WorldWideScience

Sample records for multiple cell stimulation

  1. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation.

    Directory of Open Access Journals (Sweden)

    Adele M Mount

    2008-02-01

    Full Text Available Dendritic cells (DC are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8alpha DC play a prominent, and sometimes exclusive, role in driving amplification of CD8(+ T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4(+ T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4(+ and CD8(+ T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8alpha DC populations in the amplification of CD8(+ and CD4(+ T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8(+ T cells are dominated by presentation of antigen by CD8alpha DC but can involve non-CD8alpha DC. In contrast, CD4(+ T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4(+ T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.

  2. Demonstration of a stimulating effect of natural ionizing radiation and of very low radiation doses on cell multiplication

    International Nuclear Information System (INIS)

    Planel, G.; Soleilhavoup, J.P.; Tixador, R.; Croute, F.; Richoilley, G.

    1976-01-01

    Experiments have been carried out to demonstrate a possible effect of natural ionizing radiation. Using lead shielding devices or an underground laboratory, it was shown that a decrease in background irradiation induces a decrease in cell growth rate (experiments carried out on Paramecia). On the other hand, the recovery of a normal irradiation level in shielding devices induces a quite normal cell proliferation. Moreover, small doses of γ rays from 60 Co exhibit a stimulating effect. Variations in cell radiosensitivity to these low doses are reported. Experiments carried out in the underground laboratory and at high altitude show that both telluric radioactivity and cosmic rays contribute to this stimulating effect on cell multiplication. (author)

  3. Stimulation of Toll-like receptor-1/2 combined with Velcade increases cytotoxicity to human multiple myeloma cells

    International Nuclear Information System (INIS)

    Abdi, J; Mutis, T; Garssen, J; Redegeld, F

    2013-01-01

    An increasing body of evidence supports the important role of adhesion to bone marrow microenvironment components for survival and drug resistance of multiple myeloma (MM) cells. Previous studies suggested that stimulation of Toll-like receptors by endogenous ligands released during inflammation and tissue damage may be pro-tumorigenic, but no studies have been performed in relation to modulation of cell adhesion and drug cytotoxicity. Here, we investigated the effect of TLR1/2 activation on adhesion of human myeloma cells to fibronectin, and their sensitivity to the proteasome inhibitor Velcade. It was found that TLR1/2 activation with Pam3CSK4 increased the cytotoxicity of Velcade in L363, OPM-2 and U266 human myeloma cells. This effect was not related to a decreased adhesion of the cells to fibronectin, but TLR1/2 activation stimulated the caspase-3 activity in Velcade-treated myeloma cells, which may be responsible for the enhanced cell death. Inhibitors of NF-κB and MAPK reduced the stimulatory effect. These findings indicate that TLR activation of MM cells could bypass protective effects of cell adhesion and suggest that TLR signaling may also have antitumorigenic potential

  4. Fluvoxamine stimulates oligodendrogenesis of cultured neural stem cells and attenuates inflammation and demyelination in an animal model of multiple sclerosis.

    Science.gov (United States)

    Ghareghani, Majid; Zibara, Kazem; Sadeghi, Heibatollah; Dokoohaki, Shima; Sadeghi, Hossein; Aryanpour, Roya; Ghanbari, Amir

    2017-07-07

    Multiple Sclerosis (MS) require medications controlling severity of the pathology and depression, affecting more than half of the patients. In this study, the effect of antidepressant drug fluvoxamine, a selective serotonin reuptake inhibitor, was investigated in vitro and in vivo. Nanomolar concentrations of fluvoxamine significantly increased cell viability and proliferation of neural stem cells (NSCs) through increasing mRNA expression of Notch1, Hes1 and Ki-67, and protein levels of NICD. Also, physiological concentrations of fluvoxamine were optimal for NSC differentiation toward oligodendrocytes, astrocytes and neurons. In addition, fluvoxamine attenuated experimental autoimmune encephalomyelitis (EAE) severity, a rat MS model, by significantly decreasing its clinical scores. Moreover, fluvoxamine treated EAE rats showed a decrease in IFN-γ serum levels and an increase in IL-4, pro- and anti-inflammatory cytokines respectively, compared to untreated EAE rats. Furthermore, immune cell infiltration and demyelination plaque significantly decreased in spinal cords of fluvoxamine-treated rats, which was accompanied by an increase in protein expression of MBP and GFAP positive cells and a decrease in lactate serum levels, a new biomarker of MS progression. In summary, besides its antidepressant activity, fluvoxamine stimulates proliferation and differentiation of NSCs particularly toward oligodendrocytes, a producer of CNS myelin.

  5. Thrombopoietin stimulates migration and activates multiple signaling pathways in hepatoblastoma cells

    DEFF Research Database (Denmark)

    Romanelli, Roberto G; Petrai, Ilaria; Robino, Gaia

    2005-01-01

    Thrombopoietin (TPO), a cytokine that participates in the differentiation and maturation of megakaryocytes, is produced in the liver, but only limited information is available on the biological response of liver-derived cells to TPO. In this study, we investigated whether HepG2 cells express c-Mpl......, the receptor for TPO, and whether TPO elicits biological responses and intracellular signaling in this cell type. Specific transcripts for c-Mpl were detected in HepG2 cells by RT-PCR, and expression of the protein was demonstrated by Western blot analysis and immunofluorescence. Exposure of HepG2 cells to TPO...... members of the MAPK family, including ERK and JNK, as assessed using phosphorylation-specific antibodies and immune complex kinase assays. TPO also activated phosphatidylinositol 3-kinase (PI3K) and the downstream kinase Akt in a time-dependent manner. Finally, activation of c-Mpl was associated...

  6. Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways

    DEFF Research Database (Denmark)

    Friedrichsen, Birgitte N; Neubauer, Nicole; Lee, Ying C

    2006-01-01

    pathways leading to mitosis by incretins and cytokines, respectively. The response to both GLP-1 and GIP was completely blocked by the protein kinase A (PKA) inhibitor, H89. In addition, the phosphoinositol 3-kinase (PI3K) inhibitor wortmannin and the mitogen-activated protein kinase kinase (MEK) inhibitor...... and we have previously demonstrated hGH-induced cyclin D2 expression in the insulinoma cell line, INS-1. GLP-1 time-dependently induced the cyclin D1 mRNA and protein levels in INS-1E, whereas the cyclin D2 levels were unaffected. However, minor effect of GLP-1 stimulation was observed on the cyclin D3 m......RNA levels. Transient transfection of a cyclin D1 promoter-luciferase reporter construct into islet monolayer cells or INS-1 cells revealed approximately a 2-3 fold increase of transcriptional activity in response to GLP-1 and GIP, and a 4-7 fold increase in response to forskolin. However, treatment...

  7. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity.

    Science.gov (United States)

    Querec, Troy; Bennouna, Soumaya; Alkan, Sefik; Laouar, Yasmina; Gorden, Keith; Flavell, Richard; Akira, Shizuo; Ahmed, Rafi; Pulendran, Bali

    2006-02-20

    The live attenuated yellow fever vaccine 17D (YF-17D) is one of the most effective vaccines available, with a 65-yr history of use in >400 million people globally. Despite this efficacy, there is presently no information about the immunological mechanisms by which YF-17D acts. Here, we present data that suggest that YF-17D activates multiple Toll-like receptors (TLRs) on dendritic cells (DCs) to elicit a broad spectrum of innate and adaptive immune responses. Specifically, YF-17D activates multiple DC subsets via TLRs 2, 7, 8, and 9 to elicit the proinflammatory cytokines interleukin (IL)-12p40, IL-6, and interferon-alpha. Interestingly, the resulting adaptive immune responses are characterized by a mixed T helper cell (Th)1/Th2 cytokine profile and antigen-specific CD8+ T cells. Furthermore, distinct TLRs appear to differentially control the Th1/Th2 balance; thus, whilst MyD88-deficient mice show a profound impairment of Th1 cytokines, TLR2-deficient mice show greatly enhanced Th1 and Tc1 responses to YF-17D. Together, these data enhance our understanding of the molecular mechanism of action of YF-17D, and highlight the potential of vaccination strategies that use combinations of different TLR ligands to stimulate polyvalent immune responses.

  8. Prevotella intermedia stimulates tissue-type plasminogen activator and plasminogen activator inhibitor-2 expression via multiple signaling pathways in human periodontal ligament cells.

    Science.gov (United States)

    Guan, Su-Min; He, Jian-Jun; Zhang, Ming; Shu, Lei

    2011-06-01

    Prevotella intermedia is an important periodontal pathogen that induces various inflammatory and immune responses. In this study, we investigated the effects of P. intermedia on the plasminogen system in human periodontal ligament (hPDL) cells and explored the signaling pathways involved. Using semi-quantitative reverse transcription (RT)-PCR and quantitative real-time RT-qPCR, we demonstrated that P. intermedia challenge increased tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor (PAI)-2 expression in a concentration- and time-dependent manner, but exerted no influence on urokinase-type plasminogen activator and PAI-1mRNA expression in hPDL cells. Prevotella intermedia stimulation also enhanced tPA protein secretion as confirmed by enzyme-linked immunosorbent assay. Western blot results revealed that P. intermedia treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase (p38). ERK, JNK and protein kinase C inhibitors significantly attenuated the P. intermedia-induced tPA and PAI-2 expression. Furthermore, p38 and phosphatidylinositol 3-kinase inhibitors markedly decreased PAI-2 expression, whereas they showed no or little inhibition on tPA expression. In contrast, inhibition of protein kinase A greatly enhanced the upregulatory effect of P. intermedia on tPA and PAI-2 expression. Our results suggest that P. intermedia may contribute to periodontal tissue destruction by upregulating tPA and PAI-2 expression in hPDL cells via multiple signaling pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Atrazine enhances progesterone production through activation of multiple signaling pathways in FSH-stimulated rat granulosa cells: evidence for premature luteinization.

    Science.gov (United States)

    Pogrmic-Majkic, Kristina; Samardzija, Dragana; Fa, Svetlana; Hrubik, Jelena; Glisic, Branka; Kaisarevic, Sonja; Andric, Nebojsa

    2014-11-01

    Premature luteinization is a possible cause of infertility in women. It is currently unknown whether environmental chemicals can induce changes associated with premature luteinization. Using rat granulosa cells (GC) in vitro, we demonstrated that exposure to atrazine (ATR), a widely used herbicide, causes GC phenotype that resembles that of human premature luteinization. At the end of the 48-h stimulation with FSH, ATR-exposed GC showed (1) higher levels of progesterone, (2) overexpression of luteal markers (Star and Cyp11a1), and (3) an increase in progesterone:estradiol ratio above 1. Mechanistic experiments were conducted to understand the signaling events engaged by ATR that lead to this phenotype. Western blot analysis revealed prolonged phosphorylation of protein kinase B (AKT) and cAMP response element-binding protein (CREB) in ATR- and FSH-exposed GC. An increased level of ERK1/2-dependent transcriptional factor CCATT/enhancer-binding protein beta (CEBPB) was observed after 4 h of ATR exposure. Inhibitors of PI3K (wortmannin) and MEK (U0126) prevented ATR-induced rise in progesterone level and expression of luteal markers in FSH-stimulated GC. Atrazine intensified AKT and CEBPB signaling and caused Star overexpression in forskolin-stimulated GC but not in epidermal growth factor (EGF)-stimulated GC. In the presence of rolipram, a specific inhibitor of phosphodiesterase 4 (PDE4), ATR was not able to further elevate AKT phosphorylation, CEBPB protein level, and Star mRNA in FSH-stimulated GC, suggesting that ATR inhibits PDE4. Overall, this study showed that ATR acts as a FSH sensitizer leading to enhanced cAMP, AKT, and CEBPB signaling and progesterone biosynthesis, which promotes premature luteinization phenotype in GC. © 2014 by the Society for the Study of Reproduction, Inc.

  10. Stimulation of hair cells with ultraviolet light

    Science.gov (United States)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  11. Multiple passage cells theory

    International Nuclear Information System (INIS)

    Riva, R.

    1983-01-01

    A review of the main concepts envolved in non astigmatic multiple passes cells is presented. It is shown that these concepts can be extended to ring cavities in which the analysis of the ray propagation (in the paraxial approaching) in two separated plans is accomplished. The concepts developed are applyed to a simple ring cavity (one curve mirror and two plane ones) showing that the acquired pattern of the rays on the mirrors is the one of a Lissajours figure which allows a better use of the mirror's area and consequently a larger number of passes. The cavity has applications in optical delay lines, measurements of mirrors reflectivities and possibly in passive optical gyroscopes. (Author) [pt

  12. Increased mobilization and yield of stem cells using plerixafor in combination with granulocyte-colony stimulating factor for the treatment of non-Hodgkin’s lymphoma and multiple myeloma

    Directory of Open Access Journals (Sweden)

    Louis M Pelus

    2011-02-01

    Full Text Available Louis M Pelus1, Sherif S Farag21Department of Microbiology and Immunology, 2Division of Hematology and Oncology, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IndianaAbstract: Multiple myeloma and non-Hodgkin’s lymphoma remain the most common indications for high-dose chemotherapy and autologous peripheral blood stem cell rescue. While a CD34+ cell dose of 1 × 106/kg is considered the minimum required for engraftment, higher CD34+ doses correlate with improved outcome. Numerous studies, however, support targeting a minimum CD34+ cell dose of 2.0 × 106/kg, and an “optimal” dose of 4 to 6 × 106/kg for a single transplant. Unfortunately, up to 40% of patients fail to mobilize an optimal CD34+ cell dose using myeloid growth factors alone. Plerixafor is a novel reversible inhibitor of CXCR4 that significantly increases the mobilization and collection of higher numbers of hematopoietic progenitor cells. Two randomized multi-center clinical trials in patients with non-Hodgkin’s lymphoma and multiple myeloma have demonstrated that the addition of plerixafor to granulocyte-colony stimulating factor increases the mobilization and yield of CD34+ cells in fewer apheresis days, which results in durable engraftment. This review summarizes the pharmacology and evidence for the clinical efficacy of plerixafor in mobilizing hematopoietic stem and progenitor cells, and discusses potential ways to utilize plerixafor in a cost-effective manner in patients with these diseases.Keywords: plerixafor, mobilization, stem cells, lymphoma, myeloma

  13. Stimulated human fibroblast cell survival

    International Nuclear Information System (INIS)

    Smith, B.P.; Gale, K.L.; Einspenner, M.; Greenstock, C.L.; Gentner, N.E.

    1992-01-01

    Techniques for cloning cultured mammalian cells have supported the most universally-accepted method for measuring the induction of lethality by geno-toxicants such as ionizing radiation: the 'survival of colony-forming ability (CFA)' assay. Since most cultured human cell lines exhibit plating efficiency (i.e. the percentage of cells that are capable of reproductively surviving and dividing to form visible colonies) well below 100%, such assays are in essence 'survival of plating efficiency' assays, since they are referred to the plating (or cloning) efficiency of control (i.e. unirradiated) cells. (author). 8 refs., 2 figs

  14. B-cell stimulating factor

    Energy Technology Data Exchange (ETDEWEB)

    Clevenger, W R; Conlon, P J; Eisenman, J R; Gillis, S; Grabstein, K H; Hopp, T P; March, C J; Mochizuki, D Y; Price, V L; Shanebeck, K D

    1987-10-05

    BSF-1 was derived from malignant cells and purified by use of various techniques, including adsorption, ion exchange chromatography and reverse phase high performance liquid chromatography. By these techniques, the BSF-1 was purified to homogenity. The high purification of the BSF-1 has made possible the sequencing of the amino acid residues at the N-terminal portion of its protein molecules. From the amino acid sequencing information, a radiolabelled oligonucleotide probe corresponding to portion of the amino acid sequence of the BSF-1 molecule was synthesized and then used to probe a cDNA library prepared from polyadenylated mRNA extracted from cell lines known to produce BSF-1. Through this procedure, a cDNA clone containing the BSF-1 gene was isolated, sequenced and mature BSF-1 expressed. The isolated cDNA clone was then radiolabelled and used as a large probe for screening cDNA libraries of other species of animals for homologous BSF-1 clones.

  15. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  16. Reliability of psychophysiological responses across multiple motion sickness stimulation tests

    Science.gov (United States)

    Stout, C. S.; Toscano, W. B.; Cowings, P. S.

    1995-01-01

    Although there is general agreement that a high degree of variability exists between subjects in their autonomic nervous system responses to motion sickness stimulation, very little evidence exists that examines the reproducibility of autonomic responses within subjects during motion sickness stimulation. Our objectives were to examine the reliability of autonomic responses and symptom levels across five testing occasions using the (1) final minute of testing, (2) change in autonomic response and the change in symptom level, and (3) strength of the relationship between the change in symptom level and the change in autonomic responses across the entire motion sickness test. The results indicate that, based on the final minute of testing, the autonomic responses of heart rate, blood volume pulse, and respiration rate are moderately stable across multiple tests. Changes in heart rate, blood volume pulse, respiration rate, and symptoms throughout the test duration are less stable across the tests. Finally, autonomic responses and symptom levels are significantly related across the entire motion sickness test.

  17. Graphene electrodes for stimulation of neuronal cells

    International Nuclear Information System (INIS)

    Koerbitzer, Berit; Nick, Christoph; Thielemann, Christiane; Krauss, Peter; Yadav, Sandeep; Schneider, Joerg J

    2016-01-01

    Graphene has the ability to improve the electrical interface between neuronal cells and electrodes used for recording and stimulation purposes. It provides a biocompatible coating for common electrode materials such as gold and improves the electrode properties. Graphene electrodes are also prepared on SiO 2 substrate to benefit from its optical properties like transparency. We perform electrochemical and Raman characterization of gold electrodes with graphene coating and compare them with graphene on SiO 2 substrate. It was found that the substrate plays an important role in the performance of graphene and show that graphene on SiO 2 substrate is a very promising material combination for stimulation electrodes. (paper)

  18. Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells.

    Science.gov (United States)

    Rettenmaier, Alexander; Lenarz, Thomas; Reuter, Günter

    2014-04-01

    Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation.

  19. [gammadelta T cells stimulated by zoledronate kill osteosarcoma cells].

    Science.gov (United States)

    Jiang, Hui; Xu, Qiang; Yang, Chao; Cao, Zhen-Guo; Li, Zhao-Xu; Ye, Zhao-Ming

    2010-12-01

    To investigate the cytotoxicity of human γδT cells from PBMCs stimulated by zoledronate against osteosarcoma cell line HOS in vitro and in vivo and evaluate the relavent pathways. The peripheral blood mononuclear cells (PBMCs)of healthy donors were stimulated by single dose zoledronate and cultured in the present of IL-2 for two weeks, analysising the percentage of γδT cells on a FACSCalibur cytometer.Study the cytotoxicity of γδT cells against the osteosarcoma line HOS using LDH release assay kit. Pre-treatment of γδT cells with anti-human γδTCR antibody, anti-human NKG2D antibody and concanamycin A to bolck the relavent pathways for evaluating the mechenisms of its cytotoxicity. In vivo, BALB/c mice were inoculated subcutaneously osteosarcoma cell HOS for developing hypodermal tumors. And they were randomized into two groups: unteated group, γδT cell therapy group. Tumor volume and weight of the two groups were compared. After two weeks of culture, γδT cells from zoledronate-stimulated PBMCs could reach (95±3)%. When the E:T as 6:1, 12:1, 25:1, 50:1, the percentage of osteosarcoma cell HOS killed by γδT cells was 26.8%, 31.5%, 37.8%, 40.9%, respectively.When anti-huma γδTCR antibody, anti-human NKG2D antibody and concanamycin A blocked the relavent pathways, the percentage was 32.3%, 4.7%, 16.7% ( E:T as 25:1), respectively. In vivo, the tumor inhibition rate of the group of γδT cell therapy was 42.78%. γδT cells derived from PBMCs stimulated by zoledronate can acquired pure γδT cells. And they show strong cytoxicity against osteosarcoma cell line HOS in vitro and in vivo.

  20. Stimulation of Natural Killer T Cells by Glycolipids

    Directory of Open Access Journals (Sweden)

    Brian L. Anderson

    2013-12-01

    Full Text Available Natural killer T (NKT cells are a subset of T cells that recognize glycolipid antigens presented by the CD1d protein. The initial discovery of immunostimulatory glycolipids from a marine sponge and the T cells that respond to the compounds has led to extensive research by chemists and immunologists to understand how glycolipids are recognized, possible responses by NKT cells, and the structural features of glycolipids necessary for stimulatory activity. The presence of this cell type in humans and most mammals suggests that it plays critical roles in antigen recognition and the interface between innate and adaptive immunity. Both endogenous and exogenous natural antigens for NKT cells have been identified, and it is likely that glycolipid antigens remain to be discovered. Multiple series of structurally varied glycolipids have been synthesized and tested for stimulatory activity. The structural features of glycolipids necessary for NKT cell stimulation are moderately well understood, and designed compounds have proven to be much more potent antigens than their natural counterparts. Nevertheless, control over NKT cell responses by designed glycolipids has not been optimized, and further research will be required to fully reveal the therapeutic potential of this cell type.

  1. Gold nanoparticle-mediated laser stimulation causes a complex stress signal in neuronal cells

    Science.gov (United States)

    Johannsmeier, Sonja; Heeger, Patrick; Terakawa, Mitsuhiro; Kalies, Stefan; Heisterkamp, Alexander; Ripken, Tammo; Heinemann, Dag

    2017-07-01

    Gold nanoparticle mediated laser stimulation of neuronal cells allows for cell activation on a single-cell level. It could therefore be considered an alternative to classical electric neurostimulation. The physiological impact of this new approach has not been intensively studied so far. Here, we investigate the targeted cell's reaction to a laser stimulus based on its calcium response. A complex cellular reaction involving multiple sources has been revealed.

  2. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells

    Science.gov (United States)

    Kameneva, T.; Maturana, M. I.; Hadjinicolaou, A. E.; Cloherty, S. L.; Ibbotson, M. R.; Grayden, D. B.; Burkitt, A. N.; Meffin, H.

    2016-02-01

    Objective. ON and OFF retinal ganglion cells (RGCs) are known to have non-monotonic responses to increasing amplitudes of high frequency (2 kHz) biphasic electrical stimulation. That is, an increase in stimulation amplitude causes an increase in the cell’s spike rate up to a peak value above which further increases in stimulation amplitude cause the cell to decrease its activity. The peak response for ON and OFF cells occurs at different stimulation amplitudes, which allows differential stimulation of these functional cell types. In this study, we investigate the mechanisms underlying the non-monotonic responses of ON and OFF brisk-transient RGCs and the mechanisms underlying their differential responses. Approach. Using in vitro patch-clamp recordings from rat RGCs, together with simulations of single and multiple compartment Hodgkin-Huxley models, we show that the non-monotonic response to increasing amplitudes of stimulation is due to depolarization block, a change in the membrane potential that prevents the cell from generating action potentials. Main results. We show that the onset for depolarization block depends on the amplitude and frequency of stimulation and reveal the biophysical mechanisms that lead to depolarization block during high frequency stimulation. Our results indicate that differences in transmembrane potassium conductance lead to shifts of the stimulus currents that generate peak spike rates, suggesting that the differential responses of ON and OFF cells may be due to differences in the expression of this current type. We also show that the length of the axon’s high sodium channel band (SOCB) affects non-monotonic responses and the stimulation amplitude that leads to the peak spike rate, suggesting that the length of the SOCB is shorter in ON cells. Significance. This may have important implications for stimulation strategies in visual prostheses.

  3. Bisensory stimulation increases gamma-responses over multiple cortical regions.

    Science.gov (United States)

    Sakowitz, O W; Quiroga, R Q; Schürmann, M; Başar, E

    2001-04-01

    In the framework of the discussion about gamma (approx. 40 Hz) oscillations as information carriers in the brain, we investigated the relationship between gamma responses in the EEG and intersensory association. Auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) were compared with bisensory evoked potentials (BEPs; simultaneous auditory and visual stimulation) in 15 subjects. Gamma responses in AEPs, VEPs and BEPs were assessed by means of wavelet decomposition. Overall maximum gamma-components post-stimulus were highest in BEPs (P < 0.01). Bisensory evoked gamma-responses also showed significant central, parietal and occipital amplitude-increases (P < 0.001, P < 0.01, P < 0.05, respectively; prestimulus interval as baseline). These were of greater magnitude when compared with the unisensory responses. As a correlate of the marked gamma responses to bimodal stimulation we suggest a process of 'intersensory association', i.e. one of the steps between sensory transmission and perception. Our data may be interpreted as a further example of function-related gamma responses in the EEG.

  4. Stimulation of granulocytic cell iodination by pine cone antitumor substances

    International Nuclear Information System (INIS)

    Unten, S.; Sakagami, H.; Konno, K.

    1989-01-01

    Antitumor substances (Fractions VI and VII) prepared from the NaOH extract of pine cone significantly stimulated the iodination (incorporation of radioactive iodine into an acid-insoluble fraction) of human peripheral blood adherent mononuclear cells, polymorphonuclear cells (PMN), and human promyelocytic leukemic HL-60 cells. In contrast, these fractions did not significantly increase the iodination of nonadherent mononuclear cells, red blood cells, other human leukemic cell lines (U-937, THP-1, K-562), human diploid fibroblast (UT20Lu), or mouse cell lines (L-929, J774.1). Iodination of HL-60 cells, which were induced to differentiate by treatment with either retinoic acid or tumor necrosis factor, were stimulated less than untreated cells. The stimulation of iodination of both PMN and HL-60 cells required the continuous presence of these fractions and was almost completely abolished by the presence of myeloperoxidase inhibitors. The stimulation activity of these fractions was generally higher than that of various other immunopotentiators. Possible mechanisms of extract stimulation of myeloperoxidase-containing cell iodination are discussed

  5. Mycobacterial antigens stimulate rheumatoid mononuclear cells to cartilage proteoglycan depletion

    NARCIS (Netherlands)

    Wilbrink, B.; Bijlsma, J. W.; Huber-Bruning, O.; van Roy, J. L.; den Otter, W.; van Eden, W.

    1990-01-01

    In a coculture with porcine articular cartilage explants unstimulated blood mononuclear cells (BMC) from patients with rheumatoid arthritis (RA), but not from healthy controls, induced proteoglycan depletion of dead cartilage. Specific stimulation of the RA BMC with Mycobacterium tuberculosis (MT),

  6. Stimulation of adult oligodendrogenesis by myelin-specific T cells

    DEFF Research Database (Denmark)

    Hvilsted Nielsen, Helle; Toft-Hansen, Henrik; Lambertsen, Kate Lykke

    2011-01-01

    of calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system....

  7. Claustral single cell reactions to tooth pulp stimulation in cats.

    Science.gov (United States)

    Jastreboff, P; Sikora, M; Frydrychowski, A; Słoniewski, P

    1983-01-01

    Single unit activity in the central region of the claustrum, evoked by electrical stimulation of tooth pulp or paws was studied on cats under chloralose anesthesia. The majority of cells responded in similar manner to stimulation of tooth pulp or paws, but there were cells with clear preference to a given type of stimulation. Latencies of reactions evoked by tooth pulp stimulation were significantly shorter than those for limb stimulation. In the former case latencies as short as 8 rns were observed. It is postulated that the central region of the claustrum receives a projection from the tooth pulp, and that in those cases with very short latency the projection is direct and does not involve the cerebral cortex.

  8. Purified human somatomedin A and rat multiplication stimulating activity

    Energy Technology Data Exchange (ETDEWEB)

    Rechler, M M; Fryklund, L; Nissley, S P; Hall, K; Podskalny, J M; Skottner, A; Moses, A C [National Institutes of Health, Bethesda, Md. (USA); Kabi AB, Stockholm [Sweden; National Inst. of Arthritis, Metabolism and Digestive Diseases, Bethesda, Md. (USA). Diabetes Branch)

    1978-01-01

    Specific receptors for MSA and/or somatomedin A could be demonstrated in intact cells or membranes from chick embryo fibroblasts, human fibroblasts, human placenta, rat liver, and the BRL 3A2 cell line, a subclone of the line that produces MSA. Unlabeled MSA and somatomedin A inhibited the binding of /sup 125/I-labeled MSA and /sup 125/I-labeled somatomedin A to each of these receptors with comparable potency. In chick embryo fibroblasts, human fibroblasts, and human placental membranes, the binding of both radioactive ligands also was inhibited by insulin, consistent with the interpretation that /sup 125/I-labeled MSA and /sup 125/I-labeled somatomedin A were binding to the same receptor. By contrast, in the BRL 3A2 cell line, insulin inhibited the binding of /sup 125/I-labeled somatomedin A, but not the binding of /sup 125/I-labeled MSA, suggesting that the two labeled peptides were binding to different receptors in this cell line. Moreover, /sup 125/I-labeled MSA, but not /sup 125/I-labeled somatomedin A, bound specifically to rat liver plasma membranes. These results indicate that human somatomedin A and rat MSA are closely related, but not identical, peptides.

  9. Holographically generated structured illumination for cell stimulation in optogenetics

    Science.gov (United States)

    Schmieder, Felix; Büttner, Lars; Czarske, Jürgen; Torres, Maria Leilani; Heisterkamp, Alexander; Klapper, Simon; Busskamp, Volker

    2017-06-01

    In Optogenetics, cells, e.g. neurons or cardiac cells, are genetically altered to produce for example the lightsensitive protein Channelrhodopsin-2. Illuminating these cells induces action potentials or contractions and therefore allows to control electrical activity. Thus, light-induced cell stimulation can be used to gain insight to various biological processes. Many optogenetics studies, however, use only full field illumination and thus gain no local information about their specimen. But using modern spatial light modulators (SLM) in conjunction with computer-generated holograms (CGH), cells may be stimulated locally, thus enabling the research of the foundations of cell networks and cell communications. In our contribution, we present a digital holographic system for the patterned, spatially resolved stimulation of cell networks. We employ a fast ferroelectric liquid crystal on silicon SLM to display CGH at up to 1.7 kHz. With an effective working distance of 33 mm, we achieve a focus of 10 μm at a positioning accuracy of the individual foci of about 8 μm. We utilized our setup for the optogenetic stimulation of clusters of cardiac cells derived from induced pluripotent stem cells and were able to observe contractions correlated to both temporal frequency and spatial power distribution of the light incident on the cell clusters.

  10. Changes in gene expression following growth stimulation of cultured cells

    International Nuclear Information System (INIS)

    Nathans, D.; Lau, L.F.; Lee, S.J.; Linzer, D.I.H.

    1986-01-01

    To identify genes that may be part of a genetic program for the growth of mammalian cells. The authors are characterizing cDNA clones derived from mRNAs that appear at various times after stimulation of resting BALB/c 3T3 cells with serum or growth factors. cDNA libraries were prepared from polyA/sup +/ RNA from cells stimulated with serum for various periods of time, and the libraries were differentially screened with /sup 32/P-cDNA probes made from stimulated or resting cell mRNA. One cDNA library was prepared from cells that were stimulated with serum for 3 hrs in the presence of cycloheximide. The authors purpose in inhibiting protein synthesis was to limit new mRNAs to those that do not require de novo protein synthesis for their accumulation and to amplify mRNAs that are superinduced by serum in the absence of protein synthesis. Of approximately 50,000 recombinant phage plaques screened, 357 clones hybridized to probes derived from stimulated-cell RNA but not to probes from resting-cell RNA. Cross hybridization analysis showed that 4 RNA sequence families accounted for over 95% of the clones; other sequences were found only once

  11. KCl stimulation increases norepinephrine transporter function in PC12 cells.

    Science.gov (United States)

    Mandela, Prashant; Ordway, Gregory A

    2006-09-01

    The norepinephrine transporter (NET) plays a pivotal role in terminating noradrenergic signaling and conserving norepinephrine (NE) through the process of re-uptake. Recent evidence suggests a close association between NE release and regulation of NET function. The present study evaluated the relationship between release and uptake, and the cellular mechanisms that govern these processes. KCl stimulation of PC12 cells robustly increased [3H]NE uptake via the NET and simultaneously increased [3H]NE release. KCl-stimulated increases in uptake and release were dependent on Ca2+. Treatment of cells with phorbol-12-myristate-13-acetate (PMA) or okadaic acid decreased [3H]NE uptake but did not block KCl-stimulated increases in [3H]NE uptake. In contrast, PMA increased [3H]NE release and augmented KCl-stimulated release, while okadaic acid had no effects on release. Inhibition of Ca2+-activated signaling cascades with KN93 (a Ca2+ calmodulin-dependent kinase inhibitor), or ML7 and ML9 (myosin light chain kinase inhibitors), reduced [3H]NE uptake and blocked KCl-stimulated increases in uptake. In contrast, KN93, ML7 and ML9 had no effect on KCl-stimulated [3H]NE release. KCl-stimulated increases in [3H]NE uptake were independent of transporter trafficking to the plasma membrane. While increases in both NE release and uptake mediated by KCl stimulation require Ca2+, different intracellular mechanisms mediate these two events.

  12. Trichoepithelioma And Multiple Basal Cell Epithelioma

    Directory of Open Access Journals (Sweden)

    Dey S.K

    1996-01-01

    Full Text Available A combination of multiple trichoepithelioma and basal cell epithelioma is reported. Although malignant degeneration of trichoepithelioma is debated, clinical and histopathological studies, in our case, hint at that. The case is reported for its rarity.

  13. Mechanical stimulation of bone cells using fluid flow

    NARCIS (Netherlands)

    Huesa, C.; Bakker, A.D.

    2012-01-01

    This chapter describes several methods suitable for mechanically stimulating monolayers of bone cells by fluid shear stress (FSS) in vitro. Fluid flow is generated by pumping culture medium through two parallel plates, one of which contains a monolayer of cells. Methods for measuring nitric oxide

  14. Electroactive biocompatible materials for nerve cell stimulation

    International Nuclear Information System (INIS)

    Yang, Mei; Liang, Youlong; Gui, Qingyuan; Liu, Yong; Chen, Jun

    2015-01-01

    In the past decades, great efforts have been developed for neurobiologists and neurologists to restore nervous system functions. Recently much attention has been paid to electrical stimulation (ES) of the nervous system as a potential way to repair it. Various conductive biocompatible materials with good electrical conductivity, biocompatibility, and long-term ES or electrical stability have been developed as the substrates for ES. In this review, we summarized different types of materials developed in the purpose for ES of nervous system, including conducting polymers, carbon nanomaterials and composites from conducting polymer/carbon nanomaterials. The present review will give our perspective on the future research directions for further investigation on development of ES particularly on the nerve system. (topical review)

  15. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells

    Science.gov (United States)

    Derksen, Patrick W. B.; Tjin, Esther; Meijer, Helen P.; Klok, Melanie D.; Mac Gillavry, Harold D.; van Oers, Marinus H. J.; Lokhorst, Henk M.; Bloem, Andries C.; Clevers, Hans; Nusse, Roel; van der Neut, Ronald; Spaargaren, Marcel; Pals, Steven T.

    2004-01-01

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also influenced by signals from the environment. In multiple myeloma (MM), the factors and signals coming from the bone marrow microenvironment are possibly even essential for the growth of the tumor cells. As targets for intervention, these signals may be equally important as mutated oncogenes. Given their oncogenic potential, WNT signals form a class of paracrine growth factors that could act to influence MM cell growth. In this paper, we report that MM cells have hallmarks of active WNT signaling, whereas the cells have not undergone detectable mutations in WNT signaling genes such as adenomatous polyposis coli and β-catenin (CTNNB1). We show that the malignant MM plasma cells overexpress β-catenin, including its N-terminally unphosphorylated form, suggesting active β-catenin/T cell factor-mediated transcription. Further accumulation and nuclear localization of β-catenin, and/or increased cell proliferation, was achieved by stimulation of WNT signaling with either Wnt3a, LiCl, or the constitutively active S33Y mutant of β-catenin. In contrast, by blocking WNT signaling by dominant-negative T cell factor, we can interfere with the growth of MM cells. We therefore suggest that MM cells are dependent on an active WNT signal, which may have important implications for the management of this incurable form of cancer. PMID:15067127

  16. Stimulation of proteoglycans by IGF I and II in microvessel and large vessel endothelial cells

    International Nuclear Information System (INIS)

    Bar, R.S.; Dake, B.L.; Stueck, S.

    1987-01-01

    Endothelial cells were cultured from bovine capillaries and pulmonary arteries, and the effect of insulinlike growth factor (IGF) I and II (multiplication-stimulating activity) and insulin on the synthesis of proteoglycans was determined. IGF I and II stimulated 35 SO 4 incorporation into proteoglycans in a dose-dependent manner in both microvessel and pulmonary artery endothelial cells with maximum threefold increases. In pulmonary artery cells, the IGFs caused a general stimulation of all classes of glycosaminoglycan-containing proteoglycans. In microvessel endothelial cells, the IGFs appeared to preferentially increase heparan sulfate-containing proteoglycans. Insulin, at concentrations up to 10 -6 M, had no effect on the synthesis of proteoglycans in either microvessel or pulmonary arterial endothelial cells. Thus, the IGFs stimulate the synthesis of proteoglycans in both microvessel and large vessel endothelial cells, a property that is not mimicked by insulin. Because vascular endothelial cells are bathed by IGFs in vivo, such IGF-mediated functions are likely to be significant in both the normal physiology of vascular endothelium and in disease states such as diabetes mellitus

  17. T–CELL VACCINE PREPARATION FOR MULTIPLE SCLEROSIS TREATMENT

    Directory of Open Access Journals (Sweden)

    I. P. Ivanova

    2005-01-01

    Full Text Available Abstract. A two–stage technology of preparation of T–cell vaccine designated for multiple sclerosis treatment is described. At the first stage myelin–specific lymphocytes undergoe antigen–dependent cultural selection, whereas at the second stage they are grown by means of non–specific stimulation. The vaccine prepared in this way was found to induce specific anti–idiotypic immune response, directed against myelin–reactive T–lymphocytes. The results of 1–year follow–up of 18 vaccinated patients with a cerebral–spinal type of multiple sclerosis indicated the absence of side effects of T–cell vaccination, and suggest the possibility of effective application of this treatment within early stages of disease. (Med. Immunol., 2005, vol.7, № 1, pp 27532

  18. Stimulation and support of haemopoietic stem cell proliferation by irradiated stroma cell colonies in bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Mori, K.J.; Izumi, Hiroko; Seto, Akira

    1981-01-01

    A culture system was established in which haemopoietic stem cells can undergo a recovery proliferation after a depletion of the stem cells, completely in vitro. To elucidate the source of the stimulatory factors, normal bone marrow cells were overlayed on top of the irradiated adherent 'stromal' cell colonies in the bone marrow cell culture. This stimulated the proliferation of haemopoietic stem cells in the cultured cells in suspension. The present results indicate that the stromal cells produce factors which stimulate stem cell proliferation. Whether the stimulation is evoked by direct cell-cell interactions or by humoral factors is as yet to be studied. (author)

  19. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    NARCIS (Netherlands)

    Hanken, K.; Bosse, M.; Möhrke, K.; Eling, P.A.T.M.; Kastrup, A.; Antal, A.; Hildebrandt, H.

    2016-01-01

    Background: Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation

  20. Homeostatic 'bystander' proliferation of human peripheral blood B cells in response to polyclonal T-cell stimulation in vitro.

    Science.gov (United States)

    Jasiulewicz, Aleksandra; Lisowska, Katarzyna A; Pietruczuk, Krzysztof; Frąckowiak, Joanna; Fulop, Tamas; Witkowski, Jacek M

    2015-11-01

    The mechanisms of maintenance of adequate numbers of B lymphocytes and of protective levels of immunoglobulins in the absence of antigenic (re)stimulation remain not fully understood. Meanwhile, our results presented here show that both peripheral blood naive and memory B cells can be activated strongly and non-specifically (in a mitogen-like fashion) in 5-day in vitro cultures of anti-CD3- or concanavalin A (Con A)-stimulated peripheral blood mononuclear cells of healthy people. This polyclonal, bystander activation of the B cells includes multiple divisions of most of them (assessed here by the flow cytometric technique of dividing cell tracking) and significant antibody [immunoglobulin M (IgM) and IgG] secretion. Observed proliferation of the CD19(+) B cells depends on contact with stimulated T helper (Th) cells (via CD40-CD40L interaction) and on the response of B cells to secreted interleukins IL-5, IL-10 and IL-4, and is correlated with the levels of these Th-derived molecules, while it does not involve the ligation of the BCR/CD19 complex. We suggest that the effect might reflect the situation occurring in vivo as the homeostatic proliferation of otherwise non-stimulated, peripheral B lymphocytes, providing an always ready pool for efficient antibody production to any new (or cognate) antigen challenge. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Amelioration of NK cell function driven by Vα24+ invariant NKT cell activation in multiple myeloma.

    Science.gov (United States)

    Iyoda, Tomonori; Yamasaki, Satoru; Hidaka, Michihiro; Kawano, Fumio; Abe, Yu; Suzuki, Kenshi; Kadowaki, Norimitsu; Shimizu, Kanako; Fujii, Shin-Ichiro

    2018-02-01

    NK cells represent a first line of immune defense, but are progressively dysregulated in multiple myeloma (MM) patients. To restore and facilitate their antitumor effect, NK cells are required in sufficient quantities and must be stimulated. We initially assessed the proportions of NKT and NK cells in 34 MM patients. The frequencies of both in PBMC populations correlated with those in BMMNCs irrespective of low BMMNC numbers. We then assessed the adjunctive effect of stimulating NKT cells with CD1d and α-GalCer complexes on the NK cells. The expression of NKG2D on CD56 dim CD16 + NK cells and DNAM-1 on CD56 bright CD16 - NK cells increased after NKT cell activation. Apparently, NK cell-mediated anti-tumor effects were dependent on NKG2D and DNAM-1 ligands on myeloma cells. Thus, NK cell function in patients could be ameliorated, beyond the effect of immunosuppression, by NKT cell activation. This NKT-driven NK cell therapy could represent a potential new treatment modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice.

    Science.gov (United States)

    Wang, D; Fløisand, Y; Myklebust, C V; Bürgler, S; Parente-Ribes, A; Hofgaard, P O; Bogen, B; Taskén, K; Tjønnfjord, G E; Schjesvold, F; Dalgaard, J; Tveita, A; Munthe, L A

    2017-10-01

    Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole BM aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.

  3. Laser stimulation can activate autophagy in HeLa cells

    International Nuclear Information System (INIS)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue; Lan, Bei; Cao, Youjia; He, Hao

    2014-01-01

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca 2+ dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  4. Laser stimulation can activate autophagy in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Lan, Bei; Cao, Youjia [Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin (China); He, Hao, E-mail: haohe@tju.edu.cn [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2014-10-27

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca{sup 2+} dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  5. Lysyl Oxidase Plays a Critical Role in Endothelial Cell Stimulation to Drive Tumor Angiogenesis

    DEFF Research Database (Denmark)

    Baker, Ann-Marie; Bird, Demelza; Welti, Jonathan C

    2013-01-01

    Identification of key molecules that drive angiogenesis is critical for the development of new modalities for the prevention of solid tumor progression. Using multiple models of colorectal cancer, we show that activity of the extracellular matrix-modifying enzyme lysyl oxidase (LOX) is essential...... for stimulating endothelial cells in vitro and angiogenesis in vivo. We show that LOX activates Akt through platelet-derived growth factor receptor ß (PDGFRß) stimulation, resulting in increased VEGF expression. LOX-driven angiogenesis can be abrogated through targeting LOX directly or using inhibitors of PDGFRß...

  6. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K., E-mail: peter.leung@ubc.ca

    2014-01-10

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.

  7. Multiple cell CPV nickel-hydrogen battery

    Science.gov (United States)

    Jones, Ken R.; Zagrodnik, Jeffrey P.

    1991-01-01

    Johnson Controls, Inc. has developed a multiple cell CPV nickel hydrogen battery that offers significant weight, volume, and cost advantages for aerospace applications. The baseline design was successfully demonstrated through the testing of a 26-cell prototype, which completed over 7000 44 percent depth-of-discharge low earth orbit cycles. Prototype designs using both nominal 5 and 10 inch diameter vessels are currently being developed for a variety of customers and applications.

  8. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis.

    Science.gov (United States)

    Shahraki, M; Sohrabi, M; Taheri Torbati, H R; Nikkhah, K; NaeimiKia, M

    2017-01-01

    Purpose: This study aimed to examine the effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. Subjects and Methods: In this study, 18 subjects, comprising 4 males and 14 females with Multiple Sclerosis with expanded disability status scale of 3 to 6 were chosen. Subjects were selected by available and targeted sampling and were randomly divided into two experimental (n = 9) and control (n = 9) groups. Exercises were gait with rhythmic auditory stimulation by a metronome device, in addition to gait without stimulation for the experimental and control groups, respectively. Training was carried out for 3 weeks, with 30 min duration for each session 3 times a week. Stride length, stride time, double support time, cadence and gait speed were measured by motion analysis device. Results: There was a significant difference between stride length, stride time, double support time, cadence and gait speed in the experimental group, before and after the training. Furthermore, there was a significant difference between the experimental and control groups in the enhancement of stride length, stride time, cadence and gait speed in favor of the experimental group. While this difference was not significant for double support time. Conclusion: The results of this study showed that rhythmic auditory stimulation is an effective rehabilitation method to improve gait kinematic parameters in patients with multiple sclerosis.

  9. ATF3 inhibits PPARγ-stimulated transactivation in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2015-01-02

    Highlights: • ATF3 inhibits PPARγ-stimulated transcriptional activation. • ATF3 interacts with PPARγ. • ATF3 suppresses p300-mediated transcriptional coactivation. • ATF3 decreases the binding of PPARγ and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPARγ) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPARγ activity. ATF3 inhibited PPARγ-stimulated transactivation of PPARγ responsive element (PPRE)-containing reporter or GAL4/PPARγ chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPARγ target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPARγ. Accordingly, ATF3 prevented PPARγ from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPARγ and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPARγ and represses PPARγ-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  10. Cell kinetic and radiosensitivity of PHA stimulated goat lymphocytes

    International Nuclear Information System (INIS)

    Debuyst, B.; Rosenthal, M.; Leonard, A.

    1982-01-01

    The harlequin-staining method has been used to study the cell kinetic of goat peripheral blood lymphocytes stimulated by phytohemagglutinin and to assess their radiosensitivity. At 48 h, the standardized culture time employed for human lymphocytes, 71% of the goat lymphocytes are in first mitosis, 23% are in second mitosis and 5% in third. Irradiation with 200 rads X-rays induces an average of 24,5 dicentric chromosomes per hundred cells in first mitosis [fr

  11. Hematopoietic stem cell transplantation in multiple sclerosis

    DEFF Research Database (Denmark)

    Rogojan, C; Frederiksen, J L

    2009-01-01

    Intensive immunosuppresion followed by hematopoietic stem cell transplantation (HSCT) has been suggested as potential treatment in severe forms of multiple sclerosis (MS). Since 1995 ca. 400 patients have been treated with HSCT. Stabilization or improvement occurred in almost 70% of cases at least...

  12. Disappearance of statin following serum-stimulated cell cycle entry

    International Nuclear Information System (INIS)

    Wang, E.; Lin, S.L.

    1986-01-01

    Statin, a protein of 57,000 D, is present in the nuclei of quiescent of senescent fibroblasts, but is absent in their young replicating counterparts. Immunohistochemical survey of a variety of tissues demonstrates that the presence of statin is a marker for cells that are no longer involved in proliferation, i.e. those cells that are terminally differentiated. Statin expression was examined by immunofluorescence microscopy in serum-starved cultures whose replication had been reinitiated by raising the serum concentration from 0.5 to 10%. Prior to serum addition, more than 85% of the cells stained positively for statin. After stimulation with serum, the expression of statin disappeared rapidly within the first 12-14 h. On the other hand, and increase in the level of DNA synthesis, signifying entry into S phase, was observed initially at 18 h after serum stimulation, and reached maximal levels 6h later. Immunoprecipitation of statin derived from cells harvested at different intervals after serum stimulation revealed that the level of statin synthesis was reduced by 4 h and was hardly detectable at 8 h. These results demonstrate that (1) the synthesis of statin occurs primarily when cells are in a quiescent state, and declines rapidly when cells are induced to proliferate; (2) this decline precedes the transition from G1 to S phase

  13. Correlation of proliferative and clonogenic tumor cells in multiple myeloma

    International Nuclear Information System (INIS)

    Karp, J.E.; Burke, P.J.; Saylor, P.L.; Humphrey, R.L.

    1984-01-01

    To expand on the findings from previous clinical trials that the growth of residual tumor is increased at a predictable time following initial drug administration, malignant plasma cells from bone marrows of patients with multiple myeloma (MM) were examined for changes in proliferation and clonogenicity induced in vivo by cyclophosphamide and in vitro by drug-induced humoral stimulatory activity. Peak plasma cell [ 3 H]thymidine labeling index (LI) occurred predictably following drug and paralleled changes in agar colony formation by marrow cells obtained during therapy. Colony-forming capacity of pretreatment MM marrow populations was enhanced when those cells were cultured with humoral stimulatory activity, similar to the increased colony formation detected in Day 9 postcyclophosphamide marrows at the time of peak plasma cell LI. To further define a relationship between proliferative plasma cells and colony-forming tumor cells, MM marrows were fractionated by sedimentation on an isokinetic gradient. Enrichment of a proliferative tumor cell cohort was achieved, evidenced by [ 3 H]thymidine LI. Colony-forming cells were also enriched by isokinetic gradient sedimentation, and agar colony formation by MM marrow cell fractions correlated with the kinetic characteristics of the isolated subpopulations. These studies of whole and fractionated human MM marrow cell populations suggest that the kinetically active cells which are induced to proliferate in vivo and in vitro are closely related to the clonogenic tumor cells which produce colonies in agar and which, like those cells measured by [ 3 H]thymidine LI, respond to growth stimulation by drug-induced humoral stimulatory activity

  14. Local probing and stimulation of neuronal cells by optical manipulation

    Science.gov (United States)

    Cojoc, Dan

    2014-09-01

    During development and in the adult brain, neurons continuously explore the environment searching for guidance cues, leading to the appropriate connections. Elucidating these mechanisms represents a gold goal in neurobiology. Here, I discuss our recent achievements developing new approaches to locally probe the growth cones and stimulate neuronal cell compartments with high spatial and temporal resolution. Optical tweezers force spectroscopy applied in conjunction with metabolic inhibitors reveals new properties of the cytoskeleton dynamics. On the other hand, using optically manipulated microvectors as functionalized beads or filled liposomes, we demonstrate focal stimulation of neurons by small number of signaling molecules.

  15. B Cells and Autoantibodies in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Pröbstel

    2015-07-01

    Full Text Available While over the past decades T cells have been considered key players in the pathogenesis of multiple sclerosis (MS, it has only recently become evident that B cells have a major contributing role. Our understanding of the role of B cells has evolved substantially following the clinical success of B cell-targeting therapies and increasing experimental evidence for significant B cell involvement. Rather than mere antibody-producing cells, it is becoming clear that they are team players with the capacity to prime and regulate T cells, and function both as pro- and anti-inflammatory mediators. However, despite tremendous efforts, the target antigen(s of B cells in MS have yet to be identified. The first part of this review summarizes the clinical evidence and results from animal studies pointing to the relevance of B cells in the pathogenesis of MS. The second part gives an overview of the currently known potential autoantigen targets. The third part recapitulates and critically appraises the currently available B cell-directed therapies.

  16. Cerebellar Ataxia from Multiple Potential Causes: Hypothyroidism, Hashimoto's Thyroiditis, Thalamic Stimulation, and Essential Tremor

    Directory of Open Access Journals (Sweden)

    Natalya V. Shneyder

    2012-04-01

    Full Text Available Background: Both hypothyroidism and Hashimoto's thyroiditis (HT can rarely be associated with cerebellar ataxia. Severe essential tremor (ET as well as bilateral thalamic deep brain stimulation (DBS may lead to subtle cerebellar signs. Case Report: We report a 74-year-old male with hypothyroidism and a 20-year history of ET who developed cerebellar ataxia after bilateral thalamic DBS. Extensive workup revealed elevated thyroid stimulating hormone and thyroperoxidase antibody titers confirming the diagnosis of HT. Discussion: Our case demonstrates multiple possible causes of cerebellar ataxia in a patient, including hypothyroidism, HT, chronic ET, and bilateral thalamic DBS. Counseling of patients may be appropriate when multiple risk factors for cerebellar ataxia coexist in one individual.

  17. Self-stimulating rats combine subjective reward magnitude and subjective reward rate multiplicatively.

    Science.gov (United States)

    Leon, M I; Gallistel, C R

    1998-07-01

    For rats that bar pressed for intracranial electrical stimulation in a 2-lever matching paradigm with concurrent variable interval schedules of reward, the authors found that the time allocation ratio is based on a multiplicative combination of the ratio of subjective reward magnitudes and the ratio of the rates of reward. Multiplicative combining was observed in a range covering approximately 2 orders of magnitude in the ratio of the rates of reward from about 1:10 to 10:1) and an order of magnitude change in the size of rewards. After determining the relation between the pulse frequency of stimulation and subjective reward magnitude, the authors were able to predict from knowledge of the subjective magnitudes of the rewards and the obtained relative rates of reward the subject's time allocation ratio over a range in which it varied by more than 3 orders of magnitude.

  18. Interleukin 6 protects pancreatic β cells from apoptosis by stimulation of autophagy.

    Science.gov (United States)

    Linnemann, Amelia K; Blumer, Joseph; Marasco, Michelle R; Battiola, Therese J; Umhoefer, Heidi M; Han, Jee Young; Lamming, Dudley W; Davis, Dawn Belt

    2017-09-01

    IL-6 is a pleiotropic cytokine with complex roles in inflammation and metabolic disease. The role of IL-6 as a pro- or anti-inflammatory cytokine is still unclear. Within the pancreatic islet, IL-6 stimulates secretion of the prosurvival incretin hormone glucagon-like peptide 1 (GLP-1) by α cells and acts directly on β cells to stimulate insulin secretion in vitro Uncovering physiologic mechanisms promoting β-cell survival under conditions of inflammation and stress can identify important pathways for diabetes prevention and treatment. Given the established role of GLP-1 in promoting β-cell survival, we hypothesized that IL-6 may also directly protect β cells from apoptosis. Herein, we show that IL-6 robustly activates signal transducer and activator of transcription 3 (STAT3), a transcription factor that is involved in autophagy. IL-6 stimulates LC3 conversion and autophagosome formation in cultured β cells. In vivo IL-6 infusion stimulates a robust increase in lysosomes in the pancreas that is restricted to the islet. Autophagy is critical for β-cell homeostasis, particularly under conditions of stress and increased insulin demand. The stimulation of autophagy by IL-6 is regulated via multiple complementary mechanisms including inhibition of mammalian target of rapamycin complex 1 (mTORC1) and activation of Akt, ultimately leading to increases in autophagy enzyme production. Pretreatment with IL-6 renders β cells resistant to apoptosis induced by proinflammatory cytokines, and inhibition of autophagy with chloroquine prevents the ability of IL-6 to protect from apoptosis. Importantly, we find that IL-6 can activate STAT3 and the autophagy enzyme GABARAPL1 in human islets. We also see evidence of decreased IL-6 pathway signaling in islets from donors with type 2 diabetes. On the basis of our results, we propose direct stimulation of autophagy as a novel mechanism for IL-6-mediated protection of β cells from stress-induced apoptosis.-Linnemann, A. K

  19. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    OpenAIRE

    Katrin Hanken; Katrin Hanken; Mona Bosse; Kim Möhrke; Paul Eling; Andreas Kastrup; Andrea Antal; Helmut Hildebrandt; Helmut Hildebrandt

    2016-01-01

    Background: Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. Methods: In study I, a randomized double-blind placebo-controlled study, anoda...

  20. Counteracting Fatigue in Multiple Sclerosis with Right Parietal Anodal Transcranial Direct Current Stimulation

    OpenAIRE

    Hanken, Katrin; Bosse, Mona; M?hrke, Kim; Eling, Paul; Kastrup, Andreas; Antal, Andrea; Hildebrandt, Helmut

    2016-01-01

    BACKGROUND: Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time (RT) and errors with prolonged time-on-task. OBJECTIVES: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. METHODS: In study I, a randomized double-blind placebo-controll...

  1. Stimulation of the proliferation of hemopoietic stem cells in irradiated bone marrow cell culture

    International Nuclear Information System (INIS)

    Mori, K.J.; Izumi, H.; Seto, A.

    1981-01-01

    Long-term hemopoiesis was established in bone marrow cell culture in vitro. This culture was shown to support the recovery proliferation of hemopoietic stem cells completely in vitro after irradiation. Hemopoietic stem cells were stimulated into proliferation in culture when normal bone marrow cells were overlayed on top of the irradiated adherent cell colonies. These results indicate that proliferation and differentiation of hemopoietic stem cells in vitro are also supported by stromahemopoietic cell interactions

  2. Mechanical Coupling of Smooth Muscle Cells Using Microengineered Substrates and Local Stimulation

    Science.gov (United States)

    Copeland, Craig; Hunter, David; Tung, Leslie; Chen, Christopher; Reich, Daniel

    2013-03-01

    Mechanical stresses directly affect many cellular processes, including signal transduction, growth, differentiation, and survival. Cells can themselves generate such stresses by activating myosin to contract the actin cytoskeleton, which in turn can regulate both cell-substrate and cell-cell interactions. We are studying mechanical forces at cell-cell and cell-substrate interactions using arrays of selectively patterned flexible PDMS microposts combined with the ability to apply local chemical stimulation. Micropipette ``spritzing'', a laminar flow technique, uses glass micropipettes mounted on a microscope stage to deliver drugs to controlled regions within a cellular construct while cell traction forces are recorded via the micropost array. The pipettes are controlled by micromanipulators allowing for rapid and precise movement across the array and the ability to treat multiple constructs within a sample. This technique allows for observing the propagation of a chemically induced mechanical stimulus through cell-cell and cell-substrate interactions. We have used this system to administer the acto-myosin inhibitors Blebbistatin and Y-27632 to single cells and observed the subsequent decrease in cell traction forces. Experiments using trypsin-EDTA have shown this system to be capable of single cell manipulation through removal of one cell within a pair configuration while leaving the other cell unaffected. This project is supported in part by NIH grant HL090747

  3. Stem cell factor stimulates chicken osteoclast activity in vitro

    NARCIS (Netherlands)

    van't Hof, R. J.; von Lindern, M.; Nijweide, P. J.; Beug, H.

    1997-01-01

    Stem cell factor (SCF) is a polypeptide growth factor active on multiple cell types, mainly of hematopoietic origin. We studied the effects of avian SCF on the differentiation of chicken osteoclasts from their putative progenitors as well as on the bone-resorbing activity of terminally

  4. Preferential Th1 cytokine profile of phosphoantigen-stimulated human Vγ9Vδ2 T cells.

    LENUS (Irish Health Repository)

    Dunne, Margaret R

    2010-01-01

    Human Vγ9Vδ2 T cells recognise pyrophosphate-based antigens (phosphoantigens) and have multiple functions in innate and adaptive immunity, including a unique ability to activate other cells of the immune system. We used flow cytometry and ELISA to define the early cytokine profiles of Vγ9Vδ2 T cells stimulated in vitro with isopentenyl pyrophosphate (IPP) and (E)-4-hydroxy-3-methyl-but-2 enyl pyrophosphate (HMB-PP) in the absence and presence of IL-2 and IL-15. We show that fresh Vγ9Vδ2 T cells produce interferon-γ (IFN-γ) and tumour necrosis factor-α (TNF-α) within 4 hours of stimulation with phosphoantigen, but neither IL-10, IL-13, nor IL-17 was detectable up to 72 hours under these conditions. Cytokine production was not influenced by expression or lack, thereof, of CD4 or CD8. Addition of IL-2 or IL-15 caused expansion of IFN-γ-producing Vγ9Vδ2 T cells, but did not enhance IFN-γ secretion after 24-72 hours. Thus, phosphoantigen-stimulated Vγ9Vδ2 T cells have potential as Th1-biasing adjuvants for immunotherapy.

  5. Preferential Th1 Cytokine Profile of Phosphoantigen-Stimulated Human Vγ9Vδ2 T Cells

    Directory of Open Access Journals (Sweden)

    Margaret R. Dunne

    2010-01-01

    Full Text Available Human Vγ9Vδ2 T cells recognise pyrophosphate-based antigens (phosphoantigens and have multiple functions in innate and adaptive immunity, including a unique ability to activate other cells of the immune system. We used flow cytometry and ELISA to define the early cytokine profiles of Vγ9Vδ2 T cells stimulated in vitro with isopentenyl pyrophosphate (IPP and (E-4-hydroxy-3-methyl-but-2 enyl pyrophosphate (HMB-PP in the absence and presence of IL-2 and IL-15. We show that fresh Vγ9Vδ2 T cells produce interferon-γ (IFN-γ and tumour necrosis factor-α (TNF-α within 4 hours of stimulation with phosphoantigen, but neither IL-10, IL-13, nor IL-17 was detectable up to 72 hours under these conditions. Cytokine production was not influenced by expression or lack, thereof, of CD4 or CD8. Addition of IL-2 or IL-15 caused expansion of IFN-γ-producing Vγ9Vδ2 T cells, but did not enhance IFN-γ secretion after 24–72 hours. Thus, phosphoantigen-stimulated Vγ9Vδ2 T cells have potential as Th1-biasing adjuvants for immunotherapy.

  6. Dopamine, T cells and multiple sclerosis (MS).

    Science.gov (United States)

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-05-01

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  7. Control of cell behaviour through nanovibrational stimulation: nanokicking

    Science.gov (United States)

    Robertson, Shaun N.; Campsie, Paul; Childs, Peter G.; Madsen, Fiona; Donnelly, Hannah; Henriquez, Fiona L.; Mackay, William G.; Salmerón-Sánchez, Manuel; Tsimbouri, Monica P.; Williams, Craig; Dalby, Matthew J.; Reid, Stuart

    2018-05-01

    Mechanical signals are ubiquitous in our everyday life and the process of converting these mechanical signals into a biological signalling response is known as mechanotransduction. Our understanding of mechanotransduction, and its contribution to vital cellular responses, is a rapidly expanding field of research involving complex processes that are still not clearly understood. The use of mechanical vibration as a stimulus of mechanotransduction, including variation of frequency and amplitude, allows an alternative method to control specific cell behaviour without chemical stimulation (e.g. growth factors). Chemical-independent control of cell behaviour could be highly advantageous for fields including drug discovery and clinical tissue engineering. In this review, a novel technique is described based on nanoscale sinusoidal vibration. Using finite-element analysis in conjunction with laser interferometry, techniques that are used within the field of gravitational wave detection, optimization of apparatus design and calibration of vibration application have been performed. We further discuss the application of nanovibrational stimulation, or `nanokicking', to eukaryotic and prokaryotic cells including the differentiation of mesenchymal stem cells towards an osteoblast cell lineage. Mechanotransductive mechanisms are discussed including mediation through the Rho-A kinase signalling pathway. Optimization of this technique was first performed in two-dimensional culture using a simple vibration platform with an optimal frequency and amplitude of 1 kHz and 22 nm. A novel bioreactor was developed to scale up cell production, with recent research demonstrating that mesenchymal stem cell differentiation can be efficiently triggered in soft gel constructs. This important step provides first evidence that clinically relevant (three-dimensional) volumes of osteoblasts can be produced for the purpose of bone grafting, without complex scaffolds and/or chemical induction

  8. UV stimulation of DNA-mediated transformation of human cells

    International Nuclear Information System (INIS)

    van Duin, M.; Westerveld, A.; Hoeijmakers, J.H.

    1985-01-01

    Irradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells, which are deficient in the excision repair of UV-induced pyrimidine dimers in the DNA. Also, exposure to UV of the transfected (xeroderma pigmentosum) cells enhanced the transfection efficiency. Removal of the pyrimidine dimers from the DNA by photoreactivating enzyme before transfection completely abolished the stimulatory effect, indicating that dimer lesions are mainly responsible for the observed enhancement. A similar stimulation of the transformation efficiency is exerted by 2-acetoxy-2-acetylaminofluorene modification of the DNA. These findings suggest that lesions which are targets for the excision repair pathway induce the increase in transformation frequency. The stimulation was found to be independent of sequence homology between the irradiated DNA and the host chromosomal DNA. Therefore, the increase of the transformation frequency is not caused by a mechanism inducing homologous recombination between these two DNAs. UV treatment of DNA before transfection did not have a significant effect on the amount of DNA integrated into the xeroderma pigmentosum genome

  9. Post irradiative stimulation of the lipids synthesis in the cells of Anacystis nidulans

    International Nuclear Information System (INIS)

    Groshev, V.V.; Tiflova, O.A.

    1982-01-01

    Ultraviolet and X-ray irradiations stimulate postradiation synthesis of fatty acids of lipids in cells of Anacystis nidulans. Stimulation degree is proportional to the radiation dose and time of postradiation incubation of cells

  10. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    Directory of Open Access Journals (Sweden)

    Katrin Hanken

    2016-09-01

    Full Text Available Background: Fatigue in multiple sclerosis (MS patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. Methods: In study I, a randomized double-blind placebo-controlled study, anodal tDCS (1,5mA was delivered to the right parietal cortex or the right frontal cortex of 52 healthy participants during the first 20min of a 40min lasting visual vigilance task. Study II, also a randomized double-blind placebo-controlled study, investigated the effect of anodal tDCS (1.5mA over the right parietal cortex in 46 MS patients experiencing cognitive fatigue. TDCS was delivered for 20min before patients performed a 20min lasting visual vigilance task.Results: Study I showed that right parietal stimulation, but not right frontal stimulation, counteracts the increase in reaction time associated with vigilance decrement. Hence, only right parietal stimulation was applied to the MS patients in study II. Stimulation had a significant effect on vigilance decrement in mildly to moderately cognitively fatigued MS patients. Vigilance testing significantly increased the feeling of fatigue independent of stimulation.Conclusions: Anodal tDCS over the right parietal cortex can counteract the increase in reaction times during vigilance performance but not the increase in subjective fatigue. This finding is compatible with our model of fatigue in MS, suggesting a dissociation between the feeling and the behavioral characteristics of fatigue.

  11. Counteracting Fatigue in Multiple Sclerosis with Right Parietal Anodal Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Hanken, Katrin; Bosse, Mona; Möhrke, Kim; Eling, Paul; Kastrup, Andreas; Antal, Andrea; Hildebrandt, Helmut

    2016-01-01

    Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time (RT) and errors with prolonged time-on-task. The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. In study I, a randomized double-blind placebo-controlled study, anodal tDCS (1.5 mA) was delivered to the right parietal cortex or the right frontal cortex of 52 healthy participants during the first 20 min of a 40-min lasting visual vigilance task. Study II, also a randomized double-blind placebo-controlled study, investigated the effect of anodal tDCS (1.5 mA) over the right parietal cortex in 46 MS patients experiencing cognitive fatigue. tDCS was delivered for 20 min before patients performed a 20-min lasting visual vigilance task. Study I showed that right parietal stimulation, but not right frontal stimulation, counteracts the increase in RT associated with vigilance decrement. Hence, only right parietal stimulation was applied to the MS patients in study II. Stimulation had a significant effect on vigilance decrement in mildly to moderately cognitively fatigued MS patients. Vigilance testing significantly increased the feeling of fatigue independent of stimulation. Anodal tDCS over the right parietal cortex can counteract the increase in RTs during vigilance performance, but not the increase in subjective fatigue. This finding is compatible with our model of fatigue in MS, suggesting a dissociation between the feeling and the behavioral characteristics of fatigue.

  12. Implementation of stimulated Raman scattering microscopy for single cell analysis

    Science.gov (United States)

    D'Arco, Annalisa; Ferrara, Maria Antonietta; Indolfi, Maurizio; Tufano, Vitaliano; Sirleto, Luigi

    2017-05-01

    In this work, we present successfully realization of a nonlinear microscope, not purchasable in commerce, based on stimulated Raman scattering. It is obtained by the integration of a femtosecond SRS spectroscopic setup with an inverted research microscope equipped with a scanning unit. Taking account of strength of vibrational contrast of SRS, it provides label-free imaging of single cell analysis. Validation tests on images of polystyrene beads are reported to demonstrate the feasibility of the approach. In order to test the microscope on biological structures, we report and discuss the label-free images of lipid droplets inside fixed adipocyte cells.

  13. Mixed Signals: Co-Stimulation in Invariant Natural Killer T Cell-Mediated Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Susannah C. Shissler

    2017-11-01

    Full Text Available Invariant natural killer T (iNKT cells are an integral component of the immune system and play an important role in antitumor immunity. Upon activation, iNKT cells can directly kill malignant cells as well as rapidly produce cytokines that stimulate other immune cells, making them a front line defense against tumorigenesis. Unfortunately, iNKT cell number and activity are reduced in multiple cancer types. This anergy is often associated with upregulation of co-inhibitory markers such as programmed death-1. Similar to conventional T cells, iNKT cells are influenced by the conditions of their activation. Conventional T cells receive signals through the following three types of receptors: (1 T cell receptor (TCR, (2 co-stimulation molecules, and (3 cytokine receptors. Unlike conventional T cells, which recognize peptide antigen presented by MHC class I or II, the TCRs of iNKT cells recognize lipid antigen in the context of the antigen presentation molecule CD1d (Signal 1. Co-stimulatory molecules can positively and negatively influence iNKT cell activation and function and skew the immune response (Signal 2. This study will review the background of iNKT cells and their co-stimulatory requirements for general function and in antitumor immunity. We will explore the impact of monoclonal antibody administration for both blocking inhibitory pathways and engaging stimulatory pathways on iNKT cell-mediated antitumor immunity. This review will highlight the incorporation of co-stimulatory molecules in antitumor dendritic cell vaccine strategies. The use of co-stimulatory intracellular signaling domains in chimeric antigen receptor-iNKT therapy will be assessed. Finally, we will explore the influence of innate-like receptors and modification of immunosuppressive cytokines (Signal 3 on cancer immunotherapy.

  14. Nootropic agents stimulate neurogenesis. Brain Cells, Inc.: WO2007104035.

    Science.gov (United States)

    Taupin, Philippe

    2009-05-01

    The application is in the field of adult neurogenesis, neural stem cells and cellular therapy. It aims to characterize the activity of nootropic agents on adult neurogenesis in vitro. Nootropic agents are substances improving cognitive and mental abilities. AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) and nootropic agents were assessed for the potential to differentiate human neural progenitor and stem cells into neuronal cells in vitro. They were also tested for their behavioural activity on the novel object recognition task. AMPA, piracetam, FK-960 and SGS-111 induce and stimulate neuronal differentiation of human-derived neural progenitor and stem cells. SGS-111 increases the number of visits to the novel object. The neurogenic activity of piracetam and SGS-111 is mediated through AMPA receptor. The neurogenic activity of SGS-111 may contribute and play a role in its nootropic activity. These results suggest that nootropic agents may elicit some of their effects through their neurogenic activity. The application claims the use of nootropic agents for their neurogenic activity and for the treatment of neurological diseases, disorders and injuries, by stimulating or increasing the generation of neuronal cells in the adult brain.

  15. Bubble Jet agent release cartridge for chemical single cell stimulation.

    Science.gov (United States)

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  16. Production of inositol trisphosphates upon α-adrenergic stimulation in BC3H-1 muscle cells

    International Nuclear Information System (INIS)

    Ambler, S.K.; Thompson, B.; Brown, J.H.; Taylor, P.

    1986-01-01

    Activation of α 1 -adrenergic receptors in BC3H-1 muscle cells rapidly mobilizes intracellular and results in a paradoxically slower accumulation of inositol trisphosphate. A possible explanation for this discrepancy may be provided by the recent findings of Irvine et al. of additional Ins P3 isomers besides the Ca ++ -mobilizing isomer, Ins 1,4,5-P3. They have eluted and separated the inositol phosphates of BC3H-1 cells with an NH 4 + x HCO 2 - /H 3 PO 4 gradient on a Whatman Partisil 10SAX column using Hewlett-Packard HPLC. Commercial [ 3 H]Ins 1,4,5-P3 and [ 3 H]inositol phosphates from carbachol-stimulated parotid glands were used as standards. Little or no Ins 1,3,4-P3 could be detected in control or phenylephrine-treated BC3H-1 cells. Ins 1,4,5-P3 followed the pattern of agonist stimulation observed previously. As a positive control, Ins P3 isomers were also measured in 1321N1 astrocytoma cells. Muscarinic stimulation of 1321N1 cells results in both the rapid accumulation of Ins P3 and Ca ++ mobilization. There is no detectable basal Ins 1,3,4-P3, but carbachol stimulates a rapid production of this compound in 1321N1 cells. Agonist activation also results in a rapid increase in Ins 1,4,5-P3 above basal values. These studies indicate that Ins 1,3,4-P3 does not contribute to the InsP3 signal in BC3H-1 cells and multiple mechanisms may exist for the coupling of receptors to PI turnover

  17. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  18. Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication.

    Directory of Open Access Journals (Sweden)

    Greicy H Goto

    2015-08-01

    Full Text Available Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage.

  19. Transcranial magnetic stimulation primes the effects of exercise therapy in multiple sclerosis.

    Science.gov (United States)

    Mori, Francesco; Ljoka, Concetta; Magni, Elisabetta; Codecà, Claudia; Kusayanagi, Hajime; Monteleone, Fabrizia; Sancesario, Andrea; Bernardi, Giorgio; Koch, Giacomo; Foti, Calogero; Centonze, Diego

    2011-07-01

    Exercise therapy (ET) can be beneficial in disabled multiple sclerosis (MS) patients. Intermittent transcranial magnetic theta burst stimulation (iTBS) induces long-term excitability changes of the cerebral cortex and may ameliorate spasticity in MS. We investigated whether the combination of iTBS and a program of ET can improve motor disability in MS patients. In a double-blind, sham-controlled trial, 30 participants were randomized to three different interventions: iTBS plus ET, sham stimulation plus ET, and iTBS alone. Before and after 2 weeks of treatment, measures of spasticity through the modified Ashworth scale (MAS) and the 88 items Multiple Sclerosis Spasticity Score questionnaire (MSSS-88), fatigue through the Fatigue Severity Scale (FSS), daily living activities (ADL) through the Barthel index and health-related quality of life (HRQoL) through the 54 items Multiple Sclerosis Quality of life inventory (MSQoL-54) were collected. iTBS plus ET reduced MAS, MSSS-88, FSS scores, while in the Barthel index and MSQoL-54, physical composite scores were increased. iTBS alone caused a reduction of the MAS score, while none of the measured scales showed significant changes after sham iTBS plus ET. iTBS associated with ET is a promising tool for motor rehabilitation of MS patients.

  20. Identify multiple myeloma stem cells: Utopia?

    Science.gov (United States)

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-26

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs.

  1. GABA signaling stimulates ?-cell-mediated ?-like cell neogenesis

    OpenAIRE

    Napolitano, Tiziana; Avolio, Fabio; Vieira, Andhira; Ben-Othman, Nouha; Courtney, Monica; Gjernes, Elisabet; Hadzic, Biljana; Druelle, No?mie; Navarro Sanz, Sergi; Silvano, Serena; Mansouri, Ahmed; Collombat, Patrick

    2017-01-01

    ABSTRACT Diabetes is a chronic and progressing disease, the number of patients increasing exponentially, especially in industrialized countries. Regenerating lost insulin-producing cells would represent a promising therapeutic alternative for most diabetic patients. To this end, using the mouse as a model, we reported that GABA, a food supplement, could induce insulin-producing beta-like cell neogenesis offering an attractive and innovative approach for diabetes therapeutics.

  2. Involvement of multiple cell lineages in atherogenesis | Ogeng'o ...

    African Journals Online (AJOL)

    Involvement of multiple cell lineages in atherogenesis. ... mast cells, dendritic cells, macrophages and immigrant cells usually found in blood, namely ... which influence inflammation, migration, proliferation and secretory activity of each other in ...

  3. Ex Vivo Assay of Electrical Stimulation to Rat Sciatic Nerves: Cell Behaviors and Growth Factor Expression.

    Science.gov (United States)

    Du, Zhiyong; Bondarenko, Olexandr; Wang, Dingkun; Rouabhia, Mahmoud; Zhang, Ze

    2016-06-01

    Neurite outgrowth and axon regeneration are known to benefit from electrical stimulation. However, how neuritis and their surroundings react to electrical field is difficult to replicate by monolayer cell culture. In this work freshly harvested rat sciatic nerves were cultured and exposed to two types of electrical field, after which time the nerve tissues were immunohistologically stained and the expression of neurotrophic factors and cytokines were evaluated. ELISA assay was used to confirm the production of specific proteins. All cell populations survived the 48 h culture with little necrosis. Electrical stimulation was found to accelerate Wallerian degeneration and help Schwann cells to switch into migratory phenotype. Inductive electrical stimulation was shown to upregulate the secretion of multiple neurotrophic factors. Cellular distribution in nerve tissue was altered upon the application of an electrical field. This work thus presents an ex vivo model to study denervated axon in well controlled electrical field, bridging monolayer cell culture and animal experiment. It also demonstrated the critical role of electrical field distribution in regulating cellular activities. © 2015 Wiley Periodicals, Inc.

  4. TACTILE STIMULATION EVOKES LONG-LASTING POTENTIATION OF PURKINJE CELL DISCHARGE IN VIVO

    Directory of Open Access Journals (Sweden)

    Ramakrishnan eKanchipuram

    2016-02-01

    Full Text Available In the cerebellar network, a precise relationship between plasticity and neuronal discharge has been predicted. However, the potential generation of persistent changes in PC spike discharge as a consequence of plasticity following natural stimulation patterns has not been clearly determined. Here we show that facial tactile stimuli organized in theta-patterns can induce stereotyped NMDA and GABA-A receptor-dependent changes in Purkinje cell (PCs and molecular layer interneuron (MLIs firing: invariably, all PCs showed a long-lasting increase (spike-related potentiation or SR-P and MLIs a long-lasting decrease (spike-related suppression or SR-S in baseline activity and spike response probability. These observations suggests that natural sensory stimulation engages multiple long-term plastic changes that are distributed along the mossy fiber – parallel fiber pathway and operate synergistically to potentiate spike generation in PCs. In contrast, theta-pattern electrical stimulation of PFs indistinctly induced SR-P and SR-S both in PCs and MLIs, suggesting that natural sensory stimulation preordinates plasticity upstream of the PF-PC synapse. All these effects occurred in the absence of complex spike changes, supporting the theoretical prediction that Purkinje cell activity is potentiated when the mossy fiber - parallel fiber system is activated in the absence of conjunctive climbing fiber activity.

  5. Effects on proliferation and cell cycle of irradiated KG-1 cells stimulated by CM-CSF

    International Nuclear Information System (INIS)

    Guo Dehuang; Dong Bo; Wen Gengyun; Luo Qingliang; Mao Bingzhi

    2000-01-01

    In order to explore the variety of cell proliferation and cell cycle after exposure to ionizing radiation, the responses of irradiated KG-1 cells of the human myeloid leukemia stimulated by GM-CSF, the most common used cytokine in clinic, were investigated. The results showed that GM-CSF enhance KG-1 cells proliferation, reduce G0/G1 block, increase S phase and G2/M phase. The stimulation effects of the GM-CSF are more effective in irradiated group than in control group

  6. Extracellular vesicles secreted from cancer cell lines stimulate secretion of MMP-9, IL-6, TGF-β1 and EMMPRIN.

    Directory of Open Access Journals (Sweden)

    Jasmina S Redzic

    Full Text Available Extracellular vesicles (EVs are key contributors to cancer where they play an integral role in cell-cell communication and transfer pro-oncogenic molecules to recipient cells thereby conferring a cancerous phenotype. Here, we purified EVs using straightforward biochemical approaches from multiple cancer cell lines and subsequently characterized these EVs via multiple biochemical and biophysical methods. In addition, we used fluorescence microscopy to directly show internalization of EVs into the recipient cells within a few minutes upon addition of EVs to recipient cells. We confirmed that the transmembrane protein EMMPRIN, postulated to be a marker of EVs, was indeed secreted from all cell lines studied here. We evaluated the response to EV stimulation in several different types of recipient cells lines and measured the ability of these purified EVs to induce secretion of several factors highly upregulated in human cancers. Our data indicate that purified EVs preferentially stimulate secretion of several proteins implicated in driving cancer in monocytic cells but only harbor limited activity in epithelial cells. Specifically, we show that EVs are potent stimulators of MMP-9, IL-6, TGF-β1 and induce the secretion of extracellular EMMPRIN, which all play a role in driving immune evasion, invasion and inflammation in the tumor microenvironment. Thus, by using a comprehensive approach that includes biochemical, biological, and spectroscopic methods, we have begun to elucidate the stimulatory roles.

  7. Stimulation of Lactic Acid Bacteria by a Micrococcus Isolate: Evidence for Multiple Effects

    Science.gov (United States)

    Nath, K. R.; Wagner, B. J.

    1973-01-01

    Growth of, and rate of acid production by, six cultures of lactic acid bacteria were increased in the presence of Micrococcus isolate F4 or a preparation of its capsular material. Concentrations of hydrogen peroxide found in pure cultures of the lactic acid bacteria were not detectable, or were greatly reduced, in mixed culture with Micrococcus isolate F4. The capsular material was not as effective as whole cells in preventing accumulation of H2O2. Catalase stimulated growth of, and the rate of acid production by, the lactic acid bacteria, but not to the same extent as Micrococcus isolate F4 in some cultures. The existence of two mechanisms for micrococcal stimulation of the lactic acid bacteria is postulated. One mechanism involves removal of H2O2; the other has not been characterized. PMID:4199337

  8. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    International Nuclear Information System (INIS)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-01-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 μM serotonin with increased incorporation of [ 3 H]thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 μM. At a concentration of 1 μM, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was ≅ 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors

  9. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation.

    Directory of Open Access Journals (Sweden)

    Guoshi Li

    2017-10-01

    Full Text Available The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh and norepinephrine (NE and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.

  10. Assessment of Multiple Intrauterine Gestations from Ovarian Stimulation (AMIGOS) Trial: Baseline Characteristics

    Science.gov (United States)

    Diamond, Michael P.; Legro, Richard S.; Coutifaris, Christos; Alvero, Ruben; Robinson, Randal D.; Casson, Peter; Christman, Gregory M.; Ager, Joel; Huang, Hao; Hansen, Karl R.; Baker, Valerie; Usadi, Rebecca; Seungdamrong, Aimee; Bates, G. Wright; Rosen, R. Mitchell; Haisonleder, Daniell; Krawetz, Stephen A.; Barnhart, Kurt; Trussell, J.C.; Jin, Yufeng; Santoro, Nanette; Eisenberg, Esther; Zhang, Heping

    2015-01-01

    Objective To identify baseline characteristics of women with unexplained infertility to determine whether treatment with an aromatase inhibitor will result in a lower rate of multiple gestations than current standard ovulation induction medications. Design Randomized, prospective clinical trial Patients 900 couples with unexplained infertility Interventions: Ovarian stimulation with gonadotropins, clomiphene citrate, or letrozole in conjunction with intrauterine insemination. Setting Multicenter University based clinical practices. Main Outcome Measures Demographic, laboratory, imaging, and survey characteristics. Interventions Collection of baseline demographics, blood samples, and ultrasonographic assessments. Results Demographic characteristics of women receiving clomiphene citrate, letrozole, or gonadotropins for ovarian stimulation were very consistent. Their mean age was 32.2 ± 4.4 years and infertility duration was 34.7± 25.7 months, with 59% primary infertility. More than 1/3 of the women were current or past smokers. The mean BMI was 27 and mean AMH level was 2.6; only 11 women (1.3%) had antral follicle counts of less than 5. Similar observations were identified for hormonal profiles, ultrasound characterization of the ovaries, semen parameters, and quality of life assessments in both male and female partners. Conclusion The cause of infertility in the couples recruited to this treatment trial is elusive, as the women were regularly ovulating and had evidence of good ovarian reserve both by basal FSH, AMH levels, and antral follicle counts; the male partners had normal semen parameters. The three treatment subgroups have common baseline characteristics, thereby providing comparable patient populations for testing the hypothesis that use of letrozole for ovarian stimulation can reduce the rates of multiples from that observed with gonadotropin and clomiphene citrate treatment. PMID:25707331

  11. Tachykinins stimulate a subset of mouse taste cells.

    Directory of Open Access Journals (Sweden)

    Jeff Grant

    Full Text Available The tachykinins substance P (SP and neurokinin A (NKA are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1. These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca(2+-imaging on isolated taste cells, it was observed that SP induces Ca(2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca(2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca(2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca(2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like and umami-responsive Type II (Receptor cells. Importantly, stimulating NK-1R had an additive effect on Ca(2+ responses evoked by umami stimuli in Type II (Receptor cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.

  12. 1,25-Dihydroxyvitamin D3 stimulates the production of insulin-like growth factor-binding proteins-2, -3 and -4 in human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F

    2001-01-01

    1,25-Dihydroxyvitamin D3 (calcitriol) inhibits proliferation and stimulates differentiation of multiple cell types, including osteoblasts. Human (h) bone marrow stromal cells (MSCs) are a homogenous non-hematopoietic population of cells present in the bone marrow and exhibit a less differentiated...

  13. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14 + monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4 + T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  14. IL-15 STIMULATED NATURAL KILLER CELLS CLEAR HIV-1 INFECTED CELLS FOLLOWING LATENCY REVERSAL EX VIVO.

    Science.gov (United States)

    Garrido, Carolina; Abad-Fernandez, Maria; Tuyishime, Marina; Pollara, Justin J; Ferrari, Guido; Soriano-Sarabia, Natalia; Margolis, David M

    2018-03-28

    Current efforts towards HIV eradication include approaches to augment immune recognition and elimination of persistently infected cells following latency reversal. Natural killer (NK) cells, the main effectors of the innate immune system, recognize and clear targets using different mechanisms than CD8 + T cells, offering an alternative or complementary approach for HIV clearance strategies. We assessed the impact of IL-15 treatment on NK cell function and the potential of stimulated NK cells to clear the HIV reservoir. We measured NK cell receptor expression, antibody-dependent cell-dependent cytotoxicity (ADCC), cytotoxicity, IFN-γ production and antiviral activity in autologous HIV replication systems. All NK cell functions were uniformly improved by IL-15, and more importantly, IL-15-treated NK cells were able to clear latently HIV infected cells after exposure to vorinostat, a clinically relevant latency reversing agent. We also demonstrate that NK cells from HIV infected individuals aviremic on antiretroviral therapy can be efficiently stimulated with IL-15. Our work opens a promising line of investigation towards future immunotherapies to clear persistent HIV infection using NK cells. IMPORTANCE In the search for an HIV cure, strategies to enhance immune function to allow recognition and clearance of HIV infected cells following latency reversal are being evaluated. Natural killer (NK) cells possess characteristics that can be exploited for immunotherapy against persistent HIV infection. We demonstrate that NK cells from HIV-positive donors can be strongly stimulated with IL-15, improving their antiviral and cytotoxic potential, and more importantly, clearing HIV infected cells after latency reversal with a clinically relevant drug. Our results encourage further investigation to design NK cell-based immunotherapies to achieve HIV eradication. Copyright © 2018 American Society for Microbiology.

  15. Inhibition of insulin-stimulated hydrogen peroxide production prevents stimulation of sodium transport in A6 cell monolayers.

    NARCIS (Netherlands)

    Markadieu, N.Y.G.; Crutzen, R.; Boom, A.; Erneux, C.; Beauwens, R.

    2009-01-01

    Insulin-stimulated sodium transport across A6 cell (derived from amphibian distal nephron) monolayers involves the activation of a phosphatidylinositol (PI) 3-kinase. We previously demonstrated that exogenous addition of H2O2 to the incubation medium of A6 cell monolayers provokes an increase in PI

  16. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells.

    Directory of Open Access Journals (Sweden)

    Keun-A Chang

    2011-04-01

    Full Text Available The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs significantly increased the proliferation of fetal neural stem cells (NSCs. Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.

  17. Comparison of peripheral nerve stimulator versus ultrasonography guided axillary block using multiple injection technique.

    Science.gov (United States)

    Kumar, Alok; Sharma, Dk; Sibi, Maj E; Datta, Barun; Gogoi, Biraj

    2014-01-01

    The established methods of nerve location were based on either proper motor response on nerve stimulation (NS) or ultrasound guidance. In this prospective, randomised, observer-blinded study, we compared ultrasound guidance with NS for axillary brachial plexus block using 0.5% bupivacaine with the multiple injection techniques. A total of 120 patients receiving axillary brachial plexus block with 0.5% bupivacaine, using a multiple injection technique, were randomly allocated to receive either NS (group NS, n = 60), or ultrasound guidance (group US, n = 60) for nerve location. A blinded observer recorded the onset of sensory and motor blocks, skin punctures, needle redirections, procedure-related pain and patient satisfaction. The median (range) number of skin punctures were 2 (2-4) in group US and 3 (2-5) in group NS (P =0.27). Insufficient block was observed in three patient (5%) of group US and four patients (6.67%) of group NS (P > =0.35). Patient acceptance was similarly good in the two groups. Multiple injection axillary blocks with ultrasound guidance provided similar success rates and comparable incidence of complications as compared with NS guidance with 20 ml 0.5% bupivacaine.

  18. Comparison of peripheral nerve stimulator versus ultrasonography guided axillary block using multiple injection technique

    Directory of Open Access Journals (Sweden)

    Alok Kumar

    2014-01-01

    Full Text Available Background: The established methods of nerve location were based on either proper motor response on nerve stimulation (NS or ultrasound guidance. In this prospective, randomised, observer-blinded study, we compared ultrasound guidance with NS for axillary brachial plexus block using 0.5% bupivacaine with the multiple injection techniques. Methods : A total of 120 patients receiving axillary brachial plexus block with 0.5% bupivacaine, using a multiple injection technique, were randomly allocated to receive either NS (group NS, n = 60, or ultrasound guidance (group US, n = 60 for nerve location. A blinded observer recorded the onset of sensory and motor blocks, skin punctures, needle redirections, procedure-related pain and patient satisfaction. Results: The median (range number of skin punctures were 2 (2-4 in group US and 3 (2-5 in group NS (P =0.27. Insufficient block was observed in three patient (5% of group US and four patients (6.67% of group NS (P > =0.35. Patient acceptance was similarly good in the two groups. Conclusion: Multiple injection axillary blocks with ultrasound guidance provided similar success rates and comparable incidence of complications as compared with NS guidance with 20 ml 0.5% bupivacaine.

  19. Effects of electrical stimulation on cell proliferation and apoptosis.

    Science.gov (United States)

    Love, Maria R; Palee, Siripong; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-03-01

    The application of exogenous electrical stimulation (ES) to cells in order to manipulate cell apoptosis and proliferation has been widely investigated as a possible method of treatment in a number of diseases. Alteration of the transmembrane potential of cells via ES can affect various intracellular signaling pathways which are involved in the regulation of cellular function. Controversially, several types of ES have proved to be effective in both inhibiting or inducing apoptosis, as well as increasing proliferation. However, the mechanisms through which ES achieves this remain fairly unclear. The aim of this review was to comprehensively summarize current findings from in vitro and in vivo studies on the effects of different types of ES on cell apoptosis and proliferation, highlighting the possible mechanisms through which ES induced these effects and define the optimum parameters at which ES can be used. Through this we hope to provide a greater insight into how future studies can most effectively use ES at the clinical trial stage. © 2017 Wiley Periodicals, Inc.

  20. Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis.

    Science.gov (United States)

    Fiene, Marina; Rufener, Katharina S; Kuehne, Maria; Matzke, Mike; Heinze, Hans-Jochen; Zaehle, Tino

    2018-03-01

    Fatigue is one of the most common and debilitating symptoms affecting patients with multiple sclerosis (MS). Sustained cognitive effort induces cognitive fatigue, operationalized as subjective exhaustion and fatigue-related objective alertness decrements with time-on-task. During prolonged cognitive testing, MS patients show increased simple reaction times (RT) accompanied by lower amplitudes and prolonged latencies of the P300 event-related potential. Previous studies suggested a major role of structural and functional abnormalities in the frontal cortex including a frontal hypo-activation in fatigue pathogenesis. In the present study we investigated the neuromodulatory effect of transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) on objective measures of fatigue-related decrements in cognitive performance in MS patients. P300 during an auditory oddball task and simple reaction times in an alertness test were recorded at baseline, during and after stimulation. Compared to sham, anodal tDCS caused an increase in P300 amplitude that persisted after the end of stimulation and eliminated the fatigue-related increase in RT over the course of a testing session. Our findings demonstrate that anodal tDCS over the left DLPFC can counteract performance decrements associated with fatigue thereby leading to an improvement in the patient's ability to cope with sustained cognitive demands. This provides causal evidence for the functional relevance of the left DLPFC in fatigue pathophysiology. The results indicate that tDCS-induced modulations of frontal activity can be an effective therapeutic option for the treatment of fatigue-related declines in cognitive performance in MS patients.

  1. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors

    Directory of Open Access Journals (Sweden)

    Wang Cheng-Li

    2012-08-01

    Full Text Available Abstract Background The fungus of Ganoderma is a traditional medicine in Asia with a variety of pharmacological functions including anti-cancer activities. We have purified an extracellular heteropolysaccharide fraction, PS-F2, from the submerged mycelia culture of G. formosanum and shown that PS-F2 exhibits immunostimulatory activities. In this study, we investigated the molecular mechanisms of immunostimulation by PS-F2. Results PS-F2-stimulated TNF-α production in macrophages was significantly reduced in the presence of blocking antibodies for Dectin-1 and complement receptor 3 (CR3, laminarin, or piceatannol (a spleen tyrosine kinase inhibitor, suggesting that PS-F2 recognition by macrophages is mediated by Dectin-1 and CR3 receptors. In addition, the stimulatory effect of PS-F2 was attenuated in the bone marrow-derived macrophages from C3H/HeJ mice which lack functional Toll-like receptor 4 (TLR4. PS-F2 stimulation triggered the phosphorylation of mitogen-activated protein kinases JNK, p38, and ERK, as well as the nuclear translocation of NF-κB, which all played essential roles in activating TNF-α expression. Conclusions Our results indicate that the extracellular polysaccharides produced by G. formosanum stimulate macrophages via the engagement of multiple pattern-recognition receptors including Dectin-1, CR3 and TLR4, resulting in the activation of Syk, JNK, p38, ERK, and NK-κB and the production of TNF-α.

  2. Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-04-01

    Full Text Available IntroductionMany antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells.MethodsCultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS in the presence of dead and dying cells, their supernatants (SNs, or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo.ResultsThe stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment.ConclusionInosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy.

  3. Fatigue in multiple sclerosis: neural correlates and the role of non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Moussa A. Chalah

    2015-11-01

    Full Text Available Multiple sclerosis (MS is a chronic progressive inflammatory disease of the central nervous system and the major cause of non-traumatic disability in young adults. Fatigue is a frequent symptom reported by the majority of MS patients during their disease course and drastically af-fects their quality of life. Despite its significant prevalence and impact, the underlying patho-physiological mechanisms are not well elucidated. MS fatigue is still considered the result of multifactorial and complex constellations, and is commonly classified into primary fatigue related to the pathological changes of the disease itself, and secondary fatigue attributed to mimicking symptoms, comorbid sleep and mood disorders, and medications side effects. Data from neuroimaging, neurophysiology, neuroendocrine and neuroimmune studies have raised hypotheses regarding the origin of this symptom, some of which have succeeded in identifying an association between MS fatigue and structural or functional abnormalities within various brain networks. Hence, the aim of this work is to reappraise the neural correlates of MS fatigue and to discuss the rationale for the emergent use of noninvasive brain stimulation (NIBS techniques as potential treatments. This will include a presentation of the various NIBS modalities and a proposition of their potential mechanisms of action in this context. Specific issues related to the value of transcranial direct current stimulation will be addressed.

  4. Plasma Cell Neoplasms (Including Multiple Myeloma)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells form cancerous tumors. When there is only one tumor, the disease is called a plasmacytoma. When there are multiple tumors, it is called multiple myeloma. Start here to find information on plasma cell neoplasms treatment, research, and statistics.

  5. Stimulation of cytolytic T lymphocytes by azaguanine-resistant mouse tumor cells in selective hat medium

    International Nuclear Information System (INIS)

    Snick, J. van; Uyttenhove, C.; Pel, A. van; Boon, T.

    1981-01-01

    Primed syngeneic or umprimed allogeneic mouse spleen cells were stimulated with azaguanine-resistant P815 tumor cells that were killed by the addition of aminopterin to the stimulation medium. The recovery of lymphocytes and their cytolytic activity and specificity were similar to those obtained after stimulation with irradiated cells. This method conveniently replaces the inactivation of stimulatory cells by irradiation or mitomycin treatment. Moreover, it has the advantage of inactivating not only the stimulatory cells but also the tumor cells that often contaminate the spleens of tumor-bearing animals, provided these animals have been inoculated with azaguanine-resistant tumor cell mutants. (Auth.)

  6. Investigation of in vitro bone cell adhesion and proliferation on Ti using direct current stimulation

    International Nuclear Information System (INIS)

    Bodhak, Subhadip; Bose, Susmita; Kinsel, William C.; Bandyopadhyay, Amit

    2012-01-01

    Our objective was to establish an in vitro cell culture protocol to improve bone cell attachment and proliferation on Ti substrate using direct current stimulation. For this purpose, a custom made electrical stimulator was developed and a varying range of direct currents, from 5 to 25 μA, was used to study the current stimulation effect on bone cells cultured on conducting Ti samples in vitro. Cell–material interaction was studied for a maximum of 5 days by culturing with human fetal osteoblast cells (hFOB). The direct current was applied in every 8 h time interval and the duration of electrical stimulation was kept constant at 15 min for all cases. In vitro results showed that direct current stimulation significantly favored bone cell attachment and proliferation in comparison to nonstimulated Ti surface. Immunochemistry and confocal microscopy results confirmed that the cell adhesion was most pronounced on 25 μA direct current stimulated Ti surfaces as hFOB cells expressed higher vinculin protein with increasing amount of direct current. Furthermore, MTT assay results established that cells grew 30% higher in number under 25 μA electrical stimulation as compared to nonstimulated Ti surface after 5 days of culture period. In this work we have successfully established a simple and cost effective in vitro protocol offering easy and rapid analysis of bone cell–material interaction which can be used in promotion of bone cell attachment and growth on Ti substrate using direct current electrical stimulation in an in vitro model. - Highlights: ► D.C. stimulation was used to enhance in vitro bone cell adhesion and proliferation. ► Cells cultured on Ti were stimulated by using a custom made electrical stimulator. ► Optimization was performed by using a varying range of direct currents ∼ 5 to 25 μA. ► 25 μA stimulation was found most beneficial for promotion of cell adhesion/growth.

  7. The Alpha-Melanocyte Stimulating Hormone Induces Conversion of Effector T Cells into Treg Cells

    Directory of Open Access Journals (Sweden)

    Andrew W. Taylor

    2011-01-01

    Full Text Available The neuropeptide alpha-melanocyte stimulating hormone (α-MSH has an important role in modulating immunity and homeostasis. The production of IFN-γ by effector T cells is suppressed by α-MSH, while TGF-β production is promoted in the same cells. Such α-MSH-treated T cells have immune regulatory activity and suppress hypersensitivity, autoimmune diseases, and graft rejection. Previous characterizations of the α-MSH-induced Treg cells showed that the cells are CD4+ T cells expressing the same levels of CD25 as effector T cells. Therefore, we further analyzed the α-MSH-induced Treg cells for expression of effector and regulatory T-cell markers. Also, we examined the potential for α-MSH-induced Treg cells to be from the effector T-cell population. We found that the α-MSH-induced Treg cells are CD25+  CD4+ T cells that share similar surface markers as effector T cells, except that they express on their surface LAP. Also, the α-MSH treatment augments FoxP3 message in the effector T cells, and α-MSH induction of regulatory activity was limited to the effector CD25+ T-cell population. Therefore, α-MSH converts effector T cells into Treg cells, which suppress immunity targeting specific antigens and tissues.

  8. Sodium Lauryl Sulfate Stimulates the Generation of Reactive Oxygen Species through Interactions with Cell Membranes.

    Science.gov (United States)

    Mizutani, Taeko; Mori, Ryota; Hirayama, Misaki; Sagawa, Yuki; Shimizu, Kenji; Okano, Yuri; Masaki, Hitoshi

    2016-12-01

    Sodium lauryl sulfate (SLS), a representative anionic surfactant, is well-known to induce rough skin following single or multiple topical applications. The mechanism by which SLS induces rough skin is thought to result from the disruption of skin moisture function consisting of NMF and epidermal lipids. However, a recent study demonstrated that topically applied SLS easily penetrates into the living cell layers of the epidermis, which suggests that physiological alterations of keratinocytes might cause the SLS-induced rough skin. This study was conducted to clarify the effects of SLS on keratinocytes to demonstrate the contribution of SLS to the induction of rough skin. In addition, the potentials of other widely used anionic surfactants to induce rough skin were evaluated. HaCaT keratinocytes treated with SLS had increased levels of intracellular ROS and IL-1α secretion. Application of SLS on the surface of a reconstructed epidermal equivalent also showed the increased generation of ROS. Further, SLS-treated cells showed an increase of intracellular calpain activity associated with the increase of intracellular Ca 2+ concentration. The increase of intracellular ROS was abolished by the addition of BAPTA-AM, a specific chelator of Ca 2+ . In addition, IL-1α also stimulated ROS generation by HaCaT keratinocytes. An ESR spin-labeling study demonstrated that SLS increased the fluidity of membranes of liposomes and cells. Together, those results indicate that SLS initially interacts with cell membranes, which results in the elevation of intracellular Ca 2+ influx. Ca 2+ stimulates the secretion of IL-1α due to the activation of calpain, and also increases ROS generation. IL-1α also stimulates ROS generation by HaCaT keratinocytes. We conclude from these results that the elevation of intracellular ROS levels is one of the causes of SLS-induced rough skin. Finally, among the other anionic surfactants tested, sodium lauryl phosphate has less potential to induce rough

  9. Gamma-radiation-induced chromosal aberration in human lymphocytes: dose-rate effects in stimulated and non-stimulated cells

    International Nuclear Information System (INIS)

    Liniecki, J.; Bajerska, A.; Wyszynska, K.; Cisowska, B.

    1977-01-01

    Stimulated and non-stimulated human peripheral blood lymphocytes were irradiated acutely and chronically, over 24 h. Dose-effect relationships for dicentric chromosomes were established and various models were fitted to the data. At prolonged irradiations, the yield decreased in basic agreement with the linear-quadratic model of aberration induction. Dose-protraction experiments on PHA + and PHA - lymphocytes, irradiated under various conditions of oxygenation and suspension (culture medium, whole blood) showed that the rejoining time increased from about 3 h in non-stimulated cells to about 10 h after PHA stimulation, and that this retarded rejoining was most likely due to blastic transformation itself and not to other conditions of irradiation

  10. Gamma radiation induced chromosal aberration in human lymphocytes: dose-rate effects in stimulated and non-stimulated cells

    Energy Technology Data Exchange (ETDEWEB)

    Liniecki, J; Bajerska, A; Wyszynska, K [School of Medicine, Lodz (Poland). Div. of Nuclear Medicine and Radiobiology. Medical Research Center; Cisowska, B [Copernicus Municipal Hospital, Lodz (Poland). Oncology Center. Radiotherapy Dept.

    1977-05-01

    Stimulated and non-stimulated human peripheral blood lymphocytes were irradiated acutely and chronically, over 24 h. Dose-effect relationships for dicentric chromosomes were established and various models were fitted to the data. At prolonged irradiations, the yield decreased in basic agreement with the linear-quadratic model of aberration induction. Dose-protraction experiments on PHA/sup +/ and PHA/sup -/ lymphocytes, irradiated under various conditions of oxygenation and suspension (culture medium, whole blood) showed that the rejoining time increased from about 3 h in non-stimulated cells to about 10 h after PHA stimulation, and that this retarded rejoining was most likely due to blastic transformation itself and not to other conditions of irradiation.

  11. Schwann cell response on polypyrrole substrates upon electrical stimulation.

    Science.gov (United States)

    Forciniti, Leandro; Ybarra, Jose; Zaman, Muhammad H; Schmidt, Christine E

    2014-06-01

    Current injury models suggest that Schwann cell (SC) migration and guidance are necessary for successful regeneration and synaptic reconnection after peripheral nerve injury. The ability of conducting polymers such as polypyrrole (PPy) to exhibit chemical, contact and electrical stimuli for cells has led to much interest in their use for neural conduits. Despite this interest, there has been very little research on the effect that electrical stimulation (ES) using PPy has on SC behavior. Here we investigate the mechanism by which SCs interact with PPy in the presence of an electric field. Additionally, we explored the effect that the adsorption of different serum proteins on PPy upon the application of an electric field has on SC migration. The results indicate an increase in average displacement of the SC with ES, resulting in a net anodic migration. Moreover, indirect effects of protein adsorption due to the oxidation of the film upon the application of ES were shown to have a larger effect on migration speed than on migration directionality. These results suggest that SC migration speed is governed by an integrin- or receptor-mediated mechanism, whereas SC migration directionality is governed by electrically mediated phenomena. These data will prove invaluable in optimizing conducting polymers for their different biomedical applications such as nerve repair. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Response variability of different anodal transcranial direct current stimulation intensities across multiple sessions.

    Science.gov (United States)

    Ammann, Claudia; Lindquist, Martin A; Celnik, Pablo A

    It is well known that transcranial direct current stimulation (tDCS) is capable of modulating corticomotor excitability. However, a source of growing concern has been the observed inter- and intra-individual variability of tDCS-responses. Recent studies have assessed whether individuals respond in a predictable manner across repeated sessions of anodal tDCS (atDCS). The findings of these investigations have been inconsistent, and their methods have some limitations (i.e. lack of sham condition or testing only one tDCS intensity). To study inter- and intra-individual variability of atDCS effects at two different intensities on primary motor cortex (M1) excitability. Twelve subjects participated in a crossover study testing 7-min atDCS over M1 in three separate conditions (2 mA, 1 mA, sham) each repeated three times separated by 48 h. Motor evoked potentials were recorded before and after stimulation (up to 30min). Time of testing was maintained consistent within participants. To estimate the reliability of tDCS effects across sessions, we calculated the Intra-class Correlation Coefficient (ICC). AtDCS at 2 mA, but not 1 mA, significantly increased cortical excitability at the group level in all sessions. The overall ICC revealed fair to high reliability of tDCS effects for multiple sessions. Given that the distribution of responses showed important variability in the sham condition, we established a Sham Variability-Based Threshold to classify responses and to track individual changes across sessions. Using this threshold an intra-individual consistent response pattern was then observed only for the 2 mA condition. 2 mA anodal tDCS results in consistent intra- and inter-individual increases of M1 excitability. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. TLR-Stimulated Eosinophils Mediate Recruitment and Activation of NK Cells In Vivo.

    Science.gov (United States)

    O'Flaherty, S M; Sutummaporn, K; Häggtoft, W L; Worrall, A P; Rizzo, M; Braniste, V; Höglund, P; Kadri, N; Chambers, B J

    2017-06-01

    Eosinophils like many myeloid innate immune cells can provide cytokines and chemokines for the activation of other immune cells upon TLR stimulation. When TLR-stimulated eosinophils were inoculated i.p. into wild-type mice, and NK cells were rapidly recruited and exhibited antitumour cytotoxicity. However, when mice depleted of CD11c + cells were used, a marked decrease in the number of recruited NK cells was observed. We postulated that CpG or LPS from the injected eosinophils could be transferred to host cells, which in turn could recruit NK cells. However, by inoculating mice deficient in TLR4 or TLR9 with LPS or CpG-stimulated eosinophils respectively, NK cell recruitment was still observed alongside cytotoxicity and IFNγ production. CpG stimulation of eosinophils produced the pro-inflammatory cytokine IL-12 and the chemokine CXCL10, which are important for NK cell activation and recruitment in vivo. To demonstrate the importance of CXCL10 in NK cell recruitment, we found that CpG-stimulated eosinophils pretreated with the gut microbial metabolite butyrate had reduced expression and production of CXCL10 and IL-12 and concomitantly were poor at recruitment of NK cells and inducing IFNγ in NK cells. Therefore, eosinophils like other innate immune cells of myeloid origin can conceivably stimulate NK cell activity. In addition, products of the gut microbiota can be potential inhibitors of NK cell. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  14. Transcranial direct current stimulation over multiple days enhances motor performance of a grip task.

    Science.gov (United States)

    Fan, Julie; Voisin, Julien; Milot, Marie-Hélène; Higgins, Johanne; Boudrias, Marie-Hélène

    2017-09-01

    Recovery of handgrip is critical after stroke since it is positively related to upper limb function. To boost motor recovery, transcranial direct current stimulation (tDCS) is a promising, non-invasive brain stimulation technique for the rehabilitation of persons with stroke. When applied over the primary motor cortex (M1), tDCS has been shown to modulate neural processes involved in motor learning. However, no studies have looked at the impact of tDCS on the learning of a grip task in both stroke and healthy individuals. To assess the use of tDCS over multiple days to promote motor learning of a grip task using a learning paradigm involving a speed-accuracy tradeoff in healthy individuals. In a double-blinded experiment, 30 right-handed subjects (mean age: 22.1±3.3 years) participated in the study and were randomly assigned to an anodal (n=15) or sham (n=15) stimulation group. First, subjects performed the grip task with their dominant hand while following the pace of a metronome. Afterwards, subjects trained on the task, at their own pace, over 5 consecutive days while receiving sham or anodal tDCS over M1. After training, subjects performed de novo the metronome-assisted task. The change in performance between the pre and post metronome-assisted task was used to assess the impact of the grip task and tDCS on learning. Anodal tDCS over M1 had a significant effect on the speed-accuracy tradeoff function. The anodal tDCS group showed significantly greater improvement in performance (39.28±15.92%) than the sham tDCS group (24.06±16.35%) on the metronome-assisted task, t(28)=2.583, P=0.015 (effect size d=0.94). Anodal tDCS is effective in promoting grip motor learning in healthy individuals. Further studies are warranted to test its potential use for the rehabilitation of fine motor skills in stroke patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    International Nuclear Information System (INIS)

    Chan, C.P.; Bowen-Pope, D.F.; Ross, R.; Krebs, E.G.

    1986-01-01

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio [(activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)]. Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of 125 I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms

  16. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  17. Aging increases cell-to-cell transcriptional variability upon immune stimulation.

    Science.gov (United States)

    Martinez-Jimenez, Celia Pilar; Eling, Nils; Chen, Hung-Chang; Vallejos, Catalina A; Kolodziejczyk, Aleksandra A; Connor, Frances; Stojic, Lovorka; Rayner, Timothy F; Stubbington, Michael J T; Teichmann, Sarah A; de la Roche, Maike; Marioni, John C; Odom, Duncan T

    2017-03-31

    Aging is characterized by progressive loss of physiological and cellular functions, but the molecular basis of this decline remains unclear. We explored how aging affects transcriptional dynamics using single-cell RNA sequencing of unstimulated and stimulated naïve and effector memory CD4 + T cells from young and old mice from two divergent species. In young animals, immunological activation drives a conserved transcriptomic switch, resulting in tightly controlled gene expression characterized by a strong up-regulation of a core activation program, coupled with a decrease in cell-to-cell variability. Aging perturbed the activation of this core program and increased expression heterogeneity across populations of cells in both species. These discoveries suggest that increased cell-to-cell transcriptional variability will be a hallmark feature of aging across most, if not all, mammalian tissues. Copyright © 2017, American Association for the Advancement of Science.

  18. Exosomes from Cardiomyocyte Progenitor Cells and Mesenchymal Stem Cells Stimulate Angiogenesis Via EMMPRIN.

    Science.gov (United States)

    Vrijsen, Krijn R; Maring, Janita A; Chamuleau, Steven A J; Verhage, Vera; Mol, Emma A; Deddens, Janine C; Metz, Corina H G; Lodder, Kirsten; van Eeuwijk, Esther C M; van Dommelen, Susan M; Doevendans, Pieter A; Smits, Anke M; Goumans, Marie-José; Sluijter, Joost P G

    2016-10-01

    To date, cellular transplantation therapy has not yet fulfilled its high expectations for cardiac repair. A major limiting factor is lack of long-term engraftment of the transplanted cells. Interestingly, transplanted cells can positively affect their environment via secreted paracrine factors, among which are extracellular vesicles, including exosomes: small bi-lipid-layered vesicles containing proteins, mRNAs, and miRNAs. An exosome-based therapy will therefore relay a plethora of effects, without some of the limiting factors of cell therapy. Since cardiomyocyte progenitor cells (CMPC) and mesenchymal stem cells (MSC) induce vessel formation and are frequently investigated for cardiac-related therapies, the pro-angiogenic properties of CMPC and MSC-derived exosome-like vesicles are investigated. Both cell types secrete exosome-like vesicles, which are efficiently taken up by endothelial cells. Endothelial cell migration and vessel formation are stimulated by these exosomes in in vitro models, mediated via ERK/Akt-signaling. Additionally, these exosomes stimulated blood vessel formation into matrigel plugs. Analysis of pro-angiogenic factors revealed high levels of extracellular matrix metalloproteinase inducer (EMMPRIN). Knockdown of EMMPRIN on CMPCs leads to a diminished pro-angiogenic effect, both in vitro and in vivo. Therefore, CMPC and MSC exosomes have powerful pro-angiogenic effects, and this effect is largely mediated via the presence of EMMPRIN on exosomes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  20. Renin release from permeabilized juxtaglomerular cells is stimulated by chloride but not by low calcium

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1994-01-01

    of chloride channels followed by a drop in the intracellular chloride concentration. The stimulation caused by the high calcium concentration may be a toxic effect or may be due to stimulation of the fusion between granules and cell membrane in a way analogous to other secretory cells....

  1. Reliability of Autonomic Responses and Malaise Across Multiple Motion Sickness Stimulation Tests

    Science.gov (United States)

    Stout, Cynthia S.; Toscano, William B.; Cowings, Patricia S.

    1993-01-01

    There is general agreement that a high degree of variability exists between subjects in their autonomic nervous system responses to motion sickness stimulation. Additionally, a paucity of data exists that examines the variability within an individual across repeated motion sickness tests. Investigators have also examined the relationship of autonomic responses to motion sickness development. These investigations have used analyses at discrete points in time to describe this relationship. This approach fails to address the time course of autonomic responses and malaise development throughout the motion sickness test. Our objectives were to examine the reliability of autonomic responses and malaise using the final minute of the motion sickness test across five testing occasions, to examine the reliability of the change in autonomic responses and the change in malaise across five testing occasions, and to examine the relationship between changes in autonomic responses and changes in malaise level across the entire motion sickness test. Our results indicate that, based on the final minute of testing, the autonomic responses of heart rate, blood volume pulse, and respiration rate are moderately stable across multiple tests. Changes in heart rate, blood volume pulse, respiration rate, and malaise throughout the test duration were less stable across the tests. We attribute this instability to variations in individual susceptibility and the error associated with estimating a measure of autonomic gain.

  2. Assisting People with Multiple Disabilities Actively Correct Abnormal Standing Posture with a Nintendo Wii Balance Board through Controlling Environmental Stimulation

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling

    2010-01-01

    The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board…

  3. Clinical analysis of electroacupuncture and multiple acupoint stimulation in relieving cancer pain in patients with advanced hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Lili Xu

    2018-01-01

    Conclusion: Cancer pain in patients with advanced hepatocellular carcinoma can be alleviated with electroacupuncture and multiple acupoint stimulation, but the onset pain relief was slow. To improve the analgesic effects of this technique, the combination of various analgesic methods should be necessary in early stage of the treatment.

  4. T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention.

    Science.gov (United States)

    van Langelaar, Jamie; van der Vuurst de Vries, Roos M; Janssen, Malou; Wierenga-Wolf, Annet F; Spilt, Isis M; Siepman, Theodora A; Dankers, Wendy; Verjans, Georges M G M; de Vries, Helga E; Lubberts, Erik; Hintzen, Rogier Q; van Luijn, Marvin M

    2018-05-01

    Interleukin-17-expressing CD4+ T helper 17 (Th17) cells are considered as critical regulators of multiple sclerosis disease activity. However, depending on the species and pro-inflammatory milieu, Th17 cells are functionally heterogeneous, consisting of subpopulations that differentially produce interleukin-17, interferon-gamma and granulocyte macrophage colony-stimulating factor. In the current study, we studied distinct effector phenotypes of human Th17 cells and their correlation with disease activity in multiple sclerosis patients. T helper memory populations single- and double-positive for C-C chemokine receptor 6 (CCR6) and CXC chemokine receptor 3 (CXCR3) were functionally assessed in blood and/or cerebrospinal fluid from a total of 59 patients with clinically isolated syndrome, 35 untreated patients and 24 natalizumab-treated patients with relapsing-remitting multiple sclerosis, and nine patients with end-stage multiple sclerosis. Within the clinically isolated syndrome group, 23 patients had a second attack within 1 year and 26 patients did not experience subsequent attacks during a follow-up of >5 years. Low frequencies of T helper 1 (Th1)-like Th17 (CCR6+CXCR3+), and not Th17 (CCR6+CXCR3-) effector memory populations in blood strongly associated with a rapid diagnosis of clinically definite multiple sclerosis. In cerebrospinal fluid of clinically isolated syndrome and relapsing-remitting multiple sclerosis patients, Th1-like Th17 effector memory cells were abundant and showed increased production of interferon-gamma and granulocyte macrophage colony-stimulating factor compared to paired CCR6+ and CCR6-CD8+ T cell populations and their blood equivalents after short-term culturing. Their local enrichment was confirmed ex vivo using cerebrospinal fluid and brain single-cell suspensions. Across all pro-inflammatory T helper cells analysed in relapsing-remitting multiple sclerosis blood, Th1-like Th17 subpopulation T helper 17.1 (Th17.1; CCR6+CXCR3+CCR4

  5. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells

    International Nuclear Information System (INIS)

    Perkel, V.S.; Mohan, S.; Herring, S.J.; Baylink, D.J.; Linkhart, T.A.

    1990-01-01

    Prostatic cancer typically produces osteoblastic metastases which are not attended by marrow fibrosis. In the present study we sought to test the hypothesis that prostatic cancer cells produce factor(s) which act selectively on human osteoblasts. Such a paracrine mechanism would explain the observed increase in osteoblasts, unaccompanied by an increase in marrow fibroblasts. To test this hypothesis we investigated the mitogenic activity released by the human prostatic tumor cell line, PC3. PC3 cells have been reported previously to produce mitogenic activity for cells that was relatively specific for rat osteoblasts compared to rat fibroblasts. However, the effects of this activity on human cells has not been examined previously. PC3-conditioned medium (CM) (5-50 micrograms CM protein/ml) stimulated human osteoblast proliferation by 200-950% yet did not stimulate human fibroblast proliferation ([3H]thymidine incorporation). PC3 CM also increased cell numbers in human osteoblast but not fibroblast cell cultures. To determine whether the osteoblast-specific mitogenic activity could be attributed to known bone growth factors, specific assays for these growth factors were performed. PC3 CM contained 10 pg insulin-like growth factor (IGF) I, less than 2 pg IGF II, 54 pg basic fibroblast growth factor, and 16 pg transforming growth factor beta/microgram CM protein. None of these growth factors alone or in combination could account for the observed osteoblast-specific PC3 cell-derived mitogenic activity. Furthermore, when 5 micrograms/ml PC3 CM was tested in combination with maximally effective concentrations of either basic fibroblast growth factor, IGF I, IGF II, or transforming growth factor beta, it produced an additive effect suggesting that PC3 CM stimulates osteoblast proliferation by a mechanism independent of these bone mitogens

  6. Multiple gastrointestinal metastases of Merkel cell carcinoma.

    Science.gov (United States)

    Poškus, Eligijus; Platkevičius, Gediminas; Simanskaitė, Vilma; Rimkevičiūtė, Ernesta; Petrulionis, Marius; Strupas, Kestutis

    2016-01-01

    Merkel cell carcinoma is an aggressive skin malignancy. Primary Merkel cell carcinomas are treated by wide radical excision with or without adjuvant radiotherapy, while benefits of adjuvant chemotherapy remain doubtful. There are only several cases of gastrointestinal metastases of Merkel cell carcinoma reported so far. We report a case of recurrent Merkel cell carcinoma with metastases to the stomach and the small intestines after wide excision of primary Merkel cell carcinoma. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Suppression of Stimulated Brillouin Scattering in multiple-ion species inertial confinement fusion Hohlraum Plasmas

    International Nuclear Information System (INIS)

    Neumayer, P

    2007-01-01

    A long-standing problem in the field of laser-plasma interactions is to successfully employ multiple-ion species plasmas to reduce stimulated Brillouin scattering (SBS) in inertial confinement fusion (ICF) hohlraum conditions. Multiple-ion species increase significantly the linear Landau damping for acoustic waves. Consequently, recent hohlraum designs for indirect-drive ignition on the National Ignition Facility investigate wall liner material options so that the liner gain for parametric instabilities will be below threshold for the onset SBS. Although the effect of two-ion species plasmas on Landau damping has been directly observed with Thomson scattering, early experiments on SBS in these plasmas have suffered from competing non-linear effects or laser beam filamentation. In this study, a reduction of SBS scattering to below the percent level has been observed in hohlraums at Omega that emulate the plasma conditions in an indirect drive ICF experiments. These experiments have measured the laser-plasma interaction processes in ignition-relevant high-electron temperature regime demonstrating Landau damping as a controlling process for SBS. The hohlraums have been filled with various fractions of CO 2 and C 3 H 8 varying the ratio of the light (H) to heavy (C and O) ion density from 0 to 2.6. They have been heated by 14.5 kJ of 351-nm light, thus increasing progressively Landau damping by an order of magnitude at constant electron density and temperature. A delayed 351-nm interaction beam, spatially smoothed to produce a 200-(micro)m laser spot at best focus, has propagated along the axis of the hohlraum. The backscattered light, both into the lens and outside, the transmitted light through the hohlraum plasma and the radiation temperature of the hohlraum has been measured. For ignition relevant laser intensities (3-9 10 14 Wcm -2 ), we find that the SBS reflectivity scales as predicted with Landau damping from >30% to <1%. Simultaneously, the hohlraum radiation

  8. Optical cell sorting with multiple imaging modalities

    DEFF Research Database (Denmark)

    Banas, Andrew; Carrissemoux, Caro; Palima, Darwin

    2017-01-01

    healthy cells. With the richness of visual information, a lot of microscopy techniques have been developed and have been crucial in biological studies. To utilize their complementary advantages we adopt both fluorescence and brightfield imaging in our optical cell sorter. Brightfield imaging has...... the advantage of being non-invasive, thus maintaining cell viability. Fluorescence imaging, on the other hand, takes advantages of the chemical specificity of fluorescence markers and can validate machine vision results from brightfield images. Visually identified cells are sorted using optical manipulation...

  9. Cell-based therapeutic strategies for multiple sclerosis

    DEFF Research Database (Denmark)

    Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C

    2017-01-01

    and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities......, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved...

  10. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Dajani Olav

    2011-10-01

    cells. In these cells, neurotensin-induced activation of ERK and stimulation of DNA synthesis was PKC-dependent, whereas activation of the PI3K/Akt pathway was mediated by stimulation of metalloproteinases and subsequent transactivation of the EGFR. Thus, the data show that the signalling mechanisms mediating the effects of neurotensin involve multiple pathways and are cell-dependent.

  11. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    International Nuclear Information System (INIS)

    Müller, Kristin M; Tveteraas, Ingun H; Aasrum, Monica; Ødegård, John; Dawood, Mona; Dajani, Olav; Christoffersen, Thoralf; Sandnes, Dagny L

    2011-01-01

    and stimulation of DNA synthesis was PKC-dependent, whereas activation of the PI3K/Akt pathway was mediated by stimulation of metalloproteinases and subsequent transactivation of the EGFR. Thus, the data show that the signalling mechanisms mediating the effects of neurotensin involve multiple pathways and are cell-dependent

  12. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    DEFF Research Database (Denmark)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF...... stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns...... of ASCs. METHODS: Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow...

  13. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Damián Hernández

    2016-01-01

    Full Text Available Background. Human induced pluripotent stem cells (iPSCs are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.

  14. THE INCREASING OF PRESCHOOL MULTIPLE INTELLIGENCES BY EDUCATIVE PLAYING INSTRUMENT STIMULATION

    Directory of Open Access Journals (Sweden)

    Yuni Sufyanti Arief

    2017-04-01

    Full Text Available Introduction: Multiple Intelligences can be incresed by playing stimulation with educative playing instrument. Educative playing is the activity that uses educate ways and instrument. Educative playing very important to increase speech development, cognitive, socialisation with the environment and also increse the streght and skill of child’s body. Method: Design used in this study was quasy experiment design. The population was preschool children 4–5 years old in working area of Mojo Public Health Centre of Surabaya. The sample was preschool children 4–5 years old that spesific in inclution criteria of this study. Data were analyzed by wilcoxon signed rank test to compare the ordinal data pre and post intervention and mann withney u-test that compare between intervention group and control  group with level of signifi cance of α ≤ 0.05. Result: The result of speech development that analyzed by Wilcoxon signed rank test showed that controlled group had p = 0.157 and intervention group had p = 0.005 and the result of mann whitney test was p = 0.03. The result of kinesthetic development by wilcoxon signed rank test showed that controlled group has p = 0.317 and intervention group has p = 0.005, and analyzed by mann whitney test in kinesthetic development showed the result of p = 0.02. Discussion: Educative playing instrument (picture cards, play dough, origami and meronce increased speech and fine motoric development of preschool children 4–5 years old in Mojo Indah Kindergarten of Surabaya. Educative playing instrument is the activity that makes the playing function optimally in child development and this activity can increase the child development such as physical, speech, cognitive and social adaptation.

  15. Evidence of impaired brain activity balance after passive sensorimotor stimulation in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Nikolaos Petsas

    Full Text Available OBJECTIVES: Examination of sensorimotor activation alone in multiple sclerosis (MS patients may not yield a comprehensive view of cerebral response to task stimulation. Additional information may be obtained by examining the negative BOLD response (deactivation. Aim of this work was to characterize activation and deactivation patterns during passive hand movements in MS patients. METHODS: 13 relapsing remitting-MS patients (RRMS, 18 secondary progressive-MS patients (SPMS and 15 healthy controls (HC underwent an fMRI study during passive right-hand movements. Activation and deactivation contrasts in the three groups were entered into ANOVA, age and gender corrected. Post-hoc analysis was performed with one-sample and two-sample t-tests. For each patient we obtained lesion volume (LV from both T1- and T2-weighted images. RESULTS: Activations showed a progressive extension to the ipsilateral brain hemisphere according to the group and the clinical form (HC

  16. Involvement of Subcortical Brain Structures During Olfactory Stimulation in Multiple Chemical Sensitivity.

    Science.gov (United States)

    Alessandrini, Marco; Micarelli, Alessandro; Chiaravalloti, Agostino; Bruno, Ernesto; Danieli, Roberta; Pierantozzi, Mariangela; Genovesi, Giuseppe; Öberg, Johanna; Pagani, Marco; Schillaci, Orazio

    2016-03-01

    Multiple chemical sensitivity (MCS) patients usually react to odour compounds and the majority of neuroimaging studies assessed, especially at the cortical level, many olfactory-related correlates. The purpose of the present study was to depict sub-cortical metabolic changes during a neutral (NC) and pure (OC) olfactory stimulation by using a recently validated (18)F-2-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography/computer tomography procedure in 26 MCS and 11 healthy (HC) resting subjects undergoing a battery of clinical tests. Twelve subcortical volumes of interest were identified by the automated anatomical labeling library and normalized to thalamus FDG uptake. In both groups, when comparing OC to NC, the within-subjects ANOVA demonstrated a relative decreased metabolism in bilateral putamen and hippocampus and a relative increased metabolism in bilateral amygdala, olfactory cortex (OLF), caudate and pallidum. The between-groups ANOVA demonstrated in MCS a significant higher metabolism in bilateral OLF during NC. As in HC subjects negative correlations were found in OC between FDG uptake in bilateral amygdala and hippocampus and odor pleasantness scale, the latter positively correlated with MCS subjects' bilateral putamen FDG uptake in OC. Besides FDG uptake resemblances in both groups were found, for the first time a relative higher metabolism increase in OLF in MCS subjects at rest with respect to HC was found. When merging this aspect to the different subcortical FDG uptake correlations patterns in the two groups, the present study demonstrated to describe a peculiar metabolic index of behavioral and neurological aspects of MCS complaints.

  17. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    Science.gov (United States)

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  18. Multiple giant cell lesions in a patient with Noonan syndrome with multiple lentigines

    NARCIS (Netherlands)

    van den Berg, Henk; Schreuder, Willem Hans; Jongmans, Marjolijn; van Bommel-Slee, Danielle; Witsenburg, Bart; de Lange, Jan

    2016-01-01

    A patient with Noonan syndrome with multiple lentigines (NSML) and multiple giant cell lesions (MGCL) in mandibles and maxillae is described. A mutation p.Thr468Met in the PTPN11-gene was found. This is the second reported NSML patient with MGCL. Our case adds to the assumption that, despite a

  19. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation.

    Science.gov (United States)

    Cheng, Kunrong; Samimi, Roxana; Xie, Guofeng; Shant, Jasleen; Drachenberg, Cinthia; Wade, Mark; Davis, Richard J; Nomikos, George; Raufman, Jean-Pierre

    2008-09-01

    Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor antagonists, acetylcholinesterase inhibitors, and choline transport inhibitors on cell proliferation. A nonselective muscarinic receptor antagonist (atropine), a selective M3R antagonist (p-fluorohexahydro-sila-difenidol hydrochloride), and a choline transport inhibitor (hemicholinum-3) all inhibited unstimulated H508 colon cancer cell proliferation by approximately 40% (P<0.005). In contrast, two acetylcholinesterase inhibitors (eserine-hemisulfate and bis-9-amino-1,2,3,4-tetrahydroacridine) increased proliferation by 2.5- and 2-fold, respectively (P<0.005). By using quantitative real-time PCR, expression of choline acetyltransferase (ChAT), a critical enzyme for ACh synthesis, was identified in H508, WiDr, and Caco-2 colon cancer cells. By using high-performance liquid chromatography-electrochemical detection, released ACh was detected in H508 and Caco-2 cell culture media. Immunohistochemistry in surgical specimens revealed weak or no cytoplasmic staining for ChAT in normal colon enterocytes (n=25) whereas half of colon cancer specimens (n=24) exhibited moderate to strong staining (P<0.005). We conclude that ACh is an autocrine growth factor in colon cancer. Mechanisms that regulate colon epithelial cell production and release of ACh warrant further investigation.

  20. LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways

    International Nuclear Information System (INIS)

    Tong, W.-G.; Ding, X.-Z.; Talamonti, Mark S.; Bell, Richard H.; Adrian, Thomas E.

    2005-01-01

    We have previously shown the importance of LTB4 in human pancreatic cancer. LTB4 receptor antagonists block growth and induce apoptosis in pancreatic cancer cells both in vitro and in vivo. Therefore, we investigated the effect of LTB4 on proliferation of human pancreatic cancer cells and the mechanisms involved. LTB4 stimulated DNA synthesis and proliferation of both PANC-1 and AsPC-1 human pancreatic cancer cells, as measured by thymidine incorporation and cell number. LTB4 stimulated rapid and transient activation of MEK and ERK1/2 kinases. The MEK inhibitors, PD98059 and U0126, blocked LTB4-stimulated ERK1/2 activation and cell proliferation. LTB4 also stimulated phosphorylation of p38 MAPK; however, the p38 MAPK inhibitor, SB203580, failed to block LTB4-stimulated growth. The activity of JNK/SAPK was not affected by LTB4 treatment. Phosphorylation of Akt was also induced by LTB4 and this effect was blocked by the PI-3 kinase inhibitor wortmannin, which also partially blocked LTB4-stimulated cell proliferation. In conclusion, LTB4 stimulates proliferation of human pancreatic cancer cells through MEK/ERK and PI-3 kinase/Akt pathways, while p38 MPAK and JNK/SAPK are not involved

  1. involvement of multiple cell lineages in atherogenesis

    African Journals Online (AJOL)

    2017-07-12

    Jul 12, 2017 ... Elucidation of all ... molecular mechanisms which underly this .... intima. Monocyte chemoattractant protein-1 ... cell interaction, release of microparticles, pro – ..... Monocytes and macrophages dynamics during atherogenesis.

  2. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    Energy Technology Data Exchange (ETDEWEB)

    Taub, Mary, E-mail: biochtau@buffalo.edu

    2016-03-11

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10{sup −5} M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  3. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    International Nuclear Information System (INIS)

    Taub, Mary

    2016-01-01

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10"−"5 M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  4. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    Science.gov (United States)

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  5. Effects of Electromagnetic Stimulation on Cell Density and Neural Markers in Murine Enteric Cell Cultures

    International Nuclear Information System (INIS)

    Carreon-Rodriguez, A.; Belkind-Gerson, J.; Serrano-Luna, G.; Canedo-Dorantes, L.

    2008-01-01

    Availability of adult stem cells from several organs like bone marrow, umbilical cord blood or peripheral blood has become a powerful therapeutic tool for many chronic diseases. Potential of adult stem cells for regeneration extents to other tissues among them the nervous system. However two obstacles should be resolved before such cells could be currently applied in clinical practice: a) slow growth rate and b) ability to form enough dense colonies in order to populate a specific injury or cellular deficiency. Many approaches have been explored as genetic differentiation programs, growth factors, and supplemented culture media, among others. Electromagnetic field stimulation of differentiation, proliferation, migration, and particularly on neurogenesis is little known. Since the biological effects of ELF-EMF are well documented, we hypothesize ELF-EMF could affect growth and maturation of stem cells derived of enteric tissue

  6. Protection of Dentate Hilar Cells from Prolonged Stimulation by Intracellular Calcium Chelation

    Science.gov (United States)

    Scharfman, Helen E.; Schwartzkroin, Philip A.

    1989-10-01

    Prolonged afferent stimulation of the rat dentate gyrus in vivo leads to degeneration only of those cells that lack immunoreactivity for the calcium binding proteins parvalbumin and calbindin. In order to test the hypothesis that calcium binding proteins protect against the effects of prolonged stimulation, intracellular recordings were made in hippocampal slices from cells that lack immunoreactivity for calcium binding proteins. Calcium binding protein--negative cells showed electrophysiological signs of deterioration during prolonged stimulation; cells containing calcium binding protein did not. When neurons without calcium binding proteins were impaled with microelectrodes containing the calcium chelator BAPTA, and BAPTA was allowed to diffuse into the cells, these cells showed no deterioration. These results indicate that, in a complex tissue of the central nervous system, an activity-induced increase in intracellular calcium can trigger processes leading to cell deterioration, and that increasing the calcium binding capacity of a cell decreases its vulnerability to damage.

  7. Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma.

    Science.gov (United States)

    Mark, Tomer; Stern, Jessica; Furst, Jessica R; Jayabalan, David; Zafar, Faiza; LaRow, April; Pearse, Roger N; Harpel, John; Shore, Tsiporah; Schuster, Michael W; Leonard, John P; Christos, Paul J; Coleman, Morton; Niesvizky, Ruben

    2008-07-01

    A total of 28 treatment-naïve patients with stage II or III multiple myeloma (MM) were treated with the combination of clarithromycin, lenalidomide, and dexamethasone (BiRD). Stem cells were collected following granulocyte-colony stimulating factor (G-CSF) or cyclophosphamide (Cy) plus G-CSF mobilization at maximum response. Sufficient stem cells for 2 autologous stem cell transplants were collected from all patients mobilized with Cy plus G-CSF, versus 33% mobilized with G-CSF alone (P < .0001). The duration of prior lenalidomide therapy did not correlate with success of stem cell harvests (P = .91). In conclusion, Cy can be added to G-CSF for stem cell mobilization to successfully overcome the suppressive effect of prior treatment with lenalidomide.

  8. A Novel In Vitro System for Comparative Analyses of Bone Cells and Bacteria under Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Josef Dauben

    2016-01-01

    Full Text Available Electrical stimulation is a promising approach to enhance bone regeneration while having potential to inhibit bacterial growth. To investigate effects of alternating electric field stimulation on both human osteoblasts and bacteria, a novel in vitro system was designed. Electric field distribution was simulated numerically and proved by experimental validation. Cells were stimulated on Ti6Al4V electrodes and in short distance to electrodes. Bacterial growth was enumerated in supernatant and on the electrode surface and biofilm formation was quantified. Electrical stimulation modulated gene expression of osteoblastic differentiation markers in a voltage-dependent manner, resulting in significantly enhanced osteocalcin mRNA synthesis rate on electrodes after stimulation with 1.4VRMS. While collagen type I synthesis increased when stimulated with 0.2VRMS, it decreased after stimulation with 1.4VRMS. Only slight and infrequent influence on bacterial growth was observed following stimulations with 0.2VRMS and 1.4VRMS after 48 and 72 h, respectively. In summary this novel test system is applicable for extended in vitro studies concerning definition of appropriate stimulation parameters for bone cell growth and differentiation, bacterial growth suppression, and investigation of general effects of electrical stimulation.

  9. Mathematical Modeling of Loop Heat Pipes with Multiple Capillary Pumps and Multiple Condensers. Part 1; Stead State Stimulations

    Science.gov (United States)

    Hoang, Triem T.; OConnell, Tamara; Ku, Jentung

    2004-01-01

    Loop Heat Pipes (LHPs) have proven themselves as reliable and robust heat transport devices for spacecraft thermal control systems. So far, the LHPs in earth-orbit satellites perform very well as expected. Conventional LHPs usually consist of a single capillary pump for heat acquisition and a single condenser for heat rejection. Multiple pump/multiple condenser LHPs have shown to function very well in ground testing. Nevertheless, the test results of a dual pump/condenser LHP also revealed that the dual LHP behaved in a complicated manner due to the interaction between the pumps and condensers. Thus it is redundant to say that more research is needed before they are ready for 0-g deployment. One research area that perhaps compels immediate attention is the analytical modeling of LHPs, particularly the transient phenomena. Modeling a single pump/single condenser LHP is difficult enough. Only a handful of computer codes are available for both steady state and transient simulations of conventional LHPs. No previous effort was made to develop an analytical model (or even a complete theory) to predict the operational behavior of the multiple pump/multiple condenser LHP systems. The current research project offered a basic theory of the multiple pump/multiple condenser LHP operation. From it, a computer code was developed to predict the LHP saturation temperature in accordance with the system operating and environmental conditions.

  10. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2013-04-12

    Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.

  11. Non-cell-autonomous stimulation of stem cell proliferation following ablation of Tcf3

    International Nuclear Information System (INIS)

    Yi, Fei; Merrill, Bradley J.

    2010-01-01

    A combination of cell intrinsic factors and extracellular signals determine whether mouse embryonic stem cells (ESC) divide, self-renew, and differentiate. Here, we report a new interaction between cell intrinsic aspects of the canonical Wnt/Tcf/β-catenin signaling pathway and extracellular Lif/Jak/Stat3 stimulation that combines to promote self-renewal and proliferation of ESC. Mutant ESC lacking the Tcf3 transcriptional repressor continue to self-renew in the absence of exogenous Lif and through pharmacological inhibition of Lif/Jak/Stat3 signaling; however, proliferation rates of TCF3-/- ESC were significantly decreased by inhibiting Jak/Stat3 activity. Cell mixing experiments showed that stimulation of Stat3 phosphorylation in TCF3-/- ESC was mediated through secretion of paracrine acting factors, but did not involve elevated Lif or LifR transcription. The new interaction between Wnt and Lif/Jak/Stat3 signaling pathways has potential for new insights into the growth of tumors caused by aberrant activity of Wnt/Tcf/β-catenin signaling.

  12. Cell membrane disruption stimulates cAMP and Ca2+ signaling to potentiate cell membrane resealing in neighboring cells

    Directory of Open Access Journals (Sweden)

    Tatsuru Togo

    2017-12-01

    Full Text Available Disruption of cellular plasma membranes is a common event in many animal tissues, and the membranes are usually rapidly resealed. Moreover, repeated membrane disruptions within a single cell reseal faster than the initial wound in a protein kinase A (PKA- and protein kinase C (PKC-dependent manner. In addition to wounded cells, recent studies have demonstrated that wounding of Madin-Darby canine kidney (MDCK cells potentiates membrane resealing in neighboring cells in the short-term by purinergic signaling, and in the long-term by nitric oxide/protein kinase G signaling. In the present study, real-time imaging showed that cell membrane disruption stimulated cAMP synthesis and Ca2+ mobilization from intracellular stores by purinergic signaling in neighboring MDCK cells. Furthermore, inhibition of PKA and PKC suppressed the ATP-mediated short-term potentiation of membrane resealing in neighboring cells. These results suggest that cell membrane disruption stimulates PKA and PKC via purinergic signaling to potentiate cell membrane resealing in neighboring MDCK cells.

  13. Gold nanoparticle-mediated laser stimulation induces a complex stress response in neuronal cells.

    Science.gov (United States)

    Johannsmeier, Sonja; Heeger, Patrick; Terakawa, Mitsuhiro; Kalies, Stefan; Heisterkamp, Alexander; Ripken, Tammo; Heinemann, Dag

    2018-04-25

    Stimulation of neuronal cells generally resorts to electric signals. Recent advances in laser-based stimulation methods could present an alternative with superior spatiotemporal resolution. The avoidance of electronic crosstalk makes these methods attractive for in vivo therapeutic application. In particular, nano-mediators, such as gold nanoparticles, can be used to transfer the energy from a laser pulse to the cell membrane and subsequently activate excitable cells. Although the underlying mechanisms of neuronal activation have been widely unraveled, the overall effect on the targeted cell is not understood. Little is known about the physiological and pathophysiological impact of a laser pulse targeted onto nanoabsorbers on the cell membrane. Here, we analyzed the reaction of the neuronal murine cell line Neuro-2A and murine primary cortical neurons to gold nanoparticle mediated laser stimulation. Our study reveals a severe, complex and cell-type independent stress response after laser irradiation, emphasizing the need for a thorough assessment of this approach's efficacy and safety.

  14. Cerebellar Ataxia from Multiple Potential Causes: Hypothyroidism, Hashimoto's Thyroiditis, Thalamic Stimulation, and Essential Tremor

    OpenAIRE

    Shneyder, Natalya; Lyons, Mark K.; Driver-dunckley, Erika; Evidente, Virgilio Gerald H.

    2012-01-01

    Background: Both hypothyroidism and Hashimoto's thyroiditis (HT) can rarely be associated with cerebellar ataxia. Severe essential tremor (ET) as well as bilateral thalamic deep brain stimulation (DBS) may lead to subtle cerebellar signs. Case Report: We report a 74-year-old male with hypothyroidism and a 20-year history of ET who developed cerebellar ataxia after bilateral thalamic DBS. Extensive workup revealed elevated thyroid stimulating hormone and thyroperoxidase antibody titers c...

  15. External stimulation strength controls actin response dynamics in Dictyostelium cells

    Science.gov (United States)

    Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Zykov, Vladimir; Bodenschatz, Eberhard; Beta, Carsten

    2015-03-01

    Self-sustained oscillation and the resonance frequency of the cytoskeletal actin polymerization/depolymerization have recently been observed in Dictyostelium, a model system for studying chemotaxis. Here we report that the resonance frequency is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and depolymerization time at different levels of external stimulation. We found that polymerization time is independent of external stimuli but the depolymerization time is prolonged as the stimulation increases. These observations can be successfully reproduced in the frame work of our time delayed differential equation model.

  16. In vitro activation of retinal cells: estimating location of stimulated cell by using a mathematical model

    Science.gov (United States)

    Ziv, Ofer R.; Rizzo, Joseph F., III; Jensen, Ralph J.

    2005-03-01

    Activation of neurons at different depths within the retina and at various eccentricities from the stimulating electrode will presumably influence the visual percepts created by a retinal prosthesis. With an electrical prosthesis, neurons will be activated in relation to the stimulating charge that impacts their cell membranes. The common model used to predict charge density is Coulomb's law, also known as the square law. We propose a modified model that can be used to predict neuronal depth that takes into account: (1) finite dimensions related to the position and size of the stimulating and return electrodes and (2) two-dimensional displacements of neurons with respect to the electrodes, two factors that are not considered in the square law model. We tested our model by using in vitro physiological threshold data that we had obtained previously for eight OFF-center brisk-transient rabbit retinal ganglion cells. For our most spatially dense threshold data (25 µm increments up to 100 µm from the cell body), our model estimated the depth of one RGC to be 76 ± 76 µm versus 87 ± 62 µm (median: SD) for the square law model, respectively. This difference was not statistically significant. For the seven other RGCs for which we had obtained threshold data up to 800 µm from the cell body, the estimate of the RGC depth (using data obtained along the X axis) was 96 ± 74 versus 20 ± 20 µm for the square law and our modified model, respectively. Although this difference was not statistically significant (Student t-test: p = 0.12), our model provided median values much closer to the estimated depth of these RGCs (Gt25 µm). This more realistic estimate of cell depth predicted by our model is not unexpected in this latter data set because of the more spatially distributed threshold data points that were evaluated. Our model has theoretical advantages over the traditional square law model under certain conditions, especially when considering neurons that are

  17. Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β-stimulated SK-N-SH cells.

    Science.gov (United States)

    Velagapudi, Ravikanth; Baco, Gina; Khela, Sunjeet; Okorji, Uchechukwu; Olajide, Olumayokun

    2016-06-01

    Pomegranate fruit, Punica granatum L. (Punicaceae), and its constituents have been shown to inhibit inflammation. In this study, we aimed to assess the effects of freeze-dried pomegranate (PWE) on PGE2 production in IL-1β-stimulated SK-N-SH cells. An enzyme immunoassay (EIA) was used to measure prostaglandin E2 (PGE2) production from supernatants of IL-1β-stimulated SK-N-SH cells. Expression of COX-2, phospho-IκB, and phospho-IKK proteins was evaluated, while NF-κB reporter gene assay was carried out in TNFα-stimulated HEK293 cells to determine the effect of PWE on NF-κB transactivation. Levels of BACE-1 and Aβ in SK-N-SH cells stimulated with IL-1β were measured with an in cell ELISA. PWE (25-200 μg/ml) dose dependently reduced COX-2-dependent PGE2 production in SK-N-SH cells stimulated with IL-1β. Phosphorylation of IκB and IKK was significantly (p pomegranate inhibits inflammation, as well as amyloidogenesis in IL-1β-stimulated SK-N-SH cells. We propose that pomegranate is a potential nutritional strategy in slowing the progression of neurodegenerative disorders such as Alzheimer's disease.

  18. Production of Multiple Growth Factors by a Newly Established Human Thyroid Carcinoma Cell Line

    Science.gov (United States)

    Yoshida, Yataro; Ohashi, Kensaku; Sano, Emiko; Kobayashi, Hisataka; Endo, Keigo; Naruto, Masanobu; Nakamura, Toru

    1992-01-01

    A multiple growth factor‐producing tumor cell line (NIM‐1) was newly established from a patient with thyroid cancer and remarkable neutrophilia. NIM‐1 cells also caused severe neutrophilia in nude mice bearing tumors. NIM‐1‐conditioned medium (NIM‐1CM) contained activities that supported not only granulocyte, macrophage and eosinophil colony formation of human bone marrow cells but also the growth of colony‐stimulating factor (CSF)‐dependent cell lines, NFS60‐KX and TF‐1. Northern blot hybridization analysis revealed the constitutive expression of granulocyte‐CSF (G‐CSF), granulocyte/macrophage‐CSF (GM‐CSF) and interleukin(IL)‐6 mRNAs in NIM‐1 cells. Enzyme‐linked immunosorbent assays (ELISA) using NIM‐1CM also confirmed the production of IL‐la and a small amount of IL‐1β besides G‐CSF, GM‐CSF and IL‐6 in NIM‐1 cells. In addition, unexpected production of IL‐11 in NIM‐1 cells was detected by northern blot hybridization analysis and by bioassay using an IL‐11‐dependent cell line. Therefore, NIM‐1 cell line is shown to produce multiple cytokines including potentially megakaryopoietic growth factors such as GM‐CSF, IL‐6 and IL‐11. PMID:1372885

  19. [IL-2 stimulated responses of CD3(+) CD56(+) NKT cells in pulmonary tuberculosis patients].

    Science.gov (United States)

    Yao, Chun-Yan; Wang, Zhao-Hua; Jiang, Li-Na; Peng, Mei-Yu; Wang, Jing; Li, Bai-Qing

    2010-09-01

    To observe the activation and proliferation characteristics of IL-2 stimulated CD3(+);CD56(+); NKT cells in pulmonary tuberculosis (PTB) patients. Peripheral blood mononuclear cells (PBMCs) from PTB patients and normal subjects were stimulated with IL-2 and cultured for different time points. The CD69 expression on and amount of the CD3(+);CD56(+); NKT cells were detected by multi fluorescence staining and flow cytometry at different time of stimulation and culture. There was no significant difference in percentage of NKT cells between PTB patients and normal healthy controls before culture. When IL-2 was used to stimulate for 0 h, 8 h, 16 h, 40 h and 64 h, the expression of CD69 on NKT cells in normal controls and PTB patients increased significantly, but the CD69 expression level of NKT cells in PTB patients was significantly higher than that in normal persons(PNKT cells increased from (3.44+/-1.20)x10(4); to (323.23+/-75.98) x10(4); (PNKT cells increased from (5.57+/-5.16)x10(4); to (1475.05+/-868.98)x10(4); (PNKT cells in PTB patients present with high activation but low proliferation after stimulated by IL-2.

  20. Endogenous pyrogen production by human blood monocytes stimulated by staphylococcal cell wall components.

    OpenAIRE

    Oken, M M; Peterson, P K; Wilkinson, B J

    1981-01-01

    To determine the properties of Staphylococcus aureus contributing to its pyrogenicity, we compared, in human monocytes, endogenous pyrogen production stimulated by heat-killed S. aureus with that stimulated by purified S. aureus cell walls or by particulate peptidoglycan prepared from the same strain. Peptidoglycan, but not the purified cell wall preparation, was found comparable to S. aureus as an endogenous pyrogen stimulus. This finding was associated with a more effective monocyte phagocy...

  1. Novel human multiple myeloma cell line UHKT-893

    Czech Academy of Sciences Publication Activity Database

    Uherková, L.; Vančurová, I.; Vyhlídalová, I.; Pleschnerová, M.; Špička, I.; Mihalová, R.; Březinová, J.; Hodný, Zdeněk; Čermáková, K.; Polanská, V.; Marinov, I.; Jedelský, P.L.; Kuželová, K.; Stöckbauer, P.

    2013-01-01

    Roč. 37, č. 3 (2013), s. 320-326 ISSN 0145-2126 Institutional support: RVO:68378050 Keywords : human myeloma cell line * human multiple myeloma * plasma cell * IL-6 dependence * immunoglobulin * free light chain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.692, year: 2013

  2. A King Bolete, Boletus edulis (Agaricomycetes), RNA Fraction Stimulates Proliferation and Cytotoxicity of Natural Killer Cells Against Myelogenous Leukemia Cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Nunes, Fernando Herminio Ferreira Milheiro; Sawa-Wejksza, Katarzyna; Rzeski, Wojciech

    2017-01-01

    Numerous studies indicate the crucial role of natural killer (NK) cells in the prevention of tumor growth and inhibition of their metastasis, which suggests the possibility of their use in cancer treatment. This therapeutic strategy required finding a selective NK cell stimulator that, upon administration, did not disturb organism homeostasis, unlike natural activators (interleukin-2 or interleukin-12). Because the majority of anticancer agents derived from Basidiomycetes are able to stimulate lymphocytes, we describe the influence of Boletus edulis RNA on a human NK cell line (NK92). Our studies showed that a B. edulis RNA fraction was not toxic against NK92 cells. Furthermore, the tested fraction significantly stimulated NK92 cell proliferation and their cytotoxicity against tumor cells. We demonstrate here, to our knowledge for the first time, that B. edulis RNA enhances NK cell activity and possesses immunomodulatory potential.

  3. Prolactin-stimulated mitogenesis in the Nb2 rat lymphoma cell: Lack of protoporphyrin IX effects

    Energy Technology Data Exchange (ETDEWEB)

    Gerrish, K.E.; Putnam, C.W.; Laird, H.E. II (Univ. of Arizona, Tucson (USA))

    1990-01-01

    Pharmacological characterization of the Nb2 cell peripheral-type benzodiazepine receptor (PBR) was determined using selected 1,4-benzodiazepines, PK 11195, and protoporphyrin IX (PPIX) to compete for specific ({sup 3}H) Ro5-4864 binding. These data suggest that PPIX possesses an affinity for the Nb2 cell PBR. We have previously reported that the peripheral benzodiazepine ligands, Ro5-4864 and PK 11195, modulate prolactin-stimulated mitogenesis in the Nb2 cell. In contrast, PPIX, a putative endogenous ligand for the PBR had no effect on prolactin-stimulated mitogenesis in the Nb2 cell over the concentration range from 10{sup {minus}15} M to 10{sup {minus}6} M. Taken together these data show that PPIX has an affinity for the Nb2 cell PBR but does not modulate prolactin-stimulated mitogenesis at concentrations which should bind to the Nb2 cell PBR.

  4. 2-Aminopurine overrides multiple cell cycle checkpoints in BHK cells.

    OpenAIRE

    Andreassen, P R; Margolis, R L

    1992-01-01

    BHK cells blocked at any of several points in the cell cycle override their drug-induced arrest and proceed in the cycle when exposed concurrently to the protein kinase inhibitor 2-aminopurine (2-AP). For cells arrested at various points in interphase, 2-AP-induced cell cycle progression is made evident by arrival of the drug-treated cell population in mitosis. Cells that have escaped from mimosine G1 arrest, from hydroxyurea or aphidicolin S-phase arrest, or from VM-26-induced G2 arrest subs...

  5. Waddlia chondrophila infects and multiplies in ovine trophoblast cells stimulating an inflammatory immune response.

    Directory of Open Access Journals (Sweden)

    Nick Wheelhouse

    Full Text Available Waddlia chondrophila (W. chondrophila is an emerging abortifacient organism which has been identified in the placentae of humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial abortifacients, such as Chlamydia abortus (C. abortus. This study investigates the growth of the organism and its effects upon pro-inflammatory cytokine expression in a ruminant placental cell line which we have previously utilised in a model of C. abortus pathogenicity.Using qPCR, fluorescent immunocytochemistry and electron microscopy, we characterised the infection and growth of W. chondrophila within the ovine trophoblast AH-1 cell line. Inclusions were visible from 6 h post-infection (p.i. and exponential growth of the organism could be observed over a 60 h time-course, with significant levels of host cell lysis being observed only after 36 h p.i. Expression of CXCL8, TNF-α, IL-1α and IL-1β were determined 24 h p.i. A statistically significant response in the expression of CXCL8, TNF-α and IL-1β could be observed following active infection with W. chondrophila. However a significant increase in IL-1β expression was also observed following the exposure of cells to UV-killed organisms, indicating the stimulation of multiple innate recognition pathways.W. chondrophila infects and grows in the ruminant trophoblast AH-1 cell line exhibiting a complete chlamydial replicative cycle. Infection of the trophoblasts resulted in the expression of pro-inflammatory cytokines in a dose-dependent manner similar to that observed with C. abortus in previous studies, suggesting similarities in the pathogenesis of infection between the two organisms.

  6. Waddlia chondrophila infects and multiplies in ovine trophoblast cells stimulating an inflammatory immune response.

    Science.gov (United States)

    Wheelhouse, Nick; Coyle, Christopher; Barlow, Peter G; Mitchell, Stephen; Greub, Gilbert; Baszler, Tim; Rae, Mick T; Longbottom, David

    2014-01-01

    Waddlia chondrophila (W. chondrophila) is an emerging abortifacient organism which has been identified in the placentae of humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial abortifacients, such as Chlamydia abortus (C. abortus). This study investigates the growth of the organism and its effects upon pro-inflammatory cytokine expression in a ruminant placental cell line which we have previously utilised in a model of C. abortus pathogenicity. Using qPCR, fluorescent immunocytochemistry and electron microscopy, we characterised the infection and growth of W. chondrophila within the ovine trophoblast AH-1 cell line. Inclusions were visible from 6 h post-infection (p.i.) and exponential growth of the organism could be observed over a 60 h time-course, with significant levels of host cell lysis being observed only after 36 h p.i. Expression of CXCL8, TNF-α, IL-1α and IL-1β were determined 24 h p.i. A statistically significant response in the expression of CXCL8, TNF-α and IL-1β could be observed following active infection with W. chondrophila. However a significant increase in IL-1β expression was also observed following the exposure of cells to UV-killed organisms, indicating the stimulation of multiple innate recognition pathways. W. chondrophila infects and grows in the ruminant trophoblast AH-1 cell line exhibiting a complete chlamydial replicative cycle. Infection of the trophoblasts resulted in the expression of pro-inflammatory cytokines in a dose-dependent manner similar to that observed with C. abortus in previous studies, suggesting similarities in the pathogenesis of infection between the two organisms.

  7. Cell elasticity with altered cytoskeletal architectures across multiple cell types.

    Science.gov (United States)

    Grady, Martha E; Composto, Russell J; Eckmann, David M

    2016-08-01

    The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cell-based therapeutic strategies for multiple sclerosis.

    Science.gov (United States)

    Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C; Cohen, Jeffrey A

    2017-11-01

    The availability of multiple disease-modifying medications with regulatory approval to treat multiple sclerosis illustrates the substantial progress made in therapy of the disease. However, all are only partially effective in preventing inflammatory tissue damage in the central nervous system and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved questions. Moreover, clinical trials of cell-based therapies present several unique methodological and ethical issues. We summarize here the status of cell-based therapies to treat multiple sclerosis and make consensus recommendations for future research and clinical trials. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  9. Arginine vasopressin stimulates phosphoinositide turnover in an enriched rat Leydig cell preparation

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol and phosphatidyl......An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol...

  10. AMP-activated kinase mediates adipose stem cell-stimulated neuritogenesis of PC12 cells.

    Science.gov (United States)

    Tan, B; Luan, Z; Wei, X; He, Y; Wei, G; Johnstone, B H; Farlow, M; Du, Y

    2011-05-05

    Adipose tissue stroma contains a population of mesenchymal stem cells, which support repair of damaged tissues through the protective effects of secreted trophic factors. Neurotrophic factors, including nerve growth factor (NGF) have been identified in media collected from cultured adipose-derived stem cells (ASC). We previously demonstrated that administration of cell-free ASC conditioned medium (ASC-CM) at 24 h after injury reduced lesion volume and promoted functional recovery in a rat model of neonatal brain hypoxic-ischemic (HI) injury. The timing of administration well after the peak in neural cell apoptosis in the affected region suggests that regeneration of lost neurons is promoted by factors in ASC-CM. In this study, we determined which of the factors in ASC-CM could induce neurogenesis by testing the ability of the mixture, either whole or after inactivating specific components, to stimulate neurite outgrowth in vitro using the neurogenic cell line PC12. Neuritogenesis in PC12 cells treated with ASC-CM was observed at a level comparable to that observed with purified recombinant NGF. It was observed that NGF in ASC-CM was mainly responsible for inducing PC12 cell neuritogenesis. Interestingly, both ASC-CM and NGF induced PC12 cell neuritogenesis through activation of the AMP-activated kinase (AMPK) pathway which is the central protein involved in controlling many critical functions in response to changes in the cellular energy status. Pharmacological and genetic inhibition of AMPK activity greatly reduced neuritogenesis in PC12 cells. These results suggest that, in addition to possessing neuroprotective properties, ASC-CM mediates repair of damaged tissues through inducing neuronal differentiation via NGF-induced AMPK activation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Directory of Open Access Journals (Sweden)

    Dinari A Harris

    Full Text Available For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1 exosomes promote cell migration and (2 the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3 exosomes are endocytosed at the same rate regardless of the cell type; (4 exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  12. Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: comparison with secondary progressive multiple sclerosis.

    Science.gov (United States)

    Casanova, Bonaventura; Jarque, Isidro; Gascón, Francisco; Hernández-Boluda, Juan Carlos; Pérez-Miralles, Francisco; de la Rubia, Javier; Alcalá, Carmen; Sanz, Jaime; Mallada, Javier; Cervelló, Angeles; Navarré, Arantxa; Carcelén-Gadea, María; Boscá, Isabel; Gil-Perotin, Sara; Solano, Carlos; Sanz, Miguel Angel; Coret, Francisco

    2017-07-01

    The main objective of our work is to describe the long-term results of myeloablative autologous hematopoietic stem cell transplant (AHSCT) in multiple sclerosis patients. Patients that failed to conventional therapies for multiple sclerosis (MS) underwent an approved protocol for AHSCT, which consisted of peripheral blood stem cell mobilization with cyclophosphamide and granulocyte colony-stimulating factor (G-CSF), followed by a conditioning regimen of BCNU, Etoposide, Ara-C, Melphalan IV, plus Rabbit Thymoglobulin. Thirty-eight MS patients have been transplanted since 1999. Thirty-one patients have been followed for more than 2 years (mean 8.4 years). There were 22 relapsing-remitting multiple sclerosis (RRMS) patients and 9 secondary progressive multiple sclerosis (SPMS) patients. No death related to AHSCT. A total of 10 patients (32.3%) had at least one relapse during post-AHSCT evolution, 6 patients in the RRMS group (27.2%) and 4 in the SPMS group (44.4%). After AHSCT, 7 patients (22.6%) experienced progression of disability, all within SP form. By contrast, no patients with RRMS experienced worsening of disability after a median follow-up of 5.4 years, 60% of them showed a sustained reduction in disability (SRD), defined as the improvement of 1.0 point in the expanded disability status scale (EDSS) sustains for 6 months (0.5 in cases of EDSS ≥ 5.5). The only clinical variable that predicted a poor response to AHSCT was a high EDSS in the year before transplant. AHSCT using the BEAM-ATG scheme is safe and efficacious to control the aggressive forms of RRMS.

  13. Alpha-particles induce autophagy in multiple myeloma cells

    Directory of Open Access Journals (Sweden)

    Joelle Marcelle Gaschet

    2015-10-01

    Full Text Available Objectives: Radiations emitted by the radionuclides in radioimmunotherapy (RIT approaches induce direct killing of the targeted cells as well as indirect killing through bystander effect. Our research group is dedicated to the development of α-RIT, i.e RIT using α-particles especially for the treatment of multiple myeloma (MM. γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by 213Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of 213Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation.Methods: Murine 5T33 and human LP-1 multiple myeloma (MM cell lines were used to study the effects of such α-particles. We first examined the effects of 213Bi on proliferation rate, double strand DNA breaks, cell cycle and cell death. Then, we investigated autophagy after 213Bi irradiation. Finally, a co-culture of dendritic cells (DC with irradiated tumour cells or their culture media was performed to test whether it would induce DC activation.Results: We showed that 213Bi induces DNA double strand breaks, cell cycle arrest and autophagy in both cell lines but we detected only slight levels of early apoptosis within the 120 hours following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented 213Bi induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s, however no increase in membrane or extracellular expression of danger associated molecular patterns (DAMPs was observed after irradiation.Conclusion: This study demonstrates that 213Bi induces mainly necrosis in MM cells, low levels of apoptosis and also autophagy that might be involved in tumor cell death.

  14. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated 3 H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of 3 H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture

  15. Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Guenhaël Sanz

    Full Text Available Olfactory receptors (ORs are expressed in the olfactory epithelium, where they detect odorants, but also in other tissues with additional functions. Some ORs are even overexpressed in tumor cells. In this study, we identified ORs expressed in enterochromaffin tumor cells by RT-PCR, showing that single cells can co-express several ORs. Some of the receptors identified were already reported in other tumors, but they are orphan (without known ligand, as it is the case for most of the hundreds of human ORs. Thus, genes coding for human ORs with known ligands were transfected into these cells, expressing functional heterologous ORs. The in vitro stimulation of these cells by the corresponding OR odorant agonists promoted cell invasion of collagen gels. Using LNCaP prostate cancer cells, the stimulation of the PSGR (Prostate Specific G protein-coupled Receptor, an endogenously overexpressed OR, by β-ionone, its odorant agonist, resulted in the same phenotypic change. We also showed the involvement of a PI3 kinase γ dependent signaling pathway in this promotion of tumor cell invasiveness triggered by OR stimulation. Finally, after subcutaneous inoculation of LNCaP cells into NSG immunodeficient mice, the in vivo stimulation of these cells by the PSGR agonist β-ionone significantly enhanced metastasis emergence and spreading.

  16. A drug target that stimulates development of healthy stem cells

    Science.gov (United States)

    Scientists have overcome a major impediment to the development of effective stem cell therapies by studying mice that lack CD47, a protein found on the surface of both healthy and cancer cells. They discovered that cells obtained from the lungs of CD47-de

  17. Face-to-Face or Telematic Cognitive Stimulation in Patients with Multiple Sclerosis and Cognitive Impairment: Why Not Both?

    Directory of Open Access Journals (Sweden)

    C. Guijarro-Castro

    2017-01-01

    Full Text Available Introduction. Cognitive impairment (CI affects 40–65% of patients with multiple sclerosis (MS. Few studies address telematic cognitive stimulation (TCS in MS. The objective of this study is to evaluate the efficacy and impact of telestimulation or distance cognitive stimulation (TCS, with and without the support of face-to-face cognitive stimulation (FCS in cognitive impairment in MS. Methods. Multicentre, prospective, randomised, controlled study. We will include 98 MS patients with EDSS ≤ 6, symbol digit modality test (SDMT ≤ Pc 25, and Multiple Sclerosis Neuropsychological Screening Questionnaire (MSNQ > 26 points. Patients will be randomised into 3 groups, a TCS group, a mixed TCS/FCS group, and a control group. CS is performed 3 days a week for 3 months. Processing speed, memory, attention, and executive functions will be rehabilitated. FCS will include ecological exercises and strategies. EDSS and a cognitive evaluation (SDMT, CTMT, PASAT, and TAVEC, MSNQ, psychological impact scales (MSIS, and depression (BDI will be carried out, baseline, postrehabilitation, and also 6 and 12 months later, to evaluate the effect of CS in the longer term. Conclusion. This study could help to establish the usefulness of TCS or, in its absence, TCS with face-to-face help for CI in MS. The interest lies in the clear benefits of remote rehabilitation in the daily life of patients.

  18. Boosting Cognition : Effects of Multiple-Session Transcranial Direct Current Stimulation on Working Memory

    NARCIS (Netherlands)

    Talsma, L.J.; Kroese, H.A.; Slagter, H.A.

    Transcranial direct current stimulation (tDCS) is a promising tool for neurocognitive enhancement. Several studies have shown that just a single session of tDCS over the left dorsolateral pFC (lDLPFC) can improve the core cognitive function of working memory (WM) in healthy adults. Yet, recent

  19. Red-IR stimulated luminescence in K-feldspar: Single or multiple trap origin?

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Jain, Mayank; Tidemand-Lichtenberg, Peter

    2012-01-01

    We investigate on the origins of the infra-red stimulated luminescence (IRSL) signals in 3 potassium feldspars based on IR-red spectroscopy (700–1050 nm) using a fiber-coupled tunable Ti:Sapphire laser, in combination with different thermal and optical (pre)treatments of the samples. We also...

  20. Cortical activity during olfactory stimulation in multiple chemical sensitivity: a 18F-FDG PET/CT study

    International Nuclear Information System (INIS)

    Chiaravalloti, Agostino; Di Pietro, Barbara; Pagani, Marco; Micarelli, Alessandro; Alessandrini, Marco; Genovesi, Giuseppe; Schillaci, Orazio

    2015-01-01

    To investigate the differences in brain glucose consumption during olfactory stimulation between subjects affected by multiple chemical sensitivity (MCS) and a group of healthy individuals. Two 18 F-FDG PET/CT scans were performed in 26 subjects (6 men and 20 women; mean age 46.7 ± 11 years) with a clinical diagnosis of MCS and in 11 healthy controls (6 women and 5 men; mean age 45.7 ± 11 years), the first scan after a neutral olfactory stimulation (NS) and the second after a pure olfactory stimulation (OS). Differences in 18 F-FDG uptake were analysed by statistical parametric mapping (SPM2). In controls OS led to an increase in glucose consumption in BA 18 and 19 and a reduction in glucose metabolism in BA 10, 11, 32 and 47. In MCS subjects, OS led to an increase in glucose consumption in BA 20, 23, 18 and 37 and a reduction in glucose metabolism in BA 8, 9 and 10. The results of our study suggest that cortical activity in subjects with MCS differs from that in healthy individuals during olfactory stimulation. (orig.)

  1. Cortical activity during olfactory stimulation in multiple chemical sensitivity: a {sup 18}F-FDG PET/CT study

    Energy Technology Data Exchange (ETDEWEB)

    Chiaravalloti, Agostino; Di Pietro, Barbara [University Tor Vergata, Department of Biomedicine and Prevention, Rome (Italy); Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Department of Nuclear Medicine Karolinska Hospital Stockholm, Stockholm (Sweden); Micarelli, Alessandro; Alessandrini, Marco [University Tor Vergata, Department of Medical Science and Translational Medicine, Rome (Italy); Genovesi, Giuseppe [University La Sapienza, Department of Experimental Medicine, Rome (Italy); University La Sapienza, Regional Center for Diagnosis, Treatment and Prevention of MCS, Rome (Italy); Schillaci, Orazio [University Tor Vergata, Department of Biomedicine and Prevention, Rome (Italy); IRCCS Neuromed, Pozzilli (Italy)

    2015-04-01

    To investigate the differences in brain glucose consumption during olfactory stimulation between subjects affected by multiple chemical sensitivity (MCS) and a group of healthy individuals. Two {sup 18}F-FDG PET/CT scans were performed in 26 subjects (6 men and 20 women; mean age 46.7 ± 11 years) with a clinical diagnosis of MCS and in 11 healthy controls (6 women and 5 men; mean age 45.7 ± 11 years), the first scan after a neutral olfactory stimulation (NS) and the second after a pure olfactory stimulation (OS). Differences in {sup 18}F-FDG uptake were analysed by statistical parametric mapping (SPM2). In controls OS led to an increase in glucose consumption in BA 18 and 19 and a reduction in glucose metabolism in BA 10, 11, 32 and 47. In MCS subjects, OS led to an increase in glucose consumption in BA 20, 23, 18 and 37 and a reduction in glucose metabolism in BA 8, 9 and 10. The results of our study suggest that cortical activity in subjects with MCS differs from that in healthy individuals during olfactory stimulation. (orig.)

  2. Cortical activity during olfactory stimulation in multiple chemical sensitivity: a (18)F-FDG PET/CT study.

    Science.gov (United States)

    Chiaravalloti, Agostino; Pagani, Marco; Micarelli, Alessandro; Di Pietro, Barbara; Genovesi, Giuseppe; Alessandrini, Marco; Schillaci, Orazio

    2015-04-01

    To investigate the differences in brain glucose consumption during olfactory stimulation between subjects affected by multiple chemical sensitivity (MCS) and a group of healthy individuals. Two (18)F-FDG PET/CT scans were performed in 26 subjects (6 men and 20 women; mean age 46.7 ± 11 years) with a clinical diagnosis of MCS and in 11 healthy controls (6 women and 5 men; mean age 45.7 ± 11 years), the first scan after a neutral olfactory stimulation (NS) and the second after a pure olfactory stimulation (OS). Differences in (18)F-FDG uptake were analysed by statistical parametric mapping (SPM2). In controls OS led to an increase in glucose consumption in BA 18 and 19 and a reduction in glucose metabolism in BA 10, 11, 32 and 47. In MCS subjects, OS led to an increase in glucose consumption in BA 20, 23, 18 and 37 and a reduction in glucose metabolism in BA 8, 9 and 10. The results of our study suggest that cortical activity in subjects with MCS differs from that in healthy individuals during olfactory stimulation.

  3. Folic Acid supplementation stimulates notch signaling and cell proliferation in embryonic neural stem cells.

    Science.gov (United States)

    Liu, Huan; Huang, Guo-Wei; Zhang, Xu-Mei; Ren, Da-Lin; X Wilson, John

    2010-09-01

    The present study investigated the effect of folic acid supplementation on the Notch signaling pathway and cell proliferation in rat embryonic neural stem cells (NSCs). The NSCs were isolated from E14-16 rat brain and grown as neurospheres in serum-free suspension culture. Individual cultures were assigned to one of 3 treatment groups that differed according to the concentration of folic acid in the medium: Control (baseline folic acid concentration of 4 mg/l), low folic acid supplementation (4 mg/l above baseline, Folate-L) and high folic acid supplementation (40 mg/l above baseline, Folate-H). NSCs were identified by their expression of immunoreactive nestin and proliferating cells by incorporation of 5'bromo-2'deoxyuridine. Cell proliferation was also assessed by methyl thiazolyl tetrazolium assay. Notch signaling was analyzed by real-time PCR and western blot analyses of the expression of Notch1 and hairy and enhancer of split 5 (Hes5). Supplementation of NSCs with folic acid increased the mRNA and protein expression levels of Notch1 and Hes5. Folic acid supplementation also stimulated NSC proliferation dose-dependently. Embryonic NSCs respond to folic acid supplementation with increased Notch signaling and cell proliferation. This mechanism may mediate the effects of folic acid supplementation on neurogenesis in the embryonic nervous system.

  4. Multiple exciton generation in quantum dot-based solar cells

    Science.gov (United States)

    Goodwin, Heather; Jellicoe, Tom C.; Davis, Nathaniel J. L. K.; Böhm, Marcus L.

    2018-01-01

    Multiple exciton generation (MEG) in quantum-confined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one charge-carrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.

  5. Stimulation of allogeneic lymphocytes by skin epidermal cells in the rat

    International Nuclear Information System (INIS)

    Tanaka, S.; Sakai, A.

    1979-01-01

    The ability of skin epidermal cells to induce allogeneic lymphocytes into proliferation was examined in mixed skin cell-lymphocyte culture reaction (MSLR). The stimulatng capacity of skin cells was reduced significantly by trypsin digestion, although the damage was repaired by incubation at 37 C for 3 hr. The optimal concentration of mitomycin C for treatment of stimulating cells in the MSLR differed from that in mixed lymphocyte culture reaction (MLR). Irradiation rendered them three to four times more stimulatory than did mitomycin C. Removal of adherent cells from responding cells by passage through a nylon-wool column gave a substantial elevation of the MSLR. The lymphocytes cocultured with skin cells in the primary MSLR incorporated 3 H-thymidine, with the peak at the 6th day of culture. If the lymphocytes primed in the MSLR were restimulated with skin cells from the same stimulating strain, the primed lymphocytes responded promptly and in great magnitude

  6. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    Science.gov (United States)

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in

  7. Low-frequency electrical stimulation induces the proliferation and differentiation of peripheral blood stem cells into Schwann cells.

    Science.gov (United States)

    Gu, Xudong; Fu, Jianming; Bai, Jing; Zhang, Chengwen; Wang, Jing; Pan, Wenping

    2015-02-01

    Functional recovery after peripheral nerve injury remains a tough problem at present. Specifically, a type of glial cell exists in peripheral nerves that promotes axonal growth and myelin formation and secretes various active substances, such as neurotrophic factors, extracellular matrix and adherence factors. These substances have important significance for the survival, growth and regeneration of nerve fibers. Numerous recent studies have shown that electrical stimulation can increase the number of myelinated nerve fibers. However, whether electrical stimulation acts on neurons or Schwann cells has not been verified in vivo. This study investigates low-frequency electrical stimulation-induced proliferation and differentiation of peripheral blood stem cells into Schwann cells and explores possible mechanisms. Peripheral blood stem cells from Sprague-Dawley rats were primarily cultured. Cells in passage 3 were divided into 4 groups: a low-frequency electrical stimulation group (20 Hz, 100 μs, 3 V), a low-frequency electrical stimulation+PD98059 (blocking the extracellular signal-regulated kinase [ERK] signaling pathway) group, a PD98059 group and a control group (no treatment). After induction, the cells were characterized. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide assay was employed to measure the absorbance values at 570 nm in the 4 groups. A Western blot assay was used to detect the expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) in each group. No significant difference in cell viability was detected before induction. Peripheral blood stem cells from the 4 groups differentiated into Schwann cells. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels were highest in the low-frequency electrical stimulation group and lowest in the ERK blockage group. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels in the low-frequency electrical stimulation+ERK blockage group were lower than those in the low-frequency electrical

  8. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  9. Multiple blocks of intermittent and continuous theta-burst stimulation applied via transcranial magnetic stimulation differently affect sensory responses in rat barrel cortex.

    Science.gov (United States)

    Thimm, Andreas; Funke, Klaus

    2015-02-15

    Theta-burst stimulation (TBS) applied via transcranial magnetic stimulation is able to modulate human cortical excitability. Here we investigated in a rat model how two different forms of TBS, intermittent (iTBS) and continuous (cTBS), affect sensory responses in rat barrel cortex. We found that iTBS but less cTBS promoted late (>18 ms) sensory response components while not affecting the earliest response (8-18 ms). The effect increased with each of the five iTBS blocks applied. cTBS somewhat reduced the early response component after the first block but had a similar effect as iTBS after four to five blocks. We conclude that iTBS primarly modulates the activity of (inhibitory) cortical interneurons while cTBS may first reduce general neuronal excitability with a single block but reverse to iTBS-like effects with application of several blocks. Cortical sensory processing varies with cortical state and the balance of inhibition to excitation. Repetitive transcranial magnetic stimulation (rTMS) has been shown to modulate human cortical excitability. In a rat model, we recently showed that intermittent theta-burst stimulation (iTBS) applied to the corpus callosum, to activate primarily supragranular cortical pyramidal cells but fewer subcortical neurons, strongly reduced the cortical expression of parvalbumin (PV), indicating reduced activity of fast-spiking interneurons. Here, we used the well-studied rodent barrel cortex system to test how iTBS and continuous TBS (cTBS) modulate sensory responses evoked by either single or double stimuli applied to the principal (PW) and/or adjacent whisker (AW) in urethane-anaesthetized rats. Compared to sham stimulation, iTBS but not cTBS particularly enhanced late (>18 ms) response components of multi-unit spiking and local field potential responses in layer 4 but not the very early response (iTBS diminished the suppression of the second response evoked by paired PW or AW-PW stimulation at 20 ms intervals. The effects

  10. Competitive Stem Cell Recruitment by Multiple Cytotactic Cues

    Science.gov (United States)

    Mendelson, Avital; Cheung, Yukkee; Paluch, Kamila; Chen, Mo; Kong, Kimi; Tan, Jiali; Dong, Ziming; Sia, Samuel K.; Mao, Jeremy J.

    2014-01-01

    A multitude of cytotactic cues direct cell migration in development, cancer metastasis and wound healing. However, our understanding of cell motility remains fragmented partially because current migration devices only allow the study of independent factors. We developed a cell motility assay that allows competitive recruitment of a given cell population simultaneously by gradients of multiple cytotactic cues, observable under real-time imaging. Well-defined uniform gradients of cytotactic cues can be independently generated and sustained in each channel. As a case study, bone marrow mesenchymal stem/stromal cells (MSCs) were exposed to 15 cytokines that are commonly present in arthritis. Cytokines that induced robust recruitment of MSCs in multiple groups were selected to ‘compete’ in a final round to yield the most chemotactic factor(s) based on cell migration numbers, distances, migration indices and motility over time. The potency of a given cytokine in competition frequently differed from its individual action, substantiating the need to test multiple cytokines concurrently due to synergistic or antagonistic effects. This new device has the rare capacity to screen molecules that induce cell migration in cancer therapy, drug development and tissue regeneration. PMID:23364311

  11. Adipose-derived Stem Cells Stimulated with n-Butylidenephthalide Exhibit Therapeutic Effects in a Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Chi, Kang; Fu, Ru-Huei; Huang, Yu-Chuen; Chen, Shih-Yin; Hsu, Ching-Ju; Lin, Shinn-Zong; Tu, Chi-Tang; Chang, Li-Hsun; Wu, Ping-An; Liu, Shih-Ping

    2018-03-01

    Parkinson's disease (PD) causes motor dysfunction and dopaminergic cell death. Drug treatments can effectively reduce symptoms but often cause unwanted side effects. Stem cell therapies using cell replacement or indirect beneficial secretomes have recently emerged as potential therapeutic strategies. Although various types of stem cells have been proposed as possible candidates, adipose-derived stem cells (ADSCs) are easily obtainable, more abundant, less ethically disputed, and able to differentiate into multiple cell lineages. However, treatment of PD using adult stem cells is known to be less efficacious than neuron or embryonic stem cell transplantation. Therefore, improved therapies are urgently needed. n-Butylidenephthalide (BP), which is extracted from Angelica sinensis, has been shown to have anti-inflammatory and neuroprotective effects. Indeed, we previously demonstrated that BP treatment of ADSCs enhances the expression of neurogenesis and homing factors such as nuclear receptor related 1 protein, stromal-derived factor 1, and brain-derived neurotrophic factor. In the present study, we examined the ability of BP-pretreated ADSC transplantation to improve PD motor symptoms and protect dopamine neurons in a mouse model of PD. We evaluated the results using neuronal behavior tests such as beam walking, rotarod, and locomotor activity tests. ADSCs with or without BP pretreatment were transplanted into the striatum. Our findings demonstrated that ADSC transplantation improved motor abilities with varied efficacies and that BP stimulation improved the therapeutic effects of transplantation. Dopaminergic cell numbers returned to normal in ADSC-transplanted mice after 22 d. In summary, stimulating ADSCs with BP improved PD recovery efficiency. Thus, our results provide important new strategies to improve stem cell therapies for neurodegenerative diseases in future studies.

  12. Ultraviolet radiation stimulates the release of arachidonic acid from mammalian cells in culture

    International Nuclear Information System (INIS)

    De Leo, V.A.; Hanson, D.; Weinstein, I.B.; Harber, L.C.

    1985-01-01

    C3H 10T1/2 cells in culture were prelabelled with [ 3 H]arachidonic acid and exposed to UVB radiation. Almost immediately after irradiation cells released labelled arachidonate metabolites into media in a dose dependent manner. This release was inhibited by removing calcium ions from the system and by the addition of dexamethasone and parabromophenacyl bromide to the system. This suggests that the UVB stimulated release of arachidonic acid from membrane phospholipids is, in part, mediated by a phospholipase A 2 enzyme system. Thin layer chromatographic examination of media extracts revealed a dose dependent UVB stimulation of prostaglandin production by cultured cells. (author)

  13. Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells.

    Science.gov (United States)

    Maucort, Guillaume; Kasula, Ravikiran; Papadopulos, Andreas; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Meunier, Frederic A

    2014-01-01

    How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.

  14. Activation of PPARd and RXRa stimulates fatty acid oxidatin and insulin secretion inpancreatic beta-cells

    DEFF Research Database (Denmark)

    Børgesen, Michael; Ravnskjær, Kim; Frigerio, Francesca

    as a central effector of unsaturated fatty acids in pancreatic ß-cells. Interestingly, activation of PPARd increases basal as well as glucose-stimulated insulin secretion of INS-1E cells. This increase is further potentiated by RXR agonists. This observation suggests that PPARd may mediate some of the positive......ACTIVATION OF PPARd AND RXRa STIMULATES FATTY ACID OXIDATION AND INSULIN SECRETION IN PANCREATIC b-CELLS Michael Boergesen1, Kim Ravnskjaer2, Francesca Frigerio3, Allan E. Karlsen4, Pierre Maechler3 and Susanne Mandrup1 1 Department of Biochemistry and Molecular Biology, University of Southern...... of genes as PPARd specific agonists and stimulates ß-oxidation. Importantly, oleate-induction of gene expression and ß-oxidation in INS-1E cells is abolished by knock-down of PPARd using adenoviral transfer of shRNA. Thus, PPARd appears to be a central regulator of fatty acid metabolism as well...

  15. In vitro stimulation of rabbit T lymphocytes by cells expressing herpes simplex antigens.

    Science.gov (United States)

    Kapoor, A K; Ling, N R; Nash, A A; Bachan, A; Wildy, P

    1982-04-01

    Lymphocyte stimulation responses to herpes antigens were studied using virus-infected X-irradiated cells. Rabbits were immunized with herpes simplex virus type 1 (strain HFEM) grown in RK 13 cells. For in vitro stimulation assay BHK21 cells were X-irradiated (15 000 rad) and infected with a high m.o.i. of a temperature-sensitive (ts) mutant (N102) of HFEM strain at the non-permissive temperature (38.5 degrees C) of virus. Virus antigens were expressed on the infected cells and there was no leakage of infectious virus into the medium at 38.5 degrees C. T lymphocytes from rabbits immunized with herpes simplex virus were specifically activated by herpesvirus-infected X-irradiated cells; lymph node cells from rabbits immunized with RK13 cells and from non-immune rabbits showed no proliferative response.

  16. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1978-03-01

    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  17. UV-stimulation of DNA-mediated transformation of human cells.

    NARCIS (Netherlands)

    M. van Duin (Mark); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1985-01-01

    textabstractIrradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells (complementation groups A and F), which are

  18. A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes without Growth Factor Stimulation

    Science.gov (United States)

    2011-01-01

    A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes Without Growth Factor Stimulation...Ph.D.3 This work describes the differentiation of adipose-derived mesenchymal stem cells (ASC) in a composite hy- drogel for use as a vascularized...tissue from a single population of ASC. This work underscores the importance of the extracellular matrix in controlling stem cell phenotype. It is our

  19. The role of granulocyte macrophage colony stimulating factor (GM-CSF) in radiation-induced tumor cell migration.

    Science.gov (United States)

    Vilalta, Marta; Brune, Jourdan; Rafat, Marjan; Soto, Luis; Graves, Edward E

    2018-03-13

    Recently it has been observed in preclinical models that that radiation enhances the recruitment of circulating tumor cells to primary tumors, and results in tumor regrowth after treatment. This process may have implications for clinical radiotherapy, which improves control of a number of tumor types but which, despite continued dose escalation and aggressive fractionation, is unable to fully prevent local recurrences. By irradiating a single tumor within an animal bearing multiple lesions, we observed an increase in tumor cell migration to irradiated and unirradiated sites, suggesting a systemic component to this process. Previous work has identified the cytokine GM-CSF, produced by tumor cells following irradiation, as a key effector of this process. We evaluated the ability of systemic injections of a PEGylated form of GM-CSF to stimulate tumor cell migration. While increases in invasion and migration were observed for tumor cells in a transwell assay, we found that daily injections of PEG-GM-CSF to tumor-bearing animals did not increase migration of cells to tumors, despite the anticipated changes in circulating levels of granulocytes and monocytes produced by this treatment. Combination of PEG-GM-CSF treatment with radiation also did not increase tumor cell migration. These findings suggest that clinical use of GM-CSF to treat neutropenia in cancer patients will not have negative effects on the aggressiveness of residual cancer cells. However, further work is needed to characterize the mechanism by which GM-CSF facilitates systemic recruitment of trafficking tumor cells to tumors.

  20. Stimulation of GPR30 increases release of EMMPRIN-containing microvesicles in human uterine epithelial cells.

    Science.gov (United States)

    Burnett, Lindsey A; Light, Mallory M; Mehrotra, Pavni; Nowak, Romana A

    2012-12-01

    Uterine remodeling is highly dependent on the glycosylated transmembrane protein extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN). Previous studies indicate estradiol can increase EMMPRIN expression in uterine cells and promote subsequent induction of MMP production. The aim of this study was to investigate the role of G protein-coupled receptor 30 (GPR30) stimulation on EMMPRIN microvesicle release in the human uterine epithelial cell line hTERT-EEC (EECs). We examined EMMPRIN release by human EECs in response to GPR30 stimulation by microvesicle isolation, Western blot, and immunocytochemistry. We employed a pharmacological approach using the GPR30-selective agonist G1 and the antagonist G15 to determine the receptor specificity of this response. We demonstrated GPR30 expression in EECs and release of EMMPRIN in microvesicles in response to stimulation of GPR30. G1, estradiol, and cholera toxin stimulated EMMPRIN release in microvesicles as detected by Western blot and immunocytochemistry, indicating that stimulation of GPR30 can induce EMMPRIN microvesicle release. These data indicate that EMMPRIN release in microvesicles can be mediated by stimulation of GPR30 in human EECs, suggesting that inappropriate stimulation or expression of this receptor may be significant in uterine pathology.

  1. Effect of gabazine on sensory stimulation train evoked response in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Bing, Yan-Hua; Jin, Wen-Zhe; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-02-01

    Cerebellar Purkinje cells (PCs) respond to sensory stimulation via climbing fiber and mossy fiber-granule cell pathways, and generate motor-related outputs according to internal rules of integration and computation. However, the dynamic properties of sensory information processed by PC in mouse cerebellar cortex are currently unclear. In the present study, we examined the effects of the gamma-aminobutyric acid receptor A (GABA(A)) antagonist, gabazine, on the stimulation train on the simple spike firing of PCs by electrophysiological recordings method. Our data showed that the output of cerebellar PCs could be significantly affected by all pulses of the low-frequency (0.25 -2 Hz) sensory stimulation train, but only by the 1st and 2nd pulses of the high-frequency (≥ 4 Hz) sensory stimulation train. In the presence of gabazine (20 μM), each pulse of 1 Hz facial stimulation evoked simple spike firing in the PCs, but only the 1st and 2nd pulses of 4 Hz stimulation induced an increase in simple spike firing of the PCs. These results indicated that GABAA receptor-mediated inhibition did not significantly affect the frequency properties of sensory stimulation evoked responses in the mouse cerebellar PCs.

  2. Mechanical Stimulation Protocols of Human Derived Cells in Articular Cartilage Tissue Engineering - A Systematic Review.

    Science.gov (United States)

    Khozoee, Baktash; Mafi, Pouya; Mafi, Reza; Khan, Wasim S

    2017-01-01

    Mechanical stimulation is a key factor in articular cartilage generation and maintenance. Bioreactor systems have been designed and built in order to deliver specific types of mechanical stimulation. The focus has been twofold, applying a type of preconditioning in order to stimulate cell differentiation, and to simulate in vivo conditions in order to gain further insight into how cells respond to different stimulatory patterns. Due to the complex forces at work within joints, it is difficult to simulate mechanical conditions using a bioreactor. The aim of this review is to gain a deeper understanding of the complexities of mechanical stimulation protocols by comparing those employed in bioreactors in the context of tissue engineering for articular cartilage, and to consider their effects on cultured cells. Allied and Complementary Medicine 1985 to 2016, Ovid MEDLINE[R] 1946 to 2016, and Embase 1974 to 2016 were searched using key terms. Results were subject to inclusion and exclusion criteria, key findings summarised into a table and subsequently discussed. Based on this review it is overwhelmingly clear that mechanical stimulation leads to increased chondrogenic properties in the context of bioreactor articular cartilage tissue engineering using human cells. However, given the variability and lack of controlled factors between research articles, results are difficult to compare, and a standardised method of evaluating stimulation protocols proved challenging. With improved standardisation in mechanical stimulation protocol reporting, bioreactor design and building processes, along with a better understanding of joint behaviours, we hope to perform a meta-analysis on stimulation protocols and methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Alpha Particles Induce Autophagy in Multiple Myeloma Cells.

    Science.gov (United States)

    Gorin, Jean-Baptiste; Gouard, Sébastien; Ménager, Jérémie; Morgenstern, Alfred; Bruchertseifer, Frank; Faivre-Chauvet, Alain; Guilloux, Yannick; Chérel, Michel; Davodeau, François; Gaschet, Joëlle

    2015-01-01

    Radiation emitted by the radionuclides in radioimmunotherapy (RIT) approaches induce direct killing of the targeted cells as well as indirect killing through the bystander effect. Our research group is dedicated to the development of α-RIT, i.e., RIT using α-particles especially for the treatment of multiple myeloma (MM). γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by (213)Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of (213)Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation. Murine 5T33 and human LP-1 MM cell lines were used to study the effects of such α-particles. We first examined the effects of (213)Bi on proliferation rate, double-strand DNA breaks, cell cycle, and cell death. Then, we investigated autophagy after (213)Bi irradiation. Finally, a coculture of dendritic cells (DCs) with irradiated tumor cells or their culture media was performed to test whether it would induce DC activation. We showed that (213)Bi induces DNA double-strand breaks, cell cycle arrest, and autophagy in both cell lines, but we detected only slight levels of early apoptosis within the 120 h following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented (213)Bi-induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s); however, no increase in membrane or extracellular expression of danger-associated molecular patterns was observed after irradiation. This study demonstrates that (213)Bi induces mainly necrosis in MM cells, low levels of apoptosis, and autophagy that might be involved in tumor cell death.

  4. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration.

    Science.gov (United States)

    Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-12-01

    The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.

  5. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.

    2013-01-01

    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There

  6. Effect of soluble factors derived from oral cancer cells on the production of interferon-γ from peripheral blood mononuclear cells following stimulation with OK-432.

    Science.gov (United States)

    Ohe, Go; Sasai, Akiko; Uchida, Daisuke; Tamatani, Tetsuya; Nagai, Hirokazu; Miyamoto, Youji

    2013-08-01

    The streptococcal antitumor agent OK-432 is commonly used as an immunopotentiator for immunotherapy in various types of malignant tumors including oral cancer. It has been demonstrated that OK-432 elicits an antitumor effect by stimulating immunocompetent cells, thereby inducing multiple cytokines including interferon (IFN)-γ, interleukin (IL)-2 and IL-12. Serum concentrations of IFN-γ in patients with oral cancer were examined 24 h after administration of OK-432. Serum concentrations of IFN-γ in patients with advanced cancer were significantly lower than those in patients with early cancer. These results suggested that some soluble factors produced by cancer cells may inhibit IFN-γ production with OK-432. Thus, in the present study, an in vitro simulation model was established for the immune status of patients with oral cancer by adding conditioned medium (CM) derived from oral cancer cell lines into a culture of peripheral blood mononuclear cells (PBMCs) derived from a healthy volunteer. We investigated whether soluble factors derived from oral cancer cells affected IFN-γ production from PBMCs following stimulation with OK-432. PBMCs stimulated with OK-432 produced a large amount of IFN-γ; however, both IFN-γ production and cytotoxic activity from PBMCs induced by OK-432 were inhibited by the addition of CM in a dose-dependent manner. In order to examine these inhibitory effects against IFN-γ production, the contribution of inhibitory cytokines such as IL-4, IL-6, IL-10, transforming growth factor-β and vascular endothelial growth factor was investigated. However, neutralization of these inhibitory cytokines did not recover IFN-γ production inhibited by CM. These results indicated that unknown molecules may inhibit IFN-γ production from PBMCs following stimulation with OK-432.

  7. MeHG Stimulates Antiapoptotic Signaling in Stem Cells

    Science.gov (United States)

    2011-09-01

    regions but most cause damage by inducing cell death through apoptosis and necrosis. In the developing brain, the dominant type of neuronal cell death...expression of anti-apoptotic Bcl2 family members occurs. The shift is due, in part, to thyroid hormone signaling. Hypothyroid rats display increased...2006) Increased pro-nerve growth factor and p75 neurotrophin receptor levels in developing hypothyroid rat cerebral cortex are associated with

  8. Dynamic properties of sensory stimulation evoked responses in mouse cerebellar granule cell layer and molecular layer.

    Science.gov (United States)

    Bing, Yan-Hua; Zhang, Guang-Jian; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-01-12

    Sensory information coming from climbing fiber and mossy fiber-granule cell pathways, generates motor-related outputs according to internal rules of integration and computation in the cerebellar cortex. However, the dynamic properties of sensory information processing in mouse cerebellar cortex are less understood. Here, we studied the dynamic properties of sensory stimulation-evoked responses in the cerebellar granule cell layer (GCL) and molecular layer (ML) by electrophysiological recordings method. Our data showed that air-puff stimulation (5-10 ms in duration) of the ipsilateral whisker pad evoked single-peak responses in the GCL and ML; whereas a duration of stimulation ≥30 ms in GCL and ≥60 ms in ML, evoked double-peak responses that corresponded with stimulation-on and -off responses via mossy fiber pathway. The highest frequency of stimulation train for evoking GCL responses was 33 Hz. In contrast, the highest frequency of stimulation train for evoking ML responses was 4 Hz. These results indicate that the cerebellar granule cells transfer the high-fidelity sensory information from mossy fibers, which is cut-off by molecular layer interneurons (MLIs). Our results suggest that the MLIs network acts as a low-pass filter during the processing of high-frequency sensory information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Immunobiology of T cell responses to Mls-locus-disparate stimulator cells. III. Helper and cytolytic functions of cloned, Mls-reactive T cell lines

    International Nuclear Information System (INIS)

    Katz, M.E.; Tite, J.P.; Janeway, C.A. Jr.

    1986-01-01

    Mls-specific T cell clones derived by limiting dilution were tested for cytotoxic activity in a lectin-dependent 51 Cr-release assay. All the T cell clones tested were cytotoxic in such an assay in apparent contrast to previous reports (1, 2). However, only those target cells sensitive to cytolysis by other L3T4a + cytolytic T cells (3) were killed by Mls-specific T cell clones in short term 51 Cr-release assays, possibly explaining this discrepancy. All the T cell clones tested were L3T4a + ,Lyt-2 - and stimulated B cells from Mls strains of mice to proliferate and secrete immunoglobulin. Furthermore, lysis of innocent bystander targets was observed when the T cells were stimulated with Mls-disparate stimulator cells. These results are consistent with those obtained with L3T4a - T cells specific for protein antigen:self Ia and that express cytotoxic potential (3)

  10. EMMPRIN is secreted by human uterine epithelial cells in microvesicles and stimulates metalloproteinase production by human uterine fibroblast cells.

    Science.gov (United States)

    Braundmeier, A G; Dayger, C A; Mehrotra, P; Belton, R J; Nowak, R A

    2012-12-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C.

  11. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    DEFF Research Database (Denmark)

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...

  12. Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation.

    Directory of Open Access Journals (Sweden)

    Hosam A Elbaz

    Full Text Available Radiotherapy is the treatment of choice for solid tumors including pancreatic cancer, but the effectiveness of treatment is limited by radiation resistance. Resistance to chemotherapy or radiotherapy is associated with reduced mitochondrial respiration and drugs that stimulate mitochondrial respiration may decrease radiation resistance. The objectives of this study were to evaluate the potential of (--epicatechin to stimulate mitochondrial respiration in cancer cells and to selectively sensitize cancer cells to radiation. We investigated the natural compound (--epicatechin for effects on mitochondrial respiration and radiation resistance of pancreatic and glioblastoma cancer cells using a Clark type oxygen electrode, clonogenic survival assays, and Western blot analyses. (--Epicatechin stimulated mitochondrial respiration and oxygen consumption in Panc-1 cells. Human normal fibroblasts were not affected. (--Epicatechin sensitized Panc-1, U87, and MIA PaCa-2 cells with an average radiation enhancement factor (REF of 1.7, 1.5, and 1.2, respectively. (--Epicatechin did not sensitize normal fibroblast cells to ionizing radiation with a REF of 0.9, suggesting cancer cell selectivity. (--Epicatechin enhanced Chk2 phosphorylation and p21 induction when combined with radiation in cancer, but not normal, cells. Taken together, (--epicatechin radiosensitized cancer cells, but not normal cells, and may be a promising candidate for pancreatic cancer treatment when combined with radiation.

  13. Stimulation with Concanavalin-A Induces IL-17 Production by Canine Peripheral T Cells

    Directory of Open Access Journals (Sweden)

    Michelle G. Ritt

    2015-04-01

    Full Text Available The characteristics of canine IL-17-producing cells are incompletely understood. Expression of mRNA encoding orthologs of IL-17 and the IL-17 receptor has been documented in tissues from dogs with arthritis, inflammatory bowel disease, and lymphoma; however, no associations have been found between IL-17 gene expression and disease phenotype in these conditions. Robust assessment of the role of IL-17-producing cells in dogs will require measuring the frequency of these cells in health and disease in balance with other lymphocyte subsets. The aim of this study was to confirm that the T-cell IL-17 response in dogs is evolutionarily conserved. Canine peripheral blood mononuclear cells were stimulated with Concanavalin A with or without polarizing cytokines. We used a canine specific IL-17 ELISA and flow cytometry to identify IL-17-producing T cells. Accumulation of intracellular IL-17 was observed in stimulated CD4 and CD8 T cells. The addition of pro-inflammatory cytokines appeared to enhance polarization of canine CD4 T cells to the Th17 phenotype. Conversely, the addition of IL-2 in the presence of TGF-β resulted in expansion of Treg cells. We conclude that canine IL-17-producing cells behave similarly to those from humans and mice when stimulated with mitogens and polarized with pro-inflammatory or immune regulatory cytokines.

  14. Neuropeptide substance P stimulates the formation of osteoclasts via synovial fibroblastic cells

    International Nuclear Information System (INIS)

    Matayoshi, Takaaki; Goto, Tetsuya; Fukuhara, Eiji; Takano, Hiroshi; Kobayashi, Shigeru; Takahashi, Tetsu

    2005-01-01

    The present study was designed to evaluate the effects of neuropeptide substance P (Sp) on the formation of osteoclasts via synovial fibroblastic cells. Synovial fibroblastic cells derived from rat knee joint expressed the Sp receptor, neurokinin-1 receptor (NK 1 -R). The addition of Sp stimulated the proliferation of synovial fibroblastic cells and this effect was inhibited by Sp or NK 1 -R antagonists. Increased expression of the receptor activator of nuclear factor κB ligand (Rankle) in synovial fibroblastic cells after the addition of Sp was demonstrated by reverse transcriptase-polymerase chain reaction and immunofluorescence staining. Osteoprotegerin expression in synovial fibroblastic cells was decreased after incubation with SP. In co-cultures of synovial fibroblastic cells and rat peripheral blood monocytes, SP stimulated osteoclastogenesis. These results suggest that SP in the joint cavity may cause both hypertrophy of the synovium and induction of increased osteoclast formation through the increased expression of RANKL in the synovium

  15. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    2010-02-01

    Full Text Available The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools.Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes.We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  16. Studies on laser beam propagation and stimulated scattering in multiple beam experiments

    International Nuclear Information System (INIS)

    Labaune, C.; Lewis, K.; Bandulet, H.; Lewis, K.; Depierreux, S.; Huller, S.; Masson-Laborde, P.E.; Pesme, D.; Riazuelo, G.

    2006-01-01

    The propagation and stimulated scattering of intense laser beams interacting with underdense plasmas are two important issues for inertial confinement fusion (ICF). The purpose of this work was to perform experiments under well-controlled interaction conditions and confront them with numerical simulations to test the physics included in the codes. Experimental diagnostics include time and space resolved images of incident and SBS light and of SBS-ion acoustic activity. New numerical diagnostics, including similar constraints as the experimental ones and the treatment of the propagation of the light between the emitting area and the detectors, have been developed. Particular care was put to include realistic plasma density and velocity profiles, as well as laser pulse shape in the simulations. In the experiments presented in this paper, the interaction beam was used with a random phase plate (RPP) to produce a statistical distribution of speckles in the focal volume. Stimulated Brillouin Scattering (SBS) was described using a decomposition of the spatial scales which provides a predictive modeling of SBS in an expanding mm-scale plasma. Spatial and temporal behavior of the SBS-ion acoustic waves was found to be in good agreement with the experimental ones for two laser intensities. (authors)

  17. Viability in holder of irradiated cells: distinguish between repair and cell multiplication

    International Nuclear Information System (INIS)

    Araujo, A.C. de.

    1980-01-01

    In experiments in which liquid holding recovery (LHR) was measured, the majority of cellular population is formed by non-viable cells and cell multiplication may be important for LHR expression. In order to distinguish between recuperation of viability (true LHR) and cell multiplication, it was necessary to employ improved plating techniques and a fluctuation test based on Poisson distribution. Our results are an indication that this fluctuation test, used together with the traditional method, is a good tool to distinguish repair from cell multiplication. (author)

  18. Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions.

    Directory of Open Access Journals (Sweden)

    Bodi Zhang

    Full Text Available Mast cells are hematopoietically-derived tissue immune cells that participate in acquired and innate immunity, as well as in inflammation through release of many chemokines and cytokines, especially in response to the pro-inflammatory peptide substance P (SP. Inflammation is critical in the pathogenesis of many diseases, but the trigger(s is often unknown. We investigated if mast cell stimulation leads to secretion of mitochondrial components and whether these could elicit autocrine and/or paracrine inflammatory effects. Here we show that human LAD2 mast cells stimulated by IgE/anti-IgE or by the SP led to secretion of mitochondrial particles, mitochondrial (mt mtDNA and ATP without cell death. Mitochondria purified from LAD2 cells and, when mitochondria added to mast cells trigger degranulation and release of histamine, PGD(2, IL-8, TNF, and IL-1β. This stimulatory effect is partially inhibited by an ATP receptor antagonist and by DNAse. These results suggest that the mitochondrial protein fraction may also contribute. Purified mitochondria also stimulate IL-8 and vascular endothelial growth factor (VEGF release from cultured human keratinocytes, and VEGF release from primary human microvascular endothelial cells. In order to investigate if mitochondrial components could be secreted in vivo, we injected rats intraperiotoneally (ip with compound 48/80, which mimicks the action of SP. Peritoneal mast cells degranulated and mitochondrial particles were documented by transimission electron microscopy outside the cells. We also wished to investigate if mitochondrial components secreted locally could reach the systemic circulation. Administration ip of mtDNA isolated from LAD2 cells in rats was detected in their serum within 4 hr, indicating that extravascular mtDNA could enter the systemic circulation. Secretion of mitochondrial components from stimulated live mast cells may act as "autopathogens" contributing to the pathogenesis of inflammatory

  19. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  20. Influence of in vitro irradiation upon LIF production by ConA stimulated mononuclear cells

    International Nuclear Information System (INIS)

    Sandru, G.; Veraguth, P.

    1981-01-01

    Leukocyte migration inhibitory factor (LIF) activity of culture supernatants of in vitro irradiated Concanavalin A (ConA) stimulated lymphocytes was tested by measuring granulocyte migration from clotted plasma droplets placed in flat bottom microplates. The specificity of inhibition was assured by pretreating the assay supernatants with anti-LIF antibodies which abrogated granulocyte migration inhibition but did not impair guinea pig Peritoneal Exudate Cells (PEC) migration inhibition. In vitro irradiation (150-1200 rads) of MNC cultures either before or after ConA stimulation did not impair lymphokine production and sometimes significantly improved the supernatants' LIF activity as compared with that of unirradiated cultures. The existence of radiosensitive suppressor cells regulating LIF production by ConA stimulated mononuclear cells is suggested

  1. Neuromelanin is an immune stimulator for dendritic cells in vitro

    Directory of Open Access Journals (Sweden)

    Oberländer Uwe

    2011-11-01

    Full Text Available Abstract Background Parkinson's disease (PD is characterized at the cellular level by a destruction of neuromelanin (NM-containing dopaminergic cells and a profound reduction in striatal dopamine. It has been shown recently that anti-melanin antibodies are increased in sera of Parkinson patients, suggesting that NM may act as an autoantigen. In this study we tested whether NM is being recognized by dendritic cells (DCs, the major cell type for inducing T- and B-cell responses in vivo. This recognition of NM by DCs is a prerequisite to trigger an adaptive autoimmune response directed against NM-associated structures. Results Murine DCs were treated with NM of substantia nigra (SN from human subjects or with synthetic dopamine melanin (DAM. DCs effectively phagocytized NM and subsequently developed a mature phenotype (CD86high/MHCIIhigh. NM-activated DCs secreted the proinflammatory cytokines IL-6 and TNF-α. In addition, they potently triggered T cell proliferation in a mixed lymphocyte reaction, showing that DC activation was functional to induce a primary T cell response. In contrast, DAM, which lacks the protein and lipid components of NM but mimics the dopamine-melanin backbone of NM, had only very little effect on DC phenotype and function. Conclusions NM is recognized by DCs in vitro and triggers their maturation. If operative in vivo, this would allow the DC-mediated transport and presentation of SN antigens to the adaptive immune system, leading to autoimmmunity in susceptible individuals. Our data provide a rationale for an autoimmune-based pathomechanism of PD with NM as the initial trigger.

  2. Automated platform for designing multiple robot work cells

    Science.gov (United States)

    Osman, N. S.; Rahman, M. A. A.; Rahman, A. A. Abdul; Kamsani, S. H.; Bali Mohamad, B. M.; Mohamad, E.; Zaini, Z. A.; Rahman, M. F. Ab; Mohamad Hatta, M. N. H.

    2017-06-01

    Designing the multiple robot work cells is very knowledge-intensive, intricate, and time-consuming process. This paper elaborates the development process of a computer-aided design program for generating the multiple robot work cells which offer a user-friendly interface. The primary purpose of this work is to provide a fast and easy platform for less cost and human involvement with minimum trial and errors adjustments. The automated platform is constructed based on the variant-shaped configuration concept with its mathematical model. A robot work cell layout, system components, and construction procedure of the automated platform are discussed in this paper where integration of these items will be able to automatically provide the optimum robot work cell design according to the information set by the user. This system is implemented on top of CATIA V5 software and utilises its Part Design, Assembly Design, and Macro tool. The current outcomes of this work provide a basis for future investigation in developing a flexible configuration system for the multiple robot work cells.

  3. Hypergravity As a Tool for Cell Stimulation: Implications in Biomedicine

    International Nuclear Information System (INIS)

    Genchi, Giada G.; Rocca, Antonella; Marino, Attilio; Grillone, Agostina; Mattoli, Virgilio; Ciofani, Gianni

    2016-01-01

    Gravity deeply influences numerous biological events in living organisms. Variations in gravity values induce adaptive reactions that have been shown to play important roles, for instance in cell survival, growth, and spatial organization. In this paper, we summarize effects of gravity values higher than that one experienced by cells and tissues on Earth, i.e., hypergravity, with particular attention to the nervous and the musculoskeletal systems. Besides the biological consequences that hypergravity induces in the living matter, we will discuss the possibility of exploiting this augmented force in tissue engineering and regenerative medicine, and thus hypergravity significance as a new therapeutic approach both in vitro and in vivo.

  4. Hypergravity As a Tool for Cell Stimulation: Implications in Biomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Genchi, Giada G. [Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pisa (Italy); Rocca, Antonella; Marino, Attilio; Grillone, Agostina [Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pisa (Italy); BioRobotics Institute, Scuola Superiore Sant' Anna, Pisa (Italy); Mattoli, Virgilio [Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pisa (Italy); Ciofani, Gianni, E-mail: giada.genchi@iit.it [Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pisa (Italy); Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino (Italy)

    2016-08-19

    Gravity deeply influences numerous biological events in living organisms. Variations in gravity values induce adaptive reactions that have been shown to play important roles, for instance in cell survival, growth, and spatial organization. In this paper, we summarize effects of gravity values higher than that one experienced by cells and tissues on Earth, i.e., hypergravity, with particular attention to the nervous and the musculoskeletal systems. Besides the biological consequences that hypergravity induces in the living matter, we will discuss the possibility of exploiting this augmented force in tissue engineering and regenerative medicine, and thus hypergravity significance as a new therapeutic approach both in vitro and in vivo.

  5. Multiple jaw cysts not associated with basal cell nevus syndrome

    International Nuclear Information System (INIS)

    Yoon, Suk Ja; Kang, Byung Cheol

    2003-01-01

    We present two cases of multiple jaw cysts not associated with basal cell nevus syndrome. Case 1 : a nine year-old boy visited CNU Hospital for orthodontic treatment and his radiographs showed cystic lesions surrounding the crowns of teeth 13 and 17 respectively, which were diagnosed as dentigerous cysts. Subsequently, two more cysts were found on his follow-up radiographs in 12 and 15 months. The two cysts were determined to be odontogenic keratocysts. The boy had no skeletal abnormalities and no skin lesions associated with basal cell nevus syndrome. Case 2: a fifty-eight year old man had three impacted third molars with pericoronal radiolucencies, which were diagnosed as dentigerous cysts. He had no additional abnormalities associated with basal cell nevus syndrome. Multiple jaw cysts can occur at any age, and periodic radiographic surveillance may be needed for any cases of impacted tooth.

  6. New type of cells with multiple chromosome rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Aseeva, Elena A. [National Research Centre for Hematology, Russian Academy of Medical Sciences, Novozykovsky proezd 4a, 125167 Moscow (Russian Federation); Snigiryova, Galina P. [Russian Scientific Centre of Roentgenology and Radiology, ul. Profsoyuznaya 86, 117997 Moscow (Russian Federation); Neverova, Anna L. [National Research Centre for Hematology, Russian Academy of Medical Sciences, Novozykovsky proezd 4a, 125167 Moscow (Russian Federation); Bogomazova, Alexandra N.; Novitskaya, Natalia N.; Khazins, Eva D. [Russian Scientific Centre of Roentgenology and Radiology, ul. Profsoyuznaya 86, 117997 Moscow (Russian Federation); Domracheva, Elena V. [National Research Centre for Hematology, Russian Academy of Medical Sciences, Novozykovsky proezd 4a, 125167 Moscow (Russian Federation)], E-mail: dom@blood.ru

    2010-04-15

    A comparative analysis of the distribution and the frequency of multiaberrant cells (MAC) among lymphocytes in different categories of low dose (up to 0.5 Gy) irradiated people was carried out. The highest MAC frequency was observed in people exposed to {alpha}-radiation (Pu, Rn) and in cosmonauts. This fact allows MAC to be considered as an indicator of a high-energy local exposure. A new type of cells with multiple chromosome rearrangements was discovered in the course of analysis of stable aberrations by the fluorescence in situ hybridization (FISH) method. The biological consequences of MAC formation and possibility of revealing the whole diversity of cells with multiple aberrations by means of modern molecular-cytogenetic methods are discussed.

  7. New type of cells with multiple chromosome rearrangements

    International Nuclear Information System (INIS)

    Aseeva, E.A.; Domracheva, E.V.; Neverova, A.L; Bogomazova, A.N.; Snigiryova, G.P.; Novitskaya, N.N.; Khazins, E.D.

    2008-01-01

    Full text: A comparative analysis of the distribution and the frequency of multiaberrant cells (MAC) among lymphocytes in different categories of low dose (up to 0.5 Gy) irradiated people was carried out. MAC were found in most of the examined groups and they were absent in the control population. A highest MAC frequency was observed in people exposed to alpha radiation (Pu, Ra). This fact allows MAC to be considered as an indicator of a high-energy local exposure. A new type of cells with multiple chromosome rearrangements was discovered in the course of analysis of stable aberrations by the FISH method. The biological consequences of MAC formation and possibility of revealing the whole diversity of cells with multiple aberrations by means of modern molecular-cytogenetic methods is discussed

  8. Multiple jaw cysts not associated with basal cell nevus syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Ja; Kang, Byung Cheol [Chonnam National University College of Medicine, Kwangju (Korea, Republic of)

    2003-09-15

    We present two cases of multiple jaw cysts not associated with basal cell nevus syndrome. Case 1 : a nine year-old boy visited CNU Hospital for orthodontic treatment and his radiographs showed cystic lesions surrounding the crowns of teeth 13 and 17 respectively, which were diagnosed as dentigerous cysts. Subsequently, two more cysts were found on his follow-up radiographs in 12 and 15 months. The two cysts were determined to be odontogenic keratocysts. The boy had no skeletal abnormalities and no skin lesions associated with basal cell nevus syndrome. Case 2: a fifty-eight year old man had three impacted third molars with pericoronal radiolucencies, which were diagnosed as dentigerous cysts. He had no additional abnormalities associated with basal cell nevus syndrome. Multiple jaw cysts can occur at any age, and periodic radiographic surveillance may be needed for any cases of impacted tooth.

  9. Progesterone-specific stimulation of triglyceride biosynthesis in a breast cancer cell line (T-47D)

    International Nuclear Information System (INIS)

    Judge, S.M.; Chatterton, R.T. Jr.

    1983-01-01

    The purpose of this study was to examine the lactogenic response of human mammary cancer cell lines to hormones in vitro. Progesterone was found to stimulate the incorporation of 14C from [14C]acetate into triglycerides (TG) and to promote accumulation of TG with a fatty acid composition similar to that of human milk fat in T-47D cells. Lipid droplets were observed in larger numbers without concomitant accumulation of casein granules in cells incubated with progesterone, but secretion of lipid into the medium did not occur. An effect of progesterone on TG accumulation was detectable after 12 hr and was maximal at 72 hr. Increasing doses of progesterone (10(-9) to 10(-5) M) caused a progressive increase in TG accumulation. The presence of cortisol and/or prolactin did not alter TG formation nor the dose response of the cells to progesterone. The growth rate of T-47D cells was not altered by the presence of progesterone in the medium. Neither of the human mammary cancer cell lines, MCF-7 and HBL-100, nor the human fibroblast cell lines, 28 and 857, responded to progesterone. The data indicate that, while the normally lactogenic hormones do not stimulate milk product biosynthesis in the cell lines tested, progesterone specifically stimulated synthesis and accumulation of TG in the T-47D cells

  10. Multiple sessions of low-frequency repetitive transcranial magnetic stimulation in focal hand dystonia

    DEFF Research Database (Denmark)

    Kimberley, Teresa Jacobson; Borich, Michael R; Arora, Sanjeev

    2013-01-01

    , respectively. Behavioral measures included pen force and velocity during handwriting and subjective report. Results: Multiple-session rTMS strengthened intracortical inhibition causing a prolongation of CSP after 3 days of intervention and pen force was reduced at day 1 and 5, leaving other measures unchanged...

  11. T Cell Subset and Stimulation Strength-Dependent Modulation of T Cell Activation by Kv1.3 Blockers.

    Directory of Open Access Journals (Sweden)

    Wai-Ping Fung-Leung

    Full Text Available Kv1.3 is a voltage-gated potassium channel expressed on T cells that plays an important role in T cell activation. Previous studies have shown that blocking Kv1.3 channels in human T cells during activation results in reduced calcium entry, cytokine production, and proliferation. The aim of the present study was to further explore the effects of Kv1.3 blockers on the response of different human T cell subsets under various stimulation conditions. Our studies show that, unlike the immune suppressor cyclosporine A, the inhibitory effect of Kv1.3 blockers was partial and stimulation strength dependent, with reduced inhibitory efficacy on T cells under strengthened anti-CD3/CD28 stimulations. T cell responses to allergens including house dust mites and ragweed were partially reduced by Kv1.3 blockers. The effect of Kv1.3 inhibition was dependent on T cell subsets, with stronger effects on CCR7- effector memory compared to CCR7+ central memory CD4 T cells. Calcium entry studies also revealed a population of CD4 T cells resistant to Kv1.3 blockade. Activation of CD4 T cells was accompanied with an increase in Kv1.3 currents but Kv1.3 transcripts were found to be reduced, suggesting a posttranscriptional mechanism in the regulation of Kv1.3 activities. In summary, Kv1.3 blockers inhibit T cell activation in a manner that is highly dependent on the T cell identity and stimulation strength, These findings suggest that Kv1.3 blockers inhibit T cells in a unique, conditional manner, further refining our understanding of the therapeutic potential of Kv1.3 blockers.

  12. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α-Galactosylceramide-Stimulated Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    2013-01-01

    Full Text Available Natural killer dendritic cells (NKDCs possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT cells is required for the anti-tumor immune responses that are elicited by α-galactosylceramide (α-GC in mice. The rapid and strong expression of interferon-γ by NKDCs after α-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α-GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  13. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  14. Mitogen-stimulated phospholipid synthesis in normal and immune-deficient human B cells

    International Nuclear Information System (INIS)

    Chien, M.M.; Yokoyama, W.M.; Ashman, R.F.

    1986-01-01

    Eight patients with common variable panhypogammaglobulinemia were shown in the in vitro Ig biosynthesis assay to have defective B cell responses to pokeweed mitogen (PWM). Phospholipid synthesis was assessed in the B cell plus monocyte fraction (MB) and irradiated T cells (T*) of patients and paired normal controls. Cell populations were studied separately and in the four possible combinations (1:1), with and without PWM, to reveal the effect of cell interactions. At 16 to 20 hr the mean stimulation index (SI) +/- standard error for MB cells alone was 1.01 +/- 0.02 for eight patients and 0.99 +/- 0.02 for the paired normals; the T* cell SI was 1.25 +/- 0.04 for patients and 1.28 +/- 0.05 for normals. Combinations of normal MB cells with normal T* cells showed significantly higher SI when compared with the combinations of normal MB cells with patient T* cells (p less than 0.005). However, the combination of patient MB cells with patient T* cells and the combination of patient MB cells with normal T* cells were not significantly different in SI (0.05 less than p less than 0.1). Isolation of patient and normal B cells, T* cells, and monocytes after the choline pulse showed that patient B cells gave a higher SI with normal T* help than with patient T* help. Of greatest interest is the finding that patient B cells that were defective in PWM-stimulated Ig production nevertheless showed a phospholipid synthesis response to PWM in the normal range, suggesting that the maturation defect in these B cells occurs later than the phospholipid synthesis acceleration step, or on a different pathway

  15. Lyn kinase is activated following thrombopoietin stimulation of the megakaryocytic cell line B1647

    DEFF Research Database (Denmark)

    Santini, Valeria; Scappini, Barbara; Gozzini, Antonella

    2002-01-01

    BACKGROUND AND OBJECTIVES: B1647 is a cell line derived from bone marrow cells of a patient with acute myeloid leukemia (M2) with a complete erythro-megakaryocytic phenotype and bears both k and p isoforms of c-mpl. Interestingly, spontaneous B1647 cell proliferation is significantly potentiated...... by thrombopoietin (TPO). DESIGN AND METHODS: We aimed to evaluate the proliferative signal transduction events following the activation of c-mpl and we stimulated B1647 cells with TPO 40 ng/mL for 3, 7, 15 and 30 minutes; cells were then lysed and whole lysates were immunoprecipitated with anti...

  16. Regulation of intracellular calcium in resting and stimulated rat basophilic leukemia cells

    International Nuclear Information System (INIS)

    Mohr, F.C.

    1988-01-01

    Intracellular calcium regulation was studied in a cell line of mast cells, the rat basophilic leukemia (RBL) cells with the purpose of determining (1) The properties of the plasma membrane calcium permeability pathway and (2) The role of intracellular calcium stores. The first set of experiments showed that depolarization did not induce calcium entry or secretion in resting cells and did inhibit antigen-stimulated calcium uptake and secretion. In the second set of experiments the ionic basis of antigen-induced depolarization was studied using the fluorescent potential-sensitive probe bis-oxonol. The properties of the calcium entry pathway were more consistent with a calcium channel than a calcium transport mechanism such as Na:Ca exchange. The third set of experiments examined the effects of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) on RBL cells. CCCP inhibited antigen-stimulated 45 Ca uptake and secretion by depolarizing the plasma membrane

  17. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    International Nuclear Information System (INIS)

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-01-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release

  18. Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition

    International Nuclear Information System (INIS)

    Toulany, Mahmoud; Mihatsch, Julia; Holler, Marina; Chaachouay, Hassan; Rodemann, H. Peter

    2014-01-01

    Background and purpose: Cisplatin activates ataxia-telangiectasia-mutated (ATM), a protein with roles in DNA repair, cell cycle progression and autophagy. We investigated the radiosensitizing effect of cisplatin with respect to its effect on ATM pathway activation. Material and methods: Non-small cell lung cancer cells (NSCLC) cell lines (A549, H460) and human fibroblast (ATM-deficient AT5, ATM-proficient 1BR3) cells were used. The effects of cisplatin combined with irradiation on ATM pathway activity, clonogenicity, DNA double-strand break (DNA-DSB) repair and cell cycle progression were analyzed with Western blotting, colony formation and γ-H2AX foci assays as well as FACS analysis, respectively. Results: Cisplatin radiosensitized H460 cells, but not A549 cells. Radiosensitization of H460 cells was not due to impaired DNA-DSB repair, increased apoptosis or cell cycle dysregulation. The lack of radiosensitization demonstrated for A549 cells was associated with cisplatin-mediated stimulation of ATM (S1981) and AMPKα (T172) phosphorylation and autophagy. However, in both cell lines inhibition of ATM and autophagy by KU-55933 and chloroquine diphosphate (CQ) respectively resulted in a significant radiosensitization. Combined treatment with the AMPK inhibitor compound-C led to radiosensitization of A549 but not of H460 cells. As compared to the treatment with KU-55933 alone, radiosensitivity of A549 cells was markedly stimulated by the combination of KU-55933 and cisplatin. However, the combination of CQ and cisplatin did not modulate the pattern of radiation sensitivity of A549 or H460 cells. In accordance with the results that cisplatin via stimulation of ATM activity can abrogate its radiosensitizing effect, ATM deficient cells were significantly sensitized to ionizing radiation by cisplatin. Conclusion: The results obtained indicate that ATM targeting can potentiate cisplatin-induced radiosensitization

  19. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Doupnik, C.A.; Leikauf, G.D.

    1990-01-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  20. Th17-cells in atopic dermatitis stimulate orthodontic root resorption.

    Science.gov (United States)

    Yamada, K; Yamaguchi, M; Asano, M; Fujita, S; Kobayashi, R; Kasai, K

    2013-10-01

    The aim of this study was to investigate how atopic dermatitis (AD) contributes to root resorption during orthodontic tooth movement. Atopic dermatitis model mice and wild-type mice were subjected to an excessive orthodontic force (OF) to induce movement of the upper first molars. The expression levels of the tartrate-resistant acid phosphatase (TRAP), IL-17, IL-6, and RANKL proteins were determined in the periodontal ligament (PDL) by an immunohistochemical analysis. Furthermore, the effects of the compression force on co-cultures of CD4(+) cells from AD patients or healthy individuals and human PDL cells were investigated with regard to the levels of secretion and mRNA expression of IL-17, IL-6, RANKL, and osteoprotegerin. The immunoreactivities for TRAP, IL-17, IL-6, and RANKL in the AD group were found to be significantly increased. The double immunofluorescence analysis for IL-17/CD4 detected immunoreaction. The secretion of IL-17, IL-6, and RANKL, and the mRNA levels of IL-6 and RANKL in the AD patients were increased compared with those in healthy individuals. Th17 cells may therefore be associated with the deterioration of root resorption of AD mice, and may explain why AD patients are more susceptible to root resorption than healthy individuals when an excessive OF is applied. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  2. TNF-α promotes cell survival through stimulation of K+ channel and NFκB activity in corneal epithelial cells

    International Nuclear Information System (INIS)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-01-01

    Tumor necrosis factor (TNF-α) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-α also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-α stimulation induced activation of a voltage-gated K + channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-α on downstream events included NFκB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-α induced increases in p21 expression resulting in partial cell cycle attenuation in the G 1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-α-induced K + channel activity effectively prevented NFκB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-α. In conclusion, TNF-α promotes survival of HCE cells through sequential stimulation of K + channel and NFκB activities. This response to TNF-α is dependent on stimulating K + channel activity because following suppression of K + channel activity TNF-α failed to activate NFκB nuclear translocation and binding to nuclear DNA

  3. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    International Nuclear Information System (INIS)

    Reinis, S.; Landolt, J.P.; Weiss, D.S.; Money, K.E.

    1984-01-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed

  4. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    Energy Technology Data Exchange (ETDEWEB)

    Reinis, S.; Landolt, J.P.; Weiss, D.S.; Money, K.E.

    1984-03-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed.

  5. Cell Morphological Change and Caspase-3 Protein Expression on Epithelial Cells under Stimulation of Oral Bacterium Streptococcus sanguinis

    Directory of Open Access Journals (Sweden)

    Suryani Hutomo

    2015-07-01

    Full Text Available Oral commensal bacterium Streptococcus sanguinis may find in periodontal lesions, deep seated infection, and infective endocarditis that are usually dominated by anaerobes. This bacterium caused cell death on some cells but host responses to this species remained unclear. Objective: This study was aimed to detect cell morphologica change and role of caspase-3 in cell death mechanism induced by S. sanguinis. Methods: HeLa cells as representative model for oral epithelial cells were exposed to 107 cells/ml bacteria for 48 h. Morphological change was observed microscopically after hematoxyline-eosin staining. Expression of active caspase-3 was examined by immunocytochemical analysis after cell stimulation for 36 and 48 h with wild type supragingival S. sanguinis. Doxorubicin (0.5625 μg/ml was used as positive control for caspase-3 activation. Results: The results showed cell shrinkage of bacterial-treated cells; and active caspase-3 molecules were detected after 36 and 48 hours cell stimulation. Conclusion: This study would suggest cell shrinkage and caspase-3-dependent apoptotic cell death induced by S. sanguinis.DOI: 10.14693/jdi.v22i1.375

  6. Added value of multiple versus single sessions of repetitive transcranial magnetic stimulation in predicting motor cortex stimulation efficacy for refractory neuropathic pain.

    Science.gov (United States)

    Pommier, Benjamin; Quesada, Charles; Fauchon, Camille; Nuti, Christophe; Vassal, François; Peyron, Roland

    2018-05-18

    OBJECTIVE Selection criteria for offering patients motor cortex stimulation (MCS) for refractory neuropathic pain are a critical topic of research. A single session of repetitive transcranial magnetic stimulation (rTMS) has been advocated for selecting MCS candidates, but it has a low negative predictive value. Here the authors investigated whether multiple rTMS sessions would more accurately predict MCS efficacy. METHODS Patients included in this longitudinal study could access MCS after at least four rTMS sessions performed 3-4 weeks apart. The positive (PPV) and negative (NPV) predictive values of the four rTMS sessions and the correlation between the analgesic effects of the two treatments were assessed. RESULTS Twelve MCS patients underwent an average of 15.9 rTMS sessions prior to surgery; nine of the patients were rTMS responders. Postoperative follow-up was 57.8 ± 15.6 months (mean ± standard deviation). Mean percentage of pain relief (%R) was 21% and 40% after the first and fourth rTMS sessions, respectively. The corresponding mean durations of pain relief were respectively 2.4 and 12.9 days. A cumulative effect of the rTMS sessions was observed on both %R and duration of pain relief (p < 0.01). The %R value obtained with MCS was 35% after 6 months and 43% at the last follow-up. Both the PPV and NPV of rTMS were 100% after the fourth rTMS session (p = 0.0045). A significant correlation was found between %R or duration of pain relief after the fourth rTMS session and %R at the last MCS follow-up (R 2 = 0.83, p = 0.0003). CONCLUSIONS Four rTMS sessions predicted MCS efficacy better than a single session in neuropathic pain patients. Taking into account the cumulative effects of rTMS, the authors found a high-level correlation between the analgesic effects of rTMS and MCS.

  7. Bronchoalveolar lavage fluid from normal rats stimulates DNA synthesis in rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Mason, R.J.

    1989-01-01

    Proliferation of alveolar type II cells after lung injury is important for the restoration of the alveolar epithelium. Bronchoalveolar lavage fluid (BALF) may represent an important source of growth factors for alveolar type II cells. To test this possibility, BALF fluid was collected from normal rats, concentrated 10-fold by Amicon filtration, and tested for its ability to stimulate DNA synthesis in rat alveolar type II cells in primary culture. BALF induced a dose-dependent increase in type II cell DNA synthesis resulting in a 6-fold increase in [3H]thymidine incorporation. Similar doses also stimulated [3H]thymidine incorporation into rat lung fibroblasts by 6- to 8-fold. Removal of pulmonary surface active material by centrifugation did not significantly reduce the stimulatory activity of BALF for type II cells. The stimulation of type II cell DNA synthesis by BALF was reduced by 100% after heating at 100 degrees C for 10 min, and by approximately 80% after reduction with dithiothreitol, and after trypsin treatment. Dialysis of BALF against 1 N acetic acid resulted in a 27% reduction in stimulatory activity. The effect of BALF in promoting type II cell DNA synthesis was more pronounced when tested in the presence of serum, although serum itself has very little effect on type II cell DNA synthesis. When BALF was tested in combination with other substances that stimulate type II cell DNA synthesis (cholera toxin, insulin, epidermal growth factor, and acidic fibroblast growth factor), additive effects or greater were observed. When BALF was chromatographed over Sephadex G150, the activity eluted with an apparent molecular weight of 100 kDa

  8. TIMP-1 stimulates proliferation of human aortic smooth muscle cells and Ras effector pathways

    International Nuclear Information System (INIS)

    Akahane, Takemi; Akahane, Manabu; Shah, Amy; Thorgeirsson, Unnur P.

    2004-01-01

    Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional protein, which is found in most tissues and body fluids. Here, we demonstrated that recombinant TIMP-1 but not the synthetic matrix metalloproteinase inhibitor, GM6001, stimulated proliferation of human aortic smooth muscle cells (AoSMC) in a dose-dependent manner. The mitogenic effect was associated with activation of Ras, increased phosphorylation of ERK, and stimulation of cyclin D1 expression. The phosphatidylinositol 3-kinase (PI3K) signaling pathway was also involved since the PI3K inhibitor, LY294002, abolished the TIMP-1-mediated growth stimulation. These data suggest that TIMP-1 activates Ras, which then turns on the ERK and PI3K signaling pathways to promote cell cycle progression of the AoSMC

  9. Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells

    International Nuclear Information System (INIS)

    Janigro, Damir; Perju, Catalin; Fazio, Vincent; Hallene, Kerri; Dini, Gabriele; Agarwal, Mukesh K; Cucullo, Luca

    2006-01-01

    Tumor burden can be pharmacologically controlled by inhibiting cell division and by direct, specific toxicity to the cancerous tissue. Unfortunately, tumors often develop intrinsic pharmacoresistance mediated by specialized drug extrusion mechanisms such as P-glycoprotein. As a consequence, malignant cells may become insensitive to various anti-cancer drugs. Recent studies have shown that low intensity very low frequency electrical stimulation by alternating current (AC) reduces the proliferation of different tumor cell lines by a mechanism affecting potassium channels while at intermediate frequencies interfere with cytoskeletal mechanisms of cell division. The aim of the present study is to test the hypothesis that permeability of several MDR1 over-expressing tumor cell lines to the chemotherapic agent doxorubicin is enhanced by low frequency, low intensity AC stimulation. We grew human and rodent cells (C6, HT-1080, H-1299, SKOV-3 and PC-3) which over-expressed MDR1 in 24-well Petri dishes equipped with an array of stainless steel electrodes connected to a computer via a programmable I/O board. We used a dedicated program to generate and monitor the electrical stimulation protocol. Parallel cultures were exposed for 3 hours to increasing concentrations (1, 2, 4, and 8 μM) of doxorubicin following stimulation to 50 Hz AC (7.5 μA) or MDR1 inhibitor XR9576. Cell viability was assessed by determination of adenylate kinase (AK) release. The relationship between MDR1 expression and the intracellular accumulation of doxorubicin as well as the cellular distribution of MDR1 was investigated by computerized image analysis immunohistochemistry and Western blot techniques. By the use of a variety of tumor cell lines, we show that low frequency, low intensity AC stimulation enhances chemotherapeutic efficacy. This effect was due to an altered expression of intrinsic cellular drug resistance mechanisms. Immunohistochemical, Western blot and fluorescence analysis revealed

  10. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis.

    LENUS (Irish Health Repository)

    Fletcher, J M

    2012-02-01

    Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS), which involves autoimmune responses to myelin antigens. Studies in experimental autoimmune encephalomyelitis (EAE), an animal model for MS, have provided convincing evidence that T cells specific for self-antigens mediate pathology in these diseases. Until recently, T helper type 1 (Th1) cells were thought to be the main effector T cells responsible for the autoimmune inflammation. However more recent studies have highlighted an important pathogenic role for CD4(+) T cells that secrete interleukin (IL)-17, termed Th17, but also IL-17-secreting gammadelta T cells in EAE as well as other autoimmune and chronic inflammatory conditions. This has prompted intensive study of the induction, function and regulation of IL-17-producing T cells in MS and EAE. In this paper, we review the contribution of Th1, Th17, gammadelta, CD8(+) and regulatory T cells as well as the possible development of new therapeutic approaches for MS based on manipulating these T cell subtypes.

  11. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  12. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals.

    Science.gov (United States)

    Sinha, Ravi; Verdonschot, Nico; Koopman, Bart; Rouwkema, Jeroen

    2017-10-01

    Mechanical signals offer a promising way to control cell and tissue development. It has been established that cells constantly probe their mechanical microenvironment and employ force feedback mechanisms to modify themselves and when possible, their environment, to reach a homeostatic state. Thus, a correct mechanical microenvironment (external forces and mechanical properties and shapes of cellular surroundings) is necessary for the proper functioning of cells. In vitro or in the case of nonbiological implants in vivo, where cells are in an artificial environment, addition of the adequate mechanical signals can, therefore, enable the cells to function normally as in vivo. Hence, a wide variety of approaches have been developed to apply mechanical stimuli (such as substrate stretch, flow-induced shear stress, substrate stiffness, topography, and modulation of attachment area) to cells in vitro. These approaches have not just revealed the effects of the mechanical signals on cells but also provided ways for probing cellular molecules and structures that can provide a mechanistic understanding of the effects. However, they remain lower in complexity compared with the in vivo conditions, where the cellular mechanical microenvironment is the result of a combination of multiple mechanical signals. Therefore, combinations of mechanical stimuli have also been applied to cells in vitro. These studies have had varying focus-developing novel platforms to apply complex combinations of mechanical stimuli, observing the co-operation/competition between stimuli, combining benefits of multiple stimuli toward an application, or uncovering the underlying mechanisms of their action. In general, they provided new insights that could not have been predicted from previous knowledge. We present here a review of several such studies and the insights gained from them, thereby making a case for such studies to be continued and further developed.

  13. Genetic Regulation of Bone and Cells by Electromagnetic Stimulation Fields and Uses Thereof

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor); Shackelford, Linda C. (Inventor)

    2018-01-01

    The present invention provides methods to modify the genetic regulation of mammalian tissue, bone, cells or any combination thereof by preferential activation, up-regulation and/or down-regulation. The method comprises steps of tuning the predetermined profiles of one or more time-varying stimulation fields by manipulating the B-Field magnitude, rising slew rate, rise time, falling slew rate, fall time, frequency, wavelength, and duty cycle, and exposing mammalian cells or tissues to one or more tuned time-varying stimulation fields with predetermined profiles. Examples of mammalian cells or tissues are chondrocytes, osteoblasts, osteocytes, osteoclasts, nucleus pulposus, associated tissue, or any combination. The resulted modification on gene regulation of these cells, tissues or bones may promote the retention, repair of and reduction of compromised mammalian cartilage, bone, and associated tissue.

  14. Dynamical mechanisms for sensitive response of aperiodic firing cells to external stimulation

    International Nuclear Information System (INIS)

    Xie Yong; Xu Jianxue; Hu Sanjue; Kang Yanmei; Yang Hongjun; Duan Yubin

    2004-01-01

    An interesting phenomenon that aperiodic firing neurons have a higher sensitivity to drugs than periodic firing neurons have been reported for the chronically compressed dorsal root ganglion neurons in rats. In this study, the dynamical mechanisms for such a phenomenon are uncovered from the viewpoint of dynamical systems theory. We use the Rose-Hindmarsh neuron model to illustrate our opinions. Periodic orbit theory is introduced to characterize the dynamical behavior of aperiodic firing neurons. It is considered that bifurcations, crises and sensitive dependence of chaotic motions on control parameters can be the underlying mechanisms. And then, a similar analysis is applied to the modified Chay model describing the firing behavior of pancreatic beta cells. The same dynamical mechanisms can be obtained underlying that aperiodic firing cells are more sensitive to external stimulation than periodic firing ones. As a result, we conjecture that sensitive response of aperiodic firing cells to external stimulation is a universal property of excitable cells

  15. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation

    DEFF Research Database (Denmark)

    Klose, Christoph S N; Mahlakõiv, Tanel; Moeller, Jesper B

    2017-01-01

    The type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have important roles in stimulating innate and adaptive immune responses that are required for resistance to helminth infection, promotion of allergic inflammation, metabolic homeostasis and tissue repair. Group 2 innate lymphoid cells......-localize with cholinergic neurons that express the neuropeptide neuromedin U (NMU). In contrast to other haematopoietic cells, ILC2s selectively express the NMU receptor 1 (NMUR1). In vitro stimulation of ILC2s with NMU induced rapid cell activation, proliferation, and secretion of the type 2 cytokines IL-5, IL-9 and IL-13...... that was dependent on cell-intrinsic expression of NMUR1 and Gαq protein. In vivo administration of NMU triggered potent type 2 cytokine responses characterized by ILC2 activation, proliferation and eosinophil recruitment that was associated with accelerated expulsion of the gastrointestinal nematode Nippostrongylus...

  16. Stimulation of interleukin-6 production of periodontal ligament cells by Porphyromonas endodontalis lipopolysaccharide.

    Science.gov (United States)

    Ogura, N; Shibata, Y; Kamino, Y; Matsuda, U; Hayakawa, M; Oikawa, T; Takiguchi, H; Izumi, H; Abiko, Y

    1994-12-01

    Interleukin-6 (IL-6), which is a multifunctional cytokine, has important roles in acute and chronic inflammation and may also be implicated in bone resorption. We examined the IL-6 production in periodontal ligament (PDL) cells which were treated with lipopolysaccharide (LPS) from several oral inflammatory pathogens. The LPS from Porphyromonas endodontalis, which was isolated from infected root canals and radicular cyst fluids, was more potent than the LPS from any other periodontal organisms examined. P. endodontalis LPS stimulated IL-6 release from PDL cells in a time- and dose-dependent manner. Northern blot hybridization analysis revealed that the IL-6 mRNA level in PDL cells was increased by P. endodontalis LPS. These results suggest that stimulation of the IL-6 release of PDL cells by P. endodontalis LPS may have a role in the progression of inflammation and alveolar bone resorption in periodontal and periapical diseases.

  17. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    Science.gov (United States)

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Potential Application of Electrical Stimulation in Stem Cell-Based Treatment against Hearing Loss

    Directory of Open Access Journals (Sweden)

    Mingliang Tang

    2018-01-01

    Full Text Available Deafness is a common human disease, which is mainly caused by irreversible damage to hair cells and spiral ganglion neurons (SGNs in the mammalian cochlea. At present, replacement of damaged or missing hair cells and SGNs by stem cell transplantation therapy is an effective treatment. However, the survival rate of stem cell transplantation is low, with uncontrollable differentiation hindering its application. Most researchers have focused on biochemical factors to regulate the growth and differentiation of stem cells, whereas little study has been performed using physical factors. This review intends to illustrate the current problems in stem cell-based treatment against deafness and to introduce electric field stimulation as a physical factor to regulate stem cell behavior and facilitate stem cell therapy to treat hearing loss in the future.

  19. Arginine-vasopressin stimulates the formation of phosphatidic acid in rat Leydig cells

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1987-01-01

    Arginine-vasopressin (AVP) stimulated the formation of labelled phosphatidic acid (PA) in [C]arachidonic acid-prelabelled rat Leydig cells. After addition of 10 M AVP [C]arachidonoylphosphatidic acid reached a maximum within 2 min. The increase was dose-dependent (10-10 M). No change in labelling...

  20. From cell to bedside: some pathophysiologic considerations about the cardiac stimulation

    International Nuclear Information System (INIS)

    Gutierrez, O.

    2013-01-01

    Myocardial cell pathophysiology is presented as related to possible modification by electrical stimulation of the myocardium. The objective is a diagnostic and therapeutic clinical application such as is seen with bradyarrhythmias and tachyarrhythmias. In addition, the E C is an essential tool during catheter ablation procedures

  1. Rapid desensitization of adrenaline- and neuropeptide Y-stimulated Ca2+ mobilization in HEL-cells

    NARCIS (Netherlands)

    Michel, M. C.

    1994-01-01

    1. Desensitization of Gs-coupled receptors, the beta 2-adrenoceptor for example, involves rapid and slower components but little is known regarding the existence of rapid desensitization of Gi-coupled receptors and its possible mechanisms. In HEL-cells stimulation of alpha 2A-adrenoceptors by

  2. Th17 cells in the pathogenesis of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Marek Juszczak

    2009-10-01

    Full Text Available Th17 cells are a recently described subset of T helper lymphocytes characterized by the production of IL-17 (IL-17A. Since their discovery in 2003, studies on Th17 cells have become increasingly popular among immunologists and they have emerged as key players in the pathogenesis of multiple sclerosis (MS and other autoimmune disorders traditionally attributed to Th1 cells. Murine Th17 lymphocytes differentiate from naive CD4 cells in a specific cytokine environment, which includes TGF- and IL-6 or IL-21, whereas human Th17 cell development requires TGF-, IL-1, and IL-2 in combination with IL-6, IL-21, or IL-23. Th17-related response is additionally enhanced by osteopontin, TNF, and PGE2 and suppressed by IL-25, IL-27, IL-35, and IL-10. Apart from their main cytokine, Th17 cells can also express IL-17F, IL-21, IL-22, TNF, CCL20, and, in humans, IL-26. All of these mediators may contribute to the proinflammatory action of Th17 .cells both in the clearance of various pathogens and in autoimmunity. At least some of these functions are exerted through the induction of neutrophil-recruiting chemokines (CXCL1, CXCL2, CXCL8 by IL-17. Accumulating evidence from studies on mice and humans indicates an important role of Th17 cells in mediating autoimmune neuroinflammation. This has led some immunologists to question the previously exhibited importance of Th1 cells in MS pathology. However, more recent data suggest that both these T-cell subsets are capable of inducing and promoting the disease. Further investigation is required to clarify the role of Th17 cells in the pathogenesis of MS since some of the Th17-related molecules appear as attractive targets for future therapeutic strategies

  3. Efficient cascade multiple heterojunction organic solar cells with inverted structure

    Science.gov (United States)

    Guo, Tingting; Li, Mingtao; Qiao, Zhenfang; Yu, Leiming; Zhao, Jianhong; Feng, Nianjun; Shi, Peiguang; Wang, Xiaoyan; Pu, Xiaoyun; Wang, Hai

    2018-05-01

    In this work, we demonstrate an efficient cascade multiple heterojunction organic solar cell with inverted structure. By using two donor materials, poly(3-hexylthiosphene) (P3HT) and titanyl phthalocyanine (TiOPc), as well as two acceptor materials, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and C60, the cascade multiple heterojunctions of P3HT:PCBM/TiOPc:C60/C60 have been constructed. Applying the optimized inverted configuration of FTO/Zinc Tin Oxide (ZTO)/C60 (30 nm)/TiOPc:C60 (1:1.5, 25 nm)/P3HT:PCBM (1:0.8, 100 nm)/MoO3 (4 nm)/Ag, the considerably enhanced open circuit voltage (VOC) and short circuit current (JSC) can be harvested together, and the power conversion efficiency (PCE) is three times higher than that of the control cell with conventional structure. The significant improvements of the inverted cell are mostly due to the broadened spectral absorption and high efficient multi-interface exciton dissociation in the cascade multiple heterojunctions, indicating that the optimized cascade heterojunctions match the inverted structure well.

  4. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor.

    Science.gov (United States)

    Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2013-12-01

    Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. Transforming growth factor alpha (TGFα regulates granulosa cell tumor (GCT cell proliferation and migration through activation of multiple pathways.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available Granulosa cell tumors (GCTs are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.

  6. IL-29 Enhances CXCL10 Production in TNF-α-stimulated Human Oral Epithelial Cells.

    Science.gov (United States)

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi

    2017-08-01

    Interleukin-29 (IL-29) is a cytokine belonging to the Type III interferon family. It was recently detected in the gingival crevicular fluid of periodontitis patients. However, the role of IL-29 in the pathogenesis of periodontal disease remains unknown. The aim of this study was to examine the effects of IL-29 on C-X-C motif chemokine ligand 10 (CXCL10) production in human oral epithelial cells. We measured CXCL10 production in TR146 cells, which is a human oral epithelial cell line, using an enzyme-linked immunosorbent assay. We used a Western blot analysis to detect IL-29 receptor expression and the phosphorylation levels of signal transduction molecules, including p38 mitogen-activated protein kinases (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor (NF)- κB p65, in the TR146 cells. The TR146 cells expressed the IL-29 receptor. IL-29 induced CXCL10 production in the TR146 cells. IL-29 significantly enhanced CXCL10 production in tumor necrosis factor (TNF)-α-stimulated TR146 cells. The p38 MAPK, STAT3, and NF-κB pathways were found to be related to the IL-29-induced enhancement of CXCL10 production in TNF-α-stimulated TR146 cells. IL-29 promotes T helper 1-cell accumulation in periodontal lesions by inducing CXCL10 production in oral epithelial cells.

  7. Electric field stimulation through a substrate influences Schwann cell and extracellular matrix structure

    Science.gov (United States)

    Nguyen, Hieu T.; Wei, Claudia; Chow, Jacqueline K.; Nguy, Lindsey; Nguyen, Hieu K.; Schmidt, Christine E.

    2013-08-01

    Objective. Electric field (EF) stimulation has been used to cue cell growth for tissue engineering applications. In this study, we explore the electrical parameters and extracellular mechanisms that elicit changes in cell behavior when stimulated through the substrate. Approach. Rat Schwann cell morphology was compared when exposed to EF through the media or a conductive indium tin oxide substrate. Ionic and structural effects were then analyzed on Matrigel and collagen I, respectively. Main results. When stimulating through media, cells had greater alignment perpendicular to the EF with higher current densities (106 mA cm-2 at 245 mV mm-1), and reached maximum alignment within 8 h. Stimulation through the substrate with EF (up to 110 mV mm-1) did not affect Schwann cell orientation, however the EF caused extracellular matrix (ECM) coatings on substrates to peel away, suggesting EF can physically change the ECM. Applying alternating current (ac) 2-1000 Hz signals through the media or substrate both caused cells to flatten and protrude many processes, without preferential alignment. Matrigel exposed to a substrate EF of 10 mV mm-1 for 2 h had a greater calcium concentration near the cathode, but quickly dissipated when the EF was removed. Schwann cells seeded 7 d after gels were exposed to substrate EF still aligned perpendicular to the EF direction. Microscopy of collagen I exposed to substrate EF shows alignment and bundling of fibrils. Significance. These findings demonstrate EF exposure can control Schwann cell alignment and morphology, change ECM bulk/surface architecture, and align ECM structures.

  8. Relative ultraviolet radiation sensitivity of certain functions of polyoma virus. Stimulation of cell DNA synthesis

    International Nuclear Information System (INIS)

    Barra, Yves; Imbert, Jean; Planche, Jacqueline; Meyer, Georges.

    1977-01-01

    Peritoneal Mouse macrophages were used to study the stimulation of cell DNA synthesis by polyoma virus. Using ultraviolet-irradiated polyoma virus, it was possible to show a difference between the inactivation of infectivity and of induction of DNA synthesis. By statistical analysis of these two phenomena it was found that 39% of the viral genome is necessary for the induction of cell DNA synthesis [fr

  9. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site

    Directory of Open Access Journals (Sweden)

    Claudia Zelle-Rieser

    2016-11-01

    Full Text Available Abstract Background Multiple myeloma is an incurable plasma cell malignancy that is mostly restricted to the bone marrow. Cancer-induced dysfunction of cytotoxic T cells at the tumor site may be responsible for immune evasion and therapeutical failure of immunotherapies. Therefore, enhanced knowledge about the actual status of T cells in myeloma bone marrow is urgently needed. Here, we assessed the expression of inhibitory molecules PD-1, CTLA-4, 2B4, CD160, senescence marker CD57, and CD28 on T cells of naive and treated myeloma patients in the bone marrow and peripheral blood and collected data on T cell subset distribution in both compartments. In addition, T cell function concerning proliferation and expression of T-bet, IL-2, IFNγ, and CD107a was investigated after in vitro stimulation by CD3/CD28. Finally, data was compared to healthy, age-matched donor T cells from both compartments. Methods Multicolor flow cytometry was utilized for the analyses of surface molecules, intracellular staining of cytokines was also performed by flow cytometry, and proliferation was assessed by 3H-thymidine incorporation. Statistical analyses were performed utilizing unpaired T test and Mann-Whitney U test. Results We observed enhanced T cell exhaustion and senescence especially at the tumor site. CD8+ T cells expressed several molecules associated with T cell exhaustion (PD-1, CTLA-4, 2B4, CD160 and T cell senescence (CD57, lack of CD28. This phenotype was associated with lower proliferative capacity and impaired function. Despite a high expression of the transcription factor T-bet, CD8+ T cells from the tumor site failed to produce IFNγ after CD3/CD28 in vitro restimulation and displayed a reduced ability to degranulate in response to T cell stimuli. Notably, the percentage of senescent CD57+CD28− CD8+ T cells was significantly lower in treated myeloma patients when compared to untreated patients. Conclusions T cells from the bone marrow of myeloma

  10. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  11. Three-dimensional weight-accumulation algorithm for generating multiple excitation spots in fast optical stimulation

    Science.gov (United States)

    Takiguchi, Yu; Toyoda, Haruyoshi

    2017-11-01

    We report here an algorithm for calculating a hologram to be employed in a high-access speed microscope for observing sensory-driven synaptic activity across all inputs to single living neurons in an intact cerebral cortex. The system is based on holographic multi-beam generation using a two-dimensional phase-only spatial light modulator to excite multiple locations in three dimensions with a single hologram. The hologram was calculated with a three-dimensional weighted iterative Fourier transform method using the Ewald sphere restriction to increase the calculation speed. Our algorithm achieved good uniformity of three dimensionally generated excitation spots; the standard deviation of the spot intensities was reduced by a factor of two compared with a conventional algorithm.

  12. A Protocol for the Use of Remotely-Supervised Transcranial Direct Current Stimulation (tDCS) in Multiple Sclerosis (MS).

    Science.gov (United States)

    Kasschau, Margaret; Sherman, Kathleen; Haider, Lamia; Frontario, Ariana; Shaw, Michael; Datta, Abhishek; Bikson, Marom; Charvet, Leigh

    2015-12-26

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that uses low amplitude direct currents to alter cortical excitability. With well-established safety and tolerability, tDCS has been found to have the potential to ameliorate symptoms such as depression and pain in a range of conditions as well as to enhance outcomes of cognitive and physical training. However, effects are cumulative, requiring treatments that can span weeks or months and frequent, repeated visits to the clinic. The cost in terms of time and travel is often prohibitive for many participants, and ultimately limits real-world access. Following guidelines for remote tDCS application, we propose a protocol that would allow remote (in-home) participation that uses specially-designed devices for supervised use with materials modified for patient use, and real-time monitoring through a telemedicine video conferencing platform. We have developed structured training procedures and clear, detailed instructional materials to allow for self- or proxy-administration while supervised remotely in real-time. The protocol is designed to have a series of checkpoints, addressing attendance and tolerability of the session, to be met in order to continue to the next step. The feasibility of this protocol was then piloted for clinical use in an open label study of remotely-supervised tDCS in multiple sclerosis (MS). This protocol can be widely used for clinical study of tDCS.

  13. Modulation of the Left Prefrontal Cortex with High Frequency Repetitive Transcranial Magnetic Stimulation Facilitates Gait in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic central nervous system (CNS demyelinating disease. Gait abnormalities are common and disabling in patients with MS with limited treatment options available. Emerging evidence suggests a role of prefrontal attention networks in modulating gait. High-frequency repetitive transcranial magnetic stimulation (rTMS is known to enhance cortical excitability in stimulated cortex and its correlates. We investigated the effect of high-frequency left prefrontal rTMS on gait parameters in a 51-year-old Caucasian male with chronic relapsing/remitting MS with residual disabling attention and gait symptoms. Patient received 6 Hz, rTMS at 90% motor threshold using figure of eight coil centered on F3 location (using 10-20 electroencephalography (EEG lead localization system. GAITRite gait analysis system was used to collect objective gait measures before and after one session and in another occasion three consecutive daily sessions of rTMS. Two-tailed within subject repeated measure t-test showed significant enhancement in ambulation time, gait velocity, and cadence after three consecutive daily sessions of rTMS. Modulating left prefrontal cortex excitability using rTMS resulted in significant change in gait parameters after three sessions. To our knowledge, this is the first report that demonstrates the effect of rTMS applied to the prefrontal cortex on gait in MS patients.

  14. In Silico Prediction Analysis of Idiotope-Driven T–B Cell Collaboration in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Rune A. Høglund

    2017-10-01

    Full Text Available Memory B cells acting as antigen-presenting cells are believed to be important in multiple sclerosis (MS, but the antigen they present remains unknown. We hypothesized that B cells may activate CD4+ T cells in the central nervous system of MS patients by presenting idiotopes from their own immunoglobulin variable regions on human leukocyte antigen (HLA class II molecules. Here, we use bioinformatics prediction analysis of B cell immunoglobulin variable regions from 11 MS patients and 6 controls with other inflammatory neurological disorders (OINDs, to assess whether the prerequisites for such idiotope-driven T–B cell collaboration are present. Our findings indicate that idiotopes from the complementarity determining region (CDR 3 of MS patients on average have high predicted affinities for disease associated HLA-DRB1*15:01 molecules and are predicted to be endosomally processed by cathepsin S and L in positions that allows such HLA binding to occur. Additionally, complementarity determining region 3 sequences from cerebrospinal fluid (CSF B cells from MS patients contain on average more rare T cell-exposed motifs that could potentially escape tolerance and stimulate CD4+ T cells than CSF B cells from OIND patients. Many of these features were associated with preferential use of the IGHV4 gene family by CSF B cells from MS patients. This is the first study to combine high-throughput sequencing of patient immune repertoires with large-scale prediction analysis and provides key indicators for future in vitro and in vivo analyses.

  15. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  16. Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors.

    Science.gov (United States)

    Akhavan, Omid; Ghaderi, Elham; Shirazian, Soheil A

    2015-02-01

    Reduced graphene oxide nanomeshes (rGONMs), as p-type semiconductors with band-gap energy of ∼ 1 eV, were developed and applied in near infrared (NIR) laser stimulation of human neural stem cells (hNSCs) into neurons. The biocompatibility of the rGONMs in growth of hNSCs was found similar to that of the graphene oxide (GO) sheets. Proliferation of the hNSCs on the GONMs was assigned to the excess oxygen functional groups formed on edge defects of the GONMs, resulting in superhydrophilicity of the surface. Under NIR laser stimulation, the graphene layers (especially the rGONMs) exhibited significant cell differentiations, including more elongations of the cells and higher differentiation of neurons than glia. The higher hNSC differentiation on the rGONM than the reduced GO (rGO) was assigned to the stimulation effects of the low-energy photoexcited electrons injected from the rGONM semiconductors into the cells, while the high-energy photoelectrons of the rGO (as a zero band-gap semiconductor) could suppress the cell proliferation and/or even cause cell damages. Using conventional heating of the culture media up to ∼ 43 °C (the temperature typically reached under the laser irradiation), no significant differentiation was observed in dark. This further confirmed the role of photoelectrons in the hNSC differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. IL-27 Modulates Chemokine Production in TNF-α -Stimulated Human Oral Epithelial Cells.

    Science.gov (United States)

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Ozaki, Kazumi; Matsuo, Takashi

    2017-01-01

    Interleukin-27 (IL-27) is a cytokine which belongs to the IL-12 family. However, the role of IL-27 in the pathogenesis of periodontal disease is uncertain. The aim of this study was to examine the effect of IL-27 on chemokine production in TNF-α-stimulated human oral epithelial cells (TR146). We measured chemokine production in TR146 by ELISA. We used western blot analysis to detect the phosphorylation levels of signal transduction molecules, including STAT1 and STAT3 in TR146. We used inhibitors to examine the role of STAT1 and STAT3 activation. IL-27 increased CXCR3 ligands production in TNF-α-stimulated TR146. Meanwhile, IL-27 suppressed IL-8 and CCL20 production induced by TNF-α. STAT1 phosphorylation level in IL-27 and TNF-α-stimulated TR146 was enhanced in comparison to TNF-α-stimulated TR146. STAT3 phosphorylation level in IL-27-treated TR146 did not change by TNF-α. Both STAT1 inhibitor and STAT3 inhibitor decreased CXCR3 ligands production. STAT1 inhibitor overrode the inhibitory effect of IL-27 on IL-8 and CCL20 production in TNF-α-stimulated TR146. Meanwhile, STAT3 inhibitor did not modulate IL-8 and CCL20 production. IL-27 might control leukocyte migration in periodontal lesion by modulating chemokine production from epithelial cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  18. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Nahyun Choi

    2018-02-01

    Full Text Available Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs. We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif ligand 1 (CXCL1, platelet-derived endothelial cell growth factor (PD-ECGF, and platelet-derived growth factor-C (PDGF-C. Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2 phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  19. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Science.gov (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  20. Norepinephrine stimulates mobilization of endothelial progenitor cells after limb ischemia.

    Directory of Open Access Journals (Sweden)

    Qijun Jiang

    Full Text Available OBJECTIVE: During several pathological processes such as cancer progression, thermal injury, wound healing and hindlimb ischemia, the mobilization of endothelial progenitor cells (EPCs mobilization was enhanced with an increase of sympathetic nerve activity and norepinephrine (NE secretion, yet the cellular and molecular mechanisms involved in the effects of NE on EPCs has less been investigated. METHODS AND RESULTS: EPCs from BMs, peripheral circulation and spleens, the VEGF concentration in BM, skeletal muscle, peripheral circulation and spleen and angiogenesis in ischemic gastrocnemius were quantified in mice with hindlimbs ischemia. Systemic treatment of NE significantly increased EPCs number in BM, peripheral circulation and spleen, VEGF concentration in BM and skeletal muscle and angiogenesis in ischemic gastrocnemius in mice with hind limb ischemia, but did not affair VEGF concentration in peripheral circulation and spleen. EPCs isolated from healthy adults were cultured with NE in vitro to evaluate proliferation potential, migration capacity and phosphorylations of Akt and eNOS signal moleculars. Treatment of NE induced a significant increase in number of EPCs in the S-phase in a dose-dependent manner, as well as migrative activity of EPCs in vitro (p<0.05. The co-treatment of Phentolamine, I127, LY294002 and L-NAME with NE blocked the effects of NE on EPCs proliferation and migration. Treatment with NE significantly increased phosphorylation of Akt and eNOS of EPCs. Addition of phentolamine and I127 attenuated the activation of Akt/eNOS pathway, but metoprolol could not. Pretreatment of mice with either Phentolamine or I127 significantly attenuated the effects of NE on EPCs in vivo, VEGF concentration in BM, skeletal muscle and angiogenesis in ischemic gastrocnemius, but Metoprolol did not. CONCLUSION: These results unravel that sympathetic nervous system regulate EPCs mobilization and their pro-angiogenic capacity via α adrenoceptor

  1. Calmodulin protects cells from death under normal growth conditions and mitogenic starvation but plays a mediating role in cell death upon B-cell receptor stimulation

    DEFF Research Database (Denmark)

    Schmalzigaug, R; Ye, Q; Berchtold, M W

    2001-01-01

    stimulation of the B-cell receptor (BCR), the resting Ca2+ levels remain elevated after the initial transient in CaMII-/- cells. Despite higher Ca2+ resting levels, the CaMII-/- cells are partially protected from BCR induced apoptosis indicating that CaM plays a dual role in apoptotic processes....

  2. Regeneration of Achilles' tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties.

    Science.gov (United States)

    Lee, Jongman; Guarino, Vincenzo; Gloria, Antonio; Ambrosio, Luigi; Tae, Giyoong; Kim, Young Ha; Jung, Youngmee; Kim, Sang-Heon; Kim, Soo Hyun

    2010-01-01

    The tissue engineering of tendon was studied using highly elastic poly(L-lactide-co-epsilon-caprolactone) (PLCL) scaffolds and focusing on the effect of dynamic tensile stimulation. Tenocytes from rabbit Achilles tendon were seeded (1.0 x 10(6) cells/scaffold) onto porous PLCL scaffolds and cultured for periods of 2 weeks and 4 weeks. This was performed in a static system and also in a bioreactor equipped with tensile modulation which mimicked the environmental surroundings of tendons with respect to tensile extension. The degradation of the polymeric scaffolds during the culture was relatively slow. However, there was an indication that cells accelerated the degradation of PLCL scaffolds. The scaffold/cell adducts from the static culture exhibited inferior strength (at 2 weeks 350 kPa, 4 weeks 300 kPa) compared to the control without cells (at 2 weeks 460 kPa, 4 weeks 340 kPa), indicating that the cells contributed to the enhanced degradation. On the contrary, the corresponding values of the adducts from the dynamic culture (at 2 weeks 430 kPa, 4 weeks 370 kPa) were similar to, or higher than, those from the control. This could be explained by the increased quantity of cells and neo-tissues in the case of dynamic culture compensating for the loss in tensile strength. Compared with static and dynamic culture conditions, mechanical stimulation played a crucial role in the regeneration of tendon tissue. In the case of the dynamic culture system, cell proliferation was enhanced and secretion of collagen type I was increased, as evidenced by DNA assay and histological and immunofluorescence analysis. Thus, tendon regeneration, indicated by improved mechanical and biological properties, was demonstrated, confirming the effect of mechanical stimulation. It could be concluded that the dynamic tensile stimulation appeared to be an essential factor in tendon/ligament tissue engineering, and that elastic PLCL co-polymers could be very beneficial in this process.

  3. Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells

    International Nuclear Information System (INIS)

    Wu Hualin; Lin ChiIou; Huang Yuanli; Chen, Pin-Shern; Kuo, Cheng-Hsiang; Chen, Mei-Shing; Wu, G.C.-C.; Shi, G.-Y.; Yang, H.-Y.; Lee Hsinyu

    2008-01-01

    Thrombomodulin (TM) is an anticoagulant glycoprotein highly expressed on endothelial cell surfaces. Increased levels of soluble TM in circulation have been widely accepted as an indicator of endothelial damage or dysfunction. Previous studies indicated that various proinflammatory factors stimulate TM shedding in various cell types such as smooth muscle cells and epithelial cells. Lysophosphatidic acid (LPA) is a bioactive lipid mediator present in biological fluids during endothelial damage or injury. In the present study, we first observed that LPA triggered TM shedding in human umbilical vein endothelial cells (HUVECs). By Cyflow analysis, we showed that the LPA-induced accessibility of antibodies to the endothelial growth factor (EGF)-like domain of TM is independent of matrix metalloproteinases (MMPs), while LPA-induced TM lectin-like domain shedding is MMP-dependent. Furthermore, a stable cell line expressing TM without its lectin-like domain exhibited a higher cell proliferation rate than a stable cell line expressing full-length TM. These results imply that LPA induces TM lectin-like domain shedding, which might contribute to the exposure of its EGF-like domain for EGF receptor (EGFR) binding, thereby stimulating subsequent cell proliferation. Based on our findings, we propose a novel mechanism for the exposure of TM EGF-like domain, which possibly mediates LPA-induced EGFR transactivation

  4. Langerhans cells from human oral epithelium are more effective at stimulating allogeneic T cells in vitro than Langerhans cells from skin.

    Science.gov (United States)

    Hasséus, B; Jontell, M; Bergenholtz, G; Dahlgren, U I

    2004-06-01

    This report is focused on the functional capacity of Langerhans cells (LC) in the epithelium of skin and oral mucosa, which both meet different antigenic challenges. The capacity of LC from human oral and skin epithelium to provide co-stimulatory signals to T cells in vitro was compared. LC in a crude suspension of oral epithelial cells had a significantly enhanced T cell co-stimulatory capacity compared to skin epithelial cells. This applied both to cultures with concanavalin A (con-A)-stimulated syngeneic T cells and to a mixed epithelial cell lymphocyte reaction involving allogeneic T cells. The co-stimulatory capacity of oral and skin epithelial cells was reduced by >70% if monoclonal antibodies against HLA-DR, -DP and -DQ were added to the cultures with allogeneic T cells, indicating the involvement of HLA class II expressing LC. Immunohistochemistry revealed that 6% of the epithelial cells were CD1a + LC in sections from both oral and skin epithelium. Interleukin (IL)-8 production was higher in cultures of oral epithelial cells and con-A stimulated T cells than in corresponding cultures with skin epithelial cells as accessory cells. The results suggest that LC in human oral epithelium are more efficient at stimulating T cells than those of skin.

  5. Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells

    DEFF Research Database (Denmark)

    Standal, Therese; Seidel, Carina; Hjertner, Øyvind

    2002-01-01

    Multiple myeloma (MM) is a hematologic malignancy characterized by accumulation of plasma cells in the bone marrow (BM). Bone destruction is a complication of the disease and is usually associated with severe morbidity. The balance between receptor activator of nuclear factor-kappaB (NF-kappaB......) ligand and osteoprotegerin (OPG) is of major importance in bone homeostasis. We have recently shown that serum OPG levels are lower in patients with myeloma than in healthy individuals. Here we show that myeloma cells can bind, internalize, and degrade OPG, thereby providing a possible explanation...... for the lower levels of OPG in the BM of patients with MM. This process is dependent on interaction of OPG with heparan sulfates on the myeloma cells. The results suggest a novel biologic mechanism for the bone disease associated with MM and that treatment of the bone disease with OPG lacking the heparin...

  6. Multiple cell common pressure vessel nickel hydrogen battery

    Science.gov (United States)

    Zagrodnik, Jeffrey P.; Jones, Kenneth R.

    1991-01-01

    A multiple cell common pressure vessel (CPV) nickel hydrogen battery was developed that offers significant weight, volume, cost, and interfacing advantages over the conventional individual pressure vessel (IPV) nickel hydrogen configuration that is currently used for aerospace applications. The baseline CPV design was successfully demonstrated though the testing of a 26 cell prototype, which completed over 7,000 44 percent depth of discharge LEO cycles. Two-cell boilerplate batteries have now exceeded 12,500 LEO cycles in ongoing laboratory tests. CPV batteries using both nominal 5 and 10 inch diameter vessels are currently available. The flexibility of the design allows these diameters to provide a broad capability for a variety of space applications.

  7. Role of Mesenchymal Derived Stem Cells in Stimulating Dormant Tumor Cells to Proliferate and Form Clinical Metastases

    Science.gov (United States)

    2017-07-01

    Clinical Metastases PRINCIPAL INVESTIGATOR: Jeffrey Green CONTRACTING ORGANIZATION: The Geneva Foundation Tacoma, WA 98402 REPORT DATE: July 2017 TYPE...2016 - 14 June 2017 4. TITLE AND SUBTITLE Role of Mesenchymal-Derived Stem Cells in Stimulating Dormant Tumor Cells to Proliferate and Form Clinical ...and/or select agents. Nothing to report. 6. PRODUCTS: • publications, conference papers, and presentations ; Jennifer Zhu submitted an abstract and will

  8. Role of Mesenchymal-Derived Stem Cells in Stimulating Dormant Tumor Cells to Proliferate and Form Clinical Metastases

    Science.gov (United States)

    2017-07-01

    Clinical Metastases PRINCIPAL INVESTIGATOR: Rosandra Kaplan CONTRACTING ORGANIZATION: The Geneva Foundation Tacoma, WA 98402 REPORT DATE: July 2017...2017 4. TITLE AND SUBTITLE Role of Mesenchymal-Derived Stem Cells in Stimulating Dormant Tumor Cells to Proliferate and Form Clinical Metastases 5a...PRODUCTS:  publications, conference papers, and presentations ; Jennifer Zhu submitted an abstract and will present this work at the Annual

  9. Attempt to stimulate cell division in Saccharomyces cerevisiae with weak ultraviolet light

    International Nuclear Information System (INIS)

    Quickenden, T.I.; Matich, A.J.; Pung, S.H.; Tilbury, R.N.

    1989-01-01

    Liquid cultures of the yeast Saccharomyces cerevisiae were irradiated with weak light having irradiances ranging from ca. 1 X 10(2) to 5 X 10(9) photons cm-2 s-1 and at wavelengths ranging from 200 to 700 nm. When particular care was taken to control the temperature of the cultures and the flow rate of oxygen, no evidence was obtained for stimulation of either yeast growth or division by the incident light. These results do not support the claims of early workers that very low intensity uv light can stimulate cell division in living organisms

  10. Human bone marrow mesenchymal stem cells secrete endocannabinoids that stimulate in vitro hematopoietic stem cell migration effectively comparable to beta-adrenergic stimulation.

    Science.gov (United States)

    Köse, Sevil; Aerts-Kaya, Fatima; Köprü, Çağla Zübeyde; Nemutlu, Emirhan; Kuşkonmaz, Barış; Karaosmanoğlu, Beren; Taşkıran, Ekim Zihni; Altun, Belgin; Uçkan Çetinkaya, Duygu; Korkusuz, Petek

    2018-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a well-known hematopoietic stem cell (HSC)-mobilizing agent used in both allogeneic and autologous transplantation. However, a proportion of patients or healthy donors fail to mobilize a sufficient number of cells. New mobilization agents are therefore needed. Endocannabinoids (eCBs) are endogenous lipid mediators generated in the brain and peripheral tissues and activate the cannabinoid receptors CB1 and CB2. We suggest that eCBs may act as mobilizers of HSCs from the bone marrow (BM) under stress conditions as beta-adrenergic receptors (Adrβ). This study demonstrates that BM mesenchymal stem cells (MSCs) secrete anandamide (AEA) and 2-arachidonylglycerol (2-AG) and the peripheral blood (PB) and BM microenvironment contain AEA and 2-AG. 2-AG levels are significantly higher in PB of the G-CSF-treated group compared with BM plasma. BM mononuclear cells (MNCs) and CD34 + HSCs express CB1, CB2, and Adrβ subtypes. CD34 + HSCs had higher CB1 and CB2 receptor expression in G-CSF-untreated and G-CSF-treated groups compared with MSCs. MNCs but not MSCs expressed CB1 and CB2 receptors based on qRT-PCR and flow cytometry. AEA- and 2-AG-stimulated HSC migration was blocked by eCB receptor antagonists in an in vitro migration assay. In conclusion, components of the eCB system and their interaction with Adrβ subtypes were demonstrated on HSCs and MSCs of G-CSF-treated and G-CSF-untreated healthy donors in vitro, revealing that eCBs might be potential candidates to enhance or facilitate G-CSF-mediated HSC migration under stress conditions in a clinical setting. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  11. Electrical stimulation enhances cell migration and integrative repair in the meniscus

    Science.gov (United States)

    Yuan, Xiaoning; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been applied towards the repair of articular tissues in the laboratory and clinical settings for over seventy years. We focus on healing of the meniscus, a tissue essential to knee function with limited innate repair potential, which has been largely unexplored in the context of electrical stimulation. Here we demonstrate for the first time that electrical stimulation enhances meniscus cell migration and integrative tissue repair. We optimize pulsatile direct current electrical stimulation parameters on cells at the micro-scale, and apply these to healing of full-thickness defects in explants at the macro-scale. We report increased expression of the adenosine A2b receptor in meniscus cells after stimulation at the micro- and macro-scale, and propose a role for A2bR in meniscus electrotransduction. Taken together, these findings advance our understanding of the effects of electrical signals and their mechanisms of action, and contribute to developing electrotherapeutic strategies for meniscus repair. PMID:24419206

  12. CP-25 Attenuates the Activation of CD4+ T Cells Stimulated with Immunoglobulin D in Human.

    Science.gov (United States)

    Wu, Yu-Jing; Chen, Heng-Shi; Chen, Wen-Sheng; Dong, Jin; Dong, Xiao-Jie; Dai, Xing; Huang, Qiong; Wei, Wei

    2018-01-01

    Researchers have shown that the level of immunoglobulin D (IgD) is often elevated in patients with autoimmune diseases. The possible roles of IgD on the function of human T cell activation are still unclear. Paeoniflorin-6'- O -benzene sulfonate (code: CP-25), the chemistry structural modifications of paeoniflorin, was a novel drug of anti-inflammation and immunomodulation. The aims of this study were to determine if human CD4 + T cells could be activated by IgD via the IgD receptor (IgDR)-Lck pathway and whether the novel compound CP-25 could affect the activation of T cells by regulating Lck. Human CD4 + T cells were purified from peripheral blood mononuclear cells using microbeads. T cell viability and proliferation were detected by Cell Counting Kit-8 and CFSE Cell Proliferation Kit. Cytokines secreted by T cells were assessed with the Quantibody Human Inflammation Array. The binding affinity and expression of IgDR on T cells were detected by flow cytometry, and protein expression of IgDR, Lck, and P-Lck were analyzed by western blot. IgD was shown to bind to IgDR on CD4 + T cells in a concentration-dependent manner and stimulate the activation and proliferation of these cells by enhancing phosphorylation of the activating tyrosine residue of Lck (Tyr 394 ). CP-25 inhibited the IgD-stimulated activation and proliferation of CD4 + T cells, as well as the production of inflammatory cytokines; it was thus suggested that this process might be related to the downregulation of Lck (Tyr 394 ) phosphorylation. These results demonstrate that IgD amplifies the activation of CD4 + T cells, which could be mediated by Lck phosphorylation. Further, CP-25, via its ability to modulate Lck, is a novel potential therapeutic agent for the treatment of human autoimmune diseases.

  13. Insulin stimulates the expression of the SHARP-1 gene via multiple signaling pathways.

    Science.gov (United States)

    Takagi, K; Asano, K; Haneishi, A; Ono, M; Komatsu, Y; Yamamoto, T; Tanaka, T; Ueno, H; Ogawa, W; Tomita, K; Noguchi, T; Yamada, K

    2014-06-01

    The rat enhancer of split- and hairy-related protein-1 (SHARP-1) is a basic helix-loop-helix transcription factor. An issue of whether SHARP-1 is an insulin-inducible transcription factor was examined. Insulin rapidly increased the level of SHARP-1 mRNA both in vivo and in vitro. Then, signaling pathways involved with the increase of SHARP-1 mRNA by insulin were determined in H4IIE rat hepatoma cells. Pretreatments with LY294002, wortmannin, and staurosporine completely blocked the induction effect, suggesting the involvement of both phosphoinositide 3-kinase (PI 3-K) and protein kinase C (PKC) pathways. In fact, overexpression of a dominant negative form of atypical protein kinase C lambda (aPKCλ) significantly decreased the induction of the SHARP-1 mRNA. In addition, inhibitors for the small GTPase Rac or Jun N-terminal kinase (JNK) also blocked the induction of SHARP-1 mRNA by insulin. Overexpression of a dominant negative form of Rac1 prevented the activation by insulin. Furthermore, actinomycin D and cycloheximide completely blocked the induction of SHARP-1 mRNA by insulin. Finally, when a SHARP-1 expression plasmid was transiently transfected with various reporter plasmids into H4IIE cells, the promoter activity of PEPCK reporter plasmid was specifically decreased. Thus, we conclude that insulin induces the SHARP-1 gene expression at the transcription level via a both PI 3-K/aPKCλ/JNK- and a PI 3-K/Rac/JNK-signaling pathway; protein synthesis is required for this induction; and that SHARP-1 is a potential repressor of the PEPCK gene expression. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Science.gov (United States)

    Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Namiki, Yoshihisa; Takakura, Kazuki; Takahara, Akitaka; Odahara, Shunichi; Tsukinaga, Shintaro; Yukawa, Toyokazu; Mitobe, Jimi; Matsudaira, Hiroshi; Nagatsuma, Keisuke; Kajihara, Mikio; Uchiyama, Kan; Arihiro, Seiji; Imazu, Hiroo; Arakawa, Hiroshi; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Hara, Eiichi; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao

    2013-01-01

    The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  15. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    Full Text Available The therapeutic efficacy of fusion cell (FC-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT on the cell surface and released immunostimulatory factors such as heat shock protein (HSP90α and high-mobility group box 1 (HMGB1. A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  16. Follicle stimulating hormone increases spermatogonial stem cell colonization during in vitro co-culture.

    Science.gov (United States)

    Narenji Sani, Reza; Tajik, Parviz; Yousefi, Mohammad Hassan; Movahedin, Mansoureh; Qasemi-Panahi, Babak; Shafiei, Shiva; Ahmadi Hamedani, Mahmood

    2013-01-01

    The complex process of spermatogenesis is regulated by various factors. Studies on spermatogonial stem cells (SCCs) have provided very important tool to improve herd genetic and different field. 0.2 to 0.3 percent of total cells of seminiferous tubules is consist of spermatogonial stem cells. To investigate and biomanipulation of these cells, proliferation and viability rate of cells should be increased in vitro, at first. Follicle stimulating hormone (FSH) has been suggested to play a determinant role in the survival of germ cells in addition to increasing spermatogonial proliferation. In this study, the in vitro effects of FSH on spermatogonial cell colony formation were investigated. Sertoli and spermatogonial cells were isolated from 3-5 months old calves. The identity of the Sertoli cells and spermatogonial stem cells were confirmed through immunocytochemistry and colony morphology, respectively. Co-cultured Sertoli and spermatogonial cells were treated with FSH in different dose of 10, 20 and 40 IU mL(-1) FSH, before colony assay. Results indicated that, FSH increased in vitro colonization of spermatogonial cells in comparison with control group. In conclusion, using FSH provided proper bovine spermatogonial stem cell culture medium for in vitro study of these cells.

  17. Androgen and FSH synergistically stimulate lipoprotein degradation and utilization by ovary granulosa cells

    International Nuclear Information System (INIS)

    Schreiber, J.R.; Nakamura, K.; Schmit, V.; Weinstein, D.B.

    1984-01-01

    Androgen can directly modulate the induction of steroidogenic enzymes by FSH (follicle stimulating hormone) in ovary granulosa cells. In studies of its mechanism of action, the authors examined the androgen effect on granulosa cell interaction with lipoproteins, the physiologic source of cholesterol. After granulosa cells were cultured for 48 hours with and without androgen and/or FSH, the cells were incubated for 24 hours with 125 I-lipoproteins [human high density lipoprotein (HDL), rat HDL, or human low density lipoprotein (LDL)]. The media were then analyzed for lipoprotein protein coat degradation products (mainly 125 I-monoiodotyrosine) and progestin [mainly 20 alpha-dihydroprogesterone (20 alpha-DHP)]. In the absence of FSH and androgen, 2 X 10(5) granulosa cells degraded basal levels of all three lipoproteins, but produced no measurable 20 alpha-DHP. The addition of 10(-7) M androstenedione (A), testosterone (T), or 5 alpha-dihydrotestosterone (DHT) had no effect on lipoprotein protein degradation or 20 alpha-DHP production. FSH alone stimulated lipoprotein protein degradation by 50 to 300% while the addition of androgen synergistically augmented the FSH-stimulated 20 alpha-DHP production as well as protein coat degradation of all three lipoproteins. DHT and T were both effective, indicating that androgens themselves, and not estrogen products, were responsible for the effect on lipoprotein protein degradation and 20 alpha-DHP production

  18. Stimulation of epithelial cell matrix metalloproteinase (MMP-2, -9, -13) and interleukin-8 secretion by fusobacteria.

    Science.gov (United States)

    Gursoy, U K; Könönen, E; Uitto, V-J

    2008-10-01

    Bacterial pathogens involved in periodontal diseases exert their destructive effects primarily by stimulating the host cells to increase their secretion of proinflammatory cytokines and matrix metalloproteinases (MMPs). This study aimed to determine the epithelial cell matrix metalloproteinase and interleukin-8 (IL-8) secretion upon exposure to fusobacteria. Eight different oral and non-oral Fusobacterium strains were incubated with HaCaT epithelial cells. Gelatin zymography and Western blot analysis were performed to detect collagenase 3 (MMP-13), gelatinase A (MMP-2), gelatinase B (MMP-9), and IL-8 secretion by epithelial cells. All Fusobacterium strains, especially Fusobacterium necrophorum ATCC 25286, Fusobacterium nucleatum ATCC 25586, and Fusobacterium varium ATCC 51644, increased MMP-9 and MMP-13 secretion. Fusobacterium simiae ATCC 33568, and to a lesser extent F. nucleatum and F. necrophorum, increased epithelial MMP-2 secretion. F. nucleatum and F. necrophorum also increased IL-8 secretion. F. varium ATCC 27725, a strain that only weakly stimulated MMP production, strongly increased the IL-8 production, suggesting that their expression is differently regulated. We conclude that the pathogenic potential of fusobacteria may partly result from their ability to stimulate secretion of MMP-9, MMP-13, and IL-8 from epithelial cells.

  19. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells.

    Science.gov (United States)

    Sanzgiri, R P; Araque, A; Haydon, P G

    1999-11-05

    Recent Ca(2+) imaging studies in cell culture and in situ have shown that Ca(2+) elevations in astrocytes stimulate glutamate release and increase neuronal Ca(2+) levels, and that this astrocyte-neuron signaling can be stimulated by prostaglandin E(2) (PGE(2)). We investigated the electrophysiological consequences of the PGE(2)-mediated astrocyte-neuron signaling using whole-cell recordings on cultured rat hippocampal cells. Focal application of PGE(2) to astrocytes evoked a Ca(2+) elevation in the stimulated cell by mobilizing internal Ca(2+) stores, which further propagated as a Ca(2+) wave to neighboring astrocytes. Whole-cell recordings from neurons revealed that PGE(2) evoked a slow inward current in neurons adjacent to astrocytes. This neuronal response required the presence of an astrocyte Ca(2+) wave and was mediated through both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Taken together with previous studies, these data demonstrate that PGE(2)-evoked Ca(2+) elevations in astrocyte cause the release of glutamate which activates neuronal ionotropic receptors. Copyright 1999 John Wiley & Sons, Inc.

  20. T cell cytokine responses to stimulation with Ureaplasma parvum in pregnancy.

    Science.gov (United States)

    Friedland, Yael D; Lee-Pullen, Tracey F; Nathan, Elizabeth A; Watts, Rory; Keelan, Jeffrey A; Payne, Matthew S; Ireland, Demelza J

    2016-08-01

    Ureaplasma spp. are a common vaginal microorganism causally linked to inflammation-driven preterm birth (PTB). The nature of the immune response to Ureaplasma spp. may influence PTB risk. This study sought to define maternal T cell cytokine responses to in vitro stimulation with Ureaplasma parvum serovar 3 (UpSV3) in vaginally colonised (UP+) and non-colonised (UP-) pregnant women. Whole blood flow cytometry demonstrated an increase (p=0.027) in the baseline frequency of IFNγ-positive CD3(+)CD4(-)(CD8(+)) T cells in UP+ women. UpSV3 stimulation resulted in a significant and specific increase (p=0.001) in the frequency of IFNγ-positive CD3(+)CD4(-)(CD8(+)) T cells, regardless of vaginal colonisation status. UpSV3 stimulation also increased the frequency of IFNγ-positive CD3(+)CD4(+) T cells, particularly in the UP+ group (p=0.003). This is the first published study to examine T cell responses to Ureaplasma spp. Future appropriately-powered studies are needed to assess whether insufficient priming or a loss of tolerance to Ureaplasma spp. is occurring in UP+ women at risk of PTB. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Macrophage migration inhibitory factor stimulated by Helicobacter pylori increases proliferation of gastric epithelial cells

    Science.gov (United States)

    Xia, Harry Hua-Xiang; Lam, Shiu Kum; Chan, Annie O.O.; Lin, Marie Chia Mi; Kung, Hsiang Fu; Ogura, Keiji; Berg, Douglas E.; Wong, Benjamin C. Y.

    2005-01-01

    AIM: Helicobacter pylori (H pylori) is associated with increased gastric inflammatory and epithelial expression of macrophage migration inhibitory factor (MIF) and gastric epithelial cell proliferation. This study aimed at determining whether H pylori directly stimulates release of MIF in monocytes, whether the cag pathogenicity island (PAI) is involved for this function, and whether MIF stimulated by H pylori increases gastric epithelial cell proliferation in vitro. METHODS: A cytotoxic wild-type H pylori strain (TN2)and its three isogenic mutants (TN2△cag, TN2△cagA and TN2△cagE) were co-cultured with cells of a human monocyte cell line, THP-1, for 24 h at different organism/cell ratios. MIF in the supernatants was measured by an ELISA. Cells of a human gastric cancer cell line, MKN45, were then co-cultured with the supernatants, with and without monoclonal anti-MIF antibody for 24 h. The cells were further incubated for 12 h after addition of 3H-thymidine, and the levels of incorporation of 3H-thymidine were measured with a liquid scintillation counter. RESULTS: The wild-type strain and the isogenic mutants, TN2△cagA and TN2△cagE, increased MIF release at organism/cell ratios of 200/1 and 400/1, but not at the ratios of 50/1 and 100/1. However, the mutant TN2△cag did not increase the release of MIF at any of the four ratios. 3H-thymidine readings for MKN-45 cells were significantly increased with supernatants derived from the wild-type strain and the mutants TN2△cagA and TN2△cagE, but not from the mutant TN2△cag. Moreover, in the presence of monoclonal anti-MIF antibody, the stimulatory effects of the wild-type strain on cell proliferation disappeared. CONCLUSION: H pylori stimulates MIF release in monocytes, likely through its cag PAI, but not related to cagA or cagE. H pylori-stimulated monocyte culture supernatant increases gastric cell proliferation, which is blocked by anti-MIF antibody, suggesting that MIF plays an important role in H

  2. Using Functional Electrical Stimulation Mediated by Iterative Learning Control and Robotics to Improve Arm Movement for People With Multiple Sclerosis.

    Science.gov (United States)

    Sampson, Patrica; Freeman, Chris; Coote, Susan; Demain, Sara; Feys, Peter; Meadmore, Katie; Hughes, Ann-Marie

    2016-02-01

    Few interventions address multiple sclerosis (MS) arm dysfunction but robotics and functional electrical stimulation (FES) appear promising. This paper investigates the feasibility of combining FES with passive robotic support during virtual reality (VR) training tasks to improve upper limb function in people with multiple sclerosis (pwMS). The system assists patients in following a specified trajectory path, employing an advanced model-based paradigm termed iterative learning control (ILC) to adjust the FES to improve accuracy and maximise voluntary effort. Reaching tasks were repeated six times with ILC learning the optimum control action from previous attempts. A convenience sample of five pwMS was recruited from local MS societies, and the intervention comprised 18 one-hour training sessions over 10 weeks. The accuracy of tracking performance without FES and the amount of FES delivered during training were analyzed using regression analysis. Clinical functioning of the arm was documented before and after treatment with standard tests. Statistically significant results following training included: improved accuracy of tracking performance both when assisted and unassisted by FES; reduction in maximum amount of FES needed to assist tracking; and less impairment in the proximal arm that was trained. The system was well tolerated by all participants with no increase in muscle fatigue reported. This study confirms the feasibility of FES combined with passive robot assistance as a potentially effective intervention to improve arm movement and control in pwMS and provides the basis for a follow-up study.

  3. CD147 stimulates hepatoma cells escaping from immune surveillance of T cells by interaction with Cyclophilin A.

    Science.gov (United States)

    Ren, Yi-Xin; Wang, Shu-Jing; Fan, Jian-Hui; Sun, Shi-Jie; Li, Xia; Padhiar, Arshad Ahmed; Zhang, Jia-Ning

    2016-05-01

    T cells play an important role in tumor immune surveillance. CD147 is a member of immunoglobulin superfamily present on the surface of many tumor cells and mediates malignant cell behaviors. Cyclophilin A (CypA) is an intracellular protein promoting inflammation when released from cells. CypA is a natural ligand for CD147. In this study, CD147 specific short hairpin RNAs (shRNA) were transfected into murine hepatocellular carcinoma Hepa1-6 cells to assess the effects of CD147 on hepatoma cells escaping from immune surveillance of T cells. We found extracellular CypA stimulated cell proliferation through CD147 by activating ERK1/2 signaling pathway. Downregulation of CD147 expression on Hepa1-6 cells significantly suppressed tumor progression in vivo, and decreased cell viability when co-cultured with T cells in vitro. Importantly, knockdown of CD147 on Hepa1-6 cells resulted in significantly increased T cells chemotaxis induced by CypA both in vivo and in vitro. These findings provide novel mechanisms how tumor cells escaping from immune surveillance of T cells. We provide a potential therapy for hepatocellular carcinoma by targeting CD147 or CD147-CypA interactions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Isolation and characterization of portal branch ligation-stimulated Hmga2-positive bipotent hepatic progenitor cells

    International Nuclear Information System (INIS)

    Sakai, Hiroshi; Tagawa, Yoh-ichi; Tamai, Miho; Motoyama, Hiroaki; Ogawa, Shinichiro; Soeda, Junpei; Nakata, Takenari; Miyagawa, Shinichi

    2010-01-01

    Research highlights: → Hepatic progenitor cells were isolated from the portal branch-ligated liver of mice. → Portal branch ligation-stimulated hepatic progenitor cells (PBLHCs) express Hmga2. → PBLHCs have bidirectional differentiation capability in vitro. -- Abstract: Hepatic stem/progenitor cells are one of several cell sources that show promise for restoration of liver mass and function. Although hepatic progenitor cells (HPCs), including oval cells, are induced by administration of certain hepatotoxins in experimental animals, such a strategy would be inappropriate in a clinical setting. Here, we investigated the possibility of isolating HPCs in a portal branch-ligated liver model without administration of any chemical agents. A non-parenchymal cell fraction was prepared from the portal branch-ligated or non-ligated lobe, and seeded onto plates coated with laminin. Most of the cells died, but a small number were able to proliferate. These proliferating cells were cloned as portal branch ligation-stimulated hepatic cells (PBLHCs) by the limiting dilution method. The PBLHCs expressed cytokeratin19, albumin, and Hmga2. The PBLHCs exhibited metabolic functions such as detoxification of ammonium ions and synthesis of urea on Matrigel-coated plates in the presence of oncostatin M. In Matrigel mixed with type I collagen, the PBLHCs became rearranged into cystic and tubular structures. Immunohistochemical staining demonstrated the presence of Hmga2-positive cells around the interlobular bile ducts in the portal branch-ligated liver lobes. In conclusion, successful isolation of bipotent hepatic progenitor cell clones, PBLHCs, from the portal branch-ligated liver lobes of mice provides the possibility of future clinical application of portal vein ligation to induce hepatic progenitor cells.

  5. Synchronized Firings in Retinal Ganglion Cells in Response to Natural Stimulation

    International Nuclear Information System (INIS)

    Zhang Ying-Ying; Xiao Lei; Liu Wen-Zhong; Gong Hai-Qing; Liang Pei-Ji

    2011-01-01

    The response of synchronously firing groups of population retinal ganglion cells (RGCs) to natural movies (NMs) and pseudo-random white-noise checker-board flickering (CB, as control) are investigated using an information-theoretic algorithm. The main results are: (1) the population RGCs tend to fire in synchrony far more frequently than expected by chance during both NM and CB stimulation; (2) more synchronous groups could be formed and each group contains more neurons under NM than CB stimulation; (3) the individual neurons also participate in more groups and have more distinct partners in NM than CB stimulation. All these results suggest that the synchronized firings in RGCs are more extensive and diverse, which may account for more effective information processing in representing the natural visual environment. (cross-disciplinary physics and related areas of science and technology)

  6. Follicle stimulating hormone increases spermatogonial stem cell colonization during in vitro co - culture

    Directory of Open Access Journals (Sweden)

    Reza Narenji Sani

    2013-03-01

    Full Text Available The complex process of spermatogenesis is regulated by various factors. Studies onspermatogonial stem cells(SCCshave provided very important tool to improve herd geneticand different field. 0.2 to 0.3 percent of total cells of seminiferous tubules is consist ofspermatogonial stem cells. To investigate and biomanipulation of these cells, proliferationand viability rate of cells should be increasedin vitro, at first. Follicle stimulating hormone(FSH has been suggested to play a determinant role in the survival of germ cells in additionto increasing spermatogonial proliferation. In this study, thein vitroeffects ofFSHonspermatogonial cell colony formation were investigated. Sertoli and spermatogonial cellswere isolated from 3-5 months old calves. The identity of theSertoli cells and spermatogonialstem cells were confirmed through immunocytochemistry and colony morphology,respectively. Co-cultured Sertoli and spermatogonial cells were treatedwithFSHin differentdose of10, 20 and 40 IU mL-1FSH, before colony assay.Results indicated that,FSHincreasedin vitrocolonization of spermatogonial cells in comparison with control group. In conclusion,usingFSHprovided proper bovine spermatogonial stem cell culture medium forin vitrostudy of these cells.

  7. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice.

    Science.gov (United States)

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C A; Woll, Petter S; Jacobsen, Sten Eirik W; Sitnicka, Ewa

    2016-07-14

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. © 2016 by The American Society of Hematology.

  8. Matrix metalloproteases as maestros for the dual role of LPS- and IL-10-stimulated macrophages in cancer cell behaviour

    International Nuclear Information System (INIS)

    Cardoso, Ana P.; Pinto, Marta L.; Pinto, Ana T.; Pinto, Marta T.; Monteiro, Cátia; Oliveira, Marta I.; Santos, Susana G.; Relvas, João B.; Seruca, Raquel; Mantovani, Alberto; Mareel, Marc; Barbosa, Mário A.; Oliveira, Maria J.

    2015-01-01

    The interactions established between macrophages and cancer cells are largely dependent on instructions from the tumour microenvironment. Macrophages may differentiate into populations with distinct inflammatory profiles, but knowledge on their role on cancer cell activities is still very scarce. In this work, we investigated the influence of pro-inflammatory (LPS-stimulated) and anti-inflammatory (IL-10-stimulated) macrophages on gastric and colorectal cancer cell invasion, motility/migration, angiogenesis and proteolysis, and the associated molecular mechanisms. Following exposure of gastric and colon cancer cell lines to LPS- and IL-10-stimulated human macrophages, either by indirect contact or conditioned media, we analyzed the effect of the different macrophage populations on cancer cell invasion, migration, motility and phosphorylation status of EGFR and several interacting partners. Cancer-cell induced angiogenesis upon the influence of conditioned media from both macrophage populations was assessed using the chick embryo chorioallantoic membrane assay. MMP activities were evaluated by gelatin zymograhy. Our results show that IL-10-stimulated macrophages are more efficient in promoting in vitro cancer cell invasion and migration. In addition, soluble factors produced by these macrophages enhanced in vivo cancer cell-induced angiogenesis, as opposed to their LPS-stimulated counterparts. We further demonstrate that differences in the ability of these macrophage populations to stimulate invasion or angiogenesis cannot be explained by the EGFR-mediated signalling, since both LPS- and IL-10-stimulated macrophages similarly induce the phosphorylation of cancer cell EGFR, c-Src, Akt, ERK1/2, and p38. Interestingly, both populations exert distinct proteolytic activities, being the IL-10-stimulated macrophages the most efficient in inducing matrix metalloprotease (MMP)-2 and MMP-9 activities. Using a broad-spectrum MMP inhibitor, we demonstrated that proteolysis was

  9. Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease.

    Science.gov (United States)

    Shroff, Geeta

    2016-12-13

    BACKGROUND Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease in which the myelin sheath of nerve cells is damaged. It can cause delayed neurologic symptoms similar to those seen in Lyme disease (LD) patients. Thymus derived T-cells (myelin reactive) migrate to the blood brain barrier and stimulate an inflammatory cascade in the central nervous system. Cell based therapies play an important role in treating neurological diseases such as MS and LD. CASE REPORT Human embryonic stem cell (hESC) therapy was used to treat two patients with both MS and LD. The hESCs were administered via different routes including intramuscular, intravenous, and supplemental routes (e.g., deep spinal, caudal, intercostal through eye drops) to regenerate the injured cells. Both the patients showed remarkable improvement in their functional skills, overall stamina, cognitive abilities, and muscle strength. Furthermore, the improvement in the patients' conditions were assessed by magnetic resonance tractography and single photon emission computed tomography (SPECT). CONCLUSIONS Therapy with hESCs might emerge as an effective and safe treatment for patients with both MS and LD. Well-designed clinical trials and follow-up studies are needed to prove the long-term efficacy and safety of hESC therapy in the treatment of patients with MS and LD.

  10. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  11. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    Science.gov (United States)

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  12. Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in Vitro.

    Science.gov (United States)

    Thrivikraman, Greeshma; Lee, Poh S; Hess, Ricarda; Haenchen, Vanessa; Basu, Bikramjit; Scharnweber, Dieter

    2015-10-21

    The influences of physical stimuli such as surface elasticity, topography, and chemistry over mesenchymal stem cell proliferation and differentiation are well investigated. In this context, a fundamentally different approach was adopted, and we have demonstrated the interplay of inherent substrate conductivity, defined chemical composition of cellular microenvironment, and intermittent delivery of electric pulses to drive mesenchymal stem cell differentiation toward osteogenesis. For this, conducting polyaniline (PANI) substrates were coated with collagen type 1 (Coll) alone or in association with sulfated hyaluronan (sHya) to form artificial extracellular matrix (aECM), which mimics the native microenvironment of bone tissue. Further, bone marrow derived human mesenchymal stem cells (hMSCs) were cultured on these moderately conductive (10(-4)-10(-3) S/cm) aECM coated PANI substrates and exposed intermittently to pulsed electric field (PEF) generated through transformer-like coupling (TLC) approach over 28 days. On the basis of critical analysis over an array of end points, it was inferred that Coll/sHya coated PANI (PANI/Coll/sHya) substrates had enhanced proliferative capacity of hMSCs up to 28 days in culture, even in the absence of PEF stimulation. On the contrary, the adopted PEF stimulation protocol (7 ms rectangular pulses, 3.6 mV/cm, 10 Hz) is shown to enhance osteogenic differentiation potential of hMSCs. Additionally, PEF stimulated hMSCs had also displayed different morphological characteristics as their nonstimulated counterparts. Concomitantly, earlier onset of ALP activity was also observed on PANI/Coll/sHya substrates and resulted in more calcium deposition. Moreover, real-time polymerase chain reaction results indicated higher mRNA levels of alkaline phosphatase and osteocalcin, whereas the expression of other osteogenic markers such as Runt-related transcription factor 2, Col1A, and osteopontin exhibited a dynamic pattern similar to control cells

  13. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    International Nuclear Information System (INIS)

    Brady, Robert T.; O'Brien, Fergal J.; Hoey, David A.

    2015-01-01

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  14. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Robert T. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); O' Brien, Fergal J. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Hoey, David A., E-mail: david.hoey@ul.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); The Centre for Applied Biomedical Engineering Research, University of Limerick (Ireland); Materials & Surface Science Institute, University of Limerick (Ireland)

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  15. Bone marrow stromal cells spontaneously produce Flt3-ligand: influence of ionizing radiations and cytokine stimulation.

    Science.gov (United States)

    Bertho, Jean Marc; Demarquay, Christelle; Mouiseddine, Moubarak; Douenat, Noémie; Stefani, Johanna; Prat, Marie; Paquet, François

    2008-08-01

    To define the ability of human bone marrow (BM) stromal cells to produce fms-like tyrosine kinase 3 (Flt3)-ligand (FL), and the effect of irradiation, tumour necrosis factor-alpha (TNFalpha) or tumour growth factor beta (TGFbeta) on FL production. Primary BM stromal cell cultures were irradiated at 2-10 Gy or were stimulated with TNFalpha or TGFbeta1. The presence of FL was tested in culture supernatants and in cell lysate. The presence of a membrane-bound form of FL and the level of gene expression were also tested. Primary BM stromal cells spontaneously released FL. This production was increased by TNFalpha but not by TGFbeta1 or by irradiation. Chemical induction of osteoblastic differentiation from BM stromal cells also induced an increase in FL release. Our results suggest that the observed increase in FL concentration after in vivo irradiation is an indirect effect. The possible implication of BM stromal cells in these mechanisms is discussed.

  16. TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion.

    Directory of Open Access Journals (Sweden)

    Agathe Oulidi

    Full Text Available Adrenomedullin (AM is a 52-amino acid peptide initially isolated from human pheochromocytoma. AM is expressed in a variety of malignant tissues and cancer cell lines and was shown to be a mitogenic factor capable of stimulating growth of several cancer cell types. In addition, AM is a survival factor for certain cancer cells. Some data suggest that AM might be involved in the progression cancer metastasis via angiogenesis and cell migration and invasion control. The Transient Receptor Potential channel TRPV2 is known to promote in prostate cancer cell migration and invasive phenotype and is correlated with the stage and grade of bladder cancer. In this work we show that AM induces prostate and urothelial cancer cell migration and invasion through TRPV2 translocation to plasma membrane and the subsequent increase in resting calcium level.

  17. Stimulation of phosphatidylcholine breakdown and diacylglycerol production by growth factors in Swiss-3T3 cells.

    Science.gov (United States)

    Price, B D; Morris, J D; Hall, A

    1989-01-01

    The effect of a number of growth factors on phosphatidylcholine (PtdCho) turnover in Swiss-3T3 cells was studied. Phorbol 12-myristate 13-acetate (PMA), bombesin, platelet-derived growth factor (PDGF) and vasopressin rapidly stimulated PtdCho hydrolysis, diacylglycerol (DAG) production, and PtdCho synthesis. Insulin and prostaglandin F2 alpha (PGF2 alpha) stimulated PtdCho synthesis, but not its breakdown, whereas epidermal growth factor (EGF) and bradykinin were without effect. Stimulation of PtdCho hydrolysis by the above ligands resulted in increased production of phosphocholine and DAG (due to phospholipase C activity) and significant amounts of choline, suggesting activation of a phospholipase D as well. CDP-choline and glycerophosphocholine levels were unchanged. Down-regulation of protein kinase C with PMA (400 nM, 40 h) abolished the stimulation of PtdCho hydrolysis and PtdCho synthesis by PMA, bombesin, PDGF and vasopressin, but not the stimulation of PtdCho synthesis by insulin and PGF2 alpha. PtdCho hydrolysis therefore occurs predominantly by activation of protein kinase C (either by PMA or PtdIns hydrolysis) leading to elevation of DAG levels derived from non-PtdIns(4,5)P2 sources. PtdCho synthesis occurs by both a protein kinase C-dependent pathway (stimulated by PMA, PDGF, bombesin and vasopressin) and a protein kinase C-independent pathway (stimulated by insulin and PGF2 alpha). DAG production from PtdCho hydrolysis is not the primary signal to activate protein kinase C, but may contribute to long-term activation of this kinase. PMID:2690829

  18. Oxygen sensitivity of potassium- and angiotensin II-stimulated aldosterone release by bovine adrenal cells.

    Science.gov (United States)

    Brickner, R C; Raff, H

    1991-04-01

    Angiotensin II (AII) and extracellular K+, acting through different intracellular mechanisms, stimulate aldosterone release in a synergistic fashion. We have previously shown that decreases in oxygen (O2) within the physiological range inhibit AII, cyclic AMP (cAMP) and ACTH-stimulated aldosterone release. The present experiment evaluated the effect of various concentrations of O2 on K+-stimulated aldosterone release in the presence and absence of AII. Dispersed bovine adrenal glomerulosa cells were incubated with different concentrations of K+ (0.9-5.4 mmol/l) without and with AII (10 nmol/l) under different concentrations of O2 (0, 5 or 50%); 21% O2 (pO2 = 19.9 +/- 0.5 kPa,n = 9) was used as reference control for comparison. In all cases, increases in K+ stimulated aldosterone release, an effect augmented by AII. Under 0% O2 (pO2 = 8.1 +/- 0.3 kPa, n = 3) and 5% O2 (pO2 = 12.8 +/- 0.5 kPa, n = 3), aldosterone release stimulated by K+ or K+/AII was significantly inhibited compared with that under 21% O2. Conversely, under 50% O2 (pO2 = 36.3 +/- 2.5 kPa, n = 3), aldosterone release stimulated by K+ or K+/AII was significantly augmented. Cortisol secretion was not significantly affected by 5% or 50% O2 but was significantly decreased under 0% O2. The effect of O2 on K+/AII stimulation of aldosterone release, as well as previous experiments with cAMP, progesterone and ACTH, suggest a final common post-receptor oxygen-sensitive component of the aldosterone synthetic pathway. It is suggested that one or more enzymes in the aldosterone synthetic pathway is/are exquisitely sensitive to small changes in O2 within the physiological range.

  19. Suppression of DHT-induced paracrine stimulation of endothelial cell growth by estrogens via prostate cancer cells.

    Science.gov (United States)

    Wen, Juan; Zhao, Yuan; Li, Jinghe; Weng, Chunyan; Cai, Jingjing; Yang, Kan; Yuan, Hong; Imperato-McGinley, Julianne; Zhu, Yuan-Shan

    2013-07-01

    Androgen modulation of angiogenesis in prostate cancer may be not directly mediated by androgen receptor (AR) as AR is not detected in the prostatic endothelial cells. We examined the paracrine stimulation of cell proliferation by prostate tumor cells and its modulation by androgen and estrogens in a murine endothelial cell line (MEC) that does not express AR. Tumor cell conditioned media (TCM) collected from LAPC-4 or LNCaP prostatic tumor cells produced a time- and concentration-dependent induction of cell growth in MECs, which was parallel to the VEGF concentration in the TCM. This TCM-induced cell growth in MECs was enhanced by the treatment of prostatic tumor cells with dihydrotestosterone (DHT). Both the TCM-stimulation and DHT-enhancement effects in MECs were completely blocked by SU5416, a specific VEGF receptor antagonist. Co-administration of 17α-estradiol or 17β-estradiol with DHT in prostatic tumor cells completely inhibited the DHT-enhancement effect while treatment with DHT, 17α-estradiol or 17β-estradiol did not produce any significant direct effect in MECs. Moreover, administration of 17α-estradiol or 17β-estradiol in xenograft animals with LAPC-4 or LNCaP prostate tumor significantly decreased the microvessel number in the tumor tissues. Our study indicated that prostate tumor cells regulate endothelial cell growth through a paracrine mechanism, which is mainly mediated by VEGF; and DHT is able to modulate endothelial cell growth via tumor cells, which is inhibited by 17α-estradiol and 17β-estradiol. Thus, both17α-estradiol and 17β-estradiol are potential agents for anti-angiogenesis therapy in androgen-responsive prostate cancer. Copyright © 2013 Wiley Periodicals, Inc.

  20. Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells

    Directory of Open Access Journals (Sweden)

    Avery S. Walker

    2010-01-01

    Full Text Available Embryonic neuroepithelia and adult subventricular zone (SVZ stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes.

  1. Just-in-time rescue plerixafor in combination with chemotherapy and granulocyte-colony stimulating factor for peripheral blood progenitor cell mobilization.

    Science.gov (United States)

    Smith, Veronica R; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra

    2013-09-01

    Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin's and non-Hodgkin's) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but one patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 10(6) /kg of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 10(6) /kg of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 10(6) /kg of body weight. Plerixafor was well tolerated; no grade 2 or higher non-hematologic toxic effects were observed. Copyright © 2013 Wiley Periodicals, Inc.

  2. Curcumin suppresses growth of mesothelioma cells in vitro and in vivo, in part, by stimulating apoptosis.

    Science.gov (United States)

    Wang, Ying; Rishi, Arun K; Wu, Wenjuan; Polin, Lisa; Sharma, Sunita; Levi, Edi; Albelda, Steven; Pass, Harvey I; Wali, Anil

    2011-11-01

    Malignant pleural mesothelioma (MPM) is an aggressive, asbestos-related malignancy of the thoracic pleura. Although, platinum-based agents are the first line of therapy, there is an urgent need for second-line therapies to treat the drug-resistant MPM. Cell cycle as well as apoptosis pathways are frequently altered in MPM and thus remain attractive targets for intervention strategies. Curcumin, the major component in the spice turmeric, alone or in combination with other chemotherapeutics has been under investigation for a number of cancers. In this study, we investigated the biological and molecular responses of MPM cells to curcumin treatments and the mechanisms involved. Flow-cytometric analyses coupled with western immunoblotting and gene-array analyses were conducted to determine mechanisms of curcumin-dependent growth suppression of human (H2373, H2452, H2461, and H226) and murine (AB12) MPM cells. Curcumin inhibited MPM cell growth in a dose- and time-dependent manner while pretreatment of MPM cells with curcumin enhanced cisplatin efficacy. Curcumin activated the stress-activated p38 kinase, caspases 9 and 3, caused elevated levels of proapoptotic proteins Bax, stimulated PARP cleavage, and apoptosis. In addition, curcumin treatments stimulated expression of novel transducers of cell growth suppression such as CARP-1, XAF1, and SULF1 proteins. Oral administration of curcumin inhibited growth of murine MPM cell-derived tumors in vivo in part by stimulating apoptosis. Thus, curcumin targets cell cycle and promotes apoptosis to suppress MPM growth in vitro and in vivo. Our studies provide a proof-of-principle rationale for further in-depth analysis of MPM growth suppression mechanisms and their future exploitation in effective management of resistant MPM.

  3. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  4. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    International Nuclear Information System (INIS)

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-01-01

    Highlights: ► Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. ► Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. ► Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers – this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding

  5. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  6. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Sahba Mobini

    2017-01-01

    Full Text Available Background Electrical stimulation (ES has been successfully used to treat bone defects clinically. Recently, both cellular and molecular approaches have demonstrated that ES can change cell behavior such as migration, proliferation and differentiation. Methods In the present study we exposed rat bone marrow- (BM- and adipose tissue- (AT- derived mesenchymal stem cells (MSCs to direct current electrical stimulation (DC ES and assessed temporal changes in osteogenic differentiation. We applied 100 mV/mm of DC ES for 1 h per day for three, seven and 14 days to cells cultivated in osteogenic differentiation medium and assessed viability and calcium deposition at the different time points. In addition, expression of osteogenic genes, Runx2, Osteopontin, and Col1A2 was assessed in BM- and AT-derived MSCs at the different time points. Results Results showed that ES changed osteogenic gene expression patterns in both BM- and AT-MSCs, and these changes differed between the two groups. In BM-MSCs, ES caused a significant increase in mRNA levels of Runx2, Osteopontin and Col1A2 at day 7, while in AT-MSCs, the increase in Runx2 and Osteopontin expression were observed after 14 days of ES. Discussion This study shows that rat bone marrow- and adipose tissue-derived stem cells react differently to electrical stimuli, an observation that could be important for application of electrical stimulation in tissue engineering.

  7. Questiomycin A stimulates sorafenib-induced cell death via suppression of glucose-regulated protein 78.

    Science.gov (United States)

    Machihara, Kayo; Tanaka, Hidenori; Hayashi, Yoshihiro; Murakami, Ichiro; Namba, Takushi

    2017-10-07

    Hepatocellular carcinoma (HCC) is one of the most difficult cancers to treat owing to the lack of effective chemotherapeutic methods. Sorafenib, the first-line and only available treatment for HCC, extends patient overall survival by several months, with a response rate below 10%. Thus, the identification of an agent that enhances the anticancer effect of sorafenib is critical for the development of therapeutic options for HCC. Endoplasmic reticulum (ER) stress response is one of the methods of sorafenib-induced cell death. Here we report that questiomycin A suppresses expression of GRP78, a cell-protective ER chaperone protein. Analysis of the molecular mechanisms of questiomycin A revealed that this compound stimulated GRP78 protein degradation in an ER stress response-independent manner. Cotreatment with sorafenib and questiomycin A suppressed GRP78 protein expression, which is essential for the stimulation of sorafenib-induced cell death. Moreover, our in vivo study demonstrated that the coadministration of sorafenib and questiomycin A suppressed tumor formation in HCC-induced xenograft models. These results suggest that cotreatment with sorafenib and questiomycin A is a novel therapeutic strategy for HCC by enhancing sorafenib-dependent ER stress-induced cell death, and downregulation of GRP78 is a new target for the stimulation of the therapeutic effects of sorafenib in HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [Inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide-stimulated human mast cells].

    Science.gov (United States)

    Zhou, Yun-jiang; Wang, Hu; Li, Li; Sui, He-huan; Huang, Jia-jun

    2015-06-01

    This study is to investigate the inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide(LPS)-stimulated HMC-1 mast cells. The cytotoxicity of kaempferol to HMC-1 mast cells were analyzed by using MTT assay and then the administration concentrations of kaempferol were established. Histamine, IL-6, IL-8, IL-1β and TNF-α were measured using ELISA assay in activated HMC-1 mast cells after incubation with various concentrations of kaempferol (10, 20 and 40 µmol.L-1). Western blot was used to test the protein expression of p-IKKβ, IκBα, p-IκBα and nucleus NF-κB of LPS-induced HMC-1 mast cells after incubation with different concentrations of kaempferol. The optimal concentrations of kaempferol were defined as the range from 5 µmol.L-1 to 40 µmol.L-1. Kaempferol significantly decreased the release of histamine, IL-6, IL-8, IL-1β and TNF-α of activated HMC-1 mast cells (Pkaempferol, the protein expression of p-IKKβ, p-IKBa and nucleus NF-κB (p65) markedly reduced in LPS-stimulated HMC-1 mast cells (Pkaempferol markedly inhibit mast cell-mediated inflammatory response. At the same time, kaempferol can inhibit the activation of IKKβ, block the phosphorylation of IκBα, prevent NF-KB entering into the nucleus, and then decrease the release of inflammatory mediators.

  9. Identification of a B cell-dependent subpopulation of multiple sclerosis by measurements of brain-reactive B cells in the blood.

    Science.gov (United States)

    Kuerten, Stefanie; Pommerschein, Giovanna; Barth, Stefanie K; Hohmann, Christopher; Milles, Bianca; Sammer, Fabian W; Duffy, Cathrina E; Wunsch, Marie; Rovituso, Damiano M; Schroeter, Michael; Addicks, Klaus; Kaiser, Claudia C; Lehmann, Paul V

    2014-01-01

    B cells are increasingly coming into play in the pathogenesis of multiple sclerosis (MS). Here, we screened peripheral blood mononuclear cells (PBMC) from patients with clinically isolated syndrome (CIS), MS, other non-inflammatory neurological, inflammatory neurological or autoimmune diseases, and healthy donors for their B cell reactivity to CNS antigen using the enzyme-linked immunospot technique (ELISPOT) after 96 h of polyclonal stimulation. Our data show that nine of 15 patients with CIS (60.0%) and 53 of 67 patients with definite MS (79.1%) displayed CNS-reactive B cells, compared to none of the control donors. The presence of CNS-reactive B cells in the blood of the majority of patients with MS or at risk to develop MS along with their absence in control subjects suggests that they might be indicative of a B cell-dependent subpopulation of the disease. Copyright © 2014. Published by Elsevier Inc.

  10. Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea.

    Science.gov (United States)

    Takeda-Nakazawa, Hiroko; Harada, Narinobu; Shen, Jing; Kubo, Nobuo; Zenner, Hans-Peter; Yamashita, Toshio

    2007-08-01

    Nitric oxide (NO) production during hyposmotic stimulation in outer hair cells (OHCs) of the guinea pig cochlea was investigated using the NO sensitive dye DAF-2. Simultaneous measurement of the cell length and NO production showed rapid hyposmotic-induced cell swelling to precede NO production in OHCs. Hyposmotic stimulation failed to induce NO production in the Ca2+-free solution. L-NG-nitroarginine methyl ester (L-NAME), a non-specific NO synthase inhibitor and gadolinium, a stretch-activated channel blocker inhibited the hyposmotic stimulation-induced NO production whereas suramin, a P2 receptor antagonist did not. S-nitroso-N-acetylpenicillamine (SNAP), a NO donor inhibited the hyposmotic stimulation-induced increase in the intracellular Ca2+ concentrations ([Ca2+]i) while L-NAME enhanced it. 1H-[1,2,4]oxadiazole[4,3a]quinoxalin-1-one, an inhibitor of guanylate cyclase and KT5823, an inhibitor of cGMP-dependent protein kinase (PKG) mimicked effects of L-NAME on the Ca2+ response. Transient receptor potential vanilloid 4 (TRPV4), an osmo- and mechanosensitive channel was expressed in the OHCs by means of immunohistochemistry. 4alpha-phorbol 12,13-didecanoate, a TRPV4 synthetic activator, induced NO production in OHCs. These results suggest that hyposmotic stimulation can induce NO production by the [Ca2+]i increase, which is presumably mediated by the activation of TRPV4 in OHCs. NO conversely inhibits the Ca2+ response via the NO-cGMP-PKG pathway by a feedback mechanism.

  11. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells.

    Directory of Open Access Journals (Sweden)

    Vincent M Bruno

    2009-08-01

    Full Text Available Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP kinase and NF-kappaB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies.

  12. DNA methyltransferase mediates dose-dependent stimulation of neural stem cell proliferation by folate.

    Science.gov (United States)

    Li, Wen; Yu, Min; Luo, Suhui; Liu, Huan; Gao, Yuxia; Wilson, John X; Huang, Guowei

    2013-07-01

    The proliferative response of neural stem cells (NSCs) to folate may play a critical role in the development, function and repair of the central nervous system. It is important to determine the dose-dependent effects of folate in NSC cultures that are potential sources of transplantable cells for therapies for neurodegenerative diseases. To determine the optimal concentration and mechanism of action of folate for stimulation of NSC proliferation in vitro, NSCs were exposed to folic acid or 5-methyltetrahydrofolate (5-MTHF) (0-200 μmol/L) for 24, 48 or 72 h. Immunocytochemistry and methyl thiazolyl tetrazolium assay showed that the optimal concentration of folic acid for NSC proliferation was 20-40 μmol/L. Stimulation of NSC proliferation by folic acid was associated with DNA methyltransferase (DNMT) activation and was attenuated by the DNMT inhibitor zebularine, which implies that folate dose-dependently stimulates NSC proliferation through a DNMT-dependent mechanism. Based on these new findings and previously published evidence, we have identified a mechanism by which folate stimulates NSC growth. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Yuji Mishima

    2017-04-01

    Full Text Available The development of sensitive and non-invasive “liquid biopsies” presents new opportunities for longitudinal monitoring of tumor dissemination and clonal evolution. The number of circulating tumor cells (CTCs is prognostic in multiple myeloma (MM, but there is little information on their genetic features. Here, we have analyzed the genomic landscape of CTCs from 29 MM patients, including eight cases with matched/paired bone marrow (BM tumor cells. Our results show that 100% of clonal mutations in patient BM were detected in CTCs and that 99% of clonal mutations in CTCs were present in BM MM. These include typical driver mutations in MM such as in KRAS, NRAS, or BRAF. These data suggest that BM and CTC samples have similar clonal structures, as discordances between the two were restricted to subclonal mutations. Accordingly, our results pave the way for potentially less invasive mutation screening of MM patients through characterization of CTCs.

  14. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells.

    Science.gov (United States)

    Fernández-Sánchez, Marcela; del Castillo-Vaquero, Angel; Salido, Ginés M; González, Antonio

    2009-10-30

    A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 microM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.

  15. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells

    Directory of Open Access Journals (Sweden)

    Salido Ginés M

    2009-10-01

    Full Text Available Abstract Background A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Results Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 μM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. Conclusion ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.

  16. Aloin Inhibits Interleukin (IL)-1β-Stimulated IL-8 Production in KB Cells.

    Science.gov (United States)

    Na, Hee Sam; Song, Yu Ri; Kim, Seyeon; Heo, Jun-Young; Chung, Hae-Young; Chung, Jin

    2016-06-01

    Interleukin (IL)-1β, which is elevated in oral diseases including gingivitis, stimulates epithelial cells to produce IL-8 and perpetuate inflammatory responses. This study investigates stimulatory effects of salivary IL-1β in IL-8 production and determines if aloin inhibits IL-1β-stimulated IL-8 production in epithelial cells. Saliva was collected from volunteers to determine IL-1β and IL-8 levels. Samples from volunteers were divided into two groups: those with low and those with high IL-1β levels. KB cells were stimulated with IL-1β or saliva with or without IL-1 receptor agonist or specific mitogen-activated protein kinase (MAPK) inhibitors. IL-8 production was measured by enzyme-linked immunosorbent assay (ELISA). MAPK protein expression involved in IL-1β-induced IL-8 secretion was detected by Western blot. KB cells were pretreated with aloin, and its effect on IL-1β-induced IL-8 production was examined by ELISA and Western blot analysis. Saliva with high IL-1β strongly stimulated IL-8 production in KB cells, and IL-1 receptor agonist significantly inhibited IL-8 production. Low IL-1β-containing saliva did not increase IL-8 production. IL-1β treatment of KB cells induced activation of MAPK signaling molecules as well as nuclear factor-kappa B. IL-1β-induced IL-8 production was decreased by p38 and extracellular signal-regulated kinase (ERK) inhibitor treatment. Aloin pretreatment inhibited IL-1β-induced IL-8 production in a dose-dependent manner and inhibited activation of the p38 and ERK signaling pathway. Finally, aloin pretreatment also inhibited saliva-induced IL-8 production. Results indicated that IL-1β in saliva stimulates epithelial cells to produce IL-8 and that aloin effectively inhibits salivary IL-1β-induced IL-8 production by mitigating the p38 and ERK pathway. Therefore, aloin may be a good candidate for modulating oral inflammatory diseases.

  17. Electrical Stimulation Elicit Neural Stem Cells Activation:New Perspectives in CNS Repair

    Directory of Open Access Journals (Sweden)

    Ratrel eHuang

    2015-10-01

    Full Text Available Researchers are enthusiastically concerned about neural stem cell (NSC therapy in a wide array of diseases, including stroke, neurodegenerative disease, spinal cord injury (SCI and depression. Although enormous evidences have demonstrated that neurobehavioral improvement may benefit from NSC-supporting regeneration in animal models, approaches to endogenous and transplanted NSCs are blocked by hurdles of migration, proliferation, maturation and integration of NSCs. Electrical stimulation (ES may be a selective nondrug approach for mobilizing NSCs in the central nervous system (CNS. This technique is suitable for clinic application, because it is well established and its potential complications are manageable. Here, we provide a comprehensive review of the emerging positive role of different electrical cues in regulating NSC biology in vitro and in vivo, as well as biomaterial-based and chemical stimulation of NSCs. In the future, ES combined with stem cell therapy or other cues probably becomes an approach for promoting brain repair.

  18. The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production

    DEFF Research Database (Denmark)

    Tinning, Anne Robdrup; Jensen, Boye L; Schweda, Frank

    2014-01-01

    Processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin-1 (AQP-1) contributes directly to recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and (+/+) mice were fed a low NaCl diet (LS...... to baseline with no difference between genotypes. Plasma nitrite/nitrate concentration was unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared to (+/+) after LS-ACEI. It is concluded that aquaporin-1 is not necessary...... for acutely stimulated renin secretion in vivo and from isolated perfused kidney, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice....

  19. Melanogenesis stimulation in murine B16 melanoma cells by Kava (Piper methysticum) rhizome extract and kavalactones.

    Science.gov (United States)

    Matsuda, Hideaki; Hirata, Noriko; Kawaguchi, Yoshiko; Naruto, Shunsuke; Takata, Takanobu; Oyama, Masayoshi; Iinuma, Munekazu; Kubo, Michinori

    2006-04-01

    Melanogenesis stimulation activity of aqueous ethanolic extracts obtained from several different parts of five Piper species, namely Piper longum, P. kadsura, P. methysticum, P. betle, and P. cubeba, were examined by using cultured murine B16 melanoma cells. Among them, the extract of P. methysticum rhizome (Kava) showed potent stimulatory effect on melanogenesis as well as P. nigrum leaf extract. Activity-guided fractionation of Kava extract led to the isolation of two active kavalactones, yangonin (2) and 7,8-epoxyyangonin (5), along with three inactive kavalactones, 5,6-dehydrokawain (1), (+)-kawain (3) and (+)-methysticin (4), and a glucosylsterol, daucosterin (6). 7,8-Epoxyyangonin (5) showed a significant stimulatory effect on melanogenesis in B16 melanoma cells. Yangonin (2) exhibited a weak melanogenesis stimulation activity.

  20. Endothelial progenitor cells display clonal restriction in multiple myeloma

    International Nuclear Information System (INIS)

    Braunstein, Marc; Özçelik, Tayfun; Bağişlar, Sevgi; Vakil, Varsha; Smith, Eric LP; Dai, Kezhi; Akyerli, Cemaliye B; Batuman, Olcay A

    2006-01-01

    In multiple myeloma (MM), increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs) contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI) patterns in female patients by a human androgen receptor assay (HUMARA). In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH) gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (V H ). In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele) in 64% (n = 7). In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele). In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with V H primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5) of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status, unlike patients whose EPCs had random XCI

  1. Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea

    Science.gov (United States)

    Lopes, Flavia C. M.; Traina, Fabiola; Almeida, Camila B.; Leonardo, Flavia C.; Franco-Penteado, Carla F.; Garrido, Vanessa T.; Colella, Marina P.; Soares, Raquel; Olalla-Saad, Sara T.; Costa, Fernando F.; Conran, Nicola

    2015-01-01

    As hypoxia-induced inflammatory angiogenesis may contribute to the manifestations of sickle cell disease, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from patients with steady-state sickle cell anemia contained elevated concentrations of pro-angiogenic factors (angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly increasing endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice than in non-sickle cell disease mice, consistent with an up-regulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy had a pro-angiogenic profile and more significant effects on endothelial cell proliferation and capillary formation than plasma from patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factors and inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, individuals with sickle cell anemia or hemoglobin SC disease with retinopathy present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy to prevent the progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the

  2. Interleukin-8 stimulates progesterone production via the MEK pathway in ovarian theca cells.

    Science.gov (United States)

    Shimizu, Takashi; Imamura, Eri; Magata, Fumie; Murayama, Chiaki; Miyamoto, Akio

    2013-02-01

    Interleukin 8 (IL-8) is a chemoattractant associated with ovulation in the mammalian ovary. This chemokine is also involved in the recruitment and activation of neutrophils. Using bovine tissue, we examined the possible role of IL-8 in steroid production by theca cells of the large ovarian follicles. IL-8 promoted progesterone production and stimulated StAR expression in cultured theca cells. The inhibitor of p38 did not disturb the P4 production and StAR expression in IL-8-treated theca cells. On the other hand, the inhibitor of MEK disturbed the P4 production and expression of StAR in theca cells treated with IL-8. These results suggest that IL-8 is associated with progesterone production in bovine theca cells via the MEK pathway.

  3. Mechanism of the melanogenesis stimulation activity of (-)-cubebin in murine B16 melanoma cells.

    Science.gov (United States)

    Hirata, Noriko; Naruto, Shunsuke; Ohguchi, Kenji; Akao, Yukihiro; Nozawa, Yoshinori; Iinuma, Munekazu; Matsuda, Hideaki

    2007-07-15

    (-)-Cubebin showed a melanogenesis stimulation activity in a concentration-dependent manner in murine B16 melanoma cells without any significant effects on cell proliferation. Tyrosinase activity was increased at 24-72 h after addition of cubebin to B16 cells, and then intracellular melanin amount was increased at 48-96 h after the treatment. The expression levels of tyrosinase were time-dependently enhanced after the treatment with cubebin. At the same time, the expression levels of tyrosinase mRNA were also increased after addition of cubebin. Furthermore Western blot analysis revealed that cubebin elevated the level of phosphorylation of p38 mitogen-activated protein kinase (MAPK). SB203580, a selective inhibitor of p38 MAPK, completely blocked cubebin-induced expression of tyrosinase mRNA in B16 cells. These results suggested that cubebin increased melanogenesis in B16 cells through the enhancement of tyrosinase expression mediated by activation of p38 MAPK.

  4. Identification of IFN-gamma-producing CD4+ T cells following PMA stimulation

    DEFF Research Database (Denmark)

    Kemp, K; Bruunsgaard, H

    2001-01-01

    Treatment of T cells with phorbol esters, such as phorbol myristate acetate (PMA), induces downregulation of CD4, making unambiguous identification of this subset difficult. In this study, the kinetics of intracellular expression of interferon-gamma (IFN-gamma) and downmodulation of surface CD4...... were measured in peripheral blood mononuclear cells (PBMC) after PMA stimulation. The number of IFN-gamma-producing cells increased within a 4-h period while the fluorescence intensity of the CD4(+) cell population decreased, and the two phenomena were correlated (n = 9; p = 0.01). Our data suggest...... that intracellular staining of CD4 together with cytokine staining will make identification of CD4(+) cells possible and facilitate the procedure of intracellular staining of cytokines....

  5. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Detection and Characterization of Circulating Tumour Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Liangxuan Zhang

    2016-06-01

    Full Text Available Multiple myeloma (MM remains an incurable disease despite recent therapeutic improvements. The ability to detect and characterize MM circulating tumour cells (CTCs in peripheral blood provides an alternative to replace or augment invasive bone marrow (BM biopsies with a simple blood draw, providing real-time, clinically relevant information leading to improved disease manage‐ ment and therapy selection. Here we have developed and qualified an enrichment-free, cell-based immunofluores‐ cence MM CTC assay that utilizes an automated digital pathology algorithm to distinguish MM CTCs from white blood cells (WBCs on the basis of CD138 and CD45 expression levels, as well as a number of morphological parameters. These MM CTCs were further characterized for expression of phospho-ribosomal protein S6 (pS6 as a readout for PI3K/AKT pathway activation. Clinical feasi‐ bility of the assay was established by testing blood samples from a small cohort of patients, where we detected popu‐ lations of both CD138pos and CD138neg MM CTCs. In this study, we developed an immunofluorescent cell-based assay to detect and characterize CTCs in MM.

  7. Detection and Characterization of Circulating Tumour Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Liangxuan Zhang

    2016-01-01

    Full Text Available Multiple myeloma (MM remains an incurable disease despite recent therapeutic improvements. The ability to detect and characterize MM circulating tumour cells (CTCs in peripheral blood provides an alternative to replace or augment invasive bone marrow (BM biopsies with a simple blood draw, providing real-time, clinically relevant information leading to improved disease management and therapy selection. Here we have developed and qualified an enrichment-free, cell-based immunofluorescence MM CTC assay that utilizes an automated digital pathology algorithm to distinguish MM CTCs from white blood cells (WBCs on the basis of CD138 and CD45 expression levels, as well as a number of morphological parameters. These MM CTCs were further characterized for expression of phospho-ribosomal protein S6 (pS6 as a readout for PI3K/AKT pathway activation. Clinical feasibility of the assay was established by testing blood samples from a small cohort of patients, where we detected populations of both CD138 pos and CD138 neg MM CTCs. In this study, we developed an immunofluorescent cell-based assay to detect and characterize CTCs in MM.

  8. Increased biological activity of deglycosylated recombinant human granulocyte/macrophage colony-stimulating factor produced by yeast or animal cells

    International Nuclear Information System (INIS)

    Moonen, P.; Mermod, J.J.; Ernst, J.F.; Hirschi, M.; DeLamarter, J.F.

    1987-01-01

    Human granulocyte/macrophage colony-stimulating factor (hGM-CSF) produced by several recombinant sources including Escherichia coli, yeast, and animal cells was studied. Recombinant animal cells produced hGM-CSF in low quantities and in multiple forms of varying size. Mammalian hGM-CSF was purified 200,000-fold using immunoaffinity and lectin chromatography. Partially purified proteins produced in yeast and mammalian cells were assayed for the effects of deglycosylation. Following enzymatic deglycosylation, immunoreactivity was measured by radioimmunoassay and biological activity was measured in vitro on responsive human primary cells. Removal of N-linked oligosaccharides from both proteins increased their immunoreactivities by 4- to 8-fold. Removal of these oligosaccharides also increased their specific biological activities about 20-fold, to reach approximately the specific activity of recombinant hGM-CSF from E. coli. The E. coli produced-protein-lacking any carbohydrate- had by far the highest specific activity observed for the recombinant hGM-CSFs

  9. Multiple squamous cell carcinomas within the head and neck region

    International Nuclear Information System (INIS)

    Sato, Katsuro; Hanazawa, Hideyuki; Sato, Yuichiro; Takahashi, Sugata

    2004-01-01

    Clinical features of multiple squamous cell carcinoma (SCC) cases within the head and neck that were treated in our department during the recent 10 years are discussed. Multiple SCCs arose in 6.6% of the cases with primary SCC; 67% of the cases had two carcinomas, and 33% had more than three carcinomas. The most common site of the multiple SCCs was the oral cavity (54%). The most frequent interval between treatment of previous carcinoma and diagnosis of subsequent carcinoma was simultaneous, but more than 5 years' interval was observed in 36% of the patients. The most common initial treatment of the carcinoma was irradiation, but the ratio of surgery increased for subsequent carcinomas. Prognosis of the patients with more than three carcinomas was not worse than that of patients with two carcinomas. Therefore, early diagnosis of the subsequent carcinomas based on careful long-term observation in the head and neck is necessary for follow-up of the patients with SCC of the head and neck. Treatment strategies considering the treatment of subsequent carcinomas are needed for the patients with primary head and neck SCC. (author)

  10. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    International Nuclear Information System (INIS)

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S.

    2007-01-01

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling

  11. IL-8 and MCP Gene Expression and Production by LPS-Stimulated Human Corneal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Roni M. Shtein

    2012-01-01

    Full Text Available Purpose. To determine time course of effect of lipopolysaccharide (LPS on production of interleukin-8 (IL-8 and monocyte chemotactic protein (MCP by cultured human corneal stromal cells. Methods. Human corneal stromal cells were harvested from donor corneal specimens, and fourth to sixth passaged cells were used. Cell cultures were stimulated with LPS for 2, 4, 8, and 24 hours. Northern blot analysis of IL-8 and MCP gene expression and ELISA for IL-8 and MCP secretion were performed. ELISA results were analyzed for statistical significance using two-tailed Student's t-test. Results. Northern blot analysis demonstrated significantly increased IL-8 and MCP gene expression after 4 and 8 hours of exposure to LPS. ELISA for secreted IL-8 and MCP demonstrated statistically significant increases (P<0.05 after corneal stromal cell stimulation with LPS. Conclusions. This paper suggests that human corneal stromal cells may participate in corneal inflammation by secreting potent leukocyte chemotactic and activating proteins in a time-dependent manner when exposed to LPS.

  12. Enhancement of cell-cell contact by a nonmitogenic lectin increases blastogenic response and IL-2 release by mitogen-stimulated mouse thymocytes.

    Science.gov (United States)

    Favero, J; Marti, J; Dornand, J; Bonnafous, J C; Mani, J C

    1986-03-01

    We have examined the influence of peanut agglutinin (PNA), a lectin which agglutinates but does not stimulate mouse thymocytes, on the responsiveness of these cells to concanavalin A (Con A) or galactose oxidase stimulation. Binding low amounts of PNA on unseparated mouse thymocytes pretreated with neuraminidase highly enhances the mitogenic response and the level of interleukin 2 release in the culture medium upon Con A stimulation. We have shown that PNA present on the cell surface acts as a crosslinking agent which favors intercellular binding between accessory cells (macrophages) and thymocytes, leading through this enhanced cooperation by cell-cell contact to an enhanced blastogenic response.

  13. Superoxide generation is diminished during glucose-stimulated insulin secretion in INS-1E cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Hlavatá, Lydie; Špaček, Tomáš

    2008-01-01

    Roč. 275, Suppl.1 (2008), s. 310-310 ISSN 1742-464X. [FEBS Congress /33./ and IUBMB Conference /11./. 28.06.2008-03.07.2008, Athens] R&D Projects: GA MZd(CZ) NR7917; GA AV ČR(CZ) IAA500110701 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * superoxide production * glucose-stimulated insulin secretion * INS-1E cells Subject RIV: ED - Physiology

  14. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors

    OpenAIRE

    Hyuck Joon Kwon; Gyu Seok Lee; Honggu Chun

    2016-01-01

    Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels...

  15. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis.

    Science.gov (United States)

    Chen, Dong-Bao; Feng, Lin; Hodges, Jennifer K; Lechuga, Thomas J; Zhang, Honghai

    2017-09-01

    Endogenous hydrogen sulfide (H2S), mainly synthesized by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), has been implicated in regulating placental angiogenesis; however, the underlying mechanisms are unknown. This study was to test a hypothesis that trophoblasts synthesize H2S to promote placental angiogenesis. Human choriocarcinoma-derived BeWo cells expressed both CBS and CTH proteins, while the first trimester villous trophoblast-originated HTR-8/SVneo cells expressed CTH protein only. The H2S producing ability of BeWo cells was significantly inhibited by either inhibitors of CBS (carboxymethyl hydroxylamine hemihydrochloride, CHH) or CTH (β-cyano-L-alanine, BCA) and that in HTR-8/SVneo cells was inhibited by CHH only. H2S donors stimulated cell proliferation, migration, and tube formation in ovine placental artery endothelial cells (oFPAECs) as effectively as vascular endothelial growth factor. Co-culture with BeWo and HTR-8/SVneo cells stimulated oFPAEC migration, which was inhibited by CHH or BCA in BeWo but CHH only in HTR-8/SVneo cells. Primary human villous trophoblasts (HVT) were more potent than trophoblast cell lines in stimulating oFPAEC migration that was inhibited by CHH and CHH/BCA combination in accordance with its H2S synthesizing activity linked to CBS and CTH expression patterns. H2S donors activated endothelial nitric oxide synthase (NOS3), v-AKT murine thymoma viral oncogene homolog 1 (AKT1), and extracellular signal-activated kinase 1/2 (mitogen-activated protein kinase 3/1, MAPK3/1) in oFPAECs. H2S donor-induced NOS3 activation was blocked by AKT1 but not MAPK3/1 inhibition. In keeping with our previous studies showing a crucial role of AKT1, MAPK3/1, and NOS3/NO in placental angiogenesis, these data show that trophoblast-derived endogenous H2S stimulates placental angiogenesis, involving activation of AKT1, NOS3/NO, and MAPK3/1. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study

  16. Role of Piezo Channels in Ultrasound-stimulated Dental Stem Cells.

    Science.gov (United States)

    Gao, Qianhua; Cooper, Paul R; Walmsley, A Damien; Scheven, Ben A

    2017-07-01

    Piezo1 and Piezo2 are mechanosensitive membrane ion channels. We hypothesized that Piezo proteins may play a role in transducing ultrasound-associated mechanical signals and activate downstream mitogen-activated protein kinase (MAPK) signaling processes in dental cells. In this study, the expression and role of Piezo channels were investigated in dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) after treatment with low-intensity pulsed ultrasound (LIPUS). Cell proliferation was evaluated by bromodeoxyuridine incorporation. Western blots were used to analyze the proliferating cell nuclear antigen as well as the transcription factors c-fos and c-jun. Enzyme-linked immunosorbent assay and Western blotting were used to determine the activation of MAPK after LIPUS treatment. Ruthenium red (RR), a Piezo ion channel blocker, was applied to determine the functional role of Piezo proteins in LIPUS-stimulated cell proliferation and MAPK signaling. Western blotting showed the presence of Piezo1 and Piezo2 in both dental cell types. LIPUS treatment significantly increased the level of the Piezo proteins in DPSCs after 24 hours; however, no significant effects were observed in PDLSCs. Treatment with RR significantly inhibited LIPUS-stimulated DPSC proliferation but not PDLSC proliferation. Extracellular signal-related kinase (ERK) 1/2 MAPK was consistently activated in DPSCs over a 24-hour time period after LIPUS exposure, whereas phosphorylated c-Jun N-terminal kinase and p38 mitogen-activated protein kinase MAPK were mainly increased in PDLSCs. RR affected MAPK signaling in both dental cell types with its most prominent effects on ERK1/2/MAPK phosphorylation levels; the significant inhibition of LIPUS-induced stimulation of ERK1/2 activation in DPSCs by RR suggests that stimulation of DPSC proliferation by LIPUS involves Piezo-mediated regulation of ERK1/2 MAPK signaling. This study for the first time supports the role of Piezo ion channels in

  17. Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells

    International Nuclear Information System (INIS)

    Schwalm, Stephanie; Doell, Frauke; Roemer, Isolde; Bubnova, Svetlana; Pfeilschifter, Josef; Huwiler, Andrea

    2008-01-01

    Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1α and HIF-2α, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1α or HIF-2α by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression

  18. Vascular endothelial growth factor A-stimulated signaling from endosomes in primary endothelial cells.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Odell, Adam F; Latham, Antony M; Wheatcroft, Stephen B; Harrison, Michael A; Tomlinson, Darren C; Ponnambalam, Sreenivasan

    2014-01-01

    The vascular endothelial growth factor A (VEGF-A) is a multifunctional cytokine that stimulates blood vessel sprouting, vascular repair, and regeneration. VEGF-A binds to VEGF receptor tyrosine kinases (VEGFRs) and stimulates intracellular signaling leading to changes in vascular physiology. An important aspect of this phenomenon is the spatiotemporal coordination of VEGFR trafficking and intracellular signaling to ensure that VEGFR residence in different organelles is linked to downstream cellular outputs. Here, we describe a series of assays to evaluate the effects of VEGF-A-stimulated intracellular signaling from intracellular compartments such as the endosome-lysosome system. These assays include the initial isolation and characterization of primary human endothelial cells, performing reverse genetics for analyzing protein function; methods used to study receptor trafficking, signaling, and proteolysis; and assays used to measure changes in cell migration, proliferation, and tubulogenesis. Each of these assays has been exemplified with studies performed in our laboratories. In conclusion, we describe necessary techniques for studying the role of VEGF-A in endothelial cell function. © 2014 Elsevier Inc. All rights reserved.

  19. Circulating CD4+CXCR5+ T cells contribute to proinflammatory responses in multiple ways in coronary artery disease.

    Science.gov (United States)

    Ding, Ru; Gao, Wenwu; He, Zhiqing; Wu, Feng; Chu, Yang; Wu, Jie; Ma, Lan; Liang, Chun

    2017-11-01

    Coronary artery disease (CAD) is a common subtype of cardiovascular disease. The major contributing event is atherosclerosis, which is a progressive inflammatory condition resulting in the thickening of the arterial wall and the formation of atheromatous plaques. Recent evidence suggests that circulating CD4 + CXCR5 + T cells can contribute to inflammatory reactions. In this study, the frequency, phenotype, and function of circulating CD4 + CXCR5 + T cells in CAD patients were examined. Data showed that circulating CD4 + CXCR5 + T cells in CAD patients were enriched with a PD-1 + CCR7 - subset, which was previously identified as the most potent in B cell help. The CD4 + CXCR5 + T cells in CAD patients also secreted significantly higher levels of IFN-γ, IL-17A, and IL-21 than those from healthy controls. Depleting the PD-1 + population significantly reduced the cytokine secretion. Interestingly, the CD4 + CXCR5 + PD-1 - T cells significantly upregulated PD-1 following anti-CD3/CD28 or SEB stimulation. CD4 + CXCR5 + T cells from CAD patients also demonstrated more potent capacity to stimulate B cell inflammation than those from healthy individuals. The phosphorylation of STAT1 and STAT3 were significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD than controls. The IL-6 and IFN-γ expression were also significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD. Together, this study demonstrated that CAD patients presented a highly activated CD4 + CXCR5 + T cell subset that could contribute to proinflammatory responses in multiple ways. The possibility of using CD4 + CXCR5 + T cells as a therapeutic target should therefore be examined in CAD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multiple modes of proepicardial cell migration require heartbeat.

    Science.gov (United States)

    Plavicki, Jessica S; Hofsteen, Peter; Yue, Monica S; Lanham, Kevin A; Peterson, Richard E; Heideman, Warren

    2014-05-15

    The outermost layer of the vertebrate heart, the epicardium, forms from a cluster of progenitor cells termed the proepicardium (PE). PE cells migrate onto the myocardium to give rise to the epicardium. Impaired epicardial development has been associated with defects in valve development, cardiomyocyte proliferation and alignment, cardiac conduction system maturation and adult heart regeneration. Zebrafish are an excellent model for studying cardiac development and regeneration; however, little is known about how the zebrafish epicardium forms. We report that PE migration occurs through multiple mechanisms and that the zebrafish epicardium is composed of a heterogeneous population of cells. Heterogeneity is first observed within the PE and persists through epicardium formation. Using in vivo imaging, histology and confocal microscopy, we show that PE cells migrate through a cellular bridge that forms between the pericardial mesothelium and the heart. We also observed the formation of PE aggregates on the pericardial surface, which were released into the pericardial cavity. It was previously reported that heartbeat-induced pericardiac fluid advections are necessary for PE cluster formation and subsequent epicardium development. We manipulated heartbeat genetically and pharmacologically and found that PE clusters clearly form in the absence of heartbeat. However, when heartbeat was inhibited the PE failed to migrate to the myocardium and the epicardium did not form. We isolated and cultured hearts with only a few epicardial progenitor cells and found a complete epicardial layer formed. However, pharmacologically inhibiting contraction in culture prevented epicardium formation. Furthermore, we isolated control and silent heart (sih) morpholino (MO) injected hearts prior to epicardium formation (60 hpf) and co-cultured these hearts with "donor" hearts that had an epicardium forming (108 hpf). Epicardial cells from donor hearts migrated on to control but not sih MO

  1. Effect of bionic electrical stimulation on the differentiation of embryonic stem cells into cardiomyocytes in the presence myocardial cells in vitro

    Directory of Open Access Journals (Sweden)

    Li-na ZHENG

    2011-08-01

    Full Text Available Objective To investigate the effects of electrical stimulation on the differentiation of embryonic stem cells(ESCs into cardiomyocytes in the presence of myocardial cells in vitro.Methods ESCs and neonate rat cardiomyocytes were isolated and cultured.These cells of primary culture were divided into 5 groups according to whether or not electric stimulation was given and the presence of cardiomyocytes: control group,stimulation group,cardiomyocytes group,stimulation+ cardiomyocyte conditioned medium group,and stimulation+cardiomyocytes group.Expression of troponin T(cTnT in the differentiated cells from ESCs was examined by immunofluoresence on the 5th,7th and 14th day.Results In the group co-cultured with myocardial cell and electrical stimulation,the differentiating ratio of cardiomyocytes derived from ESCs and expressing cTnT was 40.00%±2.39%,and it was higher than that in control group(2.00%±1.60%,stimulation group(3.00%±2.00%,cardiomyocytes group(28.70%±4.06%,stimulation+cardiomyocyte conditioned medium group(17.10%±2.23%,P < 0.05.Conclusion Bionic electric stimulation promotes the differentiation of ESCs into cardiomyocyte in a microenvironment consisting of myocardial cells.

  2. Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells.

    Science.gov (United States)

    Yu, Zhenlong; Li, Tao; Wang, Chao; Deng, Sa; Zhang, Baojing; Huo, Xiaokui; Zhang, Bo; Wang, Xiaobo; Zhong, Yuping; Ma, Xiaochi

    2016-03-29

    Deciding appropriate therapy for multiple myeloma (MM) is challenging because of the occurrence of multiple chromosomal changes and the fatal nature of the disease. In the current study, gamabufotalin (GBT) was isolated from toad venom, and its tumor-specific cytotoxicity was investigated in human MM cells. We found GBT inhibited cell growth and induced apoptosis with the IC50 values <50 nM. Mechanistic studies using functional approaches identified GBT as an inhibitor of c-Myc. Further analysis showed that GBT especially evoked the ubiquitination and degradation of c-Myc protein, thereby globally repressing the expression of c-Myc target genes. GBT treatment inhibited ERK and AKT signals, while stimulating the activation of JNK cascade. An E3 ubiquitin-protein ligase, WWP2, was upregulated following JNK activation and played an important role in c-Myc ubiquitination and degradation through direct protein-protein interaction. The antitumor effect of GBT was validated in a xenograft mouse model and the suppression of MM-induced osteolysis was verified in a SCID-hu model in vivo. Taken together, our study identified the potential of GBT as a promising therapeutic agent in the treatment of MM.

  3. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    Science.gov (United States)

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts. Copyright © 2016 the American Physiological Society.

  4. HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell.

    Directory of Open Access Journals (Sweden)

    Mikaël Boullé

    2016-11-01

    Full Text Available Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses.

  5. A chemically inert drug can stimulate T cells in vitro by their T cell receptor in non-sensitised individuals

    International Nuclear Information System (INIS)

    Engler, Olivier B.; Strasser, Ingrid; Naisbitt, Dean J.; Cerny, Andreas; Pichler, Werner J.

    2004-01-01

    Drugs can interact with T cell receptors (TCR) after binding to peptide-MHC structures. This binding may involve the formation of a stable, covalent bond between a chemically reactive drug and MHC or the peptide embedded within. Alternatively, if the drug is chemically inert, the binding may be non-covalent and readily reversible. Both types of drug presentation account for a substantial number of adverse side effects to drugs. Presently no tests are available to predict the ability of chemically inert drugs to stimulate an immune response. Here we present data on the successful induction of a primary T cell immune response in vitro against a chemically inert drug using blood from healthy individuals, previously not exposed to the drug. Blood lymphocytes were stimulated by the chemically inert drug sulfamethoxazole and the protein-reactive drug-metabolite sulfamethoxazole-nitroso in the presence of IL-2. 9/10 individuals reacted in response to sulfamethoxazole-nitroso, but only three reacted to the chemically inert compound sulfamethoxazole. Drug reactive T cells could be detected after 14-35 days of cell culture by drug-specific proliferation or cytotoxicity, which was MHC-restricted. These cells were CD4, CD8 positive or CD4/CD8 double positive and T cell clones generated secreted Th0 type cytokines. Drug interaction lead to down-regulation of specific TCR. These data confirm the ability of chemically inert drugs to stimulate certain T cells by their TCR and may provide the opportunity to screen new drugs for their ability to interact with TCRs

  6. Calcium-independent phosphatidylinositol response in gonadotropin-releasing-hormone-stimulated pituitary cells.

    OpenAIRE

    Naor, Z; Molcho, J; Zakut, H; Yavin, E

    1985-01-01

    This paper describes the effect of gonadotropin-releasing hormone (GnRH, gonadoliberin) on phospholipid metabolism in cultured rat pituitary cells. The cells were incubated with [32P]Pi to label endogenous phospholipids (10-60 min) and then stimulated with GnRH for up to 60 min. Cellular phospholipids were separated by two-dimensional t.l.c. and the radioactivity was determined. Phosphatidylinositol (PI), a minor constituent of cellular phospholipids (7.7%), was the major labelled phospholipi...

  7. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery

    Science.gov (United States)

    Hatem, Samar M.; Saussez, Geoffroy; della Faille, Margaux; Prist, Vincent; Zhang, Xue; Dispa, Delphine; Bleyenheuft, Yannick

    2016-01-01

    Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation. PMID:27679565

  8. Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: A review and meta-analysis.

    Science.gov (United States)

    Tedesco Triccas, L; Burridge, J H; Hughes, A M; Pickering, R M; Desikan, M; Rothwell, J C; Verheyden, G

    2016-01-01

    To systematically review the methodology in particular treatment options and outcomes and the effect of multiple sessions of transcranial direct current stimulation (tDCS) with rehabilitation programmes for upper extremity recovery post stroke. A search was conducted for randomised controlled trials involving tDCS and rehabilitation for the upper extremity in stroke. Quality of included studies was analysed using the Modified Downs and Black form. The extent of, and effect of variation in treatment parameters such as anodal, cathodal and bi-hemispheric tDCS on upper extremity outcome measures of impairment and activity were analysed using meta-analysis. Nine studies (371 participants with acute, sub-acute and chronic stroke) were included. Different methodologies of tDCS and upper extremity intervention, outcome measures and timing of assessments were identified. Real tDCS combined with rehabilitation had a small non-significant effect of +0.11 (p=0.44) and +0.24 (p=0.11) on upper extremity impairments and activities at post-intervention respectively. Various tDCS methods have been used in stroke rehabilitation. The evidence so far is not statistically significant, but is suggestive of, at best, a small beneficial effect on upper extremity impairment. Future research should focus on which patients and rehabilitation programmes are likely to respond to different tDCS regimes. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery

    Directory of Open Access Journals (Sweden)

    Samar M Hatem

    2016-09-01

    Full Text Available Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients’ mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed.At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.

  10. Current evidence on the potential therapeutic applications of transcranial magnetic stimulation in multiple sclerosis: A systematic review of the literature.

    Science.gov (United States)

    León Ruiz, M; Sospedra, M; Arce Arce, S; Tejeiro-Martínez, J; Benito-León, J

    2018-06-10

    A growing number of studies have evaluated the effects of transcranial magnetic stimulation (TMS) for the symptomatic treatment of multiple sclerosis (MS). We performed a PubMed search for articles, recent books, and recommendations from the most relevant clinical practice guidelines and scientific societies regarding the use of TMS as symptomatic treatment in MS. Excitatory electromagnetic pulses applied to the affected cerebral hemisphere allow us to optimise functional brain activity, including the transmission of nerve impulses through the demyelinated corticospinal pathway. Various studies into TMS have shown statistically significant improvements in spasticity, fatigue, lower urinary tract dysfunction, manual dexterity, gait, and cognitive deficits related to working memory in patients with MS; however, the exact level of evidence has not been defined as the results have not been replicated in a sufficient number of controlled studies. Further well-designed, randomised, controlled clinical trials involving a greater number of patients are warranted to attain a higher level of evidence in order to recommend the appropriate use of TMS in MS patients across the board. TMS acts as an adjuvant with other symptomatic and immunomodulatory treatments. Additional studies should specifically investigate the effect of conventional repetitive TMS on fatigue in these patients, something that has yet to see the light of day. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    International Nuclear Information System (INIS)

    Li, Xiaohang; Xie, Hongen; Ponce, Fernando A.; Ryou, Jae-Hyun; Detchprohm, Theeradetch; Dupuis, Russell D.

    2015-01-01

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaN multiple-quantum well (MQW) heterostructures grown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a pumping power density of 630 kW/cm 2 . Spectral deconvolution revealed superposition of a linearly amplified spontaneous emission peak at λ ∼ 257.0 nm with a full width at half maximum (FWHM) of ∼12 nm and a superlinearly amplified SE peak at λ ∼ 260 nm with a narrow FWHM of less than 2 nm. In particular, the wavelength of ∼260 nm is the shortest wavelength of surface SE from III-nitride MQW heterostructures to date. Atomic force microscopy and scanning transmission electron microscopy measurements were employed to investigate the material and structural quality of the AlGaN heterostructures, showing smooth surface and sharp layer interfaces. This study offers promising results for AlGaN heterostructures grown on sapphire substrates for the development of DUV vertical cavity surface emitting lasers (VCSELs)

  12. The Development of LinguaBytes : An Interactive Tangible Play and Learning System to Stimulate the Language Development of Toddlers with Multiple Disabilities

    NARCIS (Netherlands)

    Hengeveld, B.; Voort, R.; Hummels, C.; De Moor, J.; Van Balkom, H.; Overbeeke, K.; Van der Helm, A.

    2008-01-01

    Young children with multiple disabilities (e.g., both cognitive and motor disabilities) are confronted with severe limitations in language development from birth and later on. Stimulating the adult-child communication can decrease these limitations. Within LinguaBytes, a three-year research program,

  13. A New Standing Posture Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation by Changing Their Standing Posture through a Commercial Wii Balance Board

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…

  14. A Limb Action Detector Enabling People with Multiple Disabilities to Control Environmental Stimulation through Limb Action with a Nintendo Wii Remote Controller

    Science.gov (United States)

    Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb action with a Nintendo Wii Remote Controller and a newly developed limb action detection program (LADP, i.e., a new software program that turns a Wii Remote Controller into a precise limb action detector). This study was…

  15. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion.

    Science.gov (United States)

    Coffelt, Seth B; Chen, Yung-Yi; Muthana, Munitta; Welford, Abigail F; Tal, Andrea O; Scholz, Alexander; Plate, Karl H; Reiss, Yvonne; Murdoch, Craig; De Palma, Michele; Lewis, Claire E

    2011-04-01

    Angiopoietin 2 (ANGPT2) is a proangiogenic cytokine whose expression is often upregulated by endothelial cells in tumors. Expression of its receptor, TIE2, defines a highly proangiogenic subpopulation of myeloid cells in circulation and tumors called TIE2-expressing monocytes/macrophages (TEMs). Genetic depletion of TEMs markedly reduces tumor angiogenesis in various tumor models, emphasizing their essential role in driving tumor progression. Previously, we demonstrated that ANGPT2 augments the expression of various proangiogenic genes, the potent immunosuppressive cytokine, IL-10, and a chemokine for regulatory T cells (Tregs), CCL17 by TEMs in vitro. We now show that TEMs also express higher levels of IL-10 than TIE2(-) macrophages in tumors and that ANGPT2-stimulated release of IL-10 by TEMs suppresses T cell proliferation, increases the ratio of CD4(+) T cells to CD8(+) T cells, and promotes the expansion of CD4(+)CD25(high)FOXP3(+) Tregs. Furthermore, syngeneic murine tumors expressing high levels of ANGPT2 contained not only high numbers of TEMs but also increased numbers of Tregs, whereas genetic depletion of tumor TEMs resulted in a marked reduction in the frequency of Tregs in tumors. Taken together, our data suggest that ANGPT2-stimulated TEMs represent a novel, potent immunosuppressive force in tumors.

  16. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Shan Wan

    Full Text Available Low doses of anticancer drugs have been shown to enhance antitumor immune response and increase the efficacy of immunotherapy. The molecular basis for such effects remains elusive, although selective depletion of T regulatory cells has been demonstrated. In the current studies, we demonstrate that topotecan (TPT, a topoisomerase I-targeting drug with a well-defined mechanism of action, stimulates major histocompatibility complex class I (MHC I expression in breast cancer cells through elevated expression/secretion of interferon-β (IFN-β and activation of type I IFN signaling. First, we show that TPT treatment elevates the expression of both total and cell-surface MHC I in breast cancer cells. Second, conditioned media from TPT-treated breast cancer ZR-75-1 cells induce elevated expression of cell-surface MHC I in drug-naïve recipient cells, suggesting the involvement of cytokines and/or other secreted molecules. Consistently, TPT-treated cells exhibit elevated expression of multiple cytokines such as IFN-β, TNF-α, IL-6 and IL-8. Third, either knocking down the type I interferon receptor subunit 1 (IFNAR1 or addition of neutralizing antibody against IFN-β results in reduced MHC I expression in TPT-treated cells. Together, these results suggest that TPT induces increased IFN-β autocrine/paracrine signaling through type I IFN receptor, resulting in the elevated MHC I expression in tumor cells. Studies have also demonstrated that other chemotherapeutic agents (e.g. etoposide, cisplatin, paclitaxel and vinblastine similarly induce increased IFN-β secretion and elevated MHC I expression. In addition, conditioned media from γ-irradiated donor cells are shown to induce IFN-β-dependent MHC I expression in unirradiated recipient cells. In the aggregate, our results suggest that many cancer therapeutics induce elevated tumor antigen presentation through MHC I, which could represent a common mechanism for enhanced antitumor immune response through

  17. Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites.

    Science.gov (United States)

    Papadopulos, Andreas; Martin, Sally; Tomatis, Vanesa M; Gormal, Rachel S; Meunier, Frederic A

    2013-12-04

    Regulated exocytosis in neurosecretory cells relies on the timely fusion of secretory granules (SGs) with the plasma membrane. Secretagogue stimulation leads to an enlargement of the cell footprint (surface area in contact with the coverslip), an effect previously attributed to exocytic fusion of SGs with the plasma membrane. Using total internal reflection fluorescence microscopy, we reveal the formation of filopodia-like structures in bovine chromaffin and PC12 cells driving the footprint expansion, suggesting the involvement of cortical actin network remodeling in this process. Using exocytosis-incompetent PC12 cells, we demonstrate that footprint enlargement is largely independent of SG fusion, suggesting that vesicular exocytic fusion plays a relatively minor role in filopodial expansion. The footprint periphery, including filopodia, undergoes extensive F-actin remodeling, an effect abolished by the actomyosin inhibitors cytochalasin D and blebbistatin. Imaging of both Lifeact-GFP and the SG marker protein neuropeptide Y-mCherry reveals that SGs actively translocate along newly forming actin tracks before undergoing fusion. Together, these data demonstrate that neurosecretory cells regulate the number of SGs undergoing exocytosis during sustained stimulation by controlling vesicular mobilization and translocation to the plasma membrane through actin remodeling. Such remodeling facilitates the de novo formation of fusion sites.

  18. Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Jianhui Liu

    Full Text Available Glucose-stimulated insulin secretion (GSIS is essential to the control of metabolic fuel homeostasis. The impairment of GSIS is a key element of β-cell failure and one of causes of type 2 diabetes mellitus (T2DM. Although the KATP channel-dependent mechanism of GSIS has been broadly accepted for several decades, it does not fully describe the effects of glucose on insulin secretion. Emerging evidence has suggested that other mechanisms are involved. The present study demonstrated that geniposide enhanced GSIS in response to the stimulation of low or moderately high concentrations of glucose, and promoted glucose uptake and intracellular ATP levels in INS-1 cells. However, in the presence of a high concentration of glucose, geniposide exerted a contrary role on both GSIS and glucose uptake and metabolism. Furthermore, geniposide improved the impairment of GSIS in INS-1 cells challenged with a high concentration of glucose. Further experiments showed that geniposide modulated pyruvate carboxylase expression and the production of intermediates of glucose metabolism. The data collectively suggest that geniposide has potential to prevent or improve the impairment of insulin secretion in β-cells challenged with high concentrations of glucose, likely through pyruvate carboxylase mediated glucose metabolism in β-cells.

  19. Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders.

    Science.gov (United States)

    Viganò, Marco; Sansone, Valerio; d'Agostino, Maria Cristina; Romeo, Pietro; Perucca Orfei, Carlotta; de Girolamo, Laura

    2016-12-16

    Musculoskeletal disorders are regarded as a major cause of worldwide morbidity and disability, and they result in huge costs for national health care systems. Traditional therapies frequently turned out to be poorly effective in treating bone, cartilage, and tendon disorders or joint degeneration. As a consequence, the development of novel biological therapies that can treat more effectively these conditions should be the highest priority in regenerative medicine. Mesenchymal stem cells (MSCs) represent one of the most promising tools in musculoskeletal tissue regenerative medicine, thanks to their proliferation and differentiation potential and their immunomodulatory and trophic ability. Indeed, MSC-based approaches have been proposed for the treatment of almost all orthopedic conditions, starting from different cell sources, alone or in combination with scaffolds and growth factors, and in one-step or two-step procedures. While all these approaches would require cell harvesting and transplantation, the possibility to stimulate the endogenous MSCs to enhance their tissue homeostasis activity represents a less-invasive and cost-effective therapeutic strategy. Nowadays, the role of tissue-specific resident stem cells as possible therapeutic target in degenerative pathologies is underinvestigated. Biophysical stimulations, and in particular extracorporeal shock waves treatment and pulsed electromagnetic fields, are able to induce proliferation and support differentiation of MSCs from different origins and affect their paracrine production of growth factors and cytokines. The present review reports the attempts to exploit the resident stem cell potential in musculoskeletal pathologies, highlighting the role of MSCs as therapeutic target of currently applied biophysical treatments.

  20. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    International Nuclear Information System (INIS)

    Sun, Jinqiao; Sha, Bin; Zhou, Wenhao; Yang, Yi

    2010-01-01

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  1. DNA Synthesis during Endomitosis Is Stimulated by Insulin via the PI3K/Akt and TOR Signaling Pathways in the Silk Gland Cells of Bombyx mori

    Directory of Open Access Journals (Sweden)

    Yaofeng Li

    2015-03-01

    Full Text Available Silk gland cells undergo multiple endomitotic cell cycles during silkworm larval ontogeny. Our previous study demonstrated that feeding is required for continued endomitosis in the silk gland cells of silkworm larvae. Furthermore, the insulin signaling pathway is closely related to nutritional signals. To investigate whether the insulin signaling pathway is involved in endomitosis in silk gland cells, in this study, we initially analyzed the effects of bovine insulin on DNA synthesis in endomitotic silk gland cells using 5-bromo-2'-deoxyuridine (BrdU labeling technology, and found that bovine insulin can stimulate DNA synthesis. Insulin signal transduction is mainly mediated via phosphoinositide 3-kinase (PI3K/Akt, the target of rapamycin (TOR and the extracellular signal-regulated kinase (ERK pathways in vertebrates. We ascertained that these three pathways are involved in DNA synthesis in endomitotic silk gland cells using specific inhibitors against each pathway. Moreover, we investigated whether these three pathways are involved in insulin-stimulated DNA synthesis in endomitotic silk gland cells, and found that the PI3K/Akt and TOR pathways, but not the ERK pathway, are involved in this process. These results provide an important theoretical foundation for the further investigations of the mechanism underlying efficient endomitosis in silk gland cells.

  2. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    Science.gov (United States)

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. [Amplification of γδ T cells in PBMCs of healthy donors and osteosarcoma patients stimulated by zoledronate].

    Science.gov (United States)

    Li, Zhao-xu; Sun, Ling-ling; Cheng, Rui-lin; Sun, Zheng-wang; Ye, Zhao-ming

    2012-08-01

    To investigate the amplification and cytotoxicity of γδ T cells in peripheral blood mononuclear cells (PBMCs) of healthy donors and osteosarcoma patients stimulated by zoledronate (Zol) and IL-2. PBMCs from healthy donors and osteosarcoma patients were stimulated with IL-2 and Zol+IL-2, respectively. After 14-day culture, the purity of γδ T cells was assessed by flow cytometry. The cytotoxicity of γδ T cells against target cells was analyzed using a standard lactate dehydrogenase release assay with γδ T lymphocyte-sensitive Daudi cells, γδ T lymphocyte-resistant Raji cells and human osteoblast cell line, hFOB, as the target cells. After 2-week culture ex vivo of PBMCs from healthy donors and osteosarcoma patients, compared with stimulation of IL-2, Zol+IL-2 significantly promoted the amplification of γδ T cells. In addition, γδ T cells showed the higher cytotoxicity against Daudi cells, but no cytotoxic effect on normal cells like hFOB. γδ T cells of high purity and high cytotoxicity can be obtained by the stimulation of Zol combined with IL-2 on PBMCs from healthy donors and osteosarcoma patients.

  4. Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis.

    Science.gov (United States)

    Clara, Rosmarie; Langhans, Wolfgang; Mansouri, Abdelhak

    2016-03-01

    Glucagon-like peptide-1 (GLP-1) is a potent satiating and incretin hormone released by enteroendocrine L-cells in response to eating. Dietary fat, in particular monounsaturated fatty acids, such as oleic acid (OA), potently stimulates GLP-1 secretion from L-cells. It is, however, unclear whether the intracellular metabolic handling of OA is involved in this effect. First we determined the optimal medium for the bioenergetics measurements. Then we examined the effect of OA on the metabolism of the immortalized enteroendocrine GLUTag cell model and assessed GLP-1 release in parallel. We measured oxygen consumption rate and extracellular acidification rate in response to OA and to different metabolic inhibitors with the Seahorse extracellular flux analyzer. OA increased cellular respiration and potently stimulated GLP-1 release. The fatty acid oxidation inhibitor etomoxir did neither reduce OA-induced respiration nor affect the OA-induced GLP-1 release. In contrast, inhibition of the respiratory chain or of downstream steps of aerobic glycolysis reduced the OA-induced GLP-1 release, and an inhibition of the first step of glycolysis by addition of 2-deoxy-d-glucose even abolished it. These findings indicate that an indirect stimulation of glycolysis is crucial for the OA-induced release of GLP-1. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Enhanced Dendritic Cell-Mediated Antigen-Specific CD4+ T Cell Responses: IFN-Gamma Aids TLR Stimulation

    Directory of Open Access Journals (Sweden)

    Kuo-Ching Sheng

    2013-01-01

    Full Text Available Phenotypic maturation and T cell stimulation are two functional attributes of DCs critical for immune induction. The combination of antigens, including those from cancer, with Toll-like receptor (TLR ligands induces far superior cellular immune responses compared to antigen alone. In this study, IFN-gamma treatment of bone marrow-derived DC, followed by incubation with the TLR2, TLR4, or TLR9 agonists, enhanced DC activation compared to TLR ligation alone. Most notably, the upregulation of CD40 with LPS stimulation and CD86 with CpG stimulation was observed in in vitro cultures. Similarly, IFN-gamma coinjected with TLR ligands was able to promote DC activation in vivo, with DCs migrating from the site of immunization to the popliteal lymph nodes demonstrating increased expression of CD80 and CD86. The heightened DC activation translated to a drastic increase in T cell stimulatory capacity in both antigen independent and antigen dependent fashions. This is the first time that IFN-gamma has been shown to have a combined effect with TLR ligation to enhance DC activation and function. The results demonstrate the novel use of IFN-gamma together with TLR agonists to enhance antigen-specific T cell responses, for applications in the development of enhanced vaccines and drug targets against diseases including cancer.

  6. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells.

    Science.gov (United States)

    Wang, L M; Myers, M G; Sun, X J; Aaronson, S A; White, M; Pierce, J H

    1993-09-17

    Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.

  7. Xenopus laevis Retinal Ganglion Cell Dendritic Arbors Develop Independently of Visual Stimulation

    Directory of Open Access Journals (Sweden)

    Barbara Lom

    2004-01-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  8. Prostaglandin production by melanocytic cells and the effect of alpha-melanocyte stimulating hormone.

    Science.gov (United States)

    Nicolaou, Anna; Estdale, Sian E; Tsatmali, Marina; Herrero, Daniel Pascual; Thody, Anthony J

    2004-07-16

    Prostaglandins are potent mediators of the inflammatory response and are also involved in cancer development. In this study, we show that human melanocytes and FM55 melanoma cells express cyclooxygenase-1 and -2 (COX-1 and -2) and thus have the capability to produce prostaglandins. The FM55 cells produced predominantly PGE2 and PGF2alpha, whereas the HaCaT keratinocyte cell line produced mainly PGE2. The anti-inflammatory peptide, alpha-melanocyte stimulating hormone (alpha-MSH), reduced prostaglandin production in FM55 and HaCaT cells and reversed the effect of the pro-inflammatory cytokine TNF-alpha in the former. These results indicate that melanocytes produce prostaglandins and that alpha-MSH, by inhibiting this response, may play an important role in regulating inflammatory responses in the skin.

  9. Photoelectrical stimulation of neuronal cells by an organic semiconductor-electrolyte Interface

    DEFF Research Database (Denmark)

    Abdullaeva, Oliya S.; Schulz, Matthias; Balzer, Frank

    2016-01-01

    As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor–electrolyte interface. Our photoactive layer...... consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor–electrolyte layer....... Furthermore, we characterize the morphology of the semiconductor–electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions....

  10. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior.

    Science.gov (United States)

    Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2013-01-01

    There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.

  11. A versatile automated platform for micro-scale cell stimulation experiments.

    Science.gov (United States)

    Sinha, Anupama; Jebrail, Mais J; Kim, Hanyoup; Patel, Kamlesh D; Branda, Steven S

    2013-08-06

    Study of cells in culture (in vitro analysis) has provided important insight into complex biological systems. Conventional methods and equipment for in vitro analysis are well suited to study of large numbers of cells (≥ 10(5)) in milliliter-scale volumes (≥ 0.1 ml). However, there are many instances in which it is necessary or desirable to scale down culture size to reduce consumption of the cells of interest and/or reagents required for their culture, stimulation, or processing. Unfortunately, conventional approaches do not support precise and reproducible manipulation of micro-scale cultures, and the microfluidics-based automated systems currently available are too complex and specialized for routine use by most laboratories. To address this problem, we have developed a simple and versatile technology platform for automated culture, stimulation, and recovery of small populations of cells (100-2,000 cells) in micro-scale volumes (1-20 μl). The platform consists of a set of fibronectin-coated microcapillaries ("cell perfusion chambers"), within which micro-scale cultures are established, maintained, and stimulated; a digital microfluidics (DMF) device outfitted with "transfer" microcapillaries ("central hub"), which routes cells and reagents to and from the perfusion chambers; a high-precision syringe pump, which powers transport of materials between the perfusion chambers and the central hub; and an electronic interface that provides control over transport of materials, which is coordinated and automated via pre-determined scripts. As an example, we used the platform to facilitate study of transcriptional responses elicited in immune cells upon challenge with bacteria. Use of the platform enabled us to reduce consumption of cells and reagents, minimize experiment-to-experiment variability, and re-direct hands-on labor. Given the advantages that it confers, as well as its accessibility and versatility, our platform should find use in a wide variety of

  12. Stimulation of prostaglandin E2 production by phorbol esters and epidermal growth factor in porcine thyroid cells

    International Nuclear Information System (INIS)

    Kasai, K.; Hiraiwa, M.; Emoto, T.; Akimoto, K.; Takaoka, T.; Shimoda, S.I.

    1987-01-01

    Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E 2 production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E 2 production by the cells in dose related fashion. PMA stimulated prostaglandin E 2 production over fifty-fold with the dose of 10 -7 M compared with control. EGF (10 -7 M) also stimulated it about ten-fold. The ED 50 values of PMA and EGF were respectively around 1 x 10 -9 M and 5 x 10 -10 M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E 2 production from 1 to 24-h incubation. The release of radioactivity from [ 3 H]-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E 2 production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells. 36 references, 2 figures, 1 table

  13. Cell proliferation and death in the irradiated pituitary gland and its modification by growth stimulants

    International Nuclear Information System (INIS)

    Guo Yaping; Hendry, Jolyon H.; Morris, Ian D.; Davis, Julian R.E.; Beardwell, Colin G.

    1997-01-01

    Purpose: This study was undertaken to show whether the rate of expression of radiation injury in the rat pituitary gland could be accelerated by the use of growth stimulants. Methods and Materials: Rat pituitary glands were irradiated in situ with a range of single doses up to 20 Gy. The rats were then given subcutaneous slow-release implants containing 17β-estradiol (E 2 ) and sulpiride (S) to stimulate lactotroph proliferation. Two sequential cycles were used, each consisting of stimulation (3 weeks) and withdrawal (2 weeks). Measurements were made of gland weight; BrdU-labeled, giant, and apoptotic cells; lactotrophs; as well as pituitary prolactin content, in response to exogenous thyroid-releasing hormone (TRH). Results: The two cycles of stimulation/withdrawal resulted in marked changes in gland weight, BrdU-labeling index, and serum prolactin (PRL) levels in unirradiated rats. The proportion of immunopositive growth-hormone-producing (GH) cells increased after irradiation. Radiation inhibited the hypertrophic response to E 2 + S and also inhibited increases in BrdU-labeling index and serum PRL levels. Also, giant lactotrophs were observed in the irradiated pituitaries. However, they were not seen in the unirradiated rats or in the irradiated rats treated with E 2 + S. TRH promoted PRL secretion in the unirradiated rat. In contrast, TRH inhibited PRL secretion in the irradiated rat and in all treatment groups receiving E 2 + S. Apoptosis was induced by irradiation and was substantially increased in lactotrophs and in other cell types by withdrawal of the E 2 and S stimulus, although the highest observed incidence was only 7 per 10,000 cells. Conclusion: Both irradiation and E 2 + S treatment removed the hypothalamic control of PRL secretion, which reveals this important inhibitory action of TRH upon PRL secretion. This suggests that it is not suitable as a dynamic test of pituitary PRL reserves in such abnormal situations, where there may also be damage to

  14. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

    Directory of Open Access Journals (Sweden)

    Kaori Yama

    2015-04-01

    Full Text Available Epalrestat (EPS is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs, an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that regulates the expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression. Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases caused by oxidative stress.

  15. iTRAQ quantitative proteomics-based identification of cell adhesion as a dominant phenotypic modulation in thrombin-stimulated human aortic endothelial cells.

    Science.gov (United States)

    Wang, Huang-Joe; Chen, Sung-Fang; Lo, Wan-Yu

    2015-05-01

    The phenotypic changes in thrombin-stimulated endothelial cells include alterations in permeability, cell shape, vasomotor tone, leukocyte trafficking, migration, proliferation, and angiogenesis. Previous studies regarding the pleotropic effects of thrombin on the endothelium used human umbilical vein endothelial cells (HUVECs)-cells derived from fetal tissue that does not exist in adults. Only a few groups have used screening approaches such as microarrays to profile the global effects of thrombin on endothelial cells. Moreover, the proteomic changes of thrombin-stimulated human aortic endothelial cells (HAECs) have not been elucidated. HAECs were stimulated with 2 units/mL thrombin for 5h and their proteome was investigated using isobaric tags for the relative and absolute quantification (iTRAQ) and the MetaCore(TM) software. A total of 627 (experiment A) and 622 proteins (experiment B) were quantified in the duplicated iTRAQ analyses. MetaCore(TM) pathway analysis identified cell adhesion as a dominant phenotype in thrombin-stimulated HAECs. Replicated iTRAQ data revealed that "Cell adhesion_Chemokines and adhesion," "Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity," and "Cell adhesion_Integrin-mediated cell adhesion and migration" were among the top 10 statistically significant pathways. The cell adhesion phenotype was verified by increased THP-1 adhesion to thrombin-stimulated HAECs. In addition, the expression of ICAM-1, VCAM-1, and SELE was significantly upregulated in thrombin-stimulated HAECs. Several regulatory pathways are altered in thrombin-stimulated HAECs, with cell adhesion being the dominant altered phenotype. Our findings show the feasibility of the iTRAQ technique for evaluating cellular responses to acute stimulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Emerging roles for IL-15 in the activation and function of T-cells during immune stimulation

    Directory of Open Access Journals (Sweden)

    Anthony SM

    2015-02-01

    Full Text Available Scott M Anthony, Kimberly S Schluns Immunology Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: Interleukin (IL-15 is a cytokine that promotes the development and homeostasis of a group of lymphocytes; however, IL-15 is also significantly upregulated in response to pathogen infections and in autoimmune diseases. With its ability to promote T-cell proliferation and survival and influence migration and effector functions, elevated IL-15 can impact T-cell responses in numerous ways. Nonetheless, the importance of IL-15 during early infection and autoimmunity is unclear. Furthermore, the mechanisms regulating IL-15 responses in both inflammatory situations and during the steady state are still being elucidated. The mechanisms by which IL-15 mediate responses are unique among cytokines. IL-15 associates with IL-15Rα within cells where it can either be transpresented to neighboring cells or cleaved into a soluble cytokine/receptor complex. Increased production of soluble (sIL-15Rα/IL-15 complexes is seen upon different types of immune stimulation, suggesting that these are circumstance when sIL-15 complexes are most likely to act. How common this response is remains unclear, as the production of sIL-15 complexes has only been recently appreciated. This review sets out to emphasize how IL-15 is frequently increased in response to pathogen infections and during autoimmunity and inflammatory conditions. Since pathogen infections and inflammatory diseases share signaling pathways that induce sIL-15 complexes, including pattern recognition receptors and type I interferon, sIL-15 complexes may be generated in more situations than realized. While there are multiple cellular targets of IL-15, this review primarily focuses on how T-cells are likely affected by IL-15 during immune activation and describes evidence

  17. The stimulation of EL-4 cells to produce interleukin-2 and its potential use in immunocytotoxicity testing

    International Nuclear Information System (INIS)

    Lasek, W.; Steer, S.; Clothier, R.; Balls, M.

    1989-01-01

    The ability of EL-4 thymoma cells to produce interleukin-2 (IL-2) following exposure to phorbol-12-myristate 13-acetate (PMA) and Concanavalin A (Con A) has been studied in vitro using medium containing either 10% or 1% fetal calf serum (FCS). The potent stimulatory effect of PMA on IL-2 production by EL-4 cells has been confirmed by measuring 3H-thymidine incorporation by the IL-2-dependent T cell line, CTLL-2, in the presence of conditioned medium (CM) from stimulated cultures. EL-4 cells produced several times more IL-2 when cultured in medium containing 10% FCS than when only 1% FCS was present. Added together, PMA and Con A acted synergistically in some EL-4 cell cultures. The ability of E:-4 cells to produce IL-2 was maintained after further incubation without stimulants. CM with IL-2 activity from stimulated EL-4 cells could prove useful in immunotoxicity testing

  18. Sodium butyrate stimulates cellular recovery from UV damage in xeroderma pigmentosum cells belonging to complementation group F

    International Nuclear Information System (INIS)

    Nishigori, Chikako; Takebe, Hiraku

    1987-01-01

    Possible stimulation of the DNA repair capacity by sodium butyrate in normal and xeroderma pigmentosum (XP) cells was investigated. XP cells belonging to the complementation group F showed considerable stimulation of DNA repair by sodium butyrate in terms of both the amount of unscheduled DNA synthesis (UDS) and the colony-forming ability after UV irradiation. UDS in XP cells belonging to the complementation group A was not enhanced, while normal cells showed slight enhancement, but less than that of XP F cells. In XP A, XP C, and normal cells, sodium butyrate treatment enhanced the killing effect of UV irradiation. The residual repair capacity in XP F cells appeared to be stimulated by sodium butyrate. (author)

  19. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    Science.gov (United States)

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Melanogenesis stimulation in murine b16 melanoma cells by umberiferae plant extracts and their coumarin constituents.

    Science.gov (United States)

    Matsuda, Hideaki; Hirata, Noriko; Kawaguchi, Yoshiko; Yamazaki, Miho; Naruto, Shunsuke; Shibano, Makio; Taniguchi, Masahiko; Baba, Kimiye; Kubo, Michinori

    2005-07-01

    Melanogenesis stimulation activities of seven ethanolic extracts obtained from Umbelliferae plants used as Chinese crude drugs, namely the roots of Angelica dahurica BENTH. et HOOK., A. biserrata SHEN et YUAN, Notopterygium incisum TING, Heracleum lanatum MICHX., and H. candicans WALL., and the fruits of Cinidium monnieri (L.) CUSSON and C. formosanum YABE, were examined by using cultured murine B16 melanoma cells. Among them, the extract (5, 25 microg/ml) of H. lanatum showed a potent stimulatory effect on melanogenesis with significant enhancement of cell proliferation in a dose-dependent manner. The melanogenesis stimulatory effects of sixteen coumarins (1-16) isolated from the seven Umbelliferae crude drugs were also examined. Among them, linear-furocoumarins [psoralen (1), xanthotoxin (2), bergapten (3), and isopimpinellin (4)] and angular-furocoumarin [sphondin (13)] exhibited potent melanogenesis stimulation activity. From the view point of structure-activity relationships, it may be assumed that a linear-furocoumarin ring having a hydrogen and/or methoxyl group at 5 and 8 positions such as 1, 2, 3 and 4 was preferable for the melanogenesis stimulation activity. The introduction of a prenyl group into the furocoumarin ring was disadvantageous. Coumarin derivatives having a simple coumarin ring were inactive.

  1. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    International Nuclear Information System (INIS)

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-01-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells

  2. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  3. Proliferation of Prostate Stromal Cell Induced by Benign Prostatic Hyperplasia Epithelial Cell Stimulated With Trichomonas vaginalis via Crosstalk With Mast Cell.

    Science.gov (United States)

    Kim, Jung-Hyun; Kim, Sang-Su; Han, Ik-Hwan; Sim, Seobo; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-11-01

    Chronic inflammation has a role in the pathogenesis of benign prostatic hyperplasia (BPH) and prostate cancer. Mast cells have been detected in chronic inflammatory infiltrate of the prostate, and it is possible that the interaction between prostate epithelial cells and Trichomonas vaginalis influences the activity of mast cells in the prostate stroma. Activated mast cells might influence the biological functions of nearby tissues and cells. In this study, we investigated whether mast cells reacted with the culture supernatant of BPH epithelial cells infected with T. vaginalis may induce the proliferation of prostate stromal cells. To measure the proliferation of prostate stromal cells in response to chronic inflammation caused by the infection of BPH-1 cells with T. vaginalis, the CCK-8 assay and wound healing assay were used. ELISAs, quantitative real-time PCR, western blotting and immunofluorescence were used to measure the production and expression of inflammatory cytokine and cytokine receptor. BPH-1 cells incubated with live trichomonads produced increased levels of CCL2, IL-1β, IL-6, and CXCL8, and induced the migration of mast cells and monocytes. When the culture supernatant of BPH-1 cells stimulated with trichomonads (TCM) was added to mast cells, they became activated, as confirmed by release of β-hexosaminidase and CXCL8. Prostate stromal cells incubated with the culture supernatant of mast cells activated with TCM (M-TCM) proliferated and expressed increased levels of CXCL8, CCL2, and the cytokine receptors CXCR1 and CCR2. Blocking the chemokine receptors reduced the proliferation of stromal cells and also decreased the production of CXCL8 and CCL2. Moreover, the expression of FGF2, cyclin D1, and Bcl-2 was increased in the proliferated stromal cells stimulated with M-TCM. Additionally, the M-TCM-treated stromal cells were more invasive than control cells. The inflammatory mediators released by BPH epithelial cells in response to infection by

  4. Transcranial magnetic stimulation promotes the proliferation of dopaminergic neuronal cells in vitro

    Science.gov (United States)

    Zhong, Xiaojing; Luo, Jie; Rastogi, Priyam; Kanthasamy, Anumantha G.; Jiles, David C.; Fellow, IEEE

    2018-05-01

    Transcranial magnetic stimulation (TMS) is a safe and non-invasive treatment for neurological disorders. TMS has been approved as a treatment for major depressive disorders by the US Food and Drug Administration (FDA) in 2008. Due to the phenomenon of electromagnetic induction, a time-varying magnetic field induces an electric field in the conductive tissues in the brain, TMS has the ability to activate neurons in vivo. However, the effects of the magnetic fields on neurons in cell culture have not been investigated adequately. The magnetic fields affect the neurons when the potential across the neuronal membrane exceeds the threshold which in turn causes an action potential. Based on these theories, we investigated the effects of the magnetic fields generated by a monophasic stimulator with a 70 mm double coil on rat dopaminergic neuronal cell lines (N27). The directions of the magnetic fields in each coil of the double coil oppose each other. The effects of changing the direction of the magnetic field on N27 neurons was also investigated. The results of the experiments showed that both of the fields perpendicular to the coil surface promoted the proliferation of N27 dopaminergic neurons. In order to investigate the gene expression and protein expression affected by TMS, quantitative Polymerase Chain Reaction (qPCR) was used. Here we report changes in glial cell line-derived neurotrophic factor (GDNF) in dopaminergic neuronal cells (N27) after TMS treatment.

  5. Transcranial magnetic stimulation promotes the proliferation of dopaminergic neuronal cells in vitro

    Directory of Open Access Journals (Sweden)

    Xiaojing Zhong

    2018-05-01

    Full Text Available Transcranial magnetic stimulation (TMS is a safe and non-invasive treatment for neurological disorders. TMS has been approved as a treatment for major depressive disorders by the US Food and Drug Administration (FDA in 2008. Due to the phenomenon of electromagnetic induction, a time-varying magnetic field induces an electric field in the conductive tissues in the brain, TMS has the ability to activate neurons in vivo. However, the effects of the magnetic fields on neurons in cell culture have not been investigated adequately. The magnetic fields affect the neurons when the potential across the neuronal membrane exceeds the threshold which in turn causes an action potential. Based on these theories, we investigated the effects of the magnetic fields generated by a monophasic stimulator with a 70 mm double coil on rat dopaminergic neuronal cell lines (N27. The directions of the magnetic fields in each coil of the double coil oppose each other. The effects of changing the direction of the magnetic field on N27 neurons was also investigated. The results of the experiments showed that both of the fields perpendicular to the coil surface promoted the proliferation of N27 dopaminergic neurons. In order to investigate the gene expression and protein expression affected by TMS, quantitative Polymerase Chain Reaction (qPCR was used. Here we report changes in glial cell line-derived neurotrophic factor (GDNF in dopaminergic neuronal cells (N27 after TMS treatment.

  6. Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes

    Science.gov (United States)

    Clatworthy, Menna R.; Aronin, Caren E. Petrie; Mathews, Rebeccah J.; Morgan, Nicole; Smith, Kenneth G.C.; Germain, Ronald N.

    2014-01-01

    Antibodies are critical for defence against a variety of microbes but may also be pathogenic in some autoimmune diseases. Many effector functions of antibody are mediated by Fcγ receptors (FcγRs), which are found on most immune cells, including dendritic cells (DCs). DCs are important antigen presenting cells and play a central role in inducing antigen-specific tolerance or immunity1,2. Following antigen acquisition in peripheral tissues, DCs migrate to draining lymph nodes via lymphatics to present antigen to T cells. In this study we demonstrate that FcγR engagement by IgG immune complexes (IC) stimulates DC migration from peripheral tissues to the paracortex of draining lymph nodes. In vitro, IC-stimulated murine and human DCs showed enhanced directional migration in a CCL19 gradient and increased CCR7 expression. Using intravital two-photon microscopy, we observed that local administration of IC resulted in dermal DC mobilisation. We confirmed that dermal DC migration to lymph nodes was CCR7-dependent and increased in the absence of the inhibitory receptor, FcγRIIb. These observations have relevance to autoimmunity, because autoantibody-containing serum from mice and humans with SLE also increased dermal DC migration to lymph nodes in vivo, suggesting that this process may occur in lupus, potentially driving the inappropriate localisation of autoantigen-bearing DCs. PMID:25384086

  7. Endogenous pyrogen production by human blood monocytes stimulated by staphylococcal cell wall components.

    Science.gov (United States)

    Oken, M M; Peterson, P K; Wilkinson, B J

    1981-01-01

    To determine the properties of Staphylococcus aureus contributing to its pyrogenicity, we compared, in human monocytes, endogenous pyrogen production stimulated by heat-killed S. aureus with that stimulated by purified S. aureus cell walls or by particulate peptidoglycan prepared from the same strain. Peptidoglycan, but not the purified cell wall preparation, was found comparable to S. aureus as an endogenous pyrogen stimulus. This finding was associated with a more effective monocyte phagocytosis of S. aureus and peptidoglycan as compared with that of purified cell walls. Lysostaphin digestion of peptidoglycan markedly reduced its pyrogenicity. To test whether the chemical composition of the ingested particles is important, latex particles were tested as possible stimuli for monocyte endogenous pyrogen release. Although 40 to 68% of monocytes ingested latex particles during the first hour, there was no evidence of endogenous pyrogen activity in the supernatant even when supernatants equivalent to 5.2 X 10(6) monocytes were tested. This study demonstrates that the pyrogenic moiety of the S. aureus cell wall resides in the peptidoglycan component. Phagocytosis is not in itself a pyrogenic stimulus, but rather serves as an effective mechanism to bring about contact between the chemical stimulus and the monocyte.

  8. Slight changes in the mechanical stimulation affects osteoblast- and osteoclast-like cells in co-culture.

    Science.gov (United States)

    Kadow-Romacker, Anke; Duda, Georg N; Bormann, Nicole; Schmidmaier, Gerhard; Wildemann, Britt

    2013-12-01

    Osteoblast- and osteoclast-like cells are responsible for coordinated bone maintenance, illustrated by a balanced formation and resorption. Both parameters appear to be influenced by mechanical constrains acting on each of these cell types individually. We hypothesized that the interactions between both cell types are also influenced by mechanical stimulation. Co-cultures of osteoblast- and osteoclast-like cells were stimulated with 1,100 µstrain, 0.1 or 0.3 Hz for 1-5 min/day over 5 days. Two different setups depending on the differentiation of the osteoclast-like cells were used: i) differentiation assay for the fusion of pre-osteoclasts to osteoclasts, ii) resorption assay to determine the activity level of osteoclast-like cells. In the differentiation assay (co-culture of osteoblasts with unfused osteoclast precursor cells) the mechanical stimulation resulted in a significant decrease of collagen-1 and osteocalcin produced by osteoblast-like cells. Significantly more TRAP-iso5b was measured after stimulation for 3 min with 0.1 Hz, indicating enhanced osteoclastogenesis. In the resorption assay (co-culture of osteoblasts with fused osteoclasts) the stimulation for 3 min with 0.3 Hz significantly increased the resorption activity of osteoclasts measured by the pit formation and the collagen resorption. The same mechanical stimulation resulted in an increased collagen-1 production by the osteoblast-like cells. The ratio of RANKL/OPG was not different between the groups. These findings demonstrate that already small changes in duration or frequency of mechanical stimulation had significant consequences for the behavior of osteoblast- and osteoclast-like cells in co-culture, which partially depend on the differentiation status of the osteoclast-like cells.

  9. How Does Transcranial Magnetic Stimulation Influence Glial Cells in the Central Nervous System?

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    2016-04-01

    Full Text Available Transcranial magnetic stimulation (TMS is widely used in the clinic, and while it has a direct effect on neuronal excitability, the beneficial effects experienced by patients are likely to include the indirect activation of other cell types. Research conducted over the past two decades has made it increasingly clear that a population of non-neuronal cells, collectively known as glia, respond to and facilitate neuronal signalling. Each glial cell type has the ability to respond to electrical activity directly or indirectly, making them likely cellular effectors of TMS. TMS has been shown to enhance adult neural stem and progenitor cell proliferation, but the effect on cell survival and differentiation is less certain. Furthermore there is limited information regarding the response of astrocytes and microglia to TMS, and a complete paucity of data relating to the response of oligodendrocyte-lineage cells to this treatment. However, due to the critical and yet multifaceted role of glial cells in the CNS, the influence that TMS has on glial cells is certainly an area that warrants careful examination.

  10. Cell type-specific suppression of mechanosensitive genes by audible sound stimulation.

    Science.gov (United States)

    Kumeta, Masahiro; Takahashi, Daiji; Takeyasu, Kunio; Yoshimura, Shige H

    2018-01-01

    Audible sound is a ubiquitous environmental factor in nature that transmits oscillatory compressional pressure through the substances. To investigate the property of the sound as a mechanical stimulus for cells, an experimental system was set up using 94.0 dB sound which transmits approximately 10 mPa pressure to the cultured cells. Based on research on mechanotransduction and ultrasound effects on cells, gene responses to the audible sound stimulation were analyzed by varying several sound parameters: frequency, wave form, composition, and exposure time. Real-time quantitative PCR analyses revealed a distinct suppressive effect for several mechanosensitive and ultrasound-sensitive genes that were triggered by sounds. The effect was clearly observed in a wave form- and pressure level-specific manner, rather than the frequency, and persisted for several hours. At least two mechanisms are likely to be involved in this sound response: transcriptional control and RNA degradation. ST2 stromal cells and C2C12 myoblasts exhibited a robust response, whereas NIH3T3 cells were partially and NB2a neuroblastoma cells were completely insensitive, suggesting a cell type-specific response to sound. These findings reveal a cell-level systematic response to audible sound and uncover novel relationships between life and sound.

  11. Low-power laser irradiation did not stimulate breast cancer cells following ionizing radiation

    Science.gov (United States)

    Silva, C. R.; Camargo, C. F. M.; Cabral, F. V.; Ribeiro, M. S.

    2016-03-01

    Cancer has become a public health problem worldwide. Radiotherapy may be a treatment to a number of types of cancer, frequently using gamma-radiation with sources such as 137Cs and 60Co, with varying doses, dose rates, and exposure times to obtain a better as a stimulant for cell proliferation and tissue healing process. However, its effects on cancer cells are not yet well elucidated. The purpose of this work was to evaluate the effects of the LPL on breast cancer cultures after ionizing radiation. The breast cancer-MDA-MB-231 cells were gamma irradiated by a 60Co source, with dose of 2.5 Gy. After 24h, cells were submitted to LPL irradiation using a red laser emitting at λ= 660 nm, with output power of 40 mW and exposure time of 30 s and 60 s. The plates were uniformly irradiated, with energy of 1.2 J and 2.4 J, respectively. Cell viability was analyzed using the exclusion method with trypan blue. Our results show that breast cancer cells submitted to LPL after ionizing radiation remained 95 % viable. No statistically significant differences were observed between laser and control untreated cells, (P > 0.05). These findings suggest that LPL did not influenced cancer cells viability.

  12. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease.

    Science.gov (United States)

    Powell, Tiffany M; Paul, Jonathan D; Hill, Jonathan M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; McCoy, J Philip; Read, Elizabeth J; Khuu, Hanh M; Leitman, Susan F; Finkel, Toren; Cannon, Richard O

    2005-02-01

    Endothelial progenitor cells (EPCs) that may repair vascular injury are reduced in patients with coronary artery disease (CAD). We reasoned that EPC number and function may be increased by granulocyte colony-stimulating factor (G-CSF) used to mobilize hematopoietic progenitor cells in healthy donors. Sixteen CAD patients had reduced CD34(+)/CD133(+) (0.0224+/-0.0063% versus 0.121+/-0.038% mononuclear cells [MNCs], P<0.01) and CD133(+)/VEGFR-2(+) cells, consistent with EPC phenotype (0.00033+/-0.00015% versus 0.0017+/-0.0006% MNCs, P<0.01), compared with 7 healthy controls. Patients also had fewer clusters of cells in culture, with out-growth consistent with mature endothelial phenotype (2+/-1/well) compared with 16 healthy subjects at high risk (13+/-4/well, P<0.05) or 14 at low risk (22+/-3/well, P<0.001) for CAD. G-CSF 10 microg/kg per day for 5 days increased CD34(+)/CD133(+) cells from 0.5+/-0.2/microL to 59.5+/-10.6/microL and CD133(+)/ VEGFR-2(+) cells from 0.007+/-0.004/microL to 1.9+/-0.6/microL (both P<0.001). Also increased were CD133(+) cells that coexpressed the homing receptor CXCR4 (30.4+/-8.3/microL, P<0.05). Endothelial cell-forming clusters in 10 patients increased to 27+/-9/well after treatment (P<0.05), with a decline to 9+/-4/well at 2 weeks (P=0.06). Despite reduced EPCs compared with healthy controls, patients with CAD respond to G-CSF with increases in EPC number and homing receptor expression in the circulation and endothelial out-growth in culture. Endothelial progenitor cells (EPCs) are reduced in coronary artery disease. Granulocyte colony-stimulating factor (CSF) administered to patients increased: (1) CD133+/VEGFR-2+ cells consistent with EPC phenotype; (2) CD133+ cells coexpressing the chemokine receptor CXCR4, important for homing of EPCs to ischemic tissue; and (3) endothelial cell-forming clusters in culture. Whether EPCs mobilized into the circulation will be useful for the purpose of initiating vascular growth and myocyte repair

  13. The design, calibration, and use of a water microjet for stimulating hair cell sensory hair bundles.

    Science.gov (United States)

    Saunders, J C; Szymko, Y M

    1989-11-01

    The design, calibration, and use of a noninvasive, noncontact device for stimulating hair cell hair bundles in vitro are described. This device employed a piezoelectric crystal, driven at high frequencies, to generate sinusoidal pressure in a contained fluid volume. The pressure was propagated to the tip of a glass micropipette and the oscillating water jet stimulus produced at the tip was used to stimulate sensory hair bundles. The movements of glass microbeads, caught in the oscillating pressure field of the water jet, provided a means of calibrating this stimulus. The linearity of the jet, its waveform and frequency response, the influence of pipette shape and tip diameter, as well as models to explain the operation of the water jet, are described. The use of this stimulus for measuring hair bundle micromechanics at high frequencies is then demonstrated.

  14. The role of stem cell mobilization regimen on lymphocyte collection yield in patients with multiple myeloma.

    Science.gov (United States)

    Hiwase, D K; Hiwase, S; Bailey, M; Bollard, G; Schwarer, A P

    2008-01-01

    The lymphocyte dose (LY-DO) infused during an autograft influences absolute lymphocyte (ALC) recovery and survival following autologous stem cell transplantation (ASCT) in multiple myeloma (MM) patients. Factors influencing lymphocyte yield (LY-C) during leukapheresis have been poorly studied. Factors that could influence survival, LY-C and CD34(+) cell yield were analyzed in 122 MM patients. Three mobilization regimens were used, granulocyte-colony-stimulating factor (G-CSF) alone (n=13), cyclophosphamide 1-2 g/m(2) plus G-CSF (LD-CY, n=62) and cyclophosphamide 3-4 g/m(2) and G-CSF (ID-CY, n=47). Using multivariate analysis, age, LY-C, ALC on day 30 (ALC-30) and International Staging System stage significantly influenced overall (OS) and progression-free survival (PFS) following ASCT. PFS (56 versus 29 months, P=0.05) and OS (72 versus 49 months; P=0.07) were longer in the LY-C>or=0.12x10(9)/kg group than the LY-Cradiotherapy and number of leukaphereses significantly influenced LY-C. Significantly higher LY-C was obtained with G-CSF alone compared with the LD-CY and ID-CY groups. CD34(+) count on the day of leukapheresis, prior chemotherapy with prednisone, cyclophosphamide, adriamycin and BCNU or melphalan, and stem cell mobilization regimen significantly influenced CD34(+) cell yield. LY-C influenced ALC-15 and survival following ASCT. Factors that influenced CD34(+) cell yield and LY-C during leukapheresis were different. Mobilization should be tailored to maximize the LY-C and CD34(+) cell yield.

  15. Characteristics of cells producing stimulator for the proliferation of colony forming unit-spleen (CFU-S)

    International Nuclear Information System (INIS)

    Abdul Manaf Ali; Wright, E.G.; Riches, A.C.

    1994-01-01

    The presence of stimulator for haemopoietic stem cell (CFU-S) proliferation in regenerating bone marrow was assayed by incubating the conditioned medium (CM) prepared from bone marrow with quiescent CFU-S from normal bone marrow. The percentage of CFU-S normal bone marrow in DNA synthesis increased more than 30 percent after incubating with CM of 4.5 Gy regenerating bone marrow. Stimulator was also present in bone marrow of mice at 9.0 Gy whole body X-irradiation. However the conditioned medium prepared from regenerating bone marrow without Fc and Ia-2k cells failed to increase the percentage of CFU-S in DNA synthesis. On the other hand, elimination of Thy 1.2 positive cells with complement cytolysis did not affect the ability of regenerating bone marrow to produce stimulator. These observations suggest that the stimulator producing cells are radio-resistant, Thy 1.2 negative, Fc and Ia-2k positive

  16. Implications of the Endothelial Cell Response in Glioblastoma to Stimulation by Mesenchymal Stem Cells and Ionizing Radiation

    Science.gov (United States)

    Zhao, Tansy Y.

    Heightened angiogenesis is both the pathophysiologic hallmark and the potential cause of therapy resistance for glioblastoma (GBM), a deadly brain tumor. It is thought that mesenchymal stem cells (MSCs) play important roles in neovascularization and tumor progression. We postulated that MSCs protect ECs against radiotherapy, which subsequently enhances tumor angiogenesis, and promotes GBM tumor recurrence following therapy. We therefore sought to establish the in-vitro endothelial cell response to stimulation by MSC condition media and ionizing radiation (IR) treatment. We established the gene expression profiles of endothelial cells in response to IR, MSCs and the combination of both. Within the same gene profiles, we identified a unique gene signature that was highly predictive of response to Bevacizumab for GBM patients. We also demonstrated that MSC increased the viability of ECs in response to IR. Protein analysis in ECs suggested MSC-mediated cell cycle arrest as a mechanism for radio-resistance in ECs.

  17. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    C Lin

    Full Text Available Our previous studies showed that bovine respiratory syncytial virus (BRSV followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2 epithelial cells with H. somni concentrated culture supernatant (CCS stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2 and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.

  18. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    Directory of Open Access Journals (Sweden)

    MI Oliveira

    2012-07-01

    Full Text Available Macrophages and dendritic cells (DC share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch, with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  19. Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice

    Directory of Open Access Journals (Sweden)

    Rose Hilal

    2018-01-01

    Full Text Available Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+ (500,000 cells, injected intravenously 18–24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF-β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions. This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase.

  20. Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice.

    Science.gov (United States)

    Hilal, Rose; Poittevin, Marine; Pasteur-Rousseau, Adrien; Cogo, Adrien; Mangin, Gabrielle; Chevauché, Marie; Ziat, Yasmine; Vilar, José; Launay, Jean-Marie; Gautier, Jean-François; Broquères-You, Dong; Levy, Bernard I; Merkulova-Rainon, Tatyana; Kubis, Nathalie

    2018-01-01

    Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+) (500,000 cells), injected intravenously 18-24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF- β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions . This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase.

  1. Bulk enrichment of transplantable hemopoietic stem cell subsets from lipopolysaccharide-stimulated murine spleen

    International Nuclear Information System (INIS)

    Ploemacher, R.E.; Brons, R.H.; Leenen, P.J.

    1987-01-01

    Counterflow centrifugal elutriation (CCE) in combination with density flotation centrifugation and fluorescence-activated cell sorting on wheat-germ agglutinin-FITC(WGA)-binding cells within the light-scatter ''blast window'' were used consecutively to enrich pluripotent hemopoietic stem cells (HSC) in bulk from lipopolysaccharide-stimulated mouse spleen. The medium-to-strong WGA + ve fraction contained 3.10(6) cells isolated from 3-4 X 10(9) spleen cells, with an average of 126% day-12 CFU-S and 65% day-8 CFU-S as calculated on the basis of their seeding fraction, suggesting that virtually all cells represented in vivo macroscopic colony formers. In view of the large differences reported elsewhere between stem cell subsets differing in reconstitutive capacity and secondary stem cell generation ability, we also studied various isolated cell fractions with respect to spleen colony formation, radioprotective ability, and spleen- and marrow- repopulating ability. Day-8 and day-12 CFU-S copurified when isolated by CCE. Cells from a fraction with high affinity for WGA were most highly enriched for their radioprotective ability (RPA) and their ability to repopulate the cellularity of the spleen and femur of irradiated recipients. This fraction contained virtually pure day-12 CFU-S. However, the ability to generate secondary day-12 CFU-S and CFU-GM in irradiated organs was enriched most in the medium WGA + ve cell fraction. MRA and SRA, according to the latter criteria, could therefore be partly separated from day-12 CFU-S and RPA on the basis of affinity for WGA. The data strongly suggest that at least part of all day-12 CFU-S have a high potential to proliferate and differentiate into mature progeny, but a relatively low self-renewal ability, and may therefore not be representative of the genuine stem cell

  2. Mapping and characterization of positive and negative BOLD responses to visual stimulation in multiple brain regions at 7T.

    Science.gov (United States)

    Jorge, João; Figueiredo, Patrícia; Gruetter, Rolf; van der Zwaag, Wietske

    2018-02-20

    External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI. © 2018 Wiley Periodicals, Inc.

  3. Influence of intravenous self-administered psychomotor stimulants on performance of rhesus monkeys in a multiple schedule paradigm.

    Science.gov (United States)

    Hoffmeister, F

    1980-01-01

    Rhesus monkeys were trained to complete three multiple schedules. The schedules consisted of three components: a fixed interval (component 1), a variable interval (component 2), and a fixed ratio (component 3). During components 1 and 2, pressing lever 1 was always reinforced by food delivery. During component 3, pressing lever 2 resulted in either food delivery or intravenous infusions of saline solution, solutions of cocaine, of d-amphetamine, of phenmetrazine, or fenetylline. In schedule I, animals were presented with all three components independent of key-pressing behavior during components 1 and 2. In schedule II the availability of component 2 was dependent on completion of component 1. Component 3 was made available only on completion of component 2. Noncompletion of components 1 or 2 resulted in time-out of 15 and 10 min, respectively. Schedule III was identical with schedule II, except that in schedule III the completion of components was indicated only by a change in the lever lights. The influence of self-administered drugs on behavior in all three components was evaluated. Self-administration of psychomotor stimulants impaired the performance of animals and delayed completion of components 1 and 2 of schedules I, II, and III. The effects on behavior were similar with low drug intake in schedule III, moderate intake in schedule II, and high drug intake in schedule I. These effects were strong with self-administration of phenmetrazine, moderate with self-administration of cocaine and d-amphetamine, and weak with self-administration of fenetylline.

  4. [The application of high-frequency and iTBS transcranial magnetic stimulation for the treatment of spasticity in the patients presenting with secondary progressive multiple sclerosis].

    Science.gov (United States)

    Korzhova, J E; Chervyakov, A V; Poydasheva, A G; Kochergin, I A; Peresedova, A V; Zakharova, M N; Suponeva, N A; Chernikova, L A; Piradov, M A

    Spasticity is considered to be a common manifestation of multiple sclerosis. Muscle relaxants are not sufficiently effective; more than that, some of them often cause a variety of adverse reactions. Transcranial magnetic stimulation (TMS) can be a promising new tool for the treatment of spasticity. The objective of the present study was to compare the effectiveness of the two TMS protocols: rhythmic (high-frequency) TMS (rTMS) and stimulation with the theta bursts (iTBS) in terms of their ability to reduce spasticity in the patients presenting with multiple sclerosis. Twenty two patients with secondary-progressive multiple sclerosis were pseudo-randomized into two groups: those in the first (high-frequency) group received the treatment with the use of rTMS therapy at a frequency of 10 Hz; the patients of the second group, underwent stimulation with the theta bursts (iTBS). All the patients received 10 sessions of either stimulation applied to the primary motor area (M1) of both legs. The effectiveness of TMS protocols was evaluated before therapy and after 10 sessions of stimulation based on the Modified Ashworth scale (MAS), the expanded disability status scale (EDSS), and the Kurtzke functional scale (Kfs). In addition, the patients were interviewed before treatment, after 10 rTMS sessions, immediately after and within 2 and 12 weeks after the completion of the treatment using questionnaires for the evaluation of spasticity (SESS) , fatigue, and dysfunction of the pelvic organs (severity of defecation and urination disorders), fatigue. The study has demonstrated a significant reduction in spasticity in the patients of both groups at the end of the TMS protocol based on the MAS scale. There was no significant difference between the outcomes of the two protocols. Both had positive effect on the concomitant «non-motor» symptoms (fatigue, dysfunction of the pelvic organs). High-frequency transcranial magnetic stimulation (10 sessions of rTMS therapy at a frequency

  5. Relationship of colony-stimulating activity to apparent kill of human colony-forming cells by irradiation and hydroxyurea

    International Nuclear Information System (INIS)

    Broxmeyer, H.E.; Galbraith, P.R.; Baker, F.L.

    1976-01-01

    Suspensions of human bone marrow cells were subjected to 137 Cs irradiation in vitro and then cultured in semisolid agar medium. Cultures of irradiated cells were stimulated with colony-stimulating activity (CSA) of different potencies, and it was found that the amount of stimulation applied to cultures influenced the apparent kill of colony-forming cells (CFC). It was also found that the effects of irradiation on colony formation were not confined to CFC kill since medium conditioned by cells during irradiation exhibited stimulatory and inhibitory properties after treatment by 600 and 1000 rads, respectively. Studies in which irradiated cells were pretreated with hydroxyurea indicated that CFC in the DNA synthetic phase of the cell cycle were particularly sensitive to low doses of irradiation. The proliferative capacity of CFC surviving 1000 rads was undiminished as judged by their ability to form large colonies. Estimates of CFC kill by hydroxyurea were also affected by the level of CSA

  6. Plasma cell morphology in multiple myeloma and related disorders.

    Science.gov (United States)

    Ribourtout, B; Zandecki, M

    2015-06-01

    Normal and reactive plasma cells (PC) are easy to ascertain on human bone marrow films, due to their small mature-appearing nucleus and large cytoplasm, the latter usually deep blue after Giemsa staining. Cytoplasm is filled with long strands of rough endoplasmic reticulum and one large Golgi apparatus (paranuclear hof), demonstrating that PC are dedicated mainly to protein synthesis and excretion (immunoglobulin). Deregulation of the genome may induce clonal expansion of one PC that will lead to immunoglobulin overproduction and eventually to one among the so-called PC neoplasms. In multiple myeloma (MM), the number of PC is over 10% in most patients studied. Changes in the morphology of myeloma PC may be inconspicuous as compared to normal PC (30-50% patients). In other instances PC show one or several morphological changes. One is related to low amount of cytoplasm, defining lymphoplasmacytoid myeloma (10-15% patients). In other cases (40-50% patients), named immature myeloma cases, nuclear-cytoplasmic asynchrony is observed: presence of one nucleolus, finely dispersed chromatin and/or irregular nuclear contour contrast with a still large and blue (mature) cytoplasm. A peculiar morphological change, corresponding to the presence of very immature PC named plasmablasts, is observed in 10-15% cases. Several prognostic morphological classifications have been published, as mature myeloma is related to favorable outcome and immature myeloma, peculiarly plasmablastic myeloma, is related to dismal prognosis. However, such classifications are no longer included in current prognostic schemes. Changes related to the nucleus are very rare in monoclonal gammopathy of unknown significance (MGUS). In contrast, anomalies related to the cytoplasm of PC, including color (flaming cells), round inclusions (Mott cells, Russell bodies), Auer rod-like or crystalline inclusions, are reported in myeloma cases as well as in MGUS and at times in reactive disorders. They do not correspond

  7. The role of lipolysis stimulated lipoprotein receptor in breast cancer and directing breast cancer cell behavior.

    Directory of Open Access Journals (Sweden)

    Denise K Reaves

    Full Text Available The claudin-low molecular subtype of breast cancer is of particular interest for clinically the majority of these tumors are poor prognosis, triple negative, invasive ductal carcinomas. Claudin-low tumors are characterized by cancer stem cell-like features and low expression of cell junction and adhesion proteins. Herein, we sought to define the role of lipolysis stimulated lipoprotein receptor (LSR in breast cancer and cancer cell behavior as LSR was recently correlated with tumor-initiating features. We show that LSR was expressed in epithelium, endothelium, and stromal cells within the healthy breast tissue, as well as in tumor epithelium. In primary breast tumor bioposies, LSR expression was significantly correlated with invasive ductal carcinomas compared to invasive lobular carcinomas, as well as ERα positive tumors and breast cancer cell lines. LSR levels were significantly reduced in claudin-low breast cancer cell lines and functional studies illustrated that re-introduction of LSR into a claudin-low cell line suppressed the EMT phenotype and reduced individual cell migration. However, our data suggest that LSR may promote collective cell migration. Re-introduction of LSR in claudin-low breast cancer cell lines reestablished tight junction protein expression and correlated with transepithelial electrical resistance, thereby reverting claudin-low lines to other intrinsic molecular subtypes. Moreover, overexpression of LSR altered gene expression of pathways involved in transformation and tumorigenesis as well as enhanced proliferation and survival in anchorage independent conditions, highlighting that reestablishment of LSR signaling promotes aggressive/tumor initiating cell behaviors. Collectively, these data highlight a direct role for LSR in driving aggressive breast cancer behavior.

  8. NKT cells mediate the recruitment of neutrophils by stimulating epithelial chemokine secretion during colitis.

    Science.gov (United States)

    Huang, Enyu; Liu, Ronghua; Lu, Zhou; Liu, Jiajing; Liu, Xiaoming; Zhang, Dan; Chu, Yiwei

    2016-05-27

    Ulcerative colitis (UC) is a kind of inflammatory bowel diseases characterized by chronic inflammation and ulcer in colon, and UC patients have increased risk of getting colorectal cancer. NKT cells are cells that express both NK cell markers and semi-invariant CD1d-restricted TCRs, can regulate immune responses via secreting a variety of cytokines upon activation. In our research, we found that the NKT cell-deficient CD1d(-/-) mice had relieved colitis in the DSS-induced colitis model. Further investigations revealed that the colon of CD1d(-/-) mice expressed less neutrophil-attracting chemokine CXCL 1, 2 and 3, and had decreased neutrophil infiltration. Infiltrated neutrophils also produced less reactive oxygen species (ROS) and TNF-α, indicating they may cause less epithelial damage. In addition, colitis-associated colorectal cancer was also relieved in CD1d(-/-) mice. During colitis, NKT cells strongly expressed TNF-α, which could stimulate CXCL 1, 2, 3 expressions by the epithelium. In conclusion, NKT cells can regulate colitis via the NKT cell-epithelium-neutrophil axis. Targeting this mechanism may help to improve the therapy of UC and prevent colitis-associated colorectal cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation

    Science.gov (United States)

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11–16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18–22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9–13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly. PMID:26930190

  10. Inducible colitis-associated glycome capable of stimulating the proliferation of memory CD4+ T cells.

    Science.gov (United States)

    Nishida, Atsushi; Nagahama, Kiyotaka; Imaeda, Hirotsugu; Ogawa, Atsuhiro; Lau, Cindy W; Kobayashi, Taku; Hisamatsu, Tadakazu; Preffer, Frederic I; Mizoguchi, Emiko; Ikeuchi, Hiroki; Hibi, Toshifumi; Fukuda, Minoru; Andoh, Akira; Blumberg, Richard S; Mizoguchi, Atsushi

    2012-12-17

    Immune responses are modified by a diverse and abundant repertoire of carbohydrate structures on the cell surface, which is known as the glycome. In this study, we propose that a unique glycome that can be identified through the binding of galectin-4 is created on local, but not systemic, memory CD4+ T cells under diverse intestinal inflammatory conditions, but not in the healthy state. The colitis-associated glycome (CAG) represents an immature core 1-expressing O-glycan. Development of CAG may be mediated by down-regulation of the expression of core-2 β1,6-N-acetylglucosaminyltransferase (C2GnT) 1, a key enzyme responsible for the production of core-2 O-glycan branch through addition of N-acetylglucosamine (GlcNAc) to a core-1 O-glycan structure. Mechanistically, the CAG seems to contribute to super raft formation associated with the immunological synapse on colonic memory CD4+ T cells and to the consequent stabilization of protein kinase C θ activation, resulting in the stimulation of memory CD4+ T cell expansion in the inflamed intestine. Functionally, CAG-mediated CD4+ T cell expansion contributes to the exacerbation of T cell-mediated experimental intestinal inflammations. Therefore, the CAG may be an attractive therapeutic target to specifically suppress the expansion of effector memory CD4+ T cells in intestinal inflammation such as that seen in inflammatory bowel disease.

  11. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

    Science.gov (United States)

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly.

  12. A stimulator of proliferation of spleen colony-forming cells (CFU-S) in the bone marrow of irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovic, Z.; Milenkovic, P.; Stojanovic, N.; Lukic, M.; Kataranovski, M.

    1993-07-01

    The presence and activity of a spleen colony - forming cell (CFU-S) proliferation stimulator was investigated in rat bone marrow after irradiation. The dose dependent increase in cytosine arabinoside induced cell dealth of normal mouse bone marrow. The results demonstrate the existence of a CFU-S proliferation stimulator in rat bone marrow similar to that originally found as a macrophage product in regenarating mouse bone marrow. The CFU-S proliferation stimulator activity was not associated with the presence of interleukin - 1,2, or 6 like activities in the material tested.

  13. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    International Nuclear Information System (INIS)

    Ye Ling; Lin Jianguo; Sun Yuliang; Bennouna, Soumaya; Lo, Michael; Wu Qingyang; Bu Zhigao; Pulendran, Bali; Compans, Richard W.; Yang Chinglai

    2006-01-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity of Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection

  14. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Agneta Månsson-Broberg

    2016-04-01

    Full Text Available The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  15. Enteroantigen-presenting B cells efficiently stimulate CD4(+) T cells in vitro

    DEFF Research Database (Denmark)

    Schmidt, Esben Gjerløff Wedebye; Kristensen, Nanna Ny; Claesson, Mogens Helweg

    2011-01-01

    Presentation of enterobacterial antigens by antigen-presenting cells and activation of enteroantigen-specific CD4(+) T cells are considered crucial steps in inflammatory bowel disease (IBD) pathology. The detrimental effects of such CD4(+) T cells have been thoroughly demonstrated in models...... of colitis. Also, we have previously established an in vitro assay where murine enteroantigen-specific colitogenic CD4(+) CD25(-) T cells are activated by splenocytes pulsed with an enterobacterial extract....

  16. Nanostructured Polyaniline Coating on ITO Glass Promotes the Neurite Outgrowth of PC 12 Cells by Electrical Stimulation.

    Science.gov (United States)

    Wang, Liping; Huang, Qianwei; Wang, Jin-Ye

    2015-11-10

    A conducting polymer polyaniline (PANI) with nanostructure was synthesized on indium tin oxide (ITO) glass. The effect of electrical stimulation on the proliferation and the length of neurites of PC 12 cells was investigated. The dynamic protein adsorption on PANI and ITO surfaces in a cell culture medium was also compared with and without electrical stimulation. The adsorbed proteins were characterized using SDS-PAGE. A PANI coating on ITO surface was shown with 30-50 nm spherical nanostructure. The number of PC 12 cells was significantly greater on the PANI/ITO surface than on ITO and plate surfaces after cell seeding for 24 and 36 h. This result confirmed that the PANI coating is nontoxic to PC 12 cells. The electrical stimulation for 1, 2, and 4 h significantly enhanced the cell numbers for both PANI and ITO conducting surfaces. Moreover, the application of electrical stimulation also improved the neurite outgrowth of PC 12 cells, and the number of PC 12 cells with longer neurite lengths increased obviously under electrical stimulation for the PANI surface. From the mechanism, the adsorption of DMEM proteins was found to be enhanced by electrical stimulation for both PANI/ITO and ITO surfaces. A new band 2 (around 37 kDa) was observed from the collected adsorbed proteins when PC 12 cells were cultured on these surfaces, and culturing PC 12 cells also seemed to increase the amount of band 1 (around 90 kDa). When immersing PANI/ITO and ITO surfaces in a DMEM medium without a cell culture, the number of band 3 (around 70 kDa) and band 4 (around 45 kDa) proteins decreased compared to that of PC 12 cell cultured surfaces. These results are valuable for the design and improvement of the material performance for neural regeneration.

  17. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    International Nuclear Information System (INIS)

    Lee, Ha Young; Kim, Sang Doo; Baek, Suk-Hwan; Choi, Joon Hyuk; Cho, Kyung-Hyun; Zabel, Brian A.; Bae, Yoe-Sik

    2013-01-01

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis

  18. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen; Jin, Rong [Department of Immunology, Peking University Health Science Center, Beijing (China); Wang, Hong-Cheng [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Tang, Hui; Liu, Yuan-Feng; Qian, Xiao-Ping; Sun, Xiu-Yuan; Ge, Qing [Department of Immunology, Peking University Health Science Center, Beijing (China); Sun, Xiao-Hong, E-mail: sunx@omrf.org [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Zhang, Yu, E-mail: zhangyu007@bjmu.edu.cn [Department of Immunology, Peking University Health Science Center, Beijing (China)

    2013-06-21

    Highlights: •Id1 expression enables naïve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-κB activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïve CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.

  19. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ha Young, E-mail: hayoung@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Sang Doo [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Baek, Suk-Hwan [Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Joon Hyuk [Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Cho, Kyung-Hyun [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Zabel, Brian A. [Palo Alto Institute for Research and Education, Veterans Affairs Hospital, Palo Alto, CA 94304 (United States); Bae, Yoe-Sik, E-mail: yoesik@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of)

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.

  20. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells.

    Directory of Open Access Journals (Sweden)

    Bo Hu

    Full Text Available Human periodontal ligament cells (hPDLCs possess stem cell properties, which play a key role in periodontal regeneration. Physical stimulation at appropriate intensities such as low-intensity pulsed ultrasound (LIPUS enhances cell proliferation and osteogenic differentiation of mesechymal stem cells. However, the impacts of LIPUS on osteogenic differentiation of hPDLCs in vitro and its molecular mechanism are unknown. This study was undertaken to investigate the effects of LIPUS on osteogenic differentiation of hPDLCs. HPDLCs were isolated from premolars of adolescents for orthodontic reasons, and exposed to LIPUS at different intensities to determine an optimal LIPUS treatment dosage. Dynamic changes of alkaline phosphatase (ALP activities in the cultured cells and supernatants, and osteocalcin production in the supernatants after treatment were analyzed. Runx2 and integrin β1 mRNA levels were assessed by reverse transcription polymerase chain reaction analysis after LIPUS stimulation. Blocking antibody against integrinβ1 was used to assess the effects of integrinβ1 inhibitor on LIPUS-induced ALP activity, osteocalcin production as well as calcium deposition. Our data showed that LIPUS at the intensity of 90 mW/cm2 with 20 min/day was more effective. The ALP activities in lysates and supernatants of LIPUS-treated cells started to increase at days 3 and 7, respectively, and peaked at day 11. LIPUS treatment significantly augmented the production of osteocalcin after day 5. LIPUS caused a significant increase in the mRNA expression of Runx2 and integrin β1, while a significant decline when the integrinβ1 inhibitor was used. Moreover, ALP activity, osteocalcin production as well as calcium nodules of cells treated with both daily LIPUS stimulation and integrinβ1 antibody were less than those in the LIPUS-treated group. In conclusion, LIPUS promotes osteogenic differentiation of hPDLCs, which is associated with upregulation of Runx2 and

  1. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line

    Directory of Open Access Journals (Sweden)

    Y Kobayashi

    2009-06-01

    Full Text Available Low-intensity pulsed ultrasound (LIPUS stimulation has been shown to effect differentiation and activation of human chondrocytes. A study involving stimulation of rabbit disc cells with LIPUS revealed upregulation of cell proliferation and proteoglycan (PG synthesis. However, the effect of LIPUS on human nucleus pulposus cells has not been investigated. In the present study, therefore, we investigated whether LIPUS stimulation of a human nucleus pulposus cell line (HNPSV-1 exerted a positive effect on cellular activity. HNPSV-1 cells were encapsulated in 1.2% sodium alginate solution at 1x105 cells/ml and cultured at 10 beads/well in 6-well plates. The cells were stimulated for 20 min each day using a LIPUS generator, and the effects of LIPUS were evaluated by measuring DNA and PG synthesis. Furthermore, mRNA expression was analyzed by cDNA microarray using total RNA extracted from the cultured cells. Our study revealed no significant difference in cell proliferation between the control and the ultrasound treated groups. However, PG production was significantly upregulated in HNPSV cells stimulated at intensities of 15, 30, 60, and 120 mW/cm2 compared with the control. The results of cDNA array showed that LIPUS significantly stimulated the gene expression of growth factors and their receptors (BMP2, FGF7, TGFbetaR1 EGFRF1, VEGF. These findings suggest that LIPUS stimulation upregulates PG production in human nucleus pulposus cells by the enhancement of several matrix-related genes including growth factor-related genes. Safe and non-invasive stimulation using LIPUS may be a useful treatment for delaying the progression of disc degeneration.

  2. Structure of the EGF receptor transactivation circuit integrates multiple signals with cell context

    Energy Technology Data Exchange (ETDEWEB)

    Joslin, Elizabeth J.; Shankaran, Harish; Opresko, Lee K.; Bollinger, Nikki; Lauffenburger, Douglas A.; Wiley, H. S.

    2010-05-10

    Transactivation of the epidermal growth factor receptor (EGFR) has been proposed to be a mechanism by which a variety of cellular inputs can be integrated into a single signaling pathway, but the regulatory topology of this important system is unclear. To understand the transactivation circuit, we first created a “non-binding” reporter for ligand shedding. We then quantitatively defined how signals from multiple agonists were integrated both upstream and downstream of the EGFR into the extracellular signal regulated kinase (ERK) cascade in human mammary epithelial cells. We found that transactivation is mediated by a recursive autocrine circuit where ligand shedding drives EGFR-stimulated ERK that in turn drives further ligand shedding. The time from shedding to ERK activation is fast (<5 min) whereas the recursive feedback is slow (>15 min). Simulations showed that this delay in positive feedback greatly enhanced system stability and robustness. Our results indicate that the transactivation circuit is constructed so that the magnitude of ERK signaling is governed by the sum of multiple direct inputs, while recursive, autocrine ligand shedding controls signal duration.

  3. Reduction of the radiogenic tumor incidence by stimulation with lyophilized fetal cells

    International Nuclear Information System (INIS)

    Bause, R.; Gros, C.J.; Landsberger, A.; Renner, H.; Klinikum Nuernberg

    1983-01-01

    The effect of an immunization treatment with lyophilized xenogenic fetal cells was studied in 7 months old, female albino rats (strain Wistar). The tumor incidence was measured after a sublethal whole-body irradiation with 600 cGy. Furthermore, the spleen of the individual animals was histologically examined. 3,5 to 6 months after a whole-body irradiation with 600 cGy, the tumor incidence was 55%. The tumors found were tubular adenocarcinomas of the thyroid gland. A significant reduction of the tumor incidence can be achieved by an immunostimulation with xenogenic, lyophilized, fetal cells (connective tissue and bone marrow, respectively) administered twice, namely eight days before and four days after the whole-body irradiation. The tumor incidence measured after 3,5 months was 10% and 15%, respectively, and after 6 months 15% and 25%, respectively. No significant tumor protection is achieved, however, by a single stimulation before whole-body irradiation and by a stimulation performed one or two times after whole-body irradiation. Histologic examinations of the spleen show in the immunostimulized animals a strong regeneration of the immune system with a significantly increased number of follicles and a significant increase of lumphocytes in the red pulp. The authors stress the possible clinical importance for radio-oncology of an immunostimulation with lyophilized, xenogenic, fetal cells. (orig.) [de

  4. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels.

    Directory of Open Access Journals (Sweden)

    Leonardo Ricotti

    Full Text Available In this paper, we describe the effects of the combination of topographical, mechanical, chemical and intracellular electrical stimuli on a co-culture of fibroblasts and skeletal muscle cells. The co-culture was anisotropically grown onto an engineered micro-grooved (10 µm-wide grooves polyacrylamide substrate, showing a precisely tuned Young's modulus (∼ 14 kPa and a small thickness (∼ 12 µm. We enhanced the co-culture properties through intracellular stimulation produced by piezoelectric nanostructures (i.e., boron nitride nanotubes activated by ultrasounds, thus exploiting the ability of boron nitride nanotubes to convert outer mechanical waves (such as ultrasounds in intracellular electrical stimuli, by exploiting the direct piezoelectric effect. We demonstrated that nanotubes were internalized by muscle cells and localized in both early and late endosomes, while they were not internalized by the underneath fibroblast layer. Muscle cell differentiation benefited from the synergic combination of topographical, mechanical, chemical and nanoparticle-based stimuli, showing good myotube development and alignment towards a preferential direction, as well as high expression of genes encoding key proteins for muscle contraction (i.e., actin and myosin. We also clarified the possible role of fibroblasts in this process, highlighting their response to the above mentioned physical stimuli in terms of gene expression and cytokine production. Finally, calcium imaging-based experiments demonstrated a higher functionality of the stimulated co-cultures.

  5. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  6. Electrical Stimulation of Schwann Cells Promotes Sustained Increases in Neurite Outgrowth

    OpenAIRE

    Koppes, Abigail N.; Nordberg, Andrea L.; Paolillo, Gina M.; Goodsell, Nicole M.; Darwish, Haley A.; Zhang, Linxia; Thompson, Deanna M.

    2013-01-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite ou...

  7. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect.

    OpenAIRE

    Klinkspoor, J H; Yoshida, T; Lee, S P

    1998-01-01

    1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoprot...

  8. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.

    Science.gov (United States)

    Huang, Jinghui; Ye, Zhengxu; Hu, Xueyu; Lu, Lei; Luo, Zhuojing

    2010-04-01

    Production of nerve growth factor (NGF) from Schwann cells (SCs) progressively declines in the distal stump, if axonal regeneration is staggered across the suture site after peripheral nerve injuries. This may be an important factor limiting the outcome of nerve injury repair. Thus far, extensive efforts are devoted to modulating NGF production in cultured SCs, but little has been achieved. In the present in vitro study, electrical stimulation (ES) was attempted to stimulate cultured SCs to release NGF. Our data showed that ES was capable of enhancing NGF release from cultured SCs. An electrical field (1 Hz, 5 V/cm) caused a 4.1-fold increase in NGF release from cultured SCs. The ES-induced NGF release is calcium dependent. Depletion of extracellular or/and intracellular calcium partially/ completely abolished the ES-induced NGF release. Further pharmacological interventions showed that ES induces calcium influx through T-type voltage-gated calcium channels and mobilizes calcium from 1, 4, 5-trisphosphate-sensitive stores and caffeine/ryanodine-sensitive stores, both of which contributed to the enhanced NGF release induced by ES. In addition, a calcium-triggered exocytosis mechanism was involved in the ES-induced NGF release from cultured SCs. These findings show the feasibility of using ES in stimulating SCs to release NGF, which holds great potential in promoting nerve regeneration by enhancing survival and outgrowth of damaged nerves, and is of great significance in nerve injury repair and neuronal tissue engineering.

  9. G protein in stimulation of PI hydrolysis by CCK [cholecystokinin] in isolated rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Matozaki, Takashi; Sakamoto, Choitsu; Nagao, Munehiko; Nishizaki, Hogara; Baba, Shigeaki

    1988-01-01

    To clarify the possible role of a guanine nucleotide-binding protein (G protein) in the signal transducing system activated by cholecystokinin (CCK), actions of CCK on rat pancreatic acini were compared with those of fluoride, a well-known activator of stimulatory (G s ) or inhibitory (G i ) G protein. When acini were incubated with increasing concentrations of either CCK-octapeptide (CCK8) or NaF, a maximal stimulation of amylase release from acini occurred at 100 pM CCK8 or 10 mM NaF, respectively; this secretory rate decreased as CCK8 or NaF concentration was increased. NaF caused an increase in cytoplasmic Ca 2+ concentration from the internal Ca 2+ store and stimulated accumulation of inositol phosphates in acini, as observed with CCK. Guanylimidodiphosphate activated the generation of inositol phosphates in the [ 3 H]inositol-labeled pancreatic acinar cell membrane preparation, with half-maximal and maximal stimulation at 1 and 10 μM, respectively. Furthermore, the effects of submaximal CCK concentrations on inositol phosphate accumulation in membranes were markedly potentiated in the presence of 100 μM GTP, which alone was ineffective. Combined findings of the present study strongly suggest that pancreatic CCK receptors are probably coupled to the activation of polyphosphoinositide (PI) breakdown by a G protein, which appears to be fluoride sensitive but is other than G s - or G i -like protein

  10. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elizabeth S.; Kawahara, Rebeca [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Kadowaki, Marina K. [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil); Amstalden, Hudson G.; Noleto, Guilhermina R.; Cadena, Silvia Maria S.C.; Winnischofer, Sheila M.B. [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Martinez, Glaucia R., E-mail: grmartinez@ufpr.br [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil)

    2012-09-10

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.

  11. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro.

    Science.gov (United States)

    Gulbransen, Brian D; Clapp, Tod R; Finger, Thomas E; Kinnamon, Sue C

    2008-06-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear. Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein alpha-gustducin, PLCbeta2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP-positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium and this response is blocked by the PLC inhibitor U73122. In addition, GFP+ cells respond to the neuromodulators adenosine 5'-triphosphate and acetylcholine but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system.

  12. One-Year Follow-Up of Natural Killer Cell Activity in Multiple Myeloma Patients Treated With Adjuvant Lenalidomide Therapy

    Directory of Open Access Journals (Sweden)

    Laurie Besson

    2018-04-01

    Full Text Available Multiple myeloma (MM is a proliferation of tumoral plasma B cells that is still incurable. Natural killer (NK cells can recognize and kill MM cells in vitro and can limit MM growth in vivo. Previous reports have shown that NK cell function is impaired during MM progression and suggested that treatment with immunomodulatory drugs (IMIDs such as lenalidomide (LEN could enhance it. However, the effects of IMIDs on NK cells have been tested mostly in vitro or in preclinical models and supporting evidence of their effect in vivo in patients is lacking. Here, we monitored NK cell activity in blood samples from 10 MM patients starting after frontline induction chemotherapy (CTX consisting either of association of bortezomib–lenalidomide–dexamethasone (Velcade Revlimid Dexamethasone or autologous stem-cell transplantation (SCT. We also monitored NK cell activity longitudinally each month during 1 year, after maintenance therapy with LEN. Following frontline chemotherapy, peripheral NK cells displayed a very immature phenotype and retained poor reactivity toward target cells ex vivo. Upon maintenance treatment with LEN, we observed a progressive normalization of NK cell maturation, likely caused by discontinuation of chemotherapy. However, LEN treatment neither activated NK cells nor improved their capacity to degranulate or to secrete IFN-γ or MIP1-β following stimulation with MHC-I-deficient or antibody-coated target cells. Upon LEN discontinuation, there was no reduction of NK cell effector function either. These results caution against the use of LEN as single therapy to improve NK cell activity in patients with cancer and call for more preclinical assessments of the potential of IMIDs in NK cell activation.

  13. Merkel cells are long-lived cells whose production is stimulated by skin injury✰

    Science.gov (United States)

    Wright, Margaret C.; Logan, Gregory J.; Bolock, Alexa M.; Kubicki, Adam C.; Hemphill, Julie A.; Sanders, Timothy A.; Maricich, Stephen M.

    2017-01-01

    Mechanosensitive Merkel cells are thought to have finite lifespans, but controversy surrounds the frequency of their replacement and which precursor cells maintain the population. We found by embryonic EdU administration that Merkel cells undergo terminal cell division in late embryogenesis and survive long into adulthood. We also found that new Merkel cells are produced infrequently during normal skin homeostasis and that their numbers do not change during natural or induced hair cycles. In contrast, live imaging and EdU experiments showed that mild mechanical injury produced by skin shaving dramatically increases Merkel cell production. We confirmed with genetic cell ablation and fate-mapping experiments that new touch dome Merkel cells in adult mice arise from touch dome keratinocytes. Together, these independent lines of evidence show that Merkel cells in adult mice are long-lived, are replaced rarely during normal adult skin homeostasis, and that their production can be induced by repeated shaving. These results have profound implications for understanding sensory neurobiology and human diseases such as Merkel cell carcinoma. PMID:27998808