seiji [Department of Electrical and Electronic Engineering, Faculty of Engineering, Iwate Univ., Iwate (Japan); Muta, Taizo [Department of Physics, Hiroshima Univ., Hiroshima (Japan)

    2001-06-01

    The mechanism of chiral symmetry breaking is investigated in strong-coupling Abelian gauge theories at finite temperature. The Schwinger-Dyson equation in the Landau gauge is employed in the real time formalism and is solved numerically within the framework of the instantaneous exchange approximation, including the effect of the thermal mass for the photon propagator. It is found that the chiral symmetry is broken below the critical temperature T for sufficiently large coupling {alpha}. The chiral phase transition is found to be of second order, and the phase diagram in the T-{alpha} plane is obtained. It is investigated how the structure of the chiral phase transition is affected by the thermal mass in the photon propagator. (author)

  18. Structure of chiral phase transitions at finite temperature in Abelian gauge theories

    CERN Document Server

    Fukazawa, K; Mukaigawa, S; Muta, T; Fukazawa, Kenji; Inagaki, Tomohiro; Mukaigawa, Seiji; Muta, Taizo

    1999-01-01

    The mechanism of the chiral symmetry breaking is investigated in the strong-coupling Abelian gauge theories at finite temperature. The Schwinger-Dyson equation in Landau gauge is employed in the real time formalism and is solved numerically within the framework of the instantaneous exchange approximation including the effect of the hard thermal loop for the photon propagator. It is found that the chiral symmetry is broken below the critical temperature T for sufficiently large coupling. The chiral phase transition is found to be of the 2nd order and the phase diagram on the $T-\\alpha$ plane is obtained. It is investigated how the structure of the chiral phase transition is affected by the hard thermal loops in the photon propagator.

  19. Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions

    Science.gov (United States)

    Chernodub, M. N.; Gongyo, Shinya

    2017-05-01

    In order to avoid unphysical causality-violating effects, any rigidly rotating system must be bounded in directions transverse to the axis of rotation. We demonstrate that this requirement implies substantial dependence of properties of the relativistically rotating system on the boundary conditions. We consider a system of interacting fermions described by the Nambu-Jona-Lasinio model in a space bounded by the cylindrical surface of the finite radius. In order to confine the fermions inside the cylinder, we impose "chiral" MIT boundary conditions on its surface. These boundary conditions are parametrized by a continuous chiral angle Θ . We find that, at any value of Θ , the chiral restoration temperature Tc decreases as a quadratic function of the angular frequency Ω . However, the position and the slope of the critical curve Tc=Tc(Ω ) in the phase diagram depend noticeably on the value of the chiral angle.

  20. Role of the electron mass in damping chiral plasma instability in Supernovae and neutron stars

    Science.gov (United States)

    Grabowska, Dorota; Kaplan, David B.; Reddy, Sanjay

    2015-04-01

    We show that the nonzero electron mass plays a critical role in determining the magnetic properties of neutron stars by suppressing the generation of the chiral charge density needed to trigger a strong chiral plasma instability during the core collapse of supernovae. This instability has been proposed as a plausible mechanism for generating extremely large helical magnetic fields in neutron stars at their birth; the mechanism relies on the generation of a large nonequilibrium chiral charge density via electron capture reactions that selectively deplete left-handed electrons during core collapse and the early evolution of the protoneutron star. Our calculation shows that the electron chirality violation rate induced by Rutherford scattering, despite being suppressed by the smallness of the electron mass relative to the electron chemical potential, is still fast compared to the weak interaction electron capture rate. The resulting asymmetry between right- and left-handed electron densities is therefore unlikely to attain an astrophysically relevant magnitude.

  1. Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark-gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in a external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density, the chiral vortical and chiral magnetic waves. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the excitation reduces to a charge diffusion mode or is completely absent. We also correct the dispersion relation for the chiral magnetic wave.

  2. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate

    Science.gov (United States)

    Jiang, Wenge; Pacella, Michael S.; Athanasiadou, Dimitra; Nelea, Valentin; Vali, Hojatollah; Hazen, Robert M.; Gray, Jeffrey J.; McKee, Marc D.

    2017-04-01

    Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a `right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas `left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a `mother' subunit nanoparticle spawns a slightly tilted, consequential `daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures.

  3. Chiral magnetic plasmons in anomalous relativistic matter

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    The chiral plasmon modes of relativistic matter in background magnetic and strain-induced pseudomagnetic fields are studied in detail using the consistent chiral kinetic theory. The results reveal a number of anomalous features of these chiral magnetic and pseudomagnetic plasmons that could be used to identify them in experiment. In a system with nonzero electric (chiral) chemical potential, the background magnetic (pseudomagnetic) fields not only modify the values of the plasmon frequencies in the long wavelength limit, but also affect the qualitative dependence on the wave-vector. Similar modifications can be also induced by the chiral shift parameter in Weyl materials. Interestingly, even in the absence of the chiral shift and external fields, the chiral chemical potential alone leads to a splitting of plasmon energies at linear order in the wave vector.

  4. Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael S.; Palanque, Philippe Andre Rolan; Martinie, De Almeida; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  5. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  6. THE SECURITY OF CRITICAL ENERGY INFRASTRUCTURE IN THE AGE OF MULTIPLE ATTACK VECTORS: NATO’S MULTI-FACETED APPROACH

    Directory of Open Access Journals (Sweden)

    Sorin Dumitru Ducaru

    2017-06-01

    Full Text Available The current NATO threat landscape is characterized by a combination or “hybrid blend” of unconventional emerging challenges (like cyber and terrorist attacks and re-emerging conventional ones (like Russia’s recent military resurgence and assertiveness, that led to the illegal annexation of Crimea and destabilization in Eastern Ukraine. While the resurgence of the Russian military activity pushed the Alliance in the direction of re-discovering its deterrence and collective defence role, the new, not-traditional, trans-national and essentially non-military treats that generate effects below the threshold of an armed attack require a new paradigm shift with a focus on resilience although the protection of critical energy infrastructure is first and foremost a national responsibility, NATO can contribute to meeting the infrastructure protection challenge on many levels. Given the fact that its core deterrence and defence mandate relies in a great measure on the security of Allies’ energy infrastructure NATO’s role and actions in reducing the vulnerabilities and strengthening the resilience of such infrastructure can only increase. A multi-faceted, multi-stakeholder and networked approach is needed to be able to strengthen defences and resilience of critical infrastructure such as energy. Understanding and defending against cyber or terrorist threat vectors, increased situational awareness, education, training, exercises, trusted partnerships as well as increasing strategic security dialogue and cooperation are key for such a comprehensive/network approach to the challenge.

  7. Multiple critical points and liquid-liquid equilibria from the van der Waals like equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor [Thermodynamics Department, Academy of Refrigeration, 65082 Odessa (Ukraine)

    2008-06-18

    The principal aim of this work is a comprehensive analysis of the phase diagram of water via the van der Waals like equations of state (EoSs) which are considered as superpositions of repulsive and attractive forces. We test more extensively the modified van der Waals EoS (MVDW) proposed by Skibinski et al (2004 Phys. Rev. E 69 061206) and refine this model by introducing instead of the classical van der Waals repulsive term a very accurate hard sphere EoS over the entire stable and metastable regions (Liu 2006 Preprint cond-mat/0605392). It was detected that the simplest form of MVDW EoS displays a complex phase behavior, including three critical points, and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). Moreover the experimentally observed (Mallamace et al 2007 Proc. Natl Acad. Sci. USA 104 18387) anomalous behavior of the density of water in the deeply supercooled region (a density minimum) is reproduced by the MWDW EoS. An improvement of the repulsive part does not change the topological picture of the phase behavior of water in the wide range of thermodynamic variables. The new parameters set for second and third critical points are recognized by thorough analysis of experimental data for the loci of thermodynamic response function extrema.

  8. Detection of Zak phases and topological invariants in a chiral photonic quantum walk

    CERN Document Server

    Cardano, F; Dauphin, A; Maffei, M; Piccirillo, B; de Lisio, C; De Filippis, G; Cataudella, V; Santamato, E; Marrucci, L; Lewenstein, M; Massignan, P

    2016-01-01

    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here, we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, and we show that it rapidly approaches a multiple of the Zak phase in the long time limit. Then we measure the Zak phase in a photonic quantum walk, by direct observation of the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe, and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general, as it can be applied to all one-dimensional platforms simulating static or Floquet chiral systems.

  9. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    Juan Mañes; Raymond Stora; Bruno Zumino

    2012-06-01

    The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. Some of the techniques used in the study of the anomaly are improved or generalized, including a systematic way of generating towers of ‘descent equations’.

  10. Single chirality through crystal grinding

    NARCIS (Netherlands)

    Noorduin, W.L.

    2010-01-01

    The properties of chiral molecules in living organisms can be different for left- and right-handed molecules. Therefore, ways to produce molecules of single handedness are of paramount importance, especially for economical, high yielding processes to synthesize pharmaceutical compounds that must be

  11. Chiral Perturbation Theory and Unitarization

    CERN Document Server

    Ruiz-Arriola, E; Nieves, J; Peláez, J R

    2000-01-01

    We review our recent work on unitarization and chiral perturbation theory both in the $\\pi\\pi$ and the $\\pi N$ sectors. We pay particular attention to the Bethe-Salpeter and Inverse Amplitude unitarization methods and their recent applications to $\\pi\\pi$ and $\\pi N$ scattering.

  12. A critical look at the merger scenario to explain multiple populations and rotation in iron-complex globular clusters

    Science.gov (United States)

    Gavagnin, Elena; Mapelli, Michela; Lake, George

    2016-09-01

    Merging has been proposed to explain multiple populations in globular clusters (GCs) where there is a spread in iron abundance (hereafter, iron-complex GCs). By means of N-body simulations, we investigate if merging is consistent with the observations of subpopulations and rotation in iron-complex GCs. The key parameters are the initial mass and density ratios of the progenitors. When densities are similar, the more massive progenitor dominates the central part of the merger remnant and the less massive progenitor forms an extended rotating population. The low-mass progenitor can become the majority population in the central regions of the merger remnant only if its initial density is higher by roughly the mass ratio. To match the radial distribution of multiple populations in two iron-complex GCs (ω Cen and NGC 1851), the less massive progenitor needs to be four times as dense as the larger one. Our merger remnants show solid-body rotation in the inner parts, becoming differential in the outer parts. Rotation velocity V and ellipticity ɛ are in agreement with models for oblate rotators with isotropic dispersion. We discuss several kinematic signatures of a merger with a denser lower mass progenitor that can be tested with future observations.

  13. A critical look at the merger scenario to explain multiple populations and rotation in iron-complex globular clusters

    CERN Document Server

    Gavagnin, Elena; Lake, George

    2016-01-01

    Merging has been proposed to explain multiple populations in globular clusters (GCs) where there is a spread in iron abundance (hereafter, iron-complex GCs). By means of N-body simulations, we investigate if merging is consistent with the observations of sub-populations and rotation in iron-complex GCs. The key parameters are the initial mass and density ratios of the progenitors. When densities are similar, the more massive progenitor dominates the central part of the merger remnant and the less massive progenitor forms an extended rotating population. The low-mass progenitor can become the majority population in the central regions of the merger remnant only if its initial density is higher by roughly the mass ratio. To match the radial distribution of multiple populations in two iron-complex GCs ({\\omega} Cen and NGC 1851), the less massive progenitor needs to be four times as dense as the larger one. Our merger remnants show solid-body rotation in the inner parts, becoming differential in the outer parts....

  14. Critical Number of Flavours in QED

    CERN Document Server

    Bashir, A; Gutiérrez-Guerrero, L X; Tejeda-Yeomans, M E

    2011-01-01

    We demonstrate that in unquenched quantum electrodynamics (QED), chiral symmetry breaking ceases to exist above a critical number of fermion flavours $N_f$. This is a necessary and sufficient consequence of the fact that there exists a critical value of electromagnetic coupling $\\alpha$ beyond which dynamical mass generation gets triggered. We employ a multiplicatively renormalizable photon propagator involving leading logarithms to all orders in $\\alpha$ to illustrate this. We study the flavour and coupling dependence of the dynamically generated mass analytically as well as numerically. We also derive the scaling laws for the dynamical mass as a function of $\\alpha$ and $N_f$. Up to a multiplicative constant, these scaling laws are related through $(\\alpha, \\alpha_c) \\leftrightarrow (1/N_f, 1/N_f^c)$. Calculation of the mass anomalous dimension $\\gamma_m$ shows that it is always greater than its value in the quenched case. We also evaluate the $\\beta$-function. The criticality plane is drawn in the $(\\alpha...

  15. Chiral matrix model of the semi-QGP in QCD

    Science.gov (United States)

    Pisarski, Robert D.; Skokov, Vladimir V.

    2016-08-01

    Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the

  16. Dynamical chiral symmetry breaking and weak nonperturbative renormalization group equation in gauge theory

    CERN Document Server

    Aoki, Ken-Ichi; Sato, Daisuke

    2016-01-01

    We analyze the dynamical chiral symmetry breaking in gauge theory with the nonperturbative renormalization group equation (NPRGE), which is a first order nonlinear partial differential equation (PDE). In case that the spontaneous chiral symmetry breaking occurs, the NPRGE encounters some non-analytic singularities at the finite critical scale even though the initial function is continuous and smooth. Therefore there is no usual solution of the PDE beyond the critical scale. In this paper, we newly introduce the notion of a weak solution which is the global solution of the weak NPRGE. We show how to evaluate the physical quantities with the weak solution.

  17. Managing the critical zone to obtain and sustain multiple benefits from working landscapes: The value of partnerships between LTAR and NSF CZO networks

    Science.gov (United States)

    Lohse, K. A.; Seyfried, M. S.; Pierson, F. B.

    2015-12-01

    The Critical Zone Observatories add value to earth system science and society by addressing research gaps to understand the critical zone, the surface skin of the earth that extends from the top of the tree canopy to the lower limits of the groundwater. The Critical Zone (CZ) sustains life on earth and provides food, shelter, forage, and fuel and other services to human well-being. This Zone is also where most of human activities take place and thus subject to change and degradation. Managing the critical zone to obtain and sustain these services will require initiatives, policies and incentives that maintain and enhance this zone. The Critical Zone Observatories are seeking to address major gaps in understanding how earth surface evolves over time and how it will respond to future changes. Many of these gaps in our understanding occur at the interface between disciplines, across space and deep time scales, and multiple dimensions. For example, the Reynolds Creek CZO seeks to understand the role of soil environmental variables such as soil moisture and depth that vary across complex terrain in governing soil carbon storage and turnover in a semi-arid environment. For this reason, soil samples are being collected to depth of bedrock. Other networks and agencies such as the new LTAR and NEON are quantifying soil carbon at more shallow depths that will likely capture the variability in near surface soil carbon that is more sensitive to management and climate changes but may underestimate the total stores of carbon on the landscape. The CZOs also provide a platform to conduct interdisciplinary to transdisciplinary science by integrating across geological, soil, hydrologic, ecological, and social sciences to understand the critical zone. The emergence of the CZO Network and the LTAR network brings the opportunity to standardize methods and test hypotheses and ask questions across broad environmental conditions and gradients that could not be achieved with single

  18. Local and global chirality at surfaces: succinic acid versus tartaric acid on Cu110.

    Science.gov (United States)

    Humblot, Vincent; Lorenzo, Maria Ortega; Baddeley, Christopher J; Haq, Sam; Raval, Rasmita

    2004-05-26

    aligned OH groups of the rigid bitartrate system wield the greatest effect, by favoring one distortion/reconstruction for the (R,R)-bitartrate and its mirror image distortion/reconstruction for the (S,S)-enantiomer, creating surfaces that are globally chiral on the macroscopic scale. So overall, the OH groups do not dictate the general nature of the assembly but are critical as chiral propagators, breaking the degeneracy and thus promoting asymmetry to chirality.

  19. Molecular chirality and chiral capsule-type dimer formation of cyclic triamides via hydrogen-bonding interactions.

    Science.gov (United States)

    Fujimoto, Noriko; Matsumura, Mio; Azumaya, Isao; Nishiyama, Shizuka; Masu, Hyuma; Kagechika, Hiroyuki; Tanatani, Aya

    2012-05-18

    Chiral properties of bowl-shaped cyclic triamides bearing functional groups with hydrogen-bonding ability were examined. Chiral induction of cyclic triamide 3a was observed by addition of chiral amine in solution, and chiral separation was achieved by simple crystallization to afford chiral capsule-type dimer structure of 4a.

  20. Chiral dynamics of S-wave baryon resonances

    CERN Document Server

    Long, Bingwei

    2015-01-01

    As the pion mass approaches a critical value $m_\\pi^\\star$ from below, an $S$-wave resonance crosses pion-baryon threshold and becomes a bound state with arbitrarily small binding energy, thus driving the scattering length to diverge. I explore the consequences of chiral symmetry for the values of $m_\\pi$ close to $m_\\pi^\\star$. It turns out that chiral symmetry is crucial for an $S$-wave resonance to be able to stand very near threshold and in the meantime to remain narrow, provided that the mass splitting is reasonably small. The effective range of pion-baryon scattering is unexpectedly large, proportional to $ 4\\pi f_\\pi^2/m_\\pi^3$ when $m_\\pi$ is around $m_\\pi^\\star$. As a result, this unexpected large length scale causes universality relations to break down much sooner than naively expected.

  1. Disorienting the Chiral Condensate at the QCD Phase Transition

    CERN Document Server

    Rajagopal, K

    1997-01-01

    I sketch how long wavelength modes of the pion field can be amplified during the QCD phase transition. If nature had been kinder, and had made the pion mass significantly less than the critical temperature for the transition, then this phenomenon would have characterized the transition in thermal equilibrium. Instead, these long wavelength oscillations of the orientation of the chiral condensate can only arise out of equilibrium. There is a simple non-equilibrium mechanism, plausibly operational during heavy ion collisions, which naturally amplifies these oscillations. The characteristic signature of this phenomenon is large fluctuations in the ratio of the number of neutral pions to the total number of pions in regions of momentum space, that is in phase space in a detector. Detection in a heavy ion collision would imply an out of equilbrium chiral transition.

  2. Chiral Symmetry Restoration for the large-$N$ pion gas

    CERN Document Server

    Cortés, Santiago; Morales, John

    2016-01-01

    We analyze chiral restoration within the $O(N+1)/O(N)$ Non-Linear Sigma Model for large $N$ as an effective theory for low-energy QCD at finite temperature $T$. The free energy is constructed diagramatically to $O(M^3)$ in the pion mass, which allows to derive the quark condensate and the scalar susceptibility in the chiral limit. At this order, we do not have to deal with renormalization, neither from divergences from mass tadpoles nor from those of higher order loop contributions. Our results for the critical behaviour are consistent with expectations from lattice analysis and with previous works where the susceptibility is saturated by the thermal $f_0(500)$ pole.

  3. Elastic origin of chiral selection in DNA wrapping

    Science.gov (United States)

    Yanao, Tomohiro; Yoshikawa, Kenichi

    2008-02-01

    We investigated the mechanism that underlies the chiral selection on the direction of wrapping of DNA around a nucleosome core particle. A coarse-grained model for the formation of a nucleosome is introduced, in which DNA is treated as a semiflexible polymer and the histone core is modeled by a spherical particle. Asymmetric coupling between bending and twisting is incorporated into the model DNA, which is expected from the double-stranded helical structure of DNA. We show that the tendency of DNA to twist in a left-handed manner upon bending gives rise to the selective left-handed wrapping, provided that the size of the core particle is chosen appropriately. This result suggests the critical importance of the chiral asymmetry inherent in the bending-twisting elasticity of DNA as well as the size of the core in determining the handedness of wrapping in nucleosome formation.

  4. Quark Mass Correction to Chiral Separation Effect and Pseudoscalar Condensate

    CERN Document Server

    Guo, Er-dong

    2016-01-01

    We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.

  5. Subcritical Multiplication Parameters of the Accelerator-Driven System with 100 MeV Protons at the Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Jae-Yong Lim

    2012-01-01

    Full Text Available Basic experiments on the accelerator-driven system (ADS at the Kyoto University Critical Assembly are carried out by combining a solid-moderated and -reflected core with the fixed-field alternating gradient accelerator. The reaction rates are measured by the foil activation method to obtain the subcritical multiplication parameters. The numerical calculations are conducted with the use of MCNPX and JENDL/HE-2007 to evaluate the reaction rates of activation foils set in the core region and at the location of the target. Here, a comparison between the measured and calculated eigenvalues reveals a relative difference of around 10% in C/E values. A special mention is made of the fact that the reaction rate analyses in the subcritical systems demonstrate apparently the actual effect of moving the tungsten target into the core on neutron multiplication. A series of further ADS experiments with 100 MeV protons needs to be carried out to evaluate the accuracy of subcritical multiplication parameters.

  6. Chiral extraction of ketoprofen enantiomers with chiral selector tartaric esters

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dan; LIU Jia-jia; TANG Ke-wen; HUANG Ke-long

    2007-01-01

    Distribution behavior of ketoprofen enantiomers was examined in methanol aqueous and organic solvent mixture containing tartaric esters. The influence of length of alkyl chain of tartaric esters, concentration of L-tartaric esters and methanol aqueous, kind of organic solvent on partition ratio and separation factors was investigated. The results show that L-tartaric and D-tartaric esters have different chiral recognition abilities. S-ketoprofen is easily extracted by L-tartaric esters, and R-ketoprofen is easily extracted by D-tartaric esters. L-tartaric esters form more stable diastereomeric complexes with S-enantiomer than that with R-enantiomer. This distribution behavior is consistent with chiral recognition mechanism. With the increase of the concentration of tartaric ester from 0 to 0.3 mol/L, partition coefficient K and separation factor α increase. Also, the kind of organic solvent and the concentration of the methanol aqueous have significant influence on K and α.

  7. Spectral study of a chiral limit without chiral condensate

    CERN Document Server

    Bietenholz, Wolfgang

    2009-01-01

    Random Matrix Theory (RMT) has elaborated successful predictions for Dirac spectra in field theoretical models. However, a generic assumption by RMT has been a non-vanishing chiral condensate $\\Sigma$ in the chiral limit. Here we consider the 2-flavour Schwinger model, where this assumption does not hold. We simulated this model with dynamical overlap hypercube fermions, and entered terra incognita by analysing this Dirac spectrum. The usual RMT prediction for the unfolded level spacing distribution in a unitary ensemble is precisely confirmed. The microscopic spectrum does not perform a Banks-Casher plateau. Instead the obvious expectation is a density of the lowest eigenvalue $\\lambda_{1}$ which increases $\\propto \\lambda_{1}^{1/3}$. That would correspond to a scale-invariant parameter $\\propto \\lambda V^{3/4}$, which is, however, incompatible with our data. Instead we observe to high precision a scale-invariant parameter $z \\propto \\lambda V^{5/8}$. This surprising result implies a microscopic spectral den...

  8. Chiral Lagrangian and chiral quark model from confinement in QCD

    CERN Document Server

    Simonov, Yu A

    2015-01-01

    The effective chiral Lagrangian in both nonlocal form $L_{ECCL}$ and standard local form $L_{ECL}$ are derived in QCD using the confining kernel, obtained in the vacuum correlator formalism. As a result all coefficients of $L_{ECL}$ can be computed via $q\\bar q$ Green's functions. In the $p^2$ order of $L_{ECL}$ one obtains GOR relations and quark decay constants $f_a$ are calculated $a=1,...8$, while in the $p^4$ order the coefficients $L_1, L_2, L_3,L_4, L_5, L_6$ are obtained in good agreement with the values given by data. The chiral quark model is shown to be a simple consequence of $L_{ECCL}$ with defined coefficients. It is demonstrated that $L_{ECCL}$ gives an extension of the limiting low-energy Lagrangian $L_{ECL}$ to arbitrary momenta.

  9. Chiral Symmetry Restoration with a Chiral Chemical Potential: the Role of Momentum Dependent Quark Self-energy

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows to introduce in the simplest way possible a Euclidean momentum, $p_E$, dependent quark mass function which decays (neglecting logarithms) as $1/p_E^2$ for large $p_E$ in agreement with asymptotic behaviour expected in presence of a nonperturbative quark condensate. We show that the momentum dependence of the quark mass function, which has been neglected in all of the previous model studies, drastically affects the dependence of the critical temperature versus $\\mu_5$. We explain this in terms of a natural removal of ultraviolet modes at $T>0$ in the gap equation, as well as of the natural addition of these modes at $T=0$ which help to catalyze chiral symmetry breaking. As a result we find that within this model the critical temperature increases with $\\mu_5$.

  10. Characterizing multiple sources and interaction in the critical zone through Sr-isotope tracing of surface and groundwater

    Science.gov (United States)

    Negrel, Philippe; Pauwels, Hélène

    2017-04-01

    The Critical Zone (CZ) is the lithosphere-atmosphere boundary where complex physical, chemical and biological processes occurs and control the transfer and storage of water and chemical elements. This is the place where life-sustaining resources are, where nutrients are being released from the rocks. Because it is the place where we are living, this is a fragile zone, a critical zone as a perturbed natural ecosystem. Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Here, we first report on Sr isotope data as well as major ions, from shallow and deep groundwater in several granite and schist areas over France with intensive agriculture covering large parts of these catchments. In three granite and Brioverian 'schist' areas of the Armorican Massif, the range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are partly related to agricultural practices and water rock interaction. The relationship between Sr- isotope and Mg/Sr ratios allow defining the different end-members, mainly rain, agricultural practice and water-rock interaction. The data from the Armorican Massif and other surface and groundwater for catchment draining silicate bedrocks (300-450Ma) like the Hérault, Seine, Moselle, Garonne, Morvan, Margeride, Cantal, Pyrénées and Vosges are scattered between at least three geochemical signatures. These include fertilizer and

  11. Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media

    Energy Technology Data Exchange (ETDEWEB)

    Chernodub, M.N. [CNRS, Laboratoire de Mathématiques et Physique Théorique,Université de Tours, 37200 (France); Soft Matter Physics Laboratory, Far Eastern Federal University,Sukhanova 8, Vladivostok (Russian Federation); Department of Physics and Astronomy, University of Gent,Krijgslaan 281, S9, Gent (Belgium)

    2016-01-18

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.

  12. Mechanism of chirality conversion by periodic change of temperature: Role of chiral clusters

    Science.gov (United States)

    Katsuno, Hiroyasu; Uwaha, Makio

    2016-01-01

    By grinding crystals in a solution, the chirality of crystal structure (and the molecular chirality for the case of chiral molecules as well) can be converted, and the cause of the phenomenon is attributed to crystal growth with chiral clusters. We show that the recently found chirality conversion with a periodic change of temperature can also be explained by crystal growth with chiral clusters. With the use of a generalized Becker-Döring model, which includes enantio-selective incorporation of small chiral clusters to large solid clusters, the change of cluster distribution and the mass flow between clusters are studied. The chiral clusters act as a reservoir to pump out the minority species to the majority, and the exponential amplification of the enantiomeric excess found in the experiment is reproduced in the numerical calculation.

  13. Focusing, Power Tunneling and Rejection from Chiral and/or Chiral Nihility/Nihility Metamaterials Layers

    CERN Document Server

    Shah, Syed Touseef Hussain; Syed, Aqeel A; Naqvi, Qaisar Abbas

    2013-01-01

    Focusing of electromagnetic plane wave from a large size paraboloidal reflector, composed of layers of chiral and/or chiral nihility metamaterials, has been studied us- ing Maslov's method. First, the transmission and reflection of electromagnetic plane wave from two parallel layers of chiral and/or chiral nihility metamaterials are cal- culated using transfer matrix method. The effects of change of angle of incidence, chirality parameters and impedances of layers are noted and discussed. Special cases by taking very large and small values of permittivity of second layer, while assuming value of corresponding chirality equal to zero, are also treated. These special cases are equivalent to reflection from a perfect electric conductor backed chiral layer and nihility backed chiral layer, respectively. Results of reflection from parallel layers have been utilized to study focusing from a large size paraboloidal reflector. The present study, on focusing from a paraboloidal re{\\deg}ector, not only unifies several ...

  14. Quantum networks with chiral light--matter interaction in waveguides

    CERN Document Server

    Mahmoodian, Sahand; Sørensen, Anders S

    2016-01-01

    We design and analyze a simple on-chip photonic circuit that can form a universal building block of a quantum network. The circuit consists of a single-photon source, and two quantum emitters positioned in two arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral light--matter interfaces. The efficient chiral light--matter interaction allows the emitters to act as photon sources to herald internode entanglement, and to perform high-fidelity intranode two-qubit gates within a single chip without any need for reconfiguration. We show that by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities ${\\cal F} \\sim 0.998$ achievable in state-of-the-art quantum dot systems.

  15. Quantum Networks with Chiral-Light-Matter Interaction in Waveguides

    Science.gov (United States)

    Mahmoodian, Sahand; Lodahl, Peter; Sørensen, Anders S.

    2016-12-01

    We propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral-light-matter interfaces. The efficient chiral-light-matter interaction allows the emitters to perform high-fidelity intranode two-qubit parity measurements within a single chip and to emit photons to generate internode entanglement, without any need for reconfiguration. We show that, by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities F ˜0.998 achievable in state-of-the-art quantum dot systems.

  16. Coherence specific signal detection via chiral pump-probe spectroscopy

    CERN Document Server

    Holdaway, David I H; Olaya-Castro, Alexandra

    2016-01-01

    We examine the transient circular dichroism as a technique to investigate exciton coherence signatures in structured vibrational environments. We consider multiple beam configurations, in terms of both direction and polarization, which provide independent contributions to the signal. We develop a formalism in terms of chiral doorway and windows contributions. Using this formalism we show that signals which beat during the population time can be isolated by comparing signals from configurations in which the angle between the pump and probe pulses is varied. The chiral doorway signal has only a weak ground state contribution, which can generally be neglected if a short pump pulse is used, allowing for unambiguous identification of quantum superpositions of exciton states.

  17. Chiral nanoparticles in singular light fields

    Science.gov (United States)

    Vovk, Ilia A.; Baimuratov, Anvar S.; Zhu, Weiren; Shalkovskiy, Alexey G.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2017-04-01

    The studying of how twisted light interacts with chiral matter on the nanoscale is paramount for tackling the challenging task of optomechanical separation of nanoparticle enantiomers, whose solution can revolutionize the entire pharmaceutical industry. Here we calculate optical forces and torques exerted on chiral nanoparticles by Laguerre-Gaussian beams carrying a topological charge. We show that regardless of the beam polarization, the nanoparticles are exposed to both chiral and achiral forces with nonzero reactive and dissipative components. Longitudinally polarized beams are found to produce chirality densities that can be 109 times higher than those of transversely polarized beams and that are comparable to the chirality densities of beams polarized circularly. Our results and analytical expressions prove useful in designing new strategies for mechanical separation of chiral nanoobjects with the help of highly focussed beams.

  18. Symmetries of Ginsparg-Wilson Chiral Fermions

    CERN Document Server

    Mandula, Jeffrey E

    2009-01-01

    The group structure of the variant chiral symmetry discovered by Luscher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter subgroup, and the factor group whose elements are its cosets is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, non-commuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example - free overlap fermions - these non-canonical elements of lattice chiral symmetry are...

  19. Enantioselective recognition at mesoporous chiral metal surfaces

    Science.gov (United States)

    Wattanakit, Chularat; Côme, Yémima Bon Saint; Lapeyre, Veronique; Bopp, Philippe A.; Heim, Matthias; Yadnum, Sudarat; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2014-02-01

    Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes.

  20. Molecular chirality: language, history, and significance.

    Science.gov (United States)

    Gal, Joseph

    2013-01-01

    In this chapter some background material concerning molecular chirality and enantiomerism is presented. First some basic chemical-molecular aspects of chirality are reviewed, after which certain relevant terminology whose use in the literature has been problematic is discussed. Then an overview is provided of some of the early discoveries that laid the foundations of the science of molecular chirality in chemistry and biology, including the discovery of the phenomenon of molecular chirality by L. Pasteur, the proposals for the asymmetric carbon atom by J.H. van 't Hoff and J.A. Lebel, Pasteur's discovery of biological enantioselectivity, the discovery of enantioselectivity at biological receptors by A. Piutti, the studies of enzymatic stereoselectivity by E. Fischer, and the work on enantioselectivity in pharmacology by A. Cushny. Finally, the role of molecular chirality in pharmacotherapy and new-drug development, arguably one of the main driving forces for the current intense interest in the phenomenon of molecular chirality, is discussed.

  1. Spatial control of chirality in supramolecular aggregates

    Science.gov (United States)

    Castriciano, Maria A.; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù

    2017-01-01

    Chirality is one of the most intriguing properties of matter related to a molecule’s lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic. PMID:28275239

  2. Spatial control of chirality in supramolecular aggregates.

    Science.gov (United States)

    Castriciano, Maria A; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù

    2017-03-09

    Chirality is one of the most intriguing properties of matter related to a molecule's lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic.

  3. Asymmetric synthesis using chiral-encoded metal

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  4. ENANTIOMERIC RATIOS OF CHIRAL PCB ATROPISOMERS IN RADIODATED SEDIMENT CORES

    Science.gov (United States)

    Enantiomeric ratios (ERs)) of chiral polychlorinated biphenyl (PCB) atropisomers were quantified in radiodated sediment cores of Lake Hartwell SC, a reservoir heavily impacted by PCBS, to study spatial and temporal changes in chirality. A chiral analysis of cores showed accumulat...

  5. Objects of maximum electromagnetic chirality

    CERN Document Server

    Fernandez-Corbaton, Ivan

    2015-01-01

    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.

  6. Negative refractive index in chiral metamaterials.

    Science.gov (United States)

    Zhang, Shuang; Park, Yong-Shik; Li, Jensen; Lu, Xinchao; Zhang, Weili; Zhang, Xiang

    2009-01-16

    We experimentally demonstrate a chiral metamaterial exhibiting negative refractive index at terahertz frequencies. The presence of strong chirality in the terahertz metamaterial lifts the degeneracy for the two circularly polarized waves and allows for the achievement of negative refractive index without requiring simultaneously negative permittivity and negative permeability. The realization of terahertz chiral negative index metamaterials offers opportunities for investigation of their novel electromagnetic properties, such as negative refraction and negative reflection, as well as important terahertz device applications.

  7. Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.

    Science.gov (United States)

    Zhang, Ying; Ye, Jing; Liu, Min

    2017-01-01

    Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs

  8. Constructions of Chiral Polytopes of Small Rank

    CERN Document Server

    D'Azevedo, Antonio Breda; Schulte, Egon

    2010-01-01

    An abstract polytope of rank n is said to be chiral if its automorphism group has precisely two orbits on the flags, such that adjacent flags belong to distinct orbits. The present paper describes a general method for deriving new finite chiral polytopes from old finite chiral polytopes of the same rank. In particular, the technique is used to construct many new examples in ranks 3, 4 and 5.

  9. A spectral route to determining chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We show how one-dimensional structured media can be used to measure chirality, via the spectral shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases, be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Using...... this mapping, we derive a first-order shift of the band gap edges with chirality. Potentially, this effect could be used for measuring enantiomeric excess....

  10. Infinite Chiral Symmetry in Four Dimensions

    CERN Document Server

    Beem, Christopher; Liendo, Pedro; Peelaers, Wolfger; Rastelli, Leonardo; van Rees, Balt C

    2015-01-01

    We describe a new correspondence between four-dimensional conformal field theories with extended supersymmetry and two-dimensional chiral algebras. The meromorphic correlators of the chiral algebra compute correlators in a protected sector of the four-dimensional theory. Infinite chiral symmetry has far-reaching consequences for the spectral data, correlation functions, and central charges of any four-dimensional theory with ${\\mathcal N}=2$ superconformal symmetry.

  11. Chiral near fields generated from plasmonic lattices

    CERN Document Server

    Canaguier-Durand, Antoine

    2014-01-01

    Plasmonic fields are usually considered non-chiral because of the transverse magnetic polarization of surface plasmon modes. We however show here that plasmonic lattices built from coherent superpositions of surface plasmons can generate optical chirality in the interfering near field. We reveal in particular the emergence of plasmonic potentials relevant to the generation of near-field chiral forces. This draws promising perspectives for performing enantiomeric separation schemes within the near field.

  12. Chiral Plasmonic Nanostructures on Achiral Nanopillars

    Science.gov (United States)

    2013-10-10

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU Approved for public release; distribution is unlimited. Chiral Plasmonic Nanostructures on Achiral...Nanopillars Chirality of plasmonic films can be strongly enhanced by threedimensional (3D) out-of-plane geometries. The complexity of lithographic...methods currently used to produce such structures and other methods utilizing chiral templates impose limitations on spectral windows of chiroptical

  13. Chirality and the angular momentum of light

    Science.gov (United States)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.

    2017-02-01

    Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions. This article is part of the themed issue 'Optical orbital angular momentum'.

  14. Chiral phases of fundamental and adjoint quarks

    Energy Technology Data Exchange (ETDEWEB)

    Natale, A. A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica - UNESP Rua Dr. Bento T. Ferraz, 271, Bl.II - 01140-070, São Paulo, SP (Brazil)

    2016-01-22

    We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.

  15. Chiral Separation of Erythromycin as a New Chiral Selector on CE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Erythromycin as a new chiral selector was first used for chrial separation of four derivatives of biphenyldimethylester enantiomers on CE. The influence of pH, the chiral selector concentration and organic modifiers were preliminarily studied. Experiments show that the erythromycin as chiral selector is useful to CE.

  16. Chiral Induction with Chiral Conformational Switches in the Limit of Low "Sergeants to Soldiers" Ratio

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Bombis, Christian; Knudsen, Martin Markvard

    2014-01-01

    " mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data we demonstrate successful chiral induction with a very low concentration of seeding...

  17. Staggered chiral random matrix theory

    CERN Document Server

    Osborn, James C

    2010-01-01

    We present a random matrix theory (RMT) for the staggered lattice QCD Dirac operator. The staggered RMT is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  18. Deconfinement, chiral transition and localisation in a QCD-like model

    CERN Document Server

    Giordano, Matteo; Kovacs, Tamas G; Pittler, Ferenc

    2016-01-01

    We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension $N_T=4$. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.

  19. Application of modified amino acid as a chiral building block in asymmetric synthesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Phenylglycine 1 as a representative of natural resourceful (-amino acid was modified by reduction and protection of functional group to afford the amino alcohol as a chiral building block 3. A new chiral compound, the chiral building block/spiro-cyclopropane derivative containing four stereogenic centers, compound 7, has been obtained in 52% yield with de≥98% via the tandem double Michael addition/internal nucleophilic substitution under mild condition of 5-l-menthyloxy-3-bromo-2-(5H)-furanone 4 with the nucleophilic reagent, the amino alcohol 3. The new chiral compound 7 is identified on the basis of its analytical data and spectroscopic data, such as UV, IR, 1H NMR, 13C NMR, MS and elementary analysis. The absolute configuration of the interesting spiro-cyclopropanes 7 was established by X-ray crystallography. This result can provide new route and method for the introduction of chiral building block and the important synthetic strategy in synthesis of some complex molecules containing spiro-cyclopropane skeleton with multiple chiral centers and the study of their biological activity.

  20. Chiral methyl-branched pheromones.

    Science.gov (United States)

    Ando, Tetsu; Yamakawa, Rei

    2015-07-01

    Insect pheromones are some of the most interesting natural products because they are utilized for interspecific communication between various insects, such as beetles, moths, ants, and cockroaches. A large number of compounds of many kinds have been identified as pheromone components, reflecting the diversity of insect species. While this review deals only with chiral methyl-branched pheromones, the chemical structures of more than one hundred non-terpene compounds have been determined by applying excellent analytical techniques. Furthermore, their stereoselective syntheses have been achieved by employing trustworthy chiral sources and ingenious enantioselective reactions. The information has been reviewed here not only to make them available for new research but also to understand the characteristic chemical structures of the chiral pheromones. Since biosynthetic studies are still limited, it might be meaningful to examine whether the structures, particularly the positions and configurations of the branched methyl groups, are correlated with the taxonomy of the pheromone producers and also with the function of the pheromones in communication systems.

  1. Chiral symmetry breaking and monopoles

    CERN Document Server

    Di Giacomo, Adriano; Pucci, Fabrizio

    2015-01-01

    To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...

  2. Effects from inhomogeneities in the chiral transition

    CERN Document Server

    Taketani, B G; Taketani, Bruno G.; Fraga, Eduardo S.

    2006-01-01

    We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density in the presence of a chiral background field which systematically incorporates effects from inhomogeneities in the chiral field through a derivative expansion. We apply the method to the case of a simple low-energy effective chiral model which is commonly used in the study of the chiral phase transition, the linear sigma-model coupled to quarks. The modifications in the effective potential and their consequences for the bubble nucleation process are discussed.

  3. Supramolecular Chirality in Dynamic Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Hiroyuki Miyake

    2014-10-01

    Full Text Available Labile metal complexes have a useful coordination bond; which is weaker than a covalent C–C bond and is reversibly and dynamically formed and dissociated. Such labile metal complexes also can be used to construct chiral shapes and offer dynamic conversion of chiral molecular shapes in response to external stimuli. This review provides recent examples of chirality induction and describes the dynamic conversion systems produced by chiral metal complexes including labile metal centers, most of which respond to external stimuli by exhibiting sophisticated conversion phenomena.

  4. Laser Writing of Multiscale Chiral Polymer Metamaterials

    Directory of Open Access Journals (Sweden)

    E. P. Furlani

    2012-01-01

    Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.

  5. Plasmonic lateral forces on chiral spheres

    CERN Document Server

    Canaguier-Durand, Antoine

    2015-01-01

    We show that the optical force exerted on a finite size chiral sphere by a surface plasmon mode has a component along a direction perpendicular to the plasmon linear momentum. We reveal how this chiral lateral force, pointing in opposite directions for opposite enantiomers, stems from an angular-to-linear crossed momentum transfer involving the plasmon transverse spin angular momentum density and mediated by the chirality of the sphere. Our multipolar approach allows us discussing the inclusion of the recoil term in the force on a small sphere taken in the dipolar limit and observing sign inversions of the lateral chiral force when the size of the sphere increases.

  6. On the gauging of chiral bosons

    CERN Document Server

    Wotzasek, C

    1995-01-01

    We study the coupling of chiral bosons to external electromagnetic fields. It is observed that a naive gauging procedure leaves the gauge invariant chirality condition incompatible with the field equations. We propose the use of this feature as a consistency test to select the appropriate way to perform the gauge coupling. We verify that among all the possible gauging schemes, only the coupling of gauge fields with chiral currents passes the consistency test. As an application, we use this gauging scheme to show how the introduction of a gauge field becomes necessary in order to sold together a right and a left chiral boson.

  7. PWR-UO{sub 2} nuclear fuel criticality study: control rod effects on infinite neutron multiplication factor and spent fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, R.V.; Pereira, C., E-mail: claubia@nuclear.ufmg.br; Silva, C.A.M.; Costa, A.L.; Veloso, M.A.F.; Oliveira, A.H. de

    2013-10-15

    Highlights: • A three-dimensional model of a PWR fuel were simulated. • Results using TRITON/T6-DEPL module in SCALE 6.0 and two libraries (238 and 44 groups) were compared. • Variations in the infinite neutron multiplication factor and the nuclides concentrations, both under control rod insertion effects were analysed. • Results show very good agreement with those published by OECD. -- Abstract: Deterministic and stochastic nuclear codes are software packages used to perform reactor physics calculations, especially in PWRs, the most common type of nuclear reactor currently in operation. The NEA Expert Group on Burn-up Credit Criticality Safety has published a Benchmark with results obtained from simulations of PWR-UO{sub 2} nuclear fuel. The same simulations were performed at DEN/UFMG with SCALE 6.0, a modular nuclear system code developed by Oak Ridge National Laboratory using two different neutron energy libraries (238 and 44 groups). The results obtained using a three-dimensional model with the T6-DEPL sequence of the TRITON module in SCALE 6.0 for spent fuel inventory and infinite neutron multiplication factor calculations show very good agreement with those published by the OECD. The main goal of this work is to validate the methodology at DEN/UFMG for future use in simulations related to Angra I, II and III Nuclear Power Plants.

  8. Synthesis and Chiral Recognition of a New Type of Chiral Calix[4]arene Derivatives

    Institute of Scientific and Technical Information of China (English)

    HE,Yong-Bing; LI,Jian-Feng; XIAO,Yuan-Jing; WEI,Lan-Hua; WU,Xiao-Jun; MENG,Ling-Zhi

    2003-01-01

    Two new chiral calix[4] arenes bearing chiral pendants, which were from by-product of the antibiotic industry, were synthesized and characterized by 1H NMR, MS-FAB and elemental analysis. Studies of 1H NMR of the two calix [4] arene derivatives indicate that they exist in cone conformation in solution. Results of chiral recognition of the two chiral ligands 2a and 2b towards the tartaric acid derivative 3 show that ligand 2a exhibited good chiral recognition abilities compared to ligand 2b.

  9. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates.

    Science.gov (United States)

    Helmich, Floris; Lee, Cameron C; Schenning, Albertus P H J; Meijer, E W

    2010-12-01

    Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the coaggregates by axial ligation with a Lewis base. After this extraction, the preferred helicity observed for the aggregates containing achiral Cu porphyrins reveals a chiral memory effect that is stable and can be erased and partially restored upon subsequent heating and cooling.

  10. The Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields

    CERN Document Server

    Poulikakos, Lisa V; McPeak, Kevin M; Burger, Sven; Niegemann, Jens; Hafner, Christian; Norris, David J

    2016-01-01

    To optimize the interaction between chiral matter and highly twisted light, quantities that can help characterize chiral electromagnetic fields near nanostructures are needed. Here, by analogy with Poynting's theorem, we formulate the time-averaged conservation law of optical chirality in lossy dispersive media and identify the optical chirality flux as an ideal far-field observable for characterizing chiral optical near fields. Bounded by the conservation law, we show that it provides precise information, unavailable from circular dichroism spectroscopy, on the magnitude and handedness of highly twisted fields near nanostructures.

  11. A Robust, Recyclable Resin for Decagram Scale Resolution of (±)-Mefloquine and Other Chiral N-Heterocycles.

    Science.gov (United States)

    Kreituss, Imants; Chen, Kuang-Yen; Eitel, Simon H; Adam, Jean-Michel; Wuitschik, Georg; Fettes, Alec; Bode, Jeffrey W

    2016-01-22

    Decagram quantities of enantiopure (+)-mefloquine have been produced via kinetic resolution of racemic mefloquine using a ROMP-gel supported chiral acyl hydroxamic acid resolving agent. The requisite monomer was prepared in a few synthetic steps without chromatography and polymerization was safely performed on a >30 gram scale under ambient conditions. The reagent was readily regenerated and reused multiple times for the resolution of 150 grams of (±)-mefloquine and other chiral N-heterocylces.

  12. The QCD phase transition with physical-mass, chiral quarks

    CERN Document Server

    Bhattacharya, Tanmoy; Christ, Norman H; Ding, H -T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-01-01

    We report on the first lattice calculation of the QCD phase transition using chiral fermions at physical values of the quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm$)^3$ and (11 fm$)^3$ and temperatures between 139 and 196 MeV . Each temperature was calculated using a single lattice spacing corresponding to a temporal Euclidean extent of $N_t=8$. The disconnected chiral susceptibility, $\\chi_{\\rm disc}$ shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability in the region of the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD ``phase transition'' is not first order but a continuous cross-over for $m_\\pi=135$ MeV. The peak location determines a pseudo-critical temperature $T_c = 155(1)(8)$ MeV. Chiral $SU(2)_L\\times SU(2)_R$ symmetry is fully restored above 164 MeV, but anomalous $U(1)_A$ symmetry breaking is non-zero above $T...

  13. Chiral order and fluctuations in multi-flavour QCD

    CERN Document Server

    Descotes-Genon, S; Stern, J

    2003-01-01

    Multi-flavour (N_f>=3) Chiral Perturbation Theory (ChPT) may exhibit instabilities due to vacuum fluctuations of sea q-bar q pairs. Keeping the fluctuations small would require a very precise fine-tuning of the low-energy constants L_4 and L_6 to L_4[crit](M_rho) = - 0.51 * 10^(-3), and L_6[crit](M_rho) = - 0.26 * 10^(-3). A small deviation from these critical values -- like the one suggested by the phenomenology of OZI-rule violation in the scalar channel -- is amplified by huge numerical factors inducing large effects of vacuum fluctuations. This would lead in particular to a strong N_f-dependence of chiral symmetry breaking and a suppression of multi-flavour chiral order parameters. A simple resummation is shown to cure the instability of N_f>=3 ChPT, but it modifies the standard expressions of some O(p^2) and O(p^4) low-energy parameters in terms of observables. On the other hand, for r=m_s/m > 15, the two-flavour condensate is not suppressed, due to the contribution induced by massive vacuum s-bar s pair...

  14. Dynamical chiral symmetry breaking in unquenched QED3

    Science.gov (United States)

    Fischer, C. S.; Alkofer, R.; Dahm, T.; Maris, P.

    2004-10-01

    We investigate dynamical chiral symmetry breaking in unquenched QED3 using the coupled set of Dyson-Schwinger equations for the fermion and photon propagators. For the fermion-photon interaction we employ an ansatz which satisfies its Ward-Green-Takahashi identity. We present self-consistent analytical solutions in the infrared as well as numerical results for all momenta. In Landau gauge, we find a phase transition at a critical number of flavors of Ncritf≈4. In the chirally symmetric phase the infrared behavior of the propagators is described by power laws with interrelated exponents. For Nf=1 and Nf=2 we find small values for the chiral condensate in accordance with bounds from recent lattice calculations. We investigate the Dyson-Schwinger equations in other linear covariant gauges as well. A comparison of their solutions to the accordingly transformed Landau gauge solutions shows that the quenched solutions are approximately gauge covariant, but reveals a significant amount of violation of gauge covariance for the unquenched solutions.

  15. Discovery of the First Interstellar Chiral Molecule: Propylene Oxide

    Science.gov (United States)

    Carroll, Brandon; McGuire, Brett A.; Loomis, Ryan; Finneran, Ian A.; Jewell, Philip; Remijan, Anthony; Blake, Geoffrey

    2016-06-01

    Life on Earth relies on chiral molecules, that is, species not superimposable on their mirror images. This manifests itself as a reliance on a single molecular handedness, or homochirality that is characteristic of life and perhaps most readily apparent in the large enhancement in biological activity of particular amino acid and sugar enantiomers. Yet, the ancestral origin of biological homochirality remains a mystery. The non-racemic ratios in some organics isolated from primitive meteorites hint at a primordial chiral seed but even these samples have experienced substantial processing during planetary assembly, obscuring their complete histories. To determine the underlying origin of any enantiomeric excess, it is critical to understand the molecular gas from which these molecules originated. Here, we present the first extra-solar, astronomical detection of a chiral molecule, propylene oxide (CH_3CHCH_2O), in absorption toward the Galactic Center. With the detection of propylene oxide, we at last have a target for broad-ranging searches for the possible cosmic origin of the homochirality of life.

  16. Liquid crystal behavior induced assembling fabrication of conductive chiral MWCNTs@NCC nanopaper

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yumei; Wang, Tianjiao; Chen, Zhimin; Li, Jing; Tian, Qiuge; Yang, Hongxia; Xu, Qun, E-mail: qunxu@zzu.edu.cn

    2016-11-01

    Highlights: • In this study conductive chiral MWCNTs@NCC nanopapers were prepared. • The introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. • The multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. • The resulting nanopaper has an increased conductivity. - Abstract: The conductive chiral MWCNTs@NCC nanopapers obtained by the assembly of nanocrystalline cellulose liquid crystals (NCC LCs) host matrix along with one-dimensional (1-D) multi-walled carbon nanotubes (MWCNTs) have been studied in this work. Circular dichroism (CD) studies show strong signals stemming from the chiral nematic structure. Notably, the introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. Our experimental results indicate the multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. Moreover it also confirms the resulting nanopaper has an increased conductivity of 4.2 S/m at 1.96 wt% MWCNTs. So the co-assembly of the nanocomposite herein opens a gateway for preparing functional materials combining the photonic properties of the NCC LCs matrix with other building blocks that can supply other advantageous functions.

  17. U(1) chiral symmetry in a one-dimensional interacting electron system with spin

    Science.gov (United States)

    Lee, Taejin

    2016-11-01

    We study a spin-dependent Tomonaga-Luttinger model in one dimension, which describes electron transport through a single barrier. Using the Fermi-Bose equivalence in one dimension, we map the model onto a massless Thirring model with a boundary interaction. A field theoretical perturbation theory for the model has been developed, and the chiral symmetry is found to play an important role. The classical bulk action possesses a global U A (1)4 chiral symmetry because the fermion fields are massless. This global chiral symmetry is broken by the boundary interaction, and the bosonic degrees of freedom, corresponding to a chiral phase transformation, become dynamical. They acquire an additional kinetic action from the fermion path-integral measure and govern the critical behaviors of the physical operators. On the critical line where the boundary interaction becomes marginal, they decouple from the fermi fields. Consequently, the action reduces to the free-field action, which contains only a fermion bilinear boundary mass term as an interaction term. By using a renormalization group analysis, we obtain a new critical line, which differs from the previously known critical lines in the literature. The result of this work implies that the phase diagram of the one-dimensional electron system may have a richer structure than previously thought.

  18. Zero-momentum modes and chiral limit in compact lattice QED

    CERN Document Server

    Bogolubsky, I L; Müller-Preussker, M; Zverev, N V

    2001-01-01

    The influence of zero-momentum gauge modes on physical observables is investigated for compact lattice QED with dynamical and quenched Wilson fermions. Within the Coulomb phase, zero-momentum modes are shown to hide the critical behaviour of gauge invariant fermion observables near the chiral limit. Methods for eliminating zero-momentum modes are discussed.

  19. Connections between chiral Lagrangians and QCD sum-rules

    CERN Document Server

    Fariborz, Amir H; Steele, T G

    2016-01-01

    It is shown how a chiral Lagrangian framework can be used to derive relationships connecting quark-level QCD correlation functions to mesonic-level two-point functions. Crucial ingredients of this connection are scale factor matrices relating each distinct quark-level substructure (e.g., quark-antiquark, four-quark) to its mesonic counterpart. The scale factors and mixing angles are combined into a projection matrix to obtain the physical (hadronic) projection of the QCD correlation function matrix. Such relationships provide a powerful bridge between chiral Lagrangians and QCD sum-rules that are particularly effective in studies of the substructure of light scalar mesons with multiple complicated resonance shapes and substantial underlying mixings. The validity of these connections is demonstrated for the example of the isotriplet $a_0(980)$-$a_0(1450)$ system, resulting in an unambiguous determination of the scale factors from the combined inputs of QCD sum-rules and chiral Lagrangians. These scale factors ...

  20. Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy

    Science.gov (United States)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.

  1. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles.

    Science.gov (United States)

    Zhou, Yunlong; Marson, Ryan L; van Anders, Greg; Zhu, Jian; Ma, Guanxiang; Ercius, Peter; Sun, Kai; Yeom, Bongjun; Glotzer, Sharon C; Kotov, Nicholas A

    2016-03-22

    Chiroptical materials found in butterflies, beetles, stomatopod crustaceans, and other creatures are attributed to biocomposites with helical motifs and multiscale hierarchical organization. These structurally sophisticated materials self-assemble from primitive nanoscale building blocks, a process that is simpler and more energy efficient than many top-down methods currently used to produce similarly sized three-dimensional materials. Here, we report that molecular-scale chirality of a CdTe nanoparticle surface can be translated to nanoscale helical assemblies, leading to chiroptical activity in the visible electromagnetic range. Chiral CdTe nanoparticles coated with cysteine self-organize around Te cores to produce helical supraparticles. D-/L-Form of the amino acid determines the dominant left/right helicity of the supraparticles. Coarse-grained molecular dynamics simulations with a helical pair-potential confirm the assembly mechanism and the origin of its enantioselectivity, providing a framework for engineering three-dimensional chiral materials by self-assembly. The helical supraparticles further self-organize into lamellar crystals with liquid crystalline order, demonstrating the possibility of hierarchical organization and with multiple structural motifs and length scales determined by molecular-scale asymmetry of nanoparticle interactions.

  2. Cofactor-Controlled Chirality of Tropoisomeric Ligand

    NARCIS (Netherlands)

    Théveau, L.; Bellini, R.; Dydio, P.; Szabo, Z.; van der Werf, A.; Sander, R.A.; Reek, J.N.H.; Moberg, C.

    2016-01-01

    A new tropos ligand with an integrated anion receptor receptor site has been prepared. Chiral carboxylate and phosphate anions that bind in the anion receptor unit proved capable of stabilizing chiral conformations of the achiral flexible bidentate biaryl phosphite ligand, as shown by variable

  3. Chiral magnetic effect in condensed matter systems

    Science.gov (United States)

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].

  4. A NEW CHIRAL ALLOTROPE C80

    Institute of Scientific and Technical Information of China (English)

    詹克明

    1994-01-01

    The theoretical prophecy is given on a new chiral allotrope of Fullerene-C80.C80 molecuule should have 3C2 symmetric axes,which should be vertical each othyer.C80 should have two chiral allotropes,13C-NMR spectra of C80 should consist of 20 lines of equal intensity.

  5. Quenched chiral perturbation theory to one loop

    NARCIS (Netherlands)

    Colangelo, Gilberto; Pallante, Elisabetta

    1998-01-01

    We calculate the divergences of the generating functional of quenched chiral perturbation theory at one loop, and renormalize the theory by an appropriate definition of the counterterms. We show that the quenched chiral logarithms can be accounted for by defining a renormalized B0 parameter which, a

  6. Orientation-Dependent Handedness and Chiral Design

    Directory of Open Access Journals (Sweden)

    Efi Efrati

    2014-01-01

    Full Text Available Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.

  7. Monitoring molecular chirality exchange by photon echoes

    Directory of Open Access Journals (Sweden)

    Mukamel Shaul

    2013-03-01

    Full Text Available We construct pulse polarization configurations in heterodyne four wave mixing for monitoring ultrafast(picosecondexchange rates between optical isomers with axial chirality.This information is not available from linear circular dichroism,since enantiomers may not be isolated and racemate shows no chiral signal.

  8. LINEARLY POLARIZED PROBES OF SURFACE CHIRALITY

    NARCIS (Netherlands)

    VERBIEST, T; KAURANEN, M; MAKI, JJ; TEERENSTRA, MN; SCHOUTEN, AJ; NOLTE, RJM; PERSOONS, A

    1995-01-01

    We present a new nonlinear optical technique to study surface chirality. We demonstrate experimentally that the efficiency of second-harmonic generation from isotropic chiral surfaces is different for excitation with fundamental light that is +45 degrees and -45 degrees linearly polarized with respe

  9. DEVELOPMENT AND REGISTRATION OF CHIRAL DRUGS

    NARCIS (Netherlands)

    WITTE, DT; ENSING, K; FRANKE, JP; DEZEEUW, RA

    1993-01-01

    In this review we describe the impact of chirality on drug development and registration in the United States, Japan and the European Community. Enantiomers may have differences in their pharmacological profiles, and, therefore, chiral drugs ask for special analytical and pharmacological attention du

  10. LINEARLY POLARIZED PROBES OF SURFACE CHIRALITY

    NARCIS (Netherlands)

    VERBIEST, T; KAURANEN, M; MAKI, JJ; TEERENSTRA, MN; SCHOUTEN, AJ; NOLTE, RJM; PERSOONS, A

    1995-01-01

    We present a new nonlinear optical technique to study surface chirality. We demonstrate experimentally that the efficiency of second-harmonic generation from isotropic chiral surfaces is different for excitation with fundamental light that is +45 degrees and -45 degrees linearly polarized with respe

  11. An Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zong-Ye; YU You-Wen; WANG Ping; DAI Lian-Rong

    2003-01-01

    The chiral SU(3) quark model is extended by including the vector meson exchanges to describe the short range interactions. The phase shifts of NN scattering are studied in this model. Compared with the results of the chiral SU(3) quark model in which only the pseudo-scalar and scalar chiralfields are considered, the phase shifts of 1 So wave are obviously improved.

  12. Study on the determination and chiral inversion of R-salbutamol in human plasma and urine by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Ting; Zeng, Jing; Liu, Shan; Zhao, Ting; Wu, Jie; Lai, Wenshi; He, Mingzhi; Xu, Beining; Qu, Shanshan; Xu, Ling; Tan, Wen

    2015-10-01

    The chiral inversion has been a concerned issue during the research and development of a chiral drug. In this study, a sensitive chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for determination of salbutamol enantiomers in human plasma and urine. The chiral inversion mechanism of R-salbutamol was fully investigated for the first time by studying the effects of physicochemical factors, including pH, temperature and time. A fitted model to predict the chiral inversion ratio of R-salbutamol was proposed using a Box-Behnken design. All the samples were separated on an Astec Chirobiotic T column and detected by a tandem mass spectrometer in multiple reaction monitoring mode. Lower limit of quantification of 0.100ng/mL was achieved under the optimized conditions. The method was fully validated and successfully applied to the clinical pharmacokinetic study of R-salbutamol in healthy volunteers. Chiral inversion of R-salbutamol to S-salbutamol has been detected in urine samples. The results indicated that pH and temperature were two dominant factors that caused the chiral inversion of R-salbutamol, which should be taken into consideration during the analysis of chiral drugs. The chiral inversion of R-salbutamol determined in this study was confirmed resulted from the gastric acid in stomach rather than caused by the analysis conditions. Moreover, the calculated results of the fitted model matched very well with the enantioselective pharmacokinetic study of R-salbutamol, and the individual difference of the chiral inversion ratio of R-salbutamol was related to the individual gastric environment. On the basis of the results, this study provides important and concrete information not only for the chiral analysis but also for the metabolism research of chiral drugs.

  13. Chiral THz metamaterial with tunable optical activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiangfeng [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory; Chowdhury, Roy [Los Alamos National Laboratory; Zhao, Rongkuo [IOWA STATE UNIV; Soukoullis, Costas M [IOWA STATE UNIV

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  14. Large Chiroptical Effects in Planar Chiral Metamaterials

    Science.gov (United States)

    Ye, Weimin; Yuan, Xiaodong; Guo, Chucai; Zhang, Jianfa; Yang, Biao; Zhang, Shuang

    2017-05-01

    Chiroptical effects characterized by different optical responses for left- (LCP) and right-handed circularly polarized light (RCP) are powerful and valuable tools in optics with wide applications in polarization-resolved imaging and sensing. Previously observed strong chiroptical effects are limited to metamaterials with complex three-dimensional chiral structures at the subwavelength scale. Although asymmetrical transmission of LCP and RCP have been investigated in planar chiral metasurfaces, the observed weak chiroptical effects result from anisotropic Ohmic dissipation of the metal constituents. Here, we demonstrate by theory and proof-of-concept experiments that a large difference in transmittances of LCP and RCP can be attained in a single-layer planar chiral metamaterial with a subwavelength thickness. Without violating the reciprocity and mirror symmetry, the strong chiroptical effect, independent of dielectric loss, arises from a mechanism of multimode interference. The described effect may lead to a gateway towards chiral manipulations of light and chiral optical devices.

  15. Lambda Hypernuclei in a Chiral Hadronic Model

    Institute of Scientific and Technical Information of China (English)

    LIANG Yin-Hua; GUO Hua

    2005-01-01

    @@ Nuclear matter calculations in a chiral hadronic model have been performed. It has been found that the scalar and the vector potentials and binding energies per nucleon in the chiral hadronic model are very close to those of the microscopic relativistic Brueckner-Hartree-Fock calculations. The good results for finite nuclei can be obtained in the mean field approximation only if scalar mass ms and coupling constant gs have been improved with the fixed values of cs2 ≡ g2s(M/ms)2 as those given by the original parameter sets of the chiral hadronic model. Then the chiral hadronic model is extended to lambda hypernuclei. Our results predicted by the chiral hadronic model are compared with those by the nonlinear Walecka model. It has been shown that the hadronic model can also be used to describe lambda hypernuclei successfully.

  16. Microwave chirality discrimination in enantiomeric liquids

    Science.gov (United States)

    Hollander, E.; Kamenetskii, E. O.; Shavit, R.

    2017-07-01

    Chirality discrimination is of fundamental interest in biology, chemistry, and metamaterial studies. In optics, near-field plasmon-resonance spectroscopy with superchiral probing fields is effectively applicable for analyses of large biomolecules with chiral properties. We show possibility for microwave near-field chirality discrimination analysis based on magnon-resonance spectroscopy. Newly developed capabilities in microwave sensing using magnetoelectric (ME) probing fields originated from multiresonance magnetic-dipolar-mode oscillations in quasi-2D yttrium-iron-garnet disks provide potential for unprecedented measurements of chemical and biological objects. We report on microwave near-field chirality discrimination for aqueous D- and L-glucose solutions. The shown ME-field sensing is addressed to deepen our understanding of microwave-biosystem interactions. It can also be important for an analysis and design of microwave chiral metamaterials.

  17. Chiral Superfluidity for the Heavy Ion Collisions

    CERN Document Server

    Kalaydzhyan, T

    2013-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate tempera...

  18. Cosmic chirality both true and false.

    Science.gov (United States)

    Barron, Laurence D

    2012-12-01

    The discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. It is well known that parity violation infiltrates into ordinary matter via an interaction between the nucleons and electrons, mediated by the Z(0) particle, that lifts the degeneracy of the mirror-image enantiomers of a chiral molecule. Being odd under P but even under T, this P-violating interaction exhibits true chirality and so may induce absolute enantioselection under all circumstances. It has been suggested that CP violation may also infiltrate into ordinary matter via a P-odd, T-odd interaction mediated by the (as yet undetected) axion. This CP-violating interaction exhibits false chirality and so may induce absolute enantioselection in processes far from equilibrium. Both true and false cosmic chirality should be considered together as possible sources of homochirality in the molecules of life.

  19. A liquid crystalline chirality balance for vapours

    Science.gov (United States)

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-Ichi

    2014-04-01

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a topological line defect of a zigzag form with equal lengths of ‘zig’ and ‘zag.’ We find that a tiny amount of vapour of chiral molecules injected onto the liquid crystal induces the imbalance of ‘zig’ and ‘zag’ depending on its enantiomeric excess within a few seconds. Our liquid-crystal-based ‘chirality balance’ offers a simple, quick and versatile chirality-sensing/-screening method for gas-phase analysis (for example, for odours, environmental chemicals or drugs).

  20. Chirality on Surfaces: Modeling and Behaviour.

    Energy Technology Data Exchange (ETDEWEB)

    Paci, Irina; Szleifer, Igal; Ratner, Mark A.

    2007-09-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Chirality has been a fascinating topic in chemistry, ever since its first observation by Biot in 1815. Its molecular basis was first understood by Pasteur in 1848. Enantiomers, identical in every way but mirror-images of each other, have similar physical properties, behave identically in chemical reactions with achiral molecules, but have very different interactions with chiral molecules. In recent decades, chirality has become an important direction in pharmaceutical research, as many drugs have stereoselective activity. This review focuses on a new aspect of chiral resolution on solid surfaces, and relationships between molecular structure, thermodynamic effects, and the result of chiral surface self-organization.

  1. Radiation pressure of active dispersive chiral slabs.

    Science.gov (United States)

    Wang, Maoyan; Li, Hailong; Gao, Dongliang; Gao, Lei; Xu, Jun; Qiu, Cheng-Wei

    2015-06-29

    We report a mechanism to obtain optical pulling or pushing forces exerted on the active dispersive chiral media. Electromagnetic wave equations for the pure chiral media using constitutive relations containing dispersive Drude models are numerically solved by means of Auxiliary Differential Equation Finite Difference Time Domain (ADE-FDTD) method. This method allows us to access the time averaged Lorentz force densities exerted on the magnetoelectric coupling chiral slabs via the derivation of bound electric and magnetic charge densities, as well as bound electric and magnetic current densities. Due to the continuously coupled cross-polarized electromagnetic waves, we find that the pressure gradient force is engendered on the active chiral slabs under a plane wave incidence. By changing the material parameters of the slabs, the total radiation pressure exerted on a single slab can be directed either along the propagation direction or in the opposite direction. This finding provides a promising avenue for detecting the chirality of materials by optical forces.

  2. Scale-setting, flavor dependence, and chiral symmetry restoration

    Science.gov (United States)

    Binosi, Daniele; Roberts, Craig D.; Rodríguez-Quintero, José

    2017-06-01

    We determine the flavor dependence of the renormalization-group-invariant running interaction through judicious use of both unquenched Dyson-Schwinger equation and lattice results for QCD's gauge-sector two-point functions. An important step is the introduction of a physical scale setting procedure that enables a realistic expression of the effect of different numbers of active quark flavours on the interaction. Using this running interaction in concert with a well constrained class of dressed-gluon-quark vertices, we estimate the critical number of active lighter-quarks above which dynamical chiral symmetry breaking becomes impossible: nfcr≈9 ; and hence in whose neighborhood QCD is plausibly a conformal theory.

  3. Chiral Anomaly in Contorted Spacetimes

    CERN Document Server

    Mielke, E W

    1999-01-01

    The Dirac equation in Riemann-Cartan spacetimes with torsion is reconsidered. As is well-known, only the axial covector torsion $A$, a one-form, couples to massive Dirac fields. Using diagrammatic techniques, we show that besides the familiar Riemannian term only the Pontrjagin type four-form $dA\\wedge dA$ does arise additionally in the chiral anomaly, but not the Nieh-Yan term $d ^* A$, as has been claimed recently. Implications for cosmic strings in Einstein-Cartan theory as well as for Ashtekar's canonical approach to quantum gravity are discussed.

  4. Status of chiral meson physics

    Energy Technology Data Exchange (ETDEWEB)

    Bijnens, Johan [Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE 22362 Lund (Sweden)

    2016-01-22

    This talk includes a short introduction to Chiral Perturbation Theory in the meson sector concentrating on a number of recent developments. I discuss the latest fit of the low-energy constants. Finite volume corrections are discussed for the case with twisted boundary conditions for form-factors and first results at two-loops for three flavours for masses. The last part discusses the extension to other symmetry breaking patterns relevant for technicolour and related theories as well as the calculation of leading logarithms to high loop orders.

  5. Principal chiral model on superspheres

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, V.; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quella, T. [Amsterdam Univ. (Netherlands). Inst. for Theoretical Physics

    2008-09-15

    We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S{sup 3} {sup vertical} {sup stroke} {sup 2}, we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)

  6. T864 (MiniMax): A search for disoriented chiral condensate at the Fermilab Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1996-10-01

    A small test/experiment has been performed at the Fermilab Collider to measure charged particle and photon multiplicities in the forward direction, {eta} {approximately} 4.1. The primary goal is to search for disoriented chiral condensate (DCC). The experiment and analysis methods are described, and preliminary results of the DCC search are presented.

  7. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  8. Chirality controlled responsive self-assembled nanotubes in water

    NARCIS (Netherlands)

    van Dijken, D. J.; Stacko, P.; Stuart, M. C. A.; Browne, W. R.; Feringa, B. L.

    2017-01-01

    The concept of using chirality to dictate dimensions and to store chiral information in self-assembled nanotubes in a fully controlled manner is presented. We report a photoresponsive amphiphile that co-assembles with its chiral counterpart to form nanotubes and demonstrate how chirality can be used

  9. New possibilities for the gauging of chiral bosons

    CERN Document Server

    Abreu, Everton M C; Wotzasek, C; Abreu, Everton M. C.; Dutra, Alvaro de Souza; Wotzasek, Clovis

    2003-01-01

    We study a new mechanism for the electromagnetic gauging of chiral bosons showing that new possibilities emerge for the interacting theory of chiral scalars. We introduce a chirally coupled gauge field necessary to mod out the degree of freedom that obstructs gauge invariance in a system of two opposite chiral bosons soldering them together.

  10. Low-energy NN scattering with a Brazilian chiral potential

    Energy Technology Data Exchange (ETDEWEB)

    Batista, E.F. [Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, BA (Brazil); Rocha, C.A. [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), SP (Brazil); Szpigel, S. [Universidade Presbiteriana Mackenzie (UPM), SP (Brazil); Timoteo, V.S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2012-07-01

    Full text: We apply the subtracted kernel method (SKM), a renormalization approach based on recursive multiple subtractions performed in the kernel of the scattering equation, to a Brazilian chiral nucleon-nucleon (NN) interactions up to next-to-next-to-next-to-leading-order (N3LO). We evaluate the phase shifts in the 1S0 and 3P0 channels and explicitly demonstrate that the SKM procedure is renormalization group invariant under the change of the subtraction scale through a non-relativistic Callan-Symanzik flow equation for the evolution of the renormalized NN interactions. (author)

  11. Chiral transition with magnetic fields

    CERN Document Server

    Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian

    2014-01-01

    We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...

  12. Chiral differential operators and topology

    CERN Document Server

    Cheung, Pokman

    2010-01-01

    The first part of this paper provides a new formulation of chiral differential operators (CDOs) in terms of global geometric quantities. The main result is a recipe to define essentially all sheaves of smooth CDOs on a cs-manifold; its ingredients consist of an affine connection and an even 3-form that trivializes the first Pontrjagin form. With the connection fixed, two suitable 3-forms define isomorphic sheaves of CDOs if and only if their difference is exact. Moreover, conformal structures are in one-to-one correspondence with even 1-forms that trivialize the first Chern form. The second part of this paper concerns the construction of what may be called "chiral Dolbeault complexes". The classical Dolbeault complex of a complex manifold M may be viewed as the functions on an associated cs-manifold with the action of an odd vector field Q that satisfies Q^2=0. Motivated by this, we study the condition under which a conformal sheaf of CDOs on that cs-manifold admits an odd derivation Q' that extends Q and sat...

  13. Nucleic acids, proteins, and chirality

    Science.gov (United States)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  14. Nuclear chiral dynamics and thermodynamics

    CERN Document Server

    Holt, J W; Weise, W

    2013-01-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic des...

  15. Chlorophylls, Symmetry, Chirality, and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Mathias O. Senge

    2014-09-01

    Full Text Available Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecular structures such as the reaction centers and light-harvesting complexes of photobiology. The biochemical function of these structures depends on the controlled interplay of structural and functional principles of the apoprotein and pigment cofactors. Chlorophylls and bacteriochlorophylls are optically active molecules with several chiral centers, which are necessary for their natural biological function and the assembly of their supramolecular complexes. However, in many cases the exact role of chromophore stereochemistry in the biological context is unknown. This review gives an overview of chlorophyll research in terms of basic function, biosynthesis and their functional and structural role in photosynthesis. It highlights aspects of chirality and symmetry of chlorophylls to elicit further interest in their role in nature.

  16. Chiral Ionic Liquids in Chromatographic Separation and Spectroscopic Discrimination

    Science.gov (United States)

    Li, Min; Bwambok, David K.; Fakayode, Sayo O.; Warner, Isiah M.

    Chiral ionic liquids (CILs) are a subclass of ionic liquids (ILs) in which the cation, anion, or both may be chiral. The chirality can be central, axial, or planar. CILs possess a number of unique advantageous properties which are inherited from ionic liquids including negligible vapor pressure, wide liquidus temperature range, high thermal stability, and high tunability. Due to their dual functionalities as chiral selectors and chiral solvents simultaneously, CILs recently have been widely used both in enantiomeric chromatographic separation and in chiral spectroscopic discrimination. In this chapter, the various applications of CILs in chiral chromatographic separations such as GC, HPLC, CE, and MEKC are reviewed. The applications of CILs in enantiomeric spectroscopic discrimination using techniques such as NMR, fluorescence, and NIR are described. In addition, chiral recognition and separation mechanism using the CILs as chiral selectors or chiral solvents is also discussed.

  17. Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale networks

    DEFF Research Database (Denmark)

    Kirkensgaard, Jacob Judas Kain; Evans, Myfanwy; de Campo, Lilliana;

    2014-01-01

    the gyroid film are densely packed and contain either graphitic hcb nets (chicken wire) or srs nets, forming convoluted intergrowths of multiple nets. Furthermore, each net is ideally a single chiral enantiomer, induced by the gyroid architecture. However, the numerical simulations result in defect......Numerical simulations reveal a family of hierarchical and chiral multicontinuous network structures self-assembled from a melt blend of Y-shaped ABC and ABD three-miktoarm star terpolymers, constrained to have equal-sized A/B and C/D chains, respectively. The C and D majority domains within...

  18. Zamolodchikov's c-function for the Chiral Gross-Neveu Model

    CERN Document Server

    Cabra, D C

    1993-01-01

    We construct the Zamolodchikov's c-function for the Chiral Gross-Neveu Model up to two loops. We show that the c-function interpolates between the two known critical points of the theory, it is stationary at them and it decreases with the running coupling constant. In particular one can infer the non-existence of additional critical points in the region under investigation.

  19. Chiral density wave versus pion condensation in the 1+1 dimensional NJL model

    CERN Document Server

    Adhikari, Prabal

    2016-01-01

    In this paper, we study the possibility of an inhomogeneous quark condensate in the 1+1 dimensional Nambu-Jona-Lasinio model in the large-$N_c$ limit at finite temperature $T$ and quark chemical potential $\\mu$ using dimensional regularization. The phase diagram in the $\\mu$--$T$ plane is mapped out. At zero temperature, an inhomogeneous phase with a chiral-density wave exists for all values of $\\mu>\\mu_c$. Performing a Ginzburg-Landau analysis, we show that in the chiral limit, the critical point and the Lifschitz point coincide. We also consider the competition between a chiral-density wave and a constant pion condensate at finite isospin chemical potential $\\mu_I$. The phase diagram in the $\\mu_I$--$\\mu$ plane is mapped out and shows a rich phase structure.

  20. Phase structure of the massive chiral Gross-Neveu model from Hartree-Fock

    CERN Document Server

    Boehmer, Christian; Kraus, Sebastian; Thies, Michael

    2008-01-01

    The phase diagram of the massive chiral Gross-Neveu model (the massive Nambu-Jona-Lasinio model in 1+1 dimensions) is constructed. In the large N limit, the Hartree-Fock approach can be used. We find numerically a chiral crystal phase separated from a massive Fermi gas phase by a 1st order transition. Using perturbation theory, we also construct the critical sheet where the homogeneous phase becomes unstable in a 2nd order transition. A tricritical curve is located. The phase diagram is mapped out as a function of fermion mass, chemical potential and temperature and compared with the one of the discrete chiral Gross-Neveu model. As a by-product, we illustrate the crystal structure of matter at zero temperature for various densities and fermion masses.

  1. Spontaneous Planar Chiral Symmetry Breaking in Cells

    Science.gov (United States)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  2. New Chiral Calixarene Derivatives: Syntheses and Their Chiral Recognition Toward Amino Acids by UV-Vis Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Three novel types of chiral calixarene derivatives 5, 8, and 10 were designed and synthesized by introducing chiral units to parent calixarenes. Their chiralities were confirmed by rotational analysis. Chiral recognition properties of these host compounds towards L- and D-threonine were studied by UV-Vis spectroscopy. The results indicated that calixarene derivatives 5 and 8 exhibited good chiral recognition capabilities toward L- or D-threonine. Although calixarene derivative 10 had no evident chiral recognition ability, the supramolecules of calixarene derivative 10 with L- or D-threonine showed a hypochromic effect or hyperchromic effect respectively. Therefore, calixarene derivative 10 might serve as a good chiral UV-indicator.

  3. Effects of gauge boson mass on chiral and deconfinement phase transitions in QED$_{3}$

    CERN Document Server

    Yin, Pei-Lin; Feng, Hong-Tao; Zong, Hong-Shi

    2016-01-01

    Based on the experimental observation that there is a coexisting region between the antiferromagnetic (AF) and $\\textit{d}$-wave superconducting ($\\textit{d}$SC) phases, the influences of gauge boson mass $m_{a}$ on chiral symmetry restoration and deconfinement phase transitions in QED$_{3}$ are investigated simultaneously within a unified framework, i.e., Dyson-Schwinger equations. The results show that the chiral symmetry restoration phase transition in the presence of the gauge boson mass $m_{a}$ is a typical second-order phase transition; the chiral symmetry restoration and deconfinement phase transitions are coincident; the critical number of fermion flavors $N^{c}_{f}$ decreases as the gauge boson mass $m_{a}$ increases and there exists a boundary that separates the $N^{c}_{f}$-$m_{a}$ plane into chiral symmetry breaking/confinement region for ($N_{f}^{c}$, $m_{a}$) below the boundary and chiral symmetry restoration/deconfinement region for ($N_{f}^{c}$, $m_{a}$) above it.

  4. Description and Evaluation of Chiral Interactive Sites on Bonded Cyclodextrin Stationary Phases for Liquid Chromatography

    Science.gov (United States)

    Beesley, Thomas E.

    Development of chiral separations has been essential to the drug discovery and development process. The solubility requirements for a number of methods and/or the mobile phase requirements for application of certain detection systems have opened up many opportunities for cyclodextrin-based CSPs for liquid chromatography. Even though a few chiral stationary phases cover a wide area of enantioselectivity, they do not meet the entire needs of the industry. Cyclodextrin phases offer some unique mechanisms and opportunities to resolve chiral separation problems especially in the aqueous reversed-phase and non-aqueous polar organic modes. This chapter addresses the need to understand the chiral stationary phase structure, the mechanisms at work, and the role mobile phase composition plays in driving those mechanisms to produce enantioselectivity. In addition, the development of certain derivatives has played an essential part in expanding that basic role for certain chiral separations. What these derivatives contribute in concert with the basic structure is a critical part of the understanding to the effective use of these phases. During this study it was determined that the role of steric hindrance has been vastly underestimated, both to the extent that it has occurred and to its effectiveness for obtaining enantioselectivity. References to the entire 20-year history of the cyclodextrin phase development and application literature up to this current date have been reviewed and incorporated.

  5. Chiral Corrections to Nucleon Two- and Three-Point Correlation Functions

    CERN Document Server

    Tiburzi, Brian C

    2015-01-01

    We consider multi-particle contributions to nucleon two- and three-point functions from the perspective of chiral dynamics. Lattice nucleon interpolating operators, which have definite chiral transformation properties, can be mapped into chiral perturbation theory. Using the most common of such operators, we determine pion-nucleon and pion-delta couplings to nucleon two- and three-point correlation functions at leading order in the low-energy expansion. The couplings of pions to nucleons and deltas in two-point functions are consistent with simple phase-space considerations, in accordance with the Lehmann spectral representation. An argument based on available phase space on a torus is utilized to derive the scaling of multiple-pion couplings. While multi-pion states are indeed suppressed, this suppression scales differently with particle number compared to that in infinite volume. For nucleon three-point correlation functions, we investigate the axial-vector current at vanishing momentum transfer. The effect...

  6. Liquid crystal behavior induced assembling fabrication of conductive chiral MWCNTs@NCC nanopaper

    Science.gov (United States)

    Ren, Yumei; Wang, Tianjiao; Chen, Zhimin; Li, Jing; Tian, Qiuge; Yang, Hongxia; Xu, Qun

    2016-11-01

    The conductive chiral MWCNTs@NCC nanopapers obtained by the assembly of nanocrystalline cellulose liquid crystals (NCC LCs) host matrix along with one-dimensional (1-D) multi-walled carbon nanotubes (MWCNTs) have been studied in this work. Circular dichroism (CD) studies show strong signals stemming from the chiral nematic structure. Notably, the introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. Our experimental results indicate the multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. Moreover it also confirms the resulting nanopaper has an increased conductivity of 4.2 S/m at 1.96 wt% MWCNTs. So the co-assembly of the nanocomposite herein opens a gateway for preparing functional materials combining the photonic properties of the NCC LCs matrix with other building blocks that can supply other advantageous functions.

  7. Dirac operator normality and chiral properties

    Science.gov (United States)

    Kerler, W.

    Normality and γ5-hermiticity are what gives rise to chiral properties and rules. The Ginsparg-Wilson (GW) relation is only one of the possible spectral constraints. The sum rule for chiral differences of real modes has important consequences. The alternative transformation of Lüscher gives the same Ward identity as the usual chiral one (if zero modes are properly treated). Imposing normality on a general function of the hermitean Wilson-Dirac operator H leads at same time to the GW relation and to the Neuberger operator.

  8. Enhanced Chiral Recognition by Cyclodextrin Dimers

    Directory of Open Access Journals (Sweden)

    Bart Jan Ravoo

    2011-07-01

    Full Text Available In this article we investigate the effect of multivalency in chiral recognition. To this end, we measured the host-guest interaction of a β-cyclodextrin dimer with divalent chiral guests. We report the synthesis of carbohydrate-based water soluble chiral guests functionalized with two borneol, menthol, or isopinocampheol units in either (+ or (– configuration. We determined the interaction of these divalent guests with a β-cyclodextrin dimer using isothermal titration calorimetry. It was found that—in spite of a highly unfavorable conformation—the cyclodextrin dimer binds to guest dimers with an increased enantioselectivity, which clearly reflects the effect of multivalency.

  9. Interplay between Deconfinement and Chiral Properties

    CERN Document Server

    Suganuma, Hideo; Redlich, Krzysztof; Sasaki, Chihiro

    2016-01-01

    We study interplay between confinement/deconfinement and chiral properties. We derive some analytical relations of the Dirac modes with the confinement quantities, such as the Polyakov loop, its susceptibility and the string tension. For the confinement quantities, the low-lying Dirac eigenmodes are found to give negligible contribution, while they are essential for chiral symmetry breaking. This indicates no direct, one-to-one correspondence between confinement/deconfinement and chiral properties in QCD. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain-wall fermion kernels, respectively.

  10. Biocatalysis: synthesis of chiral intermediates for drugs.

    Science.gov (United States)

    Patel, Ramesh N

    2006-11-01

    Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand for the bulk preparation of drug substances and agricultural products. There has been an increasing awareness of the enormous potential of the use of microorganisms and microorganism-derived enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities. In this article, biocatalytic processes are described for the synthesis of chiral intermediates for drugs.

  11. The convoluted evolution of snail chirality

    Science.gov (United States)

    Schilthuizen, M.; Davison, A.

    2005-11-01

    The direction that a snail (Mollusca: Gastropoda) coils, whether dextral (right-handed) or sinistral (left-handed), originates in early development but is most easily observed in the shell form of the adult. Here, we review recent progress in understanding snail chirality from genetic, developmental and ecological perspectives. In the few species that have been characterized, chirality is determined by a single genetic locus with delayed inheritance, which means that the genotype is expressed in the mother's offspring. Although research lags behind the studies of asymmetry in the mouse and nematode, attempts to isolate the loci involved in snail chirality have begun, with the final aim of understanding how the axis of left-right asymmetry is established. In nature, most snail taxa (>90%) are dextral, but sinistrality is known from mutant individuals, populations within dextral species, entirely sinistral species, genera and even families. Ordinarily, it is expected that strong frequency-dependent selection should act against the establishment of new chiral types because the chiral minority have difficulty finding a suitable mating partner (their genitalia are on the ‘wrong’ side). Mixed populations should therefore not persist. Intriguingly, however, a very few land snail species, notably the subgenus Amphidromus sensu stricto, not only appear to mate randomly between different chiral types, but also have a stable, within-population chiral dimorphism, which suggests the involvement of a balancing factor. At the other end of the spectrum, in many species, different chiral types are unable to mate and so could be reproductively isolated from one another. However, while empirical data, models and simulations have indicated that chiral reversal must sometimes occur, it is rarely likely to lead to so-called ‘single-gene’ speciation. Nevertheless, chiral reversal could still be a contributing factor to speciation (or to divergence after speciation) when

  12. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran, E-mail: tigran@caltech.edu [Department of Physics, University of Illinois, 845 W Taylor Street, Chicago, IL 60607 (United States); Jet Propulsion Laboratory, 4800 Oak Grove Dr, M/S 298, Pasadena, CA 91109 (United States); Murchikova, Elena [TAPIR, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States)

    2017-06-15

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium {sup 3}He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  13. New Chiral Metal Cluster Systems for Catalytic Asymmetric Syntheses of Chiral Alcohols

    Institute of Scientific and Technical Information of China (English)

    LI Yan-yun; CHEN Jian-shan; YANG Chuan-bo; DONG Zhen-rong; LI Bao-zhu; ZHANG Hui; GAO Jing-xing; TAKAO Ikariya

    2004-01-01

    The efficient chiral Ru3(CO)12 systems were prepared in situ from Ru3(CO)12 and various chiral diiminoor diamino-diphosphine tetradentate ligands. The systems have been used for the asymmetric transfer hydrogenation of propiophenone in 2-propanol, leading to 1-phenyl-1-propanol in a 98% yield and 96% e.e. The IR study suggests that the carbonyl hydride anion [HRu3(CO)11]- most probably exists as a principal species under the reaction conditions. The high chiral efficiency may be due to the synergetic effect produced by the neighboring ruthenium atoms and a special chiral micro-environment involving the polydentate ligand and the Ru3 framework.

  14. Nuclear thermodynamics from chiral low-momentum interactions

    CERN Document Server

    Wellenhofer, Corbinian; Kaiser, Norbert; Weise, Wolfram

    2014-01-01

    We investigate the thermodynamic equation of state of isospin-symmetric nuclear matter with microscopic nuclear forces derived within the framework of chiral effective field theory. Two- and three-body nuclear interactions constructed at low resolution scales form the basis for a perturbative calculation of the finite-temperature equation of state. The nuclear force models and many-body methods are benchmarked against bulk properties of isospin-symmetric nuclear matter at zero temperature, which are found to be well reproduced when chiral nuclear interactions constructed at the lowest resolution scales are employed. The calculations are then extended to finite temperatures, where we focus on the liquid-gas phase transition and the associated critical point. The Maxwell construction is applied to construct the physical equation of state, and the value of the critical temperature is determined to be T_c =17.2-19.1 MeV, in good agreement with the value extracted from multifragmentation reactions of heavy ions.

  15. Resolution of the Chiral Drugs

    Institute of Scientific and Technical Information of China (English)

    DENG JinGen; ZHU Jin

    2001-01-01

    @@ Chiral drugs are generally not permitted to be used in racemic form so that unintended side effects and unnecessary environmental hazards are avoided. Moreover, homochiral molecules are required immediately to progress key toxicological and clinical studies in the drug discovery. One series of technologies which can rapidly supply homochiral compounds is the separation of racemates, and of those the technique of crystallization of diastereomers is extremely effective-principally because it is simple to operate and it affords both enantiomers. In classical resolution via diastereoisomeric salt formation, the resolved compounds are limited to a given racemic acid or base and the choice of a suitable resolving agent for a racemic target compound is achieved by time-consuming trial-and-error procedure.

  16. Chiral exceptional points in metasurfaces

    Science.gov (United States)

    Kang, Ming; Chen, Jing; Chong, Y. D.

    2016-09-01

    An exceptional point (EP) is a degeneracy occurring in a non-energy-conserving system, in which two eigenvectors of a non-Hermitian Hamiltonian coalesce. We explore how EPs can be realized in a metamaterial surface, or metasurface, consisting of a pair of lossy coupled linear antennas in each unit cell. EPs appear in the eigenvectors of the transmission matrix by tuning the frequency and the coupling and loss rates of the metasurface. Each EP is associated with the appearance of a circularly polarized transmission eigenstate; hence, within the parameter space of the system, the EPs lie along pairs of curves with distinct chirality. Our results are obtained using finite-difference time-domain simulations, as well as a fitted coupled-mode theory. The coupled-mode theory agrees well with the numerical results and is capable of accurately predicting the EP f curves.

  17. Resolution of the Chiral Drugs

    Institute of Scientific and Technical Information of China (English)

    DENG; JinGen

    2001-01-01

    Chiral drugs are generally not permitted to be used in racemic form so that unintended side effects and unnecessary environmental hazards are avoided. Moreover, homochiral molecules are required immediately to progress key toxicological and clinical studies in the drug discovery. One series of technologies which can rapidly supply homochiral compounds is the separation of racemates, and of those the technique of crystallization of diastereomers is extremely effective-principally because it is simple to operate and it affords both enantiomers. In classical resolution via diastereoisomeric salt formation, the resolved compounds are limited to a given racemic acid or base and the choice of a suitable resolving agent for a racemic target compound is achieved by time-consuming trial-and-error procedure.  ……

  18. Influence of Finite Chemical Potential on Critical Boson Mass in QED3

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-Qiang; LI Zhen; FENG Hong-Tao

    2007-01-01

    Using the coupled Dyson-Schwinger equation for the fermion propagator at finite chemical potential μ,we investigate the fermion chiral condensate when the gauge boson mass is nonzero in QED3. We show that the chiral symmetry restores when the boson mass is large enough, and the critical boson mass depends little on μ.

  19. A critical examination of the introduction of drug detection dogs for policing of illicit drugs in New South Wales, Australia using Kingdon’s ‘multiple streams’ heuristic

    NARCIS (Netherlands)

    Lancaster, Kari; Ritter, Alison; Hughes, Caitlin; Hoppe, Robert

    2016-01-01

    This paper critically analyses the introduction of drug detection dogs as a tool for policing of illicit drugs in New South Wales, Australia. Using Kingdon’s ‘multiple streams’ heuristic as a lens for analysis, we identify how the issue of drugs policing became prominent on the policy agenda, and th

  20. Chiral transition of fundamental and adjoint quarks

    Energy Technology Data Exchange (ETDEWEB)

    Capdevilla, R.M. [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Doff, A., E-mail: agomes@utfpr.edu.br [Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil)

    2014-01-20

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one.

  1. Pasteur and the art of chirality

    Science.gov (United States)

    Gal, Joseph

    2017-07-01

    Louis Pasteur was a scientific giant of the nineteenth century, but, as Joseph Gal asks, was his most famous contribution to the understanding of chemistry -- chirality -- influenced more by his artistic talents?

  2. Enzymic synthesis of labelled chiral substances.

    Science.gov (United States)

    Battersby, A R

    1985-01-01

    The enzymic synthesis of chiral substances in which one hydrogen atom of a methylene group has been replaced by deuterium or tritium is illustrated. Such labelled products can be used to determine the stereochemistry of other enzyme-catalysed reactions.

  3. New Advances in Chiral Catalyst Immobilization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Asymmetric catalysis of organic reactions is one of the most efficient ways to obtain optically pure chiral compounds, which are crucially important to the development of modern pharmaceutical and fine chemical industries, as well as material science.

  4. Notes on conservation laws in chiral hydrodynamics

    CERN Document Server

    Zakharov, V I

    2016-01-01

    We consider chiral fluids within the standard framework of a chiral-invariant underlying field theory, anomalous in presence of electromagnetic fields. Apart from the Noether axial current of the underlying theory, in the limit of ideal fluid there exist extra conserved currents, corresponding to classical helical motions. The extra conservation laws are known to break down once viscosity is non-vanishing. Which looks puzzling, as if introduction of viscosity were inconsistent with chiral invariance. As a resolution of the puzzle, we argue that locally one can introduce an inertial frame where an extra conservation law still holds. In other words, the extra currents are covariantly conserved. The emergent gravitational field is determined by dynamics of the viscous fluid. We turn then to instabilities of chiral plasma against decays into helical magnetic or vortical configurations. We emphasise similarity between the two cases in the far infrared region, responsible for the decays. This similarity is not appa...

  5. Chirality in thiolate-protected gold clusters.

    Science.gov (United States)

    Knoppe, Stefan; Bürgi, Thomas

    2014-04-15

    Over recent years, research on thiolate-protected gold clusters Au(m)(SR)n has gained significant interest. Milestones were the successful determination of a series of crystal structures (Au102(SR)44, Au25(SR)18, Au38(SR)24, Au36(SR)24, and Au28(SR)20). For Au102(SR)44, Au38(SR)24, and Au28(SR)20, intrinsic chirality was found. Strong Cotton effects (circular dichroism, CD) of gold clusters protected by chiral ligands have been reported a long time ago, indicating the transfer of chiral information from the ligand into the cluster core. Our lab has done extensive studies on chiral thiolate-protected gold clusters, including those protected with chiral ligands. We demonstrated that vibrational circular dichroism can serve as a useful tool for the determination of conformation of the ligand on the surface of the cluster. The first reports on crystal structures of Au102(SR)44 and Au38(SR)24 revealed the intrinsic chirality of these clusters. Their chirality mainly arises from the arrangement of the ligands on the surface of the cluster cores. As achiral ligands are used to stabilize the clusters, racemic mixtures are obtained. However, the separation of the enantiomers by HPLC was demonstrated which enabled the measurement of their CD spectra. Thermally induced inversion allows determination of the activation parameters for their racemization. The inversion demonstrates that the gold-thiolate interface is anything but fixed; in contrast, it is rather flexible. This result is of fundamental interest and needs to be considered in future applications. A second line of our research is the selective introduction of chiral, bidentate ligands into the ligand layer of intrinsically chiral gold clusters. The ligand exchange reaction is highly diastereoselective. The bidentate ligand connects two of the protecting units on the cluster surface and thus effectively stabilizes the cluster against thermally induced inversion. A minor (but significant) influence of chiral ligands to

  6. Development of safer molecules through chirality

    Directory of Open Access Journals (Sweden)

    Patil P

    2006-10-01

    Full Text Available Many of the drugs currently used in medical practice are mixtures of enantiomers (racemates. Many a times, the two enantiomers differ in their pharmacokinetic and pharmacodynamic properties. Replacing existing racemates with single isomers has resulted in improved safety and/or efficacy profile of various racemates. In this review, pharmacokinetic and pharmacodynamic implications of chirality are discussed in brief, followed by an overview of some important chiral switches that have yielded safer alternatives. These include levosalbutamol, S-ketamine, levobupivacaine, S-zopiclone, levocetirizine, S-amlodipine, S-atenolol, S-metoprolol, S-omeprazole, S-pantoprazole and R-ondansetron. Few potential chiral switches under evaluation and some chiral switches that have not been successful are also discussed.

  7. Random matrix model approach to chiral symmetry

    CERN Document Server

    Verbaarschot, J J M

    1996-01-01

    We review the application of random matrix theory (RMT) to chiral symmetry in QCD. Starting from the general philosophy of RMT we introduce a chiral random matrix model with the global symmetries of QCD. Exact results are obtained for universal properties of the Dirac spectrum: i) finite volume corrections to valence quark mass dependence of the chiral condensate, and ii) microscopic fluctuations of Dirac spectra. Comparisons with lattice QCD simulations are made. Most notably, the variance of the number of levels in an interval containing $n$ levels on average is suppressed by a factor $(\\log n)/\\pi^2 n$. An extension of the random matrix model model to nonzero temperatures and chemical potential provides us with a schematic model of the chiral phase transition. In particular, this elucidates the nature of the quenched approximation at nonzero chemical potential.

  8. Chiral Magnetic Effect in Heavy Ion Collisions

    CERN Document Server

    Liao, Jinfeng

    2016-01-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.

  9. Chirality and angular momentum in optical radiation

    CERN Document Server

    Coles, Matt M

    2012-01-01

    This paper develops, in precise quantum electrodynamic terms, photonic attributes of the "optical chirality density", one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive "superchiral" phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multi-mode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin angular momentum of light is engaged in such...

  10. Organocatalytic atroposelective synthesis of axially chiral styrenes

    Science.gov (United States)

    Zheng, Sheng-Cai; Wu, San; Zhou, Qinghai; Chung, Lung Wa; Ye, Liu; Tan, Bin

    2017-05-01

    Axially chiral compounds are widespread in biologically active compounds and are useful chiral ligands or organocatalysts in asymmetric catalysis. It is well-known that styrenes are one of the most abundant and principal feedstocks and thus represent excellent prospective building blocks for chemical synthesis. Driven by the development of atroposelective synthesis of axially chiral styrene derivatives, we discovered herein the asymmetric organocatalytic approach via direct Michael addition reaction of substituted diones/ketone esters/malononitrile to alkynals. The axially chiral styrene compounds were produced with good chemical yields, enantioselectivities and almost complete E/Z-selectivities through a secondary amine-catalysed iminium activation strategy under mild conditions. Such structural motifs are important precursors for further transformations into biologically active compounds and synthetic useful intermediates and may have potential applications in asymmetric synthesis as olefin ligands or organocatalysts.

  11. Chiral dynamics with (non)strange quarks

    Science.gov (United States)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  12. NN Interaction in Chiral Constituent Quark Models

    CERN Document Server

    Valcarce, A; González, P

    2003-01-01

    We review the actual state in the description of the NN interaction by means of chiral constituent quark models. We present a series of relevant features that are nicely explained within the quark model framework.

  13. Pharmacokinetic Study of Intravenous Acetaminophen Administered to Critically Ill Multiple-Trauma Patients at the Usual Dosage and a New Proposal for Administration.

    Science.gov (United States)

    Fuster-Lluch, Oscar; Zapater-Hernández, Pedro; Gerónimo-Pardo, Manuel

    2017-04-17

    The pharmacokinetic profile of intravenous acetaminophen administered to critically ill multiple-trauma patients was studied after 4 consecutive doses of 1 g every 6 hours. Eleven blood samples were taken (predose and 15, 30, 45, 60, 90, 120, 180, 240, 300, and 360 minutes postdose), and urine was collected (during 6-hour intervals between doses) to determine serum and urine acetaminophen concentrations. These were used to calculate the following pharmacokinetic parameters: maximum and minimum concentrations, terminal half-life, area under serum concentration-time curve from 0 to 6 hours, mean residence time, volume of distribution, and serum and renal clearance of acetaminophen. Daily doses of acetaminophen required to obtain steady-state minimum (bolus dosing) and average plasma concentrations (continuous infusion) of 10 μg/mL were calculated (10 μg/mL is the presumed lower limit of the analgesic range). Data are expressed as median [interquartile range]. Twenty-two patients were studied, mostly young (age 44 [34-64] years) males (68%), not obese (weight 78 [70-84] kg). Acetaminophen concentrations and pharmacokinetic parameters were these: maximum concentration 33.6 [25.7-38.7] μg/mL and minimum concentration 0.5 [0.2-2.3] μg/mL, all values below 10 μg/mL and 8 below the detection limit; half-life 1.2 [1.0-1.9] hours; area under the curve for 6 hours 34.7 [29.7-52.7] μg·h/mL; mean residence time 1.8 [1.3-2.6] hours; steady-state volume of distribution 50.8 [42.5-66.5] L; and serum and renal clearance 28.8 [18.9-33.7] L/h and 15 [11-19] mL/min, respectively. Theoretically, daily doses for a steady-state minimum concentration of 10 μg/mL would be 12.2 [7.8-16.4] g/day (166 [112-202] mg/[kg·day]); for an average steady-state concentration of 10 μg/mL, they would be 6.9 [4.5-8.1] g/day (91 [59-111] mg/[kg·day]). In conclusion, administration of acetaminophen at the recommended dosage of 1 g per 6 hours to critically ill multiple-trauma patients yields

  14. 4G/5G Polymorphism of the plasminogen activator inhibitor-1 gene is associated with multiple organ dysfunction in critically ill patients.

    Science.gov (United States)

    Huq, Muhammad Aminul; Takeyama, Naoshi; Harada, Makoto; Miki, Yasuo; Takeuchi, Akinori; Inoue, Sousuke; Nakagawa, Takashi; Kanou, Hideki; Hirakawa, Akihiko; Noguchi, Hiroshi

    2012-01-01

    Impaired fibrinolysis is associated with a higher incidence of both multiple organ dysfunction and mortality in the intensive care unit (ICU). Plasminogen activator inhibitor (PAI)-1 is the chief inhibitor of fibrinolysis. We investigated the influence of the 4G/5G polymorphism (rs1799768) of the PAI-1 gene on the plasma PAI-1 level and the outcome of critically ill patients. In 41 consecutive patients admitted to the ICU, PAI-1 gene polymorphism was assessed, plasma PAI-1 and arterial lactate concentrations were measured and clinical severity scores were recorded. Homozygotes for the 4G allele had higher plasma levels of PAI-1 antigen. The mean ± SD PAI-1 antigen level was 193.31 ± 167.93 ng/ml for the 4G/4G genotype, 100.67 ± 114.16 ng/ml for the 4G/5G genotype and 0.43 ± 0.53 ng/ml for the 5G/5G genotype. There was a significant correlation between plasma PAI-1 and arterial lactate concentrations, as well as between PAI-1 and severity scores. The mortality rate was 63, 33 and 0% for patients with the 4G/4G, 4G/5G and 5G/5G genotypes, respectively. These results demonstrate that the 4G/5G polymorphism of the PAI-1 gene affects the plasma PAI-1 concentration, which could impair fibrinolysis and cause organ failure, and thus the presence of the 4G allele increases the risk of death. Copyright © 2011 S. Karger AG, Basel.

  15. Hyperferritinemia in the critically ill child with secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction syndrome/macrophage activation syndrome: what is the treatment?

    Science.gov (United States)

    2012-01-01

    Introduction Hyperferritinemia is associated with increased mortality in pediatric sepsis, multiple organ dysfunction syndrome (MODS), and critical illness. The International Histiocyte Society has recommended that children with hyperferritinemia and secondary hemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS) should be treated with the same immunosuppressant/cytotoxic therapies used to treat primary HLH. We hypothesized that patients with hyperferritinemia associated secondary HLH/sepsis/MODS/MAS can be successfully treated with a less immunosuppressant approach than is recommended for primary HLH. Methods We conducted a multi-center cohort study of children in Turkish Pediatric Intensive Care units with hyperferritinemia associated secondary HLH/sepsis/MODS/MAS treated with less immunosuppression (plasma exchange and intravenous immunoglobulin or methyl prednisolone) or with the primary HLH protocol (plasma exchange and dexamethasone or cyclosporine A and/or etoposide). The primary outcome assessed was hospital survival. Results Twenty-three children with hyperferritinemia and secondary HLH/sepsis/MODS/MAS were enrolled (median ferritin = 6341 μg/dL, median number of organ failures = 5). Univariate and multivariate analyses demonstrated that use of plasma exchange and methyl prednisolone or intravenous immunoglobulin (n = 17, survival 100%) was associated with improved survival compared to plasma exchange and dexamethasone and/or cyclosporine and/or etoposide (n = 6, survival 50%) (P = 0.002). Conclusions Children with hyperferritinemia and secondary HLH/sepsis/MODS/MAS can be successfully treated with plasma exchange, intravenous immunoglobulin, and methylprednisone. Randomized trials are required to evaluate if the HLH-94 protocol is helpful or harmful compared to this less immune suppressive and cytotoxic approach in this specific population. PMID:22715953

  16. Large Enhancement of Circular Dichroism Using an Embossed Chiral Metamaterial

    CERN Document Server

    Mousavi, S Hamed Shams; El-Sayed, Mostafa A; Eftekhar, Ali A; Adibi, Ali

    2016-01-01

    In the close vicinity of a chiral nanostructure, the circular dichroism of a biomolecule could be greatly enhanced, due to the interaction with the local superchiral fields. Modest enhancement of optical activity using a planar metamaterial, with some chiral properties, and achiral nanoparticles has been previously reported. A more substantial chirality enhancement can be achieved in the local filed of a chiral nanostructure with a three-dimensional arrangement. Using an embossed chiral nanostructure designed for chiroptical sensing, we measure the circular dichroism spectra of two biomolecules, Chlorophylls A and B, at the molecular level, using a simple polarization resolved reflection measurement. This experiment is the first realization of the on-resonance surface-enhanced circular dichroism, achieved by matching the chiral resonances of a strongly chiral metamaterial with that of a chiral molecule, resulting in an unprecedentedly large differential CD spectrum from a monolayer of a chiral material.

  17. Bringing chiral optical forces to dominance with optical nanofibers

    CERN Document Server

    Alizadeh, M H

    2016-01-01

    Transverse spin angular momentum (SAM) of light and associated transverse chiral optical forces have received tremendous attention recently as the latter may lead to an optical separation of chiral biomolecules. Previous schemes to generate chiral forces are plagued by the fact that the chiral optical forces are orders of magnitude smaller than conventional gradient and scattering forces. The relative magnitude of chiral and non-chiral forces represents a fundamental challenge for the implementation of chiral separation schemes. In this work we demonstrate that, by spatially separating the maxima of transverse spin density from the gradient of field intensity, in the vicinity of optical nanofibers and nanowires, chiral optical forces can emerge that are stronger than gradient and scattering forces. This finding has important implications for the design of improved optical separation schemes for chiral biomolecules.

  18. Critical properties of XY model on two-dimensional layered magnetic films

    Institute of Scientific and Technical Information of China (English)

    Wang Yi; Liu Xiao-Yan; Sun Lei; Zhang Xing; Han Ru-Qi

    2006-01-01

    Using Monte Carlo simulations, we have investigated the classical XY model on triangular lattices of ultra-thin film structures with middle ferromagnetic layers sandwiched between two antiferromagnetic layers. The internal energy,the specific heat, the chirality and the chiral susceptibility are calculated in order to clarify phase transitions and critical phenomena. From the finite-size scaling analyses, the values of critical exponents are determined. In a range of interaction parameters, we find that the chirality steeply goes up as temperature increases in a temperature range;correspondingly the value of a critical exponent for this change is estimated.

  19. Insights on some chiral smectic phases

    Indian Academy of Sciences (India)

    B Pansu

    2003-08-01

    Combining layered positional order as smectic order and chirality can generate complex architectures since twist parallel to the layers is not allowed. This paper will review some new experimental results on different phases resulting from the competition between smectic positional order and twist orientational order. It concerns the TGBA and the NL*, that is the liquid line phase as well as the SmQ phase. Chiral effects in the isotropic phase will also be discussed.

  20. Open Problems in Understanding the Nuclear Chirality

    CERN Document Server

    Meng, Jie

    2010-01-01

    Open problems in the interpretation of the observed pair of near degenerate $\\Delta I = 1$ bands with the same parity as the chiral doublet bands are discussed. The ambiguities for the existing fingerprints of the chirality in atomic nuclei and problems in existing theory are discussed, including the description of quantum tunneling in the mean field approximation as well as the deformation, core polarization and configuration of particle rotor model (PRM). Future developments of the theoretical approach are prospected.

  1. Chiral symmetry and lattice gauge theory

    CERN Document Server

    Creutz, M

    1994-01-01

    I review the problem of formulating chiral symmetry in lattice gauge theory. I discuss recent approaches involving an infinite tower of additional heavy states to absorb Fermion doublers. For hadronic physics this provides a natural scheme for taking quark masses to zero without requiring a precise tuning of parameters. A mirror Fermion variation provides a possible way of extending the picture to chirally coupled light Fermions. Talk presented at "Quark Confinement and the Hadron Spectrum," Como, Italy, 20-24 June 1994.

  2. Development of safer molecules through chirality

    OpenAIRE

    Patil P; Kothekar M

    2006-01-01

    Many of the drugs currently used in medical practice are mixtures of enantiomers (racemates). Many a times, the two enantiomers differ in their pharmacokinetic and pharmacodynamic properties. Replacing existing racemates with single isomers has resulted in improved safety and/or efficacy profile of various racemates. In this review, pharmacokinetic and pharmacodynamic implications of chirality are discussed in brief, followed by an overview of some important chiral switches that have yielded ...

  3. A liquid crystalline chirality balance for vapours

    OpenAIRE

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-Ichi

    2014-01-01

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a t...

  4. The Chiral Dipolar Hard Sphere Model.

    OpenAIRE

    Mazars, Martial

    2009-01-01

    Abstract A simple molecular model of chiral molecules is presented in this paper : the chiral dipolar hard sphere model. The discriminatory interaction between enantiomers is represented by electrostatic (or magnetic) dipoles-dipoles interactions : short ranged steric repulsion are represented by hard sphere potential and, in each molecule, two point dipoles are located inside the sphere. The model is described in detail and some of its elementary properties are given ; in particul...

  5. On the covariantization of the chiral constraints

    CERN Document Server

    Neves, C; Wotzasek, C; Neves, C; de Abreu, E M C; Wotzasek, C

    1995-01-01

    We show that a complete covariantization of the chiral constraint in the Floreanini-Jackiw necessitates an infinite number of auxiliary Wess-Zumino fields otherwise the covariantization is only partial and unable to remove the nonlocality in the chiral boson operator. We comment on recent works that claim to obtain covariantization through the use of Batalin-Fradkin-Tyutin method, that uses just one Wess-Zumino field.

  6. Chiral symmetry and the constituent quark model

    CERN Document Server

    Glozman, L Ya

    1995-01-01

    New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.

  7. Baryons in chiral constituent quark model

    CERN Document Server

    Glozman, L Ya

    1996-01-01

    Beyond the spontaneous chiral symmetry breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a flavor-spin chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks. One cannot exclude, however, the possibility that this flavor-spin interaction has an appreciable vector- and higher meson exchange component.

  8. Lattice quantum chromodynamics with approximately chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hierl, Dieter

    2008-05-15

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  9. A Molecular Model for Chiral Symmetry Breaking

    Science.gov (United States)

    Latinwo, Folarin; Stillinger, Frank; Debenedetti, Pablo

    In this work, we present a new class of molecular models for chiral phenomena in condensed matter systems. A key feature of these models is the ability of the four-site (tetramer) ``molecules'' to inter-convert between two distinct chiral forms (enantiomers). Given this feature, we use analytical theory and computer simulations to investigate the emergent chiral properties (including symmetry breaking) over a range of conditions. In particular, we consider the single-molecule level and condensed-phase behavior of our model system. Interestingly, we find that our liquid-phase predictions are in excellent agreement with recent experimental reports on chiral self-sorting in isotropic liquids. From this perspective, our model demonstrates accurate predictive capabilities, as well as a platform for understanding the microscopic origins of a variety of chiral phenomena. In a broader context, we anticipate that this class of models will be relevant to chirality-dominated areas such as the pharmaceutical industry and pre-biotic geochemistry.

  10. Chirality and chiroptical properties of amyloid fibrils.

    Science.gov (United States)

    Dzwolak, Wojciech

    2014-09-01

    Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties.

  11. The chiral phase transition in two-flavor QCD from imaginary chemical potential

    CERN Document Server

    Bonati, Claudio; D'Elia, Massimo; Philipsen, Owe; Sanfilippo, Francesco

    2014-01-01

    We investigate the order of the finite temperature chiral symmetry restoration transition for QCD with two massless fermions, by using a novel method, based on simulating imaginary values of the quark chemical potential $\\mu=i\\mu_i,\\mu_i\\in\\mathbb{R}$. Our method exploits the fact that, for low enough quark mass $m$ and large enough chemical potential $\\mu_i$, the chiral transition is decidedly first order, then turning into crossover at a critical mass $m_c(\\mu)$. It is thus possible to determine the critical line in the $m - \\mu^2$ plane, which can be safely extrapolated to the chiral limit by taking advantage of the known tricritical indices governing its shape. We test this method with standard staggered fermions and the result of our simulations is that $m_c(\\mu=0)$ is positive, so that the phase transition at zero density is definitely first order in the chiral limit, on our coarse $N_t=4$ lattices with $a\\simeq 0.3\\,\\mathrm{fm}$.

  12. Thermodynamic phases and mesonic fluctuations in a chiral nucleon-meson model

    CERN Document Server

    Drews, Matthias; Klein, Bertram; Weise, Wolfram

    2013-01-01

    Studies of the QCD phase diagram must properly include nucleonic degrees of freedom and their thermodynamics in the range of baryon chemical potentials characteristic of nuclear matter. A useful framework for incorporating relevant nuclear physics constraints in this context is a chiral nucleon-meson effective Lagrangian. In the present paper, such a chiral nucleon-meson model is extended with systematic inclusion of mesonic fluctuations using the functional renormalization group approach. The resulting description of the nuclear liquid-gas phase transition shows a remarkable agreement with three-loop calculations based on in-medium chiral effective field theory. No signs of a chiral first-order phase transition and its critical endpoint are found in the region of applicability of the model, at least up to twice the density of normal nuclear matter and at temperatures T<100 MeV. Fluctuations close to the critical point of the first-order liquid-gas transition are also examined with a detailed study of the ...

  13. Racemic but tropos (chirally flexible) BIPHEP ligands for Rh(I)-complexes: highly enantioselective ene-type cyclization of 1,6-enynes.

    Science.gov (United States)

    Mikami, Koichi; Kataoka, Shohei; Yusa, Yukinori; Aikawa, Kohsuke

    2004-10-14

    [reaction: see text] The tropos (chirally flexible) or atropos (chirally rigid) nature of BIPHEP-Rh complexes at room temperature critically depends on the amines complexed. The aliphatic DPEN complex is atropos, whereas the aromatic DABN complex is tropos. BIPHEP-Rh chirality can thus be controlled by DABN at room temperature. The amine-free BIPHEP-Rh complex is tropos. At 5 degrees C, even amine-free BIPHEP-Rh complexes are atropos and hence can be used as enantiopure catalysts to give high enantioselectivity in ene-type cyclization of 1,6-enynes.

  14. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG XuMu

    2001-01-01

    @@ Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals

  15. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG; XuMu

    2001-01-01

    Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals  ……

  16. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Science.gov (United States)

    Guo, Zhen; Du, Yu; Liu, Xianbin; Ng, Siu-Choon; Chen, Yuan; Yang, Yanhui

    2010-04-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  17. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2010-04-23

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  18. The asymmetric alkylation of dimethylhydrazones; intermolecular chirality transfer using sparteine as chiral ligand.

    Science.gov (United States)

    McSweeney, Christina M; Foley, Vera M; McGlacken, Gerard P

    2014-12-01

    The asymmetric alkylation of ketones represents a fundamental transformation in organic chemistry. Chiral auxiliaries have been used almost exclusively for this transformation. Herein we describe a strategy for the generation of enantiomerically enriched α-alkylated ketones up to an er of 83 : 17, using a chiral ligand protocol.

  19. Chirality affects aggregation kinetics of single-walled carbon nanotubes.

    Science.gov (United States)

    Khan, Iftheker A; Afrooz, A R M Nabiul; Flora, Joseph R V; Schierz, P Ariette; Ferguson, P Lee; Sabo-Attwood, Tara; Saleh, Navid B

    2013-02-19

    Aggregation kinetics of chiral-specific semiconducting single-walled carbon nanotubes (SWNTs) was systematically studied through time-resolved dynamic light scattering. Varied monovalent (NaCl) and divalent (CaCl(2)) electrolyte composition was used as background solution chemistry. Suwannee River humic acid (SRHA) was used to study the effects of natural organic matter on chirally separated SWNT aggregation. Increasing salt concentration and introduction of divalent cations caused aggregation of SWNT clusters by suppressing the electrostatic repulsive interaction from the oxidized surfaces. The (6,5) SWNTs, i.e., SG65, with relatively lower diameter tubes compared to (7,6), i.e., SG76, showed substantially higher stability (7- and 5-fold for NaCl and CaCl(2), respectively). The critical coagulation concentration (CCC) values were 96 and 13 mM NaCl in the case of NaCl and 2.8 and 0.6 mM CaCl(2) for SG65 and SG76, respectively. The increased tube diameter for (7,6) armchair SWNTs likely presented with higher van der Waals interaction and thus increased the aggregation propensity substantially. The presence of SRHA enhanced SWNT stability in divalent CaCl(2) environment through steric interaction from adsorbed humic molecules; however showed little or no effects for monovalent NaCl. The mechanism of aggregation-describing favorable interaction tendencies for (7,6) SWNTs-is probed through ab initio molecular modeling. The results suggest that SWNT stability can be chirality dependent in typical aquatic environment.

  20. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    Science.gov (United States)

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li

    2013-01-01

    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality.